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Introduction

If you’ve already bought this book or are thinking about buying it, it’s probably too late — too 
late, that is, to change your mind and get the heck out of calculus. (If you’ve still got a chance 
to break free, get out and run for the hills!) Okay, so you’re stuck with calculus; you’re past 

the point of no return. Is there any hope? Of course! For starters, buy this gem of a book and my 
other classic, Calculus For Dummies (also published by Wiley). In both books, you find calculus 
explained in plain English with a minimum of technical jargon. Calculus For Dummies covers 
topics in greater depth. Calculus Workbook For Dummies, 3rd Edition, gives you the opportunity to 
master the calculus topics you study in class or in Calculus For Dummies through a couple hundred 
practice problems that will leave you giddy with the joy of learning . . . or pulling your hair out.

In all seriousness, calculus is not nearly as difficult as you’d guess from its reputation. It’s a 
logical extension of algebra and geometry, and many calculus topics can be easily understood 
when you see the algebra and geometry that underlie them.

It should go without saying that regardless of how well you think you understand calculus, you 
won’t fully understand it until you get your hands dirty by actually doing problems. On that 
score, you’ve come to the right place.

About This Book
Calculus Workbook For Dummies, 3rd Edition, like Calculus For Dummies, is intended for three 
groups of readers: high school seniors or college students in their first calculus course, students 
who’ve taken calculus but who need a refresher to get ready for other pursuits, and adults of 
all ages who want to practice the concepts they learned in Calculus For Dummies or elsewhere.

Whenever possible, I bring calculus down to earth by showing its connections to basic algebra 
and geometry. Many calculus problems look harder than they actually are because they contain 
so many fancy, foreign-looking symbols. When you see that the problems aren’t that different 
from related algebra and geometry problems, they become far less intimidating.

I supplement the problem explanations with tips, shortcuts, and mnemonic devices. Often, a 
simple tip or memory trick can make it much easier to learn and retain a new, difficult concept.

This book uses certain conventions:

 » Variables are in italics.

 » Important math terms are often in italics and defined when necessary.

 » Extra-hard problems are marked with an asterisk. You may want to skip these if you’re 
prone to cerebral hemorrhaging.
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Like all For Dummies books, you can use this book as a reference. You don’t need to read it cover 
to cover or work through all problems in order. You may need more practice in some areas than 
others, so you may choose to do only half of the practice problems in some sections or none at all.

However, as you’d expect, the order of the topics in Calculus Workbook For Dummies, 3rd Edi-
tion, follows the order of the traditional curriculum of a first-year calculus course. You can, 
therefore, go through the book in order, using it to supplement your coursework. If I do say so 
myself, I expect you’ll find that many of the explanations, methods, strategies, and tips in this 
book will make problems you found difficult or confusing in class seem much easier.

Foolish Assumptions
Now that you know a bit about how I see calculus, here’s what I’m assuming about you:

 » You haven’t forgotten all the algebra, geometry, and trigonometry you learned in high school. 
If you have, calculus will be really tough. Just about every single calculus problem involves 
algebra, a great many use trig, and quite a few use geometry. If you’re really rusty, go back to 
these basics and do some brushing up. This book contains some practice problems to give 
you a little pre-calc refresher, and Calculus For Dummies has an excellent pre-calc review.

 » You’re willing to invest some time and effort in doing these practice problems. As with any-
thing, practice makes perfect, and, also like anything, practice sometimes involves struggle. 
But that’s a good thing. Ideally, you should give these problems your best shot before you 
turn to the solutions. Reading through the solutions can be a good way to learn, but you’ll 
usually learn more if you push yourself to solve the problems on your own — even if that 
means going down a few dead ends.

Icons Used in This Book
The icons help you to quickly find some of the most critical ideas in the book.

Next to this icon are important pre-calc or calculus definitions, theorems, and so on.

This icon is next to — are you sitting down? — example problems.

The tip icon gives you shortcuts, memory devices, strategies, and so on.

Ignore these icons and you’ll be doing lots of extra work and probably getting the wrong answer.
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Beyond the Book
Look online at www.dummies.com to find a handy cheat sheet for Calculus Workbook For Dummies, 
3rd Edition. Feel like you need more practice? You can also test yourself with online quizzes.

To gain access to the online practice, all you have to do is register. Just follow these simple 
steps:

1. Find your PIN access code:

• Print-book users: If you purchased a print copy of this book, turn to the inside front 
cover of the book to find your access code.

• E-book users: If you purchased this book as an e-book, you can get your access code 
by registering your e-book at www.dummies.com/go/getaccess. Go to this website, find 
your book and click it, and answer the security questions to verify your purchase. You’ll 
receive an email with your access code.

2. Go to Dummies.com and click Activate Now.

3. Find your product (Calculus Workbook For Dummies, 3rd Edition) and then follow the 
on-screen prompts to activate your PIN.

Now you’re ready to go! You can come back to the program as often as you want. Simply log 
in with the username and password you created during your initial login. No need to enter the 
access code a second time.

Where to Go from Here
You can go . . .

 » To Chapter 1 — or to whatever chapter you need to practice.

 » To Calculus For Dummies for more in-depth explanations. Then, because after finishing it and 
this workbook your newly acquired calculus expertise will at least double or triple your sex 
appeal, pick up French For Dummies and Wine For Dummies to impress Nanette or Jéan Paul.

 » With the flow.

 » To the head of the class, of course.

 » Nowhere. There’s nowhere to go. After mastering calculus, your life is complete.

http://www.dummies.com
http://www.dummies.com/go/getaccess
http://www.dummies.com
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IN THIS PART . . .

Explore algebra and geometry for old times’ sake.

Play around with functions.

Tackle trigonometry.
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Getting Down to Basics: 
Algebra and Geometry

I know, I know. This is a calculus workbook, so what’s with the algebra and geometry? Don’t 
worry; I’m not going to waste too many precious pages with algebra and geometry, but these 
topics are essential for calculus. You can no more do calculus without algebra than you can 

write French poetry without French. And basic geometry (but not geometry proofs) is critically 
important because much of calculus involves real-world problems that include angles, slopes, 
shapes, and so on. So in this chapter — and in Chapter 2 on functions and trigonometry —  
I give you some quick problems to help you brush up on your skills. If you’ve already got these 
topics down pat, you can skip to Chapter 3.

In addition to working through the problems in Chapters 1 and 2 in this book, you may want to 
check out the great pre-calc review in Calculus For Dummies, 2nd Edition.

Fraction Frustration
Many, many math students hate fractions. I’m not sure why, because there’s nothing especially 
difficult about them. Perhaps for some students, fraction concepts didn’t completely click when 
they first studied them, and then fractions became a nagging frustration whenever they came 
up in subsequent math courses. Whatever the cause, if you don’t like fractions, try to get over it. 
Fractions really are a piece o’ cake; you’ll have to deal with them in every math course you take.

Chapter 1

IN THIS CHAPTER

 » Fussing with fractions

 » Brushing up on basic algebra

 » Getting square with geometry
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You can’t do calculus without a good grasp of fractions. For example, the very definition of the 
derivative is based on a fraction called the difference quotient. And, on top of that, the symbol for 

the derivative, 
dy
dx

, is a fraction. So, if you’re a bit rusty with fractions, get up to speed with the 

following problems — or else!

Q. Solve: 
a
b

c
d

?

A. ac
bd

. To multiply fractions, you 

multiply straight across. You do not 
cross-multiply!

Q. Solve: 
a
b

c
d

?

A. a
b

c
d

a
b

d
c

ad
bc

. To divide fractions, 

you flip the second one, and then 
multiply.

1 Solve: 
5
0

? 2 Solve: 
0

10
?

3 Does 
3
3
a b
a c

 equal 
a b
a c

? Why or why not? 4 Does 
3
3
a b
a c

 equal 
b
c

? Why or why not?

5 Does 
4
4
ab
ac

 equal 
ab
ac

? Why or why not? 6 Does 
4
4
ab
ac

 equal 
b
c

? Why or why not?
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Misc. Algebra: You Know, Like Miss  
South Carolina

This section gives you a quick review of algebra basics like factors, powers, roots, logarithms, 
and quadratics. You absolutely must know these basics.

Q. Factor 9 4 6x y .

A. 9 4 6x y 3 32 3 2 3x y x y .  
This is an example of the single 
most important factor pattern: 
a b a b a b2 2 . Make sure 
you know it!

Q. Rewrite x2 5 without a fraction power.

A. x25  or x5
2

. Don’t forget how 
 fraction powers work!

7 Rewrite x 3 without a negative power. 8 Does abc
4 equal a b c4 4 4? Why or why not?

9 Does a b c
4 equal a b c4 4 4? Why or 

why not?
10 Rewrite x43  with a single radical sign.
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11 Does a b2 2  equal a b? Why or why not? 12 Rewrite loga b c as an exponential equation.

13 Rewrite log logc ca b with a single log. 14 Rewrite log log5 200 with a single log and 
then solve.

15 If 5 3 82x x , solve for x with the quadratic 
formula.

16 Solve: 3 2 14x .

17 Solve: 3 0 1 1 02 0 0 1x ? 18 Simplify p q6 153 .
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19 Simplify 8
27

4 3

. 20 Factor x10 16 over the set of integers.

Geometry: When Am I Ever Going to Need It?
You can use calculus to solve many real-world problems that involve two- or three-dimensional 
shapes and various curves, surfaces, and volumes — such as calculating the rate at which the 
water level is falling in a cone-shaped tank or determining the dimensions that maximize the 
volume of a cylindrical soup can. So the geometry formulas for perimeter, area, volume, surface 
area, and so on will come in handy. You should also know things like the Pythagorean Theorem, 
proportional shapes, and basic coordinate geometry, like the midpoint and distance formulas.

Q. What’s the area of the triangle in the 
following figure?

© John Wiley & Sons, Inc.

A. 39
2

.

Area base heighttriangle

1
2
1
2

13 3

39
2

Q. How long is the hypotenuse of the tri-
angle in the previous example?

A. x 4.

a b c
x a b

x
x
x
x

2 2 2

2 2 2

2 2 2

2

2

13 3
13 3
16
4
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23 Fill in the missing lengths for the sides of 
the triangle in the following figure.

© John Wiley & Sons, Inc.

24 a.  What’s the total area of the pentagon in 
the following figure (the shape on the left 
is a square)?

b. What’s the perimeter?

© John Wiley & Sons, Inc.

21 Fill in the two missing lengths for the sides 
of the triangle in the following figure.

© John Wiley & Sons, Inc.

22 What are the lengths of the two missing 
sides of the triangle in the following figure?

© John Wiley & Sons, Inc.
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25 Compute the area of the parallelogram in the 
following figure.

© John Wiley & Sons, Inc.

26 What’s the slope of PQ?

© John Wiley & Sons, Inc.

27 How far is it from P to Q in the figure from 
Problem 26?

28 What are the coordinates of the midpoint of 
PQ in the figure from Problem 26?
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29 What’s the length of altitude of triangle ABC 
in the following figure?

© John Wiley & Sons, Inc.

30 What’s the perimeter of triangle ABD in the 
figure for Problem 29?

31 What’s the area of quadrilateral PQRS in the 
following figure?

© John Wiley & Sons, Inc.

32 What’s the perimeter of triangle BCD in the 
following figure?

© John Wiley & Sons, Inc.
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33 What’s the ratio of the area of triangle BCD to 
the area of triangle ACE in the figure for 
Problem 32?

34 In the following figure, what’s the area of 
parallelogram PQRS in terms of x and y?

© John Wiley & Sons, Inc.
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Solutions for This Easy, Elementary Stuff
1 Solve: 

5
0

?
 

5
0

 is undefined! Don’t mix this up with something like 
0
8

, which equals zero.

Here’s a great way to think about this problem and fractions in general. Consider the follow-

ing simple division or fraction problem: 
8
2

4. Note the multiplication problem implicit here: 

2 times 4 is 8. This multiplication idea is a great way to think about how fractions work. So in 

the current problem, you can consider 
5
0

____, and use the multiplication idea: 0 times ____ 

equals 5. What works in the blank? Nothing, obviously, because 0 times anything is 0. The 
answer, therefore, is undefined.

Note that if you think about these two fractions as examples of slope 
rise
run

, 
5
0

 has a rise of 5 

and a run of 0, which gives you a vertical line that has sort of an infinite steepness or slope 
(that’s why it’s undefined). Or just remember that it’s impossible to drive up a vertical road, 

so it’s impossible to come up with a slope for a vertical line. The fraction 
0
8

, on the other 

hand, has a rise of 0 and a run of 8, which gives you a horizontal line that has no steepness at 
all and thus has the perfectly ordinary slope of zero. Of course, it’s also perfectly ordinary to 
drive on a horizontal road.

2 Solve: 
0

10
?
 

0
10

= 0. (See the solution to Problem 1 for more information.)

3 Does 
3
3
a b
a c

 equal 
a b
a c

? No. You can’t cancel the 3s.

You can’t cancel in a fraction unless there’s an unbroken chain of multiplication running 

across the entire numerator and the entire denominator — like with 
4

5

2

2

ab c x y

apqr x y
 where 

you can cancel the as (but only the as). (Note that the addition and subtraction inside the 
parentheses don’t break the multiplication chain.) But, you may object, can’t you cancel 4 2x  

from the five terms in 
8 12 16

8 4

3 2 5

2 2 2

x x y x
x p x q

, giving you 
2 3 4

2

3

2

x y x
p q

? Yes you can, but that’s 

because that fraction can be factored into 
4 2 3 4

4 2

2 3

2 2

x x y x

x p q
, resulting in a fraction where 

there is an unbroken chain of multiplication across the entire numerator and the entire 
denominator. Then, the 4 2x s cancel.

4 Does 3
3
a b
a c

 equal 
b
c

? No. You can’t cancel the 3as. (See the warning in Problem 3.) You can 

also just test this problem with numbers: Does 3 4 5
3 4 6

5
6

? No, they’re not equal, and thus 
the canceling doesn’t work.

5 Does 
4
4
ab
ac

 equal 
ab
ac

? Yes. You can cancel the 4s because the entire numerator and the entire 

denominator are connected with multiplication.

6 Does 
4
4
ab
ac

 equal 
b
c

? Yes. You can cancel the 4as.
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7 Rewrite x 3 without a negative power. 
x3

.

8 Does abc
4
 equal a b c4 4 4? Yes. Exponents do distribute over multiplication.

9 Does a b c
4
 equal a b c4 4 4? No! Exponents do not distribute over addition (or 

subtraction).

When you’re working a problem and can’t remember the algebra rule, try the problem with 
numbers instead of variables. Just replace the variables with simple, round numbers and 
work out the numerical problem. (Don’t use 0, 1, or 2 because they have special properties 
that can mess up your test.) Whatever works for the numbers will work with variables, and 
whatever doesn’t work with numbers won’t work with variables. Watch what happens if you 
try this problem with numbers:

3 4 6 3 4 6

13 81 256 1 296
28 561 1 633

4 4 4 4

4

?

?
,

, ,

10 Rewrite x43  with a single radical sign. x12 .

11 Does a b2 2  equal a b? No! The explanation is basically the same as for Problem 9. 

Consider this: If you turn the root into a power, you get a b a b2 2 2 2 1 2
. But because 

you can’t distribute the power over addition, a b a b2 2 1 2 2 1 2 2 1 2
, or a b, and thus 

a b a b2 2 .

12 Rewrite loga b c as an exponential equation. a bc .

13 Rewrite log logc ca b with a single log. logc

a
b

.

14 Rewrite log log5 200 with a single log and then solve. 
log5 + log200 = log 5 200 = log1,000 = 3.

When you see “log” without a base number, the base is 10.

15 If 5 3 82x x , solve for x with the quadratic formula. x =
8
5

1  or .

Start by rearranging 5 3 82x x  into 5 3 8 02x x  because when solving a quadratic 
equation, you want just a zero on one side of the equation.

The quadratic formula tells you that x
b b ac

a

2 4
2

. Plugging 5 into a, –3 into b, and –8 

into c gives you x
3 3 4 5 8

2 5
3 9 160

10
3 13

10
16
10

2

 or 
10

10
, so  

x
8
5

 or –1.
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16 Solve: 3 2 14x . x x
16
3

4    .

1. Turn the inequality into an equation:

3 2 14x

2. Solve the absolute value equation.

3 2 14
3 12

4

3 2 14
3 16

16
3

x
x
x

x
x

x

or

3. Place both solutions on a number line (see the following figure).

(You use hollow dots for > and <; if the problem had involved  or , you would use  
solid dots.)

© John Wiley & Sons, Inc.

4. Test a number from each of the three regions on the line (left of the left dot, between the 
dots, and right of the right dot) in the original inequality.

For this problem you can use –10, 0, and 10.

3 10 2 14

28 14

28 14

?

?

?

True, so you shade the left-most region.

3 0 2 14

2 14

?

?

False, so you don’t shade the middle region.

3 10 2 14

32 14

32 14

?

?

?
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True, so you shade the region on the right. The following figure shows the result. x can be 
any number where the line is shaded. That’s your final answer.

© John Wiley & Sons, Inc.

5. You may also want to express the answer symbolically.

Because x can equal a number in the left region or a number in the right region, this is an 
or solution which means union  . When you want to include everything from both 
regions on the number line, you want the union of the two regions. So, the symbolic 
answer is

x x
16
3

4  

(You can write the above using the word “or” instead of the union symbol.) If only the 
middle region were shaded, you’d have an and or intersection problem  . Using the above 
number line points, for example, you would write the middle-region solution like this:

x x
16
3

4      

(You can use the word “and” instead of the intersection symbol.) Note that in this solu-
tion (whether you use “and” or the intersection symbol) the two inequalities overlap or 
intersect in the middle region. You can avoid the intersection issue by simply writing the 
solution as

16
3

4x

You say “to-may-to,” I say “to-mah-to.”

While we’re on the subject of absolute value, don’t forget that x x2 . x2  does not 
equal x .

17 Solve: 3 0 1 1 02 0 0 1x ? The answer is –12.

Funny looking problem, eh? It’s just meant to help you review a few basics. Take a look at the 
six terms:

Don’t forget, 3 92 . If you want to square a negative number, you have to put it in paren-
theses: 3 92

. Next, anything to the zero power (including a variable) equals 1. That takes 
care of the second and fifth chunks of the problem. The square root of zero is just zero, of 
course, because zero squared equals zero. And you know that the absolute value of –1 is 1; 
you just have to be careful not to goof up with all those negative signs and subtraction signs. 
Finally, zero to any positive power equals zero. That does it:

  
           

3 0 1 1 0
9 1 0 1 1 0
12

2 0 0 1x
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18 Simplify p q6 153 . The answer is p q2 5.

Most people prefer working with power rules to working with root rules, so that’s the way I 

solve the problem here. First, rewrite the root as a power: p q p q6 153 6 15 1 3
. Now, just dis-

tribute the power to the p6 and the q6, and then use the power-to-a-power rule:

p q

p q

p q
p q

6 15 1 3

6 1 3 15 1 3

6 1 3 15 1 3

2 5

19 Simplify 
8
27

4 3

. The answer is 
81
16

.

I’ll give you the longer version of the solution and then show you a shortcut. First, use the 

definition of a negative exponent to rewrite the problem as 
1

8
27

4 3 . Next, change the power 

to a root: 
1

8
27

3

4  (instead, you could first distribute the fraction power to the numerator and 

denominator). The rest shouldn’t be too bad: 
1

8
27

1

8
27

1

2
3

1
16
81

81
16

3

4
3

3

4 4 .

The shortcut is to use the fact that when you have a fraction raised to a negative power, you 

can flip the fraction and make the power positive, like this 
8
27

27
8

4 3 4 3

. Then proceed as 

follows: 
27
8

27
8

27

8

3
2

81
16

4 3 4 3

4 3

3 4

3 4

4

4
.

20 Factor x10 16 over the set of integers. 4 45 5x x .

To factor x10 16, you use the oh-so-important a b2 2 rule. a b2 2 factors into a b a b . 

Make sure you know this factoring rule (and the corresponding FOILing rule, which is the fac-
toring rule in reverse). Whenever you see a binomial with a subtraction sign (in the current 

problem, you have to switch the two terms to see the subtraction sign), ask yourself whether 

you can rewrite the binomial as 
2 2

, in other words, as something squared minus 

something else squared. If you can, then the first blank is your a, and the second blank is your b.

The binomial in this problem can be rewritten as 4 2 5 2
x . Now just plug the 4 into the a 

and the x5 into the b in a b a b , and you’re done.

21 Fill in the two missing lengths for the sides of the triangle. a 5 and b 5 3 .

This is a 30°-60°-90° triangle.



CHAPTER 1  Getting Down to Basics: Algebra and Geometry      21

22 Fill in the two missing lengths for the sides of the triangle.

a

b

8

3

8 3
3

16

3

16 3
3

  or  

  or  

Another 30°-60°-90° triangle.

23 Fill in the two missing lengths for the sides of the triangle. a 6 and b 6 2 .

Make sure you know your 45°-45°-90° triangle.

24 a. What’s the total area of the pentagon? 50
25 3

2
.

The square is 
10

2
 by 

10
2

 (because half a square is a 45°-45°-90° triangle), so the area is 

10
2

10
2

100
2

50. The equilateral triangle has a base of 10
2

, or 5 2 , so its height is 5 6
2

 

(because half of an equilateral triangle is a 30°-60°-90° triangle). So the area of the 

 triangle is 
1
2

5 2
5 6

2
25 12

4
50 3

4
25 3

2
. The total area is thus 50

25 3
2

.

b. What’s the perimeter? The answer is 25 2.

The sides of the square are 
10

2
, or 5 2 , as are the sides of the equilateral triangle.

The pentagon has five sides, so the perimeter is 5 5 2, or 25 2.

25 Compute the area of the parallelogram. The answer is 20 2.

The height of the parallelogram is 
4
2

, or 2 2, because its height is one of the legs of a  

45°-45°-90° triangle. The parallelogram’s base is 10. So, because the area of a parallelogram 
equals base times height, the area is 10 2 2, or 20 2.

