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Preface

Quick Calculus is designed for you to learn the basic techniques of differential and integral
calculus with a minimum of wasted effort, studying by yourself. It was created on a premise
that is now widely accepted: in technical subjects such as calculus, students learn by doing
rather than by listening. The book consists of a sequence of relatively short discussions, each
followed by a problem whose solution is immediately available. One’s path through the book
is directed by the responses. The text is aimed at newcomers to calculus, but additional topics
are discussed in the final chapter for those who wish to go further.

The initial audience for Quick Calculus was composed of students entering college who
did not wish to postpone physics for a semester in order to take a prerequisite in calculus.
In reality, the level of calculus needed to start out in physics is not high and could readily be
mastered by self-study.

The readership for Quick Calculus has grown far beyond novice physics students, encom-
passing people at every stage of their career. The fundamental reason is that calculus is empow-
ering, providing the language for every physical science and for engineering, as well as tools
that are crucial for economics, the social sciences, medicine, genetics, and public health, to
name a few. Anyone who learns the basics of calculus will think about how things change and
influence each other with a new perspective. We hope that Quick Calculus will provide a firm
launching point for helping the reader to achieve this perspective.

Daniel Kleppner
Peter Dourmashkin

Cambridge, Massachusetts
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CHAPTER ONE

Starting Out

In spite of its formidable name, calculus is not a particularly difficult subject. The funda-
mental concepts of calculus are straightforward. Your appreciation of their value will grow as
you develop the skills to use them.

After working through Quick Calculus you will be able to handle many problems and be
prepared to acquire more elaborate techniques if you need them. The important word here is
working, though we hope that you find that the work is enjoyable.

Quick Calculus comprises four chapters that consist of sections and subsections. We refer
to the subsections as frames. Each chapter concludes with a summary. Following these chapters
there are two appendixes on supplementary material and a collection of review problems with
solutions.

The frames are numbered sequentially throughout the text. Working Quick Calculus
involves studying the frames and doing the problems. You can check your answers immedi-
ately: they will be located at the bottom of one of the following pages or, if the solutions are
longer, in a separate frame. Also a summary of frame problems answers start on page 273.

Your path through Quick Calculus will depend on your answers. The reward for a correct
answer is to go on to new material. If you have difficulty, the solution will usually be explained
and you may be directed to another problem.

Go on to frame 1.

1.1 A Few Preliminaries

1

Chapter 1 will review topics that are foundational for the discussions to come. These are:

• the definition of a mathematical function;
• graphs of functions;

(continued)

1
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2 Starting Out Chap. 1

• the properties of the most widely used functions: linear and quadratic functions, trigono-
metric functions, exponentials, and logarithms.

A note about calculators: a few problems in Quick Calculus need a simple calculator. The
calculator in a typical smartphone is more than adequate. If you do not happen to have access
to a calculator, simply skip the problem: you can master the text without it.

Go on to frame 2.

2

Here is what’s ahead: this first chapter is a review, which will be useful later on; Chapter 2
is on differential calculus; and Chapter 3 introduces integral calculus. Chapter 4 presents some
more advanced topics. At the end of each chapter there is a summary to help you review the
material in that chapter. There are two appendixes—one gives proofs of a number of relations
used in the book, and the other describes some supplementary topics. In addition, there is
a list of extra problems with answers in the Review Problems on page 277, and a section of
tables you may find useful.

First we review the definition of a function. If you are already familiar with this and with
the idea of dependent and independent variables, skip to frame 14. (In fact, in this chapter
there is ample opportunity for skipping if you already know the material. On the other hand,
some of the material may be new to you, and a little time spent on review can be a good
thing.)

A word of caution about the next few frames. Because we start with some definitions, the
first section must be somewhat more formal than most other parts of the book.

Go on to frame 3.

1.2 Functions

3

The definition of a function makes use of the idea of a set. If you know what a set is, go
to 4. If not, read on.

A set is a collection of objects—not necessarily material objects—described in such a way
that we have no doubt as to whether a particular object does or does not belong to it. A set
may be described by listing its elements. Example: 23, 7, 5, 10 is a set of numbers. Another
example: Reykjavik, Ottawa, and Rome is a set of capitals.
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§ 1.2 Functions 3

We can also describe a set by a rule, such as all the even positive integers (this set contains
an infinite number of objects).

A particularly useful set is the set of all real numbers. This includes all numbers such as
5, −4, 0, 1/2, 𝜋, −3.482,

√
2. The set of real numbers does not include quantities involving

the square root of negative numbers. Such quantities are called complex numbers; in this book
we will be concerned only with real numbers.

The mathematical use of the word “set” is similar to the use of the same word in ordinary
conversation, as “a set of chess pieces.”

Go to 4.

4

In the blank below, list the elements of the set that consists of all the odd integers between
−10 and +10.

Elements:

Go to 5 for the correct answer.

5

Here are the elements of the set of all odd integers between −10 and +10:

−9,−7,−3,−5,−1, 1, 3, 5, 7, 9.

Go to 6.

6

Now we are ready to talk about functions. Here is the definition.
A function is a rule that assigns to each element in a set A one and only one element in a

set B.
The rule can be specified by a mathematical formula such as y = x2, or by tables of associ-

ated numbers, for instance, the temperature at each hour of the day. If x is one of the elements
in set A, then the element in set B that the function f associates with x is denoted by the symbol
f (x). This symbol f (x) is the value of f evaluated at the element x. It is usually read as “f of x.”

The set A is called the domain of the function. The set of all possible values of f (x) as
x varies over the domain is called the range of the function. The range of f need not be
all of B.

(continued)
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4 Starting Out Chap. 1

In general, A and B need not be restricted to sets of real numbers. However, as mentioned
in frame 3, in this book we will be concerned only with real numbers.

Go to 7.

7

For example, for the function f (x) = x2, with the domain being all real numbers, the range
is .

Go to 8.

8

The range is all nonnegative real numbers. For an explanation, go to 9.

Otherwise, skip to 10.

9

Recall that the product of two negative numbers is positive. Thus for any real value of x
positive or negative, x2 is positive. When x is 0, x2 is also 0. Therefore, the range of f (x) = x2

is all nonnegative numbers.

Go to 10.

10

Our chief interest will be in rules for evaluating functions defined by formulas. If the
domain is not specified, it will be understood that the domain is the set of all real numbers
for which the formula produces a real number, and for which it makes sense. For instance,

(a) f (x) =
√

x Range = .

(b) f (x) = 1
x

Range = .

For the answers go to 11.

11

The function
√

x is real for x nonnegative, so the answer to (a) is all nonnegative real
numbers. The function 1∕x is defined for all values of x except zero, so the range in (b) is all
real numbers except zero.

Go to 12.
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§ 1.3 Graphs 5

12

When a function is defined by a formula such as f (x) = ax3 + b, x is called the independent
variable and f (x) is called the dependent variable. One advantage of this notation is that the value
of the dependent variable, say for x = 3, can be indicated by f (3).

Often, a single letter is used to represent the dependent variable, as in

y = f (x).

Here x is the independent variable, and y is the dependent variable.

Go to 13.

13

In mathematics the symbol x frequently represents an independent variable, f often repre-
sents the function, and y = f (x) usually denotes the dependent variable. However, any other
symbols may be used for the function, the independent variable, and the dependent variable.
For example, we might have z = H(r), which is read as “z equals H of r.” Here r is the
independent variable, z is the dependent variable, and H is the function.

Now that we know what a function means, let’s describe a function with a graph instead
of a formula.

Go to 14.

1.3 Graphs

14

If you know how to plot graphs of functions, skip to frame 19.

Otherwise, go to 15.

15

We start by constructing coordinate axes. In the most common cases we construct a pair of
mutually perpendicular intersecting lines, one horizontal, the other vertical. The horizontal
line is often called the x-axis and the vertical line the y-axis. The point of intersection is the
origin, and the axes together are called the coordinate axes.

(continued)
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6 Starting Out Chap. 1

y-axis

x-axis
–3 –2

0
1–1 3 4 5

–5

–5 –4 2

10

5

–10

Next we select a convenient unit of length and, starting from the origin, mark off a number
scale on the x-axis, positive to the right and negative to the left. In the same way, we mark
off a scale along the y-axis with positive numbers going upward and negative downward. The
scale of the y-axis does not need to be the same as that for the x-axis (as in the drawing). In
fact, y and x can have different units, such as distance and time.

Go to 16.

16

We can represent one specific pair of values associated by the function in the following
way: let a represent some particular value for the independent variable x, and let b indicate
the corresponding value of y = f (x). Thus, b = f (a).

x-axis

y-axis

a

b
(a,b)

P

We now draw a line parallel to the y-axis at distance a from the y-axis and another line
parallel to the x-axis at distance b from that axis. The point P at which these two lines intersect
is designated by the pair of values (a, b) for x and y, respectively.
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§ 1.3 Graphs 7

The number a is called the x-coordinate of P, and the number b is called the y-coordinate
of P. (Sometimes the x-coordinate is called the abscissa, and the y-coordinate is called the
ordinate.) In the designation of a typical point by the notation (a, b) we will always designate
the x-coordinate first and the y-coordinate second.

As a review of this terminology, encircle the correct answers below. For the point (5, −3):

x-coordinate∶ [−5 | − 3 | 3 | 5]
y-coordinate∶ [−5 | − 3 | 3 | 5]

Go to 17.

17

The most direct way to plot the graph of a function y = f (x) is to make a table of reasonably
spaced values of x and of the corresponding values of y = f (x). Then each pair of values (x, y)
can be represented by a point as in the previous frame. A graph of the function is obtained
by connecting the points with a smooth curve. Of course, the points on the curve may be
only approximate. If we want an accurate plot, we just have to be very careful and use many
points. (On the other hand, crude plots are pretty good for many purposes.)

Go to 18.

18

As an example, here is a plot of the function y = 3x2. A table of values of x and y is shown,
and these points are indicated on the graph.

x

–2

–1

0

1

2

y

12

3

0

3

–3

3

27

12

27
0–1–2 1–3 2 3

P
25

30

20

15

10

5
x-axis

y-axis

To test yourself, encircle the pair of coordinates that corresponds to the point P indicated
in the figure.

[(3, 27) | (27, 3) | none of these]

If incorrect, study frame 16 once again and then go to 19. If correct,

Go to 19.
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8 Starting Out Chap. 1

19

Here is a rather special function. It is called a constant function and assigns a single fixed
number c to every value of the independent variable, x. Hence, f (x) = c.

–3 –2 –1–5 –4 543210

1

2

4

5

y-axis

3

x-axis

(0,3)

This is a peculiar function because the value of the dependent variable is the same for
all values of the independent variable. Nevertheless, the relation f (x) = c assigns exactly one
value of f (x) to each value of x as required in the definition of a function. All the values of
f (x) happen to be the same.

Try to convince yourself that the graph of the constant function y = f (x) = 3 is a
straight line parallel to the x-axis passing through the point (0,3) as shown in the
figure.

Go to 20.

20

Another special function is the absolute value function. The absolute value of x is indicated
by the symbol ∣ x ∣. The absolute value of a number x determines the size, or magnitude, of
the number without regard to its sign. For example,

∣ −3 ∣ = ∣ 3 ∣ = 3

Answers: Frame 16: 5, −3
Frame 18: (3, 27)
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§ 1.3 Graphs 9

Now we will define ∣ x ∣ in a general way. But first we need to recall the inequality
symbols:

a > b means a is greater than b.

a ≥ b means a is greater than or equal to b.

a < b means a is less than b.

a ≤ b means a is less than or equal to b.

With this notation we can define the absolute value function, ∣ x ∣, by the following two
rules:

∣ x ∣ =
{

x if x ≥ 0,
−x if x < 0.

Go to 21.

21

A good way to show the behavior of a function is to plot its graph. Therefore, as an
exercise, plot a graph of the function y = ∣ x ∣ in the accompanying figure.

–3 –2 –1–5 –4 543210

1

2

4

5

y-axis

3

x-axis

To check your answer, go to 22.
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10 Starting Out Chap. 1

22

The graph for ∣ x ∣ is

–3 –2 –1–5 –4 543210

1

2

4

5

y-axis

x-axis

3

This can be seen by preparing a table of x and y values as follows:

x y = ∣ x ∣
−4 +4
−2 +2

0 0
+2 +2
+4 +4

These points may be plotted as in frames 16 and 18 and the lines drawn with the results
in the above figure.

The graph and x, y coordinates described here are known as a Cartesian coordinate system.
There are other coordinate systems better suited to other geometries, such as cylindrical or
spherical coordinate systems, but Cartesian coordinates are the best known.

With this introduction on functions and graphs, we are now going to familiarize ourselves
with some important elementary functions.

These functions are the linear, quadratic, trigonometric, exponential, and logarithmic
functions.

Go to 23.
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§ 1.4 Linear and Quadratic Functions 11

1.4 Linear and Quadratic Functions

23

A function defined by an equation in the form y = mx + b, where m and b are constants,
is called a linear function because its graph is a straight line. This is a simple and useful function,
and you need to become familiar with it.

Here is an example: Encircle the letter that identifies the graph (as labeled in the
figure) of

y = 3x − 3. [A | B | C]

A

B

C

y-axis

x-axis
–3 –2 –1

0
1 3 4 5

–5

–5
–1

–2

–3

–4

–4

1

2

2

3

4

5

If you missed this or if you do not feel entirely sure of the answer, go to 24.

Otherwise, go to 25.
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12 Starting Out Chap. 1

24

The table below gives a few values of x and y for the function y = 3x − 3.

y-axis

–3
x-axis

–2 –1
0

1 43 5

–5

–5 –1

–2

–3

–4

–4

1

2

2

3

4

5

x

–2

–1

0

1

2

y

–9

–6

–3

0

3

A few of these points are shown on the graph, and a straight line has been drawn through
them. This is line B of the figure in frame 23.

Go to 25.

25

Here is the graph of a typical linear function. Let us take any two different points on the
line, (x2, y2) and (x1, y1). We define the slope of the line in the following way:

slope =
y2 − y1

x2 − x1
.

x-axis

y-axis

x2 – x1

y2 – y1

(x2, y2)

(x1, y1)

Answer: Frame 23: B
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§ 1.4 Linear and Quadratic Functions 13

The idea of slope will be important in our later work, so let’s spend a little time learning
more about it.

Go to 26.

26

If the x and y scales are the same, as in the figure, then the slope is the ratio of the vertical
distance y2 − y1 to the horizontal distance x2 − x1 as we go from the point (x1, y1) on the line
to (x2, y2). If the line is vertical, the slope is infinite (or, more strictly, undefined). Test for
yourself that the slope is the same for any pair of two separate points on the line.

y-axis

0
1 43

x-axis
5

1

2

2

3

4

5

(x1, y1)

(x2, y2)

= y2 – y1

= x2 – x1

vertical
distance

horizontal distance

Go to 27.

27

If the vertical and horizontal scales are not the same, the slope is still defined by

slope = vertical distance
horizontal distance

,

but now the distance is measured using the appropriate scale. For instance, the two figures
below may look similar, but the slopes are quite different. In the first figure the x and y scales
are identical, and the slope is 1/2. In the second figure the y scale has been changed by a factor
of 100, and the slope is 50.

x-axis
0 5 10 15 20

5

5

10

y-axis

10

x-axis
0 5 10 15 20

500

1000

10

500

y-axis

(continued)
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14 Starting Out Chap. 1

Because the slope is the ratio of two lengths, the slope is a pure number if the lengths are
pure numbers. However, if the variables have different dimensions, the slope will also have a
dimension.

Below is a plot of the distance traveled by a car vs. the amount of gasoline consumed.

20
40

80

0

100

60

0 1
Gasoline (gallons)

D
is

ta
nc

e 
(m

ile
s)

1½ 2½

Here the slope has the units of miles per gallon (mpg). What is the slope of the line shown?

Slope = [20 | 40 | 60 | 80] mpg

If right, go to 29.
Otherwise, go to 28.

28

To evaluate the slope, let us find the coordinates of any two points on the line.

½

B20
40

0

80
100

60

D
is

ta
nc

e 
(m

ile
s)

0 1
Gasoline (gallons)

1½ 2

A

For instance, A has the coordinates (2 gallons, 80 miles) and B has the coordinates
( 1/2 gallon, 20 miles). Therefore, the slope is

(80 − 20) miles
(2 − 1∕2) gallon

= 40
miles
gallon

= 40 mpg.

We would have obtained the same value for the slope no matter which two points we
used, because two points determine a straight line.

Go to 29.
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29

If the line is described by an equation of the form y = mx + b, then the slope is given by

slope =
y2 − y1

x2 − x1
.

Substituting in the above expression for y, we have

slope =
(mx2 + b) − (mx1 + b)

x2 − x1
=

mx2 − mx1

x2 − x1
=

m(x2 − x1)
x2 − x1

= m.

What is the slope of y = 7x − 5?[
5∕7 | 7∕5 | − 5 | − 7 | 5 | 7

]
If right, go to 31.

Otherwise, go to 30.

30

The equation y = 7x − 5 can be written in the form y = mx + b if m = 7 and b = −5.
Because slope = m, the line given has a slope of 7.

Go to 31.

31

The slope of a line can be positive (greater than 0), negative (less than 0), or 0. An example
of each is shown graphically below.

x x x

Positive slope
Figure 1

Negative slope
Figure 2

Zero slope
Figure 3

y y y

Note how a line with positive slope rises in going from left to right, a line with negative
slope falls in going from left to right, and a line of zero slope is horizontal. (It was pointed
out in frame 26 that the slope of a vertical line is not defined.)

(continued)
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16 Starting Out Chap. 1

Indicate whether the slope of the graph of each of the following equations is positive,
negative, or zero by encircling your choice.

Equation Slope

1. y = 2x – 5 { + | − | 0 }
2. y = −3x { + | − | 0 }
3. p = q − 2 { + | − | 0 }
4. y = 4 { + | − | 0 }

The answer is in the next frame.

32

Here are the answers to the questions in frame 31.
In frame 29 we saw that for a linear equation in the form y = mx + b the slope is m.

1. y = 2x − 5. Here m = 2 and the slope is 2. Clearly this is a positive number. See Figure 1
below.

2. y = −3x. Here m = −3. The slope is −3, which is negative. See Figure 2 below.

3. p = q − 2. In this equation the variables are p and q, rather than y and x. Written in the
form p = mq + b, it is evident that m = 1, which is positive. See Figure 3 below.

4. y = 4. This is an example of a constant function. Here m = 0, b = 4, and the slope is 0.
See Figure 4 below.

–5
x

y

x

+5

x

p

q

Positive slope
y = 2x – 5
Figure 1

Negative slope
y = –3x
Figure 2

Positive slope
p = q – 2
Figure 3

y y

Zero slope
y = 4

Figure 4

+5 +5

+5+5+5+5

+5

–5

–5 –5 –5 –5

–5 –5

Go to 33.

Answers: Frame 27: 40 mpg
Frame 29: 7
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33

Here is a linear equation in which the slope has a familiar meaning. The graph below
shows the position S of a car on a straight road at different times. The position S = 0 means
the car is at the starting point.

60

40

20

0

1½ 1½ 2
t (hours)

0

S 
(m

ile
s)

 

Try to guess the correct word to fill in the blank below:
The slope of the line has the same value as the car’s .

Go to 34.
34

The slope of the line has the same value as the car’s speed (or, for this one-dimensional
motion velocity).

The slope is the ratio of the distance traveled to the time required. But, by definition, the
speed is also the distance traveled divided by the time. Thus the value of the slope of the line
is equal to the speed.

Go to 35.
35

Now let’s look at another type of equation. An equation in the form y = ax2 + bx + c,
where a, b, and c are constants (a ≠ 0), is called a quadratic function and its graph is called a
parabola. Two typical parabolas are shown in the figure.

x-axis

y-axis y-axis

x2x1 x-axis

Go to 36.
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36

Roots of an Equation:

The values of x for which f (x) = 0 are called the roots of the equation. The values at y = 0,
shown by x1 and x2 in the figure on the left in frame 35, correspond to values of x which
satisfy ax2 + bx + c = 0 and are thus the roots of the equation. Not all quadratic equations
have real roots. For example, the curve on the right represents an equation with no real value
of x when y = 0.

Although you will not need to find the roots of any quadratic equation later in this book,
you may want to know the formula anyway. If you would like to see a discussion of this, go
to frame 37.

Otherwise, skip to frame 39.

37

The equation ax2 + bx + c = 0 has two roots. These are given by

x1 =
−b +

√
b2 − 4ac

2a
, x2 =

−b −
√

b2 − 4ac
2a

.

The subscripts 1 and 2 serve merely to identify the roots. The two roots can be summarized
by a single equation:

x =
−b ±

√
b2 − 4ac

2a
.

We will not prove these results, though they can be checked by substituting the values for x
in the original equation.

Here is a practice problem on finding roots: Which answer correctly gives the roots of
3x − 2x2 = 1?

(a) 1∕4

(
3 +

√
17
)

; 1∕4

(
3 −

√
17
)

(b) −1; − 1/2

(c) 1/4; − 1/4

(d) 1; 1/2

Answers: Frame 31: +, −, +, 0
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Encircle the letter of the correct answer.

[a | b | c | d]

If you got the right answer, go to 39.
The answer is in the following frame.

38

Here is the solution to the problem in frame 37.
The equation 3x − 2x2 = 1 can be written in the standard form

2x2 − 3x + 1 = 0.

Here a = 2, b = −3, c = 1.

x = 1
2a

[
−b ±

√
b2 − 4ac

]
= 1

4

[
−(−3) ±

√
(−3)2 − (4)(2)(1)

]
= 1

4
(3 ± 1).

x1 =
1
4
(3 + 1) = 1.

x2 =
1
4
(3 − 1) = 1

2
.

Go to 39.
39

This ends our brief discussion of linear and quadratic functions. Perhaps you would like
some more practice on these topics before continuing. If so, try working Review Problems
1–5 on page 277. At the end of this chapter there is a concise summary of the material we
have had so far, which you may find useful.

Whenever you are ready, go to 40.

1.5 Angles and Their Measurements

40

Elementary features of rotations and angles:

If you are already familiar with rotations, angle, and degrees and radians, you can jump to
frame 50.

(continued)
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B

O A

θ

The concept of the angle is the bedrock of trigonometry. Although
the general idea of an angle is probably familiar, it is important to agree
on the conventions and units for describing angles. For two straight-line
segments OA and OB that intersect at a point O, the angle between them
is a measure of how far the line segment OA must be rotated about the
point O to coincide with the line segment OB.

If the two segments initially coincide, for instance, half a revolution of either segment will
leave them pointing in opposite directions and a full revolution will bring them back to their
original positions.

The Greek letter 𝜃 (theta) symbolizes the rotation angle. The sense of rotation is shown
by the curved arrow. We will follow the convention that if the segment OA is rotated in the
counterclockwise direction to coincide with the segment OB, then the rotation is positive.
Conversely, a rotation in the clockwise direction is negative. The direction can be indicated
by a small arrowhead on the curve between the two segments. If the sense of rotation is
unimportant, the arrowhead is usually omitted.

Measuring the size of rotations:

There are two conventions used for measuring the size of rotation. The first divides one
revolution into 360 parts called degrees (not to be confused with degrees of temperature).
The number 360 has the attraction of being large—providing good angular resolution—and
possessing many divisors. The symbol for a degree of rotation is ∘; hence, a quarter turn is
90∘. The degree can be subdivided into 60 minutes (60′), and the minute subdivided into
60 seconds (60′′). Until recent years degrees, minutes, and seconds (DMS coordinates) were
commonly used in map-making and navigation. With advent of GPS and laser metrology, the
convention for subdividing the degree has been changed: instead of minutes and seconds, the
convention is to express the fraction of a degree by a decimal number, typically with four
digits.

Location on Earth: latitude and longitude:

Two numbers are needed to describe positions on a surface. Because the Earth is spheri-
cal, Cartesian coordinates are not useful for specifying a position. Instead, a system based on
coordinates known as latitude and longitude is employed. One of the coordinates is based on
the idea of a meridian. This is an imaginary half circle on the Earth that connects the Earth’s

Answers: Frame 37: d
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South and North Poles. The prime meridian is the half circle passing through Earth’s South and
North Poles and Greenwich, England. Longitude is the angle between the prime meridian
and the meridian through the point of interest. Points east of the prime meridian require a
clockwise rotation around the polar axis and by convention are positive; those to the west are
negative. The sign of longitude reverses when passing the meridian 180 degrees east or west
of the prime meridian.

Times Square

Equator

Prime meridian

Greenwich

North Pole

Latitude line

Longitude line

N

W E

0°

20° N

N40°

30° W

60° W

60° N

S20°

30° E

60° E

S

Instead of using positive and negative values of longitude, the convention is to assign east
(E) for positive values and west (W) for negative values.

Latitude lines are parallel to the equator. Latitudes north of the equator use the symbol N
and latitudes south of the equator use the symbol S. For example, the latitude and longitude
of Times Square in New York City are 40.7580∘N and 73.9855∘W. In old-fashioned DMS
units these are 77∘ 2′ 7.008′′W and 38∘ 53′ 22.1424′′N.

Go to 41.
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41

As we have seen, the full circle contains 360∘, and so it follows that a semicircle contains
180∘.

B

O A
θ

r

Which of the following angles is equal to the angle 𝜃 shown in the figure?

[25∘ | 45∘ | 90∘ | 180∘]

If right, go to 43.
Otherwise, go to 42.

42

To find the angle 𝜃, let’s first look at a related example.

90°

The angle shown is a right angle, constructed from two perpendicular lines. (The symbol
between sides indicates a right angle.) Because there are four right angles in a full revolution,
it is apparent that the angle equals

360∘
4

= 90∘.

The angle 𝜃 shown in frame 41 is just half as big as the right angle; thus it is 45∘.
Here is a circle divided into equal segments by three straight lines.
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a

b

c

Which of the angles in the figure equals 240∘?

[a | b | c]

Go to 43.

43

The second convention for measuring the size of rotations is the radian. The symbol for
the radian is rad.

A

θ
O

B

r s

To find the value of an angle in radians, we draw a circle of radius r, about the vertex, O,
of the angle so that it intersects the sides of the angle at two points, shown in the figure as A
and B. The length of the arc between A and B is designated by s. Then,

𝜃 (in radians) = s
r
=

length of arc

radius
.

Radians are used widely in scientific applications. For example, to calculate numerical
values of trigonometric functions in this chapter naturally calls for radians. If no unit is given
for the numerical value of an angle, the angle is in radians.

(continued)
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To see whether you have caught on, answer this question: There are 360 degrees in a
circle; how many radians are there?

[1 | 2 | 𝜋 | 2𝜋 | 360∕𝜋]

If right, go to 45.
Otherwise, go to 44.

44

r

s = 2πr s = r

r θ

θ

The circumference of a circle is 𝜋d or 2𝜋r, where d is the diameter and r is the radius.
The length of an arc going completely around a circle is the circumference, 2𝜋r, so the angle
enclosed is 2𝜋r∕r = 2𝜋 radians, as shown in the figure on the left. In the figure on the right
the angle 𝜃 subtends an arc s = r.

Encircle the answer, which gives 𝜃.[
1 rad | 1∕4 rad | 1∕2 rad | 𝜋 rad | none of these

]
Go to 45.

45

Because 2𝜋 rad = 360∘, the rule for converting angles from degrees to radians is

1 rad = 360∘
2𝜋

.

Answers: Frame 41: 45∘
Frame 42: c
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Conversely,

1∘ = 2𝜋 rad
360

.

Try the following problems.

60∘ = [2𝜋∕3 | 𝜋∕3 | 𝜋∕4 | 𝜋∕6] rad

𝜋∕4 =
[
221∕2

∘ | 45∘ | 60∘ | 90∘
]

Which angle is closest to 1 rad? (Remember that 𝜋 = 3.14… )

[30∘ | 45∘ | 60∘ | 90∘]

If correct, go to 47.
If you made any mistake, go to 46.

46

Here are the solutions to the problems in frame 45. From the formulas in frame 45, one
obtains

60∘ = 60 × 2𝜋 rad
360

= 2𝜋 rad
6

= 𝜋

3
rad.

𝜋

4
rad = 𝜋

4
× 360∘

2𝜋
= 360∘

8
= 45∘.

Because 2𝜋 is just a little greater than 6, 1 rad is slightly less than 360∘/6 = 60∘. (A closer
approximation to the radian is 57.3∘.) The figure below shows all the angles in this question.

1rad
.30°

90°

45°

60°

R

R

Go to 47.
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47

In the circle shown, CG is perpendicular to AE and

arc AB = arc BC = arc AH,

arc AD = arc DF = arc FA.

B

C

H

D

F

AE

G

O

(Arc AB means the length of the arc along the circle between A and B, going the shortest
way.)

We will designate angles by three letters. For example, ∕ AOB (read as “angle AOB”)
designates the angle between OA and OB.

Try the following:

∕ AOD = {60∘ | 90∘ | 120∘ | 150∘ | 180∘}
∕ FOH = {15∘ | 30∘ | 45∘ | 60∘ | 75∘ | 90 degrees}
∕ HOB = {1∕4 | 1 | 𝜋∕2 | 𝜋∕4 | 𝜋∕8}

If you did all these correctly, go to 49.
If you made any mistakes, go to 48.

48

Because arc AD = arc DF = arc FA, and the sum of their angles is 360∘, ∕ AOD =
360∘∕3 = 120∘.

∕ FOA = 120∘, ∕ GOA = 90∘, ∕ GOH = 45∘.

Answers: Frame 43: 2𝜋
Frame 44: 1 rad
Frame 45: 𝜋∕3, 45∘, 60∘
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Thus

∕ FOH = ∕ FOG + ∕ GOH = 30∘ + 45∘ = 75∘.
∕ HOB = ∕ HOA + ∕ AOB = 45∘ + 45∘ = 90∘.

Now try the following:

90∘ = [2𝜋 | 𝜋∕6 | 𝜋∕2 | 𝜋∕8 | 1∕4]
3𝜋 = [240∘ | 360∘ | 540∘ | 720∘]
𝜋∕6 = [15∘ | 30∘ | 45∘ | 60∘ | 90∘ | 120∘]

Go to 49.

49

Rotations can be clockwise or counterclockwise. By choosing a convention for the sign
of an angle, we can indicate which direction is meant. As previously explained, an angle
formed by rotating in a counterclockwise direction is positive; an angle formed by moving in
a clockwise direction is negative.

Here is a circle of radius r drawn with x- and y-axes, as shown:

r θ

θ

y-axis

A

x-axis

B

We will usually choose the positive x-axis as the initial side and, in general, we will measure
angles from the initial to the final or terminal side, denoted by the curved arrow. For example,
the angle 𝜃A measured in the counterclockwise direction is positive and 𝜃B is negative, as shown
in the figure. If there is no curved arrow associated with the angle, then we shall assume that
the angle is positive.

Go to 50.
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1.6 Trigonometry
50

If you are not familiar with trigonometric functions, proceed with this frame. Otherwise,
check yourself with frame 51, or go right to frame 52.

Our next task is to introduce the trigonometric functions. These functions relate the
various sides and angles of triangles.

Do you know the general definitions of the trigonometric functions of angle 𝜃? If you
do, test yourself with the quiz below. If you don’t, go right on to frame 51.

The trigonometric functions of 𝜃 can be expressed in terms of the coordinates x and y
and the radius of the circle, r =

√
x2 + y2.

θ
r

x-axis

(x, y)

y-axis

These are shown in the figure. Try to fill in the blanks (the answers are in frame 51):

sin 𝜃 = csc 𝜃 =
cos 𝜃 = sec 𝜃 =
tan 𝜃 = cot 𝜃 =

Go to frame 51 to check your answers.

Answers: Frame 47: 120∘, 75∘, 𝜋/2
Frame 48: 𝜋∕2, 540∘, 30∘
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51

Here are the definitions of the trigonometric functions:

sine∶ sin 𝜃 =
y
r
, cotangent∶ csc 𝜃 = 1

sin 𝜃
= r

y
,

cosine∶ cos 𝜃 = x
r
, secant∶ sec 𝜃 = 1

cos 𝜃
= r

x
,

tangent∶ tan 𝜃 =
y
x
, cosecant∶ cot 𝜃 = 1

tan 𝜃
= x

y
.

Notice that the definitions in the right-hand equations are the reciprocal of those on
the left.

r

y-axis

x-axis

(x, y)

x

y θ

For the angle shown in the figure, x is negative and y is positive (r =
√

x2 + y2 and is
always positive) so that cos 𝜃, tan 𝜃, cot 𝜃, and sec 𝜃 are negative, while sin 𝜃 and csc 𝜃 are
positive.

Go to 52.
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52

Below is a circle with a radius of 5. The point shown is (−3, −4). On the basis of the
definition in the last frame, you should be able to answer the following:

sin 𝜃 =
[

3∕5 | 5∕3 | 3∕4 | − 4∕5 | − 3∕5 | 4∕3
]

cos 𝜃 =
[

3∕5 | 5∕3 | 3∕4 | − 4∕5 | − 3∕5 | 4∕3
]

tan 𝜃 =
[

3∕5 | 5∕3 | 3∕4 | − 4∕5 | − 3∕5 | 4∕3
]

y-axis

x-axis

(–3,–4)

–3

–4

θ

If all right, go to 55.
Otherwise, go to 53.

53

Perhaps you had difficulty because you did not realize that x and y have different signs in
different quadrants (quarters of the circle) while r, a radius, is always positive. Try this problem.

CBA

θ
θ θ

Indicate whether the function specified is positive or negative, for each of the figures, by
checking the correct box.

Figure A Figure B Figure C
+ − + − + −

sin 𝜃

cos 𝜃
tan 𝜃

See frame 54 for the correct answers.
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54

Here are the answers to the questions in frame 53.

Figure A Figure B Figure C
+ − + − + −

sin 𝜃 ✓ ✓ ✓
cos 𝜃 ✓ ✓ ✓
tan 𝜃 ✓ ✓ ✓

Go to 55.
55

In the figure both 𝜃 and −𝜃 are shown. The trigonometric functions for these two angles
are simply related.

y-axis

x-axis
–θ

θ

Can you do these problems? Encircle the correct sign.

sin(−𝜃) = [+ | −] sin 𝜃

cos(−𝜃) = [+ | −] cos 𝜃

tan(−𝜃) = [+ | −] tan 𝜃

Go to 56.

56

There are many relationships among the trigonometric functions.

r

y-axis

y

x

x-axis

θ

(continued)
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For instance, using r2 = x2 + y2, we have

sin2𝜃 =
y2

r2
= r2 − x2

r2
= 1 −

(x
r

)2
= 1 − cos2𝜃.

Try these:

1. sin2𝜃 + cos2 = {sec2𝜃 | 1 | tan2𝜃 | cot2𝜃}

2. 1 + tan2𝜃 = {1 | tan2𝜃 | cot2𝜃 | sec2𝜃}

3. sin2𝜃 − cos2𝜃 = {1 − 2cos2𝜃 | 1 − 2sin2𝜃 | cot2𝜃 | 1}

If any mistakes, go to 57.
Otherwise, go to 58.

57

Here are the solutions to the problems in frame 56.

1. sin2𝜃 + cos2𝜃 = y2

r2
+ x2

r2
= x2 + y2

r2
= r2

r2
= 1.

This is an important identity, which is worth remembering.
The other solutions are

2. 1 + tan2𝜃 = 1 + sin2𝜃

cos2𝜃
= cos2𝜃 + sin2𝜃

cos2𝜃
= 1

cos2𝜃
= sec2𝜃.

3. sin2𝜃 − cos2 = (1 − cos2𝜃) − cos2𝜃 = 1 − 2cos2𝜃.

Go to 58.

58

r

y-axis

y
θ θ

x
x-axis

ac

b

Answers: Frame 52: − 4∕5,− 3∕5, 4∕3

Frame 55: −, +, −
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The trigonometric functions are particularly useful when applied to right triangles
(triangles with one 90∘, or right angle). In this case 𝜃 is always acute (less than 90∘, or 𝜋∕2).
You can then write the trigonometric functions in terms of the sides a and b of the right
triangle shown, and its hypotenuse c. Fill in the blanks.

sin 𝜃 = csc 𝜃 =
cos 𝜃 = sec 𝜃 =
tan 𝜃 = cot 𝜃 =

Check your answer in 59.

59

θ

a
c

b

The answers are:

sin 𝜃 = a
c
=

opposite side

hypotenuse
, csc 𝜃 = c

a
=

hypotenuse

opposite side
,

cos 𝜃 = b
c
=

adjacent side

hypotenuse
, sec 𝜃 = c

b
=

hypotenuse

adjacent side
,

tan 𝜃 = a
b
=

opposite side

adjacent side
, cot 𝜃 = b

a
=

adjacent side

opposite side
.

These results follow from the definitions in frame 51, providing we let a, b, and c cor-
respond to y, x, and r, respectively. (Remember that here 𝜃 is less than 90∘.) If you are not
familiar with the terms opposite side, adjacent side, and hypotenuse, they should be evident from
the figure.

Go to 60.
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60

θϕ

a
b

c

The following problems refer to the figure shown. (𝜙 is the Greek letter “phi.”)
sin 𝜃 = [b∕c | a∕c | c∕a | c∕b | b∕a | a∕b]
tan𝜙 = [b∕c | a∕c | c∕a | c∕b | b∕a | a∕b]

If all right, go to 62.
Otherwise, go to 61.

61

You may have become confused because the triangle was drawn in a new position. Review
the definitions in 51, and then do the following problems:

m l

n

ϕ
θcos 𝜃 = [l∕n | n∕l | m∕n | m∕l | n∕m | l∕m]

cot 𝜙 = [l∕n | n∕l | m∕n | m∕l | n∕m | l∕m]

If you missed either of these, you will have to put in more work learning and memorizing
the definitions.

Meanwhile go to 62.
62

It is helpful to be familiar with the trigonometric functions of 30∘,45∘, and 60∘. The
triangles for these angles are particularly simple.

45°

1

12 45°
1

30°

60°

3

2

Answer: Frame 56: 1, sec2𝜃, 1 − 2cos2𝜃
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Try these problems:

cos 45∘ = [1∕2 | 1∕
√

2 | 2
√

2 | 2]

sin 30∘ = [3 |
√

3∕2 | 2∕3 | 1∕2]

sin 45∘ = [1∕2 | 1∕
√

2 |
√

2∕2 | 2]

tan 30∘ = [1 |
√

3 | 1∕
√

3 | 2]

Make sure you understand these problems. Then go to 63.

63

Many calculators provide values of trigonometric functions. With such a calculator, it is
simple to plot enough points to make a good graph of the function. If you have a calculator,
plot sin 𝜃 for values between 0∘ and 360∘ on the coordinate axes below, and then compare
your result with frame 64. If you do not have a suitable calculator, go directly to 64 and check
that sin 𝜃 has the correct values for the angles you know.

Go to 64.
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64

Here is the graph of the sine function.

Go to 65.

65

0

–1 –1 –1

1

2π 0

1

2π
0

1

2π
π π

π

0

–1 –1 –1

1

2π 0

1

2π 0

1

2ππ π π

(a) (b) (c)

(d) (e) (f)

Answers: Frame 60: a/c, b/a
Frame 61: m/n, l/m
Frame 62: 1∕

√
2, 1/2, 1∕

√
2, 1∕

√
3
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Try to decide which graph represents each function.

cos 𝜃∶ [a | b | c | d | e | f | none of these]
tan 𝜃∶ [a | b | c | d | e | f | none of these]
sin(−𝜃)∶ [a | b | c | d | e | f | none of these]
tan(−𝜃)∶[a | b | c | d | e | f | none of these]

If you got these all right, go to 67.
Otherwise go to 66.

66

Knowing the values of the trigonometric functions at a few important points will help
you identify them. Try these (∞ is the symbol for infinity, here meaning that the function is
undefined):

sin 0∘ = [0 | 1 | − 1 | −∞ | +∞]
cos 0∘ = [0 | 1 | − 1 | −∞ | +∞]

cos 30∘ = [1 | 1∕2 |
√

3 |
√

3∕2]
tan 45∘ = [0 | 1 | − 1 | −∞ | +∞]

cos 60∘ = [1 | 1∕2 |
√

3 |
√

3∕2]
sin 90∘ = [0 | 1 | − 1 | −∞ | +∞]
cos 90∘ = [0 | 1 | − 1 | −∞ | +∞]

Go to 67.

67

Because the angle 𝜃 + 2𝜋n, where n is any integer, is equivalent to 𝜃 as far as the
trigonometric functions are concerned (i.e. for any trig function f , f (𝜃 + 2𝜋n) = f (𝜃)),
we can add 2𝜋n to any angle without changing the value of the trigonometric functions.
Thus, the sine and cosine (as well as its reciprocals, csc and sec) functions repeat their values
whenever 𝜃 increases by 2𝜋n where n is an integer; we say that these functions are periodic in
𝜃 with a fundamental period of 2𝜋, or 360∘. (The fundamental period of the tangent and the
cotangent is π.)

(continued)
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θ+2π

θ

Using this property, you can extend the graph of sin 𝜃 in frame 64 to the following. (For
variety, the angle here is in radians.)

0

2
3π
2

2π 5π
2

3π 7π
2

4π 9π
2

5π

–1

1

sinθ

π π
θ

Go to 68.

68

It is helpful to know the sine and cosine of the sum and the difference of two angles.

θ
θ + ϕ

ϕ

Answers: Frame 65: b, c, d, none of these;
Frame 66: sin 0∘ = 0, cos 0∘ = 1, cos 30∘ =

√
3∕2, tan 45∘ = 1,

cos 60∘ = 1∕2, sin 90∘ = 1, cos 90∘ = 0.
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Do you happen to remember the formulas from previous studies of trigonometry? If not,
go to 69. If you do, try the quiz below.

sin(𝜃 + 𝜙) = .

cos(𝜃 + 𝜙) = .

Go to 69 to see the correct answer.
69

Here are the formulas. They are derived in Appendix A1.

sin(𝜃 + 𝜙) = sin 𝜃 cos𝜙 + cos 𝜃 sin𝜙,

cos(𝜃 + 𝜙) = cos 𝜃 cos𝜙 − sin 𝜃 sin𝜙.

These formulas hold for both positive and negative values of the angles. (Note that
tan(𝜃 + 𝜙) and cot(𝜃 + 𝜙) can be obtained from these formulas and the relation tan 𝜃 =
sin 𝜃∕ cos 𝜃.

By using what you have already learned, circle the correct sign in each of the following:

(a) sin(𝜃 − 𝜙) = {+ | −} sin 𝜃 cos𝜙 {+ | −} cos 𝜃 sin𝜙

(b) cos(𝜃 − 𝜙) = {+ | −} cos 𝜃 cos𝜙 {+ | −} sin 𝜃 sin𝜙

If right, go to 71.
If wrong, go to 70.

70

If you made a mistake in problem 69, recall from frame 55 that

sin(−𝜙) = − sin𝜙,

cos(−𝜙) = + cos𝜙.

Then
sin(𝜃 − 𝜙) = sin 𝜃 cos(−𝜙) + cos 𝜃 sin(−𝜙)

= sin 𝜃 cos𝜙 − cos 𝜃 sin𝜙,

cos(𝜃 − 𝜙) = cos 𝜃 cos(−𝜙) − sin 𝜃 sin(−𝜙)
= cos 𝜃 cos𝜙 + sin 𝜃 sin𝜙.

Go to 71.
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71

By using the expressions for sin(𝜃 + 𝜙) and cos(𝜃 + 𝜙), one can obtain the formulas for
sin(2𝜃) and cos(2𝜃). Simply let 𝜃 = 𝜙. Fill in the blanks.

sin 2𝜃 = .

cos 2𝜃 = .

See 72 for the correct answers.
72

Here are the answers:

sin(2𝜃) = 2 sin 𝜃 cos 𝜃,

cos(2𝜃) = cos2𝜃 − sin2𝜃

= 1 − 2sin2𝜃

= 2cos2𝜃 − 1.

(Note, by convention, (sin 𝜃)2 is usually written sin2𝜃, and (cos 𝜃)2is usually written cos2𝜃.)

Go to 73

73

It is often useful to use the inverse trigonometric function. This is the value of the angle for
which the trigonometric function has a specified value. The inverse sine of x is denoted by
sin−1x. (Warning: This notation is standard, but it can be confusing. sin−1x always represents
the inverse sine of x, not 1∕ sin x. The latter would be written (sin x)−1. An older notation
for sin−1x is arcsin x.)

For example, because the sine of 30∘is 1∕2, sin−1(1∕2) = 30∘. Note, however, that the sine
of 150∘is also 1∕2. Furthermore, the trigonometric functions are periodic: there is an endless
sequence of angles (all differing by 360∘) having the same value for the sine, cosine, etc.

Answer: Frame 69 (a): +, −; (b): +, +
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Because the definition of function (frame 6) specifies the assignment of one and only one
value of f (x) for each value of x, the domain of the inverse trigonometric function must be
suitably restricted.

The inverse functions are defined by

y = sin−1x Domain∶ − 1 ≤ x ≤ +1 Range∶ − 𝜋

2
≤ y ≤ +𝜋

2

y = cos−1x Domain∶ − 1 ≤ x ≤ +1 Range∶ 0 ≤ y ≤ 𝜋

y = tan−1x Domain∶ −∞ < x < +∞ Range∶ − 𝜋

2
< y < +𝜋

2

Go to 74.

74

Try these problems:

(a) sin−1(1∕
√

2) = [𝜋∕6 | 𝜋∕4 | 𝜋∕3 | 𝜋∕2]

(b) tan−1(1) = [𝜋∕6 | 𝜋∕4 | 𝜋∕3 | 𝜋]

(c) cos−1(1∕2) = [𝜋∕6 | 𝜋∕4 | 𝜋∕3 | 𝜋]

If you have a calculator with inverse trigonometric functions, try the following:

(d) sin−1(0.8) = [46.9 | 28.2 | 53.1 | 67.2] degrees

(e) tan−1(12) = [0.82 | 1.49 | 1.62 | 1.83] radians

(f ) cos−1(0.05) = [4.3 | 12.6 | 77.2 | 87.1] degrees

Check your answers, and then go on to the next section, which is the last one in our
reviews.

Go to 75.
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1.7 Exponentials and Logarithms
75

Are you already familiar with exponentials? If not, go to 76. If you are, try this short quiz.

a5 = [5a | 5 log a | a log 5 | none of these]
ab+c = [abac | ab + ac | cab | (b + c) log a]

a f ∕a g = [( f − g) log a | a f ∕g | a f−g | none of these]
a0 = [0 | 1 | a | none of these]; a ≠ 0

(ab)c = [abac | ab+c | abc | none of these]

If any mistakes, go to 76.
Otherwise, go to 77.

76

By definition am, where m is a positive integer, is the product of m factors of a. Hence,

23 = (2)(2)(2) = 8 and 102 = (10)(10) = 100.

Furthermore, by definition a−m = 1∕am. It is easy to see, then, that

aman = am+n,

am

an
= am−n,

a0 = am

am
= 1 (a ≠ 0, m can be any integer)

(am)n = amn,

(ab)m = ambm.

Note that am+n is evaluated as a(m+n); the expression in the exponential is always evaluated
before any other operation is carried out.

If you have not yet tried the quiz in frame 75, try it now. Otherwise,

Go to 77.

Answer: Frame 74: (a) 𝜋∕4, (b) 𝜋∕4, (c) 𝜋∕3, (d) 53.1∘, (e) 1.49, (f) 87.1∘
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77

Here are a few problems:

32 = [6 | 8 | 9 | none of these]

13 =
[
1 | 3 |

1
3

| none of these
]

2−3 =
[
−6 |

1
8

| − 9 | none of these
]

43

45
= [48 | 4−8 | 16−1 | none of these]

If you did these all correctly, go to 79.
If you made any mistakes, go to 78.

78

Below are the solutions to problem 77. Refer back to the rules in 76 if you have trouble
understanding the solution.

32 = (3)(3) = 9,

13 = (1)(1)(1) = 1 (1m = 1 for any m),

2−3 = 1
23

= 1
8
,

43

45
= 43−5 = 4−2 = 1

16
= 16−1.

Now try these:

(3−3)3 = [1 | 3−9 | 3−27 | none of these]

52

32
=
[(5

3

)2 ||||
(5

3

)−1 |||| 5−6
|||| none of these

]
43 = [12 | 16 | 26 | none of these]

Check your answers and try to track down any mistakes.

Then go to 79.
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79

Here are a few more problems.

100 = [0 | 1 | 10]

10−1 = [−1 | 1 | 0.1]

0.00003 =
[1

3
× 10−3 | 10−3 | 3 × 10−5

]
0.4 × 10−4 = [4 × 10−5 | 4 × 10−3 | 2.5 × 10−5]

3 × 10−7

6 × 10−3
=
[

1
2
× 1010

|||| 5 × 104
|||| 0.5 × 10−4

]

If these were all correct, go to 81.
If you made any mistakes, go to 80.

80

Here are the solutions to the problems in 79:

100 = 10
10

= 1

10−1 = 1
10

= 0.1,

0.00003 = 0.00001 × 3 = 3 × 10−5,

0.4 × 10−4 = (4 × 10−1) × 10−4 = 4 × 10−5,

3 × 10−7

6 × 10−3
= 3

6
× 10−7

10−3
= 1

2
× 10−7+3 = 0.5 × 10−4.

Go to 81.

81

Let’s introduce the idea of fractional exponents. If bn = a, then b is called the nth root of a
and is written b = a1∕n. Hence 161∕4 = (fourth root of 16) = 2. That is, 24 = 16.

Answers: Frame 75: a5 = none of these, ab+c = abac, a f ∕ag = a f−g, a0 = 1,
(ab)c = abc

Frame 77: 9, 1, 1/8, 16−1

Frame 78: 3−9, ( 5∕3)2, 26
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If y = am∕n, where m and n are integers, then y = (a1∕n)m. For instance

82∕3 = (81∕3)2 = 22 = 4.

Try these:

27−2∕3 =
[

1∕18 | 1∕18 | 1∕9 | − 18 | none of these
]

163∕4 = [12 | 8 | 6 | 64]

If right, go to 84.
If wrong, go to 82.

82

The answers are:

27−2∕3 = (271∕3)−2 = 3−2 = 1∕9,

163∕4 = (161∕4)3 = 23 = 8.

Do these problems:

253∕2 = [125 | 5 | 15 | none of these]
(0.00001)−3∕5 = [0.001 | 1000 | 10−15 | 10−25]

If your answers were correct, go to 84.
Otherwise, go to 83.

83

Here are the solutions to the problems in 82.

253∕2 = (251∕2)3 = 53 = 125,

(0.00001)−3∕5 = (10−5)−3∕5 = 1015∕5 = 103 = 1000.

Here are a few more problems. Encircle the correct answers.

(
27∕64 × 10−6

)1∕3 =
[

3∕400 || 3∕16 × 10−2 || 9∕64 × 10−4
]
,

(49 × 10−4)1∕4 =
[√

7∕10
|||| (10 × 7)−2

||||
√

7∕1000

]
.

Go to 84 after checking your answers.
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84

Although our original definition of am applied only to integral values of m, we have also
defined (am)1∕n = am∕n, where both m and n are integers. Thus we have a meaning for ap,
where p is either an integer or a fraction (ratio of integers).

As yet we do not know how to evaluate ap if p is an irrational number, such as 𝜋 or√
2. However, we can approximate an irrational number as closely as we desire by a fraction.

For instance, 𝜋 is approximately 31,416/10,000. This is in the form m∕n, where m and n are
integers, and we know how to evaluate it. Therefore, y = ax, where x is any real number, is a
meaningful expression in the sense that we can evaluate it as accurately as we please. (A more
rigorous treatment of irrational exponents can be based on the properties of suitably defined
logarithms.)

Try the following problem.

a𝜋ax

a3
=
[
a𝜋x∕3 || a𝜋+x−3 || a3𝜋x || a(𝜋+x)∕3

]
If right, go to 86.

If wrong, go to 85.

85

The rules given in frame 76 apply here as if all exponents were integers. Hence

a𝜋ax

a3
= a𝜋+x−3.

Here is another problem:

(𝜋2)(2𝜋) =
[
1 || (2𝜋)2𝜋 || 2𝜋2+𝜋 || none of these

]
If right, go to 87.

If wrong, go to 86.

Answers: Frame 79: 1, 0.1, 3 × 10−5, 4 × 10−5, 0.5 × 10−4

Frame 81: 1∕9, 8

Frame 82: 125, 1000

Frame 83: 3/400,
√

7∕10
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86

The quantity (𝜋2)(2𝜋) is the product of two different numbers raised to two different
exponents. None of our rules apply to this and, in fact, there is no way to simplify this
expression.

Now go to 87.

87

If you do not clearly remember logarithms, go to 88.
If you do, try the following test. Let x be any positive number, and let log x represent the

log of x to the base 10. Then:
10log x = .

Go to 88 for the correct answer.
88

The answer to 87 is x; in fact we will take the logarithm of x to the base 10 to be defined
by

10log x = x.

That is, the logarithm of a number x is the power to which 10 must be raised to produce
the number x itself. This definition only applies for x > 0. Here are two examples:

100 = 102, therefore log 100 = 2;
0.001 = 10−3, therefore log 0.001 = −3.

Now try these problems:

log 1,000,000 = [1,000,000 | 6 ∣ 60 ∣ 600]
log 1 = [0 | 1 | 10 | 100]

If right, go to 90.
If wrong, go to 89.

89

Here are the answers:

log 1,000,000 = log(106) = 6 (check, 106 = 1,000,000),

log 1 = log(100) = 0 (check, 100 = 1).
(continued)
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Try the following:

log(104∕10−3) = [107 | 1 | 10 | 7 | 70]
log(10n) = [10n | n | 10n | 10∕n]

log(10−n) = [−10n | − n | − 10n | − 10∕n]

If you had trouble with these, carefully review the material in this section.
Then go to 90.

90

Here are three important relations for manipulating logarithms, a and b are any positive
numbers:

log(ab) = log a + log b,

log(a∕b) = log a − log b,

log(an) = n log a.

If you are familiar with these rules, go to 92. If you want to see how they are derived,

Go to 91.
91

We can derive the required rules as follows. From the definition of log x, a = 10log a and
b = 10log b. Consequently, from the properties of exponentials,

ab = (10log a)(10log b) = 10log a+log b.

Taking the log of both sides, and again using log 10x = x gives

log (ab) = log 10log a+log b = log a + log b.

Similarly,

a∕b = 10log a10− log b = 10log a−log b.

log(a∕b) = log a − log b

Answers: Frame 84: a𝜋+x−3

Frame 85: None of these
Frame 88: 6, 0
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Likewise,
an = (10log a)n = 10n log a,

so that
log(an) = n log a.

Go to 92.

92

Try these problems:

If log n = −3, n =
[

1∕3 | 1∕300 | 1∕1000
]

10log 100 = [1010 | 20 | 100 | none of these]
log 1000

log 100
=
[

3∕2 | 1 | − 1 | 10
]

If right, go to 94.
If wrong, go to 93.

93

The answers are:

10log n = n, so if log n = −3, n = 10−3 = 1∕1000.

For the same reason,

10log 100 = 100.
log 1000

log 100
=

log 103

log 102
= 3

2
.

Try these problems:

1∕2 log 16 = [2 | 4 | 8 | log 2 | log 4]
log(log 10) = [10 | 1 | 0 | − 1 | − 10]

Go to 94.94

In this section we have discussed only logarithms to the base 10. However, any positive
number except 1 can be used as a base. Bases other than 10 are usually indicated by a subscript.

(continued)
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For instance, the logarithm of 8 to the base 2 is written log28, and is equal to 3 because 23 = 8.
If our base is denoted by r, then the defining equation for logrx is

r logrx = x.

All the relations explained in frame 91 are true for logarithms to any base (provided, of
course, that the same base is used for all the logarithms in each equation).

There is a special base number

e = 2.71828… ,

called Euler’s number, that is used to define natural logarithms that are usually designated by the
symbol ln x = logex. Euler’s number is an irrational number, and the three dots, known as an
ellipsis, indicate the indefinite continuation of that number. The defining equation for natural
logarithms is then

eln x = x.

From the defining equation, set x = e, then eln e = e, thus

ln e = 1.

The significance of this special property will be described in Chapter 2.

Go to 95.

95

From the definition of logarithm in the last frame we can obtain the rule for changing
logarithms from one base to another, for instance from base 10 to the base e. (Many calculators
give both log x, i.e. log10x, and ln x.) Take log10 of both sides of the defining equation eln x = x,

log(eln x) = log x.

Because log xn = n log x (frame 91), this gives ln x log e = log x or

ln x =
log x
log e

.

Answers: Frame 89: 7, n, −n
Frame 92: 1∕1000, 100, 3∕2

Frame 93: log 4, 0
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The numerical value of log e is 1∕(2.303 …) so

ln x = (2.303) log x.

If you have a calculator which evaluates both ln x and log x, check this relation for a few
values of x.

The ln x satisfies the same properties as log x as listed in frame 90,

ln(ab) = ln a + ln b,

ln(a∕b) = ln a − ln b,

ln(an) = n ln a.

Go to 96.

96

Before concluding Chapter 1 it is worth commenting on how to find the values of the
functions in this chapter. In former times one had to consult bulky books of tables. Today the
values are essentially instantly generated on simple and inexpensive calculators. The technique
for doing this will be explained in Chapter 4 in the section on Taylor’s formula. This technique
requires differential calculus, which is introduced in the next chapter.

On page 277, following the appendices and the solutions to the problems, there is
a collection of review problems with answers, an index to the symbols, and an index
to the text.

Before going on, here is a summary of Chapter 1 to help you review what you have
learned. Take a look if you feel that this would be helpful.

As soon as you are ready, go to Chapter 2.

Summary of Chapter 1

1.2 Functions (frames 3–13)
A set is a collection of objects—not necessarily material objects—described in such a way

that we have no doubt as to whether a particular object does or does not belong to the set. A
set may be described by listing its elements or by a rule.

A function is a rule that assigns to each element in a set A one and only one element
in a set B. The rule can be specified by a mathematical formula such as y = x2, or by
tables of associated numbers. If x is one of the elements of set A, then the element in set
B that the function f associates with x is denoted by the symbol f (x), which is usually
read as “f of x.”
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The set A is called the domain of the function. The set of all possible values of f (x) as x
varies over the domain is called the range of the function. The range of f need not be all of B.

When a function is defined by a formula such as f (x) = ax3 + b, then x is often called the
independent variable and f (x) is called the dependent variable. Often, however, a single letter is
used to represent the single variable as in y = f (x).

Here x is the independent variable and y is the dependent variable. In mathematics
the symbol x frequently represents an independent variable, f often represents the function,
and y = f (x) usually denotes the dependent variable. However, any other symbols may be
used for the function, the independent variable, and the dependent variable, for example,
x = H(r).

1.3 Graphs (frames 14–22)
A convenient way to represent a function is to plot a graph as described in frames 15–18.

The mutually perpendicular coordinate axes intersect at the origin. The axis that runs hor-
izontally is called the horizontal axis, or x-axis. The axis that runs vertically is called the
vertical axis, or y-axis. Sometimes the value of the x-coordinate of a point is called the
abscissa, and the value of the y-coordinate is called the ordinate. In the designation of a typ-
ical point by the notation (a, b), we will always designate the x-coordinate first and the
y-coordinate second.

The constant function assigns a single fixed number c to each value of the independent
variable x. The absolute value function ∣ x ∣ is defined by

∣ x ∣ =
{

x if x ≥ 0,
−x if x < 0.

1.4 Linear and Quadratic Functions (frames 23–39)
An equation of the form y = mx + b where m and b are constants is called linear because

its graph is a straight line. The slope of a linear function is defined by

Slope =
y2 − y1

x2 − x1
=

y1 − y2

x1 − x2
.

From the definition it is easy to see (frame 29) that the slope of the above linear equation
is m.

An equation of the form y = ax2 + bx + c, where a, b, and c, are constants (and a ≠ 0),
is called a quadratic equation. Its graph is called a parabola. The values of x at y = 0 satisfy
ax2 + bx + c = 0 and are called the roots of the equation. Not all quadratic equations have real
roots. The equation ax2 + bx + c = 0 has two roots given by

x =
−b ±

√
b2 − 4ac

2a
.
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1.5–1.6 Angles and Their Measurements; Trigonometry (frames
40–74)

Angles are measured in either degrees or radians. A circle is divided into 360 equal degrees.
The number of radians in an angle is equal to the length of the subtending arc divided by the
length of the radius (frame 42). The relation between degrees and radians is

1 rad = 360∘
2𝜋

.

Rotations can be clockwise or counterclockwise. An angle formed by rotating in a coun-
terclockwise direction is taken to be positive.

The trigonometric functions are defined in conjunction with the figure.
The definitions are

sin 𝜃 =
y
r
, cos 𝜃 = x

r
,

tan 𝜃 =
y
x
, cot 𝜃 = 1

tan 𝜃
= x

y
,

sec 𝜃 = 1
cos 𝜃

= r
x
, csc 𝜃 = 1

sin 𝜃
= r

y
.

θ

y-axis

x-axisx

y r

(x, y)

Although r =
√

x2 + y2 is always positive, x and y can be either positive or negative and
the above quantities may be positive or negative depending on the value of 𝜃. From the
Pythagorean theorem it is easy to see (frame 56) that

sin2𝜃 + cos2𝜃 = 1.

The sines and cosines for the sum of two angles are given by:

sin(𝜃 + 𝜙) = sin 𝜃 cos𝜙 + cos 𝜃 sin𝜙,

cos(𝜃 + 𝜙) = cos 𝜃 cos𝜙 − sin 𝜃 sin𝜙.
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The inverse trigonometric function designates the angle for which the trigonometric
function has the specified value. Thus the inverse trigonometric function to x = sin 𝜃 is
𝜃 = sin−1x and similar definitions apply to cos−1x, tan−1x, etc. [Warning: This notation is
standard, but it can be confusing: sin−1x ≠ (sin x)−1. An older notation for sin−1x is arc sin x.]

1.7 Exponentials and Logarithms (frames 75–95)
If a is multiplied by itself as aaa · · · with m factors, the product is written as am. Further-

more, by definition, a−m = 1∕am. From this it follows that

aman = am+n,

am

an
= am−n,

a0 = am

am
= 1,

(am)n = amn,

(ab)m = ambm.

If bn = a, b is called the nth root of a and is written as b = a1∕n. If m and n are integers,

am∕n = (a1∕n)m.

The meaning of exponents can be extended to irrational numbers (frame 84) and the
above relations also apply with irrational exponents, so (ax)b = axb, etc.

The definition of log x (the logarithm of x to the base 10) is

x = 10log x.

The following important relations can easily be seen to apply to logarithms (frame 91):

log(ab) = log a + log b,

log (a∕b) = log a − log b,

log(an) = n log a.

The logarithm of x to another base r is written as logrx and is defined by

x = r logrx.

The above three relations for logarithms of a and b are correct for logarithms to any base
provided the same base is used for all the logarithms in each equation.
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A particular important base is r = e = 2.71828… as defined in frame 109. Logarithms to
the base e are so important in calculus that they are given a different name; they are called
natural logarithms and written as ln. With this notation the natural logarithm of x is defined by

eln x = x.

If we take the logarithm to base 10 of both sides of the equation,

log eln x = log x,

ln x log e = log x,

ln x =
log x
log e

.

Because the numerical value of 1∕ log e = 2.303… ,

ln x = (2.303) log x.

The special value of e and the importance that ln e = 1 will be discussed in Chapter 2.
Continue to Chapter 2.
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CHAPTER TWO

Differential Calculus

In this chapter you will learn about

• The concept of the limit of a function;
• What is meant by the derivative of a function;
• Interpreting derivatives graphically;
• Shortcuts for finding derivatives;
• How to recognize derivatives of some common functions;
• Finding the maximum or minimum values of functions;
• Applying differential calculus to a variety of problems.

2.1 The Limit of a Function

97

Before diving into differential calculus, it is essential to understand the concept of the limit
of a function. The idea of a limit may be new to you, but it is at the heart of calculus, and it
is essential to understand the material in this section before going on. Once you understand
the concept of limits, you should be able to grasp the ideas of differential calculus quite readily.

Limits are so important in calculus that we will discuss them from two different points
of view. First, we will discuss limits from an intuitive point of view. Then, we will give a
precise mathematical definition.

Go to 98.

57
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58 Differential Calculus Chap. 2

98

Here is a little bit of mathematical shorthand, which will be useful in this section. Suppose
a variable x has values lying in an interval with the following properties:

1. The interval surrounds some number a.

2. The difference between x and a is less than another number B, where B is any number
that you choose.

3. x does not take the particular value a. (We will see later why this point is excluded.)

The above three statements can be summarized by the following:

|x − a| > 0 (This statement means x cannot have the value a.)
|x − a| < B (The magnitude of the difference between x and a is less than

the arbitrary numberB.)

These relations can be combined in the single statement:

0 < |x − a| < B.

(If you need to review the symbols used here, see frame 20.)
The values of x which satisfy 0< | x− a | <B are indicated by the interval along the x-axis

shown in the figure.

x-axis

B

allowed values of x
(x = a excluded) 

a + Baa – B

B

Go to 99.
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99

We begin our discussion of limits with an example. We are going to work with the
equation y = f (x) = x2, as shown in the graph. P is the point on the curve corresponding
to x = 3, y = 9.

0 21 3 4 5

5

10

15

20

25

A y = 1

C
B

P A′

y = 25

y-axis

x-axis

Let us concentrate on the behavior of y for values of x in an interval about x = 3. For
reasons we shall see shortly, it is important to exclude the particular point of interest P, and to
remind us of this, the point is encircled on the curve.

We start by considering values of y corresponding to values of x in an interval about x = 3,
lying between x = 1 and x = 5. With the notation of the last frame, this can be written as
0< | x− 3 | < 2. This interval for x is shown by line A in the figure. The corresponding
interval for y is shown by line A′ and includes points between y = 1 and y = 25, except y = 9.

A smaller interval for x is shown by line B. Here 0< | x− 3 |< 1, and the corresponding
interval for y is 4< y< 16, with y = 9 excluded.

The interval for x shown by the line C is given by 0< | x− 3 |< 0.5. Write the corre-
sponding interval for y in the blank below, assuming y = 9 is excluded.

In order to find the correct answer, go to 100.

100

The interval for y which corresponds to 0< | x− 3 |< 0.5 is

6.25 < y < 12.25,

(continued)
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which you can check by substituting the values 2.5 and 3.5 for x in y = x2 in order to find
the values of y at either end point.

So far we have considered three successively smaller intervals of x about x = 3 and the
corresponding intervals of y. Suppose we continue the process. The drawing shows the plot
y = x2 for values of x between 2.9 and 3.1. (This is an enlarged piece of the graph in frame
99. Over the short distance shown the parabola looks practically straight.)

9.0

8.5

9.5

8.0

2.9 3.13.0

P

Three small intervals of x around x = 3 are shown along with the corresponding interval
in y. The table below shows the values of y, corresponding to the boundaries of x at either
end of the interval. (The last entry is for an interval too small to show on the drawing.)

Interval
of x

Corresponding
interval of y

1 – 5 1 – 25
2 – 4 4 – 16

2.5 – 3.5 6.25 – 12.25
2.9 – 3.1 8.41 – 9.61

2.95 – 3.05 8.70 – 9.30
2.99 – 3.01 8.94 – 9.06

2.999 – 3.001 8.994 – 9.006

Go to 101.
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101

We hope it is apparent from the discussion in the last two frames that as we diminish
the interval for x around x = 3, the values for y = x2 cluster more and more closely about
y = 9. In fact, it appears that we can make the values for y cluster as closely as we please about
y = 9 by merely limiting x to a sufficiently small interval about x = 3. Because this is true, we
say that the limit of x2, as x approaches 3, is 9. We write this as

lim
x→3

x2 = 9.

Let’s put this in more general terms. If a function f (x) is defined for values of x about some
fixed number a, and if, as x is confined to smaller and smaller intervals about a, the values
of f (x) cluster more and more closely about some specific number L, the number L is called
the limit of f (x) as x approaches a. The statement that “the limit of f (x) as x approaches a is
L” is customarily abbreviated by

lim
x→a

f (x) = L.

In the example at the top of the page f (x) = x2, a = 3, and L = 9.
The important idea in the definition is that the intervals we use lie on either side of the

point of interest a, but that the point itself is not included. The value of the function f (a)
when x = a may be different from lim

x→a
f (x), as we shall see.

To summarize the mathematical argument in more familiar language: in the spirit of “Any-
thing you can do I can do better!” the challenge to an opponent is “Pick a point as close as you
want to L as you please, and I can find a point close to a for which f (x) will be closer to L
than the point that you chose.”

Go to 102.

102

You may be wondering why we have been giving such a complicated
discussion of an apparently simple problem. Why bother with lim

x→3
x2 = 9 when it is obvious

that x2 = 9 for x = 3?
The reason is that the value of a function for a particular x = a may not be defined, whereas

the limit as x approaches a is perfectly well defined. For instance at 𝜃 = 0 the function sin 𝜃/𝜃
has the value 0/0, which is not defined. Nevertheless

lim
𝜃→0

sin 𝜃
𝜃

= 1.

(continued)



Trim Size: 7.375in x 9.25in Kleppner743194 c02.tex V1 - 03/15/2022 3:17 P.M. Page 62�

� �

�

62 Differential Calculus Chap. 2

You can see that this result is reasonable by graphing the function sin 𝜃/𝜃 as shown below.
If you have a calculator, explore for yourself values of sin 𝜃/𝜃 as 𝜃 approaches zero. If you try
to evaluate the function at 𝜃 = 0, most calculators will indicate an error. This is as it should
be because the function is not defined at 𝜃 = 0. Nevertheless, its limit is well defined and has
the value 1. (This is formally proved in Appendix A12.)

sin θ

2
3
2

2
2

–3π
2

–2π

1.0

0.5

–π π π π π π–
θ (radians)

θ

The actual procedure for finding a limit varies from problem to problem. For those inter-
ested in learning more, there are a number of theorems for finding the limits of simple
functions in Appendix A2. As another illustration consider

f (x) = x2 − 1
x − 1

.

For x = 1, f (1) = 1−1

1−1
= 0

0
, which is not defined. However, we can divide through by x− 1

provided x is not equal to 1, and we obtain

f (x) = x2 − 1
x − 1

= (x + 1)(x − 1)
x − 1

. = x + 1.

Therefore, even though f (1) is not defined,

lim
x→1

f (x) = lim
x→1

(x + 1) = 2.

Formal justification of these steps is given in Appendix A2, along with a number of rules
for handling limits. (There is no need to read the appendix now unless you are really inter-
ested.)

We could also have obtained the above result graphically by studying the graph of the
function in the neighborhood of x = 1 as we did in frame 99.

Go to 103.
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103

To see whether you have caught on, find the limit of the following slightly more compli-
cated functions by procedures similar to the ones described in frame 102. (You will probably
have to work these out on paper. Both of them involve a little algebraic manipulation.)

(a) lim
x→0

(1 + x)2 − 1
x

= {1 | x | −1| 2}

(b) lim
x→0

1 − (1 + x)3

x
= {1 | x | 3 | −3}

If right, go to 105.
Otherwise, go to 104.

104

Here are the solutions to the problems in frame 103:

(a) lim
x→0

(1 + x)2 − 1
x

= lim
x→0

(1 + 2x + x2) − 1
x

= lim
x→0

2x+ x2

x
= lim

x→0
(2+ x) = lim

x→0
2+ lim

x→0
x = 2+ 0= 2.

(b)

lim
x→0

1 − (1 + x)3

x
= lim

x→0

1 − (1 + x)(1 + x)(1 + x)
x

= lim
x→0

1 − (1 + 3x + 3x2 + x3)
x

= lim
x→0

(−3 − 3x − x2)

= lim
x→0

(−3) + lim
x→0

(−3x) + lim
x→0

(−x2) = −3.

(These steps are formally justified in Appendix A2.)

Go to 105.

105

So far we have discussed limits using expressions such as “confined to a smaller and smaller
interval” and “clustering more and more closely.” These expressions convey the intuitive
meaning of a limit, but they are not precise mathematical statements. Now we are ready for a

(continued)
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precise definition of a limit. (Because it is an almost universal custom, in the definition of a
limit we will use the Greek letters 𝛿 (delta) and 𝜀 (epsilon).)

Definition of a Limit:

Let f (x) be defined for all values of x in an interval centered about x = a but not necessarily
at x = a. If there is a number L such that to each positive number 𝜀 there corresponds a positive
number 𝛿 such that

| f (x) − L| < 𝜀 provided 0 < |x − a| < 𝛿,

we say that L is the limit of f (x) as x approaches a, and write

lim
x→a

f (x) = L.

To see how to apply this definition,

Go to 106.

106

Suppose we assert that lim
x→a

f (x) = L, and an opponent disagrees. The formal definition

of a limit in frame 105 provides a clear basis for settling the dispute as to whether the limit
exists and is L. As a first step, we tell the opponent to pick any positive number 𝜀 no matter
how small, say 0.001, or if the opponent wants to be difficult, 0.00001. Our task is to find
some other number 𝛿, such that for all x in the interval 0< | x− a | <𝛿, the difference
between f (x) and L is smaller than 𝜀. If we can always do this, we win the argument—the
limit exists and is L. These steps are illustrated for a particular function in the drawings below.

x

L

a

2δ

f (x)

2ε

x

L

a

2ε

f (x)

Our opponent has challenged us
to find a δ to fit this ε.

Here is one choice of δ. Obviously,
for all values of x in the interval
shown, f (x) will satisfy | f (x) – L | < ε.

Answer: Frame 103: 2, −3
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It may be that our opponent can find an 𝜀 such that we can never find a 𝛿, no matter how
small, that satisfies our requirement. In this case, she wins and f (x) does not have the limit L.
(In frame 114 we will come to an example of a function that does not have a limit.)

Go to 107.

107

In the examples we have studied so far, the function has been expressed by a single
equation. However, this is not necessarily the case. Here is an example:

f (x) = 1 for x ≠ 2,

f (x) = 3 for x = 2.

(The symbol ≠ means “not equal.”)
A sketch of this peculiar function is shown. You should be able to convince yourself that

lim
x→2

f (x) = 1, whereas f (2) = 3.

5–1 43210

2

3

1

f (x)

x

If you would like further explanation of this, go to 108; otherwise, go to 109.

Go to 108.
108

For every value of x except x = 2, the value of f (x) = 1. Consequently, f (x)− 1 = 0 for all
x except x = 2. Because 0 is less than the smallest positive number 𝜀 that your opponent could
select, it follows from the definition of a limit that lim

x→2
f (x) = 1, even though f (2) = 3.

Continue with 109.
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109

Calculator Problem

Here is another function which has a well-defined limit at a point but which can’t be
evaluated at that point: f (x) = (1+ x)1/x. Although the value of f (x) at x = 0 is puzzling, it is
possible to find lim

x→0
(1 + x)1∕x.

Most calculators have the function yx. If you have such a calculator, determine the values
in Table 1:

Table 1

x f (x) = (1+ x)1/x

1

0.1

0.01

0.001

0.0001

0.00001

The limit of (1+ x)1/x as x→ 0 will play a key role in our study of logarithms. Its value is
given a special symbol, e. Like 𝜋, e is an unending and unrepeating decimal; it is irrational.
The value of e is 2.7182818 . . . . If you tried evaluating e with a calculator, the last entry
in the table should give correct values for the first four digits after the decimal point. A proof
that lim

x→0
(1 + x)1∕x = e is presented in Appendix A4.

Go to 110.

110

The actual procedure for finding a limit varies from problem to problem. For those inter-
ested in learning more, there are a number of theorems for finding the limits of simple
functions in Appendix A2. The result mentioned earlier,

lim
𝜃→0

sin 𝜃
𝜃

= 1,

is proved in Appendix 12.
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sinθ

2
3π
2

2π
2

–3π
2

–2π

1.0

0.5

θ

θ (radians)
–π ππ π–

You can see that this result is reasonable by graphing the function sin 𝜃/𝜃 as shown above.
If you have a calculator, explore for yourself values of sin 𝜃/𝜃 as 𝜃 approaches zero. The
function is not defined at 𝜃 = 0, but its limit is well defined and has the value 1.

Go to 111.

111

Continuous Function

So far in most of our discussion of limits we have been careful to exclude the actual
value of f (x) at the point of interest, a. In fact, f (a) does not even need to be defined for the
limit to exist (as in the last frame). However, frequently f (a) is defined. If this is so, and if in
addition

lim
x→a

f (x) = f (a),

then the function is said to be continuous at a. To summarize, fill in the blanks:

A function f (x) is continuous at x = a if

1. f (a) is .

2. lim
x→a

f (x) = .

Check your answers in frame 112.
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112

Here are the answers: A function f (x) is continuous at x = a if

1. f (a) is defined.

2. lim
x→a

f (x) = f (a).

A more picturesque description of a continuous function is that it is a function you can
graph without lifting your pencil from the paper in the region of interest.

Try to determine whether each of the following functions is continuous or discontinuous
(not continuous) at the point indicated.

1. f (x) = x2 + 3
9 − x2

.

At x = 3, f (x) is {continuous | discontinuous}

2. f (x) =
{

1, x ≥ 0,
0, x < 0.

At x = 1, f (x) is {continuous | discontinuous}

3. f (x) = |x|.
At x = 0, f (x) is {continuous | discontinuous}

4. f (x) = sin x
x

.

At x = 0, f (x) is {continuous | discontinuous}

If you made any mistakes, or want more explanation, go to 113.
Otherwise, skip on to 114.

113

Here are the explanations of the problems in frame 112.

1. At x = 3, f (x) = x2+3

9−x2
= 12

0
. This is an undefined expression and, therefore, the function

is not continuous at x = 3.
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2. Here is a plot of the function given.

–3 –2 3–1 210

2

1

x

f (x)

This function satisfies both conditions for continuity at x = 1, and is thus continuous
there. (It is, however, discontinuous at x = 0.)

3. Here is a plot of f (x) = | x |.
f (x) =   x

x

This function is continuous at x = 0 because it satisfies all the formal requirements.

4. As discussed in frame 110, sin x/x is not defined at x = 0, and so it is discontinuous at this
point. (It is, however, continuous for all other values of x.)

Go to 114.

114

Before leaving the subject of limits, it is worth looking at some examples of functions that
somewhere have no limit. One such function is presented in problem 2 of the previous frame.
The graph of the function is shown in the figure. We can prove that this function has no limit
at x = 0 by following the procedure described in the definition of a limit.

(continued)
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–3 –2 –1 3210

2

1

x

f (x)

For purposes of illustration, suppose we guess that lim
x→0

f (x) = 1. Next, our opponent

chooses a value for 𝜀, say 1/4. Now, for |x− 0 |<𝛿, where 𝛿 is any positive number,

| f (x) − 1| =
{|1 − 1 | = 0 if x > 0,

|0 − 1 | = 1 if x < 0.

Therefore, for all negative values of x in the interval, | f (x)− 1| = 1, which is greater
than 𝜀 = 1/4. Thus 1 is not the limit. You should be able to convince yourself that there
is no number L, which satisfies the criterion because f (x) changes by 1 when x jumps from
negative to positive values.

Go to 115.

115

Here is another example of a function that has no limit at a particular point. From the graph
it is obvious that cot 𝜃 has no limit as 𝜃→ 0. Instead of clustering more and more closely to any
number, L, the value of the function gets increasingly larger as 𝜃→ 0 in the direction shown
by A, and increasingly more negative as 𝜃→ 0 in the direction shown by B.

2 2

1.0

2.0

3.0

–1.0

–2.0

–3.0

cot(θ)

4.0

–4.0

AB

–π π π π–
θ

Answer: Frame 112: (1) discontinuous, (2) continuous, (3) continuous, (4) discontinuous
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This concludes our study of the limit of a function for the present. If you want some more
practice with limits, see review problems 21–28 start on page 284. Now we are ready to go
on to the next section, a discussion about velocity.

Go to 116.

2.2 Velocity

116

Our discussion has become a little abstract, so before we go on to differential calculus,
let’s talk about something down to earth: motion. As a matter of fact, Leibniz and Newton
invented calculus because they were concerned with problems of motion, so it is a good place
to start. Besides, you already know quite a bit about motion.

Go to 117.

117

In this chapter, we will only consider motion along a straight line. Here is a warm-up
problem.

A train travels away at a velocity v mph (miles per hour). At t = 0, it is distance S(0) = S0
from us. (The subscript on S0 is to avoid confusion. S0 is a particular distance and is a constant;
S(t) is a function that gives the distance the train is from us at time t.) Write the equation
for S(t) in terms of time t. (Take the unit of t to be hours.)

S(t) = .

Go to 118 for the answer.

118

If you wrote S(t) = S0 + vt, you are correct. Go on to frame 119.
If your answer was not equivalent to the above, try to convince yourself that this answer is

correct. Note that it yields S0 when t = 0, as required. The equation is that of a straight line,
and it might be worthwhile reviewing the section on linear functions, frames 23–39, before
continuing. Whenever you are satisfied with this result,

Go to 119.
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119

100

0

4 80 2
t (hours)

S 
(m

ile
s)

 

6

200

300

400

Here is a plot of the positions at different times of a train going in a straight line. Obviously,
this represents a linear equation. Write the equation for the position of this train (in miles)
in terms of time (in hours).

S(t) = .

Find the velocity of the train from your equation.

v = .

Go to 120 for the correct answers.

120

Here are the answers to the questions in frame 119.

S(t) = −60t + 300 mi,

v = −60 mph.

The velocity is negative because S(t) decreases as time increases. (Note that the velocity along
a straight line is positive or negative depending on the direction of motion. The speed, which
is the magnitude of the velocity, is always positive.) If you would like further discussion, review
frames 33 and 34.

Go to 121.
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121

Here is another plot of position of a train traveling in a straight line.

t

S (t)

The property of the line that represents the velocity of the train is the
of the line.

Go to 122 for the answer.

122

The property of the line that represents the velocity of the train is the slope of the line.
If you wrote this, go right on to 123. If you wrote anything else, or nothing at all, then you

may have forgotten what we reviewed back in frames 23–39. It would be worthwhile going
over that section once again (particularly frames 33 and 34) and think about this problem
before going on. At least convince yourself that the slope really represents the velocity.

Go to 123.

123

In the figure below are plots of the positions vs. time of six objects moving along straight
lines. Which plot corresponds to the object that

Has the greatest velocity forward? {a | b | c | d | e | f }

Is moving backward most rapidly? {a | b | c | d | e | f }

Is at rest? {a | b | c | d | e | f }
(continued)
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S (t)

a

t

c fb d

e

If all right, go to 125.
If any wrong, go to 124.

124

The velocity of the object is given by the slope of the plot of its position against time.
Don’t confuse the slope of a line with the line’s location.

S (t)

t t

S (t)

a
b

c

d

All these lines have different slopes. All the above lines have the same slope. 

A positive slope means that position is increasing with time, which corresponds to a posi-
tive velocity. Likewise, a negative slope means that position is decreasing in time, which means
the velocity is negative. If you need to review the idea of slope, look at frames 25–27 before
continuing.

Which line in the figure above on the right has

Negative slope? {a | b | c | d}

Greatest positive slope? {a | b | c | d}

Go to 125.
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125

So far, the velocities we have considered have all been constant in time. But what if
the velocity changes?

t

S (t)

S2

S1

t2t1

(t1,S1)

(t2, S2)

Here is a plot of the position of a car whose velocity is varying while it moves along a
straight line. In order to describe this, we introduce the average velocity v (read as “v bar”).
This is the ratio of the change in position to the time taken. The change in position is called
the displacement. For example, between the times t1 and t2 the displacement of the car is S2 − S1,
so (S2 − S1)/(t2 − t1) is its during the time.

Go to 126.

126

The answer to frame 125 is

(S2 − S1)∕(t2 − t1) is its average velocity during the time interval t2 − t1.

(The single word “velocity” is not a correct answer because the velocity was changing during
this interval.)

Go to 127.
127

In addition to defining the average velocity v algebraically,

v =
S2 − S1

t2 − t1
,

we can interpret v graphically. If we draw a straight line between the points (t1, S1) and
(t2, S2), then the average velocity is simply the slope of that line.

t

S (t)

S2

S1

t2t1 Go to 128.
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128

During which interval in the figure was the average velocity

Closest to 0? {1 | 2 | 3}
Largest forward? {1 | 2 | 3}
Largest backward? {1 | 2 | 3}

t

S (t)

1

32

A

B

C

If right, go to 130.
If wrong, go to 129.

129

Let us analyze the last problem in detail.

t

S (t)

A

B

C

I

II III

Here are straight lines drawn through the points A, B, C. Line I has a small positive slope
and corresponds to almost 0 velocity. Line II has positive slope, and line III has negative slope,
corresponding to positive and negative average velocities, respectively.

Go to 130.

Answers: Frame 123: d, b, e
Frame 124: d, a
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130

We now extend our idea of velocity in a very important manner: instead of asking,
“What is the average velocity between time and t1 and t2?” let us ask, “What is the veloc-
ity at time t1?” The velocity at a particular time is called the instantaneous velocity. This is
a new term, and we will give it a precise definition shortly even though it may already be
familiar to you.

Go to 131.

131

(t2, S2)

(t1, S1)

l

A

B

t

S(t)

We can give a graphical meaning to the idea of instantaneous velocity. The average veloc-
ity is the slope of a straight line joining two points on the curve, (t1, S1) and (t2, S2). To
find the instantaneous velocity, we want t2 to be very close to t1. As we let point B on the
curve approach point A (i.e. as we consider intervals of time starting at t1 that become
shorter and shorter), the slope of the line joining A and B approaches the slope of the line,
which is labeled l. The instantaneous velocity is then the slope of line l. In a sense, then,
the straight line l has the same slope as the curve at the point A. Line l is called a tangent to
the curve at A.

Go to 132.

132

Here is where the idea of a limit becomes very important. If we draw a straight line
through the given point A on the curve and some other point on the curve B and then let
B get closer and closer to A, the slope of the straight line approaches a unique value and can
be identified with the slope of the curve at A. What we must do is consider the limit of the
slope of the line through A and B as B→A.

Now, go to 133.
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133

We can now give a precise meaning to the intuitive idea of instantaneous velocity as the
slope of a curve at a point. We start by considering the average velocity:

v = (S2 − S1)∕(t2 − t1) = the slope of the line connecting points 1 and 2.

t

S (t)

S2

S1 (t1,S1)

(t2, S2)

t1 t2

t2

S2 S1

t1

v

t

S (t)

S2

S1 (t1, S1)

(t2, S2)

t1 t2

t2

S2 S1

t1

v(t1)

As t2 → t1, the average velocity approaches the instantaneous velocity, that is, v → v(t1)
as t2 → t1, or

v(t1) = lim
t2→t1

S2 − S1

t2 − t1
.

Go to 134.

134

Because the ideas presented in the last few frames are important, let’s review them.
If a point moves from S1 to S2 during the time t1 to t2, then

(S2 − S1)∕(t2 − t1)

is the , v.

If we consider the limit of the average velocity as the averaging time goes to zero, the result
is called the , v.

Now let’s try to present these ideas in a neater form. If you can, write a formal definition
of v in the blank space.

v =

Go to frame 135 for the answers.

Answer: Frame 128: 1, 2, 3
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135

The correct answers to frame 134 are the following:
If a point moves from S1 to S2 during the time t1 to t2, then (S2 − S1)∕(t2 − t1) is the

average velocity, v.
If we consider the limit of the average velocity as the averaging time goes to zero, the result

is called the instantaneous velocity, v.

v = lim
t2→t1

S2 − S1

t2 − t1
.

If you wrote this, congratulations! Go on to 136. If you wrote something different, go
back to frame 133 and work your way to this frame once more.

Then go on to 136.

136

The Greek capital letter Δ (“delta”) is often used to indicate the change in a variable.
Thus, to make the notation more succinct, we can write ΔS = S2 − S1, and Δt = t2 − t1.
(ΔS is a single symbol read as “delta S”; it does not mean Δ× S.) Although this notation may
be new, it saves lots of writing and is worth the effort to get used to.

S (t)

t-axis

S2

S1 (t1,S1)

(t2,S2)

t1 t2

ΔS

Δt

With this notation, our definition of instantaneous velocity is

v = .

Go to 137 to find the correct answer.
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137

If you wrote

v = lim
Δt→0

S2 − S1

t2 − t1
or v = lim

Δt→0

ΔS
Δt

,

go ahead to frame 138.

If you missed this, review frames 134–136 before going to 138.

138

Now we are going to calculate an instantaneous velocity by analyzing an example step
by step. Later on we will find shortcuts for doing this.

Suppose that we are given the following expression relating position and time:

S(t) = kt2 (k is a constant).

The goal is to find ΔS = S(t+Δt)− S(t), for any Δt, and then to evaluate the limit ΔS/Δt
as Δt→ 0.

Here are the steps

ΔS = S(t + Δt) − S(t) = k(t + Δt)2 − kt2

= k[t2 + 2t Δt + (Δt)2] − kt2

= k[2t Δt + (Δt)2],
ΔS
Δt

= k[2t Δt + (Δt)2]
Δt

= 2kt + k Δt,

v = lim
Δt→0

ΔS
Δt

= lim
Δt→0

(2kt + k Δt) = 2kt.

A simpler problem for you to try is in the next frame.

Go to 139.

139

Suppose we are given that S(t) = v0t+ S0. The problem is to find the instantaneous velocity
from our definition.

In time Δt the point moves distance ΔS.

ΔS = .

v = lim
Δt→0

ΔS
Δt

= .

Write in the answers and go to 140.
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140

If you wrote ΔS = v0 Δt and v = lim
Δt→0

ΔS

Δt
= lim

Δt→0

v0Δt

Δt
= v0,

you are correct and can skip on to frame 142.

If you wrote something different, study the detailed explanation in frame 141.

141

Here is the correct procedure. Because S(t) = v0t+ S0,

ΔS = S(t + Δt) − S(t)
= v0(t + Δt) + S0 − (v0t + S0)
= v0 Δt,

lim
Δt→0

ΔS
Δt

= lim
Δt→0

v0 Δt
Δt

= lim
Δt→0

v0 = v0.

The instantaneous velocity and the average velocity are the same in this case because
the velocity is a constant, v0.

Go to frame 142.

142

Here is a problem for you to work out. Suppose the position of an object is given by

S(t) = kt2 + bt + S0,

where k, b, and S0 are constants. Find v(t).

v(t) = lim
Δt→0

ΔS
Δt

= .

To check your answer, go to 143.



Trim Size: 7.375in x 9.25in Kleppner743194 c02.tex V1 - 03/15/2022 3:17 P.M. Page 82�

� �

�

82 Differential Calculus Chap. 2

143

The answer is v(t) = 2kt+ b. If you obtained this result and are ready to move on to
the next section, go to frame 146.

Otherwise, go to 144.
144

Here is the solution to the problem in frame 142.

S(t) = kt2 + bt + S0,

S(t + Δt) = k(t + Δt)2 + b(t + Δt) + S0

= k[t2 + 2t Δt + (Δt)2] + b(t + Δt) + S0,

ΔS = S(t + Δt) − S(t) = k[2t Δt + (Δt)2] + b Δt,

v(t) = lim
Δt→0

ΔS
Δt

= lim
Δt→0

{
k[2t Δt + (Δt)2] + b Δt

Δt

}
= lim

Δt→0
[k(2t + Δt) + b] = 2kt + b.

Now try this problem:

If S(t) = At3, where A is a constant, find v(t).

Answer:

To check your solution, go to 145.
145

Here is the answer: v(t) = 3At2. Go right on to frame 146 unless you would like to see
the solution, in which case continue here.

S(t) = At3,

ΔS = S(t + Δt)3 − St3

= A[t3 + 3t2 Δt + 3t(Δt)2 + (Δt)3] − At3

= 3At2 Δt + 3At(Δt)2 + A(Δt)3,

v(t) = lim
Δt→0

ΔS
Δt

= lim
Δt→0

[3At2 + 3At Δt + A(Δt)2] = 3At2.

Go to frame 146.
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2.3 Derivatives

146

In this section we will generalize our results on velocity. This will lead us to the idea of the
derivative of a function, which is at the heart of differential calculus.

Go to 147.

147

To launch the discussion, let’s start with a couple of review questions.
When we write S(t) we are stating that position depends on time.
Here position is the dependent variable and time is the variable.

The velocity is the rate of change of position with respect to time. By this we mean that
velocity is (give the formal definition again):

v(t) =

Go to frame 148 for the correct answers.
148

In the last frame you should have written … time is the independent variable, and v(t) =
lim
Δt→ 0

ΔS

Δt
.

Go on to 149.

149

Let us consider any continuous function defined by y = f (x). Here y is our dependent
variable, and x is our independent variable. If we ask “At what rate does y change as x
changes?,” we can find the answer by taking the following limit:

Rate of change of y with respect to x = lim
Δx→0

Δy
Δx

.

Go on to 150.
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150

You can give a geometrical meaning to lim
Δx→0

Δy

Δx
, where y = f (x). To do so, fill in the blanks:

Geometrically, lim
Δx→0

Δy

Δx
can be found by drawing a straight line through the point (x, y)

and the point ( , ) as shown. The slope of that line is given by Δy

Δx
, and lim

Δx→0

Δy

Δx
is

the of the tangent line to the curve at (x, y).

x

y (x)

y

x + Δxx

y + Δy

Go on to 151.

151

The correct insertions for frame 150 are

(x + Δx,y + Δy) and lim
Δx→0

Δy
Δx

.

For brevity, the slope of the tangent to a curve is usually called the slope of the curve.
(If you would like to see a discussion of this, review frame 131 before continuing.)

Go on to 152.

152

Another way of writing Δy

Δx
is

Δy
Δx

=
y2 − y1

x2 − x1
=

y(x2) − y(x1)
x2 − x1

.

If the notation used here still seems unfamiliar, review frame 136 before proceeding.

Go on to 153.
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153

Let’s review just once more. Fill in the blank below.
If we want to know how y changes as x changes, we find out by calculating the following

limit:

Go on to 154.

154

The correct answer to frame 153 is

lim
Δx→0

Δy
Δx

or lim
x2→x1

y2 − y1

x2 − x1
.

If you were correct, go on to 155.
If you missed this, go back to 149.

155

Because the quantity lim
Δx→0

Δy

Δx
is so useful, we give it a special name and a special sym-

bol: lim
Δx→0

Δy

Δx
is called the derivative of y with respect to x, and it is often written with the

symbol dy

dx
,

dy
dx

= lim
Δx→0

Δy
Δx

,

where Δy = y(x+Δx)− y(x).

Once again: dy

dx
is the of with respect to .

Go to 156 for the correct answer.

156

The answer is
dy
dx

is the derivative of y with respect to x.

This symbol is read as “dee y by dee x.” The derivative is frequently written in another
form:

dy
dx

= y′.

(continued)
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(The symbol y′ is read as “y prime.”) y′ and dy

dx
mean the same thing:

y′ =
dy
dx

= lim
Δx→0

Δy
Δx

.

(Another symbol sometimes used for the derivative operator is D. Thus Dy = y′. However,
we will not use the “D” symbol.)

Having two separate symbols for the derivative may look confusing at first, but they should
both quickly become familiar. Each has its advantages. The symbol dy

dx
leaves no doubt that

the independent variable is x, whereas y′ might be ambiguous: because y could be a func-
tion of some other variable, z. (To avoid confusion, the “prime” form is sometimes written
as y′(x).) On the other hand, the symbol dy

dx
can be cumbersome to write. More seriously,

in the form dy

dx
the derivative looks like the simple ratio of two quantities, dy and dx, which it

is not.
We can apply the idea of a derivative to the notion of velocity, which we discussed earlier.

Instantaneous velocity is the rate of change of position with respect to time, in other words,
instantaneous velocity is the derivative of position with respect to time. Unless otherwise
specified, velocity will be used as the common meaning of instantaneous velocity.

Go to 157.

157

Let’s state the definition of a derivative using different variables. Suppose z is some
independent variable, and q depends on z. Then the derivative of q with respect to z is
defined by

dq
dz

= .

For the right answer, go to 158.

158

The correct answer is
dq
dz

= lim
Δz→0

Δq
Δz

.

If correct, go to 159.
If not, review to frame 155 and try again.
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159

We have established the definition of df /dx, but there is more to explore. The symbol
df /dx can be thought of as a derivative operator d

dx
, operating on the function f .

If f (x) = x3 + 3, then the derivative can be written in any of the following forms:

df
dx

= d(x3 + 3)
dx

= d
dx

(x3 + 3).

Similarly, if f (𝜃) = 𝜃2 sin 𝜃, then

d(𝜃2sin 𝜃)
d𝜃

= d
d𝜃

(𝜃2sin 𝜃).

(Here, 𝜃 is merely another variable.)
Thus d

dx
( ) means differentiate with respect to x whatever function f (x) happens to be

in the parentheses. For functions such as sin 𝜃 that are not products, the derivative will be
written as d

dx
sin 𝜃 with no parentheses. The symbol df

dx
means that one should obtain an

expression for

Δ f = f (x + Δx) − f (x),

and then use it to evaluate
df
dx

= lim
Δx→0

Δ f
Δx

.

However, as we shall see, there are lots of shortcuts for calculating derivatives.

Go to 160.

2.4 Graphs of Functions and Their Derivatives

160

We have just learned the formal definition of a derivative. Graphically, the derivative of a
function f (x) at some value of x is equivalent to the slope of the straight line that is tangent
to the graph of the function at that point. Our chief concern in the rest of this chapter will

(continued)
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be to find methods for evaluating derivatives of different functions. In doing this it is helpful
to have some intuitive idea of how the derivative behaves, and we can obtain this by looking
at the graph of the function. If the graph has a steep positive slope, the derivative is large
and positive. If the graph has a slight slope downward, the derivative is small and negative.
In this section we will get some practice putting to use such qualitative ideas as these, and in
the following sections we will learn how to obtain derivatives precisely.

Go to 161.

161

Here is a plot of the simple function y = x. We have plotted y′ = dy

dx
. Because the slope

of y is positive and constant, y′ is a positive constant.

–1

2

y

x0

–2

1

3

–3 –2 –1 1 2 3

2

–1

x0

1

–2

3

–3 –2 –1 1 2 3

y′

The graph indicates that d

dx
x = 1. Can you prove this?

Go to 162.
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162

To prove that d

dx
x = 1, let y(x) = x. Then

Δy = y(x + Δx) − y(x) = x + Δx − x = Δx.

Hence,
dy
dx

= lim
Δx→0

Δy
Δx

= lim
Δx→0

Δx
Δx

= 1.

Here is a plot of y = |x|. (If you have forgotten the definition of |x|, see frame 20.)

2

–1

y

x0

1

–2

3

–3 –2 –1 1 2 3

On the coordinates below, sketch y′.

2

–1

x0

1

–2

–3 –2 –1 1 2 3

y′

For the correct answer, go to 163.
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163

Here are sketches of y = | x| and y′. If you drew this correctly, go on to 164. If you made
a mistake or want further explanation, continue here.

–1

2

y

x0

–2

1

3

–3 –2 –1 1 32

2

–1

y′

x0

1

–2

3

–3 –2 –1 1 2 3

As you can see from the graph, y = | x | = x for x> 0. So for x> 0 the problem is identical
to that in frame 161, and y′ = 1. However, for x< 0, the slope of |x| is negative and is easily
seen to be −1. At x = 0, the slope is undefined, for it has the value +1 if we approach 0 along
the positive x-axis and has the value −1 if we approach 0 along the negative x-axis. Therefore,
d

dx
|x| is discontinuous at x = 0. (The function |x| is continuous at this point, but the break

in its slope at x = 0 causes a discontinuity in the derivative.)

Go to 164.

164

Here is the graph of a function y = f (x). Sketch its derivative in the space provided below.
(The sketch does not need to be exact—just show the general features of y′.)
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See 165 for the correct answer.
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165

Here is the function and its derivative. If your sketch of y′ is similar to that shown, go
to 166. Otherwise, read on.

–2.5 –2 –1.5 –1 –0.5
0

0.5

1
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y
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0

0.5

–0.5

–1

–1.5

–2

1

1.5

2

y′

x

0.5 1 1.5 2 2.5

To see that the plot of y′ is reasonable note that for x< 0, y increases with x so that y′

is positive. The slope of y is greatest near point B, but it must abruptly decrease beyond B
because it vanishes at C(x = 0). At D, y is decreasing rapidly, so y′ is negative. At the points,
A and E, the slope of y is small and y′ is close to zero.

Go to 166.
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166

Let’s look at the behavior of y′ graphically for one more function. Here the plot of y and x
is a semicircle. In the space below, make a rough sketch of y′ for the interval illustrated.

0

0

–1

–1 1

–1

1

1

1

x

x

y

y′

Go to 167 for the correct answer.
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167

Here are the plots of y and y′. Read on if you would like further discussion of this.
Otherwise, go to 168.

0

0

–1

–1

–1

1

1

1

1

x

x

y

y′

The slope of the semicircle does not behave nicely at the extreme values of x, so let’s start
by looking at x = 0. If we draw a line tangent to the curve at x = 0, it will be parallel to the
x-axis, so the curve has 0 slope. Thus, y′ = 0 at x = 0. For x> 0, a line tangent to the curve
has negative slope, so y′ < 0. As x approaches 1 the tangent becomes increasingly steep, and y′

becomes increasingly negative. In fact, as x→ 1, y′ → −∞.
From this discussion it should be easy to find y′ for x< 0.

Go to 168.

168

If you understand all the examples in this section, skip on to the next section. However,
if you would like a little more practice, try sketching the derivatives for each function shown.
The correct sketches are given in frame 169 without any discussion.
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For the correct sketches, go to 169.
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169

Here are the solutions to the problems in frame 168.
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Convince yourself that the curves for y′ have the general features we expect by comparing
y′ with the slope of a tangent to the graph of y = f (x) at a few particular values of x.
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2.5 Differentiation

170

We have accomplished a great deal in this chapter. In fact, all the really important
new ideas involved in differential calculus have been introduced—limits, slopes of curves,
and derivatives—and you are equipped in principle to apply these to solve a great variety
of problems. However, using the fundamental definition to calculate the derivative in each
problem as it comes along would be time-consuming. It would also be a great waste of time
because there are numerous rules and tricks for differentiating apparently complicated
functions in a few short steps.

You will learn the most important of these rules in the following sections. You will
also learn how to differentiate a few functions that occur so often that it is useful to know
and remember their derivatives. These include a few of the trigonometric functions, loga-
rithms, and exponentials. The remaining sections cover some special topics, as well as appli-
cations of differential calculus to some problems. By the end of this chapter you should be
able to use differential calculus for many applications. Well, let’s get going!

Go to 171.

171

Can you find the derivative of the following simple function?

y = a (a is a constant).
y′ = {1| x | a | 0 |none of these}

If right, go to 173.
If wrong, go to 172.
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172

To find y′, we go back to the definition dy

dx
= lim

Δx→0

Δy

Δx
. If y = a,

Δy
Δx

=
y(x + Δx) − y(x)

Δx
= a − a

Δx
= 0.

(Remember that the meaning of y(x+Δx) is y evaluated at x+Δx.)

lim
Δx→0

Δy
Δx

= lim
Δx→0

0 = 0.

Go to 173.

173

Because y′ = 0, the plot of y in terms of x has 0 slope. (Figure 4 in frame 32 shows this
graphically.)

You have just seen that the derivative of a constant is 0. Now, try to find the derivative
of this function:

y = ax (a = constant).
dy
dx

= {1 | x | a | 0 | ax | none of these}

If right, skip to 175.
If wrong, go to 174.

174

Here is the formal procedure:

y(x) = ax,

y(x + Δx) − y(x) = a(x + Δx) − ax = (ax + aΔx) − ax = aΔx.

Therefore
dy
dx

= lim
Δx→0

Δy
Δx

= lim
Δx→0

a Δx
Δx

= a.

Answer: Frame 171: 0
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Now try to find the derivative of the function f = −x.

f ′ = {1 | 0 | a | −1 | −x}

If correct, go to 175. If wrong, note that this problem is just a special case of 173. Try
again and then

Go to 175.
175

Now we are going to find the derivative of a quadratic function. Suppose

y = f (x) = x2.

What is y′ ?
You should be able to work this out from the definition of the derivative. Choose the cor-

rect answer:

y′ = {1 | x | 0 | x2 | 2x}
If right, skip to 175.
If wrong, go to 174.

176

Let us again apply the definition of the derivative:

y′ =
dy
dx

= lim
Δx→0

y(x + Δx) − y(x)
Δx

.

In this case, y(x+Δx) = (x+Δx)2 = x2 + 2x Δx+ (Δx)2, so

lim
Δx→0

y(x + Δx) − y(x)
Δx

= lim
Δx→0

[x2 + 2x Δx + (Δx)2] − x2

Δx

= lim
Δx→0

2x Δx + (Δx)2

Δx
= lim

Δx→0
(2x + Δx) = 2x,

y′ =
dy
dx

= 2x.

Go to 177.
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177

We have found the result that d

dx
x2 = 2x. To illustrate this, a graph of y(x) = x2 is drawn

in the figure. Because the slope of the curve at a point is simply the derivative at that point,
each of the straight lines tangent to the curve has a slope equal to the derivative evaluated
at the point of tangency.

–3/2 –1 –1/2 0

1/2

1

3/2

2

1/2 1 3/2

(a) slope = 0

(b) slope = 1

(c) slope = –2

y

x

The tangent through the origin has a slope of (2)(0) = 0. Line (b) passes through the point
x = 1/2, and has slope (2)( 1/2) = 1. Line (c) passes through the point x = −1, and has slope
(2)(−1) = −2.

Go to 178.

178

Here is a problem that summarizes the results we have had so far in this section (with a
tiny bit of new material).

If f (x) = 3x2 + 7x+ 2, find f ′.

f ′ = .

See frame 179 for the correct answer.

Answers: Frame 173: a
Frame 174: −1
Frame 175: 2x
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179

If f (x) = 3x2 + 7x+ 2, then f
′ = 6x+ 7.

Congratulations if you obtained this answer. Go on to 180. Otherwise, read below.
After you have finished this chapter, you will know several shortcuts for evaluating this

derivative. However, right now we will use the basic definition:

f ′ =
df
dx

= lim
Δx→0

Δ f
Δx

,

f (x) = 3x2 + 7x + 2,

f (x + Δx) = 3[x2 + 2xΔx + (Δx)2] + 7(x + Δx) + 2,

Δ f = f (x + Δx) − f (x) = 6x Δx + 3(Δx)2 + 7Δx,

so

df
dx

= lim
Δx→0

(
6xΔx + 3(Δx)2 + 7Δx

Δx

)
= lim

Δx→0
(6x + 3Δx + 7)

= 6x + 7.

Go to 180.

180

Now that we have found the derivatives d

dx
x = 1 and d

dx
x2 = 2x, our next step is to find

the derivative of xn, where n is any number. We will state the rule here; you can find the proof
in Appendix A4.

The result is

d
dx

xn = nxn−1.

This important result holds for all values of n: positive, negative, integral, fractional, irra-
tional, etc. Note that our previous result, d

dx
x2 = 2x, is the particular case of this when n = 2,

and d

dx
x = 1 is the particular case when n = 1.

Go to 181.
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181

Now for a few problems.
Find dy

dx
for each of the following functions.

y = x3,
dy
dx

= [3x3 ∣ 3x2 ∣ 2x3 ∣ x2]

y = x−7,
dy
dx

= [−7x−6 ∣ 7x−7 ∣ −7x−8 ∣ −6x−7]

y = 1
x2
,

dy
dx

=
[
−2x

|||| 2
x

||||− 2
x3

]

If all these were correct, go to 183.
If you made any errors, go to 182.

182

The solutions to these problems depend directly on the rule in frame 180. Here are
the details.

We use our general rule: d

dx
xn = nxn−1.

y(x) = x3; in this case n = 3, so
d
dx

x3 = 3x3−1 = 3x2.

y(x) = x−7; here n = −7, so
d
dx

x−7 = −7x−7−1 = −7x−8.

y(x) = 1∕x2 = x−2; here n = −2, so
d
dx

( 1
x2

)
= −2x−2−1 = −2x−3 = −2

x3
.

Now try these problems:

y = 1
x
,

dy
dx

=
[
1 + 1

x
| −1

x
| − 1

x2
|2]

y = −1
3

x−3,
dy
dx

=
[
x−4| −3x−4|−1

4
x−2| + x−2

]

If right, go on to 183.
If wrong, go back to 180 and continue from there.
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183

Here is another problem.

If y(x) = x1/2, find dy

dx
.

The answer is
[
x−1∕2| 1

2
x−1∕2| 1

2
x|none of these

]
.

If right, go to 185.
If wrong, go to 184.

184

The rule d

dx
xn = nxn−1 is true for any value of n. In this case, n = 1/2,

d
dx

x1∕2 = 1
2

x(1∕2−1) = 1
2

x−1∕2.

Try this problem:

d
dx

x2∕3 =
[
x−1∕3

|||| 2
3

x−2∕3
|||| 2

3
x−1∕3

|||| x5∕3

]

Go to 185.

2.6 Some Rules for Differentiation

185

In this section we are going to learn a number of shortcut rules for differentiation without
having to go all the way back to the definition of the derivative each time. Some of these rules
are derived here; others are derived in Appendix A.

For the rest of this section, we will let u(x) and v(x) stand for any two functions that
depend on x.

Go to 186.
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186

Sum Rule:
Our first rule will let us evaluate the derivative of the sum of u(x) and v(x) in terms of their

derivatives. We will derive the rule here. Let

y(x) = u(x) + v(x).

Then

dy
dx

= lim
Δx→0

[u(x + Δx) + v(x + Δx) − u(x) − v(x)]
Δx

= lim
Δx→0

[u(x + Δx) − u(x)]
Δx

+ lim
Δx→0

[v(x + Δx) − v(x)]
Δx

= du
dx

+ dv
dx

.

Hence the rule is
d
dx

(u + v) = du
dx

+ dv
dx

.

If you would like a rigorous justification of the manipulation of the limits in the above
proof, see Appendix A2.

Go to 187.

187

Now let’s put the above rule to use by computing the derivative of the following function
(you will also have to use some results from the last section):

y = x4 + 8x3.

dy
dx

= .

For the correct answer, go to frame 188.

Answers: Frame 181: 3x2, −7x−8, −2/x3

Frame 182: −1/x2, x−4

Frame 183: 1

2
x−1∕2

Frame 184: 2

3
x−1∕3
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188

The answer to the question in frame 187 is
d
dx

(x4 + 8x3) = 4x3 + 24x2.

If you obtained this answer, go to frame 189. Otherwise, continue here to find your
mistake.

Our problem is to find the derivative of the sum of two functions. To make use of the
rule in frame 186 in the notation used there, suppose we let u(x) = x4, v(x) = 8x3.

Then

d
dx

(u + v) = d
dx

(x4 + 8x3) = d
dx

x4 + d(8x3)
dx

.

You can evaluate these two derivatives from the result of the last section:
d
dx

x4 = 4x3,
d
dx

(8x3) = 24x2.

Hence, d

dx
(x4 + 8x3) = 4x3 + 24x2.

Go to 188.

189

The Product Rule:

Now that we can differentiate the sum of two variables, our next task is to learn to dif-
ferentiate the product of two functions, for instance, f (x) = u(x)v(x). We want to express
d

dx
(uv) in terms of du

dx
and dv

dx
. The result, known as the product rule, will be stated here. Look

in Appendix A7 if you want to see how it is derived.

d
dx

(uv) = u
dv
dx

+ v
du
dx

= uv′ + vu′.

Go to 190.

190

Here is an example in which the product rule is used. Suppose

y(x) = (x5 + 7)(x3 + 17x).
(continued)
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The problem is to find dy

dx
. If we let u(x) = x5 + 7 and v(x) = x3 + 17x, then y(x) = u(x)v(x).

dy
dx

= d
dx

(uv) = u
dv
dx

+ v
du
dx

.

Because du

dx
= 5x4 and dv

dx
= 3x2 + 17, our result is

dy
dx

= (x5 + 7)(3x2 + 17) + (x3 + 17x)(5x4).

Note that it is considered good practice to simplify expressions such as this by collecting terms
in like powers of x. To save time in this chapter, you need not do so.

By using the product rule, we can derive in another way a result we have already found:
d

dx
x2 = 2x. If we let u(x) = x and v(x) = x, then the product rule tells us that

dx2

dx
= x

dx
dx

+ x
dx
dx

= 2x.

Go to 191.

191

Use the product rule to find the derivative d

dx
[(3x + 7)(4x2 + 6x)].

Answer:

See 192 for the solution.

192

The answer is
(3x + 7)(8x + 6) + (4x2 + 6x)(3).

If you obtained this or an equivalent result, go on to 194. Otherwise, read below.
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The problem is to differentiate the product of 3x+ 73x + 7 and 4x2 + 6x. Suppose we let
u(x) = 3x+ 7 and v(x) = 4x2 + 6x. Then u

′ = 3 and v
′ = 8x+ 6. Hence

d
dx

(uv) = uv′ + vu′ = (3x + 7)(8x + 6) + (4x2 + 6x)(3).

Try this problem:

What is d

dx
[(2x + 3)(x5)]?

Answer:

The solution is in 193.

193

The answer is

d
dx

[(2x + 3)(x5)] = (2x + 3)(5x4) + (x5)(2).

The method for obtaining this result is shown in frame 192. You can use the rule in frame
180 for differentiating xn in order to find d

dx
x5 = 5x4.

Go to 194.

194

The Quotient Rule:

Frame 189 stated the product rule: (uv)
′ = uv

′ + vu
′
. Sometimes one needs to differentiate

the quotient of two functions, u(x)/v(x). Here is the rule. It will be proven later in this section,
in frame 206.

d
dx

(u
v

)
=

v(du∕dx) − u(dv∕dx)
v2

= vu′ − uv′

v2
.

Go to 195.
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195

Solve the following problem:

d
dx

(1 + x
x2

)
=

The correct answer is in 196.

196

The answer to the problem in 195 is

d
dx

(1 + x
x2

)
= − 1

x2
− 2

x3
.

If right, go to 198.
If wrong, go to 197 for help.

197

Let u(x) = 1+ x, v(x) = x2. Then du

dx
= 1, dv

dx
= 2x.

d
dx

(u
v

)
=

v(du∕dx) − u(dv∕dx)
v2

,

d
dx

(u
v

)
= x2 − (1 + x)(2x)

x4
= x2 − 2x − 2x2

x4
= − 2

x3
− 1

x2
.

Go to 198.

198

The Chain Rule:

This frame describes a helpful rule for finding the derivative of a “function of a function.”
Suppose f (u) is a function that depends on u, and u(x) in turn depends on x. Then f (u(x)) also
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depends on x. The following rule is proved in Appendix A7.

df
dx

=
df
du

du
dx

.

This formula is called the chain rule because it links together derivatives with related vari-
ables. It is one of the most frequently used rules in differential calculus.

Here is an example: suppose we want to differentiate f (x) = (x+ x2)2. This is a complicated
function. It looks much simpler if we let u(x) = (x+ x2), in which case f = u2. Then

df
dx

=
df
du

du
dx

= du2

du
du
dx

= 2u
du
dx

.

We now substitute u = (x+ x2), and du

dx
= 1 + 2x, to obtain

df
dx

= 2(x + x2)(1 + 2x).

(You can check that the chain rule gives the right answer in this case by multiplying out
the expression for f , and then differentiating it. You will find that the answer is equivalent
to df /dx found above.)

Caution: The chain rule would be a simple identity if df /dx and du/dx could be treated
as ratios of independent quantities df , du, and dx. However, this is not the case; one cannot
cancel du in the numerator and denominator. (Nevertheless, this fiction makes a handy way
to remember the chain rule!)

Go to 199.

199

Here are a few more examples of the use of the chain rule.

1. Find d

dt
(
√

1 + t2).
Suppose we let w(t) =

√
1 + t2, and u(t) = 1+ t2, so that w(u) =

√
u. Then

dw
dt

= dw
du

du
dt

= 1

2
√

u
(2t)

= 1
2

1√
1 + t2

2t = t√
1 + t2

.

(continued)
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2. Let v =
(

q3 + 1

q

)−3
; find dv

dq
.

This problem can be simplified by letting p(q) =
(

q3 + 1

q

)
and v(p) = p−3. With these

symbols the chain rule is

dv
dq

= dv
dp

dp
dq

= −3p−4 dp
dq

= −3p−4

(
3q2 − 1

q2

)

= −3

(
q3 + 1

q

)−4 (
3q2 − 1

q2

)
.

The following example will not be explained, because you should be able to work it
by inspection.

3. d
dx

(
1 + 1

x

)2

= 2
(

1 + 1
x

)(
− 1

x2

)
.

Go to 200.

200

Now try the following problem:
Which expression correctly gives d

dx
(2x + 7x2)−2?

(a) (−2)(2+ 14x)−3

(b) (−2)(2+ 14x)−2(2x+ 7x2)

(c) (2x+ 7x2)−3(2+ 14x)

(d) (−2)(2x+ 7x2)−3(2+ 14x)

The correct answer is [a ∣ b ∣ c ∣ d ]

If right, go to 203.
Otherwise, go to 201.

201

Here is how to work the problem in 200. Suppose we let u(x) = 2x+ 7x2 and w(u) = u−2.
Then

du
dx

= 2 + 14x.
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Hence

dw
dx

= dw
du

du
dx

= du−2

du
du
dx

= −2u−3 du
dx

= −2(2x + 7x2)−3(2 + 14x).

Try this problem:

Find dw

ds
, where q(s) = s2 + 4 and w(q) = 12q4 + 7q

dw
ds

= .

For the solution, go to 202.

202

The problem in frame 201 can be solved by using the chain rule:

dw
ds

= dw
dq

dq
ds
.

We are given that w(q) = 12q4 + 7q and q(s) = s2 + 4, so

dw
dq

= 48q3 + 7 and
dq
ds

= 2s.

Substituting these, we have

dw
ds

= (48q3 + 7)(2s) = [48(s2 + 4)3 + 7](2s).

If you found this result, go on to 203. Otherwise, study the last few frames to make sure
you understand how to use the chain rule. Don’t be confused by the names of variables.

Then go to 203.
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203

The next problem is to use the chain rule to derive d

dx

(
1

v

)
in terms of v and dv

dx
, where

v(x) depends on x. Which of the following answers correctly gives d

dx

(
1

v

)
?

[
− 1

v2

dv
dx

|||| 1
dv∕dx

|||| dx
dv

|||| − dv
dx

|||| none of these

]
If right, go to 205.

If wrong, go to 204.

204

To find d

dx

(
1

v

)
, we apply the chain rule as follows. Suppose we let f = 1

v
= v−1 with df

dx
=

df

dv

dv

dx
, where df

dv
= d

dv
v−1 = − 1

v2
. Thus

d
dx

(1
v

)
= − 1

v2

dv
dx

.

Note that because we are not given explicitly v(x), the derivative dv/dx in the answer is
also not known. Go to 205.

205

By combining the result of the last frame with what you have learned previously, you
should be able to derive the expression for the derivative of the quotient of two functions.
This is an extremely important relation. Try to work it out for yourself without using the quo-
tient rule.

Find d

dx

(
u

v

)
in terms of u, v, du

dx
, dv

dx
.

d
dx

(u
v

)
= .

To check your answer, go to 206.

Answer: Frame 200: d
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206

You should have obtained the following quotient rule, which was presented without proof
in frame 194, though possibly arranged differently,

d
dx

(u
v

)
= vu′ − uv′

v2
.

If you wrote this or an equivalent statement, go on to 207. Otherwise, study the derivation
below.

If we let p = 1

v
, then our derivative is that of the product of two variables

d
dx

(u
v

)
= d

dx
(up) = u

dp
dx

+ p
du
dx

.

Now dp

dx
= dp

dv

dv

dx
= − 1

v2

dv

dx
, as in frame 194, so

d
dx

(u
v

)
= − u

v2

dv
dx

+ 1
v

du
dx

=
v(du∕dx) − u(dv∕dx)

v2
.

Go to 207.

207

Before going on to new material, let’s summarize all the rules for differentiation we have
used so far. Fill in the blanks. a and n are constants, u and v are variables that depend on x, w
depends on u, which in turn depends on x.

da
dx

= .
d
dx

(u + v) = .

d(ax)
dx

= .
d(uv)
dx

= .

dx2

dx
= .

d
dx

(u
v

)
= .

dxn

dx
= .

d
dx

[w(u)] = .

To check your answers, go to 208.
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208

Here are the correct answers. The frame in which the relation was introduced is shown
in parentheses.

da
dx

= 0. (172)

d(ax)
dx

= a. (174)

dx2

dx
= 2x. (176)

dxn

dx
= nxn−1. (180)

d
dx

(u + v) = du
dx

+ dv
dx

. (186)

d(uv)
dx

= u
dv
dx

+ v
du
dx

. (189)

d
dx

(u
v

)
=

v(du∕dx) − u(dv∕dx)
v2

.

(194)
d
dx

[w(u)] = dw
du

du
dx

. (198)

If you would like some more practice on problems similar to those in the last two sections,
see review problems 34 through 38 on pages 279–280.

Go to 209.

2.7 Differentiating Trigonometric Functions

209

Trigonometric functions occur in so many applications that it is useful to know their
derivatives. For instance, we would like to know d

d𝜃
sin 𝜃. By definition,

d
d𝜃

sin 𝜃 = lim
Δ𝜃→0

sin (𝜃 + Δ𝜃) − sin 𝜃
Δ𝜃

.

Answer: Frame 203: − 1

v2

dv

dx
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It is not at all obvious how to evaluate this expression, so let’s take another approach for a
minute and try to guess geometrically what the result should be by looking at a plot of sin 𝜃.

Here is a plot of sin 𝜃 vs. 𝜃 over the interval 0 ≤ 𝜃 ≤ 2𝜋. (𝜃 is measured in radians.)

0
2 3 4 5

1

1

/ 2 3 / 2 5 / 2 7 / 2 / 29

sin

(rad)

0
2 3 4 5

1

1

/ 2 3 / 2 5 / 2 7 / 2 / 29

d(sin )
d

(rad)

Draw a sketch of d

d𝜃
sin 𝜃 in the space provided. To check your sketch,

Go to 210.
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210

0
2π 3π 4π 5π

–1

1

/ 2 3π / 2 5π / 2 7π / 2 / 29π

sin θ

θ
π π

0
2π 3π 4π 5π

–1

1

/ 2 5π / 2 9π/ 2 3π / 2 7π / 2

d

dθ
sin θ

θ
π π

Here are drawings of sin 𝜃 and d

d𝜃
sin 𝜃. Note that where the slope of sin 𝜃 is greatest, at 0

and 2𝜋, d

d𝜃
sin 𝜃 has its greatest value, and that where the slope is 0, at 𝜃 = 𝜋/2 and 𝜃 = 3𝜋/2,

d

d𝜃
sin 𝜃 is 0.

(If your sketch looked very different from the drawing shown above, you should review
frames 160 and 169. This problem is quite similar to problem (c) in frame 168.)

Now, by looking at the graphs, you may be able to guess the correct answer for d

d𝜃
sin 𝜃.

Can you?
d
d𝜃

sin 𝜃 = .

Go to frame 211 to see if your answer is right.
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211

Here is the rule:
d
d𝜃

sin 𝜃 = cos 𝜃.

Congratulations if you guessed this result in the last frame! If you arrived at some other
result, study the drawings in frame 209 and compare the second one with the graph of cos 𝜃
shown below. (The formal proof that d

d𝜃
sin 𝜃 = cos 𝜃 is given in Appendix A6.)

It is important to realize that this relation is true only when the angle is measured
in radians—this is why the radian is such a useful unit.

Let’s try to guess the result for d

d𝜃
cos 𝜃 from a plot of cos 𝜃.

0
2π 3π 4π 5π

–1

1

/ 2 3π / 2 5π / 2 7π / 2 / 29π

cos θ

θ
π π

0
2π 3π 4π 5π

–1

1

/ 2 5π / 2 9π/ 2 3π / 2 7π / 2

d

dθ
cos θ

θ
π π

Draw a sketch of d

d𝜃
. cos 𝜃 in the space provided, and make a guess at the result.

d
d𝜃

cos 𝜃 = .

Go to 212.
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212

Here are plots of cos 𝜃 and d

d𝜃
cos 𝜃. The result is d

d𝜃
cos 𝜃 = −sin 𝜃,

0
2π 3π 4π 5π

–1

1

/ 2 3π / 2 5π / 2 7π / 2 / 29π

cos θ

π π
θ

0
2π 3π 4π 5π

–1

/ 2 5π / 2 9π/ 2 3π / 2 7π / 2

d

dθ
cos θ

π π
θ

1

as should seem reasonable from the graph. This relation also is formally proved
in Appendix A6.

To summarize:
d
d𝜃

sin 𝜃 = cos 𝜃.

d
d𝜃

cos 𝜃 = −sin 𝜃.

Go to 213.

213

Using these results, find d

d𝜃
tan 𝜃. (Hint: use tan 𝜃 = sin 𝜃

cos 𝜃
and apply the quotient rule,

frame 194.)

d
d𝜃

tan 𝜃 = .
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Using the hints in frame 212 we have

d
d𝜃

tan 𝜃 = d
d𝜃

( sin 𝜃
cos 𝜃

)

=
cos 𝜃

d(sin 𝜃)
d𝜃

− sin 𝜃
d(cos 𝜃)

d𝜃
cos 2𝜃

= cos 2𝜃 + sin 2𝜃

cos 2𝜃
= 1

cos 2𝜃
= sec2𝜃.

Now find the correct answer:
d
d𝜃

sec 𝜃 = [sec 𝜃 tan 𝜃| − sec 𝜃 tan 𝜃| sec 𝜃]

If right, go to 215.
If wrong, go to 214.

214

Using the definition sec 𝜃 = 1

cos 𝜃
, and the result in frame 204, we have

d
d𝜃

sec 𝜃 = d
d𝜃

( 1
cos 𝜃

)
= − 1

cos 2𝜃

d
d𝜃

cos 𝜃

= + 1
cos 2𝜃

sin 𝜃 = tan 𝜃
cos 𝜃

= sec 𝜃 tan 𝜃.

(All three of these expressions are acceptable.)

Go to 215.

215

Choose the correct answer:

d
d𝜃

(sin 𝜃)2 = [sin 𝜃 | 2cos 𝜃 | cos 𝜃2 | 2sin 𝜃 cos 𝜃]

If right, go to 217.
If wrong, go to 216.
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216

You could have analyzed the problem as follows:

Suppose we let u(𝜃) = sin 𝜃. Then du

d𝜃
= cos 𝜃, and

d
d𝜃

(sin 𝜃)2 = d
d𝜃

(u2) = d
du

(u2)du
d𝜃

= 2u
du
d𝜃

= 2sin 𝜃cos 𝜃.

If you did not get this result, where did you go wrong? Find your error and be sure you
understand it. Then

Go to 217.
217

Which of the following is d

d𝜃
cos (𝜃3)?

[cos 𝜃 sin (𝜃3) ∣ −3𝜃2sin (𝜃3) ∣ 3cos 2(𝜃3)sin (𝜃3) ∣ 3cos 2𝜃]

If right, skip on to frame 221.
If wrong, go to frame 218.

218

Did you forget how to use the chain rule to differentiate a function of a function? We can
think of cos(𝜃3) as a function of a function. Suppose we write it this way:

f (u) = cos u, u = 𝜃3.

Then
df
d𝜃

=
df
du

du
d𝜃

,

df
du

= −sin u = −sin (𝜃3), du
d𝜃

= 3𝜃2,

so
d
d𝜃

cos (𝜃3) = −3𝜃2sin (𝜃3).
Go to 219.

Answer: Frame 213: sec𝜃 tan 𝜃
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219

If 𝜔 (Greek letter omega) is a constant, which expression correctly gives d

dt
sin (𝜔t)?

[cos𝜔 t ∣ 𝜔cos𝜔 t ∣ sin𝜔 t ∣ none of these]
If right, go to frame 221.

Otherwise, go to 220.

220

To solve problem in 219, let f (u) = sin u, u = 𝜔t,

df
dt

=
df
du

du
dt

= cos u
d(𝜔 t)

dt
= 𝜔cos (𝜔t).

Go to frame 221.

221

Before going on to the next section, let’s state once more the important relations we have
introduced in this section:

d
d𝜃

sin 𝜃 = cos 𝜃,

d
d𝜃

cos 𝜃 = −sin 𝜃.

There are two other functions that are so common that it is worth knowing their deriva-
tives by heart: logarithmic and exponential. To learn about them,

Go to 222.

2.8 Differentiating Logarithms and Exponentials

222

Our next task is to learn how to differentiate logarithms. If you feel shaky about logarithms,
review frames 75–95 of Chapter 1 before going on to the next frame.

Go to 223.
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223

In this section we are going to work with natural logarithms, ln x = logex, with x> 0.
Natural logarithms were defined in frame 94. The base e = 2.71828… was discussed in
frame 109.

Table 2 lists values of lnx for a few values of x.

Table 2.2

x ln x x ln x

1 0 30 3.40

2 0.69 100 4.61

e 1 300 5.70

3 1.10 1000 6.91

10 2.30 3000 8.01

Using Table 2 and the rules for manipulating logarithms, find the answer that is most
nearly correct for each of the following questions:

ln 6 = [2.2 ∣ 3.1 ∣ 6∕e ∣ 1.79]

ln
√

10 = [1.15 ∣ 2.35 ∣ 2.25 ∣ 1.10]
ln 3003 = [126 ∣ 185 ∣ 17.10 ∣ 3.41]

If all your answers are correct, go to 225.
If you made any mistakes, go to 224.

Answers: Frame 215: 2 sin 𝜃 cos 𝜃

Frame 217: −3𝜃2 sin(𝜃3)

Frame 219: 𝜔 cos(𝜔t)
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224

The rules for manipulating logarithms are summarized in frame 91. These rules apply
to logarithms to any bases, including the base e.

ln 6 = ln ((2)(3)) = ln 2 + ln 3 = 0.69 + 1.10 = 1.79,

ln
√

10 = ln 101∕2 = 1
2

ln 10 = 1
2

2.30 = 1.15,

ln 3003 = 3 ln 300 = (3)(5.70) = 17.10.
Go on to 225.

225

Calculator Problem:

Here is a plot of ln x vs. x. If your calculator provides ln x, check some of the points
on this graph.

–3

–2

1

–1

2

3

0
1 2 43 5 6 7 98 10

Slope = 1/2

= 2

= 1/5

Slope 

Slope 

Slope = 1/

x

ln x

10

You can find the qualitative features of d

dx
ln x by inspecting the graph. For small values

of x the derivative is large, and for large values of x the derivative is small. In the figure above
tangents are shown at a few points, and their slopes are listed in this table.

x Slope

1/2 2
2 1/2
5 1/5
10 1/10

Perhaps you can guess the formula for d

dx
ln x. Try to fill in the blank.

d
dx

ln x = .

To see the correct expression, go to 226.
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226

Here is the formula for the derivative of a natural logarithm:

d
dx

ln x = 1
x
.

If you did not guess this result, you can check that it agrees with the numerical values in the
table in frame 225.

The reason that e is so useful as a base for logarithms is that it leads to this simple expression.
This relation is derived in Appendix A9, and it is so important that it is worth committing
to memory.

Go to 227.

227

Calculator Problem:

Using a calculator, you can numerically confirm that d

dx
ln x = 1

x
. The procedure is to

calculate value of ln(x+Δx)−ln x

Δx
for successively smaller values of Δx. The result should

approach 1/x.
Try the following for x = 5, for instance, or any other value you may wish to choose. For

x = 5, ln x = 1.6094, and d(ln x)/dx = 1/5 = 0.2.

Δx ln(x+Δx)
ln(x + Δx) − ln x

Δx

2
1
0.1
0.01

Go to 228.

Answer: Frame 223: 1.79, 1.15, 17.10
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228

Try this problem: Which of the following gives d

dx
ln(x2)?

[
2 ln x

||||2x
|||| 1

x2

|||| 2
x2

|||| 2
x

ln x
]

If right, go to 230.
Otherwise, go to 229.

229

The solution of this problem is straightforward if we use the chain rule. However, let’s
solve it a different way. Because ln(x2) = 2 ln x,

d
dx

ln(x2) = d
dx

(2 ln x) = 2
x
.

You should be able to do this one:

d
dx

(ln x)2 =
[
2 ln x

||||2 ln x
x

|||| 2
ln x

|none of these|]

If right, go to 231.
Otherwise, go to 230.

230

Use the chain rule:

d
dx

(ln x)2 = (2 ln x)
( d

dx
ln x

)
= 2 ln x

x
.

Go to 231.
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231

(a) d
dr

ln r = .

(b) d
dz

ln(5z) = .

For the correct answers, go to 232.

232

The correct answers are

(a)1
r
; (b)1

z
.

If you got both of these, you are doing fine: skip ahead to frame 234. If you missed either
or would like a worked solution.

Go to frame 233.

233

(a) d

dr
ln r = 1

r
for the same reason that d

dx
ln x = 1

x
. It makes no difference whether the vari-

able is called r or x.

(b) The simplest way to find d

dx
ln(5z) is to recall that ln(5z) = ln 5+ ln z. Hence,

d
dz

ln(5z) = d
dz

ln 5 + d
dz

ln z = 0 + 1
z
= 1

z
.

Go to 234.

Answers: Frame 228: 2/x

Frame 229: 2 ln x/x
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234

Logarithmic Derivatives:

Here is a function involving exponentials that is interesting to differentiate:

y = f (x) = ax (a is a positive constant).

(Warning: Do not confuse ax with xa. We are sticking to the convention that x is a variable
and a is a constant.) We can differentiate ax by first taking the natural logarithm:

ln y = ln f (x) = ln(ax) = x ln a.

The derivative of ln f (x) with respect to x is

d
dx

ln f = d
dx

(x ln a) = ln a.

Recall that
d
dx

ln y = 1
y

dy
dx

.

Now equate the two expressions for derivatives obtaining

1
y

dy
dx

= ln a,

which we can solve for the derivative
dy
dx

= (ln a)y,

and so
d
dx

ax = ax ln a.

This example can be generalized to any function y = f (x) for which f (x)≠ 0 for a
range of values of x. This technique is useful for certain functions y = f (x) in which lnf (x)
can be simplified as much as possible using properties of the natural logarithm (frame 95),
and if the derivative d

dx
ln f is fairly straightforward to calculate. Then the derivative we are

seeking is
dy
dx

=
( d

dx
ln f

)
y.

Go to 235.
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235

The preceding frame gave the result

d
dx

ax = ax ln a.

A simple but important case occurs when a = e. Because ln e = 1,

d

dx
ex = ex.

Try finding the values for the following:

(a)
d
dx

ecx =

(b)
d
dx

e−x =

See 236 for the answers.

236

The answers are

(a)
d
dx

ecx = cecx,

(b)
d
dx

e−x = −e−x.

If you did both of these correctly, go to 237. Otherwise, continue here.
The result (a) is obtained by letting u(x) = cx and following the usual procedure for a

function of a function (i.e., using the chain rule, frame 194). Thus

d
dx

ecx = d
du

eu du
dx

= euc = cecx.

The result (b) is a special case of (a) with c = −1.

Go to 237.
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237

Calculator Problem:

You can confirm numerically that d

dx
ex = ex in the same way that you confirmed d

dx
ln x = 1

x
in frame 227. Calculate the following for some value of x, for instance, x = 10. See whether
the last column approaches e10 = 22 026.46 . . . .

Δx ex+Δx ex+Δx − ex

Δx
1
0.1
0.01

Go to 238.

238

If z = 1

ln x
, what is dz

dx
?

Encircle the correct answer.[
l

(ln x)x
|||| −x
(ln x)2

|||| −1
(ln x)2x

|||| ln x
x2

]

If right, go to 240.
Otherwise, go to 239.

239

One way to find the derivative of 1

ln x
is to use the chain rule. Let u(x) = ln x. Then

d
dx

( 1
ln x

)
= d

dx

(1
u

)
= − 1

u2

du
dx

= − 1
u2

1
x
= − 1

(ln x)2x
.

Go to 240.
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240

A number of relations have been used in this section, and you may want to give them a
quick review before going on. Here is a list. The most important ones are in boxes.

e = 2.718… ,

ln x = logex,

ln(x) = (2.303…)log10x,

d
dx

ln x = 1
x
,

d
dx

ex = ex,

d
dx

ax = ax ln a.

Go to 241.

241

We have learned how to differentiate the most useful common functions. The rest of this
chapter will be devoted to special topics related to the use of derivatives. If you want a little
more practice in differentiation before going on, see the review problems 34 through 58
on pages 279–281, and whenever you are ready,

Go to 242.

2.9 Higher-Order Derivatives

242

Suppose a function f depends on x, and we have differentiated it to obtain df /dx. If we then
differentiate df /dx with respect to x, the result is called the second derivative of f with respect
to x. This is written d2f

dx2 . Sometimes this is written as f (2), where the “(2)” superscript indicates
the second derivative of f , not the square of f . The variable x is suppressed.

Answer: Frame 238: −1

(ln x)2x
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Try the following:

If f = 2x3, then f (2) =
d2f

dx2
= [6x2 ∣ 12x ∣ 0 ∣ x2 ∣ x]

If right, go to 245.
If wrong, go to 243.

243

Here’s how to do the problem in 242.

f = 2x3,
df
dx

= 6x2,

f (2) =
d2f

dx2
= d

dx

(
df
dx

)
d
dx

(6x2) = 12x.

Try this:

f (x) = x + 1
x

f (2) =
d2f

dx2
=
[
− 1

x2

|||| 1
x

|||| + 2
x3

|||| none of these

]

If right, go to 245.
If wrong, go to 244.

244

Here is the solution to 243.

f (x) = x + 1
x
,

df
dx

= 1 − 1
x2
,

f (2) =
d2f

dx2
= 0 − 1

(−2
x3

)
= 2

x3
.

Go to 245.
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245

An example of a second derivative with which you may already be familiar is acceleration.
Velocity is the rate of change of position with respect to time.

v = dS
dt
.

Acceleration is the rate of change of velocity with respect to time and is commonly
denoted by the symbol a. Hence

a = dv
dt
.

It follows then that

a = d
dt

(dS
dt

)
= d2S

dt2
.

Go to 246.

246

Let the position of a particle be given by

S(t) = A sin(𝜔t).

A and 𝜔 (omega) are constants. Find the acceleration.

Answer: [0 | A𝜔 cos(𝜔t) | (A𝜔 cos(𝜔t))2 |−A𝜔2 sin(𝜔t)].

If right, go to 248.
If wrong, go to 247.

Answers: Frame 242: 12x

Frame 243: 2/x3
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247

Acceleration = d2S

dt2
= d2

dt2
A sin(𝜔t).

dS
dt

= d
dt

A sin(𝜔t) = A𝜔 cos(𝜔t),

d2S

dt2
= d

dt

(dS
dt

)
= d

dt
A𝜔 cos(𝜔t) = −A𝜔2 sin(𝜔t).

If this is not clear, see frame 219.
Go to 248.

248

There is really nothing essentially new about a second derivative. In fact, we can define
derivatives of any order n, where n is a positive integer. Thus, f (n) = dnf

dxn is the nth derivative
of f with respect to x. Try this problem:

If f (x) = x4, find f (4) = d4f

dx4 .

f (4) =
d4f

dx4
= [x16 | 4x4 | 0 | 64 | (4)(3)(2)(1)]

Go to 249.

249

f (4) =
d4f

dx4
= d4

dx4
(x4) = d

dx

( d
dx

{ d
dx

[ d
dx

(x4)
]})

= (4) d3

dx3
(x3) = (4)(3) d2

dx2
(x2) = (4)(3)(2) d

dx
x

= (4)(3)(2)(1).

We can easily generalize this result:

dn

dxn xn = (n)(n − 1)(n − 2) · · · (1) = n!

(n! is called n factorial and is (n)(n− 1)(n− 2)· · ·(1). By definition 0 ! = 1.)
For more practice on higher-order derivatives, see review problems 59 through 63

on page 281.

Go to 250.
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2.10 Maxima and Minima

250

Now that we know how to differentiate simple functions, let’s put our knowledge to use.
Suppose we want to find the value of x and y at which y = f (x) has a minimum or a max-
imum value in some given region. By the end of this section we will know how to solve
this problem.

Go to 251.

251

Here is the graph of a function. At which of the points indicated does y have a minimum
value in the domain plotted?

A

D

x

y

B
C

[A ∣ B ∣ C ∣ D ∣ A and B ∣ C and D]

If correct, go to 253.
If wrong, go to 252.

252

The minimum value of y is at point C only, because y has its smallest value there, at least
for the domain of x plotted.

A
C

B

D

x

y

Answers: Frame 246: −A𝜔2 sin(𝜔t)

Frame 248: (4)(3)(2)(1)
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At A and B, y has the value 0, but this has nothing to do with whether or not it has a
minimum value there.

Point D is a maximum value of y.

Go to 253.

253

We have shown that point C corresponds to a minimum value of y, at least insofar as nearby
values are concerned, and that D corresponds similarly to a maximum value.

There is an interesting relation between the points of maximum or minimum values of y
and the value of the derivative at those points. To help see this, sketch a plot of the derivative
of the function shown, using the space provided.

A
C

B

D

x

y

x

y

To check your sketch,
Go to 254.
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254

If you did not obtain a sketch substantially like this, review frames 160 to 169 before
continuing.

A
C

B

D

x

y

x

y

This simple example should be enough to convince you that if f (x) has a maximum or a
minimum for some value of x within a given interval, then its derivative f

′
is zero for that x.

One way to tell whether it is a maximum or a minimum is to plot a few neighboring
points. However, there is an even simpler method, as we shall soon see.

Go to 255.

255

Test yourself with this problem:
Find the value of x for which the following has a minimum value.

f (x) = x2 + 6x.

[−6 ∣ −3 ∣ 0 ∣ +3 ∣ none of these]

If right, go to 258.
If wrong, go to 256.

Answer: Frame 251: C
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256

The problem is solved as follows:
The maximum or minimum occurs where x satisfies f

′ = 0.

f (x) = x2 + 6x, f ′ = 2x + 6.

Thus the equation for the value of x at the maximum or minimum is

2x + 6 = 0 or x = −3.

Here is another problem:
For which value(s) of x does the following f (x) have a maximum or minimum value?

f (x) = 8x + 2
x
.[

1
4

|||| − 1
4

|||| − 4
|||| 2

|||| 1
2

|||| − 1
2

|||| 2 and − 4
|||| 1

2
and − 1

2

]

If you were right, go to 258.
If you did not get the correct answer, go to 257.

257

The problem in frame 256 can be solved as follows:
At the position of maximum or minimum, f

′ = 0. Because

f (x) = 8x + 2
x
, f ′ = 8 − 2

x2
.

The desired points are solutions of

8 − 2
x2

= 0 or x2 = 2
8
= 1

4
.

Thus at x = + 1/2 and x = − 1/2, f (x) has a maximum or a minimum value. A plot of
f (x) is shown in the figure, and, as you can see, x = − 1/2 yields a maximum and x = + 1/2
yields a minimum.

(continued)
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–3 –2 0–1 1 2 3

4

8

12

16

20

24

28

32

Minimun

Maximun

x

f (x)

Incidentally, as you can see from the drawing, the minimum falls above the maximum.
This should not be paradoxical; we are talking about local minimum or maximum, that is,
the minimum or maximum value of a function in some small region.

Go to 258.

258

Now let’s turn to an application of this idea in the real world that you are likely familiar
with. You may have noticed that most metal cans look similar except for overall size. There
is a reason for this that this problem will illustrate. Note this problem is more involved than
most of the problems up to this point.

You want to design a cylinder of radius r and height h in order to minimize the surface
area for a given fixed volume V . What should you choose for the ratio of the radius to the
height, rmin/h that minimizes the surface area?

rmin∕h =

Go to 259.

Answers: Frame 255: −3

Frame 256: 1/2 and − 1/2
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259

To find the value of r/h and the smallest surface area for a fixed volume, you need to find
the value of r for which the surface area is minimum. The volume for a cylinder of radius r
and height h is V = 𝜋r2h.

The total surface area is the sum of the surface area of the cylinder, plus the area of the
two endcaps, each of area 𝜋r2, hence A = 2𝜋r2 + 2𝜋rh. Because the height and volume are
related by h = V/𝜋r2, the total area can be expressed as a function of the radius r and the
constant volume V according to

A = 2𝜋r2 + 2V
r
.

In the figure below, the area is plotted as a function of r. Note the radius r can only take
positive values.

2V

r
A(r) = 2 r 2 +

r

A (r)

0

Amin

rmin

π

At the minimum, the first derivative is zero, 0 = dA

dr
= 4𝜋r − 2V

r2
, which you can solve

for the radius rmin =
(

V

2𝜋

)1∕3
. Because V = 𝜋r2h, rmin =

(
𝜋r2min h

2𝜋

)1∕3
. Therefore, r3

min = 𝜋r2min h

2𝜋
,

which you can now solve for the ratio of the radius to the height

rmin

h
= 1

2
.

This means that the diameter and height are equal.

Go to 260.
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260

We mentioned earlier that there is a simple method for finding whether f (x) has a maxi-
mum or a minimum value when f

′ = 0. Let’s find the method by drawing a few graphs.
Below are graphs of two functions. On the left, f (x) has a maximum value in the region

shown. On the right, g(x) has a minimum value. In the spaces provided, draw rough sketches
of the derivatives of f (x) and g(x).

f g

f g

x x

x x

Now, let’s repeat the process again. Make a rough sketch of the second derivative of each
function (i.e. sketch the derivatives of the new functions you have just drawn).

f g

x x

Perhaps from these sketches you can guess how to tell whether the function has a maximum
or a minimum value when its derivative is 0. Whether you can or not,

Go to 261.
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261

The sketches should look approximately like this.

f g

f g

x x

x x

f g

x x

By studying these sketches, it should become apparent that wherever f
′ = 0,

f (x) has a maximum value if f ′′ < 0,

and f (x) has a minimum value if f ′′ > 0.

(If f
′′ = 0, this test is not helpful and we have to look further.)
If you are not convinced yet, go back and sketch the second derivatives of any of the

functions shown in frames 164, 166, or 168 [(c) or (d)]. This should convince you that the rule
is reasonable. Whenever you are ready,

Go to 262.
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262

Here is one last problem to try before we go on to another subject. Consider f (x) =
e−x2

. Find the value of x for which f (x) has a maximum or minimum value, and determine
which it is.

Answer:

To check your answer, go to 263.

263

Let’s solve the problem: f (x) = e−x2
. Using the chain rule, we find

f ′ = −2xe−x2
.

Maximum or minimum occurs at x given by

−2xe−x2 = 0 or x = 0.

Now we use the product rule (frame 189) to get

f ′′ = −2e−x2 + 4x2e−x2 = (−2 + 4x2)e−x2
.

At x = 0, f
′′ = (−2+ (4)(0))e−0 = − 2. Because f

′′
is negative where f

′ = 0, at x = 0, f (x) has
a maximum value there.

A word of caution—in evaluating a derivative, say f
′
at some value of x, x = a, you must

always first differentiate f (x) and then substitute x = a. If you reverse the procedure and first
evaluate f (a) and then try to differentiate it, the result will simply be 0 because f (a) is a
constant. Similar care must be taken with higher-order derivatives.

Go on to the next section.
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2.11 Differentials

So far we have denoted the derivative by the symbol y′ or dy/dx. Although either symbol
stands for lim

Δx→0

Δy

Δx
, the method of writing dy/dx suggests that the derivative might be regarded

as the ratio of two quantities, dy and dx. This turns out to be the case. The new quantities
that we now introduce are called differentials, which are defined in the next frame.

Go on to 264.

264

x

y

dx

dy

Suppose that x is an independent variable, and that y = f (x). Then the differential dx of x
is defined as equal to any increment, x2 − x1, where x1 is the point of interest. The differential
dx can be positive or negative, large or small, as we please. We see that dx, like x, can be
regarded as an independent variable.

The differential dy is defined by the following rule:

dy = y′ dx,

where y′ is the derivative of y with respect to x.

Go to 265.

265

Although the meaning of the derivative y′ is lim
Δx→0

Δy

Δx
, we can see from the preceding frame

that it can now be interpreted as the ratio of the differentials dy and dx, where dx is any
increment of x and dy is defined by the rule dy = y′ dx.

Go to 266.
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266

It is important not to confuse dy with Δy. As was pointed out in frame 136, Δy stands for
y2 − y1 = f (x2)− f (x1) where x2 and x1 are two given values of x. Both dx and Δx = x2 − x1
are arbitrary intervals, dx is called a differential of x, and Δx is called an increment of x, but their
meanings are similar here.

x

(x 1,y1)

(x2
,y

2
)

y

dx = x

Δy
dy

Δ

The diagram shows that dy and Δy are different quantities. Here we have set dx = Δx. The
differential dy is then dy = y′ (x1)dx, where x1 indicates that the derivative has been evaluated
at the point x1, while the increment Δy is given by y2 − y1. It is clear in this case that dy is not
the same as Δy.

Go to 267.

267

x

y

dy

dx = Δx

Δy

Although dy and Δy are different, you can see from the figure that for sufficiently small
dx (with dx = Δx), dy is very close to Δy. We can write this symbolically as

lim
Δx→0

dy
Δy

= 1.

Hence, if we intend to take the limit where dx→ 0, dy may be substituted for Δy. Further-
more, even if we don’t take the limit, dy is almost the same as Δy, provided dx is sufficiently
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small. We, therefore, often use dy and Δy interchangeably when it is understood that the limit
will be taken or that the result may be an approximation.

Go to frame 268.

268

We can rewrite in differential form the various expressions for derivatives given earlier.
Thus, if y(x) = xn,

dy = d(xn) = d
dx

(xn)dx = nxn−1 dx.

Find the following:

d(sin x) = [−sin x dx ∣ −sin x ∣ −cos x dx ∣ cos x dx]

d
(1

x

)
=
[

dx
x2

|||| − dx
x2

|||| − dx
x

]

d(ex) =
[
xexdx

|||| dx
|||| exdx

|||| dx
ex

]

If you missed any of these go to 269.
Otherwise, go to 270.

269

Here are the solutions to the problems in frame 286. The number of the frame in which
each derivative is discussed is shown in parentheses.

d(sin x) =
(

d(sin x)
dx

)
dx = cos x dx (frame 𝟐𝟏𝟏),

d
(1

x

)
=
[ d

dx

(1
x

)]
dx = −dx

x2
(frame 𝟏𝟖𝟎),

dex =
(dex

dx

)
dx = exdx (frame 𝟐𝟑𝟓).

Go to 270.
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270

dr

r

Here is an example of the use of a differential. The diagram shows the surface of a disc to
which a thin rim has been added. Suppose we want an approximate value for the change area
ΔA which occurs when the radius is increased from r to r + dr.

dA =
(dA

dr

)
dr = d

dr
(𝜋r2)dr = 2𝜋r dr.

Go to 271.

271

The previous example can also be solved by taking the difference of the two areas:

ΔA = 𝜋(r + Δr)2 − 𝜋r2 = 2𝜋r Δr + 𝜋 Δr2.

When Δr is small compared with r, we can neglect the last term and we see that

ΔA ≈ 2𝜋r Δr.

If we let Δr = dr and assume that they are both small, then, as we know from frame 270,

dA = ΔA = 2𝜋r dr.

Here is a more intuitive argument for the results. Because the rim is thin, its area dA is
the approximate length, 2𝜋r, multiplied by its width, dr. Hence, dA = 2𝜋r dr.

Go to 272.

Answer: Frame 268: cosxdx, −dx/x2, exdx
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272

Differentials are handy for remembering some important rules for differentiation. For
instance, the chain rule

dw
dx

= dw
du

du
dx

is almost an identity if we treat dw, du, and dx as differentials. Actually, it is not obvious that
we can do so, because w and u both depend on a third quantity, x. Justification for using
differentials to obtain the chain rule is given in Appendix A10.

Go to 273.

273

Here is another relation, which is easy to remember with differentials, though the actual
proof demands further explanation:

dx

dy
= 1

dy∕dx
.

This handy rule lets us reverse the role of dependent and independent variables,
though it holds true only under certain conditions. If you want a further explanation,
see Appendix A4.

2.12 A Short Review and Some Problems

Let’s end the chapter by reviewing some of the ideas it introduced and then putting differential
calculus to work.

Go to 274.
274

Recall that the rate of change of position of a moving point with respect to time is called
velocity.

(continued)
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In other words, if position is related to time by a function S(t), to find the velocity, we
S(t) with respect to .

Go to 275.

275

The answer is:
In other words, if the position and time are related by a function S(t), in order to find the

velocity, we differentiate S(t) with respect to time (or t),

d
dt

S(t) = v(t).

Go to 276.

276

Try this problem.

The position of a particle along a straight line is given by the following expression,

S(t) = A sin (𝜔t),

where A and 𝜔 (omega) are constants.
Find the velocity of the particle.

v(t) = .

For the answer, go to 277.

277

The answer is
v(t) = 𝜔A cos (𝜔t).

The problem is to find the velocity, which is the rate of change of position with respect
to time. In this problem, the position is S(t) = A sin(𝜔t).

v(t) = dS
dt

= d
dt

A sin (𝜔t) = 𝜔A cos (𝜔t).

(If you are not sure of the procedure here, see frame 219.)
Can you do this problem? The position of a point is given by

S(t) = A sin (𝜔t) + B cos (2𝜔t).
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Find v(t).
v(t) = .

See frame 278 for the answer.
278

v(t) = d
dt
(A sin (𝜔t) + Bcos (2𝜔t))

= 𝜔A cos (𝜔t) − 2𝜔Bsin (2𝜔t).

If you wrote this, go to frame 280. If not, review frame 220 and then continue here.
Try this problem: The position of a point is given by

S(t) = A sin (𝜔t)cos (𝜔t).

Find its velocity.

v(t) = .

Go to 279 for the answer.

279

The solution to problem 278 is:

v(t) = dS
dt

= d
dt
(A sin (𝜔t) cos (𝜔t))

= A sin (𝜔t)
( d

dt
cos (𝜔t)

)
+
( d

dt
A sin (𝜔t)

)
cos (𝜔t)

= −𝜔A sin 2(𝜔t) + 𝜔A cos 2(𝜔t)
= 𝜔A(cos 2(𝜔t) − sin 2(𝜔t)).

As an alternative approach note that

sin (𝜔t) cos (𝜔t) = (1∕2) sin (2𝜔 t).

(See frame 71.) Then, v(t) = d

dt

(
A

2
sin (2𝜔t)

)
. If you feel energetic, show that this procedure

yields the same result as above.

Go to 280.
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280

Suppose the height of a ball above the ground is given by y(t) = a+ bt+ ct2 where a, b,
c, are constants and t≥ 0. (Here we are using y rather than S to denote position. It makes no
difference what we call our variable.) If c is negative, this type of equation describes the height
of a freely falling body.

Find the velocity in the y direction.

v(t) = .

See 281 for the correct answer.
281

Here is the solution to the problem in frame 280.

v(t) =
dy
dt

= d
dt
(a + bt + ct2) = b + 2ct.

If you found the correct answer, go to 283. Otherwise, do the problem below. Let

S(t) = a
(t + c)2

+ bt (a, b, and c are constants, and t ≥ 0).

Find the velocity.
v(t) =

The answer is in frame 282.

282

The answer is

v(t) = dS
dt

= d
dt

(
a

(t + c)2
+ bt

)
= − 2a

(t + c)3
+ b.

If this problem gave you any difficulty, you should review the beginning of this section
before going on.

Otherwise, go to 283.
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283

Speed of a Car as Seen by a Stationary Observer:
Here is a more difficult problem.

P

V

x-axis

y-axis

Q

l

x

r

A car P moves along a road in the x direction with a constant velocity V . The problem is
to find how fast it is moving away from a man standing at point Q, distance l away from the
road, as shown. In other words, if r is the distance between Q and P, find dr/dt. Hint: The
chain rule is very useful here in the form dr

dt
= dr

dx

dx

dt
.

dr
dt

= .

Go to 284 for the solution.
284

From the diagram in frame 283 you can see that

r2 = x2 + l2, r = (x2 + l2)1∕2.

We can find dr/dt by the following procedure:

dr
dt

= dr
dx

dx
dt

= d
dx

(x2 + l2)1∕2 dx
dt

= 1
2

2x
(x2 + l2)1∕2

dx
dt

= V
x

(x2 + l2)1∕2
.

In the last step we used V = dx/dt.

Go to 285.
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285

Circular Motion:

So far we have been considering the velocity and acceleration for straight-line motion.
Let’s now consider a particle moving in a circle of radius R with constant speed v. At the
instant shown in the diagram (time t), a line from the center of the circle to the particle makes
an angle 𝜃(t) with the x-axis.

The arc length subtended by the particle is given by the following expression:

S(t) = R𝜃(t).

Find the speed of the particle.

v =

Go to 286.

286

Here is the solution to the problem in frame 285.

v = d
dt

S(t) = d
dt
(R𝜃(t)) = R

d
dt
𝜃(t).

Go to 287.



Trim Size: 7.375in x 9.25in Kleppner743194 c02.tex V1 - 03/15/2022 3:17 P.M. Page 153�

� �

�

§ 2.12 A Short Review and Some Problems 153

287

Tangential Acceleration in Circular Motion:

Suppose as the particle moves around the circle, it speeds up and thus the second derivative
of the angle d2𝜃

dt2
is non-zero. In this case, what is the change in magnitude of the speed? (This

is called the tangential acceleration atan.)

atan =

Go to 288.

288

Here is how to do the problem in frame 287.
The speed is given by

v = d
dt

S(t) = R
d
dt
𝜃(t).

The tangential acceleration is the rate of change of speed and is given by

atan =
dv
dt

= d
dt

(
R

d𝜃(t)
dt

)
= R

d2𝜃

dt2
.

Note that an object moving in a circle always has a radial inward acceleration called cen-
tripetal acceleration due to the fact that the direction of the velocity is changing. The magnitude
of this acceleration is given by

arad =
v2

R
.

For a derivation of this result see Appendix B4.

Go to 289.

289

When to Sell a Car:

In deciding whether or not to keep an old automobile, an important consideration is
the estimated cost per year of owning the car. The two major components of the cost are
repairs and depreciation. We shall assume that the annual repairs cost r(t), in dollars per year,
is given by

r(t) = A + Bt,
(continued)
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where A and B are constants. The repairs are lowest when the car is new, and we will assume
that they increase linearly with time. The loss in value of the car in dollars per year—the rate
of depreciation—is taken to be

d(t) = De−Ht,

where D and H are constants. The depreciation rate is highest when the car is new and most
valuable; we will assume that it decreases exponentially in time, growing at a smaller rate as
the car becomes less valuable.

The annual cost for repairs and depreciation is c(t) = r(t)+ d(t). Find an expression for the
time t at which the cost is a minimum.

t =

Go to 290.

290

The cost is
c(t) = r(t) + d(t) = A + Bt + De−Ht.

An extremum occurs when

dc
dt

= B − HDe−Ht = 0.

This can be solved for t:

HDe−Ht = B, e−ht = B
HD

,

−Ht = ln
B

HD
,

t = 1
H

ln
HD
B

.
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To determine whether the cost is a minimum or a maximum, we must examine d2c/dt2.
(Recall from frame 261 that the second derivative is positive at a minimum.)

d2c

dt2
= H2De−Ht.

This is always positive, so the extremum is a minimum. Note, however, that if HD/B< 1,
then ln(HD/B)< 0, and t is negative. What does this mean?

Consider dc/dt at t = 0.

dc
dt

||||t=0
= B − HDe−H0 = B − HD.

If B<HD, the slope is negative, and the cost, c(t), initially decreases. It has a minimum at some
later time just before it starts to increase. However, if B>HD, then c(t) initially increases and
keeps on increasing. This is the case for which the minimum in c(t) occurs at a negative time.
This solution has no meaning; you can’t sell a car before you have bought it!

Go to 291.

291

Path for the Shortest Time:

You are strolling along a straight section of beach when (at the point A in the figure)
you spot a swimmer floundering offshore at the point C (see figure), a distance w from the
shoreline and a distance s along the shore from where you stand. You can sprint at a speed
of v1 and swim at a slower speed of v2. At point B (see figure), a distance x from where you
stand, you dive into the water to rescue the person.

A B

C

l2
w

s

x s-xbeach

water

(continued)
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The problem is to determine the distance x you should run before entering the water in
order to reach the swimmer in the shortest time.

x =

To check your solution, go to 292.

292

You need to find the path that takes the shortest time to reach the swimmer.

A B

C

l2
w

s

x s-x

travel time
running on
beach
t1 = x / v1 

beach

water travel time
swimming
in water
t2 = l2 / v2

It takes a time t1 = x/v1 to run distance x along the beach and time t2 = l2/v2 to swim
distance l2. The total time to reach the swimmer is then

t = t1 + t2 = x∕v1 + l2∕v2.

From the distances shown in the figure, you can see that

l2 = ((s − x)2 + w2)1∕2.

The total time to reach the swimmer is then

t = t1 + t2 = x∕v1 + ((s − x)2 + w2)1∕2∕v2.

The minimal time occurs when

dt
dx

= 1
v1

− s − x
v2((s − x)2 + w2)1∕2

= 0,

which you can solve to find the distance x,

x = s −
v2w

(v1
2 − v2

2)1∕2
.
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The famous law for the refraction of light as it passes through different media (Snell’s law),
for example, through air and water, shows that the path light follows takes the shortest time.

Go to 293.

293

Pricing a New Product:

You have just invented a new soccer helmet to better protect players from head injuries.
You need to decide how many helmets you need to sell in order to maximize your total profit
P. Your revenue r will be the product of the price p and the quantity q you sell,

r = pq.

The number of helmets sold naturally depends on the price: as the price goes up, sales go
down. The costs also depend on the quantity of helmets sold: the more helmets sold, the less
the price per helmet but the more your total cost. Your profit will be the difference between
your revenue and your costs

P = r − c.

If the price is low, you will sell many helmets, but the income may not be very large. If
the price is high, you will sell very few. Somewhere between the extremes your profit will be
greatest. For purposes of planning, you assume that the price of helmets sold depends on the
number sold:

p = p0[1 − (q∕q0)],

where p0 is the maximum price that you can charge per helmet (above that price you will not
sell any helmets), and q0 is the maximum amount you can sell if you lower the price to zero.

quantity (q)

price (p)

q0

p0

(continued)
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Suppose the cost depends on quantity sold according to

c = f + gq + hq2
,

where the constant f represents fixed costs, and g and h are positive constants.
The problem is to find the quantity qm that you should sell in order to maximize the

profit P.
qm =

To check your solution, go to 294.

294

Your revenue as a function of quantity sold is

r = p0[1 − (q∕q0)]q.

Your profit is
P = r − c = p0[1 − (q∕q0)]q − (f + gq + hq2).

The maximum value of profit occurs dP/dq = 0,

0 = dP
dq

||||q=qm

= p0 − 2p0qm∕q0 − g − 2hqm.

The quantity that maximizes profit is then

qm =
(p0 − g)q0

2(p0 + hq0)
.

Go to 295.

295

Growth of Single Cells:
A simple model for the growth of cells depends on the amount of nutrients in the cell.

Nutrients are absorbed through the surface of the cell and then diffuse throughout the volume
where they are consumed by processes in the cell.

If the cell radius is too small, there are not enough nutrients for the cell to grow. As the
radius of the cell increases, the amount of materials that flow through the cell’s surface is no
longer able to sustain the cell’s activities, and the growth rate of the cell slows.
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For simplicity, we model the cell as a sphere with radius r, surface area A(r) = 4𝜋r2,
and volume V (r) = (4/3)𝜋r3. Nutrients are absorbed on the surface of the cell so that the
absorption rate is proportional to the area of the cell, B(r) = a14𝜋r2. The nutrients are also
consumed by directly reacting with material in the cell, and so the consumption rate of a
cell is proportional to its volume, C(r) = a2(4/3)𝜋r3. The proportionality constants a1 and a2
are positive and are known from measurements. The rate of increase of nutrients in the cell
is then

G(r) = B(r) − C(r) = a14𝜋r2 − a2(4∕3)𝜋r3,

The problem is to find (a) the radius rm for which the rate of increase of nutrients in the
cell is maximal, and (b) the maximum rate of increase of nutrients in the cell, G(rm).

(a) rm =
(b) G(rm) =

To see a solution, go to 296.

296

(a) In order to find the radius such that the rate of increase of nutrients is maximum, set
the derivative of the increase in rate of nutrients equal to zero:

0 = dG(r)
dr

||||r=rm

= 8a1𝜋rm − 4a2𝜋r2
m ⇒ rm =

2a1

a2
.

To verify that this radius gives a maximal rate of increase of nutrients, take the second
derivative

0 = d2G(r)
dr2

||||r=rm

= 8a1𝜋 − 8a2𝜋
2a1

a2
= −8a1𝜋 < 0,

which indicates that G(r) is a local maximum when rm = 2a1/a2.
(b) The maximal rate of increase of nutrients is then

G(r = rm) = a14𝜋

(
2a1

a2

)2

− a2
4
3
𝜋

(
2a1

a2

)3

= 16𝜋
3

a1
3

a2
2
.

Go to 297.
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297

Maximize Storage on a Compact Disc:

Consider a compact disc with circular tracks that contain data. The innermost track is at
a distance r from the center of the disc and the outermost track is a fixed distance R from the
center of the disc. Each track contains the same number of bytes. The number of bytes per
unit length on each track is a constant 𝜆1. The number of tracks per unit radial length is a
constant 𝜆2.

In order to maximize the number of bytes on the disc, (a) what is the radius of the inner-
most track? (b) what is the maximum number of bytes that can be stored on this disc?

r
R

(a) rinner =

(b) Nmax =

To see a solution, go to 298.

298

The number of bytes on each circular track is the maximum density 𝜆1 multiplied by the
circumference of the innermost track, 𝜆12𝜋r. The number of tracks is 𝜆2(R− r). The total
number of bytes is then

N = 𝜆2(R − r)𝜆12𝜋r.
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To find an extremum, set

0 = dN
dr

= 𝜆2𝜆12𝜋(R − 2r).

Thus the innermost radius is
rinner = R∕2.

To check that this is a maximum take the second derivative

d2N

dr2
= −4𝜋𝜆2𝜆1 < 0,

which is negative.
(b) The maximum number of stored bytes is

Nmax =
𝜋𝜆1𝜆2R

2
.

Go to 299.

299

Compounded Interest:

Suppose that you have a sum of money p0 to invest, called your initial principal. An insti-
tution guarantees a fixed yearly interest rate r that is compounded n times a year. This means
that for each time interval your interest rate is r/n.

Find an expression for your principal balance pj after j intervals.

pj =

To see a solution, go to 300.

300

After one interval, the value of the principal p1 is

p1 = p0 +
r
n

p0 = p0

(
1 + r

n

)
.

After two intervals, the value is now

p2 = p1

(
1 + r

n

)
= p0

(
1 + r

n

)2
.

(continued)
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Thus after j intervals, the value is

pj = p0

(
1 + r

n

)j
.

Go to 301.

301

If r/n< < 1, after how many intervals j will the principal double for a given rate r? Hint:
the approximation that ln(1+ r/n)≃ r/n, for r/n< < 1, will be helpful. (We will prove this
approximation in frame 414.)

j =

To see a solution go to 302.

302

To determine the number of intervals for your principal to double, set P( j ) = 2p0 and
solve for j.

pj = 2p0 = p0

(
1 + r

n

)j
⇒ 2 = (1 + r∕n)j.

To solve for j, take natural logarithms of each side,

ln 2 = j ln(1 + r∕n) ⇒ j = ln 2
ln(1 + r∕n)

.

If the interest is compounded monthly, then n = 12. For the case that r/n< < 1, we use the
approximation ln(1+ r/n)≃ r/n, and the principal will double after j = (12/r) ln 2 intervals,
or in terms of years,

y ≃ j∕12 = ln 2∕r = 0.69∕r.

To find the effect of compounding interest more frequently, we introduce a discrete time
variable t = j/n and then take the limit when n→∞. Set x = n/r. Then j = nt = xrt.

p(t) = p0

(
1 + 1

x

)xrt

.
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Now let n→∞, or equivalently x→∞. Then the value at time t is

p(t) = lim
x→∞

p0

(
1 + 1

x

)xrt

= p0e
rt,

where we used the representation in Appendix A3 that

lim
x→∞

(
1 + 1

x

)x

= ex.

Go to 303.

303

Puzzle Problems:
These are tough problems, so don’t feel bad if the solutions elude you. If you need a hint,

see frame 234.

(a) If y = xx, what is dy

dx
?

(b) If y =
(

x+1

x−1

)1∕3
, for x> 1, what is dy

dx
?

To see a solution, go to 304.

304

(a) To find the derivative of y = f (x) = xx , consider ln f (x) = x ln x. We can differentiate
this with respect to x using the result in frame 234,

d
dx

xx =
df
dx

=
( d

dx
ln f

)
y.

Because d

dx
ln f = d

dx
(x ln x) = ln x + 1,

d
dx

xx = (ln x + 1)xx.

(b) The second problem can also be solved using the same technique. Set

y = f (x) =
(

x+1

x−1

)1∕3
.

Then

ln f (x) = ln
(x + 1

x − 1

)1∕3

= 1
3
(ln(x + 1) − ln(x − 1)).

(continued)



Trim Size: 7.375in x 9.25in Kleppner743194 c02.tex V1 - 03/15/2022 3:17 P.M. Page 164�

� �

�

164 Differential Calculus Chap. 2

Thus
d
dx

ln f = 1
3

( 1
x + 1

− 1
x − 1

)
= −2

3

(
1

(x + 1)(x − 1)

)
.

Therefore using the result dy

dx
=
(

d

dx
ln f

)
y yields

d
dx

(x + 1
x − 1

)1∕3

=
( d

dx
ln f

)
y = −2

3

(
1

(x + 1)(x − 1)

)(x + 1
x − 1

)1∕3

= −2
3

1
((x + 1)2(x − 1)4)1∕3

= −2
3
((x2 − 1)(x − 1))−2∕3.

Go to 305.

Conclusion to Chapter 2

305

The Appendixes contain additional material that may be helpful. For instance, sometimes
one has an equation which relates two variables, y and x, but which cannot be written simply
in the form y = f (x). There is a straightforward method for evaluating y′: it is called implicit
differentiation and it is described in Appendix B1. Appendix B2 shows how to differentiate
the inverse trigonometric functions. In this chapter we have only discussed differentiation
of functions of a single variable. The technique is not difficult to extend to functions of several
variables. The technique for doing this is known as partial differentiation. This is explained
in Appendix B3. In Appendix B4, you will find a derivation of the magnitude of centripetal
acceleration for circular motion.

The important results of this chapter are summarized in the next section, which provides
a quick review. In addition, a list of important derivatives is presented in Table 1 at the back
of the book. If you want more practice, see the review problems on pages 278–281.
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Summary of Chapter 2

2.1 Limit of a Function (frames 97–115)
Definition of a Limit:

Let f (x) be defined for all x in an interval about x = a, but not necessarily at x = a. If
there is a number L such that to each positive number 𝜀 there corresponds a positive number
𝛿 such that

∣ f (x) − L ∣< ε provided 0 <∣ x − a ∣< 𝛿,

we say that L is the limit of f (x) as x approaches a and write

lim
x→a

f (x) = L.

The ordinary algebraic manipulations can be performed with limits as shown in Appendix
A2; thus,

lim
x→a

[F(x) + G(x)] = lim
x→a

f (x) + lim
x→a

G(x).

Two trigonometric limits are of particular interest (Appendix A3):

lim
𝜃→0

sin 𝜃
𝜃

= 1 and lim
𝜃→0

1 − cos 𝜃
𝜃

= 0.

The following limit is of such great interest in calculus that it is given the special name e,
as discussed in frame 109 and Appendix A3:

e = lim
x→0

(1 + x)1∕x = 2.71828 …

2.2 Velocity (frames 116–145)
If the function S(t) represents the distance from a fixed location of a point moving at a

varying speed along a straight line, the average velocity v between times t1 and t2 is given by

v =
S2 − S1

t2 − t1
,

whereas the instantaneous velocity v (frame 133) at time t1 is

v = lim
t2→t1

S2 − S1

t2 − t1
.
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In a plot of S(t) vs. t, the instantaneous velocity is the slope of the curve at time t (frame
131). It is often convenient to write S2 − S1 = ΔS and t2 − t1 = Δt, so

v = lim
Δt→0

ΔS
Δt

.

2.3 Derivatives (frames 146–159)

If y = f (x), the instantaneous rate of change of y with respect to x is lim
Δx→0

Δy

Δx
. The expression

lim
Δx→0

Δy

Δx
is called the derivative of y with respect to x. It is often written as dy

dx
(but sometimes

as y′). Thus

y′ =
dy
dx

= lim
Δx→0

Δy
Δx

= lim
x2→x1

y2 − y1

x2 − x1
= lim

x2→x1

f (x2) − f (x1)
x2 − x1

is the derivative of y with respect to x. The derivative dy

dx
is equal to the slope of the curve of

y plotted against x.

2.4 Graphs of Functions and Their Derivatives (frames 160–169)
From a graph of a function we can obtain the slope of the curve at different points, and

by sketching a new curve of the slopes we can determine the general character and qualitative
behavior of the derivative. See frames 160–169 for examples.

2.5–2.8 Differentiation (frames 170–241)
From the definition of the derivative, a number of formulas for differentiation can be

derived. We will review just one example here: the method is typical. Let u and v be variables
that depend on x.

d(uv)
dx

= lim
Δx→0

Δ(uv)
Δx

= lim
Δx→0

(u + Δu)(v + Δv) − uv
Δx

d(uv)
dx

= lim
Δx→0

uv + u Δv + v Δu + ΔuΔv − uv
Δx

= u lim
Δx→0

Δv
Δx

+ v lim
Δx→0

Δu
Δx

+ lim
Δx→0

ΔuΔv
Δx

= u
dv
dx

+ v
du
dx

+ 0.
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It is useful to be familiar with the relations listed here. There is a more complete list in
Table 2.1, at the end of the text. In the following expressions u and v are variables that depend
on x, w depends on u, which in turn depends on x, and a and n are constants. All angles are
measured in radians.

Frame
da
dx

= 0 172

d
dx

(ax) = a 174

d
dx

xn = nxn−1 180

d
dx

(u + v) = du
dx

+ dv
dx

186

d
dx

(uv) = u
dv
dx

+ v
du
dx

189

d
dx

(u
v

)
= 1

v2

(
v
du
dx

− u
dv
dx

)
194

dw
dx

= dw
du

du
dx

198

d
dx

sin x = cos x 211

d
dx

cos x = −sin x 212

d
dx

ln x = 1
x

226

d
dx

ex = ex 235

In the above list e = 2.71828… , and lnx is the natural logarithm of x defined by
lnx = logex.

More complicated functions can ordinarily be differentiated by applying several of the
rules in Table 2.1 successively. Thus

d
dx

(x3 + 3x2sin 2x) = d
dx

x3 + 3
( d

dx
x2
)

sin 2x + 3x2
( d

dx
sin 2x

)
= 3x2 + 6xsin 2x + 3x2 dsin 2x

d 2x
d 2x
dx

= 3x2 + 6xsin 2x + 6x2cos 2x.



Trim Size: 7.375in x 9.25in Kleppner743194 c02.tex V1 - 03/15/2022 3:17 P.M. Page 168�

� �

�

168 Differential Calculus Chap. 2

2.9 Higher-Order Derivatives (frames 242–249)
If we differentiate df /dx with respect to x, the result is called the second derivative of f

with respect to x. This is written d2f

dx2 . Alternative symbols are f (2) and f
′′
, where the “(2)” and

“ " ” superscripts indicate the second derivative. The variable x is suppressed. Likewise the
nth derivative of f with respect to x is the result of differentiating f , n times successively, with
respect to x and is written dnf

dxn or as f (n).

2.10 Maxima and Minima (frames 250–263)
If f (x) has a maximum or minimum value for some value of x in an interval, then its

derivative df

dx
is zero for that x. If in addition d2f

dx2 < 0, f (x) has maximum value. If on the other

hand d2f

dx2 > 0, f (x) has a minimum value there.

2.11 Differentials (frames 264–273)
If x is an independent variable and y = f (x), the differential dx of x is defined as the incre-

ment, x2 − x1, where x1 is the point of interest. The differential dx can be positive or negative,
large or small, as we please. Then dx, like x, is an independent variable. The differential dy is
then defined by the following rule: dy = y′ dx where y′ is the derivative of y with respect to x.
Although the meaning of the derivative, y′, is lim

Δx→0

Δy

Δx
, we see that this can also be interpreted

as the ratio of the differentials dy and dx. As discussed in frames 265 and 266, dy is not the
same as Δy, although

lim
dx=Δx→0

dy
Δy

= 1.

lim
Δx→0

Δy = dy.

Differentiation formulas can easily be written in terms of differentials. Thus if y = xn,

dy = d(xn) =
( d

dx
xn
)

dx = nxn−1dx.

The relation, dx

dy
= 1

dy∕dx
, implied by the differential notation can be extremely useful. It’s

use is discussed in Appendix A4.

Ready for more? Take a deep breath and continue on to Chapter 3.
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CHAPTER THREE

Integral Calculus

In this chapter you will learn about:

• Antiderivatives and the indefinite integral;
• Integrating a variety of functions;
• Some applications of integral calculus;
• Finding the area under a curve;
• Definite integrals with applications;
• Multiple integrals.

The previous chapter was devoted to the first major branch of calculus—differential
calculus. This chapter is devoted to the second major branch—integral calculus. The two
branches have different natures: differential calculus has procedures that make it possible to
differentiate any continuous function; integral calculus has no such general procedures—every
problem presents a fresh puzzle. Nevertheless, integral calculus is essential to all of the sci-
ences, engineering, economics, and in fact to every discipline that deals with quantitative
information.

There are two routes to introducing the concepts of integration. Although they start in
different directions, they finally meld and create a single entity. If they were marked by road
signs, the first would be “Antiderivatives and the indefinite integral” while the second would
be “Area under a curve and the definite integral.”

169
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3.1 Antiderivative, Integration, and
the Indefinite Integral

306

The Antiderivative:

The goal of this section is to learn some techniques for integration, sometimes called anti-
differentiation.

In this section we generally designate a function by f (x). The concept of the antiderivative
is fundamental to the process of integration and is easily explained. When a function F(x) is
differentiated to give f (x) = dF∕dx, then F(x) is an antiderivative of f (x), that is,

F′(x) = f (x).

This notation describes the defining property of the antiderivative, although only in terms
of the derivative F′(x), not F(x) itself.

The antiderivative is usually written in the form:

F(x) =
∫

f (x)dx.

The expression ∫ f (x) dx is also called the integral of f (x). The symbol ∫ is known as the
integration symbol; it represents the inverse of differentiation.

To summarize the notation, if F′(x) = f (x), then F(x) is the or
.

Go to 307.

307

Indefinite Integral:

Often one can find the antiderivative simply by guesswork. For instance, if f (x) = 1, then
F(x) = ∫ f (x) dx = x. To prove this, note that

F′(x) = d
dx

(x) = 1 = f (x).

However, f (x) is not the only antiderivative of f (x) = 1; x + c, where c is a constant, is also
an antiderivative because d

dx
(x + c) = 1 + 0 = f (x).
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In fact, a constant can always be added to a function without changing its derivative.
If y = F(x) is an antiderivative of f (x), then all the antiderivatives of f (x) can be denoted
by writing

∫
f (x) dx = F(x) + c,

where c is an arbitrary constant.
If it is useful, we can write the defining equation for the antiderivative in terms of a

differential: dF = f (x)dx. (If you need to review differentials, see frame 264.) Then we can
describe all the antiderivatives by the notation

∫
dF(x) = F(x) + c.

Because of the arbitrary constant, the definition is imprecise. For this reason this integral is
called the indefinite integral.

In summary, the integral of the differential of a function is equal to the function plus a
constant.

Go to 308.

308

Because this first meaning of integration is the inverse of differentiation, for every differ-
entiation formula in Chapter 2, there is a corresponding integration formula here. Thus from
Chapter 2, frame 211,

d
dx

sin x = cos x,

so by the definition of the indefinite integral,

∫
cos x dx = sin x + c.

Now you try one. What is ∫ sin x dx? Choose the answer: [cos x + c | −cos x + c | sin
x cos x + c | none of these]

Make sure you understand the correct answer (you can check the result by differentiation).

Go to 309.
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309

Now try to find these integrals:

(a) ∫ xn dx =
[

1
n

xn + c
|||| 1

n
xn+1 + c

|||| 1
n + 1

xn+1 + c
|||| 1

n − 1
xn + c

]
, n ≠ 1.

(b) ∫ ex dx =
[

ex + c
|||| xex + c

|||| 1
x

ex + c
|||| none of these

]

If you did both of these correctly, skip to frame 311.
If not, go to frame 310.

310

If you had difficulty with these problems, recall the definition of the indefinite integral.
If F = ∫ f (x)dx, then d

dx
F(x) = f (x).

In order to find F, we must find an expression that when differentiated yields the given
function f (x). For instance, the derivative of 1

n+1
xn+1 is

d
dx

(
xn+1

n + 1

)
= 1

n + 1
dxn+1

dx
= 1

n + 1
(n + 1) xn = xn

by the formula for differentiating xn in frame 180. Hence, 1

n+1
xn+1 + c is an integral of xn. But

the integral is indefinite because we could add any constant to it without changing its defining
property: d

dx
(F + c) = dF

dx
= f (x). Thus, including the integration constant c, we find ∫ xn dx =

xn+1

n+1
+ c. (Note that this formula does not work for n = −1. That case will be discussed later.)

Likewise, by frame 235,
d
dx

ex = ex.

But the integral is indefinite because we could add any constant. Thus

∫
exdx = ex + c.

Go to 311.

Answers: Frame 306: antiderivative, or F(x) = ∫ f (x) dx
Frame 308: − cos x + c
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311

A table with some common integrals is given in the next frame. You can check the truth
of any of the equations ∫ f (x) dx = F(x) by confirming that d

dx
F(x) = f (x). We will shortly

use this method to verify some of the equations.
Go to 312.

312

Table of Integrals:

The following integral table is a list of antiderivatives of some common functions. The
integrals occur in many applications and are worth getting to know. For simplicity, in the
integration table the arbitrary integration constants are omitted; a and n are constants.

Table of Integrals

1. ∫ a dx = ax
2. ∫ af(x) dx = a ∫ f (x) dx
3. ∫ (u + v) dx = ∫ u dx + ∫ v dx

4. ∫ xn dx,= xn+1

n + 1
n ≠ −1

5. ∫
dx
x

= ln ∣ x ∣

6. ∫
dx

a + bx
= 1

b
ln |a + bx|

7. ∫ ex dx = ex

8. ∫ eaxdx = eax

a
9. ∫ bax dx = bax

a ln b
10. ∫ ln ∣ x ∣ dx = x ln ∣ x ∣ −x
11. ∫ sin x dx = − cos x

12. ∫ cos x dx = sin x
13. ∫ tan x dx = − ln ∣ cos x ∣
14. ∫ cot x dx = ln ∣ sin x ∣
15. ∫ sec x dx = ln ∣ sec x + tan x ∣
16. ∫ sin x cos x dx = 1

2
sin2x

17. ∫
dx

a2 + x2
= 1

a
tan−1 x

a
18. ∫

dx√
a2 − x2

= sin−1 x
a

19. ∫
dx√

x2 ± a2
= ln |x −

√
x2 ± a2|

20. ∫ w(u) dx = ∫ w(u)dx
du

du

21. ∫ u dv = uv − ∫ v du

For convenience this table is repeated as Table 2: Integrals on page 288.
Go to 313.

313

Let’s see if you can check some of the formulas in the table. Show that integral formulas
10 and 16 are correct.

If you have proved the formulas to your satisfaction, go to 315.
If you want to see proofs of the formulas, go to 314.
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314

To prove that F(x) = ∫ f (x) dx, we must show that d

dx
F(x) = f (x).

10. F(x) = x ln x − x, f (x) = ln x.

dF
dx

= d
dx

(x ln x − x) = x
(1

x

)
+ ln x − 1 = ln x = f .

16. F(x) = 1

2
sin2x, f (x) = sin x cos x.

d
dx

(1
2

sin2x
)
= 1

2
(2 sin x)

( d
dx

sin x
)
= sin x cos x.

Go to 315.

3.2 Some Techniques of Integration

315

Change of Variable:

Often an unfamiliar function can be converted into a familiar function having a known
integral by using a technique called change of variable. The method applies to integrating a
“function of a function.” (Differentiation of such a function was discussed in frame 198. It is
differentiated using the chain rule.) For example, e−x2

can be written e−u, where u = x2. With
the following rule, the integral with respect to the variable x can be converted into another
integral, often simpler, depending on the variable u.

∫ w(x) dx = ∫

[
w(u) dx

du

]
du.

Let’s see how this works by applying it to a few problems.

Go to 316.
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316

Consider the problem of evaluating the integral

∫
xe−x2

dx.

Let u = x2, or x =
√

u, and w(u) =
√

ue−u. Hence dx

du
= 1

2
√

u
. Using the rule for change

of variable, ∫ w(x) dx = ∫

[
w(u) dx

du

]
du, the integral becomes

∫
xe−u 1

2x
du = 1

2 ∫
e−u du = −1

2
e−u + c = −1

2
e−x2 + c.

To prove that this result is correct, note that

d
dx

(
−1

2
e−x2 + c

)
= xe−x2

,

as required.
Try the following somewhat tricky problem. If you need a hint, see frame 317. Evaluate

∫
sin 𝜃 cos 𝜃 d𝜃 =

To check your answer, go to 317.

317

Let u = sin 𝜃. Then du

d𝜃
= cos 𝜃, and by the rule for change of variable,

∫
w(x) dx =

∫

[
w(u)dx

du

]
du.

The integral becomes

∫
sin 𝜃 cos 𝜃 d𝜃 =

∫
u cos 𝜃

1
cos 𝜃

du =
∫

u du = 1
2

u2 + c = 1
2

sin2𝜃 + c.

Go to 318.
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318

Here is an example of a simple change of variable. The problem is to calculate ∫ sin 3x dx.
If we let u = 3x, then the integral is sin u, which is easy to integrate. Using dx = du∕3, we
have

∫
sin 3xdx = 1

3 ∫
sin u du = 1

3
(− cos u + c) = 1

3
(− cos 3x + c).

To see whether you have caught on, evaluate ∫ sin x

2
cos x

2
dx. (You may find the integral

table in frame 312 helpful.)

∫
sin

x
2

cos
x
2

dx =

To check your answer, go to 319.

319

Here is the answer:

∫
sin

x
2

cos
x
2

dx = sin2 x
2
+ c.

If you obtained this result, go right on to 320. Otherwise, continue. If we let u = x∕2,
then dx = 2du and

∫
sin

x
2

cos
x
2

dx = 2
∫

sin u cos u du.

From formula 16 of frame 312 we have

∫
sinu cosu du = 1

2
sin2u + c = 1

2
sin2 x

2
+ c.

Hence

∫
sin

x
2

cos
x
2

dx = 2
(1

2
sin2 x

2
+ c

)
= sin2 x

2
+ 2c.

Let’s check this result:

d
dx

(
sin2 x

2
+ 2c

)
= 2

(
sin

x
2

cos
x
2

)(1
2

)
= sin

x
2

cos
x
2

as required. (We have used the chain rule here.)

Go to 320.
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320

Try to evaluate ∫ dx

a2+b2x2
, where a and b are constants. The integral table in frame 312 may

be helpful.

∫

dx
a2 + b2x2

= .

Go to 321 for the solution.

321

If we let u = bx, then dx = du∕b and

∫

dx
a2 + b2x2

= 1
b ∫

du
a2 + u2

= 1
ab

(
tan−1 u

a

)
+ c,

= 1
ab

(
tan−1 bx

a

)
+ c.

(Frame 𝟑𝟑𝟑, formula 16)

Go to 322.
322

We have seen how to evaluate an integral by changing the variable from x to u = ax,
where a is some constant. Often it is possible to simplify an integral by substituting still other
quantities for the variable.

Here is an example. Evaluate:

∫

x dx
x2 + 4

.

Suppose we let u2 = x2 + 4. Then 2udu = 2xdx, and

∫

x dx
x2 + 4

=
∫

u du
u2

=
∫

du
u

= ln ∣ u ∣ +c = ln ||√x2 + 4|| + c.

Try to use this method for evaluating the integral: ∫ x
√

1 + x2 dx.

∫ x
√

1 + x2 dx =

Go to 323 to check your answer.
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323

Taking u2 = 1 + x2, then 2udu = 2xdx and

∫
x
√

1 + x2dx =
∫

u(u du) =
∫

u2du = 1
3

u3 + c = 1
3
(1 + x2)3∕2 + c.

Go to 324.

324

Integration by Parts:

A technique known as integration by parts is sometimes helpful. Let u and v be any two
functions of x. Then the rule for integration by parts is

∫ u dv = uv − ∫ v du.

Here is the proof: using the product rule for differentiation,

d
dx

(uv) = u
dv
dx

+ v
du
dx

.

Now integrate both sides of the equation with respect to x.

∫

d
dx

(uv) dx =
∫

u
dv
dx

dx +
∫

v
du
dx

dx,

∫
d(uv) =

∫
u dv +

∫
v du.

But ∫ d(uv) = uv, and after transposing, we have ∫ u dv = uv − ∫ v du.

Here is an example: Find ∫ 𝜃 sin 𝜃 d𝜃.

Let u = 𝜃, dv = sin 𝜃d𝜃. Then it is easy to see that du = d𝜃, and v = − cos 𝜃 = ∫ sin 𝜃d𝜃.
Note we have dropped the constant for simplicity. Thus

∫
𝜃 sin 𝜃 d𝜃 =

∫
u dv = uv −

∫
v du

= −𝜃 cos 𝜃 −
∫
(− cos 𝜃) d𝜃

= −𝜃 cos 𝜃 + sin 𝜃 + c.

Go to 325.
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325

Try to use integration by parts to find ∫ xex dx.

[(x − 1) ex + c | xex + c | ex + c | xex + x + c | none of these]

If right, go to 327.
If you missed this, or want to see how to solve the problem, go to 326.

326

To find ∫ xex dx use the formula for integration by parts. Because we now know that
ex = ∫ ex dx (frame 312, formula 7), we let u = x, dv = exdx, so that du = dx, v = ex. Then,

∫
xex dx = xex −

∫
ex dx

= xex − ex + c = (x − 1)ex + c.
Go to 327.

327

Use the method of integration by parts to find the integral: ∫ x cos x dx.

∫
x cos x dx =

Check your answer in 328.

328

Here is the answer:

∫
x cos x dx = x sin x + cos x + c.

If you want to see how this is derived, continue here. Otherwise, go on to 329.
Let us make the following substitution u = x and dv = cos x dx, and integrate by parts.

Thus du = dx, v = sin x, and the integral is

∫
x cos x dx =

∫
u dv = uv −

∫
v du = x sin x −

∫
sin x dx

= x sin x + cos x + c.

Go to 329.
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329

In integration problems it is often necessary to use a number of different integration
“tricks of the trade” in a single problem.

Try the following (b is a constant):

(a) ∫ (cos 5𝜃 + b) d𝜃 =

(b) ∫ x ln x2 dx =

Go to 330 for the answers.
330

The answers are

(a) ∫ (cos 5𝜃 + b) d𝜃 = 1

5
sin 5𝜃 + b𝜃 + c

(b) ∫ x ln x2 dx = 1

2
[x2(ln x2 − 1) + c]

If you did both of these correctly, you are doing fine—jump ahead to frame 332. If you
missed either problem, go to frame 331.

331

If you missed (a), you may have been confused by the change in notation from x to 𝜃.
Remember x is merely a symbol for some variable. All the integration formulas could be
written replacing the x with 𝜃 or z or whatever you wish. Now for (a) in detail:

∫
(cos 5𝜃 + b) d𝜃 =

∫
cos 5𝜃 d𝜃 +

∫
b d𝜃

= 1
5 ∫

cos 5𝜃 d(5𝜃) +
∫

b d𝜃

= 1
5

sin 5𝜃 + b𝜃 + c.

For problem (b), let u = x2, du = 2xdx:

∫
x ln x2 dx = 1

2 ∫
ln u du = 1

2
(u ln u − u + c).

Answer: Frame 325: (x − 1)ex + c
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(The last step uses formula 10, frame 312.) Therefore,

∫
x ln x2 dx = 1

2
(x2 ln x2 − x2 + c).

You could also have solved this problem using integration by parts.

Go to 332.

332

Method of Partial Fractions:

A useful manipulation from elementary algebra is to combine two simple fractions into
one function. The method of partial fractions involves reversing this process in which you split a
function into a sum of fractions with simpler denominators.

To illustrate this method, here is a simple example. Consider the function

y(x) = 1
1 − x2

.

Because 1 − x2 = (1 − x)(1 + x), we can write

1
1 − x2

= a
1 − x

+ b
1 + x

,

where a and b, which are yet to be defined, are called undetermined coefficients. Combining
terms yields

1
1 − x2

= a
1 − x

+ b
1 + x

= a(1 + x) + b(1 − x)
1 − x2

= (a + b) + (a − b)x
1 − x2

.

Equate coefficient of like powers (this is comparable to solving a system of linear
equations). Therefore a + b = 1 and a − b = 0. Thus a = b = 1∕2.

Now integrate 1∕(1 − x2) in terms of simpler integrals that you already know how to eval-
uate see using formula 6, frame 312.

∫

1
1 − x2

dx = 1
2 ∫

dx
1 − x

+ 1
2 ∫

dx
1 + x

= 1
2
(− ln |1 − x| + ln |1 + x|) + c

= ln

(||||1 + x
1 − x

||||
)
+ c.

Go to 333.
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333

Now try this problem. Use the method of partial fractions to evaluate the integral

∫
3x−4

(x2−2x−3)
dx.

∫

3x − 4
(x2 − 2x − 3)

dx =

Go to 334.

334

First note that x2 − 2x − 3 = (x + 1)(x − 3). Then write

3x − 4
(x2 − 2x − 3)

= 3x − 4
(x + 1)(x − 3)

= a
x + 1

+ b
x − 3

= (−3a + b) + (a + b)x
(x + 1)(x − 3)

.

Next, compare coefficients: −3a + b = −4 and a + b = 3. Solve these two equations with the
result that a = 7∕4, b = 5∕4. Therefore

3x − 4
(x2 − 2x − 3)

= 7
4 (x + 1)

+ 5
4(x − 3)

.

Hence the integral is

∫

3x − 4
(x2 − 2x − 3)

dx = 7
4 ∫

dx
x + 1

+ 5
4 ∫

dx
x − 3

= 7
4

ln |1 + x| + 5
4

ln |x − 3|) + c.

(The last step uses formula 6, frame 312.)

3.3 Area Under a Curve and
the Definite Integral

The first section of this chapter focused on the techniques of integration, i.e. finding
antiderivatives, all of which are embodied in the term “indefinite integral.” Just as differentia-
tion is useful for many applications besides finding slopes of curves—for instance, calculating
rates of growth or finding maxima and minima—so integral calculus has many applications
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such as finding the volumes of solids or finding the distance traveled by a body moving with
a velocity v(t). These applications all rely on the second type of integration, called the definite
integral. This originated in the geometric problem of finding the area under a curve. We start
by explaining what “area under a curve” means.

Go to 335.
335

Area under a Curve:

To illustrate what is meant by “the area under a curve,” here is a graph of the simplest of
all curves—a straight line given by f (x) = 3.

x

f (x)

0

1

2

3

a b

f (x) = 3

What is the area A between the line f (x) = 3, and the x-axis between the interval x = a
and x = b?

A = [3ab ∣ 3(a + b) ∣ 3(a − b) ∣ 3(b − a)]

To check your answer, go to 336.

336

The area in the rectangle is the product of the base, (b − a), and the height, 3. Thus the
area is 3(b − a).

x

f (x)

0 a b

x

A > 0

0

f (x)

a b

A < 0
1

2

3

–1

–2

–3

(continued)
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There is an important convention in the sign of the area. In the drawing at the left, because
f (x) is positive, the area is positive. However, the area under the graph at the right is negative
because the height is f (x), which is negative. Thus, areas can be positive or negative.

Go to 337.

337

A key operation in integral calculus is to find the area under the graph of an arbitrary function
f (x) bordered by the x-axis between x = a and x = b, and f (a) and f (b). Our procedure will
be to divide the interval b − a into N slices of width (b − a)∕N , and then watch what happens
as N increases and the width decreases.

Let’s approximate the area under a curve shown in the figure below left using the above
procedure.

x3 x4

x

f (x)

x1 x2

1

2

3
f (x1)

4

x5

x1 = a
x5 = a

ba
x

f (x)

a b

f (b)

f (a)

f (x2)

f (x3)
f (x4)
f (x5)

First we divide the area into a number of strips of equal widths by drawing lines parallel to
the vertical axis. The figure shows four such strips. Each strip has an irregular top: but we can
divide each strip’s area into two sections: a rectangular shape and an approximately triangular
shape. Suppose we label the strips 1, 2, 3, 4. The width of each strip is

Δx = b − a
4

.

The height of the first rectangular shape is f (x1), where x1 = a is the value of x at the
beginning of the first strip. Similarly, the height of the second rectangular shape is f (x2)
where x2 = x1 + Δx. The third and fourth rectangular shapes have heights f (x3) and f (x4),
respectively, where x3 = x1 + 2Δx and x4 = x1 + 3Δx.
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The height of the first triangular shape is Δh = f ′(x1)Δx, where f ′(x1) is the slope of f (x1)
evaluated at x1. The heights of the other triangles are similarly described.

You should be able to write an approximate expression for the area of any of the strips.
Below write the approximate expression for the area of strip number 3, ΔA3,

ΔA3 ≈

The symbol ≈ means “approximately equal to.”

For the correct answer, go to 338.

338

The area of rectangular shape in strip number 3 is f (x3) Δx. The triangular shape has area
(1∕2)(base)(height) = (1∕2)(Δx)(f ′(x3) Δx). The approximate area of strip 3 is then

ΔA3 ≈ f (x3) Δx + (1∕2)(Δx)(f ′(x3) Δx).

Now try to write an approximate expression for A, the total area of all four strips.

A ≈

Try this, and then see 339 for the correct answer.

339

An approximate expression for the total area is simply the sum of the areas of all the strips.
In symbols, because A = ΔA1 + ΔA2 + ΔA3 + ΔA4, we have

A ≈ f (x1) Δx + f (x2) Δx + f (x3) Δx + f (x4) Δx

+ (1∕2)(Δx)(f ′(x1) Δx + f ′(x2) Δx + f ′(x3) Δx + f ′(x4) Δx).

We could also write this as

A ≈
4∑

i=1

f (xi) Δx + 1
2

4∑
i=1

f ′(xi) (Δx)2.

(continued)
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is the Greek letter Sigma, which corresponds to the English letter S and stands here for the

sum. The symbol
N∑
i=1

g(xi) means

N∑
i=1

g(xi) = g(x1) + g(x2) + g(x3) + · · · + g(xN ),

where i is an index and the counting goes from i = 1 to i = N .

Go to 340.

340

Suppose we divide the area into more strips each of which is narrower, as shown in the
drawings. Evidently our approximation gets better and better.

x

f (x)

a b
x

f (x)

a b
x

f (x)

a b
n = 4 n = 8 n = 16

If we divide the area into N strips, then

A ≈
N∑
i=1

f (xi) Δx + 1
2

N∑
i=1

f ′(xi) (Δx)2,

where N = b−a

Δx
. Now, if we take the limit where Δx → 0, the approximation becomes an

equality. Thus,

A = lim
Δx→0

N∑
i=1

f (xi) Δx.

Such a limit is so important that it is given a special name and symbol. It is called the
definite integral and is written ∫

b
a f (x) dx. This expression looks similar to the antiderivative

∫ f (x) dx, from frame 327, and as we shall see in the next frame, it is related. However, it is
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important to remember that the definite integral is defined by the limit described above:

∫

b

a
f (x) dx = lim

Δ x→0

N∑
i=1

f (xi) Δx.

(Incidentally, the integral symbol ∫ also evolved from the letter S and, like sigma, it was chosen
to stand for sum.)

Go to 341.

341

With this definition for the definite integral, the discussion in the last frame shows that
the area A under the curve between x = a and x = b is equal to the definite integral.

A =
∫

b

a
f (x) dx.

The function f (x) is called the integrand. The points a and b are called the limits of the
integral. This usage has nothing to do with lim

x→a
f (x); here “limit” simply means the boundary.

x

f (x)

a b

Area

The process of evaluating ∫
b

a f (x) dx is often spoken of as “integrating f (x) from a to b,”
and the expression is called the “integral of f (x) from a to b.” Caution: the indefinite and
definite integral both employ the integral symbol ∫ , and so they can easily be confused. They
are entirely different: the definite integral is a number and is equal to the area under the curve
between limits a and b. In contrast the indefinite integral is a function — the antiderivative of
the integrand.

Go to 342.
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342

The Area Function:

For a given function f (x), we can introduce a new area function A(x) by introducing a
variable x for the upper limit of the definite integral in frame 341, and to avoid confusion we
are renaming the integration variable u

A(x) =
∫

x

a
f (u) du.

The area function A(x) and the function f (x) are closely related; the derivative of the area
is simply f (x). Hence

A′(x) = f (x).

Recall from frame 306 that this means that A(x) is an antiderivative of the function f (x) as
we will now show.

Go to 343.

343

To illustrate that A′(x) = f (x) let’s look at some simple areas that one can calculate directly.

x
0 a x

C
2

f (x) = C
C

f (x)

The area under the curve f (x) = C, where C is a constant, is A(x) = C(x − a). Differen-
tiating, A′(x) = C = f (x).

Find the area A(x) under f (x) = Cx between a and x.
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x

f (x)

0 a x

Prove to yourself that A′(x) = f (x).

If you want to check your result, go to 344.
Otherwise, skip to 345.

344

One way to calculate the area above is to think of it as the difference of the area of two
right triangles. Using area = 1/2 base × height, we have

A(x) = 1
2

x f (x) − 1
2

af (a) = 1
2

Cx2 − 1
2

Ca2,

A′(x) = d
dx

(1
2

Cx2 − 1
2

Ca2
)
= Cx = f (x).

Go to 345.

345

To see why A′(x) = f (x), consider how the area A(x) changes as x increases by an amount
Δx. A(x + Δx) = A(x) + ΔA, where ΔA is the narrow strip shown.

x

 f (x)

0 a x

A(x)

x + Δx

ΔA

(continued)
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Can you find an approximate expression for ΔA?

ΔA ≈

This represents a major step in the development of integral calculus, so don’t be disap-
pointed if the result eludes you.

Go to 346.

346

The answer we want is
ΔA ≈ f (x) Δx.

If you wrote this, go on to 347. If you would like a more detailed discussion, read on.

x

Δx

A

E

D

B C

f (x)

The following argument may appear similar to our definition of the definite integral (frame
340), but here we are proving that the area function is an antiderivative.

Let’s take a close look at the area ΔA. As you can see, the area is a long narrow strip, which
we divided into a rectangle and a triangle with a small piece remaining. In the figure above
we just show the rectangle and triangle. As before (frame 338) the area of the strip is then

ΔA = f (x) Δx + (1∕2)( f ′(x) Δx)Δx + small term,

where the small term in the above expression represents the part of the area not included in
the triangle or rectangle. For a sufficiently small value of Δx, the two last terms can be ignored
compared to the first term. Therefore in the limit as Δx → 0

dA
dx

= lim
Δx→0

ΔA
Δx

= lim
Δx→0

f (x) + lim
Δx→0

(1∕2)( f ′(x) Δx) = f (x).
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This supports the conjecture in frame 342 that the area function is an antiderivative,
A′(x) = f (x).

Go to 347.

347

To summarize this section, we have found an expression for the area A(x) under a curve
defined by y = f (x) that satisfies the equation A′(x) = f (x). Thus, if we can find a func-
tion whose derivative is f (x), we can find the area A(x) up to a constant that remains to be
determined to find the exact area.

Go to 348.

348

The second meaning of integration, the definite integral, was introduced by the problem
of finding the area A under a curve, f (x), from x = a to x = b; this involved finding the limit
of an infinite sum. (Recall that this area is a number and not a function.)

Finding the limit of an infinite sum requires a tedious calculation. Fortunately, we can
calculate a definite integral by a far simpler method using the techniques of integration for
indefinite integrals. The result is that the area is

A =
∫

b

a
f (x) dx = F(b) − F(a),

where F is any antiderivative of f (x), i.e. F(x) = ∫ f (x)dx + c. What makes this possible is
explicitly calculating the constant c. Instead of calculating a limit, we are now evaluating an
antiderivative at the endpoints of the interval.

Let’s begin with the area function associated with a function f (u) from u = a to u = x,

A(x) =
∫

x

a
f (u) du.

Note that our area function is a function of the variable x, which is the upper limit of the
integral. That’s why, to avoid confusion with the variable x, we chose a different variable, u,
for integration. In frame 346 we showed that A′(x) = f (x).

(continued)
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u

f (u)

0 a x

When x = a, the area is zero

A(a) =
∫

a

a
f (u) du = 0.

Let F(x) be any antiderivative of f (x). Then the area function is equal to

A(x) =
∫

x

a
f (u) du = F(x) + c.

where c is an arbitrary constant. Set x = a. Then

0 = A(a) =
∫

a

a
f (u) du = F(a) + c.

Therefore c = −F(a). Hence the area under the curve f (x) is equal to

A(x) =
∫

x

a
f (u) du = F(x) − F(a).

Now set x = b. Then the definite integral A = ∫
b

a f (x) dx corresponds to the area under
the curve of the function f (x) for a ≤ x ≤ b. This can be determined by calculating the value
of any antiderivative Fof f (x) at x = b and subtracting the value of F at x = a.

The definite integral is commonly written as

A = ∫
b

a f (x) dx = F(b) − F(a) .

Go to 349.
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349

Fundamental Theorem of Calculus:

The significance of the result in the last frame is that determining the area does not require
calculating the limit of the summation in the definition of the definite integral (which can be
a difficult calculation) but merely evaluating any antiderivative at the endpoints of the interval.

In frame 336, we discussed the convention for determining the sign for the area. Note that
a definite interval can be positive or negative for some interval. If a function f (x) is negative
in some interval, then the definite integral evaluated in that interval will be negative.

Summary: We have shown that for any continuous function f (x),

lim
Δx→0

N∑
i=1

f (xi) Δx = ∫
b

a f (x) dx = F(b) − F(a)

where F′(x) = f (x).
This relation is so extraordinary that it is called the fundamental theorem of calculus.

Go to 350.

350

To see how all this works, we will find the area under the curve y = x2 between x = 0
and x = b.

x

b
0

f (x)

In this example an antiderivative is F(x) = x3∕3 because F′(x) = x2. Therefore

A =
∫

b

0
x2dx = F(b) − F(0) = 1

3
b3 − 1

3
03 = 1

3
b3.

(continued)
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Note that the definite integral yields a number. Furthermore, we no longer need
to introduce an undetermined constant c whenever we evaluate an expression such as
F(b) − F(0).

Go to 351.

351

20

15

10

0
1 2 43

x

5

f (x)

Can you find the area under the curve y = 2x2, between the points x = 2 and x = 3?

A =
[
13 ∣ 1∕3 ∣ 38∕3 ∣ 18

]
If right, go to 353.

Otherwise, go to 352.

352

The solution is straightforward. An antiderivative for the function f (x) = 2x2 is
F(x) = 2

3
x3. Therefore

A = F(3) − F(2) = 2
3
(33 − 23) = 38

3
.

Go to 353.
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353

Find the area under the curve y = 4x3 between x = −2 and x = 1.

A =
[
17 ∣ 15∕4 ∣ −15 ∣ 16

]
Go to 354.

354

An antiderivative for the function f (x) = 4x3 is F(x) = x4. Therefore

A = F(1) − F(−2) = (1)4 − (−2)4 = 1 − 16 = −15.

Let’s introduce a little labor-saving notation. Frequently we have to find the difference of
an expression evaluated at two points, as F(b) − F(a). This is often denoted by

F(b) − F(a) = F(x)|ba .
For example, x2||ba = b2 − a2. Using this notation, the solution to this problem is written

A =
∫

1

−2
4x3 dx = x4||1−2 = 14 − (−2)4 = 1 − 16 = −15.

Note that this area is negative.

Go to 355.

355

Here is another practice problem:

8

6

4

0 210.5
x

10

1.5–1 –0.5–2 –1.5

f (x)

(continued)
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The graph shows a plot of y = x3 + 2. Find the area between the curve and the x-axis
from x = −1 and x = 2.

Answer: [5 | 1/4 | 4 | 17∕4 | 39∕4 | none of these]

If right, go to 357.
Otherwise, go to 356.

356

Here is how to do the problem: one antiderivative is F(x) = (x4∕4) + 2x. You can check
that F′(x) = x3 + 2. Therefore

A = F(2) − F(−1) = F(x)|2−1 ,

F =
∫

y dx =
∫
(x3 + 2) dx = 1

4
x4 + 2x,

A =
(1

4
x4 + 2x

)||||
2

−1
=
(16

4
+ 4

)
−
(1

4
− 2

)
= 39

4
.

Go to 357.

357

To help remember the definition of definite integral, try writing it yourself. Write an
expression defining the definite integral of f (x) between the limits a and b.

∫

b

a
f (x) dx =

To check your answer, go to 358.

358

The answer is

∫

b

a
f (x) dx = lim

Δ x→0

N∑
i=1

f (xi) Δx, where N = b − a
Δx

.

Answers: Frame 351: 38∕3

Frame 353: −15
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Congratulations if you wrote this or an equivalent expression. If you wrote

∫

b

a
f (x) dx = F(b) − F(a), where F(x) =

∫
f (x) dx,

your statement is true, but it is not the definition of a definite integral. The result is true
because both sides represent the same thing—the area under the curve of f (x) between x = a
and x = b. It is an important result because without it the definite integral would be much
more difficult to calculate; however, it is not true by definition.

The definite integral appears merely to provide a second way to find the area under a curve.
To compute the area, we were led back to the indefinite integral, but we could have found the
area directly from the indefinite integral. The importance of the definite integral arises from its
definition as the limit of a sum. The process of dividing a system into small elements and then
adding them together is a powerful technique that is applicable to more problems than finding
the area under a curve. These invariably lead to definite integrals, which we can evaluate in
terms of indefinite integrals by using the fundamental theorem of calculus (frame 349).

Go on to 359.

359

Can you prove that

∫

b

a
f (x) dx = −

∫

a

b
f (x) dx?

After you have tried to prove this result, go to 360.
360

The proof that ∫
b

a f (x) dx = − ∫
a

b f (x) dx is as follows:

∫

b

a
f (x) dx = F(b) − F(a), where F(x) =

∫
f (x) dx.

Reversing the limits of the integral yield,

∫

a

b
f (x) dx = F(a) − F(b) = −[F(b) − F(a)]

= −
∫

b

a
f (x) dx.

Go to 361.
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361

Which of the following expressions correctly gives ∫
2𝜋

0 sin 𝜃 d𝜃?

[1 ∣ 0 ∣ 2𝜋 ∣ −2 ∣ −2𝜋 | none of these]
Go to 362.

362

The answer is

∫

2𝜋

0
sin 𝜃 d𝜃 = − cos 𝜃|2𝜋0 = −(1 − 1) = 0.

It is easy to see why this result is true by inspecting the figure.

0
2π

–1

1

/ 2 3π / 2

sin θ

A2

A1

π π
θ

The integral yields the total area under the curve, from 0 to 2𝜋, which is the sum of the area
A1 between 0 to 𝜋, and A2 between 𝜋 and 2𝜋. But A2 is negative, because sin 𝜃 is negative in
that region. By symmetry, the two areas just add to 0. However, you should be able to find
A1 or A2 separately. Try this problem:

A1 = ∫

𝜋

0
sin 𝜃 d𝜃 = [1| ∣ 2 ∣ −1| − 2 ∣ 𝜋 ∣ 0]

If right, go to 364.
Otherwise, go to 363.

Answer: Frame 355: 39∕4
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363
The answer is

A1 = ∫
sin 𝜃 d𝜃 = − cos 𝜃

||||
𝜋

0
= −[−1 − (+1)] = 2.

If you forgot the integral, you can find it in frame 312. In evaluating cos 𝜃 at the limits,
cos𝜋 = −1, and cos 0 = 1.

Go to 364.
364

Here is a graph of the function f (x) = 1 − e−x.

x
x

f (x)

Can you find the shaded area under the curve between the origin and x?

Answer: [e−x | 1 − e−x | x + e−x | x + e−x − 1]

Go to 366 if you did this correctly.
See 365 for the solution.

365

Here is the solution to 364.

A(x) =
∫

x

0
f (x) dx =

∫

x

0
(1 − e−x) dx =

∫

x

0
dx −

∫

x

0
e−x dx

= [x − (−e−x)]|||x0 = [x + e−x]|||x0 = x + e−x − 1,

The area is bounded by a vertical line through x. Our result gives A(x) as a variable that
depends on x. If we choose a specific value for x, we can substitute it into the above formula
for A(x) and obtain a specific value for A(x). We have obtained a definite integral in which
one of the boundary points is left as a variable.

Go to 366.
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366

Let’s evaluate one more definite integral before going on. Find:

∫

1

0

dx√
1 − x2

=

(If you need to, use the integral tables, frame 312.)

Answer: [0 | 1 | ∞ | 𝜋 | 𝜋/2 | none of these]

If you got the right answer, go to 368.
If you got the wrong answer, or no answer at all, go to 367.

367

From the integral table, frame 312, we see that

∫

dx√
1 − x2

= sin−1x + c.

Therefore,

∫

1

0

dx√
1 − x2

= sin−1||10 = sin−11 − sin−10.

Answers: Frame 361: 0

Frame 362: 2
Frame 364: x + e−x − 1
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Because sin 𝜋

2
= 1, we have that sin−11 = 𝜋

2
. Similarly, sin−1 0 = 0. Thus, the integral has

the value 𝜋

2
− 0 = 𝜋

2
.

1

2

0.5

1.5

0.5 10
x

2.5

3
f (x)

A graph of f (x) = 1√
1−x2

is shown above. Although the function is discontinuous at

x = 1, the area under the curve is perfectly well defined.
Go to 368.

3.4 Some Applications of Integration
368

In this section we are going to apply integral calculus to a few problems.
In Chapter 2 we learned how to find the velocity of a particle if we know its position

in terms of time. Now we can reverse the procedure and find the position from the velocity.
For instance, we are in an automobile driving along a straight road through thick fog. To make
matters worse, our mileage indicator is broken. Instead of watching the road all the time, let’s
keep an eye on the speedometer. We have a good watch along, and we make a continuous
record of the speed starting from the time when we were at rest. The problem is to find how
far we have gone. More specifically, given v(t), how do we find the change in position of the
automobile S(t) − S(t0), called the displacement, when we were at rest? Because the automobile
is traveling in the same direction, the change of position is equal to the distance traveled.

Try to work out a method.

S(t) =

To check your result, go to 369.
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369

Because v = dS∕dt, we must have dS = vdt (as was shown in frame 275). Now let us
integrate both sides from the initial point (t0, S(t0)) to the final point in order to find the change
in position of the automobile

S(t) − S(t0) = ∫

t

t0

dS =
∫

t

t0

v(t′) dt′,

where we have replaced the integration variable by t′.

If you did not get this result, or would like
to see more explanation, go to 370.

Otherwise, go to 371.
370

Another way to understand this problem is to look at it graphically. Here is a plot of v(t)
as a function of t.

t0 t t + Δt

Δt

t-axis

v(t)

In time Δt the distance traveled is ΔS = vΔt. The total distance traveled is thus equal to the
area under the curve between the initial time and the time of interest, and this is ∫

t
t0

v(t) dt.
There may be some confusion because the same symbol t, which is the dependent variable
of the function, appears both as an endpoint of the integral and as the integration variable
in the integrand v(t). The integration variable is what we call a dummy variable and we can
denote it by any symbol, for example, u. Thus the integral is written as

S(t) =
∫

u=t

u=t0

v(u) du =
∫

t

t0

v(u) du.

Often this distinction between the dependent variable of the function and the integration
variable is not explicit but implicit, and the symbol t is used in both places, as we will do in a
few frames.

Go to 371.

Answer: Frame 366: 𝜋∕2
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371

Suppose an object moves with a velocity that continually decreases in the following way,
v(t) = v0e−bt ( v0 and b are positive constants).

t-axis

v(t)

v0

At t = 0 the object is at the origin; S(0) = 0. Which of the following is the distance, S(t),
the object will have moved after an infinite time (or, if you prefer, after a very long time)?

Answer:
[
0 ∣ v0 ∣ v0e−1 ∣ v0

b
∣ ∞

]

If correct, go to 373.
Otherwise, go to 372.

372

Here is the solution to the problem of frame 371.

S(t) − S(0) =
∫

t

0
v(t) dt =

∫

t

0
v0 e−bt dt

S(t) − 0 = −
v0

b
e−bt ||t0 = −

v0

b
(e−bt − 1).

We are interested in the lim
t→∞

S(t). Because e−bt → 0 as t → ∞, we have

lim
t→∞

S(t) = lim
t→∞

(
−

v0

b
(e−bt − 1)

)
= −lim

t→∞

v0

b
e−bt + lim

t→∞

v0

b
=

v0

b
.

Although the object never comes completely to rest, its velocity gets so small that the total
distance traveled is finite.

Go to 373.
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373

Not all integrals give finite results. For example, try this problem.

A particle starts from the origin at t = 0 with a velocity v(t) = v0∕(b + t), where v0 and b
are constants. How far does it travel as t → ∞?

Answer

[
v0 ln

1
b

||||
v0

b

||||
v0

b2

|||| none of these

]

Go to 374.

374

It is easy to see that problem 373 leads to an infinite integral.

S(t) − 0 =
∫

t

0
v0

dt
b + t

= v0 ln(b + t)|t0
= v0[ln(b + t) − ln b]

= v0 ln
(

1 + t
b

)
.

(The last step uses formula 6, frame 312.)

Because ln(1 + (t∕b)) → ∞ as t → ∞, we see that S(t) → ∞ as t → ∞. In this case, the particle
is always moving fast enough so that its motion is unlimited. Or, alternatively, the area under
the curve v(t) = v0∕(b + t) increases without limit as t → ∞.

Go to 375.

375

The Method of Slices:

Integration can be used for many tasks besides calculating the area under a curve. For
example, it can be used to find the volumes of solids of known geometry. A general method
for this is explained in frame 395. However, one can calculate the volume of symmetric solids
by a simple extension of methods we have learned already. In the next few frames we are
going to find the volume of a right circular cone.

Answer: Frame 371: v0∕b
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2R

H

y

The height of the cone is H, and the radius of the base is R. We will let y represent distance
vertically from the base.

Our method of attack, called the method of slices, is similar to that used in frame 378
to find the area under a curve. We will slice the body into a number of discs whose volume is
approximately that of the cone in the figure (the cone has been approximated by ten circular
discs). Then we have

V ≈
8∑

i=1

ΔVi,

where ΔVi is the volume of one of the discs. In the limit where the height of each disc (and
hence the volume) goes to 0, we have

V =
∫

dV.

In order to evaluate this, we need an expression for dV.

Go to frame 376.
376

Because we are going to take the limit where ΔV → 0, we will represent the volume
element by dV from the start.

dyH

y

x
(continued)
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A section of the cone is shown in the figure, which for our purposes is represented by a
disc. The radius of the disc is x and its height is dy. Try to find an expression for dV in terms
of y. (You will have to find x in terms of y.)

dV =

To check your result, or to see how to obtain it, go to 377.

377

The answer is:

dV = 𝜋R2
(

1 −
y
H

)2
dy.

If you got this answer, go on to 378. If you want to see how to derive it, read on.
The volume of this disc is the product of the area and height. Thus, dV = 𝜋x2dy. Our

remaining task is to express x in terms of y. The diagram shows a cross-section of the cone.

y

H

dy

x

R

H – y

Because x and R are corresponding edges of similar triangles, it should be clear that

x
R

=
H − y

H
, or x = R

(
1 −

y
H

)
.

Thus,

dV = 𝜋x2dy = 𝜋R2
(

1 −
y
H

)2
dy.

Go to 378.

Answer: Frame 373: none of these
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378

We now have an integral for V .

V =
∫

H

0
dV =

∫

H

0
𝜋R2

(
1 −

y
H

)2
dy.

Try to evaluate this.

V =

To check your answer, go to 379.
379

The result is V = 1

3
𝜋R2H . Congratulations, if you obtained the correct answer. Go on to

380.
Otherwise, read below:

V =
∫

H

0
𝜋R2

(
1 −

y
H

)2
dy = 𝜋R2

∫

H

0

(
1 −

2y
H

+
y2

H2

)
dy

= 𝜋R2

(
y −

y2

H
+ 1

3
y3

H2

)|||||
H

0

= 𝜋R2
(

H − H + 1
3

H
)

= 1
3
𝜋R2H .

Go to 380.
380

Let’s find the volume of a sphere. Can you write an integral that will give the volume
of the hemisphere?

x
R

dy

y

x{

y {

(The slice of the hemisphere shown in the drawing may help you in this.)
(continued)



Trim Size: 7.375in x 9.25in Kleppner743194 c03.tex V1 - 03/15/2022 3:31 P.M. Page 208�

� �

�

208 Integral Calculus Chap. 3

V =
Go to 381 to check your formula.

381

The answer is

V =
∫

R

−R
𝜋(R2 − y2)dy.

If you wrote this, go ahead to frame 382. Otherwise, read on.
In order to calculate the volume of the sphere, consider a disk of thickness dy and radius x,

located at a distance y from the center of the sphere as shown in the drawing in frame 280. The
differential volume dV of the disk between y and y + dy is dV = 𝜋x2dy. By the Pythagorean
theorem
x =

√
R2 − y2, therefore dV = 𝜋(R2 − y2)dy.

As you add up the disks, the limits of the variable y are y = −R to y = R. The volume
integral is

V =
∫

R

−R
𝜋(R2 − y2)dys.

Go to 382.

382

Now go ahead and evaluate the integral

V =
∫

R

−R
𝜋(R2 − y2)dy =

To see the correct answer, go to 383.
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383

The answer is

V =
∫

R

−R
𝜋
(
R2 − y2

)
dy = 2

∫

R

0
𝜋
(
R2 − y2

)
dy =

(
2𝜋R2y − 2𝜋y3∕3||R0 )

V = 2𝜋R3 − 2𝜋R3∕3 = 4𝜋R3∕3.

Go to 384.

384

Here’s a problem that involves finding the area under a curve and the volume of a solid
of revolution generated by the curve.

y

x

a b

b

y = a x

What is the area under the curve y = a
√

x, for the range x = 0 to x = b?

A =

Go to 385.

385

Here is how to solve the problem. The area under the curve is the integral

A = a
∫

b

0
x1∕2dx = 2ax3∕2

3

||||
b

0
= 2a

3
b3∕2.

Go to 386.
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386

Now rotate that area about the x-axis to generate the volume shown in the diagram.

y

x

a b

b

y

dx

Can you use the method of slices to write an integral that will give the volume? (The slice
in the drawing may help you visualize this.)

V =

Go to 387 to check your formula.

387

The answer is V = ∫
b

0 𝜋a2xdx. If you wrote this, go ahead to frame 388. Otherwise,
read on.

Consider a disk of thickness dx and radius y, located at a distance x from the origin
as shown in the diagram. The differential volume dV for the disk is

dV = 𝜋y2dx = 𝜋a2

h2
x2dx.

The limits of the variable x are x = 0 to x = h. Now you can set up the volume integral

V =
∫

b

0
𝜋a2xdx.

Go to 388.
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388

Now go ahead and evaluate the integral.

V =
∫

b

0
𝜋a2xdx =

To see the answer, go to 389.

389

The answer is

V =
∫

b

0
𝜋a2xdx = 𝜋a2 x2

2

||||
b

0
= 𝜋a2b2

2
.

Go to 390.

3.5 Multiple Integrals

390

The subject of this section—multiple integrals—introduces some new concepts
and enables us to apply calculus to a world of problems that involve multiple variable calculus,
in contrast to single variable calculus.

The integrals we have discussed so far, of the form ∫ f (x) dx, have had a single independent
variable, usually called x. Double integrals are similarly defined for two independent variables,
x and y. In general, multiple integrals are defined for an arbitrary number of independent
variables, but we will only consider two. Note that up to now y has often been the depen-
dent variable: y = f (x). In this section, however, y along with x will always be independent
variables, and z = f (x, y) will be the dependent variable. Thus, z is a function of two variables.

In frame 349 the definite integral of f (x) between a and b was defined by

∫

b

a
f (x) dx = lim

Δ x→0

N∑
i=1

f (xi) Δx.

(continued)
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The double integral is similarly defined, but with two independent variables. There are,
however, some important differences. For a single definite integral the integration takes place
over a closed interval between a and b on the x-axis. In contrast, the integration of z = f (x, y)
takes place over a closed region R in the x − y plane.

To define the double integral, divide the region R into N smaller regions each of
area ΔAi.

Region R 

Area ΔAi

Let (xi, yi) be an arbitrary point inside the region ΔAi. Then in analogy to the integral
of a single variable, the double integral is defined as

∫∫
f (x, y) dA = lim

ΔAi→0

N∑
i=1

f (xi, yi) ΔAi, the

(
∫∫

)
is called the double integral symbol.

Go to 391.

391

The double integral is often evaluated by taking ΔAi to be a small rectangle with sides
parallel to the x and y axes. The procedure is first evaluate the sum and limit along one
direction and then along the other. Consider the upper portion of the region R in the x − y
plane to be bounded by the curve y = g2(x), while the lower portion is bounded by y = g1(x),
as in the diagram.

Region R 

xk

y

yl

x

y = g2(x)

y = g1(x)
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If we let ΔAi = ΔxkΔyl, then

∬R
f (x, y) dA = lim

ΔAi→0

N∑
i=1

f (xi, yi) ΔAi

= lim
Δxk→0

lim
Δ yi→0

p∑
k=1

q∑
l=1

f (xk, yl) Δyl Δxk.

This is a complicated expression, but it can be simplified by carrying it out in two separate
steps. Let us insert some brackets to clarify the separate steps.

∬
R

f (x, y) dA = lim
Δxk→0

p∑
k=1

[
lim
Δyl→0

q∑
l=1

f (xk, yl)Δyl

]
Δxk.

The first step is to carry out the operation within the brackets. Note that xk is not altered
as we sum over l in the brackets. This corresponds to summing over the crosshatched strip
in the diagram with xk treated as approximately a constant. The quantity in square brackets is
then merely a definite integral of the variable y, with x treated as a constant. Note that although
the limits of integration, g1(x) and g2(x), are constants for a particular value of x, they are
in general non-constant functions of x. The quantity in square brackets can then be written as

∫

g2(xk)

g1(xk)
f (xk, y) dy.

This quantity will no longer depend on y, but it will depend on xk both through the inte-
grand f (xk, y) and the limits g1(xk), g2(xk). Consequently,

∬R
f (x, y) dA = lim

Δxk→0

p∑
k=1

[
∫

g2(xk)

g1(xk)
f (xk, y)dy

]
Δxk

=
∫

b

a

[
∫

g2(x)

g1(x)
f (x, y) dy

]
dx.

In calculations it is essential that one first evaluate the integral in the square brackets while
treating x as a constant. The result is some function, which depends only on x. The next step
is to calculate the integral of this function with respect to x, treating x now as a variable.

Go to 392.
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392

Multiple integrals are most easily evaluated if the region R is a rectangle whose sides are
parallel to the x and y coordinate axes, as shown in the drawing.

y

x
a b

c

d
Region R

The double integral is

∬R
f (x, y) dA =

∫

b

a

[
∫

d

c
f (x, y) dy

]
dx.

As an exercise to test your understanding, how would the above expression be written if
the integration over x were to be carried over before the integration over y?

Go to 393.

393

When x is chosen to be integrated first, the double integral becomes

∬R
f (x, y) dA =

∫

d

c

[
∫

b

a
f (x, y) dx

]
dy.

This can be found merely by interchanging the y and x operations in evaluating the double
integral. (Note that the integration limits must also be interchanged.)

To see how this works, let us evaluate the double integral of f (x, y) = 3x2 + 2y over
the rectangle in the x − y plane bounded by the lines x = 0, x = 3, y = 2, and y = 4. The
double integral is equal to the iterated integral.

∬R

(1
3

x2 + y
)

dA =
∫

3

0

[
∫

4

2
(3x2 + 2y) dy

]
dx.
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Alternatively we could have written

∬R

(1
3

x2 + y
)

dA =
∫

4

2

[
∫

3

0
(3x2 + 2y) dx

]
dy.

Evaluate each of the above expressions. The answers should be the same.

Integral =

If you made an error or want more explanation, go to 394.
Otherwise, go to 395.

394

Integrating first over y and then over x yields

∫

3

0

[
∫

4

2
(3x2 + 2y) dy

]
dx =

∫

3

0
(3x2y + y2) ||42 dx

=
∫

3

0
[3x2(4 − 2) + (16 − 4)] dx =

∫

3

0
(6x2 + 12) dx

=
(

6
x3

3
+ 12x

)|||||
3

0

= 54 + 36 = 90.

Integrating first over x and then over y yields

∫

4

2

[
∫

3

0
(3x2 + 2y) dx

]
dy =

∫

4

2
(x3 + 2yx) ||30 dy

=
∫

4

2
(27 + 6y) dy = (27y + 3y2) ||42

= 108 + 48 − (54 + 12) = 90.

Go to 395.
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395

Just as the equation y = f (x) defines a curve in the two-dimensional x − y plane,
the equation z = f (x, y) defines a surface in the three-dimensional space because that
equation determines the value of z for any values assigned independently to x and y.

Surface z = f (x, y)

z-axis

y-axis

x-axis

ΔAi Region R

We can easily see from the above definition of the double integral that ∬Rf (x, y)dA is
equal to the volume V of space under the surface z = f (x, y) and above the region R. In this
case f (xi, yi) is the height of column above ΔAi. Therefore, f (xi, yi)ΔAi is approximately equal
to the volume of that column. The sum of all these columns is then approximately equal to the
volume under the surface. In the limit as ΔAi → 0, the sum defining the double integral
becomes equal to the volume under the surface and above R, so

V =
∬R

z dA =
∬R

f (x, y) dΔAi.

Calculate the volume under the surface defined by z = x + y and above the rectangle
whose sides are determined by the lines x = 1, x = 4, y = 0, and y = 3.

V =

Go to 396.

Answer: Frame 393: 90
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396

The answer is 36. If you obtained this result, go to frame 397. If not, study the following.

V =
∬R

(x + y) dA =
∫

4

1

[
∫

3

0
(x + y) dy

]
dx

=
∫

4

1

(
xy +

y2

2

)|||||
4

1

dx =
∫

4

1

(
3x + 9

2

)
dx

=
(3

2
x2 + 9

2
x
)||||

4

1
= (3)(16)

2
+ (9)(4)

2
− 3

2
− 9

2
= 36.

The iterated integral could just as well have been evaluated in the opposite order.

∫

3

0

[
∫

4

1
(x + y) dx

]
dy =

∫

3

0

(
x2

2
+ yx

)|||||
4

1

dy

=
∫

3

0

(16
2

+ 4y − 1
2
− y

)
dy =

∫

3

0

(
3y + 15

2

)
dx

=
(3

2
y2 + 15

2
y
)||||

3

0
= 27

2
+ 45

2
= 36.

Go to 397.

397

x-axis

y-axis

z-axis

2
+

b

b

2
–

a

The bottom of this plow-shaped solid is in the form of an isosceles triangle with base b
and height a. When oriented along the x − y axes as shown, its thickness is given by z = Cx2,
where C is a constant. The problem is to find an expression for the volume.

(continued)



Trim Size: 7.375in x 9.25in Kleppner743194 c03.tex V1 - 03/15/2022 3:31 P.M. Page 218�

� �

�

218 Integral Calculus Chap. 3

V =

To check your answer, go to 398.

398

The volume is 1

12
Cba3. Read on if you want an explanation; otherwise

go to 399.

+
b

2

2

b

a
x-axis

y-axis

y
2

x

y
1

x + dx

The base of the object forms a triangle, as shown. The integral can be carried out
with respect to x and y in either order. We shall integrate first over y.

V =
∫

a

0

[
∫

y2

y1

z dy
]

dx =
∫

a

0

[
∫

y2

y1

Cx2 dy
]

dx

=
∫

a

0
Cx2y|||y2

y1

dx.
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From the drawing, y2 =
b

2

(
1 − x

a

)
= −y1, so that Cx2y||y2

y1
= Cx2b

(
1 − x

a

)
, and

V = Cb
∫

2

0
x2

(
1 − x

a

)
dx = Cb

(1
3

a3 − 1
4

a3
)
= 1

12
Cba3

.

The integral can also be evaluated in reverse order. The calculation is simplified by making
use of symmetry; the volume is twice the volume over the upper triangle. Thus

V = 2
∫

b∕2

0

[
∫

x(y)

0
Cx2dx

]
dy,

where x(y) = a
(

1 − 2

b
y
)

. The answer is the same, Cba3∕12.

Go to 399.

Conclusion to Chapter 3

399

Well, here you are at the last frame of Chapter 3. At this point you should understand
the principles of integration and be able to do some integrals. With practice your repertoire
will increase. Don’t be afraid to use integral tables—everyone does. You can find them online,
for instance, https://en.wikipedia.org/wiki/Lists_of_integrals.

Summary of Chapter 3

3.1 Antiderivative, Integration, and the Indefinite Integral (frames
306–314)

When a function F(x) is differentiated to give f (x) = dF∕dx, then F(x) is an antiderivative
of f (x), that is, F′(x) = f (x). If F(x) is an antiderivative of f (x), then all the antiderivatives of
f (x) can be denoted by writing

∫
f (x) dx = F(x) + c,

https://en.wikipedia.org/wiki/Lists_of_integrals
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where c is arbitrary constant. The expression ∫ f (x) dxis also called the integral of f (x). The
symbol ∫ is known as the integration symbol, and represents the inverse of differentiation. It is
important not to omit this constant. Otherwise the answer is incomplete.

Indefinite integrals are often found by hunting for an expression that when differentiated
gives the integrand f (x). Thus from the earlier result that

d
dx

cos x = − sin x

we have that

∫
sin x dx = − cos x + c.

By starting with known derivatives as in Table 1, a useful list of integrals can be found.
Such a list is given in frame 312 and for convenience is repeated in Table 2. You can reconstruct
the most important of these formulas from the differentiation expressions in Table 1. More
complicated integrals can often be found in large integral tables.

3.2 Some Techniques of Integration (frames 315–334)
Often an unfamiliar function can be converted into a familiar function having a known

integral by using a technique called change of variable which is related to the chain rule of
differentiation and uses the relation

∫
w(x) dx =

∫

[
w(u)du

dx

]
dx.

Another valuable technique is integration by parts, as described by the relation proved in
frame 324.

∫
u dv = uv −

∫
v du.

Frequently a number of different integration procedures are used in a single problem as
illustrated in frames 329–331.

The method of partial fractions (frame 332) involves splitting a function into a sum of
fractions with simpler denominators that can be integrated by other methods.
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3.3 Area under a Curve and Definite Integrals
(frames 335–367)

The area A under the curve of a function f (x) between x = a and x = b can be found by
dividing the area into N narrow strips parallel to the y-axis, each of area f (xi) Δx, and sum-
ming the strips. In the limit as the width of each strip approaches zero, the limit of the sum
approaches the area under the curve.

A = lim
Δ x→0

N∑
i=1

f (xi)Δx.

This infinite sum is called a definite integral and is denoted by

∫

b

a
f (x)dx = lim

Δ x→0

N∑
i=1

f (xi)Δx.

The area function A(x) has the variable x for the upper limit of the definite integral in frame
341, and the integration variable is renamed u.

A(x) =
∫

x

a
f (u)du.

The area function A(x) is an antiderivative of the function f (x) (frame 346), A′(x) = f (x).
Therefore, it is an indefinite integral.

A(x) =
∫

x

a
f (u) du = F(x) + c,

where F(x) is any particular antiderivative of f (x), and c is an arbitrary constant. If we want
to know the area bounded by x = a and some value x, the constant c can be evaluated by
noting that if x = a, then the area is zero, so A(a) = F(a) + c = 0 and c = −F(a). Therefore,
A(x) = F(x) − F(a). The area under the curve between x = a and x = b is then

A(b) = A =
∫

b

a
f (x)dx = F(b) − F(a).

This result is called the fundamental theorem of integral calculus (frame 349). The significance
of the result in the last frame is that determining the area does not require calculating the
limit of the summation in the definition of the definite integral but merely evaluating any
antiderivative at the endpoints of the interval.
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3.4 Some Applications of Integration (frames 368–389)
If we know v(t), the velocity of a particle as a function of t, we can obtain the position of the

particle as a function of time by integration. We saw earlier that v = dS∕dt, so dS = v dt, and
if we integrate both sides of the equation from the initial point (t0, S(t0)) to the final point
(t, S(t)), we have the change of position of the particle, called the displacement,

S(t) − S(t0) = ∫

t

t0

v(t′)dt′,

where we have replaced the integration variable by t′.
Applications of integration in finding volumes of symmetric solids are given in frames

375–389.

3.5 Multiple Integrals (frames 390–399)
Multiple integrals may be defined for an arbitrary number of independent variables. We discuss
two variables because the procedures for an arbitrary number are merely generalizations of
those that apply to two independent variables. The double integral over a region R in the
x − y plane of the function f (x, y) is defined as

∬R
f (x, y) dA = lim

ΔAi→0

N∑
i=1

f (xi, yi) ΔAi,

as discussed in frames 390–391. The double integral can be evaluated by integrating over one
variable while holding the other variable constant, in either order.

∬R
f (x, y) dA =

∫

b

a

[
∫

y2(x)

y1(x)
f (x, y) dy

]
dx.

Continue to Chapter 4.
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CHAPTER FOUR

Advanced Topics: Taylor Series,
Numerical Integration, and

Differential Equations

Chapters 1–3 established the fundamental concepts of calculus. This chapter introduces
three tools for putting calculus into action. Taylor’s theorem provides a mathematical tool for
representing any function that can be differentiated into a form that lends itself to computa-
tion, numerical integration describes the first step in evaluating integrals that have no analytical
solution, and differential equations introduces the mathematical structure in which scientific
problems are frequently posed.

Go to 400.

4.1 Taylor Series

400

The mathematical functions reviewed in Chapter 1—exponentials, logarithms, and the
trigonometric functions—have been employed for centuries in astronomy, navigation,
and surveying, as well as engineering and finance. Whatever the application, using the functions
requires knowing their values. Until the advent of computers in the 1960s, these values had to be
looked up in books of tables. Each entry in the books had to be calculated by hand. The effort
was enormous and errors were difficult to detect. A small mistake could result in a shipwreck.

Today, books of tables are museum pieces. A pocket calculator can give a value for any
argument that is accurate to eight or more decimal places in less than the blink of an eye.
The method for calculation is based on a simple and elegant formula for the function called a
Taylor series based on a mathematical theorem, Taylor’s theorem. This amazing theorem allows
one to calculate the value of a continuous function everywhere in a given range provided one
knows the value of the function and its derivatives at any point in that range.

(continued)

223
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Taylor’s theorem states that if a function f (x) is finite at x = 0, and has finite derivatives
of every order in an interval about x = 0, then the function can be written as an infinite
polynomial, a power series of the form

f (x) = a0 + a1x + a2x
2 + · · · + anx

n + · · · .

The degree of a term in the polynomial is the power that x is raised to. In a Taylor series,
the constant coefficients an are given by the product of (1∕n!) with the nth derivative evaluated
at x = 0,

an =
f (n)(0)

n!
,

where the nth derivative is written as f (n) =
dnf
dxn . In expressions such as f (n)(0), the function is

first differentiated n times and the result is then evaluated at the argument—here 0.
Recall that the factorial function n! = (n)(n − 1)(n − 2) · · · (1), and 0! = (1) was intro-

duced in frame 249. The series is often written more compactly using the summation notation
introduced in frame 339.

f (x) =
n=∞∑
n=0

anx
n =

n=∞∑
n=0

f (n)(0)
n!

xn.

Often one can achieve high accuracy in surprisingly few terms. Terminating the series
introduces an error, known as the truncation error. It can be shown that the truncation error
is no larger than the first term omitted, although that’s beyond the scope of this book. This
discussion is limited to understanding how to calculate a Taylor series.

Go to 401.

401

Demonstrating a Taylor Series: Calculating f (x) = sin x:

To demonstrate how to calculate a Taylor series, we shall apply it to find the numer-
ical value of sin x. The function sin x and its higher order derivatives are continuous
everywhere.

What is the first non-zero term p1(x) in the Taylor series expansion of f (x) = sin x about
the point x = 0?

p1(x) =

Go to 402.



Trim Size: 7.375in x 9.25in Kleppner743194 c04.tex V1 - 03/15/2022 3:34 P.M. Page 225�

� �

�

§ 4.1 Taylor Series 225

402

The value of sin(0) = 0 and recall that the first derivative of sin x is f (1) = cos x. The first
derivative evaluated x = 0 is f (1)(0) = cos 0 = 1. The first non-zero term of the Taylor series
at x = 0 is then

p1(x) = sin 0 +
f (1)(0)

1!
x = 0 + x = x.

Go to 403.

403

Make a sketch of sin x and x in the space provided.

0

0.5

0.5

1.5 1.50.5 0.5

y

x

Answer is in frame 404.

404

Here are plots of sin x and x.

0

0.5

0.5

1.5 1.50.5 0.5

y

x

x

sin x

At x = 0, the values and first derivatives of sin x and x agree.
(continued)
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Based on these plots, examine the accuracy of the approximation by estimating the largest
possible value of x such that sin x is indistinguishable from x. For that value of x, calculate
the difference sin x − x.

x ≃
sin x − x =

Go to 405.

405

Inspecting the plots in 404, we estimate that when x ≈ 𝜋∕10 rad = 18∘, the poly-
nomial p1(x) = x and sin x start to diverge. For the moment we note that for x = 𝜋∕10 rad,
x − sin x = .005142, which shows that only one term in this series gives a 1% fractional error,

x − sin x
sin x

= .01.

For sufficiently small values of x, the function and the polynomial agree well and we can make
the approximation

sin x ≈ x.

We will use this approximation when describing the motion of a pendulum that is under-
going small angle oscillations (frame 442).

Go to 406.

406

We will now try to improve our approximation of sin x. What are the first two non-zero
terms p2(x) in the Taylor series expansion of f (x) = sin x about the point x = 0?

p2(x) =

Go to 407.

407

The second derivative of sin x vanishes at x = 0; f (2)(0) = − sin 0 = 0. Going on to
the next term: the third derivative is non-zero, f (3)(0) = − cos(0) = −1. Therefore the first
two non-zero terms are

p2(x) =
f (1)(0)

1!
x +

f (3)(0)
3!

x3 = x − 1
6

x3.

Go to 408.
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408

Calculator Problem:
Here are plots of sin x, p1(x) = x and p2(x) = x − (1∕6)x3.

0

0.5

0.5

1.5 1.50.5 0.5

y

x

sin x

p1(x) = x

p2(x) = x (1/ 6)x3

Based on these plots, the range of values that sin x agrees with p2(x) = x − (1∕6)x3 has
increased.

For x = 𝜋∕6 rad = 30∘, let’s examine the difference between p1(x) = x and f (x) = sin x,
and compare that to the next non-vanishing term in the Taylor series, which is equal to x3∕6.
Calculate the following quantities x, sin x, x − sin x, and x3∕6.

x =
sin x =
x − sin x =
x3∕6 =

Go to 409.

409

For x = 𝜋∕6 rad = 0.5236, sin x = sin(𝜋∕6) = 0.5, x − sin x = 0.5236 − 0.5 = 0.0236,
and x3∕6 = 0.0239. So the difference between p1(x) − f (x) = x − sin x is nearly equal to the
next non-zero term in p2(x) term x3∕6.

Go to 410.

410

We can continue this process and make better and better approximations to sin x. The
next polynomial is of degree 5 in powers of x given by

p3(x) = x − (1∕6)x3 + (1∕120)x5.

(continued)
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Note that the third term in p3(x) is

f (5)(0)
5!

x5 = 1
120

x5.

We show a plot of sin x and p3(x) in the figure below.

0

0.5

0.5

1.5 1.50.5 0.5

y

x

sin x

p3(x) = x (1/ 6)x3 + (1/ 120)x5

Go to 411.

411

It would be extremely useful to have a general solution for the coefficient of the Taylor
series for sin x because it would allow us to calculate values to any desired precision.

What is the (2n − 1)-order term in the Taylor series for sin x about x = 0?

f (2n−1)(0)
(2n − 1)!

x2n−1 =

Go to 412.

412

The (2n − 1)-th derivative of sin x evaluated at x = 0 is

f (2n−1)(0) = (−1)n−1 cos 0 = (−1)n−1.

Therefore the (2n − 1)-order term in the Taylor series for sin x about x = 0 is

f (2n−1)(0)
(2n − 1)!

x2n−1 = (−1)n−1

(2n − 1)!
x2n−1.

Go to 413.
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413

Find the Taylor series, good to all orders, for sin x about x = 0, by calculating the first six
terms:

sin x =
f (0)(0)

0!
+

f (1)(0)
1!

x +
f (2)(0)

2!
x2 +

f (3)(0)
3!

x3 +
f (4)(0)

4!
x4

+
f (5)(0)

5!
x5 + · · · + (−1)n−1

(2n − 1)!
x2n−1 + · · ·

sin x =
Go to 414.

414

In order to find the coefficients of the Taylor series for sin(x) we need to take the function
and all of the derivatives of sin(x) and evaluate them at x = 0. The first six terms are

f (0)(0)
0!

= sin 0 = 0,

f (1)(0)
1!

= cos 0 = 1,

f (2)(0)
2!

= − sin 0
2!

= 0,

f (3)(0)
3!

= −cos 0
6

= −1
6
,

f (4)(0)
4!

= sin(0)
4!

= 0,

f (5)(0)
5!

= +cos(0)
5!

= 1
120

.

Recall that by definition 0! = 1. Higher order derivatives just replicate this pattern. Thus
all even terms in powers of x are zero and all odd terms are non-zero and alternate in signs.
The Taylor series is then

sin x = x − x3

3!
+ x5

5!
+ · · · + (−1)n−1 x2n−1

(2n − 1)!
+ · · · ,

(continued)
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where we used the result in 412 that

f (2n−1)(0)
(2n − 1)!

x2n−1 = (−1)n−1

(2n − 1)!
x2n−1.

Go to 415.

415

Now let’s try the same approach in order to find the Taylor series for logarthims. Because
ln 0 is not defined and ln 1 = 0, we shall expand ln(1 + x) about x = 0.

Go to 416.

416

We first evaluate the first five terms in the Taylor series:

f (0) = ln(1 + x),
f (0)(0)

0!
= ln 1 = 0;

f (1) = 1

1+x
,

f (1)(0)
1!

= 1;

f (2) = − 1

(1+x)2
, f (2)(0) = −1;

f (3) = (−2)(−1) 1

(1+x)3
,

f (3)(0)
3!

= 1;

f (4) = (−3)(−2)(−1) 1

(1+x)4
,

f (4)(0)
3!

= −1.

The derivatives alternate in sign. The nth derivative evaluated at x = 0 is proportional
to n! and that cancels the n! term in the Taylor series. Therefore

ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · + (−1)n−1 xn

n
+ · · · .

Note that when x << 1, ln(1 + x) ≈ x. If you are in the mood, go to 417 to try to find
the Taylor series for a couple of other well-known functions.

Go to 417.
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417

Find the Taylor series about x = 0 for the following functions:

cos x =

ex =

Go to 418.

418

Here are the Taylor series solutions for the functions in 417.

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · · + (−1)n x2n

(2n)!
+ · · · ,

ex = 1 + x + 1
2!

x2 + 1
3!

x3 + · · · + 1
n!

xn + · · · .

Go to 419.

419

The Taylor series for a function f (x) can be evaluated at any point where f (x) is known,
let’s call that point x = a, provided f (x) is infinitely differentiable in an interval about x = a,
those derivatives are all finite at x = a, and f (a) is also finite. Try to write down an expression
for the Taylor series evaluated about the point x = a.

Go to 420.

420

The Taylor series is most conveniently written in terms of the variable u = x − a. Then
the point u = 0 corresponds to the point x = a, so that the known point for the function is
u = 0. Writing the Taylor series for the variable u has the same form for the expansion about
x = 0. Thus

f (x) =
n=∞∑
n=0

(
f (n)(a)

n!

)
(x − a)n

= f (a) +
(

f (1)(a)
1!

)
(x − a) +

(
f (2)(a)

2!

)
(x − a)2 + · · · .

This procedure permits finding the Taylor series for a differentiable function provided its exact
value is known somewhere.

Go to 421.
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4.2 Numerical Integration

421

In Chapter 3 we learned some techniques for integration, and the references listed
in Appendix B5 describe many others. There is, however, no general method for finding
the indefinite integral of a function. Indefinite integrals of hundreds of functions are known
and listed in integral tables. Many other functions can be integrated by a clever change
of variable, which transforms them into one of the tabulated forms, but integrals for many
other functions are simply not known. Nevertheless, definite integrals can always be evaluated
numerically. With a computer, numerical integration is often so accurate and efficient that
definite integrals can be calculated as easily as if they were already tabulated. Today, there
are user-friendly software programs that will calculate definite integrals using methods
of numerical integration. In this section, we describe an elementary and widely used technique
of numerical integration called Simpson’s method.

Go to 422.

422

Recall from frame 340 that the area under a curve is given by definite integral, which is
the limit of a sum

∫

b

a
f (x)dx = lim

Δx→0

N∑
i=1

f (xi)Δx,

where Δx = (b − a)∕N . As N increases and Δx → 0, the area under the rectangles approaches
the area under the curve. The problem is that the expression Δx → 0 is a mathematical con-
cept. We live in a world where the mathematical concept is unachievable. The result is that
instead of equalities one has approximations. The challenge is to reduce the uncertainties
and estimate the errors.

For a finite value of N , the area under the rectangle is not identical to the integral (unless
f (x) = constant), but it can be close. This is the basic idea of numerical integration, which
follows the procedure we used to calculate the area under a curve:

1. Divide the interval b − a into some convenient number N of equal intervals,
Δx = (b − a)∕N .

2. Evaluate fi = f (xi) at each interval, where i = 1,2, … N .

3. Multiply each fi by Δx.

4. Add the results.
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The final result is in an approximation to the integral. How good the approximation is depends
on the choice of N and the precise method by which the sum is evaluated. The usual way
to check the accuracy is simply to repeat the calculation taking smaller steps.

In carrying out the above steps, it may have already occurred to you that a great deal
of multiplication is avoided if one first adds all the fi

′s and then multiplies the final result
by Δx. Thus,

S =
N∑

i=1

(fiΔx) = Δx
N∑
i=1

fi.

Go to 425.

423

In evaluating the integral numerically, one could choose for fi the value of f at either
end of the interval, as in the drawings. For the function shown, it is evident that one choice
underestimates the integral and the other overestimates it. Neither looks particularly accurate.
Taking for fi the value f at either end of the interval is clearly less good than taking it at the
midpoint. However, an even better procedure would be to take a suitable weighted average
of f at the ends and the middle.

a x1 xi 1 xi xn 1 b

f (xi)

f (xi 1)

f (b)

f (a)

x

f (x)

x

f (x)

xi+1 x1 xn 1a bxi 1 xi xi+1

f (xi+1)

f (xi)

f (xi 1)

f (b)

f (a)

f (xi+1)

An averaging process that is simple, accurate, and widely used considers the interval in pairs
and weights the midpoint of each pair four times that of each end. In that case, for the interval
[xi−1, xi+1], the average value of the function is then

f i =
1
6

(
fi−1 + 4fi + fi+1

)
.

(continued)
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(Note that the width of this pair of segments is 2Δx, not Δx.) If the entire interval is divided
into an even number of intervals, then

∫

b

a
f (x) dx = 2Δx

6
((f0 + 4f1 + f2) + (f2 + 4f3 + f4) + · · · + (fN−2 + 4fN−1 + fN ))

= Δx
3

(f0 + 4f1 + 2f2 + 4f3 + 2f4 + · · · + 2fN−2 + 4fN−1 + fN ) .

This method is called Simpson’s rule. If you would like to know just why it works so well,
go to 424. Otherwise,

Go to 425.

424

The reason that Simpson’s rule works so well is based on the idea that the parabola is
the simplest curve that can go through three arbitrary points:

q(x) = Ax2 + Bx + C.

For simplicity, let xi−1 = −d, xi = 0, and xi+1 = d for the three adjacent points.

x

f (x)

q ( x )

2

f
i 1

f
i

f
i+1

x
i 1

d

= d x
i
= 0 x

i+1
= d

Integrate q(x) to find the area

Aarea = ∫

d

−d
q(x)dx =

∫

d

−d
(Ax2 + Bx + C)dx

=
(

Ax3

3
+ Bx2

2
+ Cx

)|||||
d

−d

= 2Ad3

3
+ 2Cd.
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In order to solve for the constants A and C, demand that the parabolic curve agrees
with the function at the three points xi−1 = −d, xi = 0, and xi+1 = d. The three equations
for the coefficients A, B, and C are then

fi−1 = Ad2 − Bd + C, (4.1)

fi = C, (4.2)

fi+1 = Ad2 + Bd + C. (4.3)

The algebra of solving for A, B, and C is straightforward. Solve for A by adding equations
(4.1) and (4.3), and using equation (4.2):

A = 1
2d2

(fi−1 + fi+1 − 2fi). (4.4)

Let f i denote the average value of the function f such that the area under the curve for this
double interval 2Δx = 2d is Aarea = f i2d. Then

f i2d = 2Ad3

3
+ 2Cd

= 2d3

3

( 1
2d2

(fi−1 + fi+1 − 2fi)
)
+ 2fid

= d
3
(fi−1 + 4fi + fi+1).

Therefore, by using these coefficients, we have the best fit of the parabola to the average
value f i :

f i =
1
6
(fi−1 + 4fi + fi+1).

This is the rationale for the expression used in Simpson’s rule. For an exercise demonstrating
Simpson’s rule, go to frame 442.

Go to 425.

4.3 Differential Equations

Any equation that involves a function and derivatives of that function is called a differen-
tial equation. Differential equations arise in practically every application of calculus to a real
problem. Here are a few examples to show how a differential equation can occur and some
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methods for solving these equations. These examples, although elementary, arise again and
again in science, engineering, and other disciplines.

Go to 425.

425

Newton’s Second Law and the Fundamental Theorem of Calculus:

When we apply a force to a particle that is moving in a straight line, the particle accelerates,
according to Newton’s second law, F = ma. Recall from 245 that acceleration is the derivative
of velocity with respect to time, a = dv∕dt. Thus, for a particle of mass m,

F = m
dv
dt
.

Go to 426.

426

Here is an example of the motion of a particle in which a differential equation arises from
Newton’s second law and some methods for solving it, to find the velocity and position of the
particle.

Consider the motion of a particle moving in a straight line with a constant force F acting
on the particle along that line. Then the differential equation describing its motion, i.e. the rate
of change of its velocity, can be written as

F = m
dv
dt

or
dv
dt

= F
m
.

At time t = 0, the particle is located at distance x0 from the origin and is traveling with
velocity v0. The problem is to find the velocity and position of the particle at time t.

One often sees Newton’s second law written as dv = (F∕m)dt, and then both sides of
this equation are integrated to determine the change in velocity as a function of time. How-
ever, this is actually an application of the fundamental theorem of calculus (frame 349) that

v(t) − v0 = ∫

t′=t

t′=0

dv
dt′

dt′,

where v0 = v(0). We can use Newton’s second law that dv∕dt = (F∕m)dt, and then perform
the integration

v(t) − v(0) =
∫

t′=t

t′=0

dv
dt′

dt′ =
∫

t′=t

t′=0

F
m

dt′.
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Note that the time t′ is treated as the integration variable and t is used as the upper limit of one
of the integrals. Thus the velocity as a function of time is

v(t) = v0 +
F
m

t.

Recall that velocity is the derivative of position

dx
dt

= v0 +
F
m

t.

Try to integrate this differential equation to find the position as a function of time, x(t).

x(t) =

Go to 427.

427

The answer is

x(t) = x0 + v0t +
1
2

F
m

t2.

If you answered this correctly, you have solved one of the most commonly used formulas
for describing the motion of particle acted on by a constant force. Go on to frame 428.
Otherwise, read on.

The starting point is v(t) = v0 + (F∕m)t. (You may have forgotten the term v0.) Now
replace the velocity with v = dx∕dt, which gives rise to the differential equation

dx
dt

= v0 +
F
m

t.

The definite integral can now be integrated:

x(t) − x0 = ∫

t′=t

t′=0

dx
dt′

dt′ =
∫

t

0

(
v0 +

F
m

t′
)

dt′ = v0t +
1
2

F
m

t2,

where x0 = x(0).
In summary, when the force F is constant, the position and velocity of the particle are

x(t) = x0 + v0t +
1
2

F
m

t2,

v(t) = v0 +
F
m

t.

Go to 428.
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428

Exponential Growth:

Suppose we let N represent the population (number of people) in a particular country. We
assume that N is such a large number that we can neglect the fact that it must be an integer
and treat it as a continuous positive number. (In any application we would eventually round
off N to the nearest integer.)

The problem is this: assume the birthrate (the average number of babies born per year) is
proportional to the number of people N , where A is the constant of proportionality. That is

dN
dt

= AN.

If the initial population of the country is n0 people, how many people are there at some later
time, T? (In this problem we will neglect deaths.)

The above differential equation only involves first derivatives. We can solve it by first
writing

dN
N

= A dt.

At time t = 0, the population is N = N0. Let N(T) denote the number of people at time T .
Integrate both sides of this equation,

∫

N(T)

N0

dN
N

=
∫

T

0
A dt.

The integral on the left should be familiar (if not, see frame 333, integral 5). Evaluating both
integrals, we have

ln N(T) − ln N0 = A(T − 0).

Thus

ln

(
N(T)

N0

)
= AT.

This equation has the form ln x = AT, where we have set x = N(T)∕N0. We can solve this
for x by taking the exponential of the two sides of this equation, using the relation x = eln x.
Thus, x = eAT, and we have

N(T) = N0e
AT.

This expression describes the exponential increase of population.

Go to 429.
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429

Let’s restate the differential equation in frame 428 using different variables. Suppose x is
some independent variable, y depends on x, and the derivative of y with respect to x is

dy
dx

= ±bx,

where b is a positive constant of proportionality. The ± sign indicates that this differential
equation describes two different “exponential” cases: the +b is a rate of growth and −b is a
rate of diminishment. Let y0 represent the value of y at x = 0. The solution of the differential
equation is

y(x) =

Go to 430.

430

The answer is

y(x) = y0e
±bx.

Expressions of similar form describe many processes, for instance, the growth of money
in banks due to interest or the radioactive decay of atomic nuclei.

Check your answer by taking the derivative using
de±bx

dx
= ±be±bx.

Go to 431.

431

If you wrote
dy
dx

= y0
d
dx

e±bx = ±by0e
±bx = ±by,

you are correct and you can now describe many different types of systems in which the deriva-
tive of the independent variable is proportional to plus or minus itself. The positive solution
describes population growth, although other effects must be considered since population can’t
grow indefinitely. The negative sign indicates population decay, and this could go on indefi-
nitely until the assumption that N is a continuous variable breaks down.

Go to 432.
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432

Radioactive Decay:

Our next example is radioactive decay. An unstable atom may spontaneously decay into a
stable atom. The decay of individual atoms are random events; but, for a large number N
of atoms, the atoms decay at a rate proportional to the total number,

dN
dt

= −𝜆N.

The constant of proportionality 𝜆 is called the decay constant, and has units of [time]−1. The
negative sign indicates that atoms are being lost.

Let N0 denote the number of unstable atoms at time t = 0. Find the number of unstable
atoms N(t) at time t.

N(t) =

[You may want to review frames 429–430.] Go to 433.

433

The answer is
N(t) = N0e

−𝜆t.

If you got this answer, go on to 434. If you want to see how to derive it, read on.
To find N(t) you need to integrate the governing equation, dN∕N = −𝜆dt, from the initial

time t0 = 0 to a later time t, when the initial number N0 changes to the final number N(t):

∫

N(t)

N0

dN
N

= −
∫

t

0
𝜆dt.

Integrating both sides yields

ln N|||N(t)

N0

= ln N(t) − ln N0 = ln

(
N(t)
N0

)
= −𝜆t.

Taking exponentials of both sides of this equation gives

eln(N(t)∕N0) = e−𝜆t.

Applying the defining equation for the exponential (frame 94) eln x = x, which in this instance
is eln(N(t)∕N0) = N(t)∕N0, and solving for N(t) yields

N(t) = N0e
−𝜆t.

Go to 434.
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434

The constant 𝜏 = 1∕𝜆 is called the lifetime. If N0 denotes the number of unstable atoms
at time t = 0, how many unstable atoms are present after one lifetime has passed, i.e. at t = 𝜏?

N(𝜏) =

Go to 435.

435

When t = 𝜏, the number of unstable atoms is

N(𝜏) = N0e
−𝜏∕𝜏 = N0e

−1 = 0.368N0.

Let t = 𝜏1∕2 denote the time in which half of the initial atoms decay. 𝜏1∕2 is called the half-life.
How is the half-life related to the lifetime 𝜏 = 1∕𝜆?

𝜏1∕2 =

Go to 436.

436

Set N(𝜏1∕2) = (1∕2)N0. Then the condition that ln(N(𝜏1∕2)∕N0) = −𝜏1∕2∕𝜏 becomes
ln(1∕2) = −𝜏1∕2∕𝜏. Recall that ln(1∕2) = − ln(2). Therefore 𝜏1∕2 = 𝜏 ln(2). The value
of ln(2) is 0.693, so the half-life, 𝜏1∕2, is given by 𝜏1∕2 = 0.693𝜏.

Go to 437.

437

Simple Harmonic Motion:

Our next examples of a differential equation involve second derivatives.
Consider the motion of a particle in one dimension. For example, let x be the coordinate

variable that describes the position of a particle relative to the origin x = 0, where x depends
on the variable t. Suppose we require that the second derivative of x with respect to time
is proportional to minus itself, where b is the constant of proportionality. Then the position
of the particle satisfies the following differential equation:

d2x

dt2
= −bx, (4.5)

where b is a constant of proportionality. This equation is called the simple harmonic oscillator
equation. It describes the motion of a pendulum, or a particle suspended by a spring, and many
other kinds of physical phenomena.

(continued)
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The problem is to find out how x varies with time when it obeys this equation, i.e. to solve
the differential equation. One of the most fruitful means for solving differential equations
is to guess a possible general form for the solution. Then this general form is substituted
in the differential equation and one can determine whether this equation is satisfied and what
restrictions apply to the solution.

First, what is a promising guess as to a solution? Note that x must depend upon time in such
a way that when it is differentiated twice with respect to time it reverses sign. But this is exactly

what happens to the sine function since
d
dx

sin x = cos x, and
d2

dx2
sin x = d

dx
cos x = − sin x

(frame 212).
Because the argument of a trigonometric function must be dimensionless, let us introduce

a constant 𝜔 that has the dimensions of (time)−1. So our trial solution becomes

x(t) = A sin(𝜔t + c),

where A and c are undetermined constants. Note that if we had tried the solution

x(t) = A sin(𝜔t) + B cos(𝜔t),

we would have found that it was also a solution to our differential equation. However, for our
present purposes the A sin(𝜔t + c) solution is adequate.

This may be differentiated twice with respect to time with the result
dx
dt

= A𝜔 cos(𝜔t + c),

d2x

dt2
= −A𝜔2 sin(𝜔t + c).

If these relations are substituted in the differential equation (4.1), above, we have

−A𝜔2 sin(𝜔t + c) = −bA sin(𝜔t + c),

which is then satisfied for all t provided

𝜔 =
√

b.

(Alternatively, the equation is satisfied by A = 0. However, this leads to a trivial result,
x = 0, so we disregard it.) Thus the solution is

x = A sin(𝜔t + c).

The constant 𝜔 is called the angular frequency, the constant A is called the amplitude, and the
constant c is called the phase constant. If x and dx∕dt are specified at some initial time, t = 0,
the arbitrary constants A and c can be determined.
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Note that the solution we have found corresponds to x oscillating back and forth indefi-
nitely between x = A and x = −A with period

T = 2𝜋
𝜔

= 2𝜋√
b
.

This type of oscillatory motion, simple harmonic motion, is characteristic of a particle sus-
pended by a spring, or a pendulum swinging through a small angle. Many other systems
are described by this differential equation, for example, an electrical circuit consisting of an
inductor and a capacitor or a buoy bobbing on the surface of the sea.

Go to 438.

438

Here is an example of simple harmonic motion.
An object on a smooth (frictionless) table is attached to a spring that is fixed. If the object

is displaced, stretching the spring, and released, the object will oscillate abut the unstretched
position, undergoing simple harmonic motion. Using Newton’s second law we can determine
the differential equation whose solution describes the motion. The spring exerts a restoring
force that is proportional to the amount stretched, F = −kx where k is the spring constant k
and x is measured from the equilibrium point.

Newton’s second law, F = ma, becomes −kx = m(d2x∕dt2). This can be written as

d2x

dt2
= − k

m
x.

What is the period of oscillation?

T =
Go to 439.

439

Compare the differential equation describing the spring-object system with the general

form of the simple harmonic oscillator equation in frame 437,
d2x

dt2
= −bx. The constant

b = k
m

, so 𝜔 =
√

k
m

. Hence the period is T = 2𝜋√
k∕m

.

Go to 440.
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4.4 Additional Problems for Chapter 4

440

Taylor Series:

Find the first four terms in the Taylor series about x = 0 for the following function:

1
(1 + x)1∕2

=

Go to 441.

441

The first four Taylor coefficients are

f (0)

0!
= 1

(1 + x)1∕2
, a0 =

f (0)(0)
0!

= 1;

f (1)

1!
= −1

2
1

(1 + x)3∕2
, a1 =

f (1)(0)
1!

= −1
2
;

f (2)

2!
=
( 1

2!

)(
−3

2

)(
−1

2

) 1
(1 + x)5∕2

, a2 =
f (2)(0)

2!
= 3

8
;

f (3)

3!
=
( 1

3!

)(
−5

2

)(
−3

2

)(
−1

2

) 1
(1 + x)7∕2

, a3 =
f (3)(0)

3!
= − 5

16
.

The first four terms in the Taylor series for the function in 440 are

1
(1 + x)1∕2

= 1 − 1
2

x + 3
8

x2 − 5
16

x3 + · · · .

Go to 442.

442

Numerical Integration:

Here is an example of how Simpson’s rule can be used to evaluate a definite integral.

The goal is to calculate I = ∫
10

0 x3 dx. We can do this integral exactly, which makes it
easy to check the accuracy of the numerical calculation.

I =
∫

10

0
x4 dx = 1

5
x5
||||
10

0
= 1

5
(100,000) = 20,000.
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We shall take N = 10. Then, Δx = 10−0

10
= 1. x0 = 0, x10 = 10, and in general, xi =

iΔx = i. If we denote the sum of the odd terms by

Sodd = f1 + f3 + f5 + f7 + f9,

and the sum of the even terms within the interval by

Seven = f2 + f4 + f6 + f8,

then, by Simpson’s rule (frame 423), the approximation to the integral is

S = Δx
3

(f0 + 4Sodd + 2Seven + f10).

S can be calculated using the tables below.

i odd xi fi = xi
4 i even xi fi = xi

4

1 2

3 4

5 6

7 8

9

Then determine Sodd = , and Seven = .

Now tabulate the results.

f0 = x4
0

4Sodd

2Seven

f10 = x4
10

The sum of the four terms is

f0 + 4Sodd + 2Seven + f10 = .

Then the numerical integration result is

S = Δx
3

(f0 + 4Sodd + 2Seven + f10) = .

Go to 443.
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443

S can be calculated using the tables below.

i odd xi fi = xi
4 i even xi fi = xi

4

1 1 1 2 2 16

3 3 81 4 4 256

5 5 625 6 6 1296

7 7 2401 8 8 4096

9 9 6561

Then Sodd = 9669, and Seven = 5664, and

f0 = x4
0 0

4Sodd 38676

2Seven 11328

f10 = x4
10 10000

The sum of the four terms is f0 + 4Sodd + 2Seven + f10 = 60004, hence the answer is

S = Δx
3

( f0 + 4Sodd + 2Seven + f10) =
60,004

3
= 20,0011∕3.

This result is close to the exact value of the integral, I = 20,000. Considering the relatively
small number of points used, this is remarkably accurate: one part in 2 × 104.

An interesting exercise in numerical integration you might want to try on your own is
to evaluate 𝜋 using the relation

tan−1A =
∫

A

0

dx
1 + x2

,

which follows from formula 17 in frame 312. Because 𝜋∕4 = tan−1(1), one has

𝜋 = 4
∫

1

0

dx
1 + x2

.

You could try your skill by integrating other functions whose integrals you know,
for instance, sin 𝜃 or e−x.
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It is evident that by numerical integration you can find the definite integral of any dif-
ferentiable function, and therein lies its power. With computers it is possible to integrate
numerically at very high speed. One must have some criterion for choosing the interval size
and be able to deal with problems such as singularities in the integral. Nevertheless, with the
simple method described here you can often do surprisingly well.

Go to 444.

444

The Simple Pendulum:

A simple pendulum consists of a massless string of length l attached to a pivot and a
point-like object of mass m hanging from the other end. Suppose the string initially makes a
small angle 𝜃0 from the vertical, and then the mass is released from rest.

Because the object moves in a circle, we can apply Newton’s second law of motion, in the
tangential direction,

Ftan = matan.

Recall from 288, the tangential acceleration is atan = l
d2𝜃

dt2
. When the object makes an

angle 𝜃 with the vertical, the tangential force is the component of the gravitational force,
mg in the tangential direction, mg sin 𝜃. This is a restoring force in the sense that it always is
directed to the equilibrium vertical position. Newton’s second law is then

ml
d2𝜃

dt2
= −mg sin 𝜃.

When the angle of oscillation is small (𝜃(t) << 1, measured in radians), we can use
the small angle approximation sin 𝜃 ≈ 𝜃 (frame 405). Then

d2𝜃

dt2
= −

g
l
𝜃.

(continued)
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What is the period of oscillation of the object? The acceleration of gravity is about
9.8 m∕s2.

T =

Go to 445.

445

The differential equation has the same form as in 437 with x replaced by 𝜃 and b = g∕l.
Therefore 𝜔 =

√
g∕l. Hence the period is T = 2𝜋√

g∕l
.

Summary of Chapter 4

Let’s conclude the chapter by reviewing some of the ideas it introduced.

4.1 Taylor’s Theorem (frames 400–417)
Taylor’s theorem states that if a function f (x) is finite at x = 0, and has finite derivatives

of every order in an interval about x = 0, then the function can be written as an infinite
polynomial—a power series called the Taylor series about x = 0—with the form

f (x) =
n=∞∑
n=0

anx
n =

n=∞∑
n=0

f (n)(0)
n!

xn,

where the nth derivative is written as f (n) = dnf

dxn . In expressions such as f (n)(0), the function is
first differentiated n times and the result is then evaluated at the argument—here 0. Examples
of Taylor series about x = 0 for some well-known functions are:

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ · · · + (−1)n−1 x2n−1

(2n − 1)!
+ · · · ,

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · · + (−1)n x2n

(2n)!
+ · · · ,

ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · + (−1)n−1 xn

n
+ · · · ,

1
(1 + x)1∕2

= 1 − 1
2

x + 3
8

x2 − 5
16

x3 + · · · .
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4.2 Numerical Integration (frames 419–422)
When it is not possible to find an analytic expression for the definite integral, the defi-

nite integral is often evaluated by methods of numerical integration. A particularly effective
method is Simpson’s rule in which the entire interval over which the integral is to be evalu-
ated is divided into an even number N of equal intervals of width Δx. By Simpson’s rule the
numerical value of the integral is approximately given by

∫

B

A
y(x) dx = Δx

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 2yN−2 + 4yN−1 + yN ).

The accuracy of the approximation can be increased by increasing N with a corresponding
decrease in Δx, but with a corresponding increase in numerical work.

4.3 Differential Equations (frames 423–437)
Any equation that involves a function and derivatives of that function is called a differential

equation. Differential equations arise in practically every application of calculus to real-world
problems.

Newton’s second law is a differential equation:

F = m
dv
dt

.

When the force F is constant, the position and velocity of the particle are

x(t) = x0 + v0t +
1
2

F
m

t2,

v(t) = v0 +
F
m

t.

The exponential decay or growth equation

dy
dx

= ±bx

has a solution of the form
y(x) = y0e

±bx,

where b is a positive constant of proportionality, and y0 represents the value of y at x = 0.
The simple harmonic oscillator equation

d2x

dt2
= −bx
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describes many kinds of physical phenomena, for instance, a pendulum swinging through a
small angle or an object attached to a spring that oscillates. The constant b is determined by
the particular application. The solution is

x = A sin(𝜔t + c),

where 𝜔 =
√

b is the angular frequency. The constant A is called the amplitude, and the arbitrary
constant c is called the phase constant. Both amplitude and phase are determined if x and dx∕dt
are specified at some time.

The solution corresponds to x oscillating back and forth indefinitely between x = A and
x = −A with period.

Conclusion (frame 449)

Congratulations! You are now finished. However, if you skipped some of the proofs in
Appendix A, you might want to read them now. You may also want to study some of the
additional topics that are described in Appendix B. The appendixes are crammed with
derivations of formulas, explanations of special topics, and the like.

Finally, if you would like a little more practice, try some of the review problems at the
end of the book, starting on page 277.

Good luck!
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APPENDIX A

Derivations

This appendix presents derivations of certain formulas and theorems not derived earlier.

A.1 Trigonometric Functions of Sums of Angles

Formulas for the sine of the sum of two angles, 𝜃 and 𝜙, can easily be derived with the
aid of this drawing in which the radius of the circle is unity.

O

A

B

CD E

FG

1

sin(𝜃 + 𝜙) = AD = FE + AG

= OF sin 𝜃 + AF cos 𝜃

= sin 𝜃 cos𝜙 + cos 𝜃 sin𝜙.

In a similar fashion with the same figure,

cos(𝜃 + 𝜙) = OD = OE − DE

= OF cos 𝜃 − AF sin 𝜃

= cos 𝜃 cos𝜙 − sin 𝜃 sin𝜙.

251
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A.2 Some Theorems on Limits

In this appendix we prove several theorems on limits, which show that the usual algebraic
manipulations can be carried out with expressions involving limits. We shall show, for example,
that

lim
x→a

[F(x) + G(x)] = lim
x→a

F(x) + lim
x→a

G(x).

Such results are intuitively reasonable but deserve a formal proof.
Before deriving these theorems, we need to note some general properties of the absolute

value function introduced in frame 20. These properties are

∣ a + b ∣≤∣ a ∣ + ∣ b ∣, (A.1)

∣ ab ∣=∣ a ∣∣ b ∣. (A.2)

These relations are easily verified by considering all the possible cases: a and b both negative,
both positive, of opposite sign, and one or both equal to zero.

The following are theorems on limits that apply to any two functions F and G such that

lim
x→a

F(x) = L and lim
x→a

G(x) = M .

Theorem 1
lim
x→a

[F(x) + G(x)] = lim
x→a

F(x) + lim
x→a

G(x).

Proof: By Equation (A.1),

|F(x) + G(x) − (L + M)| = |[F(x) − L] + [G(x) − M]|
≤ |F(x) − L| + |G(x) − M|.

Using the definition of the limit (frame 105) we see that for any positive number 𝜀 we
can find a positive number 𝛿 such that

|F(x) − L| < 𝜀

2
and |G(x) − M| < 𝜀

2
,

provided 0 < |x − a| < 𝛿. (At first sight this may appear to differ from the definition of the
limit since the symbol 𝜀 instead of 𝜀∕2 appeared there. However, the statements apply for any
positive number and 𝜀∕2 is also a positive number.)
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The above equations may be combined to give

|F(x) + G(x) − (L + M)| < 𝜀

2
+ 𝜀

2
= 𝜀.

Therefore, by the definition of the limit in frame 105,

lim
x→a

[F(x) + G(x)] = L + M = lim
x→a

F(x) + lim
x→a

G(x).

Theorem 2
lim
x→a

[F(x)G(x)] = [lim
x→a

F(x)][lim
x→a

G(x)].

Proof: The proof is somewhat similar to the preceding. By writing out all the terms, we can
see that the following is true identically:

F(x)G(x) − LM = [F(x) − L][G(x) − M] + L[G(x) − M] + M[F(x) − L].

Therefore, by Equation (A.1),

|F(x)G(x) − LM|
≤ |[F(x) − L][G(x) − M]| + |L[G(x) − M]| + |M[F(x) − L]|.

Let 𝜀 be any positive number less than 1. Then by the meaning of limits we can find a positive
number 𝛿 such that if 0 < |x − a| < 𝛿,

|F(x) − L| < 𝜀

2
, |L[G(x) − M]| < 𝜀

4
, |M[F(x) − L]| < 𝜀

4
,

and |G(x) − M| < 𝜀

2
. Then

|F(x)G(x) − LM| < 𝜀

4
+ 𝜀

4
+ 𝜀

4
= 𝜀

4
+ 𝜀

2
= 3

4
𝜀,

where the next to the last step arises as a result of our earlier restriction to 𝜀 < 1. Consequently,|F(x)G(x) − LM| < 𝜀 so by the definition of the limit,

lim
x→a

[F(x)G(x)] = LM = [lim
x→a

F(x)] [lim
x→a

G(x)].

Theorem 3

lim
x→a

F(x)
G(x)

=
lim
x→a

F(x)

lim
x→a

G(x)
provided lim

x→a
G(x) ≠ 0.
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Proof: Since lim
x→a

G(x) ≠ 0, we can select a value of 𝛿 sufficiently small that G(x) ≠ 0 for

0 < |x − a| < 𝛿. Then we can write

lim
x→a

F(x) = lim
x→a

[
G(x) F(x)

G(x)

]
= lim

x→a
G(x)lim

x→a

F(x)
G(x)

= M lim
x→a

F(x)
G(x)

,

where M = lim
x→a

G(x). Therefore, since M ≠ 0, we have

lim
x→a

F(x)
G(x)

=
lim
x→a

F(x)

M
=

lim
x→a

F(x)

lim
x→a

G(x)
.

Note that if M = 0, this expression is meaningless, and we must evaluate F(x)∕G(x) before
taking the limit.

A.3 Exponential Function

The examples of exponential growth and decay in several different scenarios that were
described in Chapter 4, frames 428–436, all display similar behavior: if a population of N
“things” change—growing or decaying—at a steady rate 𝛾(Greek letter gamma), then their
number evolves in time as N(t) = N0e±𝛾 t. The result came from the solution of a differential
equation and exemplifies a common approach to analyzing such behavior. Here we present
a totally different approach to such problems that is based on a mathematical rather than a
physical argument.

For concreteness we discussed the growth of money in a bank because of interest the bank
pays (frames 299–302). If the bank offers interest at a rate of b percent per year, then at the
end of the year an initial deposit of D(0) will be worth D(1) = D(0)(1 + b). However, you
might be able to get the bank to pay the interest twice a year in which case the money is
D(1) = D(0)(1 + b∕2)2, which is a little bigger than for a single payment. Suppose you push
your luck and ask for the interest to be compounded weekly, then daily, then hourly, and in
fact go to the extreme of compounding it continually. We might expect the money to increase
dramatically, but it does not. To see what happens, we can calculate the interest for N times
a year and then find the limit as N goes to infinity (N → ∞).

We will show that

lim
N→∞

(
1 + b

N

)N

= eb,

where f (b) = eb is known as the exponential function.
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dx
= 𝟏

dx∕dy
255

Proof: Let’s begin by proving that

lim
y→0

ln(1 + by)
y

= b.

We use the Taylor series for ln(1 + x) about x = 0 (frame 416) where x = by,

ln(1 + by) = by − 1
2
(by)2 + · · · .

Then

lim
y→0

ln(1 + by)
y

= lim
y→0

by − 1

2
(by)2 + · · ·

y
= b.

Define ax for all a > 0 raised to any real number x by ax = ex lna. Let a = 1 + by and

x = 1/y. By our definition of ax, (1 + by)1∕y = e(1∕y) ln(1+by), so e
lim
y→0

(
ln(1+by)

y

)
= eb. Thus

lim
y→0

(
(1 + by)1∕y

)
= e

lim
y→0

(
ln(1+by)

y

)
= eb.

Let y = 1∕N . Then

lim
N→∞

(
1 + b

N

)N

= eb.

A.4 Proof That dy

dx
= 𝟏

dx∕dy

If a function is specified by an equation y = f (x), it is ordinarily possible, for at least limited
intervals of x, to reverse the roles of the dependent and independent variables and to allow the
equation to determine the value of x for a given value of y. (This cannot always be done, for
instance as in the case of the equation y = a, where a is a constant.) When such an inversion
is possible, the two derivatives are related by

dy
dx

= 1
dx∕dy

.
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This relation can be seen as follows:

dy
dx

= lim
Δx→0

Δy
Δx

= lim
Δx→0

1
Δx∕Δy

= 1
lim
Δx→0

(Δx∕Δy)

by the limit theorems of Appendix A2. Furthermore, if lim
Δx→0

Δy
Δx

≠ 0, then Δy → 0 as
Δx → 0, so

dy
dx

= 1
lim
Δy→0

(Δx∕Δy)
= 1

dx∕dy
.

This result is a further justification of the use of differential notation because normal
arithmetic manipulation with differential notation immediately gives

dy
dx

= 1
dx∕dy

.

A.5 Differentiating xn

Consider first the case of n a positive integer.

y = xn. (A.3)

Let y(x + Δx) = (x + Δx)n. The right side can be expanded by the binomial theorem (this
theorem is proved in any good algebra text):

y(x + Δx) = (x + Δx)n

= xn + nxn−1Δx + n(n − 1)
1 ⋅ 2

xn−2Δx2 + · · · + Δxn. (A.4)

Subtracting Equation (A.3) from Equation (A.4) and dividing by Δx, yields

y(x + Δx) − y(x)
Δx

=
Δy
Δx

= nxn−1 + n(n − 1)
1 ⋅ 2

xn−2Δx + · · · + Δxn−1.
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Therefore,
dy
dx

= lim
Δx→0

Δy
Δx

= nxn−1.

This result has been proved only for n being a positive integer, but we can generally show that
it holds for any positive number. We start by showing that it is true for n = 1∕q where q is a

positive integer. Let y = x1∕q so x = yq. By the preceding theorem, then,
dx
dy

= qyq−1. By the

result in Appendix A4

dy
dx

= 1
dx∕dy

= 1
qyq−1

= 1
q
y1−q = 1

q
(x1∕q)1−q

dy
dx

= 1
q
x(1∕q)−1 = nxn−1.

We can further see that this theorem holds for n = p/q where p and q are both positive integers.
Let y = xn = xp∕q and w = x1∕q, hence y = wp. Then

dy
dx

=
dy
dw

dw
dx

= pwp−1

(
1
q

)
x(1∕q)−1 = px(p∕q)−(1∕q)

(
1
q

)
x(1∕q−1)

=
(

p
q

)
x(p∕q)−1 = nxn−1.

So far, we have seen that the rule for differentiating xn applies if n is any positive fraction.
We will now see that it applies for negative fractions as well. Let n = −m, where m is a positive
fraction. Then

d
dx

xn = d
dx

x−m = d
dx

( 1
xm

)
= − 1

(xm)2
d
dx

xm

= −mxm−1

x2m
= −mx−m−1 = nxn−1.

Up to now our discussion applies if n is any rational number. However, the result may be
extended to any irrational real number by the methods used in frame 84. Therefore, for any
real number n, whether rational or irrational, and regardless of sign,

d
dx

xn = nxn−1.
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A.6 Differentiating Trigonometric Functions

From Appendix A1,

d
d𝜃

sin 𝜃 = lim
Δ𝜃→0

sin(𝜃 + Δ𝜃) − sin 𝜃
Δ𝜃

= lim
Δ𝜃→0

sin 𝜃 cosΔ𝜃 + cos 𝜃 sinΔ𝜃 − sin 𝜃
Δ𝜃

= sin 𝜃 lim
Δ𝜃→0

cosΔ𝜃 − 1
Δ𝜃

+ cos 𝜃 lim
Δ𝜃→0

sinΔ𝜃
Δ𝜃

.

The two limits were evaluated in Appendix A3 as 0 and 1, respectively, so

d
d𝜃

sin 𝜃 = cos 𝜃.

Likewise,

d
d𝜃

cos 𝜃 = lim
Δ𝜃→0

cos(𝜃 + Δ𝜃) − cos 𝜃
Δ𝜃

= lim
Δ𝜃→0

cos 𝜃 cosΔ𝜃 − sin 𝜃 sinΔ𝜃 − cos 𝜃
Δ𝜃

= cos 𝜃 lim
Δ𝜃→0

cosΔ𝜃 − 1
Δ𝜃

− sin 𝜃 lim
Δ𝜃→0

sinΔ𝜃
Δ𝜃

= − sin 𝜃.

Derivatives of other trigonometric functions can be found by expressing them in terms of
sines and cosines, as in Chapter 2.

A.7 Differentiating the Product of Two Functions

Let y = uv, where u and v are variables that depend on x. Then

y + Δy = (u + Δu)(v + Δv) = uv + u Δv + v Δu + Δu Δv.
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Hence

dy
dx

= lim
Δx→0

(y + Δy) − y
Δx

= lim
Δx→0

(uv + u Δv + v Δu + Δu Δv) − uv
Δx

= lim
Δx→0

(
u
Δv
Δx

+ v
Δu
Δx

+ Δu
Δv
Δx

)
.

But
lim
Δx→0

Δu
Δv
Δx

= ( lim
Δx→0

Δu)
(

lim
Δx→0

Δv
Δx

)
= (0)

( dv
dx

)
= 0,

where we have used Theorem 2 of Appendix A2. Thus

dy
dx

= u lim
Δx→0

Δv
Δx

+ v lim
Δx→0

Δu
Δx

= u
dv
dx

+ v
du
dx

.

A.8 Chain Rule for Differentiating

Let w(u) depend on u, which in turn depends on x. Then Δw = w(u + Δu) − w(u) so

Δw
Δx

= Δw
Δu

Δu
Δx

= w(u + Δu) − w(u)
Δu

Δu
Δx

.

Therefore, using Theorem 2 of Appendix A2, we have

dw
dx

= lim
Δx→0

Δw
Δx

= lim
Δx→0

Δw
Δu

lim
Δx→0

Δu
Δx

=
(dw

du

)(du
dx

)
⋅

A.9 Differentiating ln x

Let y = ln x, hence y(x + Δx) = y + Δy = ln(x + Δx). Then

y(x + Δx) − y(x)
Δx

=
Δy
Δx

= ln(x + Δx) − ln x
Δx

.
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From frame 91,

Δy
Δx

= 1
Δx

ln
(x + Δx

x

)
= 1

x
x
Δx

ln
(

1 + Δx
x

)
= 1

x
ln
(

1 + Δx
x

)x∕Δx

= 1
x

ln (1 + b)1∕b,

where we have written b for
Δx
x

. Note that as Δx → 0, b → 0. Therefore,

dy
dx

= lim
Δx→0

Δy
Δx

= lim
Δx→0

[1
x

ln (1 + b)1∕b
]

= 1
x

ln
[
lim
b→0

(1 + b)1∕b
]

= 1
x

ln e = 1
x
,

because ln e = 1.

A.10 Differentials When Both Variables Depend
on a Third Variable

The relation dw = dw
du

du is true even when both w and u depend on a third variable. To

prove this, let both w and u depend on x. Then

dw = dw
dx

dx and du = du
dx

dx. (A.5)

By the chain rule for differentiating,

dw
dx

=
(dw

du

)(du
dx

)
,

and multiplying through by dx, we have

dw
dx

dx =
(dw

du

)(du
dx

)
dx,

so by Equation (A.5),

dw = dw
du

du.
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This theorem justifies the use of the differential notation since it shows that with the differential
notation the chain rule takes the form of an algebraic identity:

dw
dx

= dw
du

du
dx

.

A.11 Proof That if Two Functions Have the Same
Derivative They Differ Only by a Constant

Let the functions be f (x) and g(x). Then
d
dx

f (x) = d
dx

g(x) so
d
dx

[ f (x) − g(x)] = 0. There-

fore f (x) − g(x) = c, where c is a constant.

This proof depends on the assumption that if
d
dx

h(x), then h(x) is a constant. This is indeed

plausible since the graph of the function h(x) must always have zero slope and hence it should
be a straight line parallel to the origin, i.e. h(x) = c. A more complicated analytic proof of this
theorem is given in advanced books on calculus.

A.12 Limits Involving Trigonometric Functions

1. Proof that lim
𝜃→0

sin 𝜃
𝜃

= 1.

To prove this, use the Taylor series for sin 𝜃 expanded about 𝜃 = 0 (frame 412), sin 𝜃 =
𝜃 − 1

3!
𝜃3 + · · ·. Then

lim
𝜃→0

sin 𝜃
𝜃

= lim
𝜃→0

1
𝜃

(
𝜃 − 1

3!
𝜃3 + · · ·

)
= lim

𝜃→0

(
1 − 1

3!
𝜃2 + · · ·

)
= 0.

2. Proof that lim
𝜃→0

1 − cos 𝜃
𝜃

= 0.

To prove this, use the Taylor series for cos 𝜃 expanded about 𝜃 = 0 (frame 418), cos 𝜃 =
1 − 1

2!
𝜃2 + 1

4!
𝜃4 + · · ·. Then

lim
𝜃→0

1 − cos 𝜃
𝜃

= lim
𝜃→0

1
𝜃

(
1 −

(
1 − 1

2!
𝜃2 + 1

4!
𝜃4 + · · ·

))
= lim

𝜃→0

( 1
2!
𝜃 − 1

4!
𝜃3 + · · ·

)
= 0.



Trim Size: 7.375in x 9.25in Kleppner743194 bapp01.tex V1 - 03/15/2022 3:38 P.M. Page 262�

� �

�



Trim Size: 7.375in x 9.25in Kleppner743194 bapp02.tex V1 - 03/14/2022 11:38 A.M. Page 263�

� �

�

APPENDIX B

Additional Topics in
Differential Calculus

B.1 Implicit Differentiation

Most of the functions we use in this book can be written in the simple form y = f (x),
but this is not always the case. Sometimes we have two variables related by an equation of the
form f (x, y) = 0. The function f (x, y) means that the value of f depends on both x and y.
Here is an example: x2y + (y + x)3 = 0. We cannot easily solve this equation to yield a result
of the form y = g(x), or even x = h(y). However, we can find y′ by differentiating both sides
of the equation with respect to x, remembering that y depends on x.

d
dx

(x2y) + d
dx

(y + x)3 = d
dx

(0) = 0,

x2 dy
dx

+ 2xy + 3(y + x)2
(

dy
dx

+ 1

)
= 0,

dy
dx

[
x2 + 3(y + x)2

]
= −2xy − 3(y + x)2,

dy
dx

= −
2xy + 3(y + x)2

x2 + 3(y + x)2
.

A function defined by f (x, y) = 0 is called an implicit function because it implicitly deter-
mines the dependence of y on x (or, for that matter, the dependence of x on y in case we
need to regard y as the independent variable). The process we have just used, differentiating
each term of the equation f (x, y) = 0 with respect to the variable of interest, is called implicit
differentiation.

Here is another example of implicit differentiation. Let x2 + y2 = 1. Note that in this
case f (x, y) = x2 + y2 − 1 = 0. The problem is to find y′. We will do this first by implicit

263
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264 Additional Topics in Differential Calculus Appendix B

differentiation, and then by solving the equation for y and using the normal procedure. By
differentiating both sides of the equation with respect to x, we obtain 2x + 2y y′ = 0. Hence,

y′ = −2x
2y

= −x
y
.

Alternatively, we can solve for y.

y2 = 1 − x2, y = ±
√

1 − x2,

y′ = ±1
2

(
−2x√
1 − x2

)
= ∓ x√

1 − x2
= −x

y
.

We did not need to use implicit differentiation here because we could write the function in
the form y = f (x). Often, however, this cannot be done, as in the first example, and implicit
differentiation is then necessary.

B.2 Differentiating the Inverse Trigonometric
Functions

We can use the inversion formula for derivatives from frame 273 and Appendix A4 to
differentiate the inverse functions.

If x = ln y, then define the inverse function y = ln−1x by

x = ln y = ln(ln−1x).

This inverse function is just the familiar exponential function y = ex ≡ ln−1(x). Then the
inversion formula for derivatives is given by

dy
dx

= 1
dx∕dy

.

Thus
dy
dx

= d
dx

ex = 1
d

dy
ln y

= y = ex.
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§ B.2 Differentiating the Inverse Trigonometric Functions 265

Taking derivatives of the inverse trigonometric functions can be calculated in a similar way.

1. Evaluating d

dx
sin−1x.

1 x2

1
x

The angle 𝜃 is shown inscribed in a right triangle having unit hypotenuse, and an
opposite side of length x. Therefore, sin 𝜃 = x∕1 = x and the inverse function is 𝜃 =
sin−1x. The inversion formula for derivatives is now

d
dx

sin−1x = d𝜃
dx

= 1
dx

d𝜃

= 1
d

d𝜃
sin 𝜃

= 1
cos 𝜃

= 1√
1 − sin2𝜃

= 1√
1 − x2

.

2. Evaluating
d
dx

cos−1x.

1 x21

x

Let x = cos 𝜃. Then 𝜃 = cos−1x. The angle 𝜃 shown in the figure is inscribed in a
right triangle having unit hypotenuse, and an adjacent side of length x. Therefore

d
dx

cos−1x = d𝜃
dx

= 1
dx

d𝜃

= 1
d

d𝜃
cos 𝜃

= − 1
sin 𝜃

= − 1√
1 − cos2𝜃

= − 1√
1 − x2

.
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266 Additional Topics in Differential Calculus Appendix B

3. Evaluating
d
dx

tan−1x.

1

x
1+ x2

Let x = tan 𝜃. Then 𝜃 = tan−1x. The angle 𝜃 shown in the figure is inscribed in a
right triangle having opposite side x, and an adjacent side of length 1. Therefore

d
dx

tan−1x = d𝜃
dx

= 1
dx

d𝜃

= 1
d

d𝜃
tan 𝜃

= 1
sec2𝜃

= cos2𝜃.

From the figure above cos 𝜃 = 1∕
√

1 + x2. Therefore

d
dx

tan−1x = 1
1 + x2

.

(Alternatively, cos2𝜃 = 1
1 + tan2𝜃

= 1
1 + x2

.)

4. Evaluating
d
dx

cot−1x.

1

x

1+ x2

Let x = cot 𝜃. Then 𝜃 = cot−1x. The angle 𝜃 shown in the figure is inscribed in a
right triangle having adjacent side x, and an opposite side of length 1. Therefore

d
dx

cot−1x = d𝜃
dx

= 1
dx

d𝜃

= 1
d

d𝜃
cot 𝜃

= − 1
sec2𝜃

= −sin2𝜃,
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§ B.3 Partial Derivatives 267

where we used the trigonometric identity sin2𝜃 = 1
1 + cotan2𝜃

= 1
1 + x2

. (In the figure

above x = cot 𝜃, and sin 𝜃 = 1√
1 + x2

.) Therefore

d
dx

cot−1x = −1
1 + x2

.

B.3 Partial Derivatives

In this book we have almost exclusively considered functions defined for a single indepen-
dent variable. Often, however, two or more independent variables are required to define the
function; in this case we have to modify the idea of a derivative. As a simple example, suppose
we consider the area of a rectangle A, which is the product of its width w and length l. Thus,
A = f (l,w) (read “f of l and w”), where f (l,w) = lw. In this discussion we will let l and w vary
independently, so they both can be treated as independent variables.

l

w

A

If one of the variables, say w, is temporarily kept constant, then A depends on a single
variable, and the rate of change of A with respect to l is simply dA∕dl. However, because A
really depends on two variables, we must modify the definition of the derivative. The rate of
change of A with respect to l is

lim
Δl→0

f (l + Δl,w) − f (l,w)
Δl

= lim
Δl→0

(l + Δl) w − lw)
Δl

= w,

where it is understood that w is held constant as the limit is taken. The above quantity is

called the partial derivative of A with respect to l and is written
∂A
∂l

. In other words, the partial

derivative is defined by

∂A
∂l

=
∂f (l,w)

∂l
= lim

Δl→0

f (l + Δl,w) − f (l,w)
Δl

= lim
Δl→0

(l + Δl)w − lw
Δl

= w.
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268 Additional Topics in Differential Calculus Appendix B

Similarly, the partial derivative of A with respect to l is

∂A
∂w

= lim
Δw→0

f (l,w + Δw) − f (l,w)
Δw

= lim
Δw→0

l(w + Δw) − lw
Δw

= l.

The differential of A due to changes in l and w of dl and dw, respectively, is by definition

dA = ∂A
∂l

dl + ∂A
∂w

dw.

By analogy with the argument in 267 it should be plausible that as dl → 0, the increment in
A, ΔA = f (l + Δl,w + Δw) − f (l,w) approaches dA.

l

w

A

dw

dl

ldw

wdl

This result is shown by the figure. ΔA is the total increase in area due to dl and dw and
comprises all the shaded areas.

dA = ∂A
∂l

dl + ∂A
∂w

dw = w dl + l dw.

ΔA = (dl)(dw) and dA differ by the area of the small rectangle in the upper-right-hand corner.
As dl → 0, dw → 0, the difference becomes negligible compared with the area of each strip.

The above discussion can be generalized to functions depending on any number of vari-
ables. For instance, let p depend on q, r, s,… , then

dp =
∂p
∂q

dq +
∂p
∂r

dr +
∂p
∂s

ds + … .

Here is an example: Let p = q2r sin z. Then

∂p
∂q

= 2qr sin z,
∂p
∂r

= q2 sin z,
∂p
∂z

= q2r cos z.

Therefore
dp = 2qr sin z dq + q2 sin z dr + q2r cos z dz.
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§ B.4 Radial Acceleration in Circular Motion 269

Here is another example:

h

lw

The volume of a pyramid with height h and a rectangular base with dimensions l and w is

V = 1
3

lwh. Thus,

dV = 1
3

wh dl + 1
3

lh dw + 1
3

lw dh.

If the dimensions are changed by small amounts dl, dw, and dh, the volume changes by an
amount ΔV ≈ dV, where dV is given by the expression above.

B.4 Radial Acceleration in Circular Motion

An object moving in a circle always has a radial inward acceleration, called centripetal accel-
eration, due to the continuous change in the direction of the velocity, and is given by

arad =
v2

R
.

Let’s consider the special case in which the speed is constant. The derivation of this result
requires understanding how to calculate the derivative of a vector that is constant in length
but changing direction.

+x
r

+ y

v

v
v

v

v

v v

v

+y

+x

v( )

v( + )

P
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270 Additional Topics in Differential Calculus Appendix B

The direction of the velocity is always tangent to the circle. Although the speed of the object
is constant, the direction of the velocity is changing because the object is moving in a circle,
as can be seen in the figures above.

In the figure below, where we have superimposed the directions of two velocities at the
point P, the arrows indicate the change in direction but the speeds remain the same, i.e.
v(𝜃 + Δ𝜃) = v and v(𝜃) = v.

/ 2

| v |

r

P
v( + )

v( )

The magnitude of the change in velocity ∣ Δv ∣ is given by ∣ Δv ∣= 2v sin(Δ𝜃∕2). We use
the small angle approximation (from the Taylor series), sin(Δ𝜃∕2) ≈ Δ𝜃∕2 (frame 405) to
approximate the magnitude of the change of velocity, |Δv| ≈ vΔ𝜃, where we are assuming
that Δ𝜃 > 0. Then the magnitude of the radial acceleration is given by

|arad| = lim
Δt→0

|Δv|
Δt

= v lim
Δt→0

Δ𝜃
Δt

= v
d𝜃
dt
.

We now use the result in frame 286 that the speed is v = Rd𝜃

dt
, to write the magnitude of the

radial acceleration as

|arad| = v2

R
.

In the limitΔ𝜃 → 0, the change in the direction of the velocity is perpendicular to the velocity,
Δv ⟂ v and so is directed radially inward.

B.5 Resources for Further Study

Online Calculus Content:

David Jerison. 18.01SC Single Variable Calculus. Fall 2010. Massachusetts Institute of
Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons
BY-NC-SA.

https://ocw.mit.edu/
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University-Level Introductory Calculus Textbooks:

Robert E. Larson and Bruce Edwards, Calculus, 10th ed., Cengage Learning, Boston, Mass.,
2018.

Morris Kline, An Intuitive and Physical Approach, 2nd Ed., Dover Publications, Mineola, N.Y.,
1998.

James Stewart, Calculus 8th Ed., Cengage Learning, Boston, Mass., 2015.

Introductory Calculus Textbooks:

George F. Simmons, Calculus with Analytic Geometry. 2nd ed., McGraw-Hill, New York, NY,
1996.

C. H. Edwards, Jr., and David E. Penny, Calculus and Analytic Geometry, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1982.

Ross Finney and George Thomas, Elements of Calculus and Analytic Geometry, 9th ed.,
Addison-Wesley Publishing Co., Inc., Reading, Mass., 1998.

Advanced Single Variable Calculus Textbook:

Tom M. Apostol, Calculus Volume 1, One-Variable Calculus with an Introduction to Linear
Algebra, 2nd ed., Blaisdell Publishing Company, Waltham, Mass., 1967.
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Frame Problems Answers

Answers to Selected Problems from the Text

Chapter 1: A Few Preliminaries
Frame 16: 5, −3

Frame 18: (3, 27)

Frame 23: B

Frame 27: 40 mpg

Frame 29: 7

Frame 31: +, −, +, 0

Frame 37: d

Frame 41: 45∘

Frame 42: c

Frame 43: 2𝜋

Frame 44: 1 rad

Frame 45: 𝜋∕3, 45 degrees, 60∘

Frame 47: 120∘, 75∘, 𝜋/2

Frame 48: 𝜋∕2, 540∘, 30∘

Frame 52: − 4∕5,− 3∕5, 4∕3

Frame 55: −, +, −

Frame 56: 1, sec2𝜃, 1 − 2cos2𝜃

273
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274 Frame Problems Answers

Frame 60: a/c, b/a

Frame 61: m/n, l/m

Frame 62: 1∕
√

2, 1/2, 1∕
√

2, 1∕
√

3

Frame 65: b, c, d, none of these

Frame 66: sin 0∘ = 0, cos 0∘ = 1, cos 30∘ =
√

3∕2, tan 45∘ = 1,
cos 60∘ = 1∕2, sin 90∘ = 1, cos 90∘ = 0

Frame 69 (a): +, −; (b): +, +

Frame 74: (a) 𝜋∕4, (b) 𝜋∕4, (c) 𝜋∕3, (d) 53.1∘, (e) 1.49, (f) 87.1∘

Frame 75: a5 = none of these, ab+c = abac, a f ∕ag = a f−g, a0 = 1, (ab)c = abc

Frame 77: 9, 1, 1/8, 16−1

Frame 78: 3−9, ( 5∕3)2, 26

Frame 79: 1, 0.1, 3 × 10−5, 4 × 10−5, 0.5 × 10−4

Frame 81: 1∕9, 8

Frame 82: 125, 1000

Frame 83: 3/400,
√

7∕10

Frame 84: a𝜋+x−3

Frame 85: None of these

Frame 88: 6, 0

Frame 89: 7, n, −n

Frame 92: 1∕1000, 100, 3∕2

Frame 93: log 4, 0

Chapter 2: Differential Calculus
Frame 103: 2, −3

Frame 112: (1) discontinuous, (2) continuous, (3) continuous, (4) discontinuous

Frame 123: d, b, e

Frame 124: d, a

Frame 128: 1, 2, 3
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Frame 171: 0

Frame 173: a

Frame 174: −1

Frame 175: 2x

Frame 181: 3x2, −7x−8, −2∕x3

Frame 182: −1∕x2, x−4

Frame 183:
1
2

x−1∕2

Frame 184:
2
3

x−1∕3

Frame 200: d

Frame 203: − 1
v2

dv
dx

Frame 213: sec 𝜃 tan 𝜃

Frame 215: 2 sin 𝜃 cos 𝜃

Frame 217: −3𝜃2 sin(𝜃3)
Frame 219: 𝜔 cos(𝜔t)
Frame 223: 1.79, 1.15, 17.10

Frame 228: 2∕x

Frame 229: 2 ln x∕x

Frame 238:
−1

(ln x)2x
Frame 242: 12x

Frame 243: 2∕x3

Frame 246: −A𝜔2 sin(𝜔t)
Frame 248: (4)(3)(2)(1)

Frame 251: C

Frame 255: −3

Frame 256: 1/2 and − 1/2

Frame 268: cos xdx, −dx∕x2, exdx
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Chapter 3: Integral Calculus
Frame 306: antiderivative, or F(x) = ∫ f (x) dx

Frame 308: − cos x + c

Frame 309: (a)
1

n + 1
xn+1 + c, (b) ex + c

Frame 325: (x − 1)ex + c

Frame 351: 38∕3

Frame 353: −15

Frame 355: 39∕4

Frame 361: 0

Frame 362: 2

Frame 364: x + e−x − 1

Frame 366: 𝜋∕2

Frame 371:
v0

b
Frame 373: none of these

Frame 393: 90

Frame 395: 36

Frame 397: Cba3∕12
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This list of problems is for benefit in case you want some additional practice. The problems
are grouped according to chapter and section. Answers start on page 283.

Chapter 1

Linear and Quadratic Functions

Find the slope of the graphs of the following equations:

1. y = 5x − 5

2. 4y − 7 = 5x + 2

3. 3y + 7x = 2y − 5

Find the roots of the following:

4. 4x2 − 2x − 3 = 0

5. x2 − 6x + 9 = 0

Trigonometry

6. Show that sin 𝜃 cot 𝜃∕
√

1 − sin2𝜃 = 1,
(
−𝜋

2
< 𝜃 <

𝜋

2

)
.

7. Show that cos 𝜃 sin
(
𝜋

2
+ 𝜃

)
− sin 𝜃 cos

(
𝜋

2
+ 𝜃

)
= 1.

8. What is: (a) sin 135∘ (b) cos
7𝜋
4

, (c) sin
7𝜋
6

?

9. Show that cos2𝜃

2
= 1

2
(1 + cos 𝜃).

10. What is the cosine of the angle between any two sides of an equilateral triangle?

277
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278 Review Problems

Exponentials and Logarithms

11. What is (−1)13?

12. Find [(0.01)3]−1∕2.

13. Express log (xx)x in terms of log x.

14. If log(log x) = 0, find x.

15. Is there any number for which x = log x?

In the following five questions, make use of the log table below and the rules for manip-
ulating logarithms.

x log x x log x
1 0.00 5 0.70
2 0.30 7 0.85
3 0.48 10 1.00

Find

16. log
√

10

17. log 21

18. log
√

14

19. log 300

20. log(73∕2)

Chapter 2

Find the following limits, if they exist:

21. lim
x→2

x2 − 4x + 4
x − 2

22. lim
𝜃→𝜋∕2

sin 𝜃

23. lim
x→0

x2 + x + 1
x

24. lim
x→1

[
1 + (x + 1)2

x − 1

]
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25. lim
x→3

[
(2 + x)(x − 3)2

x − 3
+ 7

]

26. lim
x→1

x2 − 1
x − 1

27. lim
x→∞

1
x

28. lim
x→0

log x

Velocity

29. What is the average velocity of a particle that goes forward 35 miles and backward for
72 miles, during the course of 1 hour?

30. A particle always moves in one direction. Can its average velocity exceed its maximum
velocity?

31. A particle moves so that its position is given by S(t) = S0 sin(2𝜋t), where S0 is in meters,
t is in hours. Find its average velocity from t = 0 to
(a) t = 1∕4 hour

(b) t = 1∕2 hour

(c) t = 3∕4 hour

(d) t = 1 hour

32. Write an expression for the average velocity of a particle, which leaves the origin at t = 0,
whose position is given by S(t) = at3 + bt, where a and b are constants. The average is
from t = 0 to the present time t.

33. Find the instantaneous velocity of a particle when t = 2 whose position is given by
S(t) = bt3, where b is a constant.

Differentiation

Find the derivative of each of the following functions with respect to its appropriate variable,
where a and b are constants.

34. y = x + x2 + x3

35. y = (a + bx) + (a + bx)2 + (a + bx)3

36. y = (3x2 + 7x)−3
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37. p =
√

a2 + q2

38. p = 1√
a2 + q2

39. y = x𝜋

40. f = 𝜃2 sin 𝜃

41. f = sin 𝜃
𝜃

42. f = (sin 𝜃)−1

43. f =
(√

1 + cos2𝜃

)−1

44. f = sin2𝜃 + cos2𝜃

45. y = sin(ln x)

46. y = x ln x

47. y = (ln x)−2

48. y = xx

(Hint: What is ln y? Use implicit differentiation, Appendix B1.)

49. y = ax2

50. f = sin
√

1 + 𝜃2

51. y = e−x2

52. y = 𝜋x

53. y = 𝜋x2

54. f = ln(sin 𝜃)

55. f = sin(sin 𝜃)

56. f = ln ex

57. f = eln x

58. y =
√

1 − sin2𝜃



Trim Size: 7.375in x 9.25in Kleppner743194 bother02.tex V1 - 03/14/2022 11:43 A.M. Page 281�

� �

�

Chapter 2 281

Higher-Order Derivatives

Evaluate each of the following:

59. Find
d2

d𝜃2
(cos a𝜃).

60. Find
dn

dxn eax = (n is a positive integer).

61.
d2

dx2
(
√

1 + x2)

62.
d2

d𝜃2
(tan 𝜃)

63.
d3

dx3
(x2ex)

Maxima and Minima

Find where the following functions have their maximum and/or minimum values. Either give
the values of x explicitly, or find an equation for these values.

64. y = e−x2

65. y = sin x
x

66. y = e−x sin x

67. y = ln x
x

68. y = e−x ln x

69. Find whether y has a maximum or a minimum for the function given in question 64.

Differentials

Find the differential df of each of the following functions.

70. f = x

71. f =
√

x

72. f = sin(x2)

73. f = esin x (Hint: Use chain rule.)
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Chapter 3

You may find Table 2 on page 288 helpful in doing the problems in this section.

Integration

Find the following indefinite integrals. (Omit the constants of integration.)

74.
∫

sin 2x dx

75.
∫

dx
x + 1

76.
∫

x2ex dx (Try integration by parts.)

77.
∫

xe−x2
dx

78.
∫

sin2𝜃 cos 𝜃 d𝜃

Some Techniques of Integration and Definite Integrals

Evaluate the following definite integrals.

79.
∫

+1

−1
(ex + e−x) dx

80.
∫

∞

−∞

dx
a2 + x2

81.
∫

∞

−∞

x dx√
a2 + x2

82.
∫

0

−∞
x2ex dx (Problem 76 may be helpful.)

83.
∫

+𝜋∕2

0
sin 𝜃 cos 𝜃d𝜃
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84.
∫

1

0
(x + a)n dx

85.
∫

+1

−1

dx√
1 − x2

86.
∫

1

−1
(x + x2 + x3) dx

Answers to Review Problems

1. 5

2. 5∕4

3. −7

4.
(

1 ±
√

13
)
∕4

5. 3, 3 (roots are identical)

6. No answer

7. No answer

8. (a)

√
2

2
, (b)

√
2

2
, (c) −1

2
9. No answer

10. 1/2

11. −1

12. 1000

13. x2 log x

14. x = 10

15. No

16. 0.50

17. 1.33

18. 0.58
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19. 2.48

20. 1.27

21. 0

22. 1

23. No limit

24. No limit

25. 7

26. 2

27. 0

28. No limit

29. −37 mph

30. No

31. (a) 4S0 m∕hr, (b) 0 m∕hr, (c) −4
3

S0 m∕hr, (d) 0 m∕hr

32. at2 + b

33. 12b

34. 1 + 2x + 3x2

35. b + 2b(a + bx) + 3b(a + bx)2

36. −3(3x2 + 7x)−4(6x + 7)

37.
dp
dq

=
q√

a2 + q2

38.
dp
dq

=
−q

(a2 + q2)3∕2

39.
dy
dx

= 𝜋x𝜋−1

40.
df
d𝜃

= 2𝜃 sin 𝜃 + 𝜃2 cos 𝜃

41.
df
d𝜃

= cos 𝜃
𝜃

− sin 𝜃
𝜃2
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42.
df
d𝜃

= −cos 𝜃
sin2𝜃

43.
df
d𝜃

= cos 𝜃 sin 𝜃
(1 + cos2𝜃)3∕2

44.
df
d𝜃

= 0

45.
dy
dx

= cos(ln x)
x

46.
dy
dx

= 1 + ln x

47.
dy
dx

= −2
x
(ln x)−3

48.
dy
dx

= xx(1 + ln x)

49.
dy
dx

= 2xax2
ln a

50.
𝜃√

1 + 𝜃2
cos

√
1 + 𝜃2

51. −2xe−x2

52. 𝜋x ln𝜋

53. 2x𝜋x2
ln𝜋

54. cot 𝜃

55. [cos(sin 𝜃)] cos 𝜃

56. 1

57. 1

58. − sin 𝜃

59. −a2 cos(a𝜃)
60. aneax

61.
1√

1 + x2
− x2

(1 + x2)3∕2

62. 2 sec2𝜃 tan 𝜃
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63. (6 + 6x + x2)ex

64. x = 0

65. x = tan x (x = 0,… )

66. x = tan−11 = 𝜋

4
± n𝜋, n = 0, 1, 2,…

67. x = ex = e (ln x = 1)

68.
1
x
= ln x

69. Maximum

70. df = dx

71. df = dx

2
√

x

72. df = 2x cos(x2)dx

73. df = (cos x)esin xdx

74.
−1
2

cos(2x)

75. ln(x + 1)
76. x2ex − 2xex + 2ex

77.
1
2

e−x2

78.
1
3

sin3𝜃

79. 2
(

e − 1
e

)
80.

𝜋

a
81. 0

82. 2

83. 1/2

84.
(1 + a)n+1 − an+1

n + 1
85. 𝜋

86. 2/3



Trim Size: 7.375in x 9.25in Kleppner743194 bother03.tex V1 - 03/14/2022 11:09 A.M. Page 287�

� �

�

Tables

Table 1: Derivatives

The differentiation formulas are listed below. References to the appropriate frames are
given. In the following expressions ln x is the natural logarithm or the logarithm to the base
e; u and v are variables that depend on x; w depends on u, which in turn depends on x; and a
and n are constants. All angles are measured in radians.

1.
da
dx

= 0

2.
d
dx

(ax) = a

3.
dxn

dx
= nxn−1

4.
d
dx

(u + v) = du
dx

+ dv
dx

5.
d
dx

(uv) = u
dv
dx

+ v
du
dx

6.
d
dx

(u
v

)
= 1

v2

(
v
du
dx

− u
dv
dx

)
7.

dw
dx

= dw
du

du
dx

8.
dun

dx
= nun−1 du

dx

9.
d ln x

dx
= 1

x

10.
dex

dx
= ex

287
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11.
dax

dx
= ax ln a

12.
duv

dx
= vuv−1 du

dx
+ uv ln u

dv
dx

13.
d sin x

dx
= cos x

14.
d cos x

dx
= − sin x

15.
d tan x

dx
= sec2x

16.
d sec x

dx
= sec x tan x

17.
d cot x

dx
= −csc2x

18.
d sin−1x

dx
= 1√

1 − x2

19.
d cos−1x

dx
= −1√

1 − x2

20.
d tan−1x

dx
= 1

1 + x2

21.
d cot−1x

dx
= −1

1 + x2

Table 2: Integrals

In the following u and v are variables that depend on x; w is a variable that depends on u,
which in turn depends on x; a and n are constants; and the arbitrary integration constants are
omitted for simplicity.

1.
∫

a dx = ax

2.
∫

af (x) dx = a
∫

f (x) dx
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3.
∫

(u + v) dx =
∫

u dx +
∫

v dx

4.
∫

xn dx = xn+1

n + 1
, n ≠ −1

5.
∫

dx
x

= ln |x|
6.

∫

dx
a + bx

= 1
b

ln |a + bx|
7.

∫
ex dx = ex

8.
∫

eaxdx = eax

a

9.
∫

bax dx = bax

a ln b

10.
∫

ln |x| dx = x ln |x| − x

11.
∫

sin x dx = − cos x

12.
∫

cos x dx = sin x

13.
∫

tan x dx = − ln |cos x|
14.

∫
cot x dx = ln |sin x|

15.
∫

sec x dx = ln |sec x + tan x|
16.

∫
sin x cos x dx = 1

2
sin2x

17.
∫

dx
a2 + x2

= 1
a
tan−1 x

a

18.
∫

dx√
a2 − x2

= sin−1 x
a
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19.
∫

dx√
x2 ± a2

= ln |||x −
√

x2 ± a2|||
20.

∫
w(u) dx =

∫
w(u)dx

du
du

21.
∫

u dv = uv −
∫

v du
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References are by page number.

Abscissa, 7
Absolute value function, 8–9
Acceleration, 132–133; centripetal, 269;

radial, 269–270; tangential, 153
Amplitude, 242
Angle(s), 19–27; converting, from degrees

to radians, 24–25; definition of an, 20;
designating, 26; right, 22; rotation, 20,
27; sum of, 39–40, 53; trigonometric
functions of, 28–29; trigonometric
functions of sums of, 251

Angular frequency, 242
Answers: to frame problems, 273–276; to

review problems, 277–286
Antidifferentiation, 170
Arcsin, 40
Area: under an arbitrary curve, 184–186;

under a curve, 183–184; negative, 195
Area function, 188–192
Average velocity, 75, 165
Axes, coordinate, 5–6, 10

Base of a logarithm, 10, 47

Calculators, 2, 35
Calculus: fundamental theorem of, 193,

236–237; invention of, 71; multiple
variable vs. single variable, 211

Car, when to sell a, 153–155
Cartesian coordinate system, 10
Centripetal acceleration, 269
Chain rule, 108–112, 120, 259
Change of variable, 174–178
Circle, circumference of a, 24
Circular motion, 152; radial acceleration in,

269–270; tangential acceleration in, 153
Circumference, 24
Compact disc, maximizing storage on a,

160–161
Complex numbers, 3
Compound interest, 161–163
Cone, volume of a, 204–207
Constant: constant function, 8
Continuous functions, 67
Coordinate axes, 5–6; Cartesian coordinate

system, 10; DMS coordinates, 20
Cosecant, 29, 37
Cosine, 29, 37; derivative of, 258; for sum

of two angles, 53
Cotangent, 29
Curve, area under a, 183–192

Decay constant, 240
Defined limits, 61–62
Definite integral, 183, 186–187

291
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Definitions: definite integral, 183; derivative,
85; indefinite integral, 171; limit,
61–62; logarithm, 50; partial derivative,
267; slope, 12, 13

Degree (angles), 20, 24–25
Degree (of a term in a polynomial), 224
Dependent variable, 5, 211
Derivative(s), 83–87; of areas, 184–185;

definition, 85; functions with the same,
261; graph of, 87–96; higher-order,
130–133; partial, 267–269; of a
quadratic function, 99; second,
130–133; table of, 287–288. See also
Differentiation

Derivative operator, 87
Diameter, 24
Differential, 143–147, 260–261
Differential calculus, 57
Differential equations, 235–243
Differentiation, 97–103; chain rule of,

108–112, 120, 259; of exponentials,
127–129, 258; implicit, 263–264; of
inverse trigonometric functions,
264–267; of logarithms and
exponentials, 121–130; of natural
logarithms, 122–130, 259–260; partial,
164; of product of two functions,
258–259; rules for, 103–114; of
trigonometric functions, 114–121, 258;
of uv, 105–107; of u/v, 107–108; of
u+v, 104–105; of xn, 256–257. See also
Derivative(s)

Displacement, 75, 201
Distance, as integral of velocity, 202
DMS coordinates, 20
Domain, 3–4, 41
Double integrals, 211–219

e, base of natural logarithms, 50, 55, 66
Elements, of set, 2–3
Ellipsis, 50

Equation(s): differential, 235–243; linear,
15; quadratic, 52; roots of an, 18, 52

Euler’s number, 50, 55, 66
Exponential function, 254–255;

differentiation of, 127–129, 258
Exponential growth, 238–239
Exponentials, 42–47
Exponents: fractional, 44–46; irrational

numbers as, 46

Factorial (!), 133
Fractional exponents, 44–46
Function(s), 2–5; absolute value, 8–9; area,

188–192; constant, 8; continuous, 67;
definition of a, 3; differentiating the
product of two, 258–259; domain of a,
3–4; exponential, 254–255; implicit,
263; indefinite integral as, 187; limit of
a, 57–70; linear, 11–17; logarithmic,
10; periodic, 37; plotting the graph of a,
7; quadratic, 17–19, 99; range of a,
3–4; with same derivative, 261;
trigonometric, 28–29

Fundamental period, 37
Fundamental theorem of calculus, 193,

236–237
f (x), 5, 52
F(x), 170

Gamma (𝛾), 254, 267
GPS, 20
Graphs, 5–10; of functions and their

derivatives, 87–96; plotting, 7–10
Growth: exponential, 238–239; of single

cells, 158–159

Higher-order derivatives, 130–133
Horizontal axis, 5–6

Implicit differentiation, 263–264
Implicit functions, 263
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Indefinite integral, 170–172
Independent variables, 5, 211
Instantaneous velocity, 77
Integral: definite, 183, 186–187; double,

211–219; indefinite, 170–172; iterated,
214, 217; limits of the, 187; multiple,
211–219

Integral table, 173, 288–290
Integrand, 187
Integration: applications of, 201–211;

numerical, 232–235; by parts,
178–181; techniques of, 174–182;
of trigonometric functions,
289

Interest, compound, 161–163
Interval, 58–61
Inverse trigonometric functions, 40;

differentiation of, 264–267
Irrational numbers, as exponents, 46
Iterated integral, 214, 217

Latitude, 20–21
Leibniz, Gottfried, 71
Limit, 57–70; concept of, 57–61; and

continuity, 67; defined, 61–62;
functions without a limit, 69–70; and
instantaneous velocity, 77–78;
mathematical definition of, 64; notation
for, 61; theorems on, 252–254;
trigonometric functions, 261

Limits of an integral, 187
Linear equations, 15
Linear functions, 11–17; slope of, 12–17
Log, logarithm, see Logarithmic function
Logarithmic function, 47–51; to base

10 (log), 47; definition of, 50;
differentiation of, 121–130;
manipulating, 48–49; natural,
50, 55

Longitude, 20–21

Maxima, 134–142
Meridians, 20–21
Method of partial fractions,

181–182
Method of slices, 204–211
Minima, 134–142
Minute of arc, 20
Multiple integrals, 211–219
Multiple variable calculus, 211

Natural logarithm, 50, 55, 122–130,
259–260

Negative area, 195
New product, pricing a, 157–158
Newton, Isaac, 71
Newton’s second law, 236–237, 243
nth root, 44
Numerical integration, 232–235

Ordinate, 7
Origin, 5–6
Oscillatory motion, 243

Parabola, 17, 52
Partial derivative, 267–269
Partial differentiation, 164
Partial fractions, method of,

181–182
Path of shortest time, 155–157
Pendulum, 226, 241–243, 247–248
Periodic functions, 37
Phase constant, 242
Plotting of a graph, 7–10
Population growth, 238–239
Pricing a new product, 157–158
Prime meridian, 21
Product of two functions,

differentiating the, 258–259
Product rule, 105–107
Puzzle problems, 163–164
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Quadratic equations, 52
Quadratic functions, 17–19, 99
Quotient rule, 107–108

Radial acceleration, 269–270
Radians, 23–25
Radioactive decay, 240–241
Radius, 23
Range, 3–4, 41
Reading, suggestions for, 270–271
Real numbers, 3–4
Right angles, 22, 33
Right triangles, 33, 189
Roots, 18, 52
Rotation angle, 20, 27

Secant, 29, 37
Second of arc, 20
Second derivative, 130–133
Sets, 2–4
Simple harmonic motion, 241–243
Simpson’s method, 232
Simpson’s rule, 234–235
Sine, 29, 37; derivative of, 258; for sum

of two angles, 53
Single cells, growth of, 158–159
Single variable calculus, 211
Slices, method of, 204–211
Slope, 12–17; definition of, 12, 13; positive

vs. negative, 15–16; and tangent, 84;
and velocity, 74; zero, 15–16

Speed, 72; as seen by stationary observer,
151; and slope, 17

Sphere, volume of, 207–209
Storage on a compact disc, 160–161
Suggestions for further reading, 270–271
Sum of angles, 39–40, 53
Sum rule, 104–105

Tables: of derivatives, 287–288; of integrals,
173, 288–290

Tangent, 29, 84
Tangential acceleration, 153
Tangent line, 84
Taylor series, 223–231
Taylor’s theorem, 223–224
Triangles, right, 33, 189
Trigonometric functions, 28–29; of

30∘/45∘/60∘, 34, 37; on calculators, 35;
differentiation of, 114–121, 258,
264–267; integration of, 289; inverse,
40, 264–267; limits involving, 261;
relationships among, 31–32; of sums
of angles, 251

Trigonometry, 28–41
Truncation error, 224

Undetermined coefficients, 181

Variable(s): change of (integration
technique), 174–178; dependent, 5;
differentials when both variables depend
on a third, 260–261; independent,
5, 211

Velocity, 71–82; average, 75, 165; finding
position from, 201–202; instantaneous,
77; and slope, 17

Vertical axis, 5–6
Volume: of cone, 204–207; of sphere,

207–209

When to sell a car, 153–155

x-axis, 5–6

y-axis, 5–6
y′ (derivative of y), 85
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A, A(x) (area), 188
a, acceleration, 132
am, 42, 54
a−m, 42, 54
am/n, 44
arc, length of arc, 23, 24, 26
arcsin, 40
c, constant, often used as constant

of integration, 171
cos, cosine, 29, 258
cot, cotangent, 29, 37
csc, cosecant, 29
dx, differential of x, 143, 168
dy, differential of y, 143, 168
dy

dx
, derivative of y with respect to x, 85, 166

d2y

dx2 , second derivative of y with respect to x,
130

dny

dxn , nth derivative of y with respect to x, 133
∂w
∂x

, partial derivative of A with respect to l,
267

𝛿, delta (Greek Lower-case letter), 64
Δ, delta (Greek capital letter) often used to

indicate small differences, as
Δx = x2 − x1, 79, 143, 232

ΔAi, element of area, 212
e, base of natural logarithms, 50, 55, 66
𝜀, epsilon (Greek letter), 64

f (x), 5, 51
f (l,w), 267
𝛾 , gamma (Greek letter), 267
lim
x→a

, 37, 165

log, logarithm to base 10, 47, 54
logrx, logarithm of x to the base r, 50, 54
ln x, natural logarithm of x or logex, 50, 55,

122, 130
m, slope, 15
mph, miles per hour, 71
𝜑, phi (Greek letter) often used to indicate

angles, 34
𝜋, pi (Greek letter), used to represent the

number 3.14159..., 45, 46; or to
represent a 180∘ angle, 24, 37, 46

rad, radians, 23
S, distance, 17, 71
sec, secant, 29, 37
Σ, sigma (Greek letter) used to represent

summation, 193
n∑

i=1
, summation of g(xi) from i = 1 to n, 193

sin, sine, 29, 37
∫ , integral sign, 170, 187
∫ f (x) dx, indefinite integral of f (x) with

respect to x, 171, 220

295
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∫
b

a f (x) dx, definite integral of f (x) with
respect to x from x = a to x = b, 187,
221

t, time, 155–157
tan, tangent, 29, 84
𝜃, theta (Greek letter) often used to indicate

angles, 20
v, velocity, 71
v, average velocity, 75
(x, y), 5
| x |, absolute value function, 8–9
≠, not equal, 65
≈, approximately equal, 185

0 < | x - a | < B, 58
′, indicates derivative, 86; also minute of arc,

20
′′, second, 20
∘, degree, 20
∡, angle, 26
>, greater than, 9
<, less than, 9
≥, greater than or equal, 9
≤, less than or equal, 9
!, factorial symbol, 133
∞, symbol for infinity, 37|ba, 195
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