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PREFACE TO THE PAPERBACK EDITION

WHEN IT WAS PUBLISHED IN 2014, Everyday Calculus promised to help
readers learn the basics of calculus by using their everyday experiences
to reveal the hidden calculus around them. It also promised to do
that in just over 100 pages, and assuming a minimal math background
from the reader. Since then, I have heard positive reviews from dozens
of readers of all ages and backgrounds, and I could not be happier.
However, there is always room for improvement. For example, some
careful readers alerted me to several small typos throughout the book.
Others wrote detailed reviews with suggestions for the next edition
of the book. I am indebted to these readers for their input, and this
feedback, in part, inspired the release of this paperback edition.

Here is a brief description of the updates to the original edition.

1. All known typos have been corrected.
2. Some graphs now have a computer icon next to them in

the margin. This signals that there is an online interac-
tive demonstration that I have created to complement that
graph. Please visit the Everyday Calculus section of my website
www.surroundedbymath.com/books to access them.

3. Everyday Calculus was not written to replace a calculus textbook.
However, several readers have suggested that having all of the
calculus math discussed in one place might help summarize the
calculus the book discusses (and also serve as a quick refresher
for those who have already studied calculus). In response to this,
I have written a short introduction to the mathematics behind the
calculus covered in the book. Please visit my website (link above)
to download that document.

http://www.surroundedbymath.com/books
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4. Several instructors have written to me expressing interest in using
the book in their calculus courses. One option to do so is to assign
some of the applications covered in the book as projects (perhaps
having students explore the chosen topic deeper). Another option
is to complement homework assignments with reading from the
book. I have created a document that does this, complete with
short questions and problems based on the reading, and have
made the document available on my website (link above).

Other than these updates, no other changes have been made to the
book to preserve the original intent, content, and structure of Everyday
Calculus. (In the future I would like to release a second edition that
includes more advanced calculus content, like infinite series.) I hope
you enjoy the new content.

Oscar E. Fernandez
Wellesley, MA



PREFACE

SINCE THE LATE 1600S, when calculus was being developed by the
greatest mathematical minds of the day, scores of people across the
world have asked the same question: When am I ever going to use
this?

If you’re reading this, you’re probably interested in the answer to
this question, as I was when I first started learning calculus. There
are answers, like “Calculus is used by engineers when designing X,”
but this is more a statement of fact than an answer to the question.
The pages that follow answer this question in a very different way, by
instead revealing the hidden mathematics—calculus in particular—that
describes our world.

To tell this revelatory tale I’ll take you through a typical day in my
life. You might be thinking: “A typical day? You’re a mathematician!
How typical can that be?” But as you’ll discover, my day is just as normal
as anyone else’s. In the morning I sometimes feel groggy; I spend what
feel like hours in traffic (even though they’re only minutes) on my way
to work; throughout my day I choose what to eat and where to eat it;
and at some point I think about money. We don’t pay attention to these
everyday events, but in this book I’ll peel back the facade of daily life
and uncover its mathematical DNA.

Calculus will explain why our blood vessels branch off at certain
angles (Chapter 5), and why every object thrown in the air arcs in
the shape of a parabola (Chapter 1). Its insights will make us rethink
what we know about time and space, demonstrating that we can time
travel into the future (Chapter 3), and that our universe is expanding
(Chapter 7). We’ll also see how calculus can help us awake feeling more
rested (Chapter 1), cut down on our car’s fuel consumption (Chapter 5),
and find the best seat in a movie theater (Chapter 7).
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So, if you’ve ever wondered what calculus can be used for, you should
have a hard time figuring out what it can’t be used for after reading this
book. The applications we’ll discuss will be accompanied throughout
the chapters by various formulas. These equations will gently help you
build your mathematical understanding of calculus, but don’t worry
if you’re a bit rusty with your math; you won’t need to understand
any of them to enjoy the book. But in case you’re curious about the
math, Appendix A includes a refresher on functions and graphs to get
you started, and appendices 1–7 include the calculations mentioned
throughout the book, which are indicated by superscripts that look like
this.∗1 (You’ll also find footnotes indicated by Roman numerals and
endnotes indicated by Arabic numerals.) Finally, on the next page you’ll
find a breakdown of the mathematics discussed in each chapter.

Whether you’re new to calculus, you’re studying calculus, or it’s been
a few years since you’ve seen it, you’ll find a whole new way of looking
at the world in the next few chapters. You may not see fancy formulas
flashing before your eyes when you finish this book, but I’m hopeful
that you’ll achieve an enlightenment akin to what Neo in The Matrix
experiences when he learns that a computer code underlies his reality.
Although I’m not as cool as Morpheus, I look forward to helping you
emerge through the other end of the rabbit hole.

Oscar Edward Fernandez
Newton, MA
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CHAPTER 1

WAKE UP AND SMELL THE FUNCTIONS

IT’S FRIDAY MORNING. The alarm clock next to me reads 6:55 a.m.
In five minutes it’ll wake me up, and I’ll awake refreshed after sleeping
roughly 7.5 hours. Echoing the followers of the ancient mathematician
Pythagoras—whose dictum was “All is number”—I deliberately chose
to sleep for 7.5 hours. But truth be told, I didn’t have much of a choice.
It turns out that a handful of numbers, including 7.5, rule over our lives
every day. Allow me to explain.

A long time ago at a university far, far away I was walking up the
stairs of my college dorm to my room. I lived on the second floor
at the time, just down the hall from my friend Eric Johnson’s room.
EJ and I were in freshman physics together, and I often stopped by his
room to discuss the class. This time, however, he wasn’t there. I thought
nothing of it and kept walking down the narrow hallway toward my
room. Out of nowhere EJ appeared, holding a yellow Post-it note in his
hand. “These numbers will change your life,” he said in a stern voice as
he handed me the note. Off in the corner was a sequence of numbers:

1.5 4.5 7.5

3 6

Like Hurley from the Lost television series encountering his mystical
sequence of numbers for the first time, my gut told me that these
numbers meant something, but I didn’t know what. Not knowing how
to respond, I just said, “Huh?”
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EJ took the note from me and pointed to the number 1.5. “One and
a half hours; then another one and a half makes three,” he said. He
explained that the average human sleep cycle is 90 minutes (1.5 hours)
long. I started connecting the numbers in the shape of a “W.” They were
all a distance of 1.5 from each other—the length of the sleep cycle. This
was starting to sound like a good explanation for why some days I’d
wake up “feeling like a million bucks,” while other days I was just “out
of it” the entire morning. The notion that a simple sequence of numbers
could affect me this much was fascinating.

In reality getting exactly 7.5 hours of sleep is very hard to do. What
if you manage to sleep for only 7 hours, or 6.5? How awake will you
feel then? We could answer these questions if we had the sleep cycle
function. Let’s create this based on the available data.

What’s Trig Got to Do with Your Morning?

A typical sleep cycle begins with REM sleep—where dreaming generally
occurs—and then progresses into non-REM sleep. Throughout the four
stages of non-REM sleep our bodies repair themselves,1 with the last
two stages—stages 3 and 4—corresponding to deep sleep. As we emerge
from deep sleep we climb back up the stages to REM sleep, with the full
cycle lasting on average 1.5 hours. If we plotted the sleep stage S against
the hours of sleep t, we’d obtain the diagram in Figure 1.1(a). The shape
of this plot provides a clue as to what function we should use to describe
the sleep stage. Since the graph repeats roughly every 1.5 hours, let’s
approximate it by a trigonometric function.

To find the function, let’s begin by noting that S depends on how
many hours t you’ve been sleeping. Mathematically, we say that your
sleep stage S is a function of the number of hours t you’ve been asleep,i
and write S = f (t). We can now use what we know about sleep cycles
to come up with a reasonable formula for f (t).

iAppendix A includes a short refresher on functions and graphs.
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Since we know that our REM/non-REM stages cycle every 1.5 hours,
this tells us that f (t) is a periodic function—a function whose values
repeat after an interval of time T called the period—and that the period
T = 1.5 hours. Let’s assign the “awake” sleep stage to S = 0, and assign
each subsequent stage to the next negative whole number; for example,
sleep stage 1 will be assigned to S = −1, and so on. Assuming that
t = 0 is when you fell asleep, the trigonometric function that results
is ∗1

f (t) = 2 cos
(
4π
3
t
)

− 2,

where π ≈ 3.14.
Before we go off and claim that f (t) is a good mathematical model

for our sleep cycle, it needs to pass a few basic tests. First, f (t) should
tell us that we’re awake (sleep stage 0) every 1.5 hours. Indeed, f (1.5)= 0
and so on for multiples of 1.5. Next, our model should reproduce the
actual sleep cycle in Figure 1.1(a). Figure 1.1(b) shows the graph of f (t),
and as we can see it does a good job of capturing not only the awake
stages but also the deep sleep times (the troughs).ii

In my case, though I’ve donemy best to get exactly 7.5 hours of sleep,
chances are I’ve missed themark by at least a fewminutes. If I’m way off
I’ll wake up in stage 3 or 4 and feel groggy; so I’d like to know how close
to a multiple of 1.5 hours I need to wake up so that I still feel relatively
awake.

We can now answer this question with our f (t) function. For
example, since stage 1 sleep is still relatively light sleeping, we can ask
for all of the t values for which f (t) ≥ −1, or

2 cos
(
4π
3
t
)

− 2 ≥ −1.

The quick way to find these intervals is to draw a horizontal line at sleep
stage −1 on Figure 1(b). Then all of the t-values for which our graph is

iiAs Figure 1.1(a) shows, after roughly three full sleep cycles (4.5 hours of sleep) we don’t
experience the deep sleep stages again. We didn’t factor this in when designing the model, which
explains why f (t) doesn’t capture the shallower troughs seen in Figure 1.1(a) for t > 5.
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Figure 1.1. (a) A typical sleep cycle.2 (b) Our trigonometric function f (t).

above this line will satisfy our inequality. We could use a ruler to obtain
good estimates, but we can also find the exact intervals by solving the
equation f (t) = −1 :∗2

[0, 0.25], [1.25, 1.75], [2.75, 3.25], [4.25, 4.75], [5.75, 6.25],
[7.25, 7.75], etc.

We can see that the endpoints of each interval are 0.25 hour—or
15 minutes—away from a multiple of 1.5. Hence, our model shows
that missing the 1.5 hour target by 15 minutes on either side won’t
noticeably impact our morning mood.
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This analysis assumed that 90 minutes represented the average sleep
cycle length, meaning that for some of us the length is closer to 80
minutes, while for others it’s closer to 100. These variations are easy
to incorporate into f (t): just change the period T . We could also
replace the 15-minute buffer with any other amount of time. These
free parameters can be specified for each individual, making our f (t)
function very customizable.

I’m barely awake and already mathematics has made it into my day.
Not only has it enabled us to solve the mystery of EJ’s multiples of 1.5,
but it’s also revealed that we all wake up with a built-in trigonometric
function that sets the tone for our morning.

How a Rational Function Defeated Thomas Edison,
andWhy Induction Powers the World

Like most people I wake up to an alarm, but unlike most people I set
two alarms: one on my radio alarm clock plugged into the wall and
one on my iPhone. I adopted this two-alarm system back in college
when a power outage made me late for a final exam. We all know
that our gadgets run on electricity, so the power outage must have
interrupted the flow of electricity to my alarm clock at the time. But
what is “electricity,” and what causes it to flow?

On a normal day my alarm clock gets its electricity in the form of
alternating current (AC). But this wasn’t always the case. In 1882 a well-
known inventor—Thomas Edison—established the first electric utility
company; it operated using direct current (DC).3 Edison’s business
soon expanded, and DC current began to power the world. But in
1891 Edison’s dreams of a DC empire were crushed, not by corporate
interests, lobbyists, or environmentalists, but instead by a most unusual
suspect: a rational function.

The story of this rational function begins with the French physicist
André-Marie Ampère. In 1820 he discovered that two wires carrying
electric currents can attract or repel each other, as if they were magnets.
The hunt was on to figure out how the forces of electricity and
magnetism were related.
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The unexpected genius who contributed most to the effort was
the English physicist Michael Faraday. Faraday, who had almost no
formal education or mathematical training, was able to visualize the
interactions betweenmagnets. To everyone else the fact that the “north”
pole of one magnet attracted the “south” pole of another—place them
close to each other and they’ll snap together—was just this, a fact. But to
Faraday there was a cause for this. He believed that magnets had “lines
of force” that emanated from their north poles and converged on their
south poles. He called these lines of force amagnetic field.

To Faraday, Ampère’s discovery hinted that magnetic fields and
electric current were related. In 1831 he found out how. Faraday discov-
ered that moving a magnet near a circuit creates an electric current in
the circuit. Put another way, this law of induction states that a changing
magnetic field produces a voltage in the circuit. We’re familiar with
voltages produced by batteries (like the one in my iPhone), where
chemical reactions release energy that results in a voltage between the
positive and negative terminals of the battery. But Faraday’s discovery
tells us that we don’t need the chemical reactions; just wave a magnet
near a circuit and voilà, you’ll produce a voltage! This voltage will then
push around the electrons in the circuit, causing a flow of electrons, or
what we today call electricity or electric current.

So what does Edison have to do with all of this? Well, remember that
Edison’s plants operated on DC current, the same current produced by
today’s batteries. And just like these batteries operate at a fixed voltage
(a 12-volt battery will never magically turn into a 15-volt battery),
Edison’s DC-current plants operated at a fixed voltage. This seemed a
good idea at the time, but it turned out to be an epic failure. The reason:
hidden mathematics.

Suppose that Edison’s plants produce an amount V of electrical
energy (i.e., voltage) and transmit the resulting electric current across a
power line to a nineteenth-century home, where an appliance (perhaps
a fancy new electric stove) sucks up the energy at the constant rate P0.
The radius r and length l of the power line are related to V by

r (V) = k
√
P0l
V

,
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1
V

r(V)

k P0 l

Figure 1.2. A plot of the rational function r (V).

where k is a number that measures how easily the power line allows
current to flow.iii This rational function is the nemesis Edison never
saw coming.

For starters, the easiest way to distribute electricity is through
hanging power lines. And there’s an inherent incentive to make these
as thin (small r ) as possible, otherwise they would both cost more
and weigh more—a potential danger to anyone walking under them.
But our rational function tells us that to carry electricity over large
distances (large l) we need large voltages (large V) if we want the
power line radius r to be small (Figure 1.2). And this was precisely
Edison’s problem; his power plants operated at the low voltage of 110
volts. The result: customers needed to live at most 2 miles from the
generating plant to receive electricity. Since start-up costs to build new
power plants were too high, this approach soon became uneconomical
for Edison. On top of this, in 1891 an AC current was generated and
transported 108 miles at an exhibition in Germany. As they say in the
sports business, Edison bet on the wrong horse.4

iiiThis property of a material is called the electrical resistivity. Power lines are typically made of
copper, since this metal has low electrical resistivity.
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N(a) (b)

Figure 1.3. Faraday’s law of induction. (a) A changing magnetic field produces a
voltage in a circuit. (b) The alternating current produced creates another changing
magnetic field, producing another voltage in a nearby circuit.

But the function r (V) has a split personality. Seen from a different
perspective, it says that if we crank up the voltage V—by a lot—we
can also increase the length l—by a bit less—and still reduce the wire
radius r . In other words, we can transmit a very high voltage V across a
very long distance l by using a very thin power line. Sounds great! But
having accomplished this we’d still need a way to transform this high
voltage into the low voltages that our appliances use. Unfortunately
r (V) doesn’t tell us how to do this. But one man already knew how:
our English genius Michael Faraday.

Faraday used what we mathematicians would call “transitive reason-
ing,” the deduction that if A causes B and B causes C , then A must
also cause C . Specifically, since a changing magnetic field produces a
current in a circuit (his law of induction), and currents flowing through
circuits produce magnetic fields (Ampère’s discovery), then it should
be possible to use magnetic fields to transfer current from one circuit to
another. Here’s how he did it.

Picture Faraday—a clean-shaven tall man with his hair parted down
the middle—with a magnet in his hand, waving it around a nearby
circuit. Induction causes this changing magnetic field to produce a volt-
age Va in one circuit (Figure 1.3(a)). The alternating current produced
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would, by Ampère’s discovery, produce another changing magnetic
field. The result would be another voltage Vb in a nearby circuit
(Figure 1.3(b)), producing current in that circuit.

As Faraday waves the magnet around, sometimes he does so closer
to the loop and sometimes farther away; sometimes he waves it fast
and other times slow. In other words, the voltage Va produced changes.
Today, magnets are put inside objects like windmills that do the waving
for us. As the blades rotate in the wind, the magnetic field produced
inside the turbine also changes. In this case the changes are described
by a trigonometric function (not by Faraday’s crazy hand-waving). This
alternating voltage causes the current to alternate too, putting the
“alternating” in alternating current.

Great, we can now transfer current between circuits. But we still have
the voltage problem: most household plugs run at low voltages (a fact
left over from Edison’s doings), yet our modern grids produce voltages
as high as 765,000 volts; how do we reduce this to the standard range of
120–220 volts that most countries use?

Let’s suppose that the original circuit’s wiring has been coiled into
Na turns, and that the nearby circuit’s wiring has been coiled into Nb
turns (Figure 1.4(a)). Then

Vb = Nb

Na
Va .

This formula says that a high incoming voltage Va can be “stepped
down” to a low outgoing voltage Vb by using a large number of turns Na
for the incoming coiling relative to the outgoing coiling. This transfer
of voltage is called mutual induction, and is at the heart of modern
electricity transmission. In fact, if you step outside right now and look
up at the power lines you’ll likely see cylindrical buckets like the one
in Figure 1.4(b). These transformers use mutual induction to step down
the high voltages produced by modern electricity plants to lower, safer
voltages for household use.

The two devices that got me going on this story—the iPhone and
my clock radio—honor the legacies of both Edison and Faraday. My
iPhone runs on DC current from its battery, and my clock radio draws
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Na
Nb

(a)

(b)

Figure 1.4. (a) Two circuits with different coiling numbers Na and Nb . (b) A drawing
of a transformer.

its power from the AC current coming through the wall plug, itself
produced dozens of miles away at the electricity plant by an alternating
voltage. And somewhere in between, Faraday’s mutual induction is at
work stepping down the voltage so that we can power our devices.

But the real hero here is the rational function r (V). It spelled doom
for Edison, but through a different interpretation suggested that we
base our electric grid on voltages much higher than Edison’s 110 volts.
This idea of “listening” closely to mathematics to learn more about our
world is a recurring theme of this book. We’ve already exposed two
functions—the trigonometric f (t) and the rational r (V)—that follow
you around everywhere you go. Let me wake up so that I can reveal
even more hidden mathematics.

The Logarithms Hidden in the Air

It’s now seven in the morning and my alarm clock finally goes off. It’s
set to play the radio when the alarm goes off, rather than that startling
“BUZZ! BUZZ!” I can’t stand. Back when I lived in Ann Arbor I would
wake up to 91.7 FM, the local National Public Radio (NPR) station.
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But now that I live in Boston, 91.7 FM is pure static. What happened
to the Ann Arbor station? Is my radio broken? Where’s my NPR?!

The local NPR station for Boston is WBUR-FM, at 90.9 FM on the
radio dial. Since I’m now far away from Ann Arbor my radio can’t pick
up the old 91.7NPR station. We all intuitively know this; just drive far
enough away from your home town and all your favorite radio stations
will fade away. But wait a second, that’s the same relationship that
we saw in Figure 1.2 with the function r (V). Could there be another
rational function lurking somewhere in the air waves?

Let’s get back to WBUR to figure this out. The station’s “effective
radiative power”—a measure of its signal strength—is 12,000 watts.5
You should recognize the unit here from your experience with light
bulbs; just as a 100-watt bulb left on for one hour would consume
100 watt-hours of energy, WBUR’s station emits 12,000 watt-hours of
energy in one hour. That’s the equivalent of 12,000/100 = 120 light
bulbs worth of energy every hour! But where does that energy go?

Picture a light bulb placed on the floor in the middle of a dark room.
Turn it on and the light it emits will light up everything in the room. The
bulb radiates its energy, partly in the form of light, evenly throughout
the space in the room. Similarly, WBUR’s antenna radiates its energy
outward in the form of radio waves.

Now, just as you’d perceive the bulb’s light to be brighter the closer
you are to it, the radio signals coming from WBUR’s antenna come
through clearer when you’re closer to the antenna. We can measure
this by calculating the intensity J (r ) of the signal at a distance r from
the antenna:

J (r ) = radiated power
surface area

= 12,000
4πr 2

= 3,000
πr 2

, (1)

where I’ve assumed that the energy is radiated spherically outward.
Aha! Here’s the rational function we had predicted. Let’s see if we can
“listen” to it and learn something about how radios work.

The J (r ) formula tells us that the intensity of the signal decreases as
the distance r from the antenna increases. This explains what happened
in my move from Ann Arbor to Boston: it’s not that the Ann Arbor
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NPR station doesn’t reach me anymore, but that its signal intensity is
too weak to be picked up by my radio. On the other hand, at my current
distance from WBUR’s antenna my radio has no problem picking up
the station.

While I lie there still in a haze, I pick up a few headlines from the
voice coming out of the radio; something about the economy and later
about politics. Nothing too exciting so I just stay in bed, listening.
There’s always a danger I’ll fall back asleep (think “second alarm”); to
thwart this I decide to boot up my brain by asking a simple question:
what am I listening to?

Certainly the answer is WBUR at 90.9 FM. But that’s a radio wave,
and we humans can’t hear a radio wave; the ear’s frequency range
is from 20 to 20,000 hertz,6 and WBUR’s signal is broadcast at 90.9
megahertz.iv Ergo, it’s not the radio wave I hear. What I hear is the
sound waves coming from my radio. And somehow that little gadget
manages to convert a radio wave—which I can’t hear—into a sound
wave, which I can. But how?

Part of the answer is hidden in the fact that WBUR transmits at
90.9megahertz. All sounds have a frequency associated with them;
for example, the 49th key—called A4—on an 88-key piano has a
frequency of 440 hertz. And we know (either from Appendix A or
from your general knowledge) that phenomena with frequencies can be
represented as oscillating functions, just like our sleep cycle functions.
But then, what’s oscillating in this case? Something has to move back
and forth between the radio and my ear. And the only possibility is air,
so the answer must be related to changes in air pressure.

In a nutshell, sound is a pressure wave. This is easy to confirm: hold
your palm very close to your mouth and try to speak without any air
hitting your palm. Good luck, because without the movement of air
molecules there’s no pressure wave. Now hold your hand somewhat
close to your ear and fan it ferociously back and forth. You should
hear a periodic sound as your arm oscillates: that sound is the pressure
wave.

iv1 megahertz (MHz) is 1 ×106 hertz. Hertz (Hz) is the unit of frequency (see Appendix A for a
quick refresher).
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Figure 1.5. (a) A plot of the function L(p). (b) A plot of the function p(L).

Like your arm, a radio pulses its speakers back and forth to produce
the pressure waves that our ears detect as sound. And just like your
arm, the more violently the speakers vibrate the louder the sound that’s
created. Mathematically, if we denote by p the sound pressure of a
pressure wave, then the “sound level” L (p) of that sound is given by
the logarithmic function (Figure 1.5(a))

L (p) = 20 log10 (50,000p) decibels.

Let’s examine the familiar decibel (dB) units. As a reference, the water
coming out of a showerhead makes a sound of about 80 decibels, and a
jet engine at about 100 feet makes a sound of 140 decibels. From these
numbers you can see why long-term exposure to sounds at levels as
low as 90 decibels has the potential to cause hearing loss.7 We’re all
more used to the decibel scale than to measuring pressure waves, so
lets invert the L (p) equation. We arrive at the exponential function∗3

(Figure 1.5(b))

p(L ) = 1
50,000

10L/20.

The p(L) equation tells us that, for example, a sound level of L = 0
decibels gives a pressure of p(0) = 1/50,000 = 20 × 10−6 pascals, the
unit of pressure. This sound level and pressure combination roughly
correspond to the sound a mosquito would make as it flaps its wings
roughly 10 feet away from you,8 hence the small pressure number.
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Now that I’ve gotten myself up and about figuring out this pressure
thing, a nagging thought has developed in my head. Just a few minutes
ago I was somewhere along my sleep cycle—modeled by trigonometric
function f (t)—and then my radio turned on, thanks to our rational
function r (V) and WBUR’s antenna intensity function J (r ). The NPR
reporter’s voice then created a pressure wave that I interpreted as sound
via the L(p) function (we actually hear logarithmic functions; how
cool is that?). There’s so much going on. Is there any order to this
chaos? Does my morning consist of chance encounters with different
functions, or are they all related somehow? A hierarchy or a unifying
principle would be nice.

The Frequency of Trig Functions

My new quest gives me something to think about while I pick my
clothes out. On the other end of the bedroom is a small closet that my
wife Zoraida and I cram our clothes into. I’m shuffling clothes around
looking for something to wear after I shower. In the background, a
soft sound begins to steadily increase in intensity; Zoraida is snoring.
I figure I’ll wake her up (we’ve got to get to work soon) by turning on
the TV; she likes waking up to the morning shows. Naturally, I reach
for another one of our modern gadgets: the remote control.

With the control in hand, I push the “channel up” button, looking
for something she’d like. The remote sends out infrared light waves at
frequencies of about 36,000 hertz. Although I can’t see these signals—
they are outside our frequency range of vision—the pulses of 1’s and 0’s
that are emitted instruct the TV to change to the next channel. I find
one of those morning shows and put the volume just loud enough to
eventually wake her up.

Now that I’ve picked out a pair of khakis and a shirt, I get back
to thinking about this “unifying principle” business on my way to the
shower. The hallway’s dark; it’s a cloudy day outside. I’m hoping that
since it’s July the rain will quickly be followed by sunshine. This triggers
a memory of a conversation I had back in high school with my friend
Blake about light. We were talking about how the colors we see are
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Figure 1.6. An electromagnetic wave. The electric and magnetic fields it car-
ries oscillate perpendicular to each other as the wave propagates. Image from
http://www.molphys.leidenuniv.nl/monos/smo/index.html?basics/light.htm.

described by different frequencies of light. For example, red light has a
frequency range of about 430 to 480 terahertz.v,9 Blake was wondering
if aliens would see red light—light in the frequency range of 430 to 480
terahertz—as actually “red.” This was in biology class, so we spent some
time talking about what our eyes think “red” is.

Midway through my recollection I’m interrupted by a simple, clearly
articulated word: frequency. And then it clicks. The AC current, the
radio waves, the infrared waves, and sunlight, they all have a frequency
associated with them. Here’s the unifying principle I’ve been looking
for! Because they are characterized by a frequency, these are all oscillat-
ing functions—trigonometric functions.

This mathematical unifying principle also has a physical analogue.
All of these waves—with the exception of AC current, which we’ll
discuss shortly—are all particular types of electromagnetic waves (EM
waves for short). As the name suggests, an electromagnetic wave carries
along with it an electric and a magnetic field.vi These fields oscillate
perpendicular to each other as the wave propagates, and each can be
represented by trigonometric functions (Figure 1.6).

vOne terahertz (THz) is 1 × 1012 hertz.
viAn electric field is the analogue of a magnetic field, where positive and negative charges play the
roles of the north and south poles of a magnet.

http://www.molphys.leidenuniv.nl/monos/smo/index.html?basics/light.htm
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Figure 1.7. The electromagnetic wave spectrum. Image from http://www.hermes-
program.gr/en/emr.aspx.

One of the greatest discoveries of the nineteenth century—due to our
induction discoverer Michael Faraday—was that light itself is an EM
wave. This explains why light has a frequency associated with it. Thus,
infrared light, radio waves, and any other radiation that has a frequency
associated with it is an EM wave (Figure 1.7). Alternating current,
although not an electromagnetic wave itself, emits electromagnetic
waves as it travels down a wire. An electromagnetic wave, along with
its mathematical representation as a trigonometric function, is the
unifying concept I was looking for.

When I turn on the light in my bathroom, I pause for a second to
marvel at all the EM waves around me. The light the bulb produces?
An EM wave. The sunlight coming through the window? Another EM
wave. The radio waves transmitting NPR to the bedroom radio? Yep,

http://www.hermesprogram.gr/en/emr.aspx
http://www.hermesprogram.gr/en/emr.aspx
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just another electromagnetic wave. So, not only can we hear logarithms
(recall our function L (p)); now you know that we can see trigonometric
functions (light). Who knew that trigonometric functions occurred so
frequently throughout the day? (Pun intended.)

Galileo’s Parabolic Thinking

I turn the tub’s faucet on and switch on the showerhead; the water is
freezing! It’ll take a minute or so for it to heat up. No problem, I’ll just
brush my teeth while I wait. While I brush up and down, left and right
(don’t worry, I won’t mention the trigonometric function here; oops,
I just did!), I continue looking at the water stream, as if that’ll make it
heat up faster.

Inspired by Faraday’s ability to see magnetic fields, I start trying to
see the “gravitational field” and its effect on the stream. I know the field
exists, since the water doesn’t shoot out in a straight line, even though
it comes out of the showerhead with a high velocity; instead it looks like
it’s “attracted” to the floor. Of course, there’s no magnetism going on
here, it’s just gravity, but that’s the physics. What about the math? The
man who figured this out, Galileo Galilei, was referred to by none other
than Einstein himself as the “father of modern science.” He built
powerful telescopes, and later used it to decisively confirm that the
Earth revolves around the Sun and not the other way around. In
addition, Galileo is also well known for his experiments with falling
objects. The most famous of these is the Leaning Tower of Pisa
experiment. Vincenzo Viviani, Galileo’s pupil, described the experi-
ment in a biography of Galileo. He wrote that Galileo had dropped balls
of different masses from the tower to test the conjecture that they would
reach the ground at the same time, regardless of their mass.vii,10 Galileo,
in his earlier writings, had proposed that a falling object would fall with
a uniform (constant) acceleration. By using this simple proposition,
he had also demonstrated mathematically that the distance the object

viiThis popular story might actually be a legend, but Vincenzo is no longer around to set the record
straight.
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Figure 1.8. A schematic of my shower (a) along with the graph of the parabolic
function y(x) = 6.5 + x − 16x2 (b).

traveled would be proportional to the square of the amount of time the
object was in motion.11

To fully appreciate this result, let’s consider what it means in the
context of the water coming out of my showerhead. Figure 1.8(a) shows
a profile of my shower. We can define a coordinate system whose origin
is on the ground, directly underneath my showerhead. Let’s call the
horizontal direction x and the vertical direction y, and suppose that
the water is coming out of the showerhead with a constant speed of vx
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in the x-direction and vy in the y-direction. Since gravity acts only in
the vertical direction, there is no acceleration in the horizontal direction
(as the joke goes, “sometimes gravity gets me down,” but never “left,”
“right,” or “up”). We can now use the familiar formula distance =
rate× time to determine the horizontal distance x(t) traveled by a water
molecule:

x(t) = vxt,

where we’ll measure t in seconds since the water molecule left the
showerhead.

What about the vertical (y) direction motion? Each water molecule
coming out of the showerhead is being pulled down by gravity, which
Galileo says accelerates objects at a constant rate; let’s denote this by
−g , where the negative sign is there to remind us that this acceleration
is downward. Using this, along with the fact that our water molecule’s
initial speed is vy at time t = 0 and what we will call v(t) at time t > 0,
we then find∗4 that our water molecule’s vertical speed v(t) is the linear
function

v(t) = vy − g t,

its initial speed plus the contribution from gravity. It was also known in
Galileo’s time that the distance traveled by objects whose speed varies
linearly with time is given by

y(t) = y0 + vavgt, where vavg = 1
2
(vinitial + vfinal) ,

where y0 is the initial position of the object. For our water molecule,
since its vertical position is 6.5 feet above the ground when it comes out
of the showerhead, we know that y0 = 6.5. Moreover, since its initial
vertical speed was vy and its final vertical speed was v(t) = vy − g t,
then its average speed is

vavg = vy − 1
2
g t, so that y(t) = 6.5 + vyt − 1

2
g t2.
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Unlike the x(t) formula, the water molecule’s vertical position is a
polynomial function of t; more specifically, it’s a quadratic function.

We can put these two formulas together by solving the x(t) equation
for t and substituting the result into the y(t) formula. We arrive at∗5

y(x) = 6.5 + vy

vx
x − g

2v2
x
x2.

Since vx , vy , and g are numbers, this formula can be put in the form
y = 6.5 + Bx − Ax2, which is the equation for a parabola (Figure
1.8(b)). And since the coefficient of x2 is negative, this parabola opens
downward. Therefore, the mathematics is telling us that the water
coming out of my shower bends toward the ground. And that’s exactly
what happens!

This formula, in my opinion, is one of the greatest achievements
of medieval science. It applies not just to the water coming out of my
showerhead, but also to a football, a Frisbee, or any other object thrown
in the air. It tells us that all objects (of reasonable mass) thrown upward
on Earth follow parabolic trajectories. To medieval scientists working
at a time when religion was the predominant way to understand the
world, results like these were seen as glimpses into the mind of God.
They inspired future scientists to continue applyingmathematics to our
world in the hopes of achieving equally profound insights.

We’ll spend the next chapter talking about one such scientist—
Isaac Newton—who followed in Galileo’s footsteps and made equally
revolutionary advances for his time. For now, I hope this chapter has
convinced you that functions are not abstract mathematical constructs.
Instead, as Galileo and Faraday showed us, they can be seen, heard, and
felt all around us every day. The journey that got us here started with
the Pythagoreans’ belief that “All is number,” but this chapter suggests
the more current Pythagorean-like dictum: “All are functions.”



CHAPTER 2

BREAKFAST AT NEWTON’S

EVERYONE HAS A MORNING ROUTINE. After my shower, I like to tune
to the financial news network CNBC while I get dressed. Its morning
show is the closest I can get to a daily TV show about mathematics.viii In
five minutes of watching it you’re likely to see changes in interest rates,
rising and falling stock market prices, fluctuating currency exchange
rates, and, well, lots of other numbers flashing red and green.

After years of starting mymornings like this, I’m used to this barrage
of information. But not my wife, Zoraida; this particular channel gives
her a headache. “There are numbers racing across the screen in all
directions; there’s just way too much stuff going on,” she says. I agree.
But to me, the fact that CNBC’s abundance of change is expressed
through numbers hints at deeper mathematics. If functions describe
our world—as I tried to convince you in the previous chapter—what
function describes how the world around us changes? Mathematicians
spent almost two millennia searching for the answer, but don’t worry,
after this chapter you’ll see this “change function” everywhere.

Introducing Calculus, the CNBCWay

On this particular morning, CNBC is abuzz with information on the
computer giant Apple. The new iPhone will be launched soon, and the
news anchors, in discussing the impact on the company’s stock, flash
up a graph of Apple’s (AAPL) stock price (Figure 2.1).

viiiSure there’s Numbers, Fringe, or even The Big Bang Theory, but CNBC is on all day.



22 CHAPTER 2

P(t)

t
SepAug

400

610.76

500

600

Oct Nov Dec Jan Feb Mar Apr May Jun Jul

AAPL (daily) 610.76

2012

Figure 2.1. AAPL’s stock price for the year ending July 31, 2012. Retrieved from
http://www.stockcharts.com, July 31, 2012.

The anchors state that over the past year the stock has been a winner,
appreciating by roughly $221 per share. However, they point out it’s
down almost $25 since its peak in early April. In math-speak, the
anchors are providing us with average rates of change.

To spot a rate, look at the units of the number. All rates, including
these average rates of change, have units that are ratios of other units.
For example, we measure speed in miles per hour. But sometimes, as is
the case this morning, some of the units are hidden. Sure, Apple’s share
price is measured in dollars, but what’s the other unit in the anchors’
statements? Time. (The phrases “over the past year” and “since early
April” are the tipoffs.)

But merely spotting a rate won’t help us figure out what the “change
function” we’re looking for is. So let’s slow down a bit and define
precisely what an average rate of change is.

http://www.stockcharts.com
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Mathematically, if we denote by t the number of months since
July 31, 2011, and by P (t) the price of AAPL, then the average rate of
change (AROC) of the stock’s price between months t = a and t = b is
simply the change in price divided by the change in time:

mavg = P (b) − P (a)
b − a

. (2)

Looking back at the price chart, we see that at the start of the chart
(t = 0) AAPL was trading at about $390, at t = 8 it was trading at about
$625, and at t = 12 it was trading at $610.76. Using these values, we
find that the stock’s price appreciated roughly $18.40 per month over
the past year, while dropping roughly $3.60 each month over the last
four months.∗1

These AROCs are useful information, no doubt, but I’m a visual
person. For me, it’s easier to understand AROCs if they’re repre-
sented graphically. Another reporter reads my mind, and on his fancy
touchscreen he draws a line on AAPL’s chart. It begins on July 31,
2011, and ends on July 31, 2012. Now, if you recall what you learned
about linear functions—or if you’ve already familiarized yourself with
equation (94) in Appendix A—you’ll recognize that calculating the
slope of the line drawn by the reporter is the same as calculating the
AROC!

Why the exclamation? It’s because this revelation gives us a geometric
way of calculating the AROC. Simply draw a line between any two
points on the chart in Figure 2.1, find the slope of that line, and your
answer is just the AROC between those two points. The line you obtain
is often called the secant line.

By the time the reporter is done drawing on his screen, AAPL’s chart
looks like a page out of a football playbook. And although he’s done a
good job of describing how AAPL’s price has changed over time, what
you’ll never hear him say is how the stock’s price is changing at this
instant. Here’s why.

Mathematically, instants present a problem for our AROC
formula (2). Due to the b − a in the denominator, the formula works
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only for intervals of time (where b − a �= 0), and not instants of
time, where b = a. At an instant, the denominator becomes zero, and
we can’t divide a number by zero. So to describe AAPL’s price at a
particular instant of time what we really need to be able to compute
is an instantaneous rate of change (IROC); here’s how we do it.

Let’s first pick a start for our time frame, say April 1, 2012 (which is
t = 8), so that a = 8. Although we can’t have a zero in the denominator
of our AROC formula (2), we can make it as close to zero as we’d like
by choosing b to be as close to 8 as we’d like.

To do this, let’s denote by h the number of months after t = 8. For
example, h = 1 corresponds to t = 9. Then formula (2) says that the
average rate of change between t = 8 and t = 8 + h is∗2

mavg = P (8 + h) − P (8)
h

. (3)

By choosing different (nonzero) values for h, this new formula will
give us AROCs that describe how AAPL’s price was changing between
April 1, 2012, and some amount of time h afterwards. But what about
the geometric interpretation?

Figure 2.2 shows AAPL’s price (dashed curve) zoomed in to t = 8,
along with two secant lines (the two thin lines) corresponding to
h = 0.5 and h = 0.1. Notice that by choosing smaller and smaller
values for h which approach zero but never reach it, the corresponding
secant lines approach the thick line in Figure 2.2. We’ll call this line the
tangent line to emphasize that when we zoom in close enough it touches
the graph at only one point.

Geometrically, we now have a way to make sense of an instantaneous
rate of change (IROC): it’s simply the slope of the tangent line. I’ll
denote this slope by m(a), where a is the x-value of the point of
tangency (in Figure 2.2, a = 8). And, since we arrived at this IROC
concept by computing the AROCs of smaller and smaller values of h,
we’ll express this by saying that

m(a) = lim
h→0

P (a + h) − P (a)
h

, (4)
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Figure 2.2. AAPL stock price zoomed in around t = 8.

where the right-hand side of the equation is read “the limit as h
approaches zero of the average rate of change of P (t) between t = a
and t = a + h.”

Mathematicians call the number m(a) the derivative at t = a of
the function P (t). We often suppress its geometric significance and
denote it by P ′(a) (read “P prime of a”) instead of m(a). I chose to
keep them(a) notation to remind us of how we got here: we calculated
the slopes of secant lines as the intervals got smaller and smaller, and so
it should be no surprise that what we get is also a line (the tangent line),
and thus has a slope (the IROC). The derivative P ′(a) describes how
Apple’s stock price changes from instant to instant. But by changing
the function in formula (4) we can similarly describe the instantaneous
change of just about anything. The derivative, therefore, is the “change
function” we’ve been looking for.

Coffee Has Its Limits

The fact that the derivative represents an instantaneous rate of change
makes it a widely applicable concept. I’m reminded of this as I step into
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my kitchen and start thinking about breakfast. The dominant function
in this room is temperature, T (t). But despite having nothing to do
with AAPL’s stock price, the beauty of mathematics is that we can
understand changes in both by using their average and instantaneous
rates of change.

If you’re like me, the moment you get into the kitchen you enter
multitask mode. Most mornings I fire up the stove and start making
eggs or oatmeal. Meanwhile, I put together a sandwich for lunch and
toast it in the oven. And of course, while all of this is going on the
kitchen is slowly being filled with the aromatic smell of brewing coffee.
All of this “change” foreshadows the presence of derivatives. And
because it smells so good let me focus on the coffee for now.

I’m not much of a coffee drinker, but since an estimated 50% of
Americans drink coffee,12 it’s not surprising tome that Zoraida is.What
does surprise me is just how quickly coffee gets cold. Pour it in a cup
and about 10 minutes later it’s cooled down to room temperature. So,
for my first act, let me tell you about the derivatives hidden in your
morning cup-o-joe.

Let’s measure the temperature T of the coffee in degrees Fahrenheit
and time t in minutes since the coffee pot left the plate warmer of the
coffee maker. My coffee maker keeps the coffee at about 160◦, so that
T(0) = 160. Pretend that I have excellent dexterity and a nanosecond
after removing the pot I’ve poured a cup of coffee, without spilling a
drop. After 2 minutes I put a thermometer in the coffee and it measures
a temperature of 120◦, making T (2) = 120. The last bit of information
we’ll need is that the air in my kitchen is at a temperature of 75◦.

Using all of this data, a formula for the temperature T(t) isix

T(t) = 75 + 85e−0.318t . (5)

The graph of this exponential function is shown in Figure 2.3 for
0 ≤ t ≤ 25.

The first thing we notice is that the temperature drops very rapidly
within the first 10 minutes, and then drops much more slowly

ixThis formula originates from Newton’s Law of Cooling, which belongs to the subject of
differential equations.
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Figure 2.3. The temperature T(t) of the coffee since leaving the warming plate.

afterwards, seeming to eventually reach 75◦ (which should be no
surprise since this is the ambient temperature of the room). But now
that we’ve talked about derivatives, let’s try to describe the change in
T (t) from instant to instant.

For starters, we can visually see that the tangent lines for 0 ≤
t ≤ 5 have pretty steep negative slopes. This tells us that T ′(t)—the
IROC t minutes after removing the coffee from the plate—is negative,
reflecting the fact that the coffee’s temperature is decreasing. This is
useful information, but I want to know what I’m up against here. So
let’s do better than just qualitative observations; let’s compute how fast
the temperature was dropping at the instant I took the pot off of the
warming plate.

Mathematically, we’re after T ′(0); to find it we’ll use our formula (4),
with a = 0 and replacing the function P (t) with T(t). After some
simplification,∗3 we’re left needing to calculate the limit

lim
h→0

85(e−0.318h − 1)
h

. (6)

Fear not, for we know (or could go back and reread) how we came
up with this notation to begin with: we imagined ourselves calculating
lots of average rates of change with smaller and smaller h values. That’s
precisely what we’ll do here to calculate the limit in expression (6).
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TABLE 2.1.
The limit table for lim

h→0
85(e−0.318h−1)

h .

h 85(e−0.318h−1)
h

0.1 −26.6047
0.01 −26.9871
0.001 −27.0257
0.0001 −27.0296
0 undefined

−0.0001 −27.0304
−0.001 −27.0343
−0.01 −27.073
−0.1 −27.4644

First plug a nonzero value for h into the fraction and record the
result. Then do this again with a smaller, but still nonzero, value
for h. This process results in the limit table shown in Table 2.1. The hope
is that as we plug in smaller h values the numbers we get approach one
number. And, as the numbers in Table 2.1 hint, as h approaches zero the
AROCs are approaching the number −27.03. Congratulations! You’ve
now learned the first method we mathematicians use to calculate limits.

Well, technically all we’ve done is to estimate the limit, since we don’t
know that for even smaller values of h the AROCs don’t approach some
other number. This observation encourages us to try to find another,
less error-prone method of calculating limits (which we’ll do shortly).
For now, trust me when I say that T ′(0) is indeed approximately
−27.03.

At this point, I need to interject and make a public service an-
nouncement. One might be tempted to conclude that, since the IROC
is −27.03◦ per minute, it follows that one minute later the coffee’s
temperature has fallen by −27.03◦. This sure seems reasonable, but it’s
not true: you can check it by computing T(0) − 27.03 and comparing
it to T(1) from formula (5). The simplest reason why is that the rate at
which the temperature is falling is not constant over that one-minute
interval, as our secant line slope analysis of Figure 2.3 showed.

In fact, we could go back and rework our limit table to calculate
T ′(0.1), T ′(0.4), and every other IROC for every value of t. If we
assembled the results into a graph we’d obtain Figure 2.4.
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Figure 2.4. The derivative function T ′(t) of the coffee temperature T (t).

The y-values of the graph in Figure 2.4 tell us the derivative of T(t)
at that given t-value. Right away we recognize the y-value of −27.03
at t = 0; it’s T ′(0). We also see that as t increases the graph gets less
negative. This agrees with what we found by analyzing the slopes in
Figure 2.3. So what we’ve created in Figure 2.4 is the derivative function
T ′(t).

This function, being literally the collection of the numbers T ′(t) for
each t between t = 0 and t = 25, tells us how the coffee’s temperature
changes at each instant of time. But it does so in a different way
than what we’ve done thus far: in Figure 2.3 we extracted information
about T ′(t) by calculating slopes of tangent lines, but in Figure 2.4 the
y-values are themselves those tangent line slopes.

You might be wondering how I obtained the graph in Figure 2.4.
“Surely you didn’t calculate thousands of secant line slopes and glue
them together” youmight say, and you’re right, I didn’t. There’s a much
faster way, but we’ll have to wait until the next chapter to discover it.
Also, since it’s clear from Figure 2.4 that T ′(t) changes as t changes,
you might also say “wait a minute; you said that the derivative, T ′(t)
in this case, was the change function we were looking for; so what
function describes the ‘change of the change’?” Good question; the
answer will occupy a good portion of the next chapter, but let me finish
my breakfast (and reheat my now cold coffee) first.
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Figure 2.5. A graph of the amount V(t) of vitamins/minerals in my body as a function
of time t.

AMultivitamin a Day Keeps the Doctor Away

Likemany people I takemultivitamins every day, and I take the first one
right now, withmy breakfast. These little wonder pills—at least the ones
I’ve settled on now—are basically powdered forms of whole foods that
release the vitamins and minerals of the produce used to make them
into your bloodstream as the pill is digested. What’s mathematically
noteworthy is that the amount V of total vitamins/minerals in my body
as a function of time t (measured in hours) has a graph (Figure 2.5) that
looks different from all of the ones we’ve discussed thus far.

If we let t = 0 be the moment that I took my morning vitamin,
then as my body breaks down the pill throughout the day, the amount
of nutrients left diminishes. Therefore, this amount is changing with
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time t. So we could certainly think of the instantaneous rate of change
of the level of nutrients in terms of derivatives. But when I take another
vitamin at dinnertime, roughly 10 hours later, something interesting
happens. At that point, I instantaneously bring the total available
nutrients from the vitamins I’ve taken back up.

This is depicted in Figure 2.5 as the “jump” at t = 10; we call
this a discontinuity in the graph, and say that V(t) is discontinuous at
t = 10. The terminology here comes from contrasting the graph of
Figure 2.5 with the graphs in Figures 2.1 through 2.4; all of those graphs
are continuous.

Now, even though at t = 10 the function V(t) has changed values,
the derivative V ′(10) does not exist.We can see this from our definition:

V ′(10) = lim
h→0

V(10 + h) − V(10)
h

.

For positive h, the limit table consists of the slopes between the point
V(10) and points on the graph in Figure 2.5 to the right of 10. But these
lines slant downward, and so are all negative. However, for negative h
the limit table will consist of slopes between V(10) and points to the
left of 10. These are all positive (and large) slopes. Therefore, no matter
how small h is, these two sets of numbers will never approach the same
number.

This analysis illustrates that derivatives are not defined at points
of discontinuities. So how do we know when we’re dealing with a
discontinuous function?

A preliminary answer comes from comparing the graph in Figure 2.5
with those of Figures 2.1 through 2.4. What sets these two groups of
graphs apart is whether we can draw the graphs in each group without
lifting our pencil. But this “drawing definition” of continuity isn’t very
mathematical. So let’s formulate a better definition.

Suppose I wanted to figure out how much of the first vitamin I took
was floating around my bloodstream right before I took the second one.
Intuitively we know that the answer is the y-value of the lowest point
of Figure 2.5, which is A. And since we’re looking for the value of V(t)
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right before t = 10, what we want is

lim
t→10−

V(t). (7)

To calculate this limit we can construct a limit table for V(t) to
determine the limit, just like in the coffee problem. However, since
we’re only interested in the remaining vitamin amount before t = 10,
our limit table would only include values such as t = 9.9, 9.99, 9.999.
This explains the “−” superscript above the 10 in expression (7); it’s
there to remind us of this “limit from the left” concept.

The value of the limit we’d obtain from our limit table can be
understood visually as the y-value we’d obtain if we crawled along the
graph of V(t) from t = 0 to just before t = 10. The result, the y-value
A, confirms our intuition.
Limits like (7) are called one-sided limits, and as you may have

guessed, we could just as easily define the concept of a “right-hand
limit.” For these limits we’d approach the t-value from values greater
than it and investigate the y-values we’d get. This limit would have a
“+” superscript instead of the “−” superscript in expression (7), and an
example is the limit

lim
t→10+

V(t). (8)

Take a look at Figure 2.5 once more and see if you can figure out this
right-hand limit. If you think the answer is the y-value V(10), then
you’re correct!

With these new concepts, we can now focus our attention on the
simple fact that at t = 10 the left and right limits are not equal. Why is
this important? Well, recall that V(t) is discontinuous at t = 10. And
remember that we also called a function continuous if you can draw
its graph without lifting your pen. So if you’re now thinking that limits
have something to do with continuity, then you’re on the right track. In
a way this shouldn’t be surprising based on our “drawing definition” of
continuity, since the presumption there was that there were no jumps
that would require you to lift your pen. But this discussion has now
provided us with a way to define continuitymathematically.
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Figure 2.6. A graph depicting a gap discontinuity.

Since we want to avoid jumps, we want the left and right limits to be
equal. But simply requiring this won’t avoid the discontinuity depicted
in Figure 2.6.

In this example, the left and right limits as x approaches 10 are the
same, and equal to the y-value C . But the value f (10) = D, and so
there’s a gap discontinuity in the graph. To avoid this we should require
that the value of the function at every point x = a be equal to the
common value of the left and right limits as x approaches a.

Putting together the requirements of no gaps or jumps, what we want
is the condition

lim
x→a

f (x) = f (a), (9)

where we no longer write the “+” and “−” superscripts (since we’re
assuming that both left- and right-hand limits are equal), andwe further
assume that f (a) is a number.
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We have now arrived at the precise definition of continuity.
A function that satisfies this condition at every point has no jumps
or gaps, and therefore we can draw its graph without lifting our pen,
recovering our earlier definition of continuity.

Our vitamin discussion has solidified our understanding of limits.
We now know that the limit as t approaches a number b of a function
F (t) is simply the y-value we reach by walking along the graph of F (t)
toward t = b. Equivalently, it’s the number we obtain from the limit
table analysis similar to what we did with the coffee problem. And if the
function satisfies (9) at every point in its domain, then it’s continuous
and its graph can be drawn without lifting our pen. Now imagine if I
hadn’t taken my vitamin today; look at everything we’d have missed
out on. All joking aside, limits form the foundation for calculus (as
formula (4) hints), so we’ve covered important ground here.

Derivatives Are about Change

With all of this talk about vitamins and their absorption rates I ne-
glected to drink my reheated coffee. I could reheat it again, but now
we’re getting silly; anyway, I’ve finished my breakfast.

The room has gotten darker now; the sun has receded and the clouds
outside are turning grayer by the minute. Experience tells me that this
change in the weather is typically followed by rain, so I’ll pack an
umbrella just in case. And now that I think about it, I’ll take a light
jacket too. Despite July being a hot month in Boston historically, my
office tends to be on the chilly side.

In the middle of all of this internal rambling I have a moment of
revelation: change is ubiquitous in our daily lives. From the stock charts
on CNBC to my morning coffee, from the vitamins to the weather,
change almost defines our lives. And in this chapter we’ve learned,
courtesy of Dr. Newton, that wherever there is change calculus—and
a derivative in particular—is not far behind.



CHAPTER 3

DRIVEN BY DERIVATIVES

I’M NOW READY TO HEAD OUT TO WORK. The last thing to do is to grab
a pair of shoes from my shoe “collection”—a line of pairs of shoes on
the floor ordered by color from light brown to black. Oftentimes I just
pick a random pair, but now that it’s started to rain I decide to go for
the usually neglected pair of waterproof shoes. I slip them on, pick up
the umbrella, and finally leave my house.

I open my door and, unlike my shoe collection, I am instantly met
with a world of disorder. It’s pouring outside; people without umbrellas
are rushing for cover, trying to avoid being splashed by the cars passing
by. Unlike the EM waves of Chapter 1, there seems to be no unifying
theme to it all. But then I realize that everything in this scene, from the
raindrops falling to the cars zooming by, is changing. The best I can do
right now is to associate a derivative with each type of change in this
scene, according to our “wherever there is change there are derivatives”
adage from Chapter 2.

But Galileo didn’t stop his investigations when he derived a formula.
As we learned in Chapter 1, he didn’t simply “mathematize” motion,
his formulas helped him to understand motion. From his formulas he
was able to deduce parabolic motion, something no one before him had
been able to explain. I often urge my students to follow Galileo’s lead
and let the mathematics they’re studying “speak to them” so that they
can sit back, listen, and learn. I think now is a good time to take my
own advice; I start looking at all the commotion outside in a new way,
now determined to use derivatives to better understand what’s really
going on.
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Why DoWe Survive Rainy Days?

Puddles of water are starting to form everywhere, but I slither carefully
around them on the way to my car. Meanwhile, thousands of raindrops
are splatting all overmy umbrella. Yet somehowmy umbrella is keeping
me safe from these hundreds of drops falling from thousands of feet.
This isn’t particularly surprising at first. But then I start thinking about
the journey that just one of these drops makes.

A typical raindrop falls from an average height of 13,000 feet. Along
its fall it combines with other droplets, much like snowballs do in
cartoons as they roll down the side of a mountain. This process, known
as coalescence, increases the droplet’s size and mass. As it falls, the
droplet’s speed also increases. So, if both the droplet’s mass and its
speed are increasing as it falls, how come it doesn’t crash right through
my umbrella? And how do you figure that I’m still alive after my
umbrella is bombarded by thousands of these raindrops? There must
be a way that derivatives can help us answer these questions.

For simplicity, let’s start by thinking of a droplet as a sphere. Since
the droplet fuses with other droplets as it falls, its mass increases, and
the more massive the droplet becomes the more likely it is to fuse with
other droplets (think “snowball effect”). Aha! The mass of the droplet
is changing. By our adage in Chapter 2, a derivative must be lurking
around here. Let’s find it by “mathematizing” the problem.

Let’s denote by m(t) the mass of the droplet at time t, which we’ll
measure in seconds. The increasing mass tells us that m′(t)—the in-
stantaneous rate of mass increase—is positive.∗1 Now let’s mathematize
the coalescence phenomenon. Intuitively, we expect large droplets to
fuse with other droplets more often than small droplets. In other words,
the rate at which a droplet’s mass increases depends on how massive
it currently is. The mathematical statement of this is that m′(t) is
proportional to the massm(t) of the droplet:x

m′(t) = 2.3m(t). (10)

xThe number 2.3 comes from experiments.
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This formulation passes our m′(t) > 0 test, since the mass of our
raindrop is positive. What we’ve yet to mathematize is the effect of the
increasing speed of the droplet. But an object with a mass and a velocity
hasmomentum.

Momentum is another one of those things that we’re all familiar
with. The picture that comes to my mind is that of a football player
about to catch the kickoff ball. The players on the opposing team, intent
on tackling the receiver, are traveling very fast. Their combination of
large mass m(t) and high velocity v(t) makes for a large amount of
momentum, defined as the mass of an object multiplied by its velocity:
m(t)v(t). The great scientist Isaac Newton gave us a mathematical way
to link changes in an object’s momentum with the forces acting on the
object. I’m alluding here to Newton’s second law:

Fnet = p′(t), where p(t) = m(t)v(t) is the object’s momentum.
(11)

This law of physics states that the net forces Fnet acting on an object
with mass m(t) cause a change p′(t) to that object’s momentum
p(t).xi It applies to all objects, whether they be football players or
raindrops. Lucky for me the raindrops aren’t as massive as football
players. But because they still fall from thousands of feet, shouldn’t
v(t) be very large at the instant the drop hits my umbrella? After all
this theory, we still can’t figure out why any of us survives even one
raindrop.

Let’s follow Dr. Newton and investigate the change in the droplet’s
momentum as it falls. The force of gravity pulls the droplet down
toward Earth, and from the Fnet = ma form of Newton’s second law
we can express that force as Fg = m(t)g = 32m(t), where g = 32 ft/s2
is the acceleration of gravity. Equation (11) then gives

p′(t) = 32m(t). (12)

xiThe more recognizable form of Newton’s second law is Fnet = ma, where a is the object’s
acceleration. For an object whose mass is constant, p(t) = mv(t), and so p′(t) = mv′(t) = ma,
since acceleration is the derivative of velocity. Thus these are two equivalent formulations of
Newton’s equation for our problem.



38 CHAPTER 3

13.9

t

v(t)

Figure 3.1. A graph of the velocity of a falling raindrop.

Using this equation in combination with equation (10) we can finally
determine the velocity function:∗2

v(t) = 32
2.3

(1 − e−2.3t). (13)

Now that we’ve done all the math, it’s time to let it speak to us. Punch
this v(t) into a graphing calculator (or the website wolframalpha.com)
and you’ll get the graph shown in Figure 3.1. The graph shows that the
droplet’s velocity is getting closer and closer to 32/2.3 ≈ 13.92 ft/s
as it falls. In fact, it seems not to be able to exceed that velocity. We
can prove this mathematically,∗3 but more importantly, this result tells
us that eventually something prohibits the droplet from continuing its
increase in velocity. What causes this? To answer this question we’ll use
a technique that Einstein loved: a thought experiment.

Imagine yourself inside a car driving down the freeway, your speed
high enough that when you roll the window down you hear the roar of
the wind. You put your arm out the window, palm facing down, and
don’t really feel your arm pushed back. But as you start rotating your

http://www.wolframalpha.com
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palm so that it’s eventually perpendicular to the ground, your arm gets
flung backwards. The force pushing your arm back is the resistive force
of air drag. The strength of that force increased only when you increased
the area exposed by rotating your palm.

Analogously, as a droplet falls and its size increases, its surface
area also increases (recall the snowball analogy). Like your palm, this
(larger) surface experiences more air drag, slowing the acceleration
of the droplet. Eventually it reaches an acceleration of zero, meaning
that its velocity stops increasing. This is what we call terminal velocity
and is the approximately 13.92 ft/s (or 9.5mi/hr) shown in Figure 3.1.
In a nutshell, air drag is the resistive force equation (13) tells us is
present.

But what about the whole coalescence thing? Wasn’t the droplet’s
mass increasing with seemingly nothing to stop it? Here again air
resistance saves the day. The air resistance the droplet experiences
breaks it up into smaller parts multiple times during its fall. By the
time it hits my umbrella, a typical droplet weighs only about 0.0007
pound. In the worst case scenario where the droplets never break up,
our analysis shows that they are traveling about 9.5mi/hr when they
hit my umbrella. With such a tiny mass, each raindrop’s momentum
is just enough to “splat” on my umbrella, but nothing more. Air
resistance, therefore, saves us all. Too bad it can’t save me from
the puddles too, but then again that’s where my waterproof boots
kick in.

Politics in Derivatives, or Derivatives in Politics?

I made it to my car, safe and sound, but now I’m juggling my umbrella,
keys, and bag as I try to get inside the car. Once inside, my trek through
the rain is hardly over. Rain is statistically the worst type of weather to
drive in, accounting for the vast majority of weather-related crashes.13
It also reduces average speed by 3% to 13% on freeways. Luckily I’ve
left with a bit of a time cushion so I’m confident I won’t be late to
work.
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I turn my radio on and tune in to old-trusty: WBUR-FM.xii The
reporter on the air is talking about the unemployment rate. The
Democrats are pointing out that recently the rate has begun to decrease
from its high, a good sign for the economy. However, the Republicans
are countering by stating that the rate of decrease is slowing, a potential
problem going forward. That last statement really catches my ear; it
isn’t a statement about change; it’s a statement about how the change
is changing. Knowing by now that this should involve derivatives, how
can we understand the change in a derivative? Is it the derivative of the
derivative? Let’s get to work by mathematizing these questions.

Let’s call the unemployment rateU (t). We know thatU ′(t) describes
the change in U (t), but how do we describe the change in U ′(t)? Quite
simple actually: just call U ′(t) something else, like V(t), and reread
the second sentence above, replacing U ′ with V . It now reads: V ′(t)
describes the change in V(t). Translated back to U ’s, this says that
(U ′)′(t) describes the change in U ′(t). And what is (U ′)′(t) you ask?
It’s the second derivative, and we usually just write it asU ′′(t). This new
object describes the change inU ′(t), just likeU ′(t) describes the change
inU (t).

Okay, with that letter shuffling over, here’s a comforting fact: every-
thing we know about the relationship betweenU ′(t) andU (t) is equally
valid for the relationship between U ′′(t) and U ′(t). To get back to the
unemployment rate, let’s note that the recently decreasing rate tells us
that U ′(t) < 0.∗1 But as the Republicans point out, this rate has been
slowing. If U ′(t) is negative (say −10), but getting less negative (say
−9), then its an increasing function. Therefore, the change in U ′(t),
now known asU ′′(t), is positive.

We’ve seen this type of change before: it’s exactly what was hap-
pening to the temperature of my coffee in Chapter 2. In effect, the
Republicans are saying that the shape of the graph of the unemploy-
ment rateU (t) is similar to the graph in Figure 2.3! Who knew that my
coffee’s temperature could have anything to do with politics and the
unemployment rate? You did, of course, since you know that wherever
there is change there are derivatives.

xiiI also listen to music, lest you think me a (total) news junkie.
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What the Unemployment Rate Teaches Us about
the Curvature of Graphs

What we’ve just done is truly remarkable. By using information about
U ′′(t) andU ′(t) wemade an educated guess as to the graph ofU (t). This
is a complete reversal of what we’ve done thus far, where we have always
started with the function and then calculated its derivative. So it seems
like something deep is going on here; the mathematics is teasing us with
new, potentially important relationships between a function and its first
and second derivatives.

Let’s figure out what’s happening by starting with a completely
equivalent definition of f ′(a):∗4

f ′(a) = lim
x→a

f (x) − f (a)
x − a

. (14)

Now, if x is close to a, then we have∗1

f ′(a) ≈ f (x) − f (a)
x − a

, or f (x) ≈ f (a) + f ′(a)(x − a). (15)

To better understand this approximation, let’s turn to a visual represen-
tation of what’s going on, depicted by Figure 3.2.

You’ll notice in Figure 3.2 that the quantity f (a) + f ′(a)(x − a) is
of the form b + m(x − a) and therefore a linear function of x. But it’s
not just any linear function; it’s precisely the equation of the tangent
line at the point (a, f (a)).∗5 Therefore, the approximation in (15) is
actually approximating the y-value f (x) (the star in Figure 3.2) by
the y-value on the tangent line (the highest dot in Figure 3.2). This
process is referred to as linearization, and for this reason we say that
the derivative f ′(a) linearizes the function f (x) near x = a.

Let me go off on a slight tangent here (a classic calculus pun) and
illustrate just how cool linearization is. While I’ve been talking about
the unemployment rate I’ve been driving to work, which happens to
be in a direction away from the radio tower that WBUR-FM uses to
broadcast its signal; I estimate that I’m currently about 5 miles away
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Figure 3.2. (a) This is the line tangent to the graph at the point (a, f (a)). (b) The
y-value of this tangent line at the point x is f (a) + f ′(a)(x − a). We see that this
y-value is a close approximation to the actual value f (x) of the function at x (the star
in the graph).

from the tower. But in a minute I’ll be 6 miles away. From the intensity
function J (r ) in equation (1) of Chapter 1, I know that this change in
distance from the tower will decrease the intensity of the WBUR-FM
signal my radio receives, but by how much? Let’s use linearization to
approximate the change in J (r ).

First, we have that a = 5, x = 6, and f (x) = J (x) (from equation
(1) of Chapter 1). Equation (15) then tells me that the change in
intensity, J (x)− J (a), is approximately the derivative J ′(a) multiplied
by the change in distance x − a, so that∗6

J (6) − J (5) ≈ J ′(5)(6 − 5) = −5.9 × 10−6 W/m2.

The first thing to notice is that this number is negative. This tells me
that the intensity is decreasing as I move away from the tower, which
makes sense. The second thing to notice is just how small a number it is
(5.9 divided by 1 million). With such a small change in intensity, and
since the station is coming through clearly, this calculation tells me that
I can keep enjoying the news throughout my drive.
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Figure 3.3. The graphs of f (x) = x2 and g (x) = −x2 near x = 0.

Thus far we’ve discovered that f ′(x) (1) gives us information about
the slope of the graph at the point of tangency and (2) linearizes a
function near that point. But we’ve yet to relate this new knowledge
to f ′′(x). For a clue, let’s consider the two functions f (x) = x2 and
g (x) = −x2. Their derivatives at x = 0 are∗7

f ′(0) = 0, f ′′(0) = 2, g ′(0) = 0, g ′′(0) = −2. (16)

Since both have zero derivatives at x = 0, linearization tells us that
near x = 0 both graphs look flat (i.e., have zero slope). But as we can
see in Figure 3.3, the graph of f (x) curves upwards, while that of g (x)
curves downwards. The first derivative didn’t detect this difference; this
is a clue that maybe the second derivative has something to do with the
curvature of the graph.

To figure out the relationship, consider the graph in Figure 3.4. Since
f ′′(x) is the derivative of f ′(x), then if f ′′(x) > 0, we know that f ′(x)
is increasing. Since these are the slopes of the tangent lines to the graph
of f (x), this tells us that f (x) is curving upwards (Figure 3.4). The
reverse situation, when f ′′(x) < 0, similarly tells us that f (x) is curving
downwards.

In calculus, we call a function concave up whenever f ′′(x) > 0
and concave down whenever f ′′(x) < 0. For example, the function in
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x

ƒ(x)

Figure 3.4. Illustrations of how f, f ′, f ′′ interrelate. Notice that if f ′′(x) > 0 (as it
is for this entire curve), then f ′(x) (the slope of the tangent line at x) is increasing.
Therefore, as x increases the graph of f (x) has steeper slopes, making it curve
upwards.

Figure 3.2 is concave down, and the function in Figure 2.3 is concave
up. If at some point x = c the concavity of a function changes, we call
the point x = c an inflection point. For example, the function in Figure
A.3(a) has an inflection point at x = 0.

All of this newmathematics was inspired by the discussion of the un-
employment rate on my radio. And now that we’ve “listened” to f ′′(x)
tell its story, what else can we learn from the new mathematics we’ve
developed? Is there a physical interpretation of the second derivative
(as opposed to the mathematical “curvature of the graph”)? Let’s get
back to my drive to work to find out.

America’s Ballooning Population

Thus far my drive has been taking a bit longer due to the rain, but I
expected that. Something else I expected that I’m running into now
is that dreaded seven-letter word: traffic. In no time I’m bumper-to-
bumper moving at a snail’s pace.
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Figure 3.5. The population of the United States since 1900. Retrieved from
http://www.ceusus.gov/popest/data/historial.

Nationwide, the average driver in the United States spent 38 hours
stuck in traffic in 2011,14 which translates to about 8.8 minutes for every
work day in 2011. Nineminutes might not seem like a lot, but tomost of
us city folk that feels like an eternity. With the huge financial losses tied
to being in traffic—estimated at $121 billion in 200715—why haven’t
we fixed this yet? As I inch forward another foot, counting down from
my roughly nine-minute average, I look around and spot the obvious
answer: toomany cars! Sure, carpooling would help but only to a certain
extent. The more fundamental problem is the rising population level.
This change has a derivative associated with it, but like the unemploy-
ment analysis, can the second derivative of the population level give us
more information? To find out, let’s mathematize the problem.

Let’s begin with a graph of the U.S. population since 1900
(Figure 3.5).16 On the graph I’ve included an exponential function that
roughly fits the curve. Why exponential, you may wonder. There’s a
simple explanation.

Imagine you’re a scientist staring into a microscope. You see a
petri dish that contains a single bacteria cell. Bacteria grow and divide
quickly, doubling as fast as every 10 minutes. So after 10 minutes your
single bacteria cell has doubled to two bacteria. We’ll keep track of the

http://www.ceusus.gov/popest/data/historial
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two bacteria in the petri dish by writing two as 21. When you come
back from your coffee break, 10 minutes later, there are now four
bacteria in total, or 22. Throughout the day, while you work on your
other experiments, these four bacteria will themselves double, and the
resulting 23 will double, and so on. After x 10-minute periods, there’ll
be 2x total bacteria cells. In a nutshell, that’s why population growth
often follows an exponential curve.

The equation of the curve in Figure 3.5, y(x) = 81.021e0.0125x , at first
tells us one basic fact: the U.S. population is growing by about 1.25%.
But the mathematics contains much more information. For example,
in the language we’ve developed the graph of y(x) is increasing and
concave up. This means that the first and second derivatives of y(x)
are both positive. Therefore, the population level isn’t only increasing
(y′(x) > 0), it’s also increasing at an increasing rate (y′′(x) > 0). In
particular, this means that more people will be added to the population
next year than were added last year. No wonder the roads are getting
more crowded!

Feeling Derivatives

After a few more minutes of traffic, my odometer finally reaches a
number higher than 5mph. My velocity v(t) is now increasing, so that
v′(t) > 0. And since velocity is the derivative of position, v(t) = s ′(t),
then v′(t) > 0means that s ′′(t) > 0. In other words, I’m now feeling the
second derivative s ′′(t). How, you might ask? Let’s consult Dr. Newton
one more time.

For fun, picture Newton, complete with his elaborate wig, inside
a NASCAR race car. These cars can accelerate from rest to 60mph
in as little as 4 seconds. The one Newton is in is about to take off.
Before it does, Isaac feels no forces from the chair he’s sitting in. But
the instant the car starts moving its velocity changes. Since the car is
now accelerating its momentum p is changing, making p′ nonzero. By
Newton’s own second law, this leads to a force F from the seat that
pushes against him. From Newton’s point of view, he feels pushed back
into the seat.
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Now, since an acceleration function a(t) describes changes in a
velocity function v(t), we know that a(t) = v′(t). And, since we know
from before that v(t) = s ′(t), putting these two together we arrive at

a(t) = s ′′(t). (17)

Thus acceleration is the second derivative of the position function.
This is the physical interpretation of f ′′(x) we were looking for; we
now see that the second derivative tells us the acceleration of an object
with position function s (t). Therefore, we can summarize Newton’s
thrill ride as follows: every time you feel pushed back against your seat
you are feeling the second derivative of your car’s position function
s (t).

The Calculus of Time Travel

Unfortunately for me, more traffic jams loom on the horizon. I don’t
think I can handle another nine minutes of this, so I start thinking
about finding an alternate route to work. For the majority of human ex-
istence, we found alternate routes by asking other people for directions;
these days I can ask the minicomputer in my car. This gadget relies
on the GPS system—an acronym for the Global Positioning Satellite
network—of satellites that help the device figure out where I am and
how to get me where I’d like to go. One push of a button later, my
GPS device locates me and displays a map of my surroundings; it starts
tracking my car’s location and then pulls up an alternate route. In no
time I’m on a less congested road, with my GPS unit continuously
guiding me through the unfamiliar new route. Many of us, as I just did,
take this device for granted every day. But a spooky story is hidden here,
and—believe it or not—it will completely change the way you think
about reality.

The first thing to know is that my GPS unit communicates with
the GPS satellites in space through signals that travel at the speed of
light c , a remarkable 11,176,920 miles per minute. These satellites orbit
the Earth at about 8,666 miles per hour, way slower than the speed
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of light. Nonetheless, in 1905 Einstein showed that a lot of strange
things happen when objects do travel at speeds close to c .

To put Einstein’s findings in perspective, imagine two identical
clocks, one on board an airplane traveling with velocity v and the other
on the ground. Suppose that the pilot measures the flight time to be
y hours (using her clock). Einstein discovered that back on Earth, the
flight time (according to the ground clock) is not y hours, but instead z
hours, where

z = y√
1 − v2

c2

. (18)

Since v2 is positive, the denominator in this equation is smaller than
one. This tells us that z is larger than y. In other words, Einstein
showed that clocks traveling with velocity v are slow relative to sta-
tionary clocks, a phenomenon now called time dilation.xiii Put a bit
more alarmingly, moving objects time travel into the future relative to
stationary objects.

To appreciate the bizarre implications of this finding, imagine you
take a three-hour trip on a very fast plane that can travel at 86% the
speed of light. When you return, equation (18) predicts that the world
will have aged six (not three) hours. This wouldn’t be an illusion; every
clock and every person would be six hours older, even though you’re
only three hours older (according to your wristwatch). You would, in a
very real sense, have traveled three hours into the future,xiv and relative
to everyone else, you’d be three hours younger.

Before you get too excited about this fountain of youth, you should
know that speeds close enough to c to make this effect noticeable
are currently produced by physicists only in particle accelerators—
machines specially designed to study the particles that form the

xiiiThis is part of Einstein’s Special Theory of Relativity. Supposedly, when Einstein was asked to
explain relativity in layman’s terms, he said “put your hand on a hot stove for a minute and it
seems like an hour. Sit with a pretty girl for an hour and it seems like a minute. That’s relativity.”
I can confirm this to be an accurate description of the theory.
xivAs this example shows, time travel into the future is completely within the laws of physics. In
fact, cosmonaut Sergei Avdeyev holds the world record for time travel into the future, traveling a
whole millisecond into the future as a result of his 748 days on board the Mir space station.17
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building blocks of our universe. To the rest of us nonphysicists,
Einstein’s discovery might seem irrelevant to our daily lives. Enter my
GPS unit.

Let’s start by finding out how much time, on Earth, corresponds
to one second as measured by a GPS satellite’s onboard clock. Since
these satellites move at about 0.0013% the speed of light, we can use our
results on linearization to rewrite equation (18) for speeds that are slow
compared to the speed of light:∗8

z ≈ y
(
1 + v2

2c2

)
. (19)

With y = 1 and v/c = 0.000013, this approximation tells us
that 1 second on a GPS satellite’s onboard clock is actually about
1.0000000000834623 second to us back on Earth (this calculation
ignores the time dilation effect due to general relativity); after one
day the discrepancy totals about 0.00000721122 second. This is such
a small amount that it seems inconsequential, but remember that the
GPS satellites’ signals to my GPS unit are traveling at the speed of
light, which, as we saw before, is very fast. Consequently, this error
in time measurement translates to an error in distance measurement
of 0.00000721122c , or about 1.343 miles per day. Imagine using your
GPS unit for a cross-country drive and discovering that after just one
day it can no longer accurately tell you where you are.xv Pretty soon,
you’d start to regret having bought such a useless gadget. Fortunately
for us, the engineers who design GPS satellites incorporate Einstein’s
findings.

Thus far I’ve focused on my GPS unit, but Einstein’s equation (18)
applies to all moving objects. This is where things get truly mind-
bending. For example, if your dog runs through the park for 30minutes,
(18) says he’s now traveled into the future relative to you. But after you
drop him off at home and go to the grocery store, you’ve traveled into

xvIn fact, since these errors would occur every day, the whole GPS network would become useless
within a few weeks.
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the future relative to him. Meanwhile, everything you saw in motion
around you during your trip to the store—other people, other cars,
etc.—traveled into the future relative to someone or something else.
Sorting all this out would confuse even soap opera writers!

In this chapter we’ve “mathematized” several aspects of our daily
lives—from rainfall to driving forces to congestion on the roadways—
and have learned much more about them by letting the mathematics
speak to us. But come on, time dilation takes the cake. It perfectly
embodies our “wherever there is change there are derivatives” adage,
and it takes it a step further by providing us with a radically new way
to look at reality. If these first three chapters are already making you
rethink the reality you live in, let me find a parking spot and get up to
my office to tell you the rest of the story.



CHAPTER 4

CONNECTED BY CALCULUS

IF YOU’RE LIKE me, one of the first things you do when you get to work
is check your e-mail. Honestly, I don’t know how some jobs ever got
done before e-mail. I can’t imagine my students writing me letters with
their questions on the homework, or me making costly international
calls to my collaborators to discuss research. With e-mail it’s now
become much easier—and faster—to communicate with each other.
But it’s not just ease of communication that this new technology has
produced. In this age of Facebook and Twitter we’re all connected to
each other. This makes me think about Einstein’s time dilation discov-
ery. That one concept, the relativity of time, connects everything. I start
wondering what other phenomena we can connect with mathematics.

E-Mails, Texts, Tweets, Ah!

In the midst of my internal rambling, a new e-mail pops up on my
screen. If you’re like me, this happens multiple times a day. In fact,
in 2010 an estimated 294 billion e-mails were sent every day,18 which
equates to about 3.4 million e-mails per second! Roughly 90% of these
e-mails are spam, and despite our spam filters a few always get through.
Sifting through our enlarged inbox prevents us from doing the work
we’re paid to do as employees, and costs us (and the employers we work
for) about $22 billion every year in lost productivity.19 But how do we
quantify “productivity”? And is there anything we can learn from doing
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so that’ll help us be more productive? Let’s take the approach of the
previous chapter and mathematize the problem.

The time we lose to this “instant messaging” issue could’ve been
spent producing another computer, shirt, or car. So let’s think of lost
productivity as drop in the dollar value of goods produced. If we call
p(x) the total value of the goods a company with x employees produces,
then the average productivity A(x) of the company’s workforce is

A(x) = p(x)
x

. (20)

The function A(x) puts a number on how much a company’s x
employees produce (in dollar values of a particular product) on average.
For example, for a company that manufactures and sells $30 radios and
has 10 employees we’d have A(10) = $30/10 = $3, meaning that,
on average, each employee contributes $3 worth of production value
to each radio.

Naturally, companies would like their workforce’s average produc-
tivity to be increasing. In this environment the company could hire
people and increase the dollar value of goods produced. By now we
know that in order for a function to increase we need its derivative to
be positive, so let’s get to work.

Let’s use calculus to calculate the derivative of A(x). We get∗1

A′(x) = xp′(x) − p(x)
x2

. (21)

We see that A′(x) is positive only when the numerator is positive (since
the denominator is never negative). This happens when∗2

p′(x) > A(x). (22)

Barely a few lines in and the mathematics is already speaking to us.
Here’s what it’s saying.

Since p′(x) is the instantaneous rate of change of the total value of
the goods a company with x employees produces, this condition says
that if this rate is greater than the average productivity of the company’s
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workforce, then that average productivity will increase. As you can see,
this sentence isn’t “user-friendly.” We can rephrase it in the following
much more helpful way:∗3 if p(x) grows faster than a linear function
(i.e., p(x) is quadratic, cubic, etc.), then A(x) will increase. This ismuch
more useful, since most companies have mounds of data they can sift
through to determine the shape of their p(x) curves. If condition (22)
isn’t satisfied, the company has a variety of approaches it can take to
increase productivity.

One natural approach is to reassign employees to the tasks they’re
most productive at. So in a very real sense you’re connected to your
coworkers through your employer’s A(x) function. If this function’s
overall value is too low, you may be reassigned to a new task or project
team in an effort to increase output (and therefore, most likely, profit).
Here, then, is another example of how calculus connects seemingly
unrelated aspects of our lives. In my world, I experience this often as I
get asked to attend certain meetings based on past work that I’ve done.
In fact, now that I’ve finished decluttering my inbox and look at my
calendar I notice that I have one coming up.

The Calculus of Colds

My first meeting of the day is with colleagues, students, and ad-
ministrators. With today’s rainy day some of them are walking into
the room absolutely soaked. We’re inside a “smallish” classroom that
seats 30, and my close proximity to some of these shivering souls
(my building is usually cold) makes me think of my mother. Let me
explain.

As children we were all told by our mothers to avoid getting rained
on. To this day my mother insists that getting rained on will give you
a cold; turns out there’s some truth to this, but not for the reasons my
mother cites. We now know that the common cold spreads through
contact with infected individuals. This doesn’t depend on whether it’s
raining, so why am I still worried about the soaking wet people sitting
next to me? The reason is that on rainy days more people stay indoors,
increasing the likelihood of bumping into someone who already has a
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cold. I’m not sure if anyone at my meeting has a cold, but if someone
does, how likely is it that I’ll catch it before the meeting ends?

We can start by dividing the 20 people at my meeting (including
myself) into two groups: those who are infected—a variable which we’ll
denote by I—and those who are susceptible to infection—a variable
which we’ll denote by S . Both these numbers may change during the
course of the meeting, so both depend on time; let’s incorporate this
into our analysis by promoting I and S into the functions I (t) and S(t),
measuring t in hours. The group size tells us that

I (t) + S(t) = 20. (23)

But how do we describe the spread of the infection? Well, when the
infection spreads, I (t) is changing, so cue our derivatives! To make
things concrete, suppose five people in the room have a cold. As they
interact with the susceptible population the disease is likely to spread,
and the rate at which individuals get infected, I ′(t), will be larger if there
are more interactions. This is leading us to consider the model

I ′(t) = kI (t)S(t), (24)

where k > 0 is a constant that describes how fast people get infected
from these interactions, and the product I (t)S(t) is a measure of how
many interactions could result. Using equation (23) we can rewrite
equation (24) as

I ′ = kI (20 − I ), or I ′ = 20kI − kI 2. (25)

This equation is an example of a logistic equation.xvi We can verify that
the solution to this equation—the number of infected individuals—is∗4

I (t) = 20
1 + 3e−20kt . (26)

xviA general logistic equation looks like p′ = ap − bp2, where a and b are numbers. In 1837 the
Dutch mathematical biologist Pierre-François Verhulst introduced this mathematical model (with
a, b > 0) and used it to describe population growth.
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Figure 4.1. The graph of the function I (t) for k = 1.

As we can see from the graph in Figure 4.1, I (t) curves upward before
t∗ and downward after. In the parlance of Chapter 3 this means that
I ′′(t) > 0 before t∗ and I ′′(t) < 0 after, making the time t∗ an inflection
point. Moreover, since we know that the second derivative describes
the “acceleration” of the function, the change in concavity at t = t∗ is
telling us something very valuable: the number of infected individuals
is increasing at an accelerating rate before time t∗ and increasing at a
decelerating rate after that time.

Usingmy starting assumptions, the numberC of infected individuals
at time t∗ is 10.∗5 So our model is telling us that after half the people in
my meeting get infected, the infection rate begins to slow. But what
about the value L? What does that tells us?

Well, if by some stroke of (bad) luck I get stuck inside this meeting
room for days on end, then we’d expect that everyone would eventually
catch the cold. This intuition tells us that L = 20, a fact that we can
verify by using limits.∗6 This is a general feature of the logistic equation
when a and b are positive: solutions eventually approach a limiting
value L , called the carrying capacity.

Luckily, I’m here for only an hour. I’ve already noticed a few people
clearing their throats though, so I’m not in the clear just yet. To get
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some peace of mind I can calculate the expected number of infected
individuals one hour after the meeting starts:

I (1) = 20
1 + 3e−20k .

Notice that this number depends on k, the number that describes how
fast the infection spreads. For a relatively normal k = 0.02, I (1) ≈ 6.64,
meaning that by the time the meeting ends almost two more people
have caught the cold. The problem is that I can’t tell who’s infected
or not. It could be the soaking wet student to my left, or the perfectly
normal-looking guy to my right. But either way, our analysis has helped
us narrow down the possibilities. This logistic approach to the spread of
disease has connected me—quite literally, since I’m one of the S(t)—to
the other people in the room.

What Does Sustainability Have to Do with Catching a Cold?

The hour is almost up. I’ve missed most of what was said in the meeting
trying to think about this logistic problem and simultaneously avoid
whoever looks sick. I don’t feel any different as I walk out of the
meeting, so maybe I successfully dodged the cold. Between thinking
about the logistic equation, trying to identify the possibly infected
people, and imagining being stuck in that room for eternity, the one
thing I have caught is the hunger bug.

On my way back to my office, I remember that my colleague Stanley
told me about a new sushi restaurant that opened nearby. I’m not a fan
of raw fish, but I do enjoy the cooked makimono rolls. Plus, it’s now
turned into a nice day thanks to Nature’s usual cycle of rain followed by
sunshine. So I decide to go ahead with the sushi plan. I send Stanley a
quick text (which probably distracted him, dropping his productivity)
to see if he wants to join me. A few of minutes later we meet up and
start walking over.

When we get to the restaurant I’m struck by just how busy the
place is. Servers are rushing by with plates full of seafood, and only



CONNECTED BY CALCULUS 57

a few tables are open. Granted it is a relatively new place, but still
the popularity of sushi continues to amaze me. We snag a table and
start looking through the menu. I’m struck by how many dishes they
offer; there’s so much fish in so many combinations to choose from!
We order some roll dishes; a few minutes later the server brings us a
beautiful arrangement of colors and flavors on trendy-looking plates.
While I eat the various rolls, I’m reminded of the population discussion
of Chapter 3; there must be thousands of other sushi restaurants across
the world each serving roomfulls of fish every day. This presents a huge
fishing challenge, and, more important, raises the obvious question:
how long can we continue fishing our oceans before no more fish are
left to catch? The answer to that question depends, of course, on how
much fishing is going on. But it also depends on how many fish there
are. So let’s mathematize the problem.

Let’s call p(t) the world population of fish that humans eat, where
t is measured in years. If p(t) is small, then fish are harder to find,
making it easy for their population to grow; a simple model here would
be exponential growth similar to our bacteria example of Chapter 3:
p′(t) = ap(t), where a > 0 describes the reproduction rate. But
once the population gets too large we (and their predators) slow that
population growth. We can account for this by replacing the constant
growth rate a by the variable growth rate a − bp (where b > 0), which
decreases as the population grows. Therefore, our model becomes

p′(t) = p(a − bp) = ap − bp2. (27)

This is a logistic model for p(t)! And we’ve just connected the spread
of a cold to the changes in global fish populations! But before we get
too excited, we should account for human fishing. If we denote by
100c > 0 the percentage of the fish population we catch every year,
then the modification is simple:

p′(t) = ap − bp2 − cp = (a − c)p − bp2. (28)

In other words, fishing simply lowers the reproduction rate.
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The solution to equation (28) is

p(t) = (a − c)p0
bp0 + ((a − c) − bp0)e−(a−c)t , (29)

where p0 is the initial fish population. Now, one of the great things
about mathematics is that its conclusions are universal. This means that
all of the mathematical conclusions we obtained when we discussed the
spread of a cold are valid here as well. For example, let’s assume that
we don’t catch fish faster than they can reproduce, so that c < a. Then
(29) says that the fish population eventually reaches the limiting value
(a− c)/b, found again by taking limits;∗7 recall that we called this value
the carrying capacity in the cold problem. Moreover, the population of
fish will be increasing at an accelerating rate until it reaches half of this
value—in this case (a − c)/2b—and then continue increasing but at a
decelerating rate.

The fact that the carrying capacity is (a − c)/b tells us that the
more we fish—the greater c is—the smaller the eventual population of
fish will be. But we already knew that. Have we done all this work for
nothing? Has my mantra of mathematization failed to provide us with
new insights? No way.

Suppose that we now insist that eventually at least M fish survive.
From (a − c)/b > M it follows that c < a − (bM). A fishing rate less
than this would guarantee, under this model, that enough fish would
reproduce to eventually yield a population of at least M fish. This usage
of the logistic equation is at the heart of sustainability analysis, where
the more general question is to determine an approach to harvesting
something (be it fish, plants, or even oil) that’s sustainable over the long
term. Andwhat we’ve just discovered is that, despite how different these
resources are, harvesting them in a sustainable manner can be studied
with just one equation: the logistic equation. How cool is that!

What Does Your Retirement Income Have to Do with Traffic?

All of this doom and gloom has left me feeling guilty about eating
the (admittedly yummy) food we’ve just had. And now that my mind
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isn’t clouded by hunger, I leave the restaurant intrigued by how many
seemingly unrelated phenomena calculus has thus far managed to
connect.

Back at the office I pull up my Internet browser and check my
schedule. Off in the corner I catch a glimpse of the financial markets; the
Dow is down 1.2%, with similar drops for the other indices. Since the
markets go up and down, I’ve learned not to obsess over these numbers,
but sometimes this is easier said than done.

One such time was in 2008, when the market sometimes seemed in
free fall. The large drops in the market led many of us to sell everything,
no doubt encouraging even more panic selling. With the Federal
Reserve calculating that the median net worth of families dropped 39%
from 2007 to 2010,20 many of us walked away from that time period
afraid to invest in the markets again. While this may be a good idea
for those nearing retirement, if you have decades left before you retire,
youmight want to think twice about abandoning the market altogether.
Allow me to let the mathematics speak for itself.

Let’s start by letting B(t) be the balance of your retirement account
at the beginning of year t, and let’s assume that when your investments
make money this gain is immediately reinvested.xvii This assumption
means that the more money in your account, the more is available to
be invested. If your rate of return is r% per year, then the rate B ′(t) at
which your balance is changing is

B ′(t) = r
100

B(t). (30)

The solution to this equation is B(t) = B(0)er t/100, where B(0) is
the starting balance of your account. The math is telling us that your
account balance will grow exponentially, the same type of growth
we encountered when discussing population growth in Chapter 3.
This makes sense, since in Chapter 3 we reasoned that more people
around would result in more births and hence a larger population, thus
producing even more people and so on. This too is the situation here,

xviiThe technical assumption is that your gains are “compounded continuously.”



60 CHAPTER 4

except that now with more money in your account your gains will be
larger, resulting in even more money, and so on. Thus, we’ve already
connected population growth to your retirement account, but let’s go
even further.

If in addition to your gains you deposit an additional s dollars per
yearxviii then equation (30) becomes

B ′(t) = r
100

B(t) + s . (31)

The solution to this equation is∗8

B(t) =
(
B(0) + 100s

r

)
er t/100 − 100s

r
.

To see this equation in action, suppose that you are 20 years away from
retirement and that you currently have B(0) = $30,000 saved and are
adding s = $5,000 per year to your account. Assume further, that
r = 7.2% (we’ll see where this comes from in a minute). Then the
balance of your account at retirement would be

B(20) = $350, 280.31.

But how much of this is due to your yearly $5,000 contributions?
Subtracting your total deposits over the 20-year period, as well as
the initial account balance, shows that over 68% of the $320,280.31
gain over the 20-year period came from the compounding effect (the
“gains of the gains” effect).∗9 An even longer time horizon—or rate
of return—would only increase this percentage. And why is a 7.2%
return reasonable? According to a recent study by Oppenheimer Funds,
stock market returns averaged 7.2% over every 20-year period between
1950 and 2010 (where the periods begin every month), with all such
returns positive.21 So, for investors with a long time horizon the
market’s rate of return is quite favorable, even in spite of drops in

xviiiThe technical assumption here is that your deposits are made continuously—perhaps as a good
approximation every day—and add up to exactly s dollars per year.
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the market like that of 2008. Today’s 1.2% drop on the Dow isn’t
anywhere near the drops of 2008, but this analysis does remind me that
my time is better spent going about my day than worrying about the
market.

The Calculus of the Sweet Tooth

After putting in a good couple of hours of work after lunch, the fact
that it’s Friday is now setting in. I’m finding it hard to motivate myself
to work through the last two hours of the day; I think this is a good time
to take a break and head to the coffee shop.

I’m always surprised by how many people bring their work with
them to a coffee shop. I usually go to coffee shops to grab some coffee
(or a sweet) and escape work, not bring it with me. But I guess with
the average coffee shop now offering free WiFi, a variety of drinks with
seemingly never-ending names, and carefully thought-out, comfortable
seating arrangements, I can see how these places are becoming a
popular place to get work done. Here, then, is one way a lot of us in
the coffee shop are connected: we’re here either doing or soon getting
back to work. But where’s the math?

While I’m in line I put my calculus hat on (figuratively speaking,
of course). I see cashiers and baristas, so there’s likely to be some
productivity-based shuffling of tasks based on the shop’s A(x) function;
those who make drinks faster likely staff the machines, while other
employees who are better at taking drink orders are likely up front.
Since I’m in need of a sugar boost I order a hot chocolate, and here’s
where some literally life-saving math can be found.

These days the barista’s machine does all of the work. She puts a
scoop of chocolate into the cup, pushes a button, and the machine heats
and froths the milk first and then pours it into the cup. The liquid level
rises quickly as the machine pours the milk. I know that the flow rate
of the milk is constant, but then I notice the liquid level rising slower
as more milk is poured into the cup. As we now know, phrases like
“changes less quickly” indicate the presence of derivatives. So, if I knew
how fast the milk was being poured into the cup, could I determine how
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Figure 4.2. The frustum shape of my cup.

the volume of liquid in the cup was changing? As I sometimes tell my
students: por supuesto (Spanish for “of course”)!

Let’s start with the shape of the cup; it’s a frustum—a cone that’s
had its tip cut off perpendicular to its height (Figure 4.2). Suppose its
smaller radius is a and its larger radius is b, and that it has height H .
As the milk enters the cup the volume of milk plus chocolate also forms
a frustum. Let’s call its height h and denote its larger radius by r . The
volume of a frustum with radii a and r (a < r ) and height h is

V = πh
3
(
r 2 + a2 + ar

)
. (32)

If we imagine taking a derivative of the entire equation, we’ll have
found a relationship between the rate at which the volume is changing,
V ′(t), and the rates at which the radius r is changing, r ′(t), and height
h is changing, h′(t). This problem is a classic example of what we
mathematicians call a “related rates” problem, since the rates here are
related by the frustum volume equation.

To proceed we need the derivative of the volume equation. But
this equation involves two variables (r and h). Mathematically that’s
okay, but it’d be nice if we could eliminate one variable. If you stare
at Figure 4.2 and think back to your geometry class, you might spot
something: two similar triangles. We can use these to rewrite the



CONNECTED BY CALCULUS 63

volume equation as∗10

V = π

3

(
3a2h + 3a(b − a)

H
h2 + (b − a)2

H2 h3
)

. (33)

This single-variable function V(h(t)) is now straightforward to differ-
entiate using something called the chain rule:∗11

V ′(t) = π

3

(
3a2 + 6a(b − a)

H
h(t) + 3(b − a)2

H2 (h(t))2
)
h′(t). (34)

This may be the scariest-looking equation we’ve seen yet. But have
no fear, the professor is here! And my suggestion? Listen to the
mathematics.

For starters, remember that a, b, H are all numbers (they are the
radii of the cup and its height, respectively). With this in mind, our
equation says that V ′(t) is just a quadratic function of h multiplied by
h′(t). This tells us that at time t the rate at which the liquid is rising,
h′(t), is related to both the volume rate V ′(t) at which the machine
is pouring in the milk and the liquid level h(t). If we assume that the
machine pours in the milk at the constant rate V ′(t) = C , then by
solving for h′(t) we see that

h′(t) = C

π
(
a2 + 2a(b−a)

H h(t) + (b−a)2
H2 (h(t))2

) . (35)

However ugly this formula looks, it confirms our earlier observation:
as the liquid level rises (as h(t) gets larger), the rate at which it rises,
h′(t), slows down (since the denominator gets larger, and hence the
fraction gets smaller). But this formula does much more than just
confirm our observation. This formula tells us exactly how fast the
liquid level is rising at a certain time t and level h(t). That’s great, but
it’s not life-saving mathematics (as I earlier claimed could be found at
a coffee shop). However, like the r (V) nemesis of Edison in Chapter 1,
maybe all we need to do is look at our h′(t) formula differently.



64 CHAPTER 4

With this in mind, I leave the coffee shop, hot choco in hand, and
head back to the office. Today’s rainy morning is long gone from my
memory, but small puddles of water are still left over. They look like
miniaturized lakes; and that’s when it clicks: the same mathematics
we used to find h′(t) given V ′(t) for my hot choco applies to these
puddles. And since these puddles are miniaturized lakes, we can use
the same mathematics to analyze everything from reservoir levels after
rainfalls to flooding concerns. For example, emergency management
agencies determining whether to order an evacuation due to flooding
face a problem similar to my hot choco example. They can measure
the rate V ′(t) of the volume of rain falling on the area of interest
but then need to determine how fast the water level is rising, that
is, h′(t). For situations where V ′(t) can be estimated in advance—for
example, in the case of hurricanes—an equation similar to h′(t) could
help determine whether to order an evacuation. The mathematics of
finding V might be more complicated, but we’ve now learned that we
can connect the important problem of evacuating a flooding zone to the
seemingly silly “hot chocolate problem.” This is yet another example of
how mathematics makes unexpected connections that, in some cases,
may even save lives.

Throughout this chapter we’ve seen how mathematics, and specif-
ically calculus, connects many different phenomena through its for-
mulas, concepts, and reasoning. Who would’ve known that the same
equation that describes how infections spread also has implications
for sustainable fishing? And how cool is it that the mathematics of
population growth is also behind the growth of our 401(k)s? Or how
about making life-saving decisions with the same mathematics we
see every day at the coffee shop? If this were all we could do with
mathematics, we’d probably be happy with just that. But I’ll interject
right here and give my sales pitch: “But wait, there’s more!” In the
next chapter we’ll see how calculus helps us to make life better. Like
the old BASF commercial, we’ll see that calculus doesn’t just describe
your world, calculus makes your life . . . better.



CHAPTER 5

TAKE A DERIVATIVE AND YOU’LL FEEL BETTER

MY OFFICE IS ON THE THIRD FLOOR of the building I work in. As I walk
in, hot chocolate about half-way gone, I head toward the stairwell. I
climb these three flights of stairs many times during the day. Naturally,
the first couple of steps are easy, but as I keep moving up the stairs my
heart beats faster. It’s compensating for the sudden increase in oxygen
demand, and quickly distributing that oxygen across my blood vessels
to my muscles. But this requires very special plumbing. For starters,
my blood vessels need to expand to accommodate the greater volume
of blood flowing (if we want to keep the blood pressure down). How
much should they expand by? In addition, that blood needs to make it
to my muscles as fast as possible. With blood vessels branching in all
sorts of directions, this raises another question: how does your body
know what the most efficient branching directions are? Like our flood-
zone application in the last chapter, these are literally life and death
questions. Let’s discuss the first and come back to the branching issue.

I “Heart” Differentials

In 1838, the French physiologist Jean Louis Marie Poiseuille studied the
more general problem of a liquid flowing down a (cylindrical) pipe. He
discovered that at any instant in time t the volume flow rate V ′(t) of
liquid flowing was related to the radius r of the pipe by

V ′(t) = k(r (t))4, (36)
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where the constant k depends on several physically relevant
parameters—among them the fluid viscosity.xix

But our vessel-expansion problem asks something different: if the
volume flow rate changes, what’s the resulting change in the blood vessel
radius r ? Notice that this question is about how changes in V ′ affect
r and has nothing to do with time t. So let’s pretend that we take a
snapshot of one ofmy arteries at time t = t0 and let’s rewrite Poiseuille’s
equation as

f (r ) = kr 4, (37)

where f is our volume flow rate V ′, but considered—at the instant of
time t0—as a function of the artery radius r . This new relationship now
relates the volume flow rate to the radius, exactly what wewant. Further,
let’s say that the current radius of the artery is r = a. In Chapter 3 we
discussed how, for values of r close to a, we could approximate the value
f (r ) by

f (r ) ≈ f (a) + f ′(a)(r − a). (38)

If we introduce the notation � f = f (r ) − f (a) and �r = r − a
(read “the change in f ” and “the change in r ,” respectively), then we
can rewrite this as

� f ≈ f ′(a)�r. (39)

Now, in deriving this approximation we assumed that the change�r
was small (this is equivalent to assuming that r is close to a), but what
if you imagine making �r , and hence � f , as small as possible but still
nonzero (i.e., “infinitesimally small")? What you get is

d f = f ′(a) dr. (40)

xixThe viscosity of a fluid is a measure of how much a fluid resists flow. For example, honey has a
higher viscosity than water.
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The two new objects here, d f and dr , are called differentials. In
calculus-speak, this equation tells us that the infinitesimally small
change dr in r causes the infinitesimally small change f ′(a) dr in f (r ).
Getting back to Poiseuille’s formula for f , we can differentiate to get∗1

d f = 4ka3 dr. (41)

If we now divide by f (a), then

d f
f

= 4ka3

ka4
dr = 4

a
dr = 4

dr
a

. (42)

Notice that the quantity dr/a is the change in r divided by its starting
value. In other words, dr/a is just the percentage change in the initial
artery radius a. Similarly, d f/ f is the resulting percentage change in
f . Thus, our result tells us that a 4% increase in the blood flow rate f
(a d f/ f value of 0.04) would result in a 1% increase in the radius of the
artery. In fact, as we can see from the equation, the percentage increase
in the artery radius r will always be one-fourth the percentage increase
in the blood flow rate f .

Now that we’ve answered our first question, we are beginning to
see just how efficient our bodies are. But there’s much more efficiency
built-in, as we’ll soon see when we discuss the branching problem. But
first I need to tell you about how we mathematize questions like “What
is the most efficient branching angle?”

How Life (and Nature) Uses Calculus

On my way down the hall to my office I take another sip of my hot
chocolate drink. What’s left of it is now cold, having suffered the same
fatemy coffee did in Chapter 2. Since I’m not a fan of cold hot chocolate,
once I walk into my office I throw the cup halfway across the room,
hoping to make it inside the trash can. I want you to picture that cup
flying across the room in slow motion, as if it were one of those “bullet-
time” scenes in The Matrix. From our Chapter 1 work and Galileo’s
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genius, we know that its trajectory is a parabola. We also know from
experience that what goes up must come down. And this seemingly
insignificant fact is actually the doorway into our study of optimization,
the subfield of mathematics dedicated to maximizing (or minimizing)
functions. Let me tell you how.

Pretend that I missed the trash can by a mile and instead threw the
coffee cup straight up in the air (maybe I slipped on banana peel). The
cup goes up, then it comes down. Okay, fine. But what happens in
between? At some point it has to switch direction from “going up” to
“going down.” In other words, at some point it has to be at rest (going
neither up nor down). This is a pretty radical idea; one would think
something thrown in the air is always in motion, but that’s not true.
What can we learn from this? Let’s mathematize and find out.

Let’s label the vertical position of the cup at time t by y(t). Then its
vertical velocity is just v(t) = y ′(t). So, if at some point in time—let’s
call it t0—the cup is at rest, then v(t0) = 0. But this is equivalent to
y′(t0) = 0. Now, if we look at the trajectory of the cup—depicted in
Figure 5.1—we see that y ′(t0) = 0 is also the condition for maximum
height, that is, for y(t) to be a maximum. This analysis is hinting at
something deeper.

If we take the graph of a function f (x) and pretend that it’s the graph
of my cup’s distance to the floor once I throw it in the air, this analysis
suggests that to find the maximum value of f (x) we should find where
its derivative f ′(x) is zero. Let’s call these x-values the stationary points
to keep the velocity analogy intact. The question then becomes: do the
maxima (and minima) of a function always occur at stationary points?

To answer this question, consider the function f (x) = x for values
of x between zero and two: 0 ≤ x ≤ 2. Its largest value on this interval is
f (2) = 2, yet f ′(x) = 1, showing that f has no stationary points (since
f ′(x) is never zero). This example teaches us that the maxima and
minima of a function don’t always occur at stationary points. Moreover,
it teaches us somethingmore: the endpoints of your interval matter. For
example, if we change the interval to 0 ≤ x ≤ 3, then the maximum
changes: it’s now f (3) = 3. So now we have two types of candidate
x-values for the locations of the extrema: the stationary points (where
f ′(x) = 0), and the endpoints a and b of the interval a ≤ x ≤ b.
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y(t)

t0
t

Figure 5.1. A cup thrown vertically upward reaches its maximum height when
y′(t0) = 0.

It turns out that if f (x) is a differentiable function, meaning f ′(x) exists
at each point in the interval a ≤ x ≤ b, then the extrema always occur
at either the stationary points or the endpoints.∗2

Our careful analysis of the trajectory of my cup has yielded a strategy
for finding the extrema of a differentiable function f (x) on the closed
interval a ≤ x ≤ b. First find the stationary points. Then compare
the y-values at these points with the y-values of the endpoints a and
b; whichever is the largest will be the maximum and whichever is the
smallest will be the minimum.

Great, but what does this have to do with Life and Nature? Let’s get
back to my blood vessels and the branching question. Mr. Poiseuille—
and our differentials work—helped us understand why only small
dilations in our vessels are needed to accommodate a larger volume
of blood flow. But Life is much smarter than that. Our arteries don’t
just want to “accommodate” greater volumes of blood flow; they’d
like to minimize the work needed to expand those blood vessels. Aha!
This is starting to sound like an optimization problem! But we need a
function—and an interval—before we start optimizing.
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M

Figure 5.2. A larger blood vessel of length L and radius r1 branching into a smaller one
with radius r2 at an angle θ .

In his other investigations, Poiseuille came upwith a formula relating
the resistance R of a liquid traveling through a pipe to its length l and
radius r :

R = c
l
r 4

, (43)

where c is a parameter that depends on, among other things, the
viscosity of the liquid. If our bodies want tominimize the work required
to pump blood, our vessels should be configured to minimize the
resistance R that blood encounters as it flows. In particular, when blood
vessels split into different branches (see Figure 5.2) this branching
should minimize R. From this perspective, the question is: what is the
optimal angle at which this branching should occur?22

By using Poiseuille’s second law, we can determine the total resis-
tance blood flowing from the larger vessel up into the smaller would
experience:∗3

R(θ) = c
(
L − M cot θ

r 41
+ M csc θ

r 42

)
. (44)

Now we need the interval. Figure 5.2 suggests we focus on the
interval 0 ≤ θ ≤ π (where θ is measured in radians),xx since angles

xxAn angle that measures π “radians” is equivalent to an angle measure of 180◦.
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R(θ)

0 π
θ

Figure 5.3. A representative graph of R(θ).

bigger than 180◦ would correspond to flipping our diagram upside
down and left to right. However, mathematically the endpoints 0 and π

of this interval present a problem, since the functions cot θ and csc θ are
not defined at those θ–values. But a quick glance at the graph of R(θ)
(Figure 5.3) shows that the minimum of R(θ) isn’t at the endpoints
anyway, since the function shoots off to infinity there. Moreover, since
Figure 5.3 also shows that R ′(θ) exists everywhere inside 0 < θ < π ,
making R a differentiable function, Fermat’s Theorem∗2 says that the
minimum value must occur at a stationary point. By finding R ′(θ) and
setting it equal to zero, we find the stationary point∗4

cos θ =
(
r2
r1

)4
, or θ = arccos

(
r2
r1

)4
, (45)

where the function arccos(y) returns the angle whose cosine is the
number y. As an example of this cos θ equation, if r2 is 75% the size
of r1, then θ ≈ 71.5◦.

We’ve just extracted an important insight from Poiseuille’s law: the
branching angle that minimizes the resistance depends on the ratio of
the radii of the vessels at the branching point. Imagine yourself now as
a developing baby in your mother’s womb. As your tiny body begins to
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grow the vast number of blood vessels in your body begin to branch.
As your thicker vessels—such as your arteries—branch off into smaller
vessels, the optimal branching angle changes based on the ratio r2/r1.
And throughout the millions of years that we’ve evolved, our bodies
have been constantly adjusting these branching angles in an attempt to
minimize the energy expended by the heart in circulating blood.

I find it truly amazing that we’ve been able to understand how
biology uses optimization to make our bodies more efficient. But
minimizing the energy needed to accomplish something isn’t only a
feature of biological systems. For example, take the power lines I see
outside my window. They hang in a particular shape that one might
think has nothing to do with optimization. But in fact, as Newton
helped us understand, all objects on Earth are pulled downward by
Earth’s gravity; this includes the power line too. If we think of the power
line as a collection of tiny pieces glued together, every piece of the cable
wants to be on the ground; but since all the pieces are connected, the
best they can do is to minimize their distance to the ground. The shape
that emerges from this tug-of-war is called a catenary (Figure 5.4).

Although this shape looks like a parabola, it’s actually not. This is
evident from the catenary’s equation,

y = a cosh
(x
a

)
, (46)

–30 –20 –10 10 20

20

40

60

80

100

30

Figure 5.4. The graph of a catenary.
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where a �= 0 is a number and cosh(x) is the hyperbolic cosine function.
In this shape, the power lineminimizes its gravitational “stored energy,”
much like a ball close to the ground has less gravitational stored energy
than one farther off the ground.

The tendency of Nature to prefer minimum energy configurations
was made precise by the Irish physicist and mathematician William
Hamilton. In 1827 he presented what we today callHamilton’s Principle
of Stationary Action to the prestigious Royal Society of London. The
fact that it has the word “stationary” should be a clue as to what this
principle says: among all possible trajectories that a physical system
could take between two states A and B , the one it actually takes renders
the action S stationary. And for a wide variety of physical systems—
the hanging power line included—a stationary point for S corresponds
to a minimum energy configuration.xxi So, as you look around Nature,
whether it’s hanging power lines, water flowing down a stream, or
planets orbiting a sun, Hamilton’s principle tells us that Nature is,
behind the scenes, optimizing it all.

The Costly Downside of Calculus

My admiration of the optimization going on all around us is interrupted
by my phone. It’s Zoraida; she’s calling to see what we should do
after work. Since it’s a Friday, both of us mention going to downtown
Boston. We settle on dinner and a movie, and the plan is for me to
meet her downtown in about an hour and a half. I’ll need to get home
first and then take the T (our light rail system) downtown. To save us
some time, I decide I’ll buy the movie tickets online now. The theater’s
website has the tickets going for $12. How come they aren’t $15, or $20?
Seems like a lot, which gets me thinking: would the theater make more
money at those higher prices? This leads to the more general question:
how should a theater—or any business for that matter—set its prices?

xxiAlthough a more precise mathematical statement of Hamilton’s principle involves a field of
mathematics known as the calculus of variations, the condition that S be stationary reduces to the
condition that the appropriately defined derivative of S be zero.
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Although this is a complicated question, let’s focus on the theater’s
revenue and ask: what should the ticket price be to maximize revenue?

We’ll need some initial assumptions. Let’s denote by p the price of
the theater’s movie ticket and assume the theater seats 2,000 people
in total throughout all of its screen rooms. Suppose that with ticket
prices at $12 the average attendance last month was 1,000. Businesses
often conduct surveys on hypothetical price changes to try to esti-
mate changes in demand for their products. Suppose that the theater
conducted such a survey and discovered that for every 10 cents the
ticket price dropped the theater would attract another 20 moviegoers.
Using all this information, we can now determine the ticket price that
maximizes the revenue from ticket sales. Here’s how.

From the survey we know that after one 10-cent decrease, the price
is p = 12 − (1/10), and after two 10-cent decrease the price is p =
12− (2/10). Therefore, if x represents the number of 10-cent decreases
in the price of the original $12 ticket, after x 10-cent decreases the price
would be

p = 12 − x
10

. (47)

The survey also implies that after one 10-cent decrease the average
attendance would rise to 1,000+ 20, and after two 10-cent decreases
it would rise to 1,000+20(2). So after x 10-cent decreases the average
attendance would rise to

1, 000 + 20x. (48)

Since the ticket revenue R is the total attendancemultiplied by the ticket
price, we now know that

R(x) = (1, 000 + 20x)
(
12 − x

10

)
= 12, 000 + 140x − 2x2. (49)

What about the interval? Well, the theater could decrease the price
zero times, or it could decrease the price 120 times (at which point
the ticket would cost $0, leading to zero revenue). Thus our interval
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is 0 ≤ x ≤ 120. But since R(120) = 0 we know this isn’t the maximum
revenue. On the other hand, R(0) = $12, 000, which could be the
maximum revenue; in this scenario the theater should keep prices at
$12. But we’ve yet to check the stationary points. Calculating R ′(x)
yields∗5

R ′(x) = 140 − 4x. (50)

From this we see that the only stationary point is x = 35 (since
R ′(35) = 0). But remember, the theater was already generating $12,000
by selling $12 tickets, so we need to see if reducing the price by 35
10-cent chunks will result in higher revenue. Well, from our revenue
function we find R(35) = $14, 450,∗6 the largest revenue of the
stationary points and the endpoints of the interval; hence this is our
maximum revenue.

These 35 10-cent reductions amount to a $3.50 discount to the
current price, bringing each ticket’s price down to $8.50. And, since the
theater determined it would bring in an additional 20 moviegoers per
reduction, at 35 reductions this would represent an increase in average
attendance of 700 people. If only I could call up the theater and get a
discount by offering to use calculus to maximize its revenue from ticket
sales. Unfortunately for me, my computer screen still shows $12. I guess
that’s the price of seeing a movie these days.

The Optimal Drive Back Home

After buying the tickets and making dinner reservations at an Indian
restaurant (Zoraida’s favorite), I pack up and head down the three
flights of stairs for the last time today. Walking to my car, I can’t shake
the feeling of having paid too much for those movie tickets. I guess
that’s a downside of optimization: businesses use it to maximize their
profits, and hence our costs. But then I realize that we can also think
like a business and use calculus to lower our own costs.

As I start my car and see the gas gauge rise I spot my first target for
cost reduction: fuel costs. I usually follow the same route back home
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Figure 5.5. An illustration of the routes I can take to get home from work.

from work, but today I’ll do something different. My goal for this trip
is to follow the route that minimizes the number of gallons of fuel used.
With my seat belt on and 20 minutes left before I get home I start
my mental gears turning, determined to compensate for my feeling of
having overpaid for the tickets. This time Iwill be the one using calculus
to my advantage.

When I leave work I have a few routes that I can take (Figure 5.5).
Between my work (labeled A) and my house (labeled C ) there are
several connecting roads. The road connecting points A and B has a
maximum speed limit of 50 mph, and all other roads connecting this
high-speed road tomy house are city roads with amaximum speed limit
of 30 mph. The question is: how far should I drive down the high–speed
road before taking a side road in order to minimize the amount of fuel
used for the trip?

The first ingredient is my car’s fuel economy. My car gets 36 mi/gal
on highways and 29 mi/gal on city roads. So if I drove down the high-
speed road for x miles and then took a side road the remaining distance
y, the total gallons g of fuel used would be

g = x
36

+ y
29

. (51)
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By using the distances between the points A, B,C (Figure 5.5), we can
express g as a function of x:∗7

g (x) = x
36

+
√
(6 − x)2 + 4.41

29
. (52)

In this case finding the endpoints is easy: I could choose to drive on the
high-speed road all the way to the point B , or I could choose to never
take the high-speed road and instead drive from A to C directly. When
expressed in terms of x, this gives the interval 0 ≤ x ≤ 6. And since
g (0) ≈ 0.22 gallon and g (6) ≈ 0.24 gallon, unless the stationary points
give a g (x)–value less than 0.17 I’ll be staying on the high-speed road
all of the way to the point B .

Finding g ′(x) and setting it equal to zero we find∗8 that the only
stationary point inside the interval 0 ≤ x ≤ 6 is x ≈ 3.14 miles. And
since g (3.14) ≈ 0.21, the optimal route is to take the high-speed road
for just over 3 miles and then take a side road to the point B .

Now that I’m taking the optimal route back home I can enjoy the
rest of the trip, knowing I’m using the minimum amount of fuel to
get there.xxii It might seem silly to have done all this work since the
difference between the minimum fuel and maximum fuel routes is
just 0.24 − 0.21 = 0.03 gallon. At $4 per gallon, this saves me a
measly 12 cents. But imagine now that you use these same optimization
techniques to save UPS or FedEx 20measly cents in fuel costs for every
8.1 miles (the total distance I’ll travel home) that each of their trucks
travel. With the large bonus you’d be paid you could probably retire
immediately!

Catching Speeders Efficiently with Calculus

About halfway home, while still on the high-speed road, I spot a police
car in the distance. I’m traveling just under the speed limit, which

xxiiTechnically, even this slightly complicated analysis is a drastically simplified treatment of this
problem, since a lot of factors have been neglected. For example, we know that fuel economy
depends on velocity. Moreover, the roads connecting the points A, B,C are not as straight as I’ve
made them seem. But hey, you’ve got to start somewhere, right?
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means that the cars passing me are probably speeding. However, if
the cop’s radar gun doesn’t clock the driver’s speed at exactly the
right time, he or she might dodge the speeding ticket. And since
most of us slow down when we see a police car anyway, this driver
will likely notice this and avoid the speeding ticket. These facts show
that this method of catching speeders is very inefficient; if the police
department is trying to maximize its revenue from speeding tickets, or
minimize the accidents caused by speeding, there has to be a better
way to catch speeders. Lucky for the cops, there is. And although
it only indirectly involves optimization, it has everything to do with
one of the most important theorems in calculus: the Mean Value
Theorem.

Put simply, the Mean Value Theorem (MVT) says that if you draw a
differentiable function f (x)—a continuous function that is “smooth”—
and draw a line between any two points (a, f (a)) and (b, f (b)) on the
graph, then there is some point c between a and b for which the slope of
the tangent line at c , f ′(c), is the same as the slope of the line through
the two points you drew. “What?!” This is one of those times when a
picture really is worth a thousand words, so have a look at Figure 5.6. By
comparing Figure 5.6 with the statement of the Mean Value Theorem

ƒ(b)

ƒ(c)

ƒ(a)

a bc

y = ƒ(x)

Figure 5.6. An example of the Mean Value Theorem at work. The heavier line has
slope f ′(c).
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we see that the main nugget of the MVT is the existence of an x-value
c , where a < c < b, for which

f ′(c) = f (b) − f (a)
b − a

. (53)

At this point you may be asking yourself how in the world this math
theorem can help catch speeders. The answer is another excellent
example of how calculus connects seemingly unrelated things.

Imagine that the cop I see off in the distance clocks the driver that
just passed me. But because the driver saw the police car and slowed
down in time, the cop’s radar gun shows the driver’s speed to be
50mph, exactly the speed limit. But pretend now that one mile down
the road and 50 seconds later, another police car clocks the same
driver going 45mph. Although the driver wasn’t speeding at both of the
instants the two cops measured his speed, if these two cops compared
their notes—and used the Mean Value Theorem—they’d conclude that
at some time c inside the interval 0 < t < 50 the driver’s velocity s ′(c)
must have been equal to

s ′(c) = s (50) − s (0)
50 − 0

= 1 mile
50 seconds

= 72 mph.

On this 50 mph road, that would definitely qualify as speeding! And
believe it or not, some highways actually use this basic idea—that of
comparing the speeds of cars at the start and end of a fixed distance
along a highway—in an automated way using cameras; so the next time
you see two tall posts with cameras separated by a hundred feet or so
along a highway, slow down!

Aside from thinking about ways to help cops catch speeders by
using the MVT, the rest of my drive home is uneventful. Though
I saved only 20 cents by taking the optimal route, I arrive at my
house happy that I’ve made several connections between the seem-
ingly unrelated fields of biology, business, physics, and “saving money
when driving home” through the mathematics of optimization. What
I find particularly satisfying is that the notion of a stationary point,
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and its central importance in optimization, emerged out of the
simple analysis of the trajectory of my hot chocolate cup. Some-
times the most profound insights come from thinking very carefully
about the implications hidden behind the simplest of phenomena.
And as we’ll see in the next chapter, this seemingly silly MVT ex-
ample forms the foundation of calculus’s other half: the theory of
integration.
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ADDING THINGS UP, THE CALCULUS WAY

MY DRIVE HOME TOOK ME about 20 minutes. I’m making a quick pit
stop inside my house to change out of my work clothes. For me,
changing into “non–work clothes” basically means just changing into
jeans. And since I own only four pairs of jeans, five quick minutes later
I’m changed and ready to catch the T.

I never used public transportation until I moved up north, having
grown up in Miami, Florida. But since our home is a one-minute walk
from the nearest T station, it’s a no-brainer. The Massachusetts Bay
Transportation Authority (MBTA) operates the T; in fact, Boston is
home to the oldest subway tunnel in the United States, dating back to
1897.23 With such a long history of ridership it’s no surprise that the
MBTA’s rail system is widely used today. In 2009 the MBTA system
ranked fifth in the nation in overall ridership, completing about 370,000
passenger trips for a total of 1.8millionmiles in that year alone.24

With so many trains to keep track of and such a high demand
for its services, the MBTA needs to continuously determine the best
time to take trains out of service for maintenance. This sounds like
an optimization problem, but the MBTA uses the simpler approach
of taking trains out of service after they’ve traveled a certain number
of miles, much like we change the oil in our cars every 3,000 to 5,000
miles. There’s one problemwith this: how do we calculate the distance a
particular rail car has traveled? If it traveled in a straight line this would
be easy. But since the tracks twist and curve, we need a way of adding
up all of those distances. Notice that this problem is fundamentally
different from those we’ve been studying. This isn’t a question about
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change, so we don’t expect to find derivatives lying around. It seems
that we don’t have anything to start from. But don’t worry, since in the
40 minutes I’ll need to get downtown I’ll have plenty of time to tell you
about differentiation’s twin brother: integration.

The Little Engine That Could . . . Integrate

The train stop I’m at looks like any other train stop you could imagine.
There are a couple of enclosed seating areas to keep us all warm in
winter and machines that you can use to buy tickets. Then there are the
rails, of course. They continue as far as you can see in both directions.
And somewhere off in the distance I spot a faint outline of what looks
to be the rail car. The line I’ll be hopping on is the green D line,xxiii
and it’s the fastest of the green-line trains. Since the train is still far
away from the platform, the conductor can operate the train at a
relatively high velocity. From my experience riding the train, it’s likely
she’s running the train at a constant velocity, I’d say about 35mph.
I know the train will reach me in the next few minutes, which gives me
the opportunity to discuss the distance problem we started the chapter
with. Let me ask an easier question: if the train is traveling at 35mph,
can I determine how far away it is?

The short answer is yes. I could simply use the formula “distance
equals rate times time.” My best estimate is that the train will reach me
in about 30 seconds—or about 0.0083 hour—so that my estimate for
the distance d (in miles) the rail car is away from me is

d = 35(0.0083) ≈ 0.3mile. (54)

Let’s try to visualize this answer with a graph. If we denote by v(t) the
velocity of the train, then v(t) = 35 (since I’ve assumed it to be moving
at the constant velocity of 35mph). Figure 6.1(a) shows the graph of
this function, but how does it show that the distance traveled is 0.3mile?

xxiiiThe MBTA rail system is divided into different lines grouped into colors based on the regions
they serve. The green line runs east to west and back. Some of these lines, like the green line, split
into other lines (denoted by letters) that serve specific destinations.
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v(t)

35

t

v(t)
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0.0083

A = 35(0.0083)

(a)

(b)

Figure 6.1. (a) The graph of the function v(t) = 35. (b) The area of the shaded region
is the distance traveled in 0.0083 hour.

Well, the geometric equivalent of calculating distance as rate times time
(d = r t for short) is finding the area of the rectangle in Figure 6.1(b).
This is another one of these simple insights that will turn out to have
profound consequences.

But the answer for d in (54) is not quite correct. Remember, we
assumed the train was traveling at the constant velocity of 35mph;
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0.00830.0042

I II

(a)

(b)

Figure 6.2. (a) The more realistic graph of the rail car’s velocity v(t). (b) The sum of
the areas of the shaded regions is the distance traveled.

but our calculation also tacitly assumes this to be true right up to the
instant the rail car reaches me, at which point it stops instantaneously.
In real life this would be dangerous for everyone on the train, so we
know that sometime before the conductor approached the platform the
train began to slow down. Figure 6.2(a) shows a more realistic velocity
function. There I’ve assumed the conductor started slowing down (with
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Figure 6.3. An even more realistic graph of the rail car’s velocity v(t).

a constant deceleration) when the train was 15 seconds, or 0.0042 hour,
away from the platform.

To find the new distance traveled we can still use d = r t, except
now we need to find two different areas: that of a rectangle (region I in
Figure 6.2(b)), and a triangle (region II in Figure 6.2(b)). The two areas
correspond to the two distances d1 and d2, and the sum d1 + d2 is the
total distance the train is away from me. By calculating the areas, this
new estimate gives about 0.22mile.∗1

This is certainly a better approach, but yet again we’ve made the
restrictive assumption that the conductor is decelerating at a constant
rate.What if this rate isn’t constant? And what if the velocity of the train
before decelerating isn’t exactly constant at 35mph? Figure 6.3 shows
an even more realistic velocity function (last one, I promise) that would
account for these factors.

We can try to follow the same prescription to find the distance
traveled (find the area under the graph of v(t)), but we don’t yet know
how to find areas of curved regions. We’ve run into one of the classic
problems that stumped mathematicians for two millennia. But if there’s
one thing that calculus has taught us, it’s that we can work miracles by
taking limits. After all, we defined the derivative f ′(x) in Chapter 2 in
terms of the limit as h approached zero of a slope, and in Chapter 5
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Figure 6.4. Approximating the area under the curve by using five rectangles.

we introduced differentials as limits of the changes � f and �x. This
approach suggests we take the limit of the quantity we’ve been working
with thus far: area.

Let’s first use areas of rectangles to approximate the area A under the
graph of v(t) in Figure 6.3. Let’s denote the t-value where v(t) = 0 by
b, and use five rectangles for our approximation (see Figure 6.4). We
don’t know the answer yet, but let’s denote it by

∫ b

0
v(t) dt. (55)

The elongated S in this expression is called an integral sign, and
the dt keeps track of the independent variable we’re using (t in our
case). Notice also that the 0 and b keep track of the fact that the area
we’re finding extends from t = 0 to t = b. For these reasons, this
funny notation would be read out loud as “the definite integral of the
function v(t) with respect to t from t = 0 to t = b,” and this is
how we mathematicians denote the area under the curve; the adjective
“definite” is used whenever the “limits of integration,” in this case 0 and
b, appear along with the integral sign.xxiv Since we’re estimating the true

xxivIf the limits of integration were absent, we’d call this an indefinite integral.
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area by using the area of the five rectangles in Figure 6.4, mathematically
we’re saying that

∫ b

0
v(t) dt ≈ A1 + A2 + A3 + A4 + A5. (56)

To keep this simple, we’ve assumed that the rectangles all have
the same width, in this case b/5, and that the upper-left vertex of
each one touches the graph of v(t) and is the rectangle’s height. For
example, the first rectangle has height v(0), the second v(b/5), the third
v(2b/5), and so on, with the last rectangle’s height equal to v(4b/5).
Since the area of a rectangle is its width times its height, our estimate
becomes

∫ b

0
v(t) dt≈ b

5
v(0) + b

5
v

(
b
5

)
+ b
5
v

(
2b
5

)
+ b
5
v

(
3b
5

)
+ b
5
v

(
4b
5

)

= b
5

[
v(0)+v

(
b
5

)
+v

(
2b
5

)
+v

(
3b
5

)
+v

(
4b
5

)]
. (57)

Now, even though we used only 5 rectangles, we could just as easily
have used 10, 100, or any other number n. If we insist that they all
have the same width, then each rectangle would now have width b/n.
Extrapolating the pattern above, the first rectangle would still have
height v(0), while the second would have height v(b/n), the third
v(2b/n), and so on, until we reach the last rectangle, whose height
would be v((n − 1)b/n). Our new estimate would be

∫ b

0
v(t) dt ≈ b

n

[
v(0) + v

(
b
n

)
+ · · · + v

(
(n − 1)b

n

)]
. (58)

This sum of areas is called a Riemann sum after the German mathe-
matician Bernhard Riemann, who rigorously solved the “area under the
curve problem” in 1853. Mathematicians use a shorthand notation for
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the sum in the brackets:

n−1∑
i=0

v

(
ib
n

)
= v(0) + v

(
b
n

)
+ · · · + v

(
(n − 1)b

n

)
. (59)

The E-looking symbol on the left is the Greek letter sigma, and the
expression on the left-hand side of the equation is an instruction: add
together the quantities v(ib/n) starting with i = 0 and ending with
i = n − 1. In this notation our estimate becomes

∫ b

0
v(t) dt ≈ b

n

n−1∑
i=0

v

(
ib
n

)
=

n−1∑
i=0

v

(
ib
n

)
b
n
. (60)

We have now gone as far as we can go without calculus, but luckily
only one more intuitive step is required. When looking back at Figure
6.4, it’s apparent that using five rectangles in our approximation is
better than using one. This suggests that we get better approximations
when we increase the number of rectangles. The logical conclusion: if
we could use an infinite number of rectangles, we’d get the exact area
instead of an approximation. In calculus-speak, this suggests we take
the limit of the Riemann sum as the number of rectangles n approaches
infinity. What we get is

∫ b

0
v(t) dt = lim

n→∞

n−1∑
i=0

v

(
ib
n

)
b
n

= lim
n→∞

n−1∑
i=0

v(ti )
b
n
, (61)

where in the last equation I’ve written ti for ib/n to highlight the
following important fact: although we found the height of each rec-
tangle from the condition that the upper-left vertex of each rectangle
touch the graph, we could have used the upper-right vertex, or even the
midpoint of the rectangle. In fact, if we denote by ti the t-value at which
a rectangle touches the graph, then v(ti ) would be the height of that
rectangle (see Figure 6.5).

Whew! That took a lot of work! But let’s step back and see what
we’ve accomplished. Given a positive velocity function v(t) (like the
one in Figure 6.3), formula (61) allows us to find the total distance
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Figure 6.5. A close-up of a rectangle with height v(ti ).

traveled by calculating areas, adding them up, and taking a limit. This is
pretty incredible, since not only did we solve in a few pages a problem
that stumped mathematicians for thousands of years, but what we’ve
done can be applied to many other functions. For example, for any
continuous function f (x), the area under its graph between x = a and
x = b,

∫ b

a
f (x) dx, (62)

can be found using exactly the same limiting argument we just devel-
oped. This other half of calculus dedicated to studying the integrals of
functions is called integration, and along with the study of differentia-
tion comprises the two pillars of calculus. And like our adage “wherever
there is change, derivatives can be found,” the Riemann sum foundation
of the definite integral allows us to state a parallel mantra: “whenever
quantities need to be added together, integrals are not far behind.”

But there’s one drawback to our formula (61): in practice it’s really
hard to compute an integral by calculating limits. We’d like to find
a shortcut, much like we did when we moved away from using limit
tables in Chapter 2 to calculate the derivative. And in a nice twist of
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fate, although derivatives deal with slopes of tangent lines and integrals
have to do with areas under the curve, the two subjects are related in the
most beautiful way that will also turn out to resolve our computational
difficulties.

The Fundamental Theorem of Calculus

As I knew it would, the rail car arrived safely at the platform, and I
board the train. Luckily there are a few open seats (not always the case),
and I plop down and pull out my phone. I text Zoraida that I’m on my
way, and that she should meet me at the Indian restaurant in about 30
minutes, about the time I expect the train to take to get me downtown.
Now that that’s done I can get back to the business of calculating the
integral.

The way we approached it involves a lot of steps. First find the
quantity v(ib/n); then calculate the Riemann sum; finally, take the limit
and arrive at the answer. There has to be an easier way.

By now you’ve probably anticipated that there is. What you may not
have anticipated is where this easier method will come from.

The fundamental link between the subjects of integration
and differentiation boils down to our ability to catch speeders.

Allow me to explain this surprising turn of events.
Remember that in Chapter 5 we imagined two cops communicating

with each other, using the Mean Value Theorem (MVT) to catch
speeders. Using this theorem they could conclude that, between any
two points in time t = a and t = b, there is a time c for which the
driver’s velocity v(c) satisfies the equation

v(c) = s (b) − s (a)
b − a

, (63)

where s (t) is the driver’s position function. Now replace the driver and
the car with the conductor and the rail car, and you realize that we could
just as easily apply the MVT to our moving train.
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To find out what happens, let’s concentrate on the first interval,
0 ≤ t ≤ b/n. The MVT says that there is some t-value, let’s call it
t0, in the interval 0 ≤ t ≤ b/n at which the rail car’s velocity v(t0)
satisfies

v(t0) = s
( b
n
)− s (0)
b
n − 0

, or
b
n
v (t0) = s

(
b
n

)
− s (0). (64)

But we can also apply the MVT on the interval b/n ≤ t ≤ 2b/n,
and also on 2b/n ≤ t ≤ 3b/n, and so on. The results would
be the additional intermediate t-values t1, t2, . . . , tn−1, along with the
relationships

b
n
v (t1)= s

(
2b
n

)
− s
(
b
n

)
, · · · ,

b
n
v (tn−1)= s (b)− s

(
(n−1)b

n

)
.

(65)
If we now add up all of these equations, we obtain∗2

n−1∑
i=0

v(ti )
b
n

= s (b) − s (0). (66)

Using this result in our formula for the distance traveled by the rail car
gives

∫ b

0
v(t) dt = lim

n→∞

[n−1∑
i=0

v(ti )
b
n

]
= lim

n→∞ [s (b) − s (0)] = s (b) − s (0),

(67)
since the quantity s (b) − s (0) is a number that doesn’t change as n
approaches infinity.

What we’ve just discovered is a much more useful way to calculate
the integral of our v(t) function over the interval 0 ≤ t ≤ b. Formula
(67) says that the answer is just s (b) (the rail car’s position at time t = b)
minus s (0) (the rail car’s position at time t = 0). In other words, the
distance the rail car travels in getting to the platform, s (b) − s (0), is
found by integrating the rail car’s velocity function v(t) from t = 0 to
t = b.
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Put this way our result doesn’t seem all that “fundamental”; it
seems to tell us something we already knew: the distance traveled is
the difference between where the rail car ended (s (b)) and where it
started (s (0)). But let’s rephrase what we found for a general function
f (x):

∫ b

a
f (x) dx = F (b) − F (a). (68)

Question: What is F ? Well, in our velocity example F was the distance
function s (t), whose derivative s ′(t) is the velocity function v(t). This
turns out to be the relationship in the general case as well, so that F is
related to f by

F ′(x) = f (x), or F (x) =
∫

f (x) dx. (69)

Mathematicians call the function F (x) the antiderivative of f (x); it’s
the function that, when differentiated, gives f (x).xxv Therefore, here is
the easier way to calculate the definite integral I had promised earlier.
To tie it all together, formula (68) says that to find the definite integral of
f (x), we should first find an antiderivative F (x). Then, simply calculate
F (b) − F (a).

To illustrate how powerful this new approach is, let’s use it to
confirm one of the facts we talked about in Chapter 1: that anything
you throw up in the air follows a parabolic trajectory.

Let’s start with Galileo’s realization that all objects fall at the same
constant acceleration a(t) = −g . Since an object’s velocity v(t) is
related to its acceleration a(t) by v′(t) = a(t), in our new terminology
v(t) is the antiderivative of a(t), and∗3

v(t) =
∫

a(t) dt =
∫

−g dt = v0 − g t, (70)

where v0 is the object’s initial velocity. Furthermore, since we know that
the object’s position—let’s focus on its vertical position y(t) for now—is

xxvNotice that the integral sign is also used, and in this case it’s referred to as the indefinite integral.
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related to its velocity v(t) by y′(t) = v(t), then∗4

y(t) =
∫

v(t) dt = y0 + v0t − 1
2
g t2, (71)

where y0 is the object’s initial vertical position. This rederives the
formula we used in Chapter 1 when analyzing the vertical position of
a water droplet coming out of my showerhead, but this time we did it
without the factoid we used about objects moving with speeds that vary
linearly with time.

The fact that formula (68) relates the integral of the function
f (x) to its antiderivative F (x) means that it connects the two pillars
of calculus—integration and differentiation. In fact, if we substitute
f (x) = F ′(x) into formula (68), we get

∫ b

a
F ′(x) = F (b) − F (a), (72)

telling us that integration and differentiation undo each other. For these
reasons, formula (68) is referred to as the Fundamental Theorem of
Calculus. But despite its important-sounding name, remember that
at the very heart of this powerful conclusion stood our old speeder-
catching friend, the Mean Value Theorem.

Using Integrals to Estimate Wait Times

I’ve spent the train ride thus far marveling at the deep connections
between theMVT, integration, and differentiation.When I look outside
the window I notice that the train has stopped. It does so periodically
(the rail car obeys certain signals to prevent it from crashing into the
one in front of it), but it’s now been stopped for longer than usual. The
conductor starts informing us through overhead speakers that the rail
car in front of us has broken down. Great; I’m only five minutes away
from my stop and now I’m stuck here for who knows how long. I guess
this is one of the downsides of having the oldest subway system in the
country.
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Figure 6.6. A rough sketch of the frequency of heights for adult women in the
United States.

My first thought is to call Zoraida to let her know I’ll be late, but my
phone doesn’t get reception here. I’m just going to have to wait, but
for how long? If I’m stuck here for more than five minutes I’ll be late
to the rendezvous with Zoraida. So the more relevant question is: how
likely is it that I’ll wait more than five minutes? This is a question about
probability.

We’re all somewhat familiar with probability. Imagine a bag contain-
ing three red marbles and seven blue ones. If you reach in and pick out
a marble, what’s the probability it’ll be a red one? The answer is 3/10, or
30%. And since all probabilities must add up to one, the probability of
picking a blue marble is 1 − 0.3 = 0.7, or 70%.

But if the number of outcomes is a continuous variable x, then things
get a bit more complicated. In these cases, there is a function f (x) called
the probability density function (PDF). For example, the PDF describing
the distribution of heights for adult women in the United States is called
aGaussian distribution, and its graph is the familiar “bell-shaped” curve
(Figure 6.6). This curve is obtained by sampling a large number of
adult women in the United States and recording how common a certain
height is. For example, the graph shows that 60% of the sample has a
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height of 64 inches. The fact that this is the most frequent height among
adult women in the United States makes this the mode height for that
population.25 (The average height is 63.8 inches.)

Now, the interpretation for the PDF is simple: it describes the
probability that x takes on a certain value. Therefore, if we’d like to
find the probability that x lies in some range a ≤ x ≤ b, denoted by
P (a ≤ x ≤ b), we need to add up the probabilities that x takes on each
value in the interval from a to b. According to our new mantra, there
is an integral lurking around somewhere. Indeed, the same argument
used to arrive at formula (67) leads us to

P (a ≤ x ≤ b) =
∫ b

a
f (x) dx. (73)

But I’m interested in the probability of waiting more than five
minutes. Since all probabilities add to one, this is equivalent to one
minus the probability of waiting less than five minutes, or

P (x > 5) = 1 −
∫ 5

0
f (x) dx. (74)

When it comes to waiting times, a common PDF that’s used is the
exponential distribution

f (x) = 1
m
e−x/m, x ≥ 0. (75)

Herem is the average wait time; if I knewm in my case, I could use this
PDF to calculate the probability that I’ll be waiting for more than five
minutes. Based on my past experience, my best estimate for m is five
minutes. Assuming that this is also a reasonable average wait time for
fixing disabled trains, let’s set m = 5. Using this we can now use the
Fundamental Theorem of Calculus to get∗5

1 −
∫ 5

0

1
5
e−t/5 dt ≈ 0.368, (76)
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or about 36.8%. That’s great, since it means I’m unlikely to be stuck
here for more than five minutes. Sure enough, a short minute later the
conductor informs us that the rail car in front of us is now moving. It
looks like I won’t be late after all.

In the last few minutes I have left on the train, let me point out
that this seemingly simple application of integration has real uses in
the business world. For example, it’s important for companies to have
information on wait times. We’ve all experienced what happens when
this isn’t something a company cares about. The ensuing long wait
times are often frustrating for the customer, in effect acting as a dis-
incentive to buy the company’s products. Companies can now combat
this by determining their own PDFs and using integration to calculate
the probabilities of different wait times. The results could then help the
management team determine what aspects of the company—such as
customer call centers and shipping warehouses—need improved wait
times.

In the last chapter we talked about how a company might use
derivatives to optimize its revenue or profit streams. The mathematics
of this chapter has taught us that integrals are just as important a
tool for this same purpose. And now that we know that calculating
probabilities boils down to integrating PDFs, this opens up a whole
new world of possible applications of integration. Essentially anything
involving a heavy dose of probability (for example, sports) now benefits
from the integration mathematics we’ve developed. But there’s much
more we can do with integration. Although it’s harder to think about,
many instances call for adding up an infinite number of quantities.
And according to our new mantra, in each of these instances integrals
can be found. In the next chapter we’ll combine what we know about
derivatives and integrals to tackle some of the biggest questions in all of
human existence.



CHAPTER 7

DERIVATIVES INTEGRALS: THE DREAM TEAM

AFTER FIRST DISCUSSING derivatives in Chapter 2 we not only found
them everywhere, but as our discussion of time dilation showed, they
were powerful enough to literally change our view of reality. Similarly,
after introducing integration in the last chapter we already have seen
how it naturally appears all around us via probability. Imagine, then, the
possibilities of using both derivatives and integrals in mathematizing
a situation. As we’ll soon find out, this dream team can answer some
of the most fundamental questions posed in the history of civilization.
But I’ll have to build up to that crescendo first. So let’s get back to the
rendezvous with Zoraida.

When you walk out of the Boylston station in downtown Boston you
see a sign that says “Boston Common, Founded 1634.” As the oldest
public city park in the United States, Boston Common’s 50 acres of
land was at one time used as a camp by the British before the American
Revolutionary War.26 Today it’s one of the main congregation points
for residents of the greater Boston area. Next to the Common is
the Public Garden. In the summer months you’ll find a plethora of
colors here, coming from the variety of plants and flowers scattered
throughout the grounds. The whole scene makes for a nice welcome to
downtown Boston, and invites us to reflect on all of the history the city
has to offer. I soak up the scenery on my way to the Indian restaurant,
which is only a few blocks from the Boylston stop.
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Integration at Work—Tandoori Chicken

I’m right on time, and Zoraida and I are seated by the window. Looking
through the menu, I spot my favorite tandoori chicken. This roasted
chicken dish is marinated in yogurt and spices, and seasoned with
tandoori masala powder. It’s traditionally cooked in a tandoor oven—
a bell-shaped clay oven that can reach temperatures of up to 900◦ F.
Traditionally this high heat was generated by using charcoal or wood,
but these days it’s probably generated by electricity or natural gas.

From what other Indian cuisine lovers have told me, the tandoori
chicken is cooked at about 500◦F. And however the heat is generated,
the goal is to keep the oven at 500◦ F. Nowadays ovens do this with
built-in thermostats. These nifty little devices maintain a prescribed
average temperature by cycling on and off according to the temperature
its built-in thermometer measures. But since the temperature inside the
oven might be different from nanosecond to nanosecond, what exactly
do we mean by the “average” temperature? And how does the oven
actually maintain this temperature? (Sorry, I can’t help it, I see math
everywhere.)

The first thing to realize is that the restaurant’s tandoor oven is
likely already preheated, since other diners have probably been ordering
dishes that require its use. For simplicity, let’s assume that when
Zoraida and I walked into the restaurant its temperature was 525◦ F,
and that the oven thermostat is set to 500◦ F. Having reached this
level, the thermostat would’ve turned off the heat,xxvi and the oven
would have started to cool down. Once the oven reached, say, 475◦ F,
the thermostat would kick in and turn on the heat. The ensuing
temperature T(t) in the oven therefore looks something like the graph
in Figure 7.1. The question is: how do we express mathematically the
requirement that the average temperature be 500◦ F? One clue comes
from the word “average.”

We all know a little something about averages. If you imagine three
people who are 60, 65, and 70 inches tall, then their average height

xxviOven manufacturers program ovens to cycle on and off once the temperature has increased or
dropped by a certain amount relative to the temperature the user has requested.
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Figure 7.1. A reasonable graph of the temperature T (t) inside the tandoor oven.

would be

60 + 65 + 70
3

= 65 inches. (77)

If we created the function f (x) to record the height of person x and
denoted the height of person 1 by x1, person 2 by x2, and so on up to
xn, then the average height would be

favg = f (x1) + f (x2) + · · · + f (xn)
n

, or favg = 1
n

[ n∑
i=1

f (xi )

]
,

(78)
where the summation symbol sigma has now crept into our formula.
Applied to the tandoor oven, this same reasoning would require us to
measure the average temperature of the oven at the times t1, t2, . . . , tn;
we’d get

Tavg = T (t1) + T (t2) + · · · + T(tn)
n

, or Tavg =
[ n∑

i=1
T (ti )

]
1
n
.

(79)
But there’s one thing I’ve neglected in my analysis. For my tandoori
chicken to come out nice and tasty, I’d like the oven to maintain a
500◦ F average temperature throughout the time it takes to cook the dish.
It was about 7:15 when I put in the order and it shouldn’t take more
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than a half hour to cook. Thus the measurement times ti should all lie
in the interval 7:15 ≤ ti ≤ 7:45.

With this in mind let’s generalize (79) to the interval a ≤ ti ≤ b,
where a < b. We can do this easily as follows:

Tavg = 1
b − a

[ n∑
i=1

T (ti )

](
b − a
n

)
. (80)

This sum should be familiar from Chapter 6; it’s another example
of a Riemann sum. Therefore, we expect that a definite integral will
creep in here somewhere. Here’s how. In an ideal world, to completely
ensure that my tandoori chicken is cooking at an average of 500◦ F, I’d
be taking measurements every nanosecond. Aside from making me the
most annoying diner in the history of civilization, this would be highly
impractical. Fortunately in Chapter 6 we ran into a similar problem:
that of adding up the area of an infinite number of rectangles. Our
solution was to instead add up a finite number n and then take the limit
as n → ∞. The same reasoning applies here; in this case n represents
that total number of temperaturemeasurements. Therefore, the average
temperature Tavg in the oven between the interval a ≤ t ≤ b is given by
the formula

Tavg = 1
b − a

lim
n→∞

[ n∑
i=1

T(ti )

](
b − a
n

)
= 1

b − a

∫ b

a
T (t) dt. (81)

This formula tells us that we can calculate the average temperature
inside the oven by integrating the temperature function T(t) and then
dividing by the length b − a of the time interval!

With about 15 minutes to kill until my dinner arrives I start telling
Zoraida about this “integral average” business and its far-reaching
consequences. “For example, the temperature of the restaurant itself
feels just right, which is controlled by another thermostat,” I explain.
“This time it’s inside the air-conditioning system, but still the same
mathematics the tandoor oven uses is at work inside the AC system.”
My enthusiasm about the topic is not, however, shared by Zoraida.
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I can see her interest starting to fade. “Really, any calculation of
an average value of a continuous function makes use of the same
mathematics,” I continue. “Whether it’s the average rainfall in a given
month, the average number of products a company sells in a quarter,
or even the average number of crimes reported in a state, the integral
formula for the average helps us compute these quantities.” At this
point Zoraida is taking a few too many sips of her water; I’ve lost
eye contact. “It’s fascinating really, especially since this integral can be
calculated by finding areas!” I’ve barely managed to finish the sentence
when the server comes back to bring us our samosas; saved by the
food! As we chow down on the appetizer, I’m sure somewhere, at
some point, Zoraida realized that there are downsides to marrying a
mathematician.

Finding the Best Seat in the House

I managed to keep the conversation nonmathematical for the rest of
our dinner, and our Indian feast was indeed tasty. It’s now about 8:15,
and we start walking over to the theater. On the way over I feel like I’m
biting my tongue; there are tons of examples of interesting mathematics
I see. For instance, the occasional wind gusts remind me of all the neat
things fluids can do, and the changing frequency of sound coming from
the cars passing us on the street is an example of the Doppler effect. But
this time around I keep my mathematical thoughts to myself and just
have a “normal” conversation.

We get inside the theater and walk over to screen number 7. We pass
the concession stand on the way, where I’m briefly reminded again of
how expensive going to the movies has become. Inside theater 7 we’re
confronted with the age-old problem that every moviegoer faces: where
should we sit?

If my earlier rambling about the tandoor temperature revealed one
downside of marrying a mathematician, this’ll be an example of one
upside. As Zoraida stands there, her chin up in the air as she looks
around for good seats, I lean over and say “I got this.” Like Russell
Crowe in A Beautiful Mind, formulas start racing through my head.
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Figure 7.2. A diagram of the theater parameters, along with someone sitting x feet up
the rows in the theater whose eyes are 4 feet off the ground.

In mere seconds I crunch the numbers and point to a couple of seats in
the third row. “Those are the best seats in the house.”

Of course, this didn’t happen at all. The truth is that I’ve done the
calculations before, and since the dimensions of the theater haven’t
changed since then, neither has the answer. By estimating the the-
ater’s parameters—like the screen height, the number of rows, and the
angle of the stadium seating—I came up with the diagram shown in
Figure 7.2. Let me show you how I used this diagram to help us find the
best place to sit.27

The first step is to quantify what we mean by the “best” view. One
way to express this mathematically is to look for the maximum viewing
angle θ ; in whatever row of the theater this occurs you’ll see the totality
of the picture most clearly. By using trigonometry, we can determine
that a, b, θ , and x are related by the formula∗1

θ(x) = arccos
(
a2 + b2 − 576

2ab

)
, (82)



DERIVATIVES AND INTEGRALS 103

60

50

40

30

20

10

0 5 10 15 20 25 30 35

7.37, 46.75

Figure 7.3. The graph of θ (x), along with its maximum value (the dot on the graph).

where the lengths a and b are given by

a2 = (10 + x cosβ)2 + (30 − x sinβ)2,

b2 = (10 + x cosβ)2 + (6 − x sinβ)2. (83)

Here the angle β gives the incline angle of the seats, and my estimates
put this at about 20◦. Although we could follow our prescription from
Chapter 5 and find the stationary points of θ(x), finding its derivative
would be a horror show of its own. Instead, Figure 7.3 shows the plot of
the function θ(x) for 0 ≤ x ≤ 35.

As we see, the maximum value of θ occurs at x ≈ 7.37. Since the
rows of the theater are about 3 feet apart, this means that Zoraida and I
should sit somewhere between the second and third rows; this is where
I got my original suggestion from. Unfortunately, I don’t think my
less-than-Oscar-worthy performance was enough to convince her that
I worked this out on the spot. Nonetheless, my sly suggestion is one of
themany upsides of marrying a mathematician.

So how do integrals creep in here? Well, as we sit down to watch the
previews we notice that people coming in can now only pick from seats
with increasingly suboptimal viewing angles. If the theater company
wants to give its guests a relatively happy moviegoing experience, it
would be wise to think about providing all of the customers with the
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best possible viewing angles. One way to do this is to design the seating
so that the average viewing angle is always at least a certain value, say A.
If the movie theater has a total of 30 rows—representing an x-interval
of 0 ≤ x ≤ 90 at 3 feet per row—then this condition can be expressed
as

1
90 − 0

∫ 90

0
θ (x) dx ≥ A. (84)

I may have eyeballed the theater’s parameters, but a construction
company could use computer models to adjust the values of a, b, etc., so
that this minimum-average-angle condition is satisfied. This is a great
example of the dream team in action.

Now, you may be thinking that this idea of using derivatives and
integrals in concert for theater construction may be a bit of an overkill.
But this isn’t as far fetched as it sounds. In fact, a similar analysis
goes into building symphony halls. For example, the Boston Symphony
Hall was itself built in consultation with the Harvard physicist Wallace
Sabine. His expertise helped the hall become one of the world’s top
three concert halls in terms of acoustics.28 I don’t know if such a
concerted effort was made when the theater we’re in was designed, but
since the movie’s about to start, it’s about time I stop thinking and just
sit back and enjoy the show.

Keeping the T Running with Calculus

It’s now about 10:30. Outside the theater there’s a lot of foot traffic;
dressed-up people are rushing by in both directions. Some look like
they’re going dancing, and we briefly consider the idea of dancing salsa
tonight. It’s a lot of fun, but also takes a lot of energy; scrap that. Others
look like they’re heading to a bar for some drinks. Better option, but add
the train ride back and we’re looking at getting home around midnight;
guess not. Standing there talking this out, Zoraida and I realize that
we’re actually pretty tired. She looks across the street at the Boylston
station, and I nod my head. A few minutes later we’re on the D-line
train back home.
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On the way back I tell Zoraida about that astonishing 1.8 million
miles that the MBTA system logged in 2009 (discussed in Chapter 6).
“I believe it,” she says; “in the mornings I can never find a seat.” That
leadsme to wonder: howmuch of the 1.8millionmiles can be attributed
to the D-line that we’re on right now? This is a variant of the train
maintenance problem we discussed in Chapter 6, since it also involves
finding the distance that a particular train has traveled. And based on
our earlier work, we can anticipate that definite integrals will appear.

One approach is to know the round-trip distance the D line travels
from end to end; multiplying this by the total number of trips it makes
in the year would give me an answer. The squeaking sounds of the
train’s wheels on the track as it rounds a curve point out one problem
with this approach: the train tracks follow a curved path (see the T map
in Figure 7.4(a)). If I had one of those rolling tape measure thingies that
surveyors use, I could, theoretically, measure the track’s length and then
use this multiplication approach. But I don’t. Plus, that’d take forever,
and as we’ve said before, there has to be an easier way.

The answer to our question hinges on our ability to find the length
of a curve. Let’s call the D-line curve in Figure 7.4(a) f (x), and plot
it on a coordinate system (Figure 7.4(b)). Suppose that we zoom in to
a segment of this curve, with our “window” having a width �x and a
height �y (Figure 7.5). The hypotenuse �z of the triangle in the figure
is given by the Pythagorean Theorem:

(�z)2 = (�x)2 + (�y)2, or �z =
√
(�x)2 + (�y)2. (85)

By using our old friend the Mean Value Theorem, we can rewrite this
quantity as∗2

�z =
√
1 + [ f ′(xi )]2�x, (86)

where xi is inside the interval�x. If we now imagine splitting the graph
into n such segments and making this same approximation in each
segment, we’d arrive at the following estimate for the length l of the
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(a)

x

ƒ(x)

b

(b)
Figure 7.4. (a) TheMBTA’s D-line map showing the stops between the Boylston Street
stop and our stop in Newton. (b) The same tracks considered as a function f (x).
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Figure 7.5. A close-up of a segment of the graph of f (x). The length �z here is the
hypotenuse of the triangle whose base and height are �x and �y, respectively, and the
x-value b represents the eastward distance the Boylston Street station is from our home.

curve:

l ≈ �z1 + �z2 + · · · + �zn =
√
1 + [ f ′(x1)]2�x + · · ·

+
√
1 + [ f ′(xn)]2�x =

n∑
i=1

√
1 + [ f ′(xi )]2�x. (87)

If you recognize this as a Riemann sum, then you’re on the right track.
If we now let the width�x of these triangles get infinitesimally small by
taking the limit as n → ∞, we get

l = lim
n→∞

n∑
i=1

√
1 + [ f ′(xi )]2�x =

∫ b

0

√
1 + [ f ′(x)]2 dx. (88)

Applied to our case—we live about eight miles west of the Boylston
Street stop—to find the distance the train travels in taking us home I’d
need to calculate the integral

∫ 8

0

√
1 + [ f ′(x)]2 dx. (89)
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Although I don’t know the function f (x), as we discussed in
Chapter 6 this integral is the area under the function

√
1 + [ f ′(x)]2.

We could approximate l to any desired accuracy by using the rectangle
methods we discussed in the last chapter.xxvii Today computers can do
this very quickly, so there’s really no need for me to go any further.

The formula (88) we’ve derived can, as usual, be applied to many
more situations. For example, manufacturers of furniture, vehicles, or
planes use it to help them determine how much material they’ll need,
since the surfaces of those items tend to be curved and therefore their
dimensions are not calculable using simple multiplication.

Look Up to Look Back in Time

The conductor has now announced that our stop is next. This time there
was no delay, and we arrive at our stop just a few minutes past eleven;
after a short couple-of-minutes walk we’ll be home, ready to turn in for
the night.

On clear nights like this the entire sky is visible with the naked eye.
We start talking about how this is one of the nice things about living
a short train ride from the city; there are no skyscrapers and bright
lights to wash out the stars. The moon and even some planets are also
visible.xxviii It all looks so pretty. But this picturesque night sky actually
hides some of the deepest secrets of the universe.

One of the fascinating things that I learned as a kid—which no doubt
further fueled my interest in math and science—is that every time we
look up at the sky we’re actually looking back in time. The reason
is that even the nearest star (excluding our Sun), Proxima Centauri,
is about a whopping 25 trillion miles away. These distances are so
large that astronomers typically measure them in light-years. Proxima
Centauri, for example, is about 4.2 light-years away. This means that
light emanating from that star takes about 4.2 years to reach us. And

xxviiTechnically, we’d also have to approximate f ′(x) from the graph in Figure 7.4(b), but since it’s
not too crazy-looking this is somewhat feasible.
xxviiiYou can tell the planets from the stars by comparing the bright disks of the former to the
pointlike dots of the latter.
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here’s the mind-bending part: every time you look up at the sky and
spot Proxima Centauri, what you’re really seeing is the light the star
emitted more than four years ago. So you’re not seeing the star as it is
now, but as it was more than four years ago!

Okay, okay, so who cares about a star 25 trillion miles away? But
would you believe me if I told you that the same reasoning tells us that
every sunrise or sunset you’ve ever seen was a lie? “What?!” you might
say. Well, consider the fact that our Sun is about eight “light-minutes”
away, meaning that the sun’s light takes about eight minutes to reach us.
Put another way, this says that the light we currently enjoy from our Sun
left that star eight minutes ago. Now imagine that some evil empire with
some Death Star device straight out of Star Wars came and destroyed
our Sun. These facts suggest that we wouldn’t find out for another
eight minutes. What’s more, if they instantaneously appeared—using
some sort of “warp drive” technology—we wouldn’t even see them for
another eight minutes! Not even the CIA can pull off stunts like these.

As if this wasn’t spooky enough, let me just point out the obvious:
Proxima Centauri and the Sun aren’t the only two stars we can see in
the sky. And for each star in the sky that we can see, since each is a
different number of light-years away, you see a different past when you
look at each star. Look at the Sun and you’re looking eight minutes
into the past; look at Proxima Centauri and you’re looking 4.2 years
into the past. This idea that “the past is relative” should remind you
of the time travel phenomena we discussed in Chapter 3, where we
discussed Einstein’s results on the relativity of time. There we were
talking about traveling into the future. Before I turn in for the night
let me tie this back to calculus and tell you one last story that highlights
perhaps the ultimate application of the dream team, differentiation and
integration.

The Ultimate Fate of the Universe

The year was 1915, and a young Albert Einstein had just published his
Theory of General Relativity. Almost 230 years after the well-known
Isaac Newton described the force of gravity through his Universal Law
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(a)

(b)
Figure 7.6. (a) A pea is attracted to the bowling ball at the center of a mattress due to
the way the ball curves the mattress. (b) If the same pea is too far away to “feel” the
curvature caused by the ball, it is no longer attracted to the ball.

of Gravitation, this relatively unknown scientist claimed that Newton
was wrong about gravity. For Dr. Newton, the force of gravity depended
on how close together two masses were. However, Newton’s theory
contained a troubling implication: for twomasses separated by themost
unimaginably large distance, moving one would instantaneously affect
the gravitational force the other felt. For Einstein, who in 1905 had
discovered the speed of light to be the cosmic speed limit, the notion of
instantaneous effects didn’t sit well. So, being the genius that he was, he
came up with a radical alternative to Newton’s theory: gravity is actually
the curving of space by matter.

To wrap our heads around this idea, imagine placing a bowling ball
in the middle of a mattress (Figure 7.6). Naturally, the region closest
to the ball curves more than the region farther away from it. Now
take a pea and place it somewhere on the mattress; one of two things
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will happen depending on where it’s placed relative to the ball. Put it
sufficiently close to the ball and let it go, and it’ll fall inward toward the
ball (Figure 7.6(a)); however, place it far enough away and it’ll just stay
put (Figure 7.6(b)). This thought experiment shows that what “attracts”
the pea to the ball is not some spooky instantaneous force. Instead,
it’s the curvature of the mattress that is responsible for the attraction
we would see were the pea placed close enough to the ball. As this
statement makes clear, this “gravitational force” still depends on the
distance between the ball and the pea. But unlike Newton’s theory, this
view of gravity solves the “instantaneous” problem: remove the bowling
ball and it’ll take some time for the mattress’s springs to communicate
this change in curvature to the pea. These “gravitational waves” are one
of the hallmarks of Einstein’s theory (predicted by him a year later
in 1916, and detected in 2016). They tell us that any changes in the
distances of massive objects do not result in instantaneous changes in
the gravitational force the objects feel. Instead, these waves have to
propagate first—at the speed of light—before they can communicate
the change in the force of gravity.

In the course of two years—the period between 1915 and 1916—
Albert Einstein managed not only to prove Newton wrong, but also
to replace his theory of gravity with a more accurate one. Newton’s
passive gravity was now understood as the consequence of objects falling
into the “valleys” created by massive bodies’ curving of the very fabric
of space and time. Moreover, the discovery that Einstein’s equations
propagated gravity via gravitational waves resolved the instantaneous
communication.

So what does this have to do with calculus? The easy answer is that
Einstein’s equations are written in terms of derivatives, but solving them
requires integration (cue the dream team)! Some of the solutions can be
used to study the entire universe, and the predictions you can make are
truly astonishing. Let me tell you that story.

In 1927, shortly after Einstein published his equations, the Belgian
astronomer Georges Lemaitre used them to make the surprising
prediction that the universe was expanding. What’s more, he even
estimated the rate of expansion. A short two years later the American
astronomer Edwin Hubble confirmed this. He gathered observational
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Hubble’s Law

Velocity = Hubble’s Constant × distance
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Figure 7.7. A plot of the velocity of distant galaxies against their distance from Earth
(each dot represents a distant galaxy). The slope of the line shown represents the Hub-
ble constant H0. Image from http://imagine.gsfc.nasa.gov/YBA/M31-Velocity/hubble-
more.html.

data on how fast galaxies were receding away from us and found the
simple relationship

v = H0d, (90)

where v is the galaxy’s velocity, d is its distance from Earth, and H0 is
called the Hubble constant (see Figure 7.7).

However, despite its name, the Hubble constant is not constant
throughout time. Instead, H(t) satisfies the equation

H ′(t) = −H2(1 + q), (91)

where q is called the deceleration parameter. The “deceleration” here
reflects scientists’ long-held belief that although the universe was ex-
panding, it was slowing down in its expansion. With so much matter
in the universe, scientists reasoned, everything would eventually be at-
tracted to something closer to the center. Like an underwater explosion,

http://imagine.gsfc.nasa.gov/YBA/M31-Velocity/hubble-more.html
http://imagine.gsfc.nasa.gov/YBA/M31-Velocity/hubble-more.html
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the universe would eventually cave in on itself, resulting in what some
would call a “Big Crunch.” In the context of calculus, an object (even
if it’s a galaxy) that is moving away from you at a slowing rate has a
negative acceleration, or a positive deceleration (q-parameter).

In 1998 the three astrophysicists Saul Perlmutter, Brian Schmidt,
and Adam Reiss shocked us all with the discovery that the universe
is not decelerating; instead, they found it to be accelerating (giving a
negative deceleration parameter).xxix This changes the prognosis for
our universe. Instead of suggesting a Big Crunch, it suggests that
at some very distant future time, everything in the universe will be
very far away from everything else. This rosier picture is nonethe-
less equally saddening, since it suggests that planetary systems will
eventually become isolated from each other (even more than they
are now).

With the help of derivatives, the H ′(t) equation has now yielded
some astonishing information about the fate of our universe. But what
about its beginnings? If the universe is expanding—like a balloon does
when we blow air into it—then if we imagine going backwards in time,
everything we see in the universe must have, at one point, come from
a single very dense blob of matter and energy. It’s from this state that
scientists think the universe was born, in what we today call a Big Bang.
The natural question is: how long ago did this happen? If I haven’t
foreshadowed it enough already, the answer will involve an integral
(think “dream team”).

The Age of the Universe

The possible fates of the universe are numerically described by the
values of a number � known as the density parameter. A universe with
� > 1 would eventually cave in on itself, suffering the Big Crunch we
discussed earlier. A universe with � < 1 would expand forever, much
like we believe today our universe will. Using this, a simplified formula

xxixThese scientists shared the Nobel Prize in Physics in 2011 for their discovery.
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for the age T of the universe is29

T = 1
H0

lim
z→∞

∫ z

0

dz

(1 + z)
√

�
[
(1 + z)3 − 1

]+ 1
. (92)

If this expression looks scary, just think about the steps involved. As
we learned in Chapter 6, to calculate the integral above we’d first like
to have an antiderivative F (z). The Fundamental Theorem of Calculus
would then tell us that the answer to the integral is F (z)− F (0). Finally,
we’d find the limit as z→ ∞ of this expression and divide by Hubble’s
constant to arrive at a formula for T . After integrating and taking the
limit, the formula for T becomes30

T = 2
3H0

1√
1 − �

ln

[
1 + √

1 − �√
�

]
. (93)

(See the reference in the footnote above for the details of this calcula-
tion.) This formula tells us that all we need is an � value to find T .
Using our best current estimates for �, we get an age of about 13.75
billion years.31

So there you have it; in just a few pages we’ve used calculus to
contemplate the ultimate fate of the universe and to estimate its age.
The mere fact that there is a body of knowledge that even allows us
to think about such things continues to astound me. And we did it all
by using the same two pillars of calculus that we’ve been discussing all
throughout this book: differentiation and integration.

Now consider this. We’ve only focused on the mathematics of calcu-
lus in this book. Imagine how much more the rest of mathematics—
geometry, topology, abstract algebra, and more—can teach us.
I’m instantly reminded of the medieval scientists we discussed in
Chapter 1, to whom just figuring out that motion on Earth is parabolic
was a big deal. Picture their faces if they were told that we can calculate
the age of the universe.

Back at home, I’m finally in bed and ready to get to sleep. The
lights are off and the day is ending. I’m not thinking about getting
7.5 hours of sleep since tomorrow is Saturday; instead, I’m thinking of
all the mathematics I’ve seen throughout the day. From the theoretical
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developments to the practical applications, it’s all been right under our
noses the whole time. As I come to the end of my reflection, I close my
eyes with a smirk; I realize that ending this book with a discussion of
the Big Bang theory gives me the right to make one awesome claim: I’ve
gone out with the Biggest Bang of them all.



EPILOGUE

IF YOU’VE MADE IT THIS FAR, let me be the first to say that I’m proud
of you. As I mentioned in the preface, many of us are unfortunately
intimidated by mathematics, thinking that it’s either too abstract or too
difficult to understand. I hope that what you’ve read in this book has
helped you see that you’re already familiar with a lot of mathematics;
the only prerequisite is curiosity. Next time you have coffee, take some
time to notice how the temperature cools, or study the patterns that the
milk you put in it makes as you swirl it around. Or next time you feel a
gust of wind, look around for some leaves and you’ll likely see a vortex
in the making.

With that said, I’d now like to give you the “takeaways” from each
chapter to help you spread the good word about calculus.

Chapter 1: Functions are the building blocks of mathematics, and
they can be found everywhere.

Chapter 2: Derivatives describe change, and thus wherever there is
change derivatives can be found.

Chapter 3: “Mathematizing” a problem often helps us understand it
better.

Chapter 4: Calculus, andmathematics in general, connects seemingly
unrelated phenomena.

Chapter 5: Through the mathematics of optimization, calculus helps
us make life better.

Chapter 6: Integrals undo derivatives, and whenever quantities need
to be added integrals are not far behind.

Chapter 7: Analyzing a problemwith both derivatives and integrals—
the dream team—can lead to profound insights.

I’d also like to make what I often tell my students is a “public ser-
vice announcement.” Many of the examples I presented made drastic
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simplifications, yet we know that reality is rarely ever simple. However,
building on simple assumptions has historically been one of the main
strengths of experimental science. Aristotle thought that objects, when
dropped, fell toward Earth because it was “natural” for them to be on
the ground. Galileo wondered how long it took objects to fall, and
conducted enough experiments to mathematically describe how objects
fall toward Earth. Then Newton took this a step further and described
all motion through his three laws. This “Legos principle” is at the heart
of the success of modern science.

The Legos principle also works well in mathematics, but there’s one
crucial difference with experimental science: mathematics is eternal.
Even ancient mathematics—like the Pythagorean Theorem—is never
disproven. The fact that a2 + b2 = c2 for planar right triangles is true
means that it will remain true forever. But how, then, is progress made?
Often what we mathematicians do is to change the assumptions. For
example, what if we look at triangles not on a plane but instead on a
curved surface (like that of a sphere)? Then the Pythagorean Theorem
is no longer valid. Instead, new and interesting non-Euclidean geometry
results. Or take the simple fact that 12+1 = 13.What if we now insisted
that 12 + 1 = 1? This may seem crazy, but wait until noon tomorrow
and then ask someone for the time one hour later. She’ll likely say one
in the afternoon, i.e., that 12 + 1 = 1.xxx

You may never have noticed this peculiar thing about how we tell
time, but that’s exactly themainmessage of this book: look close enough
at the world around you and you’ll find mathematics everywhere,
connecting things you never thought were related in a beautiful and
often deep way. And even if you need tomake some simple assumptions
about what you see, changing those assumptions often leads to even
more interesting mathematics. That’s part of what makes mathematics
fun, and I highly encourage you to continue exploring everything the
subject has to offer.

Oscar Edward Fernandez
Newton, MAxxxi

xxxIf you ask people in the military, they might still say 13, but to them 24 + 1 = 1.
xxxiP.S. I live in Newton and I wrote a book about calculus—how cool is that!
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FUNCTIONS AND GRAPHS

EVEN THOUGH YOU MIGHT NOT REALIZE IT, functions are all around
you. The temperature outside your home is a function of time; the
cost of filling up at the gas station is a function of how many gallons
you pump into your car’s gas tank; and the amount of calories you
burn doing an exercise is a function of how long you’ve been exer-
cising. Mathematically, we call the inputs—time, gallons pumped, and
exercise duration in our examples—the independent variables and use
the letter x to denote them. We call the outputs—temperature, gas
cost, and calories burned—the dependent variables and use the letter
y to denote them. We write y = f (x) to express the fact that the
dependent variable y depends on, or is a function of, the independent
variable x.

One important feature that our three examples have in common is
that each input leads to a unique output. This means, for example,
that after having exercised for 30 minutes you couldn’t have burned
100 calories and 120 calories; it has to be one or the other but not
both. This is the main idea behind what we mean mathematically by
a function: a function is a relationship between a collection of inputs
and a collection of outputs where each input is assigned to a unique
output. We call the collection of inputs the domain of the function and
the collection of outputs the range of the function.

A very useful way to visualize a function is to graph it. Typically we
plot the independent variable x on a horizontal axis and the dependent
variable y on the vertical axis. For example, for our gas cost function if
we assume that 1 gallon of gas costs $4 and we pump x gallons, then
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Figure A.1. The graph of the function f (x) = 4x.

the total cost y = f (x) = 4x. The graph of this function is given in
Figure A.1.

In the terminology above, the domain of f (x) is any positive number
along with zero, since we could pump as many gallons as we’d like, but
it doesn’t make sense to pump, for example, −3 gallons. The range of
f (x) is also any positive number along with zero. Moreover, we can
evaluate f (x) at a point in its domain to obtain a point in its range (for
example, f (2) = 4(2) = 8, meaning that the cost of pumping 2 gallons
is $8).

The function graphed in Figure A.1 belongs to the class of linear
functions g (x) = mx + b, so named since the graphs of all linear func-
tions are lines. The numbers m and b here have important meanings.
Since g (0) = m(0) + b = b, this tells us that b is the y-value at x = 0.
For our function f (x) from Figure A.1 we see that b = 0, so that the
point x = 0 and y = 0, denoted by the pair (0, 0), is on the graph
of f (x). We will call b the y-intercept, since it’s the y-axis point the
graph of g (x) touches when it crosses the y-axis. The second valuem is
called the slope. Mathematically, the slope of a linear function like g (x)
is defined by

m = g (b) − g (a)
b − a

, (94)
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for any two nonequal x-values a and b. We can spot the slope of the
function f (x) from Figure A.1 right away from its equation: f (x) has
slope 4. Great, but what does this mean? Well, if we choose the x values
x = 0 and x = 1, then equation (94) says that 4(1 − 0) = f (1) − f (0).
This equation tells us that when the x-values change by one unit the
y-values change by four units. This is often expressed by saying that “as
x runs from zero to one, y rises by four.” Accordingly, slope is often
referred to as the “rise over run.”

The next thing to notice about the graph in Figure A.1 is that it
doesn’t “double-back” on itself. This is a general feature of graphs of
functions that results directly from our definition, since any doubling-
back would result in two y-values (the outputs) for a given x-value (the
input). This conclusion gives us a way to determine whether a graph
we’re looking at is the graph of a function: a graph isn’t a function if
at least one vertical line intersects the graph more than once. This is
known as the vertical line test.

One example of a graph that violates the vertical line test is the
equation

(x2 + y2 − 1)3 − x2y3 = 0.

As Figure A.2 shows, the graph of this equation fails the vertical line test
in many places. Too bad, I really had my heart set on this one.

There are many types of functions, but the most common ones are:

1. Power Functions. These are functions of the form f (x) = axn,
for a, n numbers. Examples: f (x) = 2x2, f (x) = 1

3x
3/2.

2. Polynomials. When you restrict n to only take on the values
0, 1, 2, . . ., and add the resulting power functions you get a
function of the form f (x) = a0 + a1x + a2x2 + . . . + anxn.
These are the polynomial functions. They are often named by
the highest power of x that occurs. For example, the polynomial
f (x) = 1 + 2x is a linear function, while the polynomial f (x) =
4 + 3x − 7x2 is a quadratic function.

3. Rational Functions. We can divide two polynomial functions
together to get a rational function. Example: f (x) = (1 + 2x +
3x2)/(3 − x). You might notice a bit of a problem with this
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Figure A.2. The graph of (x2 + y2 − 1)3 − x2y3 = 0.

example: if you try to evaluate the function at x = 3, you get
f (3) = 34/0. Dividing by zero is a problem. When we divide
two nonzero numbers we get a unique answer (such as 18/9 =
2), from which we can express the numerator uniquely as the
quotient multiplied by the divisor (continuing, 18 = 2(9)). The
problem with zero as a divisor is that the quotient is not unique.
For example, 0 = 2(0) but also 0 = 7(0). For this reason, we
forbid division by zero in all of our formulas. This discussion tells
us that the domain of f (x) excludes x = 3.

4. Trigonometric Functions. The most freguently used trig func-
tions are the sine function f (x) = sin x and the cosine function
g (x) = cos x. These functions are periodic, meaning that their
y-values—and consequently their graphs—repeat. Referring to
the graph in Figure A.3(c) (a sine function), we can see that the
y-value y = 0 vertically cuts the graph in half. We call this
y-value the midline, and denote it by C . We also see that the
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Figure A.3. Graphs of (a) the polynomial f (x) = 1 − 100x + x3, (b) the rational
function f (x) = (1 + 2x + 3x2)/(3 − x), (c) the trig function f (x) = sin x, (d) the
logarithmic function f (x) = ln x, and (e) the exponential function f (x) = 2x . Note
that the vertical line shown in graph (b) is not part of the graph of the function. The
function graphed in (b) is the one from the “rational functions” discussion above. The
vertical line at x = 3 is reflecting the fact that the function is undefined at x = 3. It is
an example of a vertical asymptote.

largest y-value is y = 1. The difference between the maximum
value and the midline is called the amplitude A; A = 1 for
our example. The last important number associated with sine
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and cosine functions is the frequency F . This number tells us
how many cyclesxxxii there are in an interval of unit length. An
associated concept is that of the angular frequency, denoted by B .
This number tells us how many cycles there are in an interval
of length 2π , where π ≈ 3.14. The frequency and angular
frequency are related by F = B/2π . The last important number
is the period T = 2π/B = 1/F , which tells us how long an
x-interval is needed for the graph of f (x) to complete one full
cycle. These numbers can be used to construct a sine or cosine
function: f (x) = A sin(Bx) + C , or g (x) = A cos(Bx) + C .
The period of the sine function in Figure A.3(c) is T = 2π , its
angular frequency is B = 1, and its frequency is F = 1/2π .
And using the A,C, T numbers for Figure A.3(c) we can say that
f (x) = 1 · sin(x) + 0 is the function graphed in the figure.

5. Exponential Functions. These are functions of the form f (x) =
abx . The number a is the initial value, since f (0) = a, and
the number b is called the base. In this book we consider only
exponential functions whose base b > 0. Among the set of
possible bases, we often use the number e ≈ 2.71 as the base.
Examples: f (x) = 2ex , g (x) = −7(2x). Two important rules
that exponential functions obey are (1) axbx = (ab)x and (2)
axay = ax+y .

6. Logarithmic Functions. These functions have the form f (x) =
a logb x. Here we again restrict to b > 0, and b is also called
the base of the logarithm. The two most freguently used bases are
b = 10, in which case we simply write log x instead of log10 x, and
base b = e, in which case we usually write ln x instead of loge x.
Logarithmic and exponential functions are inverses of each other.
This means that, for example, if y = 5x then x = log5 y.

xxxiiA “cycle” is the portion of the graph between two peaks, or equivalently between two troughs.
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1. We can translate the information given about the typical sleep cycle
into values for A, B,C for the function f (t) = A cos(Bt)+C . From
Appendix A we know that B = 2π/T , so that from T = 1.5 we get
B = (4/3)π . Since the highest sleep stage is 0 and the lowest is −4,
the midline is the middle value C = −2. The amplitude A is then
the maximum value minus the midline: A = 0 − (−2) = 2. Using
these values in our function above leads to the f (t) equation given
in the chapter.

2. We can simplify the equation f (t) = −1 to

2 cos
(
4π
3
t
)

= 1, or cos
(
4π
3
t
)

= 1
2
.

By taking the inverse cosine of both sides we get

4π
3
t = π

3
,
5π
3

,
7π
3

,
11π
3

,
13π
3

, . . . ,

where the negative values have been omitted since we’re interpreting
t as time. Solving for t yields t = 0.25, 1.25, 1.75, 2.75, 3.25, . . . .
With these numbers in mind, we can picture the t-values for which
f (t) ≥ −1 as the intervals between the gray dots in Figure A1.1 that
contain peaks of f (t).

3. We can rearrange L = 20 log10(50,000p) to read log10(50,000p) =
L/20. Using the fact that 10log10 x = x for x > 0, we then have

50,000p = 10L/20, or p(L) = 1
50,000

10L/20.
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Figure A1.1. The intersection of the line y(t) = −1 with the graph of f (t).

4. Intuitively, we know that objects that are accelerating have speeds
that change with time (think of an airplane accelerating from rest to
takeoff). If we measure the accelerating object’s speed at times ta and
tb and get v(ta) and v(tb), then we say that the object’s acceleration a
over that time interval was

a = v(tb) − v(ta)
tb − ta

.

For our water molecule with acceleration a = −g we are
measuring its speed over the time interval [0, t]. Therefore,

−g = v(t) − vy

t − 0
, or v(t) = vy − g t.

I should note that this derivation depends on the fact that a is
constant.

5. From x(t) = vxt we have that t = x/vx . Substituting this into
y(t) = 6.5 + vyt − (g/2)t2 yields

y(x) = 6.5 + vy

vx
x − g

2v2
x
x2.
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1. Using formula (2) from Chapter 2, the average rate of change of
AAPL over the past 12 months is

P (12) − P (0)
12 − 0

= $610.76 − $390
12months

≈ 18.4 $/month,

while the AROC over the past 4 months is

P (12) − P (8)
12 − 8

= $610.76 − $625
4months

= −3.56 $/month.

Note that the units of the AROC (in this case $/month) are the
units of the numerator (in this case $) divided by the units of the
denominator (in this case months).

2. Since our interval is now t = 8 to t = 8 + h, in the notation of
formula (2) it follows that a = 8 and b = 8 + h. Therefore, using
this in formula (2) yields

mavg = P (8 + h) − P (8)
8 + h − 8

= P (8 + h) − P (8)
h

,

which verifies formula (3) of Chapter 2.
3. According to our definition of the derivative at the point t = a from

equation (4), we have that

T ′(0) = lim
h→0

T (0 + h) − T (0)
h

= lim
h→0

75 + 85e−0.318h − 160
h

= lim
h→0

85(e−0.318h − 1)
h

.
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1. The larger claim here is that if a function f (x) is increasing, then
its derivative f ′(x) is positive. Let’s give some justification of this
by recalling the definition of the derivative from equation (4) of
Chapter 2:

f ′(x) = lim
h→0

f (x + h) − f (x)
h

.

Now, a function is increasing if when you increase the x-values
the y-values increase. In this context, this means that if h > 0, then
f (x + h) − f (x) > 0. Therefore, if h > 0, then both the numerator
and the denominator are positive. A similar argument shows that if
f (x) is decreasing, then f ′(x) is negative.

While you’re here, I might as well tell you that if f ′(x) is positive,
then f (x) is increasing. Some justification for this is provided by the
approximation

f ′(x) ≈ f (x + h) − f (x)
h

,

which is accurate when h is very small. From this we can reason that
since the left-hand side is positive, the right-hand side should be as
well. This turns out to be true. Although this isn’t a formal proof—
that is not the goal of this book—you can repeat the same argument
to convince yourself that if f ′(x) is negative, then f (x) is decreasing.

2. Let’s see how we can solve equation (12) for the terminal velocity of
the falling water droplet. Starting from that equation, which is

(m(t)v(t))′ = 32m(t),
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we use the product rule for derivatives to differentiate the left-hand
side. We obtain

m′(t)v(t) + m(t)v′(t) = 32m(t).

But remember that through equation (10) we related the rate of
change ofm(t) tom(t) itself. Using this relationship we obtain

2.3m(t)v(t) + m(t)v′(t) = 32m(t).

Since every term in this equation contains m(t), dividing the entire
equation by m(t) (which is “legal” since m(t) is never zero) will
eliminate all them(t)’s and result in

2.3v(t) + v′(t) = 32.

Now, normally to solve an equation like this we’d use themethods
of differential equations (a more advanced course than calculus), but
since we’re sticking to calculus we’ll just have to make do with what
we’ve got. To start making progress, let’s try to make the right-hand
side zero (that always helps). We do this by introducing the new
function z(t) = v(t) − (32/2.3). Then v(t) = z(t) + (32/2.3), and
v′(t) = z′(t). Substituting these in we arrive at

32 + 2.3z(t) + z′(t) = 32, or, equivalently, 2.3z(t) + z′(t) = 0

or z′(t) = −2.3z(t).

Let’s now think carefully about what this last equation is telling
us. Quite literally, the equation says that whatever z(t) is, it’s pro-
portional to its own derivative. We know of only one function that
has this property: eat . It’s derivative is—by the chain rule—aeat , a
function proportional to the original eat . Therefore, let’s set z(t) =
eat . Then z′(t) = aeat , and the last equation reads

aeat = −2.3eat .
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We can divide through by eat since it’s never zero, and so obtain
a = −2.3. Thus z(t) = e−2.3t , and so v(t) = e−2.3t + 32/2.3. This
is a perfectly fine solution, except that at t = 0 it tells us that the
initial velocity v(0) = 32/2.3. We’d like to enforce v(0) = 0 since
we’re assuming the raindrop falls from rest. Luckily, we can fix this
easily by rewriting v(t) as v(t) = ke−2.3t + 32/2.3, where k is yet to
be determined. This is still a solution of our equations (as you can
check), but now v(0) = k + 32/2.3. Since we want v(0) = 0, this
tells us that k = −32/2.3. Finally, our solution is

v(t) = − 32
2.3

e−2.3t + 32
2.3

= 32
2.3

(1 − e−2.3t).

This reproduces equation (13) of Chapter 3.
The formula for v(t) above was derived without explicitly incor-

porating the force due to air resistance. But interestingly, this force
showed up in the equations anyway! Let me briefly explain.

A simplemodel for the force due to air resistance is Far = −kv(t),
where k is a positive number. A few equations up from the v(t)
derived above, we had calculated that

2.3v(t) + v′(t) = 32 =⇒ v′(t) = 32 − 2.3v(t).

The latter equation includes just such a “−kv(t)” term on the right-
hand side. Were we to have assumed the mass of the raindrop was
constant (say m) throughout its fall, and also incorporated an air
resistance force of the form “−kv(t),” we would have arrived at a
similar v′(t) formula (with 2.3 replaced by whatever the numerical
value of k/m would be). We did none of this in our treatment of the
problem, because we know from experiments that a raindrop’s mass
changes as it falls. I could have incorporated this and an air resistance
force, but that would have yielded a much more complicated system
of differential equations. Nonetheless, it’s interesting that these
two very different approaches—constant mass plus air resistance
vs. non-constant mass and no air resistance—yield very similar
formulas for v′(t). (The formulas would be exactly the same if k/m
were equal to 2.3.)
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3. It’s clear from Figure 3.1 that as t gets larger v(t) approaches 32/2.3.
This wording should remind you of our computations of limits in
Chapter 2. Indeed, to show that v(t) cannot exceed 32/2.3 ft/s as t
gets larger and larger what we want to confirm is that

lim
t→∞ v(t) = 32

2.3
.

We could make a limit table as we’ve done in the past, but we’ll
just reason this one out. Remember that

e−2.3t = 1
e2.3t

by the laws of exponents. So v(t) can be rewritten as

v(t) = 32
2.3

− 32
2.3e2.3t

.

From here we can see clearly that as t gets larger and larger e2.3t
gets larger and larger, so that everything after the minus sign is
getting closer and closer to zero. Therefore, as t → ∞, the only
thing that survives is 32/2.3.

4. The definition of the derivative from equation (4) of Chapter 2 was

f ′(a) = lim
h→0

f (a + h) − f (a)
h

.

If we now change variables by writing h = x − a, then as h → 0 we
have x − a → 0, or x → a. Substituting gives

f ′(a) = lim
x→a

f (x) − f (a)
x − a

.

5. To find the equation of the line tangent to the graph of f (x) at the
point (a, f (a)), we use the point-slope formula:

y − y0 = m(x − x0).

We know that this is a tangent line, so that its slope is the
derivative at x = a: m = f ′(a). And since we also know that it
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passes through (a, f (a)), then x0 = a and y0 = f (a). Using all this
we get

y − f (a) = f ′(a)(x − a), or y = f (a) + f ′(a)(x − a).

6. We first need to calculate J ′(x) for J (x) = 3,000/πx2. Rewriting
this as J (x) = (3,000/π)x−2 and using the power rule—which states
that if f (x) = xn, then f ′(x) = nxn−1—we get

J ′(x) = 3,000
π

(−2x−3) = −6,000
πx3

.

Using this, the approximation in (15) becomes

J (6) − J (5) ≈ J ′(5)(6 − 5) = −(1,609.34)
6,000

π(8,046.72)3

≈ −5.9 × 10−6 W/m2,

where we’ve used the conversion 5 miles = 8,046.72 meters.
7. Using the power rule it follows that f ′(x) = 2x and f ′′(x) = 2,

while g ′(x) = −2x and g ′′(x) = 2. By plugging in zero we obtain
the values in equations (16).

8. Let’s begin by rewriting the equation as

z(x) = y(1 − x)−1/2,

where x = v2/c2. We can now use the linear approximation

z(x) ≈ z(0) + z′(0)(x − 0).

By the chain rule we have

z′(x) = y
2
(1 − x)−3/2, and so z′(0) = y

2
.

Therefore, our approximation gives

z(x) ≈ y + y
2
x = y

(
1 + 1

2
x
)

= y
(
1 + v2

2c2

)
.
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1. To differentiate a quotient f (x)/g (x) (provided g (x) �= 0) we use
the quotient rule:

(
f (x)
g (x)

)′
= f ′(x)g (x) − f (x)g ′(x)

(g (x))2
.

Applying this to our A(x) function yields

A′(x) = p′(x)x − p(x)(1)
x2

= xp′(x) − p(x)
x2

.

2. Since the denominator of A′(x) is never negative, it follows that
A′(x) > 0 only when the numerator is positive. So

xp′(x) − p(x) > 0, or p′(x) >
p(x)
x

= A(x).

3. Starting from

p′(x) > A(x) = p(x)
x

, we have that
p′(x)
p(x)

>
1
x
. (A1.1)

Now note that functions p(x) satisfying

p′(x)
p(x)

= k
x
,

where k > 1, will automatically satisfy condition (A1.1). To solve
this equation, we use the fact that the derivative on the left-hand
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side is the logarithmic derivative of the function p(x), since

(ln p(x))′ = p′(x)
p(x)

.

Therefore, we have that

(ln p(x))′ = (lnCxk
)′

,

where C > 0, from which it follows that p(x) = Cxk.
4. We can rewrite the equation for I (t) as

I (t) = 20(1 + 3e−20kt)−1.

Using the chain rule,

( f (g (x)))′ = f ′(g (x))g ′(x),

it follows that

I ′(t) = −20(1 + 3e−20kt)−2(−60ke−20kt)

= k
20

1 + 3e−20kt · 60e−20kt

1 + 3e−20kt

= kI · 20 · 3e−20kt

1 + 3e−20kt = kI
(
20 − 20

1 + 3e−20kt

)
= kI (20 − I ).

5. Let’s make a plot of I ′ versus I . From equation (25) it follows that
what we see is a quadratic function (Figure A4.1). Since the “x-
intercepts” are I = 0 and I = 20, the maximum of the function
is halfway between these two, at I = 10. We see from the graph
that before I = 10 the function is increasing (and the tangent lines
therefore have positive slopes), and after I = 10 the function is
decreasing (and the tangent lines therefore have negative slopes).
But these tangent lines are the derivatives of I ′, otherwise known
as I ′′. Therefore, before I = 10 we have I ′′(t) > 0, and afterward
we have I ′′(t) < 0, making C = 10 the “y-value” of the point of
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I'(t)

t
0 10 20

Figure A4.1. The graph of the function 20kI − kI 2.

inflection. The time t∗ at which this happens can be obtained from
solving the equation I (t∗) = 10 for t∗.

6. In mathematics, “eventually” is usually a synonym for t → ∞. So
by using equation (26) we have that

lim
t→∞

20
1 + 3e−20kt = 20

1 + 3 lim
t→∞ e−20kt = 20.

7. Calculating the limit gives

lim
t→∞

(a − c)p0
bp0 + ((a − c) − bp0)e−(a−c)t

= (a − c)p0
bp0 + ((a − c) − bp0) limt→∞ e−(a−c)t = (a − c)p0

bp0
= a − c

b
,

where we’ve assumed that c < a, so that e−(a−c)t → 0 as t → ∞.
8. With

B(t) =
(
B(0) + 100s

r

)
er t/100 − 100s

r
,
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the chain rule gives

B ′(t) =
(
B(0) + 100s

r

)( r
100

)
er t/100 = r

100

(
B(t) + 100s

r

)

= r
100

B(t) + s .

9. Over that 20-year period, your total contributions would amount
to 20 × $5,000 = $100,000. Subtracting this, along with the initial
$30,000 from B(20), yields $220,280.31, which is 68.78% of the
$320,280.31 that the account gained over the 20-year period.

10. Figure A4.2 shows a profile of the cup and the liquid.
If we break up the liquid’s radius r into r = a + x, then by

similar triangles we have

x
h

= b − a
H

, or x = (b − a)h
H

, and r = a + (b − a)h
H

.
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Substituting this representation of r into the frustum volume
equation we arrive at

V = πh
3

[(
a + (b − a)h

H

)2
+ a
(
a + (b − a)h

H

)
+ a2
]

,

which simplifies to

V = π

3

(
3a2h + 3a(b − a)

H
h2 + (b − a)2

H2 h3
)

.

11. To differentiate V(h(t)) with respect to t we use the chain rule.
We get V ′(h(t))h′(t), where V ′(h(t)) is just the derivative of the
function V(h) with respect to h. Since

V ′(h) = π

3

(
3a2 + 6a(b − a)

H
h + 3(b − a)2

H2 h2
)

,

all that’s left to do is to multiply by h′(t). The result is precisely
formula (34) in Chapter 4.
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1. From f (r ) = kr 4 we know that f ′(r ) = 4kr 3. Using this in
dr = f ′(a) dr gives

dr = 4ka3 dr.

2. The mathematical statement that guarantees this is called Fermat’s
Theorem. The version relevant to our purposes states that if a
function f (x) is differentiable at some x0 in the interval a < x < b
(meaning that f ′(x0) exists) and f ′(x0) �= 0, then x0 is not an
extremumof f . So, all points of a differentiable function—a function
whose derivative f ′(x) exists for every value of x—that are not
stationary points cannot be extrema. But since Fermat’s Theorem
says nothing about the endpoints a, b, we also need to consider these
when searching for the extrema of f .

3. The path from point A in Figure A5.1 through the branching point
B and onto the endpoint C can be divided into two segments of
lengths l1 and l2.

The total distance l the blood travels is l = l1 + l2. Poiseuille’s
second law then tells us that the total resistance encountered is

R = c
(
l1
r 41

+ l2
r 42

)
,

which means that we need to find l1, l2. From the triangle portion of
the figure we see that

sin θ = M
l2

, or l2 = M
sin θ

= M csc θ.
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l1

l2

y

L

M

A
B

θ

C

Figure A5.1. The two paths, ABC and AB , that blood would take down the artery.

Now, since the full length of the main vessel is L , if we call the
portion that forms the base of the triangle y, then L = l1 + y. From
this we see that l1 = L − y, so we need to know what y is. From the
triangle we can determine y:

tan θ = M
y

, or y = M
tan θ

= M cot θ.

Therefore, l1 = L − M cot θ . Using this in the equation for the
resistance R gives

R = c
(
L − M cot θ

r 41
+ M csc θ

r 42

)
.

4. The derivative of R ′(θ) is

R ′(θ) = c
[
M
r 41

csc2θ − M csc θ cot θ
r 42

]
.

Setting this to zero yields

M
r 41

csc2θ = M csc θ cot θ
r 42

, or
r 42
r 41

= M csc θ cot θ
M csc2 θ

= cos θ.



140 APPENDIX 5

5. With R(x) = 12,000+ 140x − 2x2, we use the power rule to obtain

R ′(x) = 140 − 4x.

6. Substituting in x = 35 into R(x) gives

R(35) = 12,000 + 140(35) − 2(35)2 = $14,450.

7. Using the right triangle in Figure 5.5 we know that

y2 = (6 − x)2 + (2.1)2.

Substituting this into g = x
36

+ y
29

gives

g (x) = x
36

+
√
(6 − x)2 + 4.41

29
.

8. Let’s first rewrite g (x) as

g (x) = x
36

+ 1
29
[
(6 − x)2 + 4.41

]1/2
.

Using g (x) from above we have

g ′(x) = 1
36

+ 1
29

(
1
2
[(6 − x)2 + 4.41]−1/2(−2(6 − x))

)

= 1
36

− 6 − x
29
√

(6 − x)2 + 4.41
.

Setting this equal to zero yields

1
36

= 6 − x
29
√
(6 − x)2 + 4.41

.
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By cross-multiplying and squaring both sides this simplifies to

841
[
(6 − x)2 + 4.41

] = 1,296(6 − x)2,

and by distributing and combining like terms we arrive at

455x2 − 5, 460x + 1,2671.2 = 0.

We can find the roots of this quadratic equation by using the
quadratic formula, and we get x ≈ 3.14 and x ≈ 8.86. However,
since only x ≈ 3.14 is inside the interval 0 ≤ x ≤ 6, we reject the
second solution x ≈ 8.86.
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1. The two areas we need to add are the area of a rectangle, which is
A = bh (where b and h are the base and height of the rectangle,
respectively), and the area of a triangle, which is A = (1/2)bh (where
b and h are the base and height of the triangle, respectively).We have

AI + AI I = (35)(0.0042) + 1
2
(35)(0.0083 − 0.0042) ≈ 0.22mile.

2. Adding the left-hand sides of all the equations gives

b
n
v(t0)+b

n
v(t1) + · · · + b

n
v(tn−1)=[v(t0)+v(t1) + · · · + v(tn−1)]

b
n
.

Adding the right-hand sides of the equations gives
[
s
(
b
n

)
− s (0)

]
+
[
s
(
2b
n

)
− s
(
b
n

)]
+ · · ·

+
[
s (b) − s

(
(n − 1)b

n

)]
= s (b) − s (0).

Comparing the two gives

[v(t0) + v(t1) + · · · + v(tn−1)]
b
n

= s (b) − s (0),

and writing the left-hand side as a Riemann sum gives

n−1∑
i=0

v(ti )
b
n

= s (b) − s (0).
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3. From the power rule we know that

(
xn+1

n + 1

)′
= xn,

provided that n �= −1 is a number. Therefore, it follows that

xn+1

n + 1
=
∫

xn dx (n �= −1).

Now, the one slightly confusing thing is that this isn’t the only
antiderivative of xn. The functions

xn+1

n + 1
+ 1 or

xn+1

n + 1
+ 14

would also do, since their derivatives all produce xn. So the most
general antiderivative of xn is

∫
xn dx = xn+1

n + 1
+ C (n �= −1),

where C is referred to as an arbitrary constant. Applying this to find
the antiderivative of −g yields

v(t) =
∫

−g dt = −g t + C .

When t = 0 this gives v(0) = C , meaning that C is the initial
velocity. To reflect this we now denote C by v0, so that

v(t) = v0 − g t.

4. Recall that the derivative of a sum of two functions is the sum of the
derivatives of the two functions. The same is true for integration:

y(t) =
∫
(v0 − g t) dt =

∫
v0 dt +

∫
−g t dt = y0 + v0t − 1

2
g t2.
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5. The integral

1 −
∫ 5

0

1
5
e−t/5 dt

can be calculated by using themethod of u-substitution. If we introduce
the variable u = −t/5, then the differential du = −1/5 dt, or
dt = −5 du. Under this substitution, the limit of integration t = 0
becomes u = −(0)/5 = 0, and the limit of integration t = 5 becomes
u = −5/5 = −1. Using all of this information we get

1 −
∫ −1

0

1
5
eu(−5 du) = 1 +

∫ −1

0
eu du = 1 −

∫ 0

−1
eu du.

We can now use the Fundamental Theorem of Calculus; since
(ex)′ = ex , the antiderivative of eu is just eu, and so

1 −
∫ 0

−1
eu du = 1 − (e0 − e−1) = e−1 ≈ 0.368.
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1. Applying the law of cosines to the triangle in Figure 7.2 yields

(24)2 = a2 + b2 − 2ab cos θ, or 2ab cos θ = a2 + b2 − 576.

Solving this for θ yields

cos θ = a2 + b2 − 576
2ab

, or θ = arccos
(
a2 + b2 − 576

2ab

)
.

To determine a and b, we can split up the triangle in Figure 7.2
into two right triangles (see Figure A7.1). Both of these triangles have
base

z = 10 + x cosβ,

and using the Pythagorean theorem we get

a2 = (10 + x cosβ)2 + (34 − 4 − x sinβ)2,

b2 = (10 + x cosβ)2 + (10 − 4 − x sinβ)2,

which simplifies to the a and b formulas in Chapter 7.
2. Since the quantity �y in the expression

�z =
√
(�x)2 + (�y)2

represents the change in y = f (x) over the interval �x, as-
suming that f is a differentiable function (which the function in
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24 ft

10 ft

10 ft x cos β

4 ft

10 – 4 – x sin β

x sin β

a

b

z

x
β

θ

1

2

Figure A7.1. The two right triangles related to the viewing triangle.

Figure 7.5 is), the Mean Value Theorem tells us that

�y = f ′(xi )�x,

for some xi in the interval �x. Using this we get

�z =
√
(�x)2 + [ f ′(xi )]2(�x)2 =

√
1 + [ f ′(xi )]2�x.
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catenary, 72
Chain Rule, 134
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deceleration parameter, 112
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density parameter, 113
dependent variable, 119
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electrical resistivity, 7n
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117

Gaussian distribution, 94
gravitational waves, 111
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Hubble’s constant, 112, 114
Hubble’s Law, 112
human ear frequency range, 12
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logistic equation: 54, 54n; as a model for global

fish population, 57–58; as a model for the
spread of a cold, 54–56

magnet, 5–6, 8–9
magnetic field, 6, 8–9, 15nvi, 15, 17
mathematical model: of account balance at
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Mean Value Theorem, 78; applied to calculate
the length of a curve, 105, 146; applied to
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(see gravity)
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equation); of U.S., 45

Power Rule, 131
Proxima Centauri, 108–109
Pythagoras, 1
Pythagorean Theorem, 105, 117, 145

Quotient Rule, A133
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radio wave, 11, 12, 15–16; intensity of, 11, 42
range of a function, 119
rate of change: average, 22–25, 127;
instantaneous, 24–25, 31, 52, 129
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R.E.M. sleep, 2–4
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slope of a line, 120–121
speed of light, 47–49, 110–111
stationary point, 68–69, 71, 73, 75, 77, 79, 103,
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sustainability analysis, 58

terminal velocity, 39, 128
Theory of Relativity: General, 109; Special,
48nxiii

time dilation phenomenon, 48, 50–51, 97
time travel into the future, 48
transitive reasoning, 8

unemployment rate of U.S., 40–41, 44–45
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voltage, 6–10
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