26 What’s the slope of PQ? 
d b
c a

. Remember that slope
rise
run

y y
x x

2 1

2 1

.

27 How far is it from P to Q? c a d b
2 2

. Remember that distance x x y y2 1
2

2 1
2 .

28 What are the coordinates of the midpoint of PQ? 
a c b d

2 2
,  . The midpoint of a segment 

is given by the average of the two x coordinates and the average of the two y coordinates.

29 What’s the length of altitude of triangle ABC? 2 3.

There are a few ways to solve this problem, all of which use your knowledge of 30°-60°-90° 
triangles. Here’s a quick and easy way. Triangle ABC is a 30°-60°-90° triangle, and the short 
leg of a 30°-60°-90° triangle is half as long as its hypotenuse, so BC  is 4. Triangle BCD is 
another 30°-60°-90° triangle, so its short leg is half as long as its hypotenuse. That gives DC  
a length of 2. Then, because BD is the long leg of 30°-60°-90° triangle BCD, it’s 3  times its 

short leg. That gives you the answer of 2 3 , for altitude BD.



22      PART 1  Pre-Calculus Review

30 What’s the perimeter of triangle ABD? 6 6 3 .

Triangle ABD is yet another 30°-60°-90° triangle, so its hypotenuse is twice as long as its 
short leg, BD. That gives you a length of 4 3 for AB. Next, AD is 8 – 2, or 6. The perimeter 

of triangle ABD is therefore 6 2 3 4 3, or 6 6 3.

31 What’s the area of quadrilateral PQRS? 27 9 3 .

Piece o’ cake. Begin with triangle QRS, which you can see is a 45°-45°-90° triangle. The legs 
of a 45°-45°-90° triangle are equal, so QR is 6, and the hypotenuse of a 45°-45°-90° triangle 
is 2  times either leg, so QS is 6 2 .

Now you see that the hypotenuse of triangle TQS is twice as long as its short leg, QT , which 
tells you that triangle TQS is a 30°-60°-90° triangle. That makes TQS  60°, and you also  
get the length of TS , which, since it’s the long leg of 30°-60°-90° triangle TQS, has to be  

3  times as long as its short leg, QT . So TS  is 3 6 .

Next, since PQR is 150°, and angles TQS and SQR are 60° and 45°, respectively, you subtract 
to get 45° for PQT . That makes triangle PQT a 45°-45°-90° triangle, and thus PT , like QT , 
is 3 2 .

Now you have everything you need to figure the area of the quadrilateral. The area of a right 
triangle equals half the product of its legs, so here’s the final math:

Area area area areaQuad PQRS PQT TQS QRS   

1
2

3 2 3 2
1
2

3 6 33 2
1
2

6 6

9
1
2

9 12 18

9 9 3 18

27 9 3

Make sure you know your 30°-60°-90° and 45°-45°-90° triangles!

32 What’s the perimeter of triangle BCD? 10
1
3

.

To do this problem and the next one, you first have to establish that the two triangles are 
similar (the same shape). Because segments BD and AE are parallel, angles BDC and AED are 
corresponding angles and are therefore congruent. And the two triangles share angle C. Thus, 
by the AA (angle-angle) theorem, triangles BCD and ACE are similar.

To get the length of BC , you could use similar triangle proportions, but it’s a little bit quicker 

to use the side-splitter theorem, which tells you that 
BC
AB

4
8

. Since the ratio equals 
4
8

, you 

can set BC  equal to 4x and AB equal to 8x. They add up to 13, so you have 4 8 13x x , or 

x
13
12

. Plugging that into 4x gives you 
13
3

 for the length of BC .

Now all you need to finish is the length of BD. Did you fall for the nasty trap in this problem? 
When you see the 4 and the 8 along the right side of triangle ACE, it’s easy to make the mis-
take of thinking that BD and AE will be in the same 4-to-8 or 1-to-2 ratio and conclude that 
BD therefore equals 3. But BD and AE are not in a 1-to-2 ratio. To get BD, you have to use a 
similar triangle proportion like the following:
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right side of 
right side of 

base of 
base of 

BCD
ACE

BCD
AACE

CD
CE

BD
AE

BD4
12 6

Cross multiplication gives you a length of 2 for BD.

Adding up the three sides (4, 
13
3

, and 2) gives you the perimeter.

33 What’s the ratio of the area of triangle BCD to the area of triangle ACE in the figure for 

Problem 32? 
1
9

 or 1 : 9. 

If you know the appropriate theorem for this problem, the problem’s a snap. If you don’t 
know the theorem, the problem’s very hard. You could also get tripped up if you thought you 
needed the areas of the two triangles (you don’t), and you could be thrown off by the trap 
referred to in Problem 32.

All you need is the theorem that tells you that the ratio of the areas of similar figures is equal 
to the square of the ratio of any of their corresponding sides. For this problem, the theorem 
tells you that

Area
Area

CD
CE

BCD

ACE

2 2 24
12

1
3

1
9

(Note that you did not need to know the altitudes of the triangles or their areas in order to 
compute the ratio of their areas.)

In plain English, the idea is simply that if you take any 2-D shape and blow it up to, say,  
4 times its height, its area will grow 42, or 16 times. By the way, if you blow up a 3-D shape, 
say, 4 times its height, its volume will grow 43, or 64 times.

34 What’s the area of parallelogram PQRS? 
3

2
xy. 

When you see a 60° angle in a problem, one of the first things you should consider is the 
30°-60°-90° triangle. Sure enough, that’s the key to this problem.

All you need to do is to drop an altitude from Q straight down to base PS , making a right 
angle with PS . Call the point where the altitude meets the base point T. Triangle PQT  
contains a 60° angle and a 90° angle, so it has to be a 30°-60°-90° triangle. The short leg of a 

30°-60°-90° triangle is half as long as its hypotenuse, so PT  is half of PQ, or 
1
2

y. Then, 

because the long leg of a 30°-60°-90° triangle is 3  times as long as its short leg, altitude 

QT  is 3
1
2

3
2

y y .

Now that you have the altitude and the base of the parallelogram, you just plug them into the 
parallelogram area formula to get your answer:

Area base height

x y

parallelogram PQRS 

3
2
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Funky Functions 
and Tricky Trig

In Chapter 2, you continue your pre-calc warm-up that you began in Chapter 1. If algebra 
is the language calculus is written in, you might think of functions as the “sentences” of 
 calculus. And they’re as important to calculus as sentences are to writing. You can’t do 

calculus without functions. Trig is important not because it’s an essential element of calculus —  
you could do a great deal of calculus without trig  — but because many calculus problems 
 happen to involve trigonometry.

Figuring Out Your Functions
To make a long story short, a function is basically anything you can graph on your graph-
ing calculator in “y =” or graphing mode. The line y x3 2 is a function, as is the parab-
ola y x x4 3 62 . On the other hand, the sideways parabola x y y5 4 102  isn’t a function 
because there’s no way to write it as y something (unless you write y something , which 
doesn’t count).

You can determine whether or not the graph of a curve is a function with the vertical line test. If 
there’s no place on the graph where you could draw a vertical line that touches the curve more 
than once, then it is a function. And if you can draw a vertical line anywhere on the graph that 
touches the curve more than once, then it is not a function.

Chapter 2

IN THIS CHAPTER

 » Figuring out functions

 » Remembering Camp SohCahToa
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As you know, you can rewrite the above functions using f x  or g x  instead of y. This changes 
nothing; using something like f x  is just a convenient notation. Here’s a sampling of calculus 
functions:

g x x x3 205 3

f x
x h x

hh
lim

0

A x dtf

x

10
3

Virtually every single calculus problem involves functions in one way or another. So should you 
review some function basics? You betcha.

1 Which of the four relations shown in the 
figure represent functions and why?  
(A  relation, by the way, is any collection of 
points on the x-y coordinate system.)

© John Wiley & Sons, Inc.

2 If the slope of line l is 3,

a.  What’s the slope of a line parallel to l?

b.  What’s the slope of a line perpendicular 
to l?

Q. If f x x x3 4 82 , what does 
f a b  equal?

A. 3 6 3 4 4 82 2a ab b a b .

f x x x

f a b a b a b

a ab b a b

3 4 8

3 4 8

3 2 4 4 8

2

2

2 2

33 6 3 4 4 82 2a ab b a b

Q. For the line g x x5 4 , what’s the 
slope and what’s the y intercept?

A. The slope is –4 and the y intercept is 5. 
Does y mx b ring a bell? It better!
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3 Sketch a graph of f x ex. 4 Sketch a graph of g x xln .

5 The following figure shows the graph of  
f x . Sketch the inverse of f, f x1 .

© John Wiley & Sons, Inc.

6 The figure shows the graph of p x x2 . 
Sketch the following transformation of p: 

q x x2 53 .

© John Wiley & Sons, Inc.
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7 a. What’s the domain of g x x4 ?

b.  What’s the range of g?

8 What’s the domain of f x
x x

1

5
?

9 What’s the inverse of f x x4 5? 10 For the function f x x2, what’s 
f a b f a b ?
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Trigonometric Calisthenics
Believe it or not, trigonometry is a very practical, real-world branch of mathematics, because 
it involves the measurement of lengths and angles. Surveyors use it when surveying property, 
making topographical maps, and so on. The ancient Greeks and Alexandrians, among others, 
knew not only simple SohCahToa stuff, but a lot of sophisticated trig as well. They used it for 
building, navigation, and astronomy. Trigonometry comes up a lot in the study of calculus, so 
if you snoozed through high school trig, WAKE UP! and review the following problems. (If you 
want to delve further into trig and functions, check out Calculus For Dummies, 2nd Edition, also 
written by me and published by Wiley.)

11 Use the right triangle to complete the table.

© John Wiley & Sons, Inc.

12 Use the triangle from Problem 11 to complete 
the following table.
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13 Use the following triangle to complete the 
following table.

© John Wiley & Sons, Inc.

14 Using your results from Problems 11, 12, and 
13, fill in the coordinates for the points on 
the unit circle.

© John Wiley & Sons, Inc.

15 Complete the following table using your 
results from Problem 14.

16 Convert the following angle measures from 
degrees to radians or vice versa.
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17 Sketch y xsin  and y xcos . 18 Using your answers from Problem 14, com-
plete the following table of inverse trig 
functions.

19 What’s sec
11

6
? 20 What’s csc

4
3

?
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21 What’s tan cot3 3 ? 22 What’s sin cos tan30 45 60 ? Try to get 
the answers to the three pieces in your 
head — then finish the multiplication on 
paper.

23 Express 
sec
tan

x
x2

 in terms of sines and cosines. 24 Solve cos sin( )x x2 0 in the interval  
0 2, .



CHAPTER 2  Funky Functions and Tricky Trig      33

Solutions to Functions and Trigonometry
1 Which of the four relations in the figure represent functions and why? A and D.

The circle and the S-shaped curve are not functions because they fail the vertical line test: 
You can draw a vertical line somewhere on their graphs that touches the curve more than 
once. These two curves also fail the algebraic test: A curve is a function if for each input  
value (x) there is at most one output value (y). The circle and the S-shaped curve have some x’s 
that correspond to more than one y, so they are not functions. Note that the reverse is not 
true: You can have a function where there are two or more input values (x’s) for a single 
output value (y).

2 If the slope of line l is 3,

a. What’s the slope of a line parallel to l? The answer is 3.

b. What’s the slope of a line perpendicular to l? The answer is 1
3

, the opposite reciprocal of 3.

3 Sketch a graph of f x ex .

© John Wiley & Sons, Inc.

4 Sketch a graph of g x xln .

© John Wiley & Sons, Inc.
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5 The figure in the question shows the graph of f x . Sketch the inverse of f, f x1 .

You obtain f x1  by reflecting f x  over the line y x . See the following figure.

© John Wiley & Sons, Inc.

6 The figure in the question shows the graph of p x x2 . Sketch the transformation of p, 

q x x2 53 .

You obtain q x  from p x  by taking p x  and sliding it 3 to the left and 5 up. See the 
 following figure. Note that q x  contains “x plus 3,” but the horizontal transformation is  
3 to the left — the opposite of what you’d expect. The “+5” in q x  tells you to go up 5.

Horizontal transformations always work opposite the way you’d expect. Vertical 
 transformations, on the other hand, go the normal way — up for plus and down for minus.

© John Wiley & Sons, Inc.
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7 

a. What’s the domain of g x x4 ? x 4.

You can’t take the square root of a negative (not for calculus, anyway, which deals with 
real numbers) so. . .

4 0
4
x

x

That’s all there is to it. Don’t forget, there’s nothing wrong with the square root of zero, 
which equals zero. So 4 is in the domain of g.

b. What’s the range of g? g x 0.

Range questions are usually a bit harder than domain questions. With domain questions, 
you just have to figure out what x cannot be, and the domain is everything else. With 
range questions, there’s no method quite that straightforward.

To tackle a range question, you can experiment with different input values and see what 
happens with the output. And, of course, you can graph the function to actually see the 
range, though that won’t always give you the precise answer. Sometimes, like in Problem 8, 
you can’t get the precise answer without doing some calculus.

You can solve the current problem easily by just looking at the graph of the function. But 
it’ll also come in handy to familiarize yourself with the following approach.

You can answer the current range question if you know what the graph of y x  looks 
like. If you don’t remember the graph, you should graph it now on your calculator. You’ll 
see the top half of a sideways parabola that begins at 0 0,   and goes up and to the right 
forever. Because it begins at a height of zero and goes up forever, the range is y 0.

The current function, g x x4 , is a transformation of the parent function, y x . 
There are two transformations: the 4 and the minus sign, which is the same as multiply-
ing x by –1. Because both transformations occur “inside” the function and change the 
input of the function, they are both horizontal transformations. (To transform the parent 
function, y x , into g x x4 , you’d first slide it 4 to the left and then flip it over 
the y axis.) Horizontal transformations change the domain but have no impact on the 
range, so the range of g x x4  is the same as the range of y x , namely, y 0.

8 What’s the domain of f x
x x

1
5

? 5, 0 0, or 5, 0          x x .

Just ask yourself what x is not allowed to be. x can’t equal zero because that would make the 
denominator zero. And x can’t equal –5 because that would give you the square root of zero, 
which is zero, so, again, the denominator would equal zero. That takes care of the zero 
denominator issue. Then there’s the issue of no negatives under the square root. So x can’t be 
less than –5. That does it. The domain is everything else — everything except what we just 
excluded.

9 What’s the inverse of f x x4 5? f x
x

x1
2 5
4

0   .

First, replace f x  with y and then switch the x and y:

y x

x y

4 5

4 5
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Now just solve for y:

x y
x y

x y
x

y

4 5
4 5

5 4
5

4

2

2

2

That’s it for the math, but one issue remains. The domain of a function equals the range of 
its inverse, and the range of a function equals the domain of its inverse. The range of f is 
0,  , so that must become the domain of its inverse. So you have to restrict the domain  

of f 1 to 0,  . That does it.

10 For the function f x x2, what’s f a b f a b ? 4ab.

f a b  tells you to plug a + b into the f function, x2. Thus,

f a b a b a b a b a ab b
2 2 22

(If you thought a b
2
 was a b2 2, go directly to jail and do not collect $200!)

And f a b a b a b a b a ab b
2 2 22 . Finally,

f a b f a b a ab b a ab b

a ab b a ab b

2 2 2 2

2 2 2 2

2 2

2 2
44ab

11 Use the right triangle to complete the following table.

sin30
1
2

csc30 2

cos30
3

2
sec30

2 3
3

tan30
3

3
cot30 3

12 Use the triangle from Problem 11 to complete the following table.

sin60
3

2
csc60

2 3
3

cos60
1
2

sec60 2

tan60 3 cot60
3

3

13 Use the triangle to complete the following table.

sin csc

cos sec

tan cot

45
2

2
45 2

45
2

2
45 2

45 1 45 1
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14 Using your results from Problems 11, 12, and 13, fill in the coordinates for the points on the 
unit circle.

© John Wiley & Sons, Inc.

15 Complete the following table using your results from Problem 14.

tan csc

csc cot

cot se

120 3 180

150 2 300
3

3

270 0

undefined

cc225 2

16 Convert the following angle measures from degrees to radians or vice versa.

150
6

4
3

225
4

7
4

300
3

5
radians 240

5
radians 315

5
r

 

 

 aadians 450 coterminal with 90

radians

5
2

60
3

7
6

 

 210 coterminal with 150 

17 Sketch y xsin  and y xcos .

© John Wiley & Sons, Inc.
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18 Using your answers from Problem 14, complete the following table of inverse trigonometric 
functions.

sin tan

sin sin

1 1

1 1

1
2

30 3
3

1
2

30

 radians

11
2

1
2

120 1 0

1

1 1

1

 

 

radians

radianscos cos

tan 45 0
2

1cos  radians

Don’t forget — inverse sine and inverse tangent answers have to be between –90° and 90° 

(or 
2

 and 
2

 radians) inclusive. And inverse cosine answers must be between 0° and 180° (or 

0 and  radians) inclusive.

19 What’s sec
11

6
? 2 3

3
.

Of course, you can just look at the unit circle to get your answer. Secant is the reciprocal of 

cosine. The unit circle tells you that cos
11

6
 (or 330 degrees) is 3

2
. Flip that upside down 

for your answer: 
2
3

, or 
2 3

3
.

But if you’re ambitious and want to try this one in your head, you first notice that 330 
degrees doesn’t end in a 5, so you have a 30 60 90- -  triangle, not a 45 45 90- -  triangle. 
Then you just picture where 330 degrees is — it’s in the 4th quadrant close to 360 degrees 
(the x axis). So your 30 60 90- -  triangle has to be wide and short, which has a big x coordi-

nate, 
3

2
, and a small y coordinate, 

1
2

. Because secant is the reciprocal of cosine, you care 

about the x coordinate, 
3

2
. Flip it upside down for your answer.

20 What’s csc
4
3

?
2 3

3
.

The unit circle gives you your answer. Cosecant is the reciprocal of sine. The unit circle tells 

you that sin
4
3

 (or 240 degrees) is 
3

2
. Flip that upside down for your answer: 

2
3

,  

or 
2 3

3
.

To do this one in your head, you first notice that 240 degrees doesn’t end in a 5, so you have 
a 30 60 90- -  triangle, not a 45 45 90- -  triangle. Then you just picture where 240 degrees 
is — it’s in the 3rd quadrant close to 270 degrees (the y axis). So your 30 60 90- -  triangle  

has to be narrow and tall, which has a small x coordinate, 
1
2

, and a big y coordinate, 
3

2
 

(note that in this context, when I talk about a big or small coordinate, I’m ignoring the  
positive/negative issue). Because cosecant is the reciprocal of sine, you care about the y coor-

dinate, 
3

2
. Flip it upside down for your answer.
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21 What’s tan cot3 3 ? Undefined.

This problem is a bit tricky because there’s a catch (actually two catches). But other than 
that, it’s actually short and simple. An angle of 3  radians is the same as  radians, so you 
just use the coordinates from the unit circle at  radians or 180 degrees — namely, 1 0,  . 

Tangent equals 
sin
cos

, or 
y
x

, so tan 3
0
1

0. Cotangent is the reciprocal of tangent, so 

cot 3
1

0
, which is undefined. (Don’t forget, you can’t divide by zero!) Thus, your answer 

for tan cot3 3  is zero times undefined, which is undefined.

Here are the two catches: First, you might think that zero times undefined is zero because 
zero times anything is zero. But it doesn’t work that way. If any piece of a problem is unde-
fined, the answer is undefined. The second catch is that you could mistakenly conclude that 
since tangent and cotangent are reciprocals, their product would be 1. That is generally true 
of reciprocals, but not here because, again, one of them is undefined. The two values you get 
here, zero and undefined, are sort of, but not technically, reciprocals. So you can’t multiply 
them to get 1. No matter how you look at it, the answer is undefined.

22 What’s sin cos tan30 45 60 ? 6
4

.

You should be able to picture in your head that the coordinates on the unit circle at 30, 45, 

and 60 degrees are 
3

2
1
2

,  , 
2

2
2

2
,  , and 

1
2

3
2

,  , respectively. So, sin 30
1
2  

and 

cos 45
2

2
.

For the tangent piece of the problem, here’s a tip. Tangent equals 
y
x

, but when doing tangent 

problems on the unit circle, you don’t have to bother dividing the y fraction by the x fraction. 
The denominators of these fractions always cancel, so you only have to put the y numerator 

over the x numerator, thus: tan 60
3

1
.

Multiply these three parts for your final answer:

sin cos tan30 45 60
1
2

2
2

3
1

6
4

23 Express 
sec
tan

x
x2

 in terms of sines and cosines. 
cos
sin

x
x2

.

sec
tan

cos
sin
cos

cos
cos
sin

cos
cos sin

x
x

x
x
x

x
x
x

x
x x2 2

2

2

2

2

2

1
1

Now, just cancel one of the cosines, and you’re done.
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24 Solve cos sin( )x x2 0 in the interval 0 2,  .
2

7
6

3
2

11
6

, , ,   and .

It’s generally difficult to deal with a trig equation with two different arguments (the x  
and the 2x), so you should try to do something to get rid of the 2x. The trig identity, 
sin( ) sin cos2 2x x x, is the ticket. Make the substitution:

cos sin( )
cos sin cos

x x
x x x

2 0
2 0

Now factor by pulling out the GCF; then use the zero product property:

cos sinx x1 0

cos sin
sin

sin

x x
x

x

0 1 2 0
2 1

1
2

or

If you know the unit circle well (you should!), you know that cosine equals zero at 
2

 and 
3
2

 

and that sine equals 
1
2

 at 
7
6

 and 
11

6
. That’s a wrap.
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A Graph Is Worth a 
Thousand Words: Limits 
and Continuity

You can use ordinary algebra and geometry when the things in a math problem aren’t 
changing (sort of) and when lines are straight. But you need calculus when things are 
changing (these changing things are often represented as curves). For example, you need 

calculus to analyze something like the motion of the space shuttle during the beginning of its 
flight because its acceleration is changing every split second.

Ordinary algebra and geometry fall short for such things because the algebra or geometry 
formula that works one moment no longer works a millionth of a second later. Calculus, on 
the other hand, chops up these constantly changing things — like the motion of the space 
shuttle — into such tiny bits (actually infinitely small bits) that within each bit, things don’t 
change. Then you can use ordinary algebra and geometry.

Limits are the “magical” trick or tool that does this chopping up of something into infinitely 
small bits. It’s the mathematics of limits that makes calculus work. Limits are so essential to 
calculus that the two bedrock ideas of calculus — the formal definitions of the derivative and 
the definite integral — both involve limits.

If — when your parents asked you, “What do you want to be when you grow up?” — you 
responded, “Why, a mathematician, of course,” then you may want to spend a great deal of 
time studying the deep and rich subtleties of continuity. For the rest of you, the concept of 

Chapter 3

IN THIS CHAPTER

 » The mathematical mumbo jumbo 
of limits and continuity

 » When limits exist and don’t exist

 » Discontinuity . . . or graphus 
interruptus
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continuity is a total no-brainer. If you can draw a graph without lifting your pen or pencil 
from the page, the graph is continuous. If you can’t — because there’s a break in the graph —  
then the graph is not continuous. That’s all there is to it. By the way, there are some subtle and 
technical connections between limits and continuity (which I don’t want to get into), and that’s 
why they’re in the same chapter. But, be honest now, did you buy this book because you were 
dying to learn about mathematical subtleties and technicalities?

Digesting the Definitions: Limit and Continuity
This short section covers a couple formal definitions and a couple other things you need to 
know about limits and continuity. Here’s the formal, three-part definition of a limit:

For a function f x  and a real number a, lim
x a

f x
 
exists if and only if

1. lim
x a

f x  exists. In other words, there must be a limit from the left.

2. lim
x a

f x
 
exists. There must be a limit from the right.

3. lim lim
x a x a

f x f x
 
The limit from the left must equal the limit from the right.

(Note that this definition does not apply to limits as x approaches infinity or negative infinity.)

And here’s the definition of continuity: A function f x  is continuous at a point a if three con-
ditions are satisfied:

1. f a  is defined.

2. lim
x a

f x
 
exists.

3. f a f x
x a
lim .

Using these definitions and Figure 3-1, answer Problems 1 through 4.

FIGURE 3-1: 
Graphus 

interruptus: 
A function 
with many 

discontinui-
ties. 

© John Wiley & Sons, Inc.
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1 At which of the following x values are all 
three requirements for the existence of a 
limit satisfied, and what is the limit at those 
x values? x = –2, 0, 2, 4, 5, 6, 8, 10, and 11.

2 For the x values at which all three limit 
requirements are not met, state which of 
the three requirements are not satisfied. 
If one or both one-sided limits exist at  
any of these x values, give the value of the 
one-sided limit.

3 At which of the x values are all three require-
ments for continuity satisfied?

4 For the rest of the x values, state which of 
the three continuity requirements are not 
satisfied.
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Taking a Closer Look: Limit  
and Continuity Graphs

In this section, you get more practice at solving limit and continuity problems visually. Then 
in Chapter 4, you solve limit problems numerically (with your  calculator) and symbolically 
(with algebra).

Use Figure 3-2 to answer Problems 5 through 10.

FIGURE 3-2: 
Another 
bizarre 
graph. 

© John Wiley & Sons, Inc.

Q. lim ?
x

f x
0

A. lim 2
0x
f x . Because f 0 2 and 

because f is continuous there, the 
limit must equal the function value. 
Whenever a function passes through a 
point and there’s no discontinuity at 
that point, the limit equals the func-
tion value.

Q. lim ?
x

f x
13

A. lim 2
13x

f x  because there’s a hole at 

13 2, . The limit at a hole is the 
height of the hole.
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7 lim ?
x

f x
5

8 lim ?
x

f x
18

5 lim ?
x

f x
7

6 a. f 5 ?

b. f 18 ?
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11 List the x coordinates of all discontinuities 
of f, state whether the discontinuities are 
removable or nonremovable, and give the 
type of discontinuity — hole, jump, or 
infinite.

12 limsin ?
x

x  See the following graph

© John Wiley & Sons, Inc.

9 lim ?
x

f x
5

10 lim ?
x

f x
5
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13 lim ?
x x

1
 See the following graph of y

x
1

.

© John Wiley & Sons, Inc.

14 Sketch by hand the function f x
x

x
. 

Then refer to your sketch for Problems 14, 
15, and 16.

lim ?
x

f x
0

15 lim ?
x

f x
0 16 lim ?

x
f x

0
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Solutions for Limits and Continuity
1 At which of the following x values are all three requirements for the existence of a limit sat-

isfied, and what is the limit at those x values? x = –2, 0, 2, 4, 5, 6, 8, 10, and 11.

At 0, the limit is 2.

At 4, the limit is 5.

At 8, the limit is 3.

At 10, the limit is 5.

To make a long story short, a limit exists at a particular x value of a curve when the curve is 
heading toward some particular y value and keeps heading toward that y value as you continue 
to zoom in on the curve at the x value. The curve must head toward that y value (that height) 
as you move along the curve both from the right and from the left (unless the limit is one 
where x approaches infinity). I emphasize heading toward because what happens precisely 
at the given x value isn’t relevant to this limit inquiry. That’s why there is a limit at a hole 
like the ones at x 8 and x 10.

2 For the rest of the x values, state which of the three limit requirements are not satisfied. If one 
or both one-sided limits exist at any of these x values, give the value of the one-sided limit.

At –2 and 5, all three conditions fail.

At 2, 6, and 11, only the third requirement is not satisfied.

At 2, the limit from the left equals 5 and the limit from the right equals 3.

At 6, the limit from the left is 2 and the limit from the right is 3.

Finally, at 11, the limit from the left equals 3 and the limit from the right equals 5.

3 At which of the x values are all three requirements for continuity satisfied?

The function in Figure 3-1 is continuous at 0 and 4. The common-sense way of thinking 
about continuity is that a curve is continuous wherever you can draw the curve without 
taking your pen off the paper. It should be obvious that that’s true at 0 and 4, but not at any 
of the other listed x values.

4 For the rest of the x values, state which of the three continuity requirements are not satisfied.

All listed x values other than 0 and 4 are points of discontinuity. A discontinuity is just a 
highfalutin calculus way of saying a gap. If you’d have to take your pen off the paper at 
some point when drawing a curve, then the curve has a discontinuity there.

At 5 and 11, all three conditions fail.

At –2, 2, and 6, continuity requirements 2 and 3 are not satisfied.

At 10, requirements 1 and 3 are not satisfied.

At 8, requirement 3 is not satisfied.
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5 lim
x

f x
7

 does not exist (DNE) because there’s a vertical asymptote at –7. Or, because f x  

approaches  both from the left and from the right, you could say the limit equals .

6 a. f 5 4, the height of the solid dot at x 5.

b. f 18  is undefined because f has no y value corresponding to the x value of 18.

After reviewing the following solutions to Problems 7 through 10, reflect on how the answers 
to those problems compare to the answers to Problem 6.

7 lim
x

f x
5

 does not exist because the limit from the left does not equal the limit from the 

right. Or you could say that the limit DNE because there’s a jump discontinuity at x 5.

8 lim
x

f x
18

5  because, like the second example problem, the limit at a hole is the height of 

the hole. The fact that f 18  is undefined is irrelevant to this limit question.

9 lim
x

f x
5

4 because f 5 4 and f is continuous from the left at 5 4,  .

10 lim
x

f x
5

6. This question is just like Problem 9 except that there’s a hollow dot — instead 

of a solid one — when you arrive at the gap. But the hollow dot at 5, 6  is irrelevant to the 
limit question — just as in Problem 8 where the hole was irrelevant.

11 List the x coordinates of all discontinuities of f, state whether the discontinuities are remov-
able or nonremovable, and give the type of discontinuity — hole, jump, or infinite.

At x –7, the vertical asymptote, there is a nonremovable, infinite discontinuity.

At x 5, there’s a nonremovable, jump discontinuity.

At x 13 and x 18, there are holes which are removable discontinuities. Though infinitely 
small, these are nevertheless discontinuities. They’re “removable” discontinuities because 
you can “fix” the function by plugging the holes.

12 lim sin
x

x does not exist. There’s no limit as x approaches infinity because the curve oscillates — 

it never settles down to one precise y value. (The three-part definition of a limit does not apply 
to limits at infinity.)

13 lim
x x

1 0. In contrast to sin x, this function does home in on a single value; as you go out 

farther and farther to the right, the function gets closer and closer to zero, so that’s the limit.

14 lim
x

f x
0

1.

Of course, you can graph f with your graphing calculator, but it’s a good idea to graph func-
tions by hand now and then. It helps you understand why the function looks the way it does. 
All you need to do to sketch this one by hand is to plug a few negative and positive numbers 
into x. You’ll soon see that whenever the input is negative, the output is –1, and whenever 
the input is positive, the output is 1. And you need the hollow dots on the y axis at –1 and 1 
because f 0  is undefined. Your sketch should look something like the following figure.
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© John Wiley & Sons, Inc.

For the one-sided limit, lim
0x

f x , nothing to the right of 0 is relevant. And, as with all limit 

problems, what actually happens to the function (namely, whether it exists and, if it exists, 
what it equals) when x gets to the limit number doesn’t affect the limit answer. All that mat-
ters is what’s happening to the function as x gets closer and closer to the limit number. As x 
gets closer and closer to zero from the left, y is staying precisely at –1, so that’s the limit.

15 lim
x

f x
0

1. See the solution to Problem 14. The limit in this problem works exactly the 

same way.

16 lim
x

f x
0

 does not exist. As you see in the solutions to Problems 14 and 15, lim lim
0 0x x

f x f x , 

and, therefore, the ordinary, two-sided limit does not exist.
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Nitty-Gritty Limit 
Problems

In this chapter, you practice two very different methods for solving limit problems: using 
algebra and using your calculator. Learning the algebraic techniques are valuable for two 
reasons. The first, incredibly important reason is that the mathematics involved in the alge-

braic methods is beautiful, pure, and rigorous; and, second — something so trivial that perhaps 
I shouldn’t mention it — you’ll be tested on it. Do I have my priorities straight or what? The 
calculator techniques are useful for several reasons: 1) You can solve some limit problems on 
your calculator that are either impossible or just very difficult to do with algebra, 2) You can 
check your algebraic answers with your calculator, and 3) Limit problems can be solved with a 
calculator when you’re not required to show your work — like maybe on a multiple-choice test.

But before you get to these two major techniques, a little rote learning is in order. A few limits 
are a bit tricky to justify or prove, so to make your life easier, simply commit them to memory. 
Here they are:

 » lim
x a

c c

(y c is a horizontal line, so the limit equals c regardless of the arrow-number — the  
constant after the arrow.)

 » lim
x x0

1

 » lim
x x0

1

Chapter 4

IN THIS CHAPTER

 » Algebra, schmalgebra

 » Calculators — taking the easy  
way out

 » Making limit sandwiches

 » Infinity — “Are we there yet?”

 » Conjugate multiplication — 
sounds R rated, but it’s strictly PG
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 » lim
x x

1 0

 » lim
x x

1 0

 » lim sin lim
sinx x

x
x

x
x0 0

1

 » lim cos
x

x
x0

1 0

 » lim
x

x

x
e1 1

Solving Limits with Algebra
You can solve limit problems with several algebraic techniques (discussed later). But before 
you try any algebra, your first step should always be to plug the arrow-number into the limit 
expression. If the function is continuous at the arrow-number (which it usually will be) and if 
plugging in results in an ordinary number, then that’s the answer. You’re done. For example, 

to evaluate lim
x

x
x5

2 10
, just plug in the arrow-number. You get 

5 10
5

3
2

. That’s all there is to 

it. Don’t forget to plug in!

You’re also done if plugging in the arrow-number gives you a number or infinity or negative 

infinity over zero, like 
3
0

, or 
0

; in these cases the limit does not exist (DNE).

When plugging in fails because it gives you 
0
0

, you’ve got a nontrivial limit problem and a bit of 

work to do. You have to convert the fraction into some expression where plugging in does work. 
Here are some algebraic methods you can try:

 » FOILing

 » Factoring

 » Finding the least common denominator

 » Canceling

 » Simplification

 » Conjugate multiplication

A few of these methods are illustrated in the following examples. You’ll practice all the meth-
ods in the practice problems.



CHAPTER 4  Nitty-Gritty Limit Problems      55

Q. What’s lim
x

x x
x x2

2

2

6
2

?

A. The limit is 
5
3

.

1. Try plugging –2 into 
x — that gives you 0

0
, so 

on to Plan B.

2. Factor and cancel.

lim

lim

x

x

x x

x x

x

x

2

2

2 3
2 1

3
1

3. Now plugging in works.

2 3
2 1
5
3

5
3

Q. Evaluate lim
x

x

x16

16

4
.

A. The limit is 8.

1. Try plugging 16 into 
x — no good (because 
you get 0

0
).

2. Multiply numerator and 
denominator by the con-
jugate of 4 x , namely 
4 x .

The conjugate of a 
two-term expression has 
a plus sign instead of a 
minus sign — or vice 
versa.

lim
x

x

x

x

x16

16

4

4

4

3. FOIL the conjugates and simplify.

lim

lim

x

x

x x

x

x x

x

16 2 2

16

16 4

4

16 4

16

Because,,
of course,
a b a b

a b2 2.

4. Now you can cancel and then plug in.

lim
x

x
16

4

4 16

8

Note that while plugging in did not 
work in Step 1, it did work in the final 
step. That’s your goal: to change the 
original expression — usually by 
canceling — so that plugging in works.

1 lim
x

x
x3

2 9
3

2 lim
x

x
x x1 2

1
2



56      PART 2  Limits and Continuity

3 lim
x

x
x2 3

2
8

4 lim
x

x
x x2

2

2

4
4 5 6

5 lim
x

x

x9

9

3
6 lim

x

x
x10

5 5
10
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7 lim
cos

x

x
x0

1 8 lim
x

x
x2

1 1
2
2

9 lim
x

x

x
0 1

6
1

6

10 lim
sin

x

x
x0
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 *11 lim
sinx

x
x0 3

 *12 lim
tanx

x
x0

13 lim
x

x

x6

6

6
14 lim

x 5
8
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15 lim
x

k
0

 (k is a constant)  *16 lim
x

x

x4 3

4

4

Pulling Out Your Calculator: Useful “Cheating”
Your calculator is a great tool for understanding limits. It can often give you a better feel for 
how a limit works than the algebraic techniques can. A limit problem asks you to determine 
what the y value of a function is zeroing in on as the x value approaches a particular number. 
With your calculator, you can actually witness the process and the result. You can solve a limit 
problem with your calculator in three different ways:

 » Method I: First, store a number into x that’s extremely close to the arrow-number, enter 
the limit expression in the home screen, and hit enter. If you get a result really close to a 
round number, that’s your answer — you’re done. If you have any doubt about the answer, 
just store another number into x that’s even closer to the arrow-number, get back to the 
limit expression, and hit enter again. This will likely give you a result even closer to the same 
round number — that’s it; you’ve got it. This method can be the quickest, but it often doesn’t 
give you a good feel for how the y values zero in on the result. To get a better picture of this 
process, you can store three or four numbers into x (one after another), each a bit closer to 
the arrow-number, and look at the sequence of results.
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 » Method II: Enter the limit expression in graphing or “y ” mode, go to Table Setup, set 
Tblstart to the arrow-number, and set ΔTbl to something small like 0.01 or 0.001. When you 
look at the table, you’ll often see the y values getting closer and closer to the limit answer 
as x homes in on the arrow-number. If it’s not clear what the y values are approaching, try a 
smaller increment for the ΔTbl number. This method often gives you a good feel for what’s 
happening in a limit problem.

 » Method III: This method gives you the best visual understanding of how a limit works. Enter 
the limit expression in graphing or “y ” mode. (If you’re using the second method, you may 
want to try this third method at the same time.) Next, graph the function, and then go into 
the window and tweak the xmin, xmax, ymin, and ymax settings, if necessary, so that the part 
of the function corresponding to the arrow-number is within the viewing window. Use the 
trace feature to trace along the function until you get close to the arrow-number. You can’t 
trace exactly onto the arrow-number because there’s a little hole in the function there, the 
height of which, by the way, is your answer. When you trace close to the arrow-number, 
the y value will get close to the limit answer. Use the ZoomBox feature to draw a little box 
around the part of the graph containing the arrow-number and zoom in until you see that 
the y values are getting very close to a round number — that’s your answer.

Q. Evaluate lim
sinx

x x
x6

2 5 6
6

.

A. The answer is 7.

Method I:

1. Use the STO button to store 
6.01 into x.

2. Enter x x
x

2 5 6
6sin

 on the home 

screen and hit enter. (Note: You 

must be in radian mode.)

This gives you a result of ~7.01, 
suggesting that the answer is 7.

3. Repeat Steps 1 and 2 with 6.001 
stored into x.

This gives you a result of 
~7.001.

4. Repeat Steps 1 and 2 with 6.0001 
stored into x.

This gives you a result of 
~7.0001.

Because the results are obviously 
homing in on the round number of 7, 
that’s your answer.

Method II:

1. Enter 
x x

x

2 5 6
6sin  in graphing 

or “y ” mode.

2. Go to Table Setup and set 
tblStart to the arrow-number, 
6, and ΔTbl to 0.01.

3. Go to the Table and you’ll see 
the y values getting closer and 
closer to 7 as you scroll toward 
x 6 from above and below 6.

So 7 is your answer.
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Method III:

1. Enter x x
x

2 5 6
6sin

 in graphing 

mode again.

2. Graph the function. For expres-
sions containing trig functions, 
ZoomStd, ZoomFit, and ZoomTrig 
are good windows to try for your 
first viewing.

For this funny function, none of 
these three window options works 
very well, but ZoomStd is the best.

3. Trace close to x 6 and you’ll see 
that y is near 7. Use ZoomBox to 
draw a little box around the point 
6 7,  ; then hit enter.

17 Use your calculator to evaluate 

lim
x

x x
x3

2 5 24
3

. Try all three methods.

18 Use your calculator to determine lim
sin

tanx

x
x0 1

. 
Use all three methods.

Making Yourself a Limit Sandwich
The sandwich or squeeze method is something you can try when you can’t solve a limit problem 
with algebra. The basic idea is to find one function that’s always greater than the limit function 
(at least near the arrow-number) and another function that’s always less than the limit func-
tion. Both of your new functions must have the same limit as x approaches the arrow-number. 
Then, because the limit function is “sandwiched” between the other two, like salami between 
slices of bread, it must have that same limit as well. See Figure 4-1.

4. Trace near x 6 on this zoomed-
in graph until you get very near to 
x 6.

5. Repeat the Zoombox process  
maybe two more times and you 
should be able to trace extremely 
close to x 6.

(When I did this, I could trace to 
x 6 0000022. , y 7 0000023. .)

The answer is 7.
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FIGURE 4-1: 
A limit 

sandwich —  
functions f 

and h are the 
bread and g is 

the salami. 
© John Wiley & Sons, Inc.

Q. What’s lim
x

x

x0 3
?

A. The limit is 0.

1. Try plugging in 0. No good; 
you get 0 over 0.

You should be able to solve this 
limit problem with some 
simple algebra. Do you see 
how? But say you tried and 
failed, so now you’re going to 
try the sandwich method.

2. Graph the function.

Looks like the limit as x 
approaches 0 is 0.

3. To prove it, try to find two bread 
functions that both have a limit of 
0 as x approaches 0.

19 Evaluate lim sin
x

x
x0 2

1
. 20 Evaluate lim cos

x
x

x0

2 1
.

It’s easy to show that the function 
is always positive (except perhaps 
at x 0), so you can use the simple 
function y 0 as the bottom slice of 
bread. Of course, it’s obvious that 
lim
x 0

0 0. Finding a function for the 
top slice is harder. But say that for 
some mysterious reason, you know 
that y x  is greater than x

x3
 

near the arrow-number (the only 
place that matters for the sandwich 

method). Because lim
x

x
0

0, 

y x  makes a good top slice.

You’re done. Because x
x3

 is 

squeezed between y 0 and 

y x , both of which have limits 

of 0 as x approaches 0, x
x3

 must 
also have a limit of 0.
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Into the Great Beyond: Limits at Infinity
To find a limit at infinity lim

x
 or lim

x
, you can use the same techniques from the bulleted list 

in the “Solving Limits with Algebra” section of this chapter in order to change the limit expres-
sion so that you can plug in and solve.

If you’re taking the limit at infinity of a rational function (which is one polynomial divided by 

another, such as 
3 8 12

5 4 2

2

3 2

x x
x x x

), the limit will be the same as the y value of the function’s 

horizontal asymptote, which is an imaginary line that a curve gets closer and closer to as it goes 
right or left toward infinity or negative infinity. Here are the two cases where this works:

 » Case 1: If the degree of the polynomial in the numerator is less than the degree of the 
polynomial in the denominator, there’s a horizontal asymptote at y = 0, and the limit as x 
approaches  or  is 0 as well.

 » Case 2: If the degrees of the two polynomials are equal, there’s a horizontal asymptote 
at the number you get when you divide the coefficient of the highest power term in the 
numerator by the coefficient of the highest power term in the denominator. This number is 
the answer to the limit as x approaches infinity or negative infinity. By the way, if the degree 
of the numerator is greater than the degree of the denominator, there’s no horizontal 
asymptote and no limit.

Consider the following four types of expressions: x 10, 5 x , x ! , and x x . If a limit at infinity 
involves a fraction with one of them over another, you can apply a handy little tip. These four 
expressions are listed from “smallest” to “largest.” (This isn’t a true ordering; it’s only for 
problems of this type; and note that the actual numbers don’t matter; they could just as eas-
ily be x8 , 30x , x ! , and x x .) The limit will equal 0 if you have a “smaller” expression over a 
“larger” one, and the limit will equal infinity if you have a “larger” expression over a “smaller” 
one. And this rule is not affected by coefficients.

For example, lim
,

!x

x
x

1 000
3

0
100

 and lim
x

x

x

x
500 100

. Note, however, that something like 

6x !  can change the ordering.

Q. Find lim
.x x

x3

1 01
.

A. The limit is 0.

This is an example of a “smaller” 
expression over a “larger” one, so the 
answer is 0. Perhaps this result sur-
prises you. You may think that this 
fraction will keep getting bigger and 
bigger because it seems that no matter 
what power 1.01 is raised to, it will 
never grow very large. And, in fact, if 

you plug 1,000 into x, the quotient is 
big — over 47,000. But if you enter 

x
x

3

1 01.
 in graphing mode and then set 

both tblStart and Δtbl to 1,000, the table 
values show quite convincingly that the 
limit is 0. By the time x 3 000, , the 
answer is about 0.00293, and when 
x 10 000, , the answer is roughly 
6 10 32 .
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Q.  lim
cosx x x

100
5 2

A.  The limit is 0.

   

something between 1 and 1 inc

lim
cosx x x

100
5

100

2

llusive
100

0

21 What’s lim
x

x x
x x

5 10
2 3

3 2

4
? Explain your 

answer.
22 What’s lim

x

x x
x

3 100 4
8 1

4 3

4
? Explain your 

answer.

The values of cos x2  that oscillate 
indefinitely between –1 and 1 are 
insignificant compared with 5x as x 
approaches infinity. Or consider the 

fact that lim
x x

100
5 10

0  and that 

100
5

100
5 102x x xcos

 for large values 

of x. Because 
100

5 2x xcos
 is always 

positive for large values of x and less 
than something whose limit is 0, it 
must also have a limit of 0.
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23 Use your calculator to figure lim
!x

xx
x

. 24 Determine lim
x

x

x

5 2

4 12
.

  *25 Evaluate lim
x

x x x4 16 32 . *26 Evaluate lim
x

x
x

x
x

3
1

3
1

2 2

.
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27 lim cos
x

x2 28 lim
sin

x

x
x

29 lim
x

x

x
1

1 30 lim
x

x

x
1

1
3
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Solutions for Problems with Limits
1 lim 6

3

2

x

x 9
3x

.

Factor, cancel, and plug in.

lim

lim

x

x

x x

x

x

3

3

3 3

3

3

3 3 6

2 lim
x

x
x x1 2

1
2

1
3

.

Factor, cancel, and plug in.

lim

lim

x

x

x

x x

x

1

1

1
1 2

1
2

1
1 2

1
3

3 lim
x

x
x2 3

2
8

1
12

.

Factor, cancel, and plug in.

lim

lim

x

x

x

x x x

x x

2 2

2 2

2

2

2 2 4

1
2 4

1
2 2 2 4

1
12

4 lim
x

x
x x2

2

2
4

4 5 6
0.

Did you waste your time factoring the numerator and denominator? Gotcha! Always plug in 

first! When you plug 2 into the limit expression, you get 0
20

, or 0 — that’s your answer.

5 lim
x

x
x9

9
3

6.

1. Multiply numerator and denominator by the conjugate of the denominator, 3 x .

lim
x

x

x

x

x9

9

3

3

3
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2. Multiply out the part of the fraction containing the conjugate pair (the denominator in 
this problem).

lim
x

x x

x9

9 3

9

3. Cancel.

lim
x

x
9

1 3

Don’t forget that any fraction of the form a b
b a

 always equals –1.

4. Plug in.

1 3 9

6

6 lim
x

x
x10

5 5
10

5
10

.

Multiply the numerator and denominator by the conjugate, FOIL, cancel, and plug in.

lim

lim

x

x

x

x

x

x

x

x x

10

10

5 5

10

5 5

5 5

5 5

10 5 5

10

10 5 5

1
5 5

1
10 5 5

1

10

10

lim

lim

x

x

x

x x

x

22 5
5

10

7 lim cos
x

x
x0

1 0.

Did you try multiplying the numerator and denominator by the conjugate of cos x 1? Gotcha 
again! That method doesn’t work here. The answer to this limit is 0, something you just have 
to memorize.

8 lim
x

x
x2

1 1
2
2

1
4

.

1. Multiply numerator and denominator by the least common denominator of the little 
fractions inside the big fraction — namely 2x.

lim
x

x
x

x
x2

1 1
2
2

2
2

2. Multiply out the numerator.

lim
x

x

x x2

2
2 2
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3. Cancel.

lim
x x2

1
2

4. Plug in.

1
2 2

1
4

9 lim
x

x

x
0 1

6
1

6

36.

Multiply by the least common denominator, multiply out, cancel, and plug in.

lim

lim

lim

x

x

x

x

x

x

x

x x

x

x

0

0

0

1
6

1
6

6 6
6 6

6 6
6 6

6 xx
x

x
x

6

6 6

6 0 6 36
0

lim

10 lim sin
x

x
x0

1.

No work required — except for the memorization, that is.

 *11 lim
sinx

x
x0 3

1
3

.

Did you get it? If not, try the following hint before you read the solution: This fraction sort of 
resembles the one in Problem 10. Still stuck? Okay, here you go:

1. Multiply numerator and denominator by 3.

You have a 3x in the denominator, so you need 3x in the numerator as well (to make 
the fraction look more like the one in Problem 10).

lim
sin( )

lim
sin( )

x

x

x
x

x
x

0

0

3
3
3

3
3 3

2. Pull the 1
3

 through the lim symbol (the 3 in the denominator is really a 1
3

, right?).

1
3

3
30

lim
sin( )x

x
x

Now, if your calc teacher lets you, you can just stop here (since it’s “obvious” that 
lim

sin( )x

x
x0

3
3

1) and put down your final answer of 1
3

1, or 1
3

. But if your teacher’s a 

stickler for showing work, you’ll have to do a couple more steps.

3. Set u x3 .
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4. Substitute u for 3x. And, because u approaches 0 as x approaches 0, you can substitute u 
for x under the lim symbol.

1
3
1
3

1 1
3

0
lim

sinu

u
u

Because lim sin
x

x
x0

1, the limit of the reciprocal of sin x
x

, namely x
xsin

, must equal the recip-
rocal of 1 — which is, of course, 1.

 *12 lim
tanx

x
x0

1.

1. Use the fact that lim sin
x

x
x0

1 and replace tan x with sin
cos

x
x

.

lim
sin
cos

x

x
x
x

0

2. Multiply numerator and denominator by cos x.

lim
sin
cos

cos
cos

lim cos
sin

x

x

x
x
x

x
x

x x
x

0

0

3. Rewrite the expression as the product of two functions.

lim
sin

cos
x

x
x

x
0 1

4. Break this into two limits, using the fact that lim lim lim
x c x c x c

f x g x f x g x  
(provided that both limits on the right exist).

lim
sin

limcos
x x

x
x

x
0 0

1 1 1

13 lim
x

x
x6

6
6

2 6.

Plugging in 6 produces 0/0. Check. Your work begins.

Multiply the numerator and denominator by the conjugate of the denominator, simplify, and 
cancel:

lim lim

lim

lim

x x

x

x
x

x
x

x
x

x x

x

6 6

6 2 2

6
6

6
6

6
6

6 6

6

xx

x

x

x x

x

x

x

6

6

6

6 6

6

1 6

6

lim

lim
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Plug in to finish:

6 6

2 6

14 lim
x 5

8 8.

This probably seems like an odd problem, because there’s no x in the limit expression for you 
to plug the 5 into. Think of it this way. The 8 represents the function y 8, which is a hori-
zontal line at a height of 8. The limit problem asks you to determine what y is getting closer 
and closer to along the function as x gets closer and closer to 5. But, since the function is a 
horizontal line, y is always equal to 8 regardless of the value of x. Thus, 
lim lim lim lim lim .
x x x x x5 3 2015

8 8 8 8 8 8

15 lim
x

k k
0

 (k is a constant).

Don’t forget that for all calculus problems, constants behave like ordinary numbers. In 
Problem 14, the 8 represented the horizontal line y 8, so in this problem, the k represents 
the horizontal line y k. So, y is always at a height of k regardless of the value of x. Thus, the 
limit equals k.

 *16 lim .
x

x
x4 3

4
4

0

Plug in the arrow-number: You get 0/0, so keep going and try some basic algebra.

  lim

lim

lim

x

x

x

x
x

x

x

x

4 3

4

1

1 3

4

2 3

4
4

4

4

4

Now you can plug in:

4 4

0 0

2 3

2 3

Note that zero raised to any positive power equals zero.

17 lim
x

x x
x3

2 5 24
3

11.

You want the limit as x approaches –3, so pick a number really close to –3, like –3.0001, plug 

that into x in your function x x
x

2 5 24
3

 and enter that into your calculator. (If you’ve got a 

calculator like a Texas Instruments TI-84, a good way to do this is to use the STO button to 

store –3.0001 into x, then enter x x
x

2 5 24
3

 into the home screen and punch enter.)

The calculator’s answer is –11.0001. Because this is near the round number –11, your answer 
is –11. By the way, you can do this problem easily with algebra as well.

18 lim sin
tanx

x
x0 1 1.

Enter the function in graphing mode like this: sin
tan

x
x1 . Then go to table setup and enter a 

small increment into Δtbl (try 0.01 for this problem), and enter the arrow-number, 0, into 
tblStart. When you scroll through the table near x 0, you’ll see the y values getting closer 
and closer to the round number 1. That’s your answer. This problem, unlike Problem 17, is not 
easy to do with algebra.
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19 lim sin
x

x
x0 2
1 0.

Here are three ways to do this. First, common sense should tell you that this limit equals 0. 

lim
x

x
0

 is 0, of course, and lim sin
x x0 2

1  never gets bigger than 1 or smaller than –1. You could 

say that lim sin
x x0 2

1 , therefore, is “bounded” (it’s bounded by –1 and 1). Then, because 

zero bounded zero, the limit is 0. Don’t try this logic with you calc teacher — he won’t 
like it.

Second, you can use your calculator: Store something small like 0.1 into x and then input 
x

x
sin 1

2  into your home screen and hit enter. You should get a result of ~ .0 05. Now store 0.01 

into x and use the entry button to get back to x
x

sin 1
2  and hit enter again. The result is ~ .0 003. 

Now try 0.001, then 0.0001 (giving you ~ .0 00035 and ~ .0 00009), and so on. It’s pretty 
clear — though probably not to the satisfaction of your professor — that the limit is 0.

The third way will definitely satisfy those typically persnickety professors. You’ve got to 

sandwich (or squeeze) your salami function, x
x

sin 1
2 , between two bread functions that have 

identical limits as x approaches the same arrow-number it approaches in the salami function.

Because sin 1
2x
 never gets greater than 1 or less than –1, x

x
sin 1

2  will never get greater than 

x  or less than x . (You need the absolute value bars, by the way, to take care of negative 
values of x.) This suggests that you can use b x x  for the bottom piece of bread and 

t x x  as the top piece of bread. Graph b x x , f x x
x

sin 1
2 , and t x x  at the 

same time on your graphing calculator and you can see that x
x

sin 1
2  is always greater than or 

equal to x  and always less than or equal to x . Because lim
x

x
0

0 and lim
x

x
0

0, and 

because x
x

sin 1
2  is sandwiched between them, lim sin

x x0 2
1  must also be 0.

20 lim cos
x

x
x0

2 1 0.

For lim cos
x

x
x0

2 1 , use b x x 2 and t x x 2 for the bread functions. The cosine of any-

thing is always between –1 and 1, so x
x

2 1cos  is sandwiched between those two bread func-
tions. (You should confirm this by looking at their graphs; use the following window on your 
graphing calculator — Radian mode, xMin = –0.15625, xMax = 0.15625, xScl = 0.05, yMin = 

–0.0125, yMax = 0.0125, yScl = 0.005.) Because lim
x

x
0

2 0 and lim
x

x
0

2 0, lim cos
x

x
x0

2 1  is 
also 0.

21 lim
x

x x
x x

5 10
2 3

3 2

4 0.

Because the degree of the numerator is less than the degree of the denominator, this is a Case 
1 problem. So the limit as x approaches infinity is 0.

22 lim
x

x x
x

3 100 4
8 1

4 3

4
3
8

.

lim
x

x x
x

3 100 4
8 1

4 3

4  is a Case 2 example because the degrees of the numerator and denomina-

tor are both 4. The limit is thus the quotient of the coefficients of the leading terms in the 
numerator and denominator, namely, 3

8
.
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23 lim
!x

xx
x

.

According to the “larger” over “smaller” tip, this answer must be infinity. Or you can get 
this result with your calculator. If you set the table (don’t forget: fork on the left, spoon on 
the right) with something like tblStart = 100 and Δtbl = 100, and then look at the table, you 
may see “undef” for some or all of the y values, depending on your calculator model. You 
have to be careful when trying to interpret what “undef” (for “undefined”) means on your 
calculator. It often means infinity, but not always, so don’t just jump to that conclusion. 
Instead, make tblStart and Δtbl smaller, say, 10. Sure enough, the y values grow huge very 
fast, and you can safely conclude that the limit is infinity.

24 lim
x

x
x

5 2
4 1

5
22

.

1. Divide numerator and denominator by x.

lim
x

x
x

x
x

5 2

4 12

2. Put the x into the square root (it becomes x2).

lim
x

x
x

x
x

5 2

4 12

2

3. Distribute the division.

lim
x

x

x

5 2

4 1
2

4. Plug in and simplify.

5 2

4 1

5 0
4 0

5
2

2

 *25 lim
x

x x x4 16 3 3
8

2 .

1. Put the entire expression over 1 so you can use the conjugate trick.

lim
x

x x x x x x

x x x

4 16 3

1

4 16 3

4 16 3

2 2

2

2. FOIL the numerator.

lim
x

x x x

x x x

16 16 3

4 16 3

2 2

2
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3. Simplify the numerator and factor out 16x2 inside the radicand.

lim
x

x

x x
x

3

4 16 1 3
16

2

4. Pull the 16x2 out of the square root; it becomes –4x.

You have to pull a positive out of the radicand (as always), so you pull out negative 4x 
because when x is negative (which it is as it approaches negative infinity), –4x is positive. 
Got it?

lim

lim

x

x

x

x x
x

x

x
x

3

4 4 1 3
16

3

4 1 1 3
16

5. Cancel and plug in.

lim
x

x

3

4 1 1 3
16

3

4 1 1 3
16

3
4 1 1 0

3
88 Piece o  cake.’

 *26 lim
x

x
x

x
x

3
1

3
1

2 2

6.

1. Subtract the fractions using the LCD of x x x– –1 1 12 .

lim
x

x x x x

x

3 1 3 1

1

2 2

2

2. Simplify.

lim

lim

x

x

x x x x
x

x
x

3 3 3 3
1

6
1

3 2 3 2

2

2

2

3. Your answer is the quotient of the coefficients of x2 in the numerator and the denomina-
tor (see Case 2 in the “Into the Great Beyond: Limits at Infinity” section).

6

Note that had you plugged in  in the original problem, you would have

3
1

3
1

0

2 2

?
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It may seem strange, but infinity minus infinity does not equal 0.

27 lim cos
x

x 2  does not exist (DNE).

The best approach to this limit problem is to simply sketch or picture the graph of the 
cosine function (or graph it on your graphing calculator). As x moves left toward negative 
infinity, the cosine curve oscillates between heights of –1 and 1. The curve never 
approaches a single height; the oscillation goes on forever. This tells you that lim cos

x
x  

does not exist (and, by the same reasoning, limcos
x

x DNE). The function in this problem, 

lim cos
x

x 2 , has a different shape than cos x, but it oscillates forever in the same way 

between heights of –1 and 1 (it oscillates faster and faster the further out you go toward 
infinity or negative infinity). Thus, cos x 2  does not exist (DNE).

28 lim sin .
x

x
x

0

Like limcos
x

x , lim sin
x

x DNE because the sine function oscillates forever between heights of –1 

and 1 as x gets larger and larger. But it doesn’t follow that the answer to the current problem 

is also DNE. The function, sin x
x

, does oscillate forever as x gets larger and larger, but the 

amplitude of the oscillation gets damped more and more as x gets larger. Near x 100, for 

example, the amplitude of the oscillation gets divided by about 100, so sin x
x

 oscillates 

between heights of about –0.01 and 0.01. Near x 1000, sin x
x

 oscillates between about –0.001 

and 0.001, and so on. The crests and troughs of the oscillating wave get smaller and smaller 
and closer and closer to a height of zero. That’s the limit: zero.

29 lim . .
x

x

x
e1 1 2 718

No work required here. This is one of the handful of limits you should just memorize.

Since the number e came up here, I can’t resist mentioning what some say is the most ele-
gant equation in mathematics — one short, simple equation that contains the five most 
important numbers in mathematics: 0, 1, , e, and i (the square root of –1). Here it is:

ei 1 0

30 lim
x

x

x
e1 1

3
3 .

For this problem, keep in mind the solution to Problem 29: lim
x

x

x
e1 1 . The idea for the 

current problem is to manipulate the limit with the 3x in it until you get something that 
resembles the solution from Problem 29. Here’s what you do:

First, set the limit in question equal to y; then cube both sides:

lim

lim

x

x

x

x

x
y

x
y

1 1
3

1 1
3

3

3

On the left, you can pull the lim symbol to the outside of the parentheses (just take my word 
for it):
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lim
x

x

x
y1 1

3

3

3

Now, use the power-to-a-power rule:

lim
x

x

x
y1 1

3

3
3

See how this limit resembles the limit from Problem 29? You’re almost there. The next step 
is to set u equal to 3x so you can replace each 3x with a u. And, because u x3 , as x approaches 
infinity, so does u; thus, you can replace the x below the lim symbol with a u:

lim
u

u

u
y1 1 3

Finally, this limit is mathematically identical to the one from Problem 29, which equals e. 
Therefore

e y 3

But you need y, not y 3, because you set the limit you wanted equal to y. Cube root both sides, 
and you’re done:

e y3 , so lim
x

x

x
e1 1

3
3 .
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Find slope and rate.

Learn basic derivative rules.

Use derivatives to analyze the shapes of curves.

Solve practical problems with derivatives.
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Getting the Big Picture: 
Differentiation Basics

Differentiation is the process of finding derivatives. The derivative is one of the most 
important inventions in the history of mathematics and one of mathematics’ most 
powerful tools. I’m sure you will feel a deep privilege as you do the practice problems 

below — and also a keen sense of indebtedness to the great mathematicians of the past. Yeah, 
yeah, yeah.

The Derivative: A Fancy Calculus Word 
for Slope and Rate

The derivative of a function tells you how fast the output variable (like y) is changing compared 
to the input variable (like x). For example, if y is increasing 3 times as fast as x — like with the 
line y x3 5 — then you say that the derivative of y with respect to x equals 3, and you write 
dy
dx

3. This, of course, is the same as dy
dx

3
1

, and that means nothing more than saying that 

the rate of change of y compared to x is in a 3-to-1 ratio, or that the line has a slope rise
run

 of 3
1

.

The following problems emphasize the fact that a derivative is basically just a rate or a slope. 
So to solve these problems, all you have to do is answer the questions as if they had asked you 
to determine a rate or a slope instead of a derivative.

Chapter 5

IN THIS CHAPTER

 » The ups and downs of finding 
slope and rate

 » The difference quotient: the other DQ
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Q. What’s the derivative of 
y x4 5?

A. The answer is 4. You know, of course, that 
the slope of y x4 5 is 4, right? No? Egad! 
Any line of the form y mx b has a slope 
equal to m. I hope that rings a bell. The deriv-
ative of a line or curve is the same thing as its 
slope, so the derivative of this line is 4.

You can think of the derivative dy
dx

 as  
basically rise

run
.

1 If you leave your home at time = 0, and speed 

away in your car at 60 miles
hour

, what’s dp
dt

, the 

derivative of your position with respect to time?

2 Using the information from Problem 1, write a 
function that gives your position as a function 
of time.

3 What’s the slope of the parabola 
y x x1

3
23
3

85
3

2  at the point 7 9, ? 

See the following figure.

© John Wiley & Sons, Inc.

4 What’s the derivative of the parabola 
y x 2 5 at the point 0 5, ? Hint: Look at 
its graph.
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5 With your graphing calculator, graph both 
the line y x4 9 and the parabola  
y x5 2. You’ll see that they’re tangent 
at the point 2 1, .

a. What is the derivative of y x5 2 when 
x 2?

b. On the parabola, how fast is y changing 
compared to x when x 2?

6 Draw a function containing three points 
where — for three different reasons — you 
would not be able to determine the slope and, 
thus, where you would not be able to find a 
derivative.

The Handy-Dandy Difference Quotient
The difference quotient is the almost-magical tool that gives us the slope of a curve at a single 
point. To make a long story short, here’s what happens when you use the difference quotient. 
(If you want an excellent version of the long story, check out Calculus For Dummies, 2nd  Edition.) 
Look again at the figure in Problem 3. You can see that the slope of the parabola at (7, 9) equals 
3, the slope of the tangent line. But you can’t calculate that slope with the algebra slope  formula 

m
y y
x x

2 1

2 1
, because no matter what other point on the parabola you use with (7, 0) to plug 

into the formula, you’ll get a slope that’s steeper or less steep than the precise slope of 3 at (7, 9).

But if your second point on the parabola were extremely close to (7, 9) — like 7 001 9 0029996. , .  — 
your line would be almost exactly as steep as the tangent line. The difference quotient gives the 
precise slope of the tangent line by sliding the second point closer and closer to (7, 9) until its 
distance from (7, 9) is infinitely small.

Enough of this mumbo jumbo; now for the math. Here’s the definition of the derivative based 
on the difference quotient:

f x
f x h f x

hh
lim

0

As with most limit problems, plugging the arrow-number in at the beginning of a difference 
quotient problem won’t help because that gives you 0

0
. You have to do a little algebraic mojo 

so that you can cancel the h and then plug in. (The techniques from Chapter 4 also work here.)

Now for a difference quotient problem.
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Q. What’s the slope of the parabola 
f x x10 2 at x 3?

A. The slope is –6.

1. Because f x x10 2, 
f x h x h10

2
, 

so the derivative is

f x
x h x

hh
lim

0

2 210 10

2. Simplify.

lim

lim

lim

h

h

x xh h x

h
x xh h x

h

0

2 2 2

0

2 2 2

10 2 10

10 2 10

hh

xh h
h0

22

3. Factor out h.

lim
h

h x h
h0

2

4. Cancel.

lim
h

x h
0

2

5. Plug in the arrow-number.

2 0

2

x

f x x

6. You want the slope or derivative at 
x 3, so plug in 3.

f 3 2 3

6

7 Use the difference quotient to determine the 
derivative of the line y x4 3.

8 Use the difference quotient to find the deriva-
tive of the parabola f x x3 2.
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9 Use the difference quotient to find the 
derivative of the parabola from Problem 4, 
y x 2 5.

10 a.  Figure the derivative of g x x4 5  
using the difference quotient.

  b.  What’s the slope or derivative of g at x 5?

11 Use the parabola from Problem 8, but make it 
a position function, s t t3 2, where t is in 
hours and s t  is in miles.

a. What’s the average velocity from t 4 to 
t 5?

b. What’s the average velocity from t 4 to 
t 4 1. ?

c. What’s the average velocity from t 4 to 
t 4 01. ?

12 For the position function in Problem 11, what’s 
the instantaneous velocity at t 4? Hint: Use the 
derivative.
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Solutions for Differentiation Basics
1 If you leave your home at time = 0, and speed away in your car at 60 miles

hour
, what’s dp

dt
, the 

derivative of your position with respect to time? The answer is dp
dt

60.

A derivative is always a rate, and (assuming we’re talking about instantaneous rates, not 
average rates) a rate is always a derivative. So, if your speed, or rate, is 60 miles

hour
, the 

derivative, dp
dt

, is also 60.

2 Using the information from Problem 1, write a function that gives your position as a function 
of time. p t t60  or p t60 , where t is in hours and p is in miles.

If you plug 1 into t, your position is 60 miles; plug 2 into t and your position is 120 miles. 
p t60  is a line, of course, in the form y mx b (where b 0 because you started your trip at 
your home where your position is zero). So the slope is 60 and the derivative is thus 60. And, 
again, you see that a derivative is a slope and a rate.

3 What’s the slope of the parabola y x x1
3

23
3

85
3

2  at the point 7 9, ? The slope is 3.

You can see that the line, y x3 12, is tangent to the parabola, y x x1
3

23
3

85
3

2 , at the 

point 7 9, . You know from y mx b that the slope of y x3 12 is 3. At the point 7 9, , the 
parabola is exactly as steep as the line, so the derivative (that’s the slope) of the parabola at 
7 9,  is also 3.

Although the slope of the line stays constant, the slope of the parabola changes as you climb 
up from 7 9, , getting less and less steep. Even if you go to the right just 0.001 to x 7 001. , 
the slope will no longer be exactly 3.

4 What’s the derivative of the parabola y x 2 5 at the point 0 5, ? The answer is 0.

The point 0 5,  is the very top of the parabola, y x 2 5. At the top, the parabola is neither 
going up nor down — just like you’re neither going up nor down the moment when you walk 
across the crest of a hill. The top of the parabola is flat or level in this sense, and thus the 
slope and derivative both equal zero.

The fact that the derivative is zero at the top of a hill (and at the bottom of a valley) is a 
critically important point which you’ll return to time and time again.

5 With your graphing calculator, graph both the line y x4 9 and the parabola y x5 2. 
You’ll see that they’re tangent at the point 2 1, .

a. What is the derivative of y x5 2 when x 2? The answer is –4.

The derivative of a curve tells you its slope or steepness. Because the line and the parabola 
are equally steep at 2 1, , and because you know the slope of the line is –4, the slope of 
the parabola at 2 1,  is also –4 and so is its derivative.

b. On the parabola, how fast is y changing compared to x when x 2? It’s decreasing 4 times 
as fast as x increases.
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A derivative is a rate as well as a slope. Because the derivative of the parabola is –4 at 
2 1, , that tells you that y is changing 4 times as fast as x, but because the 4 is negative,  

y decreases 4 times as fast as x increases. This is the rate of y compared to x only for the one 
instant at 2 1,  — and thus it’s called an instantaneous rate. A split second later — say at 
x 2 000001.  — y will be decreasing a bit faster.

6 Draw a function containing three points where — for three different reasons — you would 
not be able to determine the slope and thus where you would not be able to find a derivative.

Your sketch of a function should contain

1. Any type of gap or discontinuity. There’s no slope and thus no derivative at a gap in a 
function because you can’t draw a tangent line at a gap (try it).

2. A sharp, pointy turn in the function (like the one in the second graph of Figure 7-1 in 
Chapter 7 where the absolute minimum is; that type of pointy turn is called a corner by the 
way; a super pointy turn — kind of like the tip of a needle — is called a cusp). It’s impos-
sible to draw a tangent line at a corner or a cusp because a line touching the function at 
such a sharp point could rock back and forth like a teeter-totter. So there’s no slope and 
no derivative at a cusp.

3. A vertical inflection point. Although you can draw a tangent line at a vertical inflection 
point, the derivative there is undefined because the slope of a vertical line is undefined.

7 Use the difference quotient to determine the derivative of the line y x4 3. y 4.

y
x h x

h
x h x

h
h
h

h

h

h

lim

lim

lim

0

0

0

4 3 4 3

4 4 3 4 3

4

llim
h

y
0
4

4

You can also figure this out because the slope of y x4 3 is 4.

8 Use the difference quotient to find the derivative of the parabola f x x3 2. f x x6 .

f x
x h x

h

x xh h x

h
x

h

h

h

lim

lim

lim

0

2 2

0

2 2 2

0

2

3 3

3 2 3

3 6 3 3

6 3

2 2

0

2

xh h x
h

xh h
h

h
h

h

lim

lim

Now, factor out the 

00

0

6 3

6 3

6

h x h
h

h

x h

x
h

Cancel the 

Now plug in 0lim

33 0

6f x x
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9 Use the difference quotient to find the derivative of the parabola from Problem 4, y x 2 5. 
y x2 .

y
x h x

h

x xh h x

h

h

lim

lim

0

2 2

0

2 2 2

5 5

2 5 5

h
x xh h x

h
xh h

h

h

h

lim

lim

li

0

2 2 2

0

2

2 5 5

2 Now factor

mm

lim
h

h

h x h
h

x h

y x

0

0

2

2

2

And cancel

In Problem 4, you see that the top of this parabola y x 2 5  is at the point 0 5,  and that 
the derivative is zero there because the parabola is neither going up nor down at its peak. 
That explanation was based on common sense. But now, with the result given by the differ-
ence quotient, namely y x2 , you have a rigorous confirmation of the derivative’s value at 
0 5, . Just plug 0 in for x in y x2 , and you get y 0.

10 

a. Figure the derivative of g x x4 5  using the difference quotient. g x
x
2

4 5
.

If you got this one, give yourself a pat on the back. It’s a bit tricky.

g x x

g x
x h x

h
x h x

h

h

h

4 5

lim
5

lim 4

0

0

4 5 4

4 5 4 5

limm
h

x h x

h

x h x

x h x0
Conjugate

4 4 5 4 5 4 4 5 4 5

4 4 5 4 5
  multiplication

0
lim
h

x h x

h x h x

4 4 5 4 5

4 4 5 4 5
Beccause a b a b a b

h
h x h xh

h

2 2

0

0

lim

lim

4
4 4 5 4 5

4
4xx h x

x x

x

g x

4 5 4 5
4

4 4 0 5 4 5
4

2 4 5

Now you can plug in

2
54x
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b. What’s the slope or derivative of g at x 5? g 5 2
5

.

g 5 2
4 5 5

2
5

.

11 Use the parabola from Problem 8, but make it a position function, s t t3 2, where t is in 
hours and s t  is in miles.

Average velocity equals total distance
total time

 
 

.

a. What’s the average velocity from t 4 to t 5? The answer is 27 miles/hour.

Average velocity
s s

 

 miles

 to 4 5

2 2

5 4
5 4

3 5 3 4
1

27
hourr

b. What’s the average velocity from t 4 to t 4 1. ? The answer is 24.3 miles/hour.

Average velocity
s s

  to 4.14

2 2

4 1 4
4 1 4

3 4 1 3 4
0 1

2

.
.

.
.

44 3.  miles
hour

c. What’s the average velocity from t 4 to t 4 01. ? The answer is 24.03 miles/hour.

Average velocity
s s

  to 4.014

2 2

4 01 4
4 01 4

3 4 01 3 4
0

.
.

.
..

.

01

24 03 miles
hour

12 For the position function in Problem 11, what’s the instantaneous velocity at t = 4? 
The answer is 24 miles/hour.

Problem 8 gives you the derivative of this parabola, f x x6 . The position function in this 
problem is the same except for different variables, so its derivative is s t t6 .

Plug in 4 for t, and you get s 4 24 miles
hour

. Notice how the average velocities in Problem 

11 get closer and closer to 24 miles
hour

 as the total travel time gets less and less and the ending 

time homes in on t 4. That’s precisely how the difference quotient works as h shrinks to 
zero.
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Rules, Rules, Rules: 
The Differentiation 
Handbook

Chapter 5 gives you the meaning of the derivative. In this chapter, you practice rules for 
finding derivatives. But before you practice the following rules, you may want to go to 
the online Cheat Sheet for Calculus For Dummies, 2nd Edition (www.dummies.com/cheat 

sheet/calculus), or to your calc text to review and memorize basic derivatives. For example, 
you need to know that the derivative of sine is cosine.

Rules for Beginners
Okay, now that you’ve got the memorization stuff taken care, you can begin working with some 
rules that involve more than just memorizing the answer.

First, there’s the rule for the derivative of a constant: The derivative of a constant is zero. All 
right — this one’s also just memorization.

Chapter 6

IN THIS CHAPTER

 » Boning up on basic derivative rules

 » Producing your quota of product 
and quotient problems

 » Joining the chain rule gang

 » Achieving higher order 
differentiation

http://www.dummies.com/cheatsheet/calculus
http://www.dummies.com/cheatsheet/calculus
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And then there’s the power rule: To find the derivative of a variable raised to a power, bring 
the power in front — multiplying it by the coefficient, if there is one — and then reduce the 
power by one.

1 What’s the derivative of f x 8? 2 What’s the derivative of g x 3?

3 What’s the derivative of g x ksin
2

cos(2 ), 
where k is a constant?

4 For f x x5 4, f x ?

Q. What’s the derivative of 5 3x ?

A. 15x 2.

1. Bring the power in front, multiplying it by the coefficient.

That first step gives you 15x3. Note that this does not equal 5x3 so you should not 
put an equal sign in front of it. In fact, there’s no reason to write this interim step 
down at all. I do it simply to make the process clear.

2. Reduce the power by one.

This gives you the final answer of 15x 2.
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5 For g x x 3

10
, what’s g x ? 6 Find y  if y x x5 0  .

7 What’s the derivative of s tt t7 6 10? 8 Find the derivative for y x 3 2
6 .
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Giving It Up for the Product and Quotient Rules
Now that you’ve got the easy stuff down, I’m sure you’re dying to get some practice with 
advanced differentiation rules. The product rule and the quotient rule give you the derivatives 
for the product of two functions and the quotient of two functions, respectively and obviously.

The product rule is a snap. The derivative of a product of two functions, first second , equals 
first firstsecond second .

The quotient rule is also a piece of cake. The derivative of a quotient of two functions, 
first

second
,  

equals 
first second first second

second
2 .

Here’s a good way to remember the quotient rule. When you read a product, you read from left 
to right, and when you read a quotient, you read from top to bottom. So just remember that the 
quotient rule, like the product rule, works in the natural order in which you read, beginning 
with the derivative of the first thing you read. For some mysterious reason, many textbooks 
give the quotient rule in a different form that’s harder to remember. Learn it the way I’ve writ-
ten it above, beginning with first . That’s the easiest way to remember it. Also note that when 
the two rules are written as they are above, the numerator of the quotient rule looks exactly like 
the product rule, except that there’s a minus sign instead of a plus sign.

Q. d
dx

x x2 sin ?

A. 
d

dx
x x x x x x2 2 2sin sin sin

2 sin cos2x x x x

Q. d
xd

x
x

2

sin
?

A. 
d

dx
x

x

x x x x

x

2
2 2

2sin

sin sin

sin

2 sin cos
si

2x x x x
nn2x

One more thing: I’ve purposely designed this example to resemble the product rule 
example, so you can see the similarity between the quotient rule numerator and the 
product rule.

9 d
dx

x x3 cos ? 10 d
dx

x xsin tan ?
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11 d
dx

x x5 3 ln ? *12 d
dx

x e xx2 ln ?

13 d
dx

x
x

3

cos
? 14 d

dx
x

e x
cos ?
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Linking Up with the Chain Rule
The chain rule is probably the trickiest among the advanced rules, but it’s really not that bad 
at all if you focus clearly on what’s going on. Most of the basic derivative rules have a plain old 
x as the argument (or input variable) of the function. For example, f xx , sin x , and y e x  
all have just x as the argument.

When the argument of a function is anything other than a plain old x, such as y xsin 2  or 
ln10 x (as opposed to ln x), you’ve got a chain rule problem.

Here’s what you do. You simply apply the derivative rule that’s appropriate to the outer func-
tion, temporarily ignoring the not-a-plain-old-x argument. Then multiply that result by the 
derivative of the argument. That’s all there is to it.

15 d
dx

x
x

3 32

arctan
? *16 d

dx
x

x x
sin

ln
?3

Q. What’s the derivative of y xsin 3 ?

A. y x x3 2 3cos .

1. Temporarily think of the  
argument, x3, as a glob.

So, you’ve got y globsin .

2. Use the regular derivative rule.

y globsin , so

y globcos

(This is only a provisional 
answer, so the “=” sign is 
false — egad! The math police 
are going to pull me over.)
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3. Multiply this by the derivative 
of the argument.

y glob globcos

4. Get rid of the glob.

The glob equals x3 so glob  
equals 3x2.

y x x

x x

cos

cos

3 2

2 3

3

3

Q. What’s the derivative of y xsin4 3 ? 
You have to use the chain rule twice 
for this one.

A. The answer is 12 2 3 3 3x sin x xcos .

1. Rewrite sin4 3x  to show what 

it really means: sin x 3
4

.

2. The outermost function is the 
4th power function, so use the 
derivative rule for stuff 4 — 
that’s 4 3stuff — then multiply 
that by the derivative of the 
inside stuff, sin x 3 .

y x x4 3
3

3sin sin

With chain rule problems, 
always work from the outside, in.

3. To get the derivative of 
sin x 3 , use the derivative 
rule for sin glob , and then 
multiply that by glob .

4 3
3

3 3sin cosx x x

4. The derivative of x3 is 3x2, so 
you have

4 33
3

3 2sin cosx x x

5. To simplify, rewrite the sine 
power and move the 3x2 to the 
front.

12 2 3 3 3x x xsin cos

That’s a wrap.

With chain rule problems, 
never use more than one 
derivative rule per step. In 
other words, when you do the 
derivative rule for the outer-
most function, don’t touch the 
inside stuff! Only in the next 
step do you multiply the 
outside derivative by the 
derivative of the inside stuff.

17 f x x

f x

sin

?

2 18 g x x

g x

sin

?

3
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19 s t t

s t

tan ln

?

20 y e

y

x4 3

?

*21 f x x x

f x

4 3sin

?

*22 g x
x

x
g x

ln

?

2

5 4
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*23 y x

y

cos

?

3 24 *24 d
dx

e xtan ?3 2

25 p x

p

cos

?

26 p 1
lnq

dp
dq

?
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27 f x
x

ln .1  What’s f x  at the point 

5 5, ln ?

28 y x x

y

cos

?

1

What to Do with Y’s: Implicit Differentiation
You use implicit differentiation when your equation isn’t in “y ” form, such as sin y x y2 3 35 ,  
and it’s impossible to solve for y. If you can solve for y, implicit differentiation will still work, 
but it’s not necessary.

Implicit differentiation problems are chain rule problems in disguise. Here’s what I mean. You 
know that the derivative of sin x  is cos x, and that according to the chain rule, the derivative of 
sin x 3  is cos x x3 3 . You would finish that problem by doing the derivative of x 3, but I have 
a reason for leaving the problem unfinished here.

To do implicit differentiation, all you do (sort of) is every time you see a “y” in a problem, you 
treat it like the x 3 is treated above. Thus, because the derivative of sin x 3  is cos x x3 3 , the 
derivative of sin y is cos y y . Then, after doing the differentiation, you just solve for y  so that 
you get y something .

By the way, I used “y” in the preceding explanation, but that’s not the whole story. Consider 

that y x20 3 is the same as dy
dx

x20 3. It’s the variable on the top that you apply implicit dif-

ferentiation to. This is typically y, but it could be any other variable. And it’s the variable on 
the bottom that you treat the ordinary way. This is typically x, but it could also be any other 
variable.



CHAPTER 6  Rules, Rules, Rules: The Differentiation Handbook      99

Q. If y x y x3 3 sin sin ,  

find dy
dx

.

A. y x x
y y

cos
cos

3
3

2

2 .

1. Take the derivative of all four 
terms, using the chain rule for 
terms containing y and using 
the ordinary method for terms 
containing x.

3 32 2y y x y y xcos cos

2. Move all terms containing y  to 
the left side and all other terms 
to the right side.

3 32 2y y y y x xcos cos

3. Factor out y .

y y y x x3 32 2cos cos

4. Divide.

y x x
y y

cos
cos

3
3

2

2

That’s your answer. Note  
that this derivative — unlike 
ordinary derivatives —  
contains y’s as well as x’s.

29 If y x x y3 2 , find dy
dx

 by implicit 
differentiation.

30 If 3 4y y e xln , find y .

31 For x y y x y x2 3 5 , find dy
dx

 by implicit 
differentiation.

*32 If y y xcos sin2 3 25 , find the slope of 

the curve at 
10

, 0 .
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33 If 8 5 2y x ytan , find dy
dx

. 34 Find the slope of the line tangent to the 
circle x y2 2 5 at the point 2 1, .

35 If 3 54 3 3y x x y , find dy
dx

. 36 Find the slope of the normal line to the 
ellipse 3 192 2x y  at the point 1 4, .
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Getting High on Calculus: Higher  
Order Derivatives

You often need to take the derivative of a derivative, or the derivative of a derivative of a deriva-
tive, and so on. In the next two chapters, you see a few applications. For example, a second 
derivative tells you the acceleration of a moving body. To find a higher order derivative, you 
just treat the first derivative as a new function and take its derivative in the ordinary way. You 
can keep doing this indefinitely.

37 For y x 4, find the 1st through 6th deriva-
tives. Extra credit: What’s the 2,015th 
derivative?

38 For y x x5 310 , find the 1st, 2nd, 3rd, and 
4th derivatives.
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39 For y x xsin cos , find the 1st through 6th 
derivatives.

40 For y xcos 2 , find the 1st, 2nd, and 3rd 
derivatives.

41 For y
x8
8

3
ln

, find the 6th derivative. *42 For y xtan , find the 4th derivative.
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Solutions for Differentiation Problems
1 f x 8; f x 0.

The derivative of any constant is zero.

2 g x 3; g x 0.

Don’t forget that even though  sort of looks like a variable (and even though other Greek 
letters like θ, α, and ω are variables),  is a number (roughly 3.14) and behaves like any other 
number. The same is true of e 2 718. . And when doing derivatives, constants like c and k also 
behave like ordinary numbers.

Because  is just a number, 3 is also just a number. g x 3is, therefore, a horizontal line 
with a slope and a derivative of zero.

3 g x ksin cos
2

2  (where k is a constant); g x 0.

If you feel bored because the first few problems were so easy, just enjoy it; it won’t last.

4 f x x5 4; f x x20 3.

Bring the 4 in front and multiply it by the 5, and at the same time reduce the power by 1, 
from 4 to 3: f x x20 3. Notice that the coefficient 5 has no effect on how you do the deriva-
tive in the following sense: You could ignore the 5 temporarily, do the derivative of x4 (which 
is 4x3), and then put the 5 back where it was and multiply it by 4.

5 g x x 3

10
; g x x x3

10
3
10

2
2

  or  .

You can just write down the derivative without showing any work (bring the 3 in front of the 
x, reduce the power 3 to a 2, and the 10 sits there doing nothing):

g x x3
10

2

But if you want to do it more methodically, it works like this:

1. Rewrite x 3

10
 so you can see an ordinary coefficient: 1

10
3x .

2. Bring the 3 in front, multiply, and reduce the power by 1.

g x x3
10

2

This is the same, of course, as 3
10

2x .

6 y x x5 0  ; y x5
2

7 2.

Rewrite with an exponent x x5 5 2  and finish like Problem 5: Bring the power in front 

and reduce the power by one: 5
2

7 2x .

To write your answer without a negative power, you write y
x
5

2 7 2  or y
x

5
2 7 2 . Or you can 

write your answer without a fraction power, to wit: y
x

5
2 7

 
or 5

2 7x
 or 5

2
7

x
 or 

5

2
7

x
. You say “po-tay-to”; I say “po-tah-to.”

7 s t t t7 106 ; s t 42 15t .
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Note that the derivative of plain old t or plain old x (or any other variable) is simply 1. In a 
sense, this is the simplest of all derivative rules, not counting the derivative of a constant. 
Yet for some reason, many people get it wrong. This is simply an example of the power rule: 
x is the same as x1, so you bring the 1 in front and reduce the power by 1, from 1 to 0. That 
gives you 1x0. But because anything to the 0 power equals 1, you have 1 times 1, which of 
course is 1.

8 y x 3 2
6 ; y x x6 365 2.

FOIL and then take the derivative.

y x x

x

y x x

3 3

6 3

5 2

6 6

12 36

6 36

x

9 d
dx

x x x x x x3 2 33cos cos sin .

Remember that d
dx

x xcos sin . For a great mnemonic to help you remember the derivatives 

of the other four trig functions, check out Chapter 17.

d
dx

x x x x x x

x x x x

x

3 3 3

2 3

2

3

3

cos cos cos

cos sin

coos sinx x x3

10 d
dx

x x x x xsin tan sin sec tan .

A helpful rule: d
dx

x xtan sec2 .

d
dx

x x x x x x

x x x

sin tan sin tan sin tan

cos tan sin sec22 x

x x xsin sec tan

11 d
dx

x x5 3 ln x x5 3 ln 12 .

Another helpful rule: d
dx

x
x

ln 1 .

When doing this derivative, you can deal with the “5” in two ways. First, you can ignore it 
temporarily, do the differentiating, then multiply your answer by 5. (If you do it this way, 
don’t forget that the “5” multiplies the entire derivative, not just the first term.) The second 
way is probably easier and better: Just make the “5” part of the first function. To wit:

d
dx

x x x x x x

x x x
x

x x

5 5 5

15 5 1

15

3 3 3

2 3

2

ln ln ln

ln

ln 5

5 3 1

2

2

x

x x

   or

ln
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 *12 d
dx

x e x e x x x xex x x2 2 2ln ln .

This is a challenge problem because, as you’ve probably noticed, there are three functions in 
this product instead of two. But it’s a piece o’ cake. Just make it two functions: either 
x e xx2 ln  or x e xx2 ln . Take your pick.

A handy rule: (Note that e x and its multiples [like 4e x] are the only functions that are their 
own derivatives.)

1. Rewrite this “triple function” as the product of two functions.

d
dx

x e xx2 ln

2. Apply the product rule.

d
dx

x e x x e x x e xx x x2 2 2ln ln ln

3. Apply the product rule separately to x e x2 , then substitute the answer back where it 
belongs.

x e x e x e

xe x e

x x x

x x

2 2 2

22

4. Complete the problem as shown in Step 2.

x e x x e x xe x e x x e
x

xe

x x x x x

x

2 2 2 22 1

2

ln ln ln

lnn ln

ln ln

ln ln

x x e x xe

x e x xe x xe

xe x x x

x x

x x x

x

2

2 2

2 1

or

or

or

e x x x xex xln 2 2

You say “pa-ja-mas”; I say “pa-jah-mas.”

13 d
dx

x x x x x
x

3

cos x
3 cos sin

cos

2 3

2 .

d
dx

x
x

x x x x

x

x x x x

3
3 3

2

2 33

cos

cos cos

cos

cos sin

ccos
cos sin

cos

2

2 3

2
3

x
x x x x

x

14 d
dx

x
e

x x
x

cos sin cos
e x

.
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d
dx

x
e

x e x e

e

e x e x
e

x

x x

x

x x

x

cos cos cos

sin cos

2

2

ssin cosx x
e x

15 d
dx

x
x

x x
x

3 32

arctan
6 arctan 3

arctan2 .

A handy-dandy rule: d
dx

x
x

arctan 1
1 2 .

d
dx

x
x

x x x x

x
3 3 3 3 3 32

2 2

arctan

arctan arctan

arctan
2

2
2

2

6 3 3 1
1

6 3

x x x
x

x
x x

arctan

arctan
arctan
arctann2 x

To remember the derivatives of the inverse trig functions, notice that the derivative of each 
co-function (arccosine, arccotangent, and arccosecant) is the negative of its corresponding 
function. So, you really only need to memorize the derivatives of arcsin, arctan, and arcsec. 
These three have a 1 in the numerator. The two that contain the letter “s,” arcsin and arcsec, 

contain a square root in the denominator and also a subtraction sign: d
dx

x
x

arcsin 1
1 2

, 

d
dx

x
x x

arcsec 1
12

. Arctan has no “s,” so no square root and no subtraction sign (it has 

an addition sign instead).

 *16 
d

dx
x

x x
x x x x x x

x x
sin

ln3

cos ln 3 sin ln sin

ln4 2 .

d
dx

x
x x

x x x x x x

x x

x x

sin
ln

sin ln sin ln

ln

cos

3

3 3

3 2

33 3 3ln sin ln lnx x x x x x

Product Rule6 7444444 844444

x x

x x x x x x x
x

x

6 2

3 2 3

6

3 1

ln

cos ln sin ln

lnn

cos ln sin ln sin
ln

cos ln sin l

x

x x x x x x x x
x x

x x x x

2

3 2 2

6 2
3

3 nn sin
ln

x x
x x4 2
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17 f x xsin 2 ; f x x x2 2cos .

Because the argument of the sine function is something other than a plain old x, this is a 
chain rule problem. Just use the rule for the derivative of sine, not touching the inside stuff, 
and then multiply your result by the derivative of x2.

f x x x

x x

cos

cos

2

2

2

2

18 g x xsin3 ; g x x x3 2sin cos .

Rewrite sin3 x as sin x
3
 so that it’s clear that the outermost function is the cubing function. 

By the chain rule, the derivative of stuff 3 is 3 2stuff stuff . The stuff here is sin x  and thus stuff  
is cos x. So your final answer is 3

2
sin cosx x , or 3 2sin cosx x .

19 s t ttan ln ; s t t
t

t
t t

sec ln ln
cos

.2
2

1   or  

The derivative of tan x  is sec2 x, so the derivative of tan lump  is sec2 lump lump . You 
better know by now that the derivative of ln t  is 1

t
, so your final result is sec ln2 1t

t
.

20 y e x4 3

; y x e x12 2 4 3

.

The derivative of e x is e x, so by the chain rule, the derivative of e glob is e globglob . So 
y e xx4 23

12 , or 12 2 4 3

x e x .

 *21 f x x x4 3sin ; f x x x x x x4 33 3 4 2sin sin cos .

This problem involves both the product rule and the chain rule. Which do you do first? Note 
that the chain rule part of this problem, sin3 x , is one of the two things being multiplied, so it 
is part of — or sort of inside — the product. And, like with pure chain rule problems, with 
problems involving more than one rule, you work from outside, in. So here you begin with 
the product rule. The following tip gives you another way to look at it.

If you’re not sure about the order of the rules in a complicated derivative problem, imagine 
that you plugged a number into x in the original function and had to compute the answer. 
Your last computation tells you where to start. If, for example, you plugged 2 into x x4 3sin , 
you would compute 24 then sin2, then you’d cube that to get sin3 2, and, finally, you’d multi-
ply 24 by sin3 2. Because your final step was multiplication, you begin with the product rule.

f x x x

x x

f x x x x x

4 3

4 3

4 3 4 3

sin

sin

sin sin prodduct rule

Use the chain rule to solve sin3 x , then go back and finish the problem. sin3 x means sin x
3
 

and that’s stuff 3. The derivative of stuff 3 is 3 2stuff stuff , so the derivative of sin x
3
 is 

3
2

sin cosx x . Now continue the solution.

f x x x x x x

x x x x x

4 3 4 2

3 3 4 2

3

4 3

sin sin cos

sin sin cos
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 *22 g x
x

x
ln

2

5 4
; g x x

x x

x

x
2
5 4

5

5 4

2

2
ln ln

.

Here you have the chain rule inside the quotient rule. Start with the quotient rule:

g x
x x x x

x

ln ln
2 2

2

5 4 5 4

5 4

Next, take care of the chain rule solution for ln x
2

. You want the derivative of glob 2 — 

that’s 2glob glob . So the derivative of ln x
2
 is 2 1ln x

x
. Now you can finish:

g x
x

x
x x x

x

x x
x

2 1 5 4 5 4

5 4

10 8 1

2

2

ln ln

ln 5

5 4

10 8 5

5 4

2
5 4

2

2

2

2

ln

ln ln

ln

x

x

x x x x

x x

x
x x

5

5 4

2

2

ln x

x

 *23 y xcos3 24 ; y x x x24 4 42 2 2cos sin .

Triply nested!

y xcos 4 2
3

The derivative of stuff 3 is 3 2stuff stuff , so you have

y x x3 4 42
2

2cos cos

Now you do the derivative of cos glob , which is sin glob glob . Two down, one to go:

y x x x

x x x

3 4 4 4

3 4 4 8

2
2

2 2

2 2 2

cos sin

cos sin

24 4 42 2 2x x xcos sin

 *24 d
dx

e xe e ex x x xtan tan sec3 2 22 2 2 2

6 .

Holy quadrupely nested quadruple nestedness, Batman! This is one for the Riddler.
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d
dx

e

e e d
dx

st

x

x x

tan

tan tan

2

2 2

3

2

3      because uuff stuff stuff

e e ex x x

3 2

2 2

3

3
2 2 2

tan sec      becauuse d
dx

glob glob glob

e e ex x

tan sec

tan sec

2

2 23
2 2 xx lump lump

x x

x d
dx

e e lump

e e

2

2 2

2

2 23

because 

tan sec e x

xe e e

x

x x x

2

2 2 2

2

6 2 2tan sec

© John Wiley & Sons, Inc.

25 p x
x

sin
cos

.
2

First, rewrite the original function with a power: p x xcos cos
1 2

.

This works like stuff 1 2, so you use the power rule and then finish, as with all chain rule prob-
lems, by multiplying by stuff .

p stuff

p stuff stuff

1 2

1 21
2

The stuff is cos x, and the derivative of the stuff is thus sin x . Just plug those in for your final 
answer:

p x x1
2

1 2
cos sin

26 dp
dq q q

1
2ln

.

You could use the quotient rule for this problem, but you were asked to use the chain rule. To 
do that, rewrite the original function as a power: p qln

1
.

This works like stuff 1, so you use the power rule then finish by multiplying by stuff :

p stuff

dp
dq

stuff stuff

1

21
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The stuff is lnq, and, thus, stuff
q
1 . Plug those in and you’re done:

dp
dq

q
q

1 12
ln

27 At 5 5 1
5

, ln , .  f x

This can be modeled by ln blob , so you use the natural log rule and then finish by multiply-
ing by blob .

f x blob

f x
blob

blob

ln

1

The blob is 1
x

, or x 1, so blob x 2. Now just plug — in and simplify:

f x

x

x
x

1
1

12

Thus, f 5 1
5

.

28 y x1 1sin .

The derivative of cos stuff  is sin stuff stuff  so you have

y x x

y x

x

cos

sin

sin

1

1 1 1

1 1

This equals 1 1sin x , by the way, which is just slightly easier on the eyes. Do you see why 
they’re equivalent?

29 If y x x y3 2 , find dy
dx

 by implicit differentiation. y x
y

2 1
3 12 .

1. Take the derivative of all four terms, using the chain rule (sort of) for all terms  
containing a y.

3 2 12y y x y

2. Move all terms containing y  to the left, move all other terms to the right, and  
factor out y .

3 1 2

3 1 1 2

2

2

y y y x

y y x

3. Divide and voilà!

y x
y

2 1
3 12
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30 If 3 4y y e xln , find y . y
ye
y

x4
3 1

.

Follow the steps for Problem 29.

3 1 4

3 1 4

4

3 1

4
3 1

y
y

y e

y
y

e

y e

y

ye
y

x

x

x

x

31 For x y y x y x2 3 5 , find dy
dx

 by implicit differentiation. y
y xy
y x x

3

2 2

2 1
3 5

.

This time you have two products to deal with, so use the product rule for the two products and 
the regular rules for the other two terms.

x y x y y x y x y

xy x y y y x y y

x y

2 2 3 3

2 2 3

2

5 1

2 3 5 1

33 5 1 2

3 5 1 2

2 1
3

2 3

2 2 3

3

2

y y x y y xy

y x y x y xy

y
y xy
y x x 2 5

 *32 If y y xcos sin2 3 25 , find the slope of the curve at 
10

0, . The slope is zero.

You need a slope, so you need the derivative.

y y y y
Implicit

Differentiation Cha

124 34
2 3 3 3cos sin

iin Rule
twice nested

Chain Rul
1 244444 344444

cos 5 102x x

ee
1 244 344

y y y y y x x

y y

2 3 10 5

1 6

3 3 2 2

2

cos sin cos

coos sin cos

cos

cos sin

y y x x

y
x x

y y y

3 3 2

2

2 3

10 5

10 5

1 6 33

You need the slope at ,  0 , y 0, so plug those numbers in to the derivative. Actually, 

you can save yourself some work if you notice that the numerator will equal zero (because 

cos 5
10

0
2

) and the denominator will equal 1 (because y 0). Thus, the slope of the 

curve at this point is zero. (A tangent line with a zero slope is horizontal, and because this 
tangent line touches the curve where y 0, the tangent line is the x axis.)
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33 If 8 5 2y x ytan , find dy
dx

. 
dy
dx

x
y

10
82sec

.

8 5

8 10

8 10

8 1

2

2

2

2

y x y

y x y y

y y y x

y y

tan

sec

sec

sec 00

10
8

10
8

2

2

x

y x
y

x
y

sec

sec

34 Find the slope of the line tangent to the circle x y2 2 5 at the point 2 1, . The slope is –2.

For the slope of the tangent line, you need the derivative, of course, so take the derivative 
with implicit differentiation:

x y

x yy

yy x

y x
y

x
y

2 2 5

2 2 0

2 2

2
2

To finish, just plug the x and y coordinates of the point into this derivative:

y 2 1
2
1

2, . 

That’s a wrap.

35 If 3 54 3 3y x x y , find dy
dx

. The answer is 
dy
dx

x
y y
3 5

12 3

2

3 4 .

3 5

12 5 3 3

12 3 3 5

12

4 3 3

3 2 4

3 4 2

3

y x x y

y y x y y

y y y y x

y y 33 3 5

3 5
12 3

4 2

2

3 4

y x

y x
y y

36 Find the slope of the normal line to the ellipse 3 192 2x y  at the point 1 4, .  
The slope is 4

3
.

When you see “normal line,” think “tangent line,” and when you see “tangent line” and/or 
“slope,” think “derivative”!

So, get the derivative with implicit differentiation:

3 19

6 2 0

2 6

6
2

3

2 2x y

x yy

yy x

y x
y

x
y
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Plug in the point to get the slope of the tangent line:

y 1 4
3 1

4
3
4, 

Finally, the slope of the normal line is the opposite reciprocal of that, namely, 4
3

.

37 For y x 4, find the 1st through 6th derivatives.

y x

y x

y x

y

y

y

4

12

24

24

0

0

3

2

4

5

6

Extra credit: y 2015 0.

38 For y x x5 310  find the 1st, 2nd, 3rd, and 4th derivatives.

y x x

y x x

y x

y x

5 30

20 60

60 60

120

4 2

3

2

4

39 For y x xsin cos , find the 1st through 6th derivatives.

y x x

y x x

y x x

y x x

y

cos sin

sin cos

cos sin

sin cos4

5 cos sin

sin cos

x x

y x x6

Notice that the 4th derivative equals the original function, the 5th derivative equals the 1st, 
and so on. This cycle of four functions repeats ad infinitum.

40 For y xcos 2 , find the 1st, 2nd, and 3rd derivatives.
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y x

y

y x x x

cos

sin

2

22 2

2 sin 2x x  chain rule

sin

sin cos

x

x x x x

2

2 22 2 2

 

  

product rule

chain rrule

2sin 4 cos2 2x x x

xy x x x

2

2 2 22 2 4cos cos 4

8 44

2 2

2 2 22

x x

x x x xx x

cos

cos sincos 2

8 84 2 2 3 2

x

x x x xx xcos cos sin

8 sin 12 co3 2x x x ss 2x

41 For y
x8
8

3
ln

, find the 6th derivative. ln .8 8
3 x

y
x

x8
8

1
8

83 3
ln ln

I’ve rewritten the function this way simply to emphasize that while the 1
8

3
ln

 may look a bit 

advanced, it’s just a number and just a coefficient. As such, it just sits there and has no effect 
on how you differentiate. The derivative of 8 x is 8 8x ln , so . . .

y

y

y

x

x x

x

1
8

8

1
8

8 8 1
8

8

1
8

8 8 1
8

8

3

3 2

2

ln

ln
ln

ln

ln
ln

ln
xx

x x

x x

x

y

y

y

1
8

8 8 8

8 8 8 8

8 8 8 8

4

5

ln
ln

ln ln

ln ln ln
22

6 2 3

8

8 8 8 8 8

x

x xy ln ln ln

Is that a thing of beauty or what? (To best see the pattern of this series of derivatives, look at 
the far right of each line above.)

 *42 For y xtan , find the 4th derivative. 8 162 3 4sec tan sec tan .x x x x

y xtan

The first derivative is a memorized rule:

y xsec2
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For the second derivative, you use the chain rule:

y x x x x x2 2 2sec sec tan sec tan

The third derivative is a product rule problem where you use the chain rule for one of the 
product rule derivatives:

y x x

y x x x x x x

2

2 2

4

2

2 2

sec tan

sec sec tan tan sec sec

sec22 2 42x x xtan sec

Finally, for the fourth derivative, you have a product rule piece with two chain rules inside of 
it plus another chain rule piece!

y x x x

y x x x x x

4 2

4 2 2

2 2 4

4 2 2

sec tan sec

sec sec tan tan sec taan sec sec sec tan

sec tan sec tan sec

x x x x x

x x x x x

2 3

2 3 4 4

8

8 8 8 ttan

sec tan sec tan

x

x x x x8 162 3 4

Wasn’t that fun?
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Analy zing Those 
Shapely Curves with 
the Derivative

This chapter gives you lots of practice using the derivative to analyze the shape of curves 
and their significant features and points. Don’t forget: The derivative tells you the slope 
of a curve, so any problem involving anything about the slope or steepness of a curve is 

a derivative problem.

The First Derivative Test and Local Extrema
One of the most common applications of the derivative employs the simple idea that at the top 
of a hill or at the bottom of a valley, you’re neither going up nor down — at a peak or a val-
ley, the terrain is horizontal. Thus, there’s zero steepness there, and the slope — and thus the 
derivative — equal zero. You can therefore use the derivative to locate the top of a “hill” and 
the bottom of a “valley,” called local extrema, on just about any function by setting the deriva-
tive of the function equal to zero and solving for x.

Chapter 7

IN THIS CHAPTER

 » Mum’s the word: Minimum, 
maximum, extremum

 » Concavity and inflection points

 » The nasty Mean Value Theorem
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Q. Use the first derivative test to determine the location of the local extrema of 
g x x x15 3 5. See the following figure.

© John Wiley & Sons, Inc.

A. The local min is at 3 162, , and the local max is at 3 162,  .

1. Find the first derivative of g using the power rule.

g x x x

g x x x

15

45 5

3 5

2 4

2. Set the derivative equal to zero and solve for x to get the critical numbers of g.

45 5 0

5 9 0

5 3 3 0

2 4

2 2

2

x x

x x

x x x

5 0

0

3 0

3

3 0

3

2x

x

x

x

x

x
or or

If the first derivative was undefined for some x values in the domain of g, there 
could be more critical numbers, but because g x x x45 52 4 is defined for all 
real numbers, 0, 3, –3 is the complete list of critical numbers of g.

If f is defined at a number c and the derivative at x c is either zero or undefined, 
then c is a critical number of f.
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3. Plot the three critical numbers on a number line, noting that they create four 
regions (see the figure in Step 5).

4. Plug a number from each of the four regions into the derivative, noting whether the 
results are positive or negative.

If you’ve already factored the derivative (see Step 2), it’s usually best to use the 
factored form of the derivative in this step. And all you need to do is note whether 
the results are positive or negative. There’s no need to compute the exact results. 
To wit . . .

g x x x x

g Pos Pos Neg Neg

g Po

5 3 3

4

1

2

. . . .

ss Pos Pos Pos

g Pos Pos Pos Pos

g P

. . . .

. . . .1

4 oos Neg Pos Neg. . . .

By the way, a very slight shortcut here is to notice that since g x  is an even 
function, g 1  must equal g 1  and g 4  must equal g 4 .

5. Draw a “sign graph.” Take your number line and label each region — based on 
your results from Step 4 — positive (increasing) or negative (decreasing). See the 
following figure.

© John Wiley & Sons, Inc.

This sign graph tells you where the function is increasing (rising as you go from 
left to right) and where it is decreasing (falling as you go from left to right).

6. Use the sign graph to determine whether there’s a local minimum, local maximum, 
or neither at each critical number.

Because g goes down on its way to x 3 and up after x 3, it must bottom out at 
x 3, so there’s a local min there. Conversely, g peaks at x 3 because it rises until 
x 3, and then falls. There is thus a local max at x 3. And because g climbs on its 
way to x 0 and then climbs further, there is neither a min nor a max at x 0.

7. Determine the y values of the local extrema by plugging the x values into the 
original function.

g

g

3 15 3 3

162

3 15 3 3

162

3 5

3 5

So the local min is at – , –3 162 , and the local max is at 3 162, .
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1 Use the first derivative to find the local 
extrema of f x x x6 4 12 3 . Tip: You 
better write small if you want to do this 
problem on a quarter of a page.

2 Find the local extrema of 

h x x x
2

2
2

cos  in the interval  

0 2,  with the first derivative test.

3 Locate the local extrema of y x 2 2 3
8  

with the first derivative test.
4 Using the first derivative test, determine the 

local extrema of s t
t

4

2
4

2
.

The Second Derivative Test and Local Extrema
With the second derivative test, you use — can you guess? — the second derivative to test for 
local extrema. The second derivative test is based on the absolutely brilliant idea that the crest 
of a hill has a hump shape  and the bottom of a valley has a trough shape .
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After you find a function’s critical numbers, you have to decide whether to use the first or the 
second derivative test to find the extrema. For some functions, the second derivative test is the 
easier of the two because 1) the second derivative is usually easy to get, 2) you can often plug 
the critical numbers into the second derivative and do a quick computation, and 3) you will 
often get non-zero results and thus get your answers without having to do a sign graph and 
test regions. On the other hand, testing regions on a sign graph (the first derivative test) is also 
fairly quick and easy, and if the second derivative test fails (see the warning), you’ll have to do 
that anyway. As you do practice problems, you’ll get a feel for when to use each test.

If the second derivative equals zero at a particular critical number, the second derivative test 
fails and you learn nothing about whether there’s a local extremum there. When this happens, 
you have to use the first derivative test to determine whether or not you have a local extremum.

Q. Take the function from the example in the previous section, g x x x15 3 5, but this 
time find its local extrema using the second derivative test.

A. The local min is at x 3 and the local max is at x 3.

First, you need the second derivative:

g x x x

g x x x

g x x x

15

45 5

90 20

3 5

2 4

3

Now all you do is plug in the critical numbers of g from Step 2 of the example in the 
preceding section:

g

g

g

3 270

0 0

3 270

The fact that g 3  is positive tells you that g is concave up  at x 3, and thus that 
there’s a local min there. And the fact that g 3  is negative tells you that g is concave 
down  at x 3, and, therefore, that there’s a local max there. And, while it may seem 
that g 0 0 confirms what you figured out previously (that there’s neither a min nor a 
max at x 0), you actually learn nothing when the second derivative is zero; you have to 
use the first derivative test instead.

If, like here, you only have one critical point between a local min and a local max (and no dis-
continuities), it has to be an inflection point. And if you have a single critical number between 
two known maxes (see Problem 7), the only possibility for the middle critical number is a local 
min (and vice versa). So in these cases, it really doesn’t matter if the second derivative test fails 
with the middle critical number. If this not-by-the-book reasoning doesn’t work for your calc 
teacher, you might say (with just a touch of sarcasm in your voice), “Oh, so in other words, 
you’ve got something against logic and common sense.”
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7 Find the local extrema of y x x2 1
3

4 6 with 
the second derivative test.

8 Consider the function from Problem 3, 

y x 2 2 3
8 , and the function 

s t t8 21
4

7
4

3

. Which of the two functions 

is easier to analyze with the second deriva-

tive test, and why? For the function you pick, 
use the second derivative test to find its local 
extrema.

5 Use the second derivative test to analyze the 
critical numbers of the function from 

Problem 2, h x x x
2

2
2

cos .

6 Find the local extrema of f x x x2 6 13 2  
with the second derivative test.

Finding Mount Everest: Absolute Extrema
The basic idea in this section is quite simple. Instead of finding all local extrema as in the pre-
vious sections (all the peaks and all the valleys), you just want to determine the single highest 
point and single lowest point along a continuous function in some closed interval. These absolute 
extrema can occur at a peak or valley or at an edge(s) of the interval. (Note: You could have, say, 
two peaks at the same height so there’d be a tie for the absolute max; but there would still be 
exactly one y value that’s the absolute maximum value on the interval.)

Before you practice with some problems, look at Figure 7-1 to see two standard absolute extrema 
problems (continuous functions on a closed interval) and at Figure 7-2 for four strange functions 
that don’t have the standard single absolute max and single absolute min.
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FIGURE 7-1: 
Two standard 

absolute 
extrema 

functions. 
© John Wiley & Sons, Inc.

FIGURE 7-2: 
Four 

nonstandard 
absolute 
extrema 

functions. 
© John Wiley & Sons, Inc.
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Q. Determine the absolute min and 

absolute max of f x x x in the 

interval 1 1
2

, .

A. The absolute max is 2 and the abso-
lute min is 0.

1. Get all the critical numbers.

The first step is to determine the 
derivative, set it equal to zero, 
and solve, but before you can 
get the derivative, you have to 
split the function in two to get 
rid of the absolute value bars:

I. When   and, thus,x x x

f x x x

f x
x

x

x

x

0

1
2

1

0 1
2

1

2 1

,

1
4

II. When   and, thus,x x x

f x x x

f x
x

x

0

1
2

1

0 1
2

,

1

2 1x

No solution

Now, determine whether the 
derivative is undefined any-
where.

The derivative is undefined at x 0 
because the denominator of the 
derivative can’t equal zero. (If you 
graph this function [always a good 
idea], you’ll also see the sharp 
corner at x 0 and thus know 
immediately that the derivative is 
undefined there.) The critical 
numbers are therefore 0 and 1

4
.

2. Compute the function values (the 
heights) at all the critical numbers.

f f1
4

1
4

0 0

It’s just a coincidence, by the way, 
that in both cases the input equals 
the output.

3. Compute the function values at the 
two edges of the interval.

f f1 2 1
2

2 1
2

0 207.

4. The highest of all the function values 
from Steps 2 and 3 is the absolute 
max; the lowest of all the values from 
Steps 2 and 3 is the absolute min.

Thus, 2 is the absolute max and 0 
is the absolute min.

Note that finding absolute extrema 
involves less work than finding 
local extrema because you don’t 
have to use the first or second 
derivative tests — do you see why? 
(This particular problem was more 
involved than usual because of that 
extra twist in Step 1 involving the 
absolute value bars.)
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9 Find the absolute extrema of 
f x x xsin cos  on the interval 0 2, .

10 Find the absolute extrema of 

g x x x2 3 53 2  on the interval  

0 5 5. , . 0 .

11 Find the absolute extrema of 
p x x x1 0 5

4 5
.  on the interval  

2 31, .

12 Find the absolute extrema of 
q x x x2 2 4cos sin  on the interval 

2
5
4

, .
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Smiles and Frowns: Concavity  
and Inflection Points

Another purpose of the second derivative is to analyze concavity and points of inflection. (For a 
refresher, look at Figure 7-3: The section of curve between A and B is concave down — like an 
upside-down spoon or a frown; the sections on the outsides of A and B are concave up — like a 
right-side up spoon or a smile; and A and B are inflection points.) A positive second derivative 
means concave up; a negative second derivative means concave down. And where the concavity 
switches from up to down or down to up (like at A and B), you have an inflection point, and the 
second derivative there will (usually) be zero.

All inflection points have a second derivative of zero (if the second derivative exists), but not all 
points with a second derivative of zero are inflection points. This is no different from “all ships 
are boats but not all boats are ships.” (For example, y x 4, which resembles a parabola, has a 
second derivative equal to zero at the point 0 0, , but that point is not an inflection point — it’s 
a local minimum.)

Finally, note that you can have an inflection point where the second derivative is undefined. 
This occurs when the inflection point has a vertical tangent and in some bizarre curves that you 
shouldn’t worry about that have a weird discontinuity in the second derivative.

FIGURE 7-3: 
Concavity 

and points 
of inflection. 

© John Wiley & Sons, Inc.
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Q. Find the intervals of concavity and 
the inflection points of 
f x x x3 5 105 3 . Note that the 
following solution method is analo-
gous to the method for finding local 
extrema with the first derivative.

A. f is concave down from  to the 

inflection point at 2
2

11 24, ~ . ; 

concave up from there to the inflec-
tion point at 0 10,  ; concave down 
from there to the third inflection 

point at 2
2

8 76, ~ . ; and concave 

up from there to .

1. Find the second derivative of f.

f x x x

f x x x

f x x x

3 5 10

15 15

60 30

5 3

4 2

3

2. Set the second derivative equal to 
zero and solve.

60 30 0

30 2 1 0

3

2

x x

x x

30 0

0

2 1 0

2 1

1
2
2
2

2

2

2

x

x

x

x

x

x

or

3. Check whether there are any x 
values where the second deriva-
tive is undefined.

There are none, so 2
2

, 0, and 
2
2

 are the three second 

derivative “critical numbers.” 
(Technically these aren’t called 
critical numbers, but they 
could be because they work 
just like first derivative critical 
numbers.)

4. Plot these “critical numbers” on a 
number line and test the regions.

You can use –1, 1
2

, 1
2

, and 1 as test 

numbers. Plug these numbers into 
the factored form of the second 
derivative (from Step 2). The follow-
ing figure shows the second deriva-
tive sign graph.

f x x x

f Neg Pos Neg

f Neg N

30 2 1

1

1
2

2

. . .

. eeg Pos

f Pos Neg Neg

f Pos Pos Po

. .

. . .

. .

1
2

1 ss.

© John Wiley & Sons, Inc.

Because the concavity switches 
(from down to up or up to down) at 
all three “critical numbers” and 
because the second derivative exists 
at those numbers (from Steps 2 
and 3), there are inflection points at 
those three x values. (If the concav-
ity switches at a point where the 
second derivative is undefined, you 
have to check one more thing before 
concluding that you have an 
inflection point: whether you can 
draw a tangent line there. This is the 
case when the first derivative is 
defined or there’s a vertical tan-
gent.) All cases are covered by a 
simple rule: If the concavity switches at 
a point where the curve is smooth, you 
have an inflection point there.
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5. Determine the location of the three 
inflection points.

f x x x

f

f

f

3 5 10

2
2

11 24

0 10

2
2

8 76

5 3

.

.

So f is concave down from  to the 

inflection point at 2
2

, ~11.24 ; 

concave up from there to the 
inflection point at 0 10, ; concave 
down from there to the third 

inflection point at 2
2

8 76, ~ . ; 

and, finally, concave up from 
there to .

13 Find the intervals of concavity and the inflec-
tion points of f x x x x2 6 10 53 2 .

14 Find the intervals of concavity and the 
inflection points of g x x x4 212 .
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15 Find the intervals of concavity and the 

inflection points of p x x
x 2 9

.

16 Find the intervals of concavity and the 
inflection points of q x x x5 3 . You’ll 
want to use your calculator for this one.

The Mean Value Theorem: Go Ahead,  
Make My Day

The Mean Value Theorem is based on an incredibly simple idea. Say you go for a one-hour drive 
and travel 50 miles. Your average speed, of course, would be 50 mph. The Mean Value Theorem 
says that there must be at least one point during your trip when your speed was exactly 50 mph. 
But you don’t need a fancy-pants calculus theorem to tell you that. It’s just common sense. If 
you went slower than 50 mph the whole way, you couldn’t average 50. And if you went faster 
than 50 the whole way (this assumes you’re going faster than 50 at your starting point), your 
average speed would be greater than 50. The only way to average 50 is to go exactly 50 the 
whole way or to go slower than 50 sometimes and faster than 50 at other times. In the former 
case, the theorem is obviously satisfied because you’re driving at exactly 50 at every point in 
time. And in the latter case, the theorem is also satisfied because when you speed up or slow 
down from going slower than 50 to going faster than 50 (or vice versa), you have to hit exactly 
50 mph at some point — you can’t jump, say, from 49 mph one moment to 51 mph the next 
moment — your speed has to slide up (or down) and hit precisely 50 mph at some point in time.

With the Mean Value Theorem, you figure an average rate or slope over an interval and then 
use the first derivative to find one or more points in the interval where the instantaneous rate 
or slope equals the average rate or slope. Here’s an example:

Q. Given f x x x x3 24 5 , find all 
numbers c in the open interval 2 4,  
where the instantaneous rate equals 
the average rate over the interval.

A. The only answer is 4 2 7
3

.

Basically, you’re finding the points 
along the curve in the interval where 
the slope is the same as the slope from 

2 2, f  to 4 4, f . Mathematically 
speaking, you find all numbers c 

where f c
f f4 2

4 2
.

1. Get the first derivative.

f x x x x

f x x x

3 2

2

4 5

3 8 5
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2. Using the slope formula, m
y y
x x

2 1

2 1
, figure the 

slope from 2 2,  f  to 4 4,  f .

f

f

m
f f

4 4 4 4 5 4

20

2 2 4 2 5 2

18

4 2
4 2

20

3 2

3 2

18
2

1

3. Set the derivative equal to this slope 
and solve.

3 8 5 1

3 8 4 0

8 8 4 3 4
6

8 4 7
6

4 2 7
3

2

2

2

x x

x x

x

or 44 2 7
3

3 10 0 43. .or

Because –0.43 is outside the 
interval 2 4, , your only answer is 

4 2 7
3

.

By the way, the Mean Value 
Theorem only works for functions 
that are differentiable over the 
open interval in question and 
continuous over the open interval 
and its endpoints.

17 For g x x x x3 2 , find all the values c in 
the interval 2 1,  that satisfy the Mean 
Value Theorem.

18 For s t t t4 3 1 33 , find all the values c in 
the interval 0 3,  that satisfy the Mean 
Value Theorem.
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Solutions for Derivatives and Shapes of Curves
1 Use the first derivative to find the local extrema of f x x x6 4 12 3 . Local min at 0 1,  ; 

local max at 1 3,  .

1. Find the first derivative using the power rule.

f x x x

f x x

6 4 1

4 4

2 3

1 3

2. Find the critical numbers of f.

a. Set the derivative equal to zero and solve.

4 4 0

1

1

1 3

1 3

x

x

x

b. Determine the x values where the derivative is undefined.

f x x
x

4 4 4 41 3
3

Because the denominator is not allowed to equal zero, f x  is undefined at x 0. Thus 
the critical numbers of f are 0 and 1.

3. Plot the critical numbers on a number line.

I’m skipping the figure this time because I assume you can imagine a number line with 
dots at 0 and 1. Don’t disappoint me!

4. Plug a number from each of the three regions into the derivative.

f

f positi

1 4 1 4 4 4 8

1
2

4 1
2

4 4 2 4

1 3

1 3
1 3

vve

f 8 4 8 4 2 4 2
1 3

Note how the numbers I picked for the first and third computations made the math 
easy. With the second computation, you can save a little time and skip the final calcula-
tion because all you care about is whether the result is positive or negative (this 
assumes that you know that the cube root of 2 is more than 1 — you’d better!).

5. Draw your sign graph.

© John Wiley & Sons, Inc.

6. Determine whether there’s a local min or max or neither at each critical number.

f goes down to where x 0 and then up, so there’s a local min at x 0, and f goes up to 
where x 1 and then down, so there’s a local max at x 1.
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7. Figure the y value of the two local extrema.

f

f

0 6 0 4 0 1 1

1 6 1 4 1 1 3

2 3

2 3

Thus, there’s a local min at 0 1,  and a local max at 1 3, . Check this answer by 
looking at a graph of f on your graphing calculator.

2 Find the local extrema of h x x x
2

2
2

cos  in the interval 0 2,  with the first  

derivative test. Local max at 
4

2
8

,  ; local min at 3  3
4

2
8

2, .

1. Find the first derivative.

h x x x

h x x

2
2
2

1
2

cos

sin

2. Find the critical numbers of h.

a. Set the derivative equal to zero and solve:

1
2

0

2
2

4 4

sin

sin

x

x

x   or  3
These are the solutions in thee given interval.

b. Determine the x values where the derivative is undefined.

The derivative isn’t undefined anywhere, so the critical numbers of h are 
4

 and 3
4

.

3. Test numbers from each region on your number line.

h

positive

h

negativ

6
1
2 6

2
2

1
2

2
1
2 2

2
2

1

sin sin

ee

h

positive

1
2

2
2

0

sin

4. Draw a sign graph.

© John Wiley & Sons, Inc.

5. Decide whether there’s a local min, max, or neither at each of the two critical numbers.

Going from left to right along the function, you go up until x
4

 and then down, so 

there’s a local max at x
4

. It’s vice versa for x 3
4

, so there’s a local min there.
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6. Compute the y values of these two extrema.

h h
4

4
2 4

2
2

4 2
2
2

2
2

2
8

4
4
2 4

2
2

2
8

cos cos3
3

3

3 2
2

2
2

2
8

23

So you have a max at 
4

2
8

,  and a min at 3  3
4

2
8

2, .

3 Locate the local extrema of y x 2 2 3
8  with the first derivative test. Local mins at 

2 2 0,   and 2 2 0,  ; a local max at 0 4,  .

Same basic steps as Problems 1 and 2, but abbreviated a bit.

1. Find the derivative.

y x

y x x x
x

2 2 3

2 1 3

23

8

2
3

8 2 4
3 8

2. Find the critical numbers.

a. 4
3 8

0

0

23

x
x

x

b. The first derivative will be undefined when the denominator is zero, so

3 8 0

8 0

8 0

8

2 2

23

23

2

2

x

x

x

x

x

Thus, the critical numbers are 2 2 , 0, and 2 2.

3. Test a number from each of the four regions.

y 10 2
3

10 8 2 10

2
3

2 1 3

1 3
positive negative

22
3

1 2
3

1 8 2 1
2 1 3

positive negative

negative

y

2
3
2
3

1 3
negative negative

negative negative

positive

yy y1 10negative  and  positive
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4. Make a sign graph.

© John Wiley & Sons, Inc.

5. Find the y values at the critical numbers.

y 2 2 8 0
2 2 3

. There’s a local min at 2 2 0, .

y 0 8 8 42 2 3 2 3
. There’s a local max at 0 4, .

y 2 2 8 0
2 2 3

. There’s another local min at 2 2 0, .

Check out this interesting curve on your graphing calculator.

4 Using the first derivative test, determine the local extrema of s t
t

4

2
4

2
. Local maxes at 

2 2,  and 2 2, ; no local minima.

1. Do the differentiation thing.

s t
t

s
t t t t

t

t t

4

2

4 2 4 2

2 2

3 2

4
2

4 2 4 2

2

4 2 t t

t
t
t

4

4

4

3

4 4

4
4

2. Find the critical numbers.

t
t

t

t t

t t t

t

4

3

4

2 2

2

4 0

4 0

2 2 0

2 2 2 0

2 2 or 

So 2 and 2  are two critical numbers of s.

t 0 is a third important number because t 0 makes the derivative’s denominator 
equal zero, so you need to include zero on your sign graph in order to define test 
regions. Note, however, that t 0 is not a critical number of s because s is undefined at  
t = 0. And because there is no point on s at t 0, there can’t be a local extremum at t 0.

3. Test a number from each of the four regions: You’re on your own.
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4. Make a sign graph.

© John Wiley & Sons, Inc.

She loves me; she loves me not; she loves me; she loves me not.

5. Find the y values.

s 2
2 4

2 2

4 4
4

2

4

2 . You climb up the hill to 2 2, , then down, so there’s 

a local max.

s 0 0 4
2 0

4

2 undefined (which you already knew). Therefore, there’s no local extremum 

at t 0. Remember that if a problem asks you to identify only the x values and not the y 
values of the local extrema, and you only consider the sign graph, you would incorrectly 
conclude — using the current problem as an example — that there’s a local min at t 0. 
So you should always check where your function is undefined.

s 2 2 4
2 2

2
4

2 . Up, then down again, so there’s another local max at 2 2, .

As always, you should check out this function on your graphing calculator.

5 Use the second derivative test to analyze the critical numbers of the function from Problem 2, 

h x x x
2

2
2

cos . Local max at x
4

; local min at x 3
4

.

1. Find the second derivative.

h x x x

h x x

h x x

2
2
2

1
2

cos

sin

cos

2. Plug in the critical numbers (from Problem 2).

h h
4 4

2
2

4 4

2
2

cos cos3 3

You’re done. h is concave down at x
4

, so there’s a local max there, and h is concave up 

at x 3
4

, so there’s a local min at that x value. (In Problem 2, you already determined 

the y values for these extrema.)

h is an example of a function where the second derivative test is quick and easy.
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6 Find the local extrema of f x x x2 6 13 2  with the second derivative test. Local min at 
0 1,  ; local max at 2 9,  .

1. Find the critical numbers.

f x x x

f x x x

x x

x x

x

2 6 1

6 12

0 6 12

0 6 2

0 2

3 2

2

2

,  

2. Find the second derivative.

f x x x

f x x

6 12

12 12

2

3. Plug in the critical numbers.

f f0 12 0 12

12

2 12 2 12

12  concave up: min    concave down: max

4. Determine the y coordinates for the extrema.

f f0 2 0 6 0 1

1

2 2 2 6 2 1

9

3 2 3 2

So there’s a min at 0 1,  and a max at 2 9, .

f is another function where the second derivative test works like a charm.

7 Find the local extrema of y x x2 1
3

4 6 with the second derivative test. You find local maxes 

at x 2 and x 2 with the second derivative test; you find a local min at x 0 with street 
smarts.

1. Find the critical numbers.

y x x

y x x

x x

x x

x x x

2 1
3

8 2

8 2 0

2 4 0

2 2 2 0

4 6

3 5

3 5

3 2

3

Thus,  x 0 2 2, , .

2. Get the second derivative.

y x x

y x x

8 2

24 10

3 5

2 4
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3. Plug in.

y y2 24 2 10 2

96 160

0
2 4

negative  thus a max.,

24 0 10 0

0

2 24 2 10 2
2 4 2 4

,  thus inconclusive.

y

ssame as 

negative  thus a max.

y 2

,

The second derivative test fails at x 0, so you have to use the first derivative test for 
that critical number. And this means, basically, that the second derivative test was a 
waste of time for this function.

If — as in the function for this problem — one of the critical numbers is x 0, and you can 
see that the second derivative will equal zero at x 0 (because, for example, all the terms of 
the second derivative will be simple powers of x), then the second derivative test will fail for 
x 0, and it will likely be a waste of time. You should use the first derivative test instead.

However, because this problem involves a continuous function and because there’s only one criti-
cal number between the two maxes you found, the only possibility is that there’s a min at x 0. 
(Try this streetwise logic out on your teacher and let me know if it works.)

8 Consider the function from problem 3, y x 2 2 3
8 , and the function s t t8 21

4
7
4

3

. Which 

is easier to analyze with the second derivative test, and why? For the function you pick, use 

the second derivative test to find its local extrema. Your pick should be s t t8 21
4

7
4

3

; 

local min at 1 4 5, .  and local max at 1 11 5, . .

The second derivative test fails where the second derivative is undefined (in addition to 
failing where the second derivative equals zero).

To pick, look at the first derivative of each function:

y x s t t

y x x s t

x

x

2 2 3 3

2 1 3
2

8 8 21
4

7
4

2
3

8 2 21
4

21
4

4

3 22 1 3
8

Do you see the trouble you’re going to run into with y x ? The first derivative is undefined at 
x 2 2 . And the second derivative will also be undefined at those x values, because when 
you take the second derivative with the quotient rule, squaring the bottom, the denominator 
will contain that same factor, x 2 8 . The second derivative test will thus fail at 2 2 , and 
you’ll have to use the first derivative test. In contrast to y x , the second derivative test 
works great with s t :

1. Get the critical numbers.

s t

t

t

t

21
4

21
4

0 21
4

21
4

21
4

21
4
1

2

2

2

s  is not undefined anywhere, so –1 and 1 are the only critical numbers.
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2. Do the second derivative.

s t

s t

21
4

21
4

21
2

2

3. Plug in the critical numbers.

s

s

1 21
2

1 21
2

  concave up: min

  concave down: maax

4. Get the heights of the extrema.

s

s

1 8
21 1

4
7 1

4
4 5

1 8
21 1

4
7 1

4
11 5

3

3

.

.

You’re done. s has a local min at 1 4 5, .  and a local max at 1 11 5, . .

9 Find the absolute extrema of f x x xsin cos  on the interval 0 2, . Absolute max at 

4
2,  ; absolute min at 5

4
2, .

1. Find critical numbers.

f x x x

f x x x

x x

x x

sin cos

cos sin

cos sin

sin cos

0

divide botth sides by 

 5 the solutions in the giv

cos

tan

,

x

x

x

1

4 4
een interval

The derivative is never undefined, so these are the only critical numbers.

If you divide both sides of an equation by something that can equal zero at one or more 
x values (like you do above when dividing both sides by cos x), you may miss one or 
more solutions. You have to check whether any of those x values is a solution. In this 

problem, cos x 0 at 
2

 and 3
2

, and it’s easy to check (in Line 4 of Step 1 above) that 

sin x  does not equal cos x at either of those values, so there’s no problem here. But if 
sin x  did equal cos x at either of those values, you’d have one or two more solutions and 
one or two more critical numbers. (Note that you have to check any such values in the 
line of the solution above where you do the dividing — the way you just used Line 4 —  
you couldn’t use Line 5 for the check.)
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2. Evaluate the function at the critical numbers.

f f
4 4 4

2
2

2
2

2

4 4 4

2
2

2
2

2

sin cos sin cos5 5 5

3. Evaluate the function at the endpoints of the interval.

f

f

0 0 0 1

2 2 2 1

sin cos

sin cos

4. The largest of the four answers from Steps 2 and 3 is the absolute max; the smallest is 
the absolute min.

The absolute max is at 
4

2, . The absolute min is at 5
4

2, .

10 Find the absolute extrema of g x x x2 3 53 2  on the interval 0 5 5. , . 0 . Absolute min at 
– . , –0 5 6 ; absolute max at 0 5, .

1. Find critical numbers.

g x x x

g x x x

x x

x x

x

2 3 5

6 6

0 6 6

0 6 1

0 1

3 2

2

2

,  

x 1 is neglected because it’s outside the given interval; x 0 is your only critical 
number.

2. Evaluate the function at x 0.

g 0 2 0 3 0 5 5
3 2

3. Do the endpoint thing.

g

g

0 5 2 0 5 3 0 5 5

2 0 125 3 0 25 5

6

0 5 2

3 2
. . .

. .

. 00 5 3 0 5 5

2 0 125 3 0 25 5

5 5

3 2
. .

. .

.

4. Pick the smallest and largest answers from Steps 2 and 3.

The absolute min is at the left endpoint, – . , –0 5 6 . The absolute max is smack dab in 
the middle, 0 5, .
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11 Find the absolute extrema of p x x x1 0 5
4 5

.  on the interval 2 31, . Absolute max at 

2 2,  ; absolute mins at 1 0 5, .  and 31 0 5, . .

I think you know the steps by now.

p x x x

p x x

x

x

1 0 5

4
5

1 0 5

4
5 1

0 5

0 4
5 1

4 5

1 5

1 5

.

.

.

1 5

1 5

1 5

1 5

5

0 5

0 5 4
5 1

2 5 1 4

1 8
5

1 8
5

9

.

.

.

x

x

x

x

x ..48576

That’s one critical number, but x 1 is also one because it produces an undefined derivative.

p

p

1 1 1 0 5 1

0 5

9 48576 9 48576 1 0 5 9 48

4 5

4 5

.

.

. . . . 5576

1 81072.

Left endpoint: p 2 2 1 0 5 2 2
4 5

.

Right endpoint: p 31 31 1 0 5 31 16 15 5 0 5
4 5

. . .

Your absolute max is at the left endpoint: – ,2 2 . There’s a tie for the absolute min: at the 

cusp: – , .1 0 5  and at the right endpoint: 31 0 5, . .

12 Find the absolute extrema of q x x x2 2 4cos sin  on the interval 
2

5
4

, . Absolute 

min at 
2

6, ; absolute maxes at 
6

3,   and 5  
6

3, .

q x x x

q x x x

x

2 2 4

2 2 2 4

0 4 2 4

cos sin

sin cos

sin cos xx

x x

x x x

0 2 4

0 2

sin cos

sin cos cos

dividing by 

trig identiity

0 2 1cos sinx x
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0

2 2

2 1 0

1
2

6 6

cos

,

sin

sin

,

x

x

x

x

x

 or

 5

Technically, x
2

 is not one of the critical numbers; being at an endpoint, it is refused 

membership in the critical number club. It’s a moot point, though, because you have to 
 evaluate the endpoints anyway.

q

q

6
2 2

6
4

6

2 1
2

4 1
2

3

2
2 2

2
4

2

cos sin

cos sin

2 4 2

6
2 2

6
4

6

2 1
2

4 1
2

3

q 5 5 5cos sin

Left endpoint: q
2

2 2
2

4
2

2 4 1 6cos sin

Right endpoint: q 5 5 5
4

2 2
4

4
4

2 0 4 2
2

2 828cos sin .

Pick your winners: absolute min at left endpoint: 
2

6,  and a tie for absolute max: 
6

3,  

and 5  
6

3, .

13 Find the intervals of concavity and the inflection points of f x x x x2 6 10 53 2 . f is 
concave up from  to the inflection point at 1 1, , then concave down from there to .

1. Get the second derivative.

f x x x x

f x x x

f x x

2 6 10 5

6 12 10

12 12

3 2

2

2. Set equal to 0 and solve.

12 12 0

1

x

x

3. Check for x values where the second derivative is undefined. None.



142      PART 3  Differentiation

4. Test your two regions — to the left and to the right of x 1 — and make your sign graph.

f x x

f

f

12 12

0 12

2 12

© John Wiley & Sons, Inc.

Because the concavity switches at x 1 and because f  equals zero there, there’s an 
inflection point at x 1.

5. Find the height of the inflection point.

f x x x x

f

2 6 10 5

1 1

3 2

Thus f is concave up from  to the inflection point at 1 1, , and then concave down 
from there to . As always, you should check your result on your graphing calculator. 
Hint: To get a good feel for the look of this function, you need a fairly odd graphing 
window — try something like xmin = –2, xmax = 4, ymin = –20, ymax = 20.

14 Find the intervals of concavity and the inflection points of g x x x4 212 . g is  concave up 
from  to the inflection point at 2 20, ; then concave down to an inflection point at 

2 20, ; then concave up again to .

1. Find the second derivative.

g x x x

g x x x

g x x

4 2

3

2

12

4 24

12 24

2. Set to 0 and solve.

12 24 0

2

2

2

2

x

x

x

3. Is the second derivative undefined anywhere? No.
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4. Test the three regions and make a sign graph. See the following figure.

g x x

g

g

g

12 24

2 24

0 24

2 24

2

© John Wiley & Sons, Inc.

Because the concavity switched signs at the two zeros of g , there are inflection points 
at these two x values.

5. Find the heights of the inflection points.

g x x x

g

g

4 212

2 20

2 20

g is concave up from  to the inflection point at 2 20, , concave down from there 
to another inflection point at 2 20, , and then concave up again from there to .

15 Find the intervals of concavity and the inflection points of p x x
x 2 9. Concave down from 

 to an inflection point at 3 3 3
12

, ; then concave up till the inflection point at 0 0,  ; 

then concave down again till the third inflection point at 3 3 3
12

,  ; and, finally, concave 
up to .

1. Get the second derivative.

p x
x x x x

x

x x

x

x

x

2 2

2 2

2 2

2 2

2

2

9 9

9

9 2

9

9

99

9 9 9 9

9

2 9

2

2 2 2 2 2 2

2 4

2 2

p
x x x x

x

x x 9 2 9 2

9

9 2 9 4 9

9

2 2

2 4

2 2 2

2

x x x

x

x x x x x

x
4

3 3

2 3

2

2 3

2 18 36 4

9

2 27

9

x x x x

x

x x

x
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2. Set equal to 0 and solve.

2 27

9
0

2 27 0

2

2 3

2

x x

x

x x

2 0

0

27 0

3 3

2x

x

x

x

or

3. Check for undefined points of the second derivative. None.

4. Test four regions with the second derivative. You can skip the sign graph.

You can do all of this in your head because all that matters is whether the answers are 
positive or negative.

p
x x

x

p

2 27

9

10
2 10 10 27

10 9

2

2 3

2

2 3

22

1
2 1 1 27

1 9

2
3

2

2 3

3

N P

P
N
P
N

p

N N

P
P
P
P

p

P N

P
N
P
N

p1
2 1 1 27

1 9

2

10

2

2 3

3

22 10 10 27

10 9

2

2

2 3

3

P P

P
P
P
P

The concavity goes negative, positive, negative, positive, so there’s an inflection point at 
each of the three zeros of p .

5. Find the heights of the inflection points.

p x x
x

p p p

2

2

9

3 3 3 3

3 3 9

3 3
27 9

3
12

0 0 3 3 3 3

3 3
2

9

3
12
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Taking a drive on highway p, you’ll be turning right from  to 3 3 3
12

, , then 

you’ll be turning left till 0 0, , then right again till 3 3 3
12

, , and on your final leg  

to , you round a very long bend to the left. (At each of the three inflection points, you’d 
be going straight for an infinitesimal moment.)

16 Find the intervals of concavity and the inflection points of q x x x5 3 . Concave down 
from  till an inflection point at about – . , – .0 085 0 171 ; then concave up till a vertical 
inflection point at 0 0,  ; then concave down till a third inflection point at about 
0 085 0 171. , . ; then concave up out to .

You know the routine.

q x x x

q x x x

q x x x

x

5 3

4 5 2 3

9 5 5 3

1
5

1
3

4
25

2
9

0 4
25 99 5 5 3

2
9x

Whoops, I guess this algebra’s kind of messy. Better get the zeros on your calculator: Just 
graph and find the x intercepts. There are two: x 0 085.  and x 0 085. . So you have two 
“critical numbers,” right? Wrong! Don’t forget to check for undefined points of the second 

derivative. Because q x
x x
4

25
2

99 5 5 3 , q  is undefined at x 0. Since q x  is defined at 

x 0, 0 is another “critical number.” So you have three “critical numbers” and four 
regions. You can test them with –1, –0.01, 0.01, and 1:

q x x x

q q q

4
25

2
9

1 14
225

0 01 158 0 01

9 5 5 3

. . 158 1 14
225

q

Thus the concavity goes down, up, down, up. Because the second derivative is zero at –0.085 
and 0.085 and because the concavity switches there, you can conclude that there are 
inflection points at those two x values. But because both the first and second derivatives 
are undefined at x 0, you have to check whether there’s a vertical tangent there. You can 
see that there is by just looking at the graph, but if you want to be rigorous about it, you 
figure the limit of the first derivative as x approaches zero. Since that equals infinity, you 
have a vertical tangent at x 0, and thus there’s an inflection point there.

Now plug in –0.085, 0, and 0.085 into q to get the y values, and you’re done.

17 For g x x x x3 2 , find all the values c in the interval 2 1,  that satisfy the Mean Value 

Theorem. The values of c are 1 7
3

 and 1 7
3

.
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1. Find the first derivative.

g x x x x

g x x x

3 2

23 2 1

2. Figure the slope between the endpoints of the interval.

g

g

m
g g

2 2 2 2

2

1 1

2 1
2 1

2 1
2 1

1

3 2

3. Set the derivative equal to this slope and solve.

3 2 1 1

3 2 2 0

2 4 24
6

2 2 7
6

1 7
3

1 7
3

2

2

x x

x x

x

  or  

Both are inside the given interval, so you have two answers.

18 For s t t t4 3 1 33 , find all the values c in the interval 0 3,  that satisfy the Mean Value 

Theorem. The value of c is 3
4

.

1. Find the first derivative.

s t t t

s t t t

4 3 1 3

1 3 2 3

3

4
3

2. Figure the slope between the endpoints of the interval.

s

s

m
s s

0 0

3 3 3 3

0

3 0
3 0

0 0
3

0

4 3 1 3

3. Set the derivative equal to the result from Step 2 and solve.

4
3

0

4
3

1 0

1 3 2 3

2 3 1

t t

t t

t t

t

2 3 1
0

4
3

1 0

3
4

 or   

Graph s to confirm that its slope at t 3
4

 is zero.
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Using Differentiation 
to Solve Practical 
Problems

Now that you’re an expert at finding derivatives, I’m sure you can’t wait to put your 
expertise to use solving some practical problems. In this section, you find problems 
that actually come up in the real world — problems like how a cat rancher should 

use 200 feet of fencing to build a three-sided corral next to a river (he only needs three sides 
because the river makes the fourth side and cats hate water) to maximize the grazing area for 
his cats.

Optimization Problems: From Soup to Nuts
Optimization problems are one of the most practical types of calculus problems. You use the 
techniques discussed below whenever you want to maximize or minimize something, such as 
maximizing profit or area or volume or minimizing cost or energy consumption, and so on.

Chapter 8

IN THIS CHAPTER

 » Optimizing space

 » Relating rates

 » Getting up to speed with position, 
velocity, and acceleration
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Q. A rancher has 400 feet of fencing and 
wants to build a corral that’s divided 
into three equal rectangles. See the 
following figure. What length and 
width will maximize the area?

© John Wiley & Sons, Inc.

A. 100 feet by 50 feet with an area of 
5,000 square feet.

1. Draw a diagram and label with 
variables.

2. a.   Express the thing you want 
maximized, the area, as a func-
tion of the variables.

Area Length Width

A x y3

b. Use the given information to 
relate the two variables to each 
other.

6 4 400

3 2 200

x y

x y

     (divide by 2)

c. Solve for one variable and substi-
tute into the equation from Step 
2a to create a function of a 
single variable.

2 200 3

100 1 5

y x

y x.

A x y

A x x x

x x

3

3 100 1 5

300 4 5 2

.

.

3. Determine the domain of the 
function.

You can’t have a negative length of 
fence, so x can’t be negative. And if 
you build the ridiculous corral with 
no width, all 400 feet of fencing 
would equal 6x. So

x x

x

0 6 400

200
3

and

4. Find the critical numbers of A x .

A x x x

A x x

x

x

x

300 4 5

300 9

0 300 9

9 300

100
3

2.

A x  is defined everywhere, so 

100
3

 is the only critical number.

5. Evaluate A x  at the critical number 
and at the endpoints of the domain.

A

A

A

0 0

100
3

300 100
3

4 5 100
3

5 000

200
3

0

2

.

,

The first and third results above 
should be obvious because they 
represent corrals with zero length 
and zero width.

You’re done. x 100
3

 maximizes 

the area. (You know x 100
3

 has to 

be a max because the area function 
is an upside-down parabola.) Plug 
that into y x100 1 5.  and you get 
y 50.

So the largest corral is 3 100
3

, or 
100 feet long, 50 feet wide, and has 
an area of 5,000 square feet.
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1 What are the dimensions of the soup can 
of greatest volume that can be made with 
50 square inches of tin? (The entire can, 
including the top and bottom, is made of 
tin.) And what’s its volume?

2 A Norman window is in the shape of a semi-
circle above a rectangle. If the straight edges 
of the frame cost $20 per linear foot and the 
circular frame costs $25 per linear foot, and 
you want a window with an area of 20 square 
feet, what dimensions will minimize the cost 
of the frame?

3 A right triangle is placed in the first quadrant 
with its legs on the x and y axes. Given that 
its hypotenuse must pass through the point 
2 5, , what are the dimensions and area of 

the smallest such triangle?

4 You’re designing an open-top cardboard box 
for a purveyor of nuts. The top will be made 
of clear plastic, but the plastic-box-top 
designer is handling that. The box must have 
a square base and two cardboard pieces that 
divide the box into four sections for the 
almonds, cashews, pecans, and walnuts. See 
the following figure. Given that you want a 
box with a volume of 72 cubic inches, what 
dimensions will minimize the total cardboard 
area and thus minimize the cost of the card-
board? What’s the total area of cardboard?

© John Wiley & Sons, Inc.
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Problematic Relationships: Related Rates
Related rates problems are the Waterloo for many a calculus student. But they’re not that bad 
after you get the basic technique down. The best way to get the hang of them is by working 
through lots of examples, so let’s get started.

After working each problem, ask yourself whether the answer makes sense. Asking this ques-
tion is one of the best things you can do to increase your success in mathematics and science. 
And while it’s not always possible to decide whether a math answer is reasonable, when it’s 
possible, this inquiry should be a quick, extra step of every problem you do.

Q. A homeowner decides to paint his 
home. He picks up a home improve-
ment book, which recommends that 
a ladder should be placed against a 
wall such that the distance from the 
foot of the ladder to the bottom of 
the wall is one third the length of 
the ladder. Not being the sharpest 
tool in the shed, the homeowner 
gets mixed up and thinks that it’s 
the distance from the top of the 
ladder to the base of the wall that 
should be a third of the ladder’s 
length. He sets up his 18-foot ladder 
accordingly, and — despite this 
unstable ladder placement — he 
manages to climb the ladder and 
start painting. (Perhaps the foot of 
the ladder is caught on a tree root or 
something.) His luck doesn’t last 
long, and the ladder begins to slide 
rapidly down the wall. One foot 
before the top of the ladder hits 
the ground, it’s falling at a rate of 
20 feet/second. At this moment, 
how fast is the foot of the ladder 
moving away from the wall?

A. Roughly 1.11 feet/second.

1. Draw a diagram, labeling it with 
any unchanging measurements 
and assigning variables to any 
changing things.

See the following figure.

© John Wiley & Sons, Inc.

You don’t have to draw the house — 
the basic triangle is enough. But 
I’ve sketched a fuller picture of this 
scenario to make clear what a bone-
head this guy is.

2. List all given rates and the rate you’re 
asked to figure out. Write these rates as 
derivatives with respect to time.

You’re told that the ladder is falling at 
a rate of 20 ft/sec. Going down is 
negative, so

dh
dt

db
dt

20 ?

h is the distance from the top of the 
ladder to the bottom of the wall; b is 
the distance from the base of the 
ladder to the wall.
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3. Write down the formula that con-
nects the variables in the problem, 
h and b.

That’s the Pythagorean Theorem, 
of course: a b c2 2 2, thus

h b2 2 218

4. Differentiate with respect to time.

This is a lot like implicit differ-
entiation because you’re 
differentiating with respect to t 
but the equation is in terms of h 
and b.

h b

h dh
dt

b db
dt

2 2 218

2 2 0

5. Substitute known values for the 
rates and variables in the equation 
from Step 4, and then solve for the 
thing you’re asked to determine.

You’re trying to determine db
dt

, 

so you have to plug numbers 
into everything else. But, as 
often happens, you don’t have a 
number for b, so use a formula 
to get the number you need. This 
will usually be the same formula 
you already used.

h b

b

b

2 2 2

2 2 2

18

1 18

323 17 97.  feet

(Obviously, you can reject the 
negative answer.)

Now you have what you need to 
finish the problem.

2 2 0

2 1 20 2 17 97 0

40
35 94
1 11

h dh
dt

b db
dt
db
dt
db
dt

.

.
.  feeet/sec

6. Ask yourself whether your answer is 
reasonable.

Yes, it does make sense. Hold a 
yardstick against a wall so the 
bottom of it is on the floor and the 
top of it is on the wall about 4 or 
5 inches from the floor. Then push 
the top of the yardstick 4 or 
5 inches down to the floor. You’ll 
see that the bottom would barely 
move farther out from the wall. 
Right triangles with a fixed hypot-
enuse like this one always work like 
that. If one leg is much shorter than 
the other, the short leg can change 
a lot while the long leg barely 
changes. It’s a by-product of the 
Pythagorean Theorem.
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5 A farmer’s hog trough is 10 feet long, and its 
cross-section is an isosceles triangle with a 
base of 2 feet and a height of 2 feet 6 inches 
(with the vertex at the bottom, naturally). 
The farmer is pouring swill into the trough 
at a rate of 1 cubic foot per minute. Just as 
the swill reaches the brim, her three hogs 
start violently sucking down the swill at a 
rate of 1

2
 cubic foot per minute for each hog. 

They’re going at it so vigorously that another 
1
2

 cubic foot of swill is being splashed out of 

the trough each minute. The farmer keeps 
pouring in swill, but she’s no match for her 
hogs. When the depth of the swill falls to 
1 foot 8 inches, how fast is the swill level 
falling?

6 A pitcher delivers a fastball, which the batter 
pops up — it goes straight up above home 
plate. When it reaches a height of 60 feet, 
it’s moving up at a rate of 50 feet per second. 
At this point, how fast is the distance from 
the ball to second base growing? Note: The 
distance between the bases of a baseball dia-
mond is 90 feet.

7 A 6-foot tall man looking over his shoulder 
sees his shadow that’s cast by a 15-foot-tall 
lamppost in front of him. The shadow 
frightens him so he starts running away 
from it — toward the lamppost. 
Unfortunately, this only makes matters 
worse, as it causes the frightening head of 
the shadow to gain on him. He starts to panic 
and runs even faster. Five feet before he 
crashes into the lamppost, he’s running at a 
speed of 15 miles per hour. At this point, how 
fast is the tip of the shadow moving?

8 Salt is being unloaded onto a conical pile at a 
rate of 200 cubic feet per minute. If the 
height of the cone-shaped pile is always 
equal to the radius of the cone’s base, how 
fast is the height of the pile increasing when 
it’s 18 feet tall?
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A Day at the Races: Position,  
Velocity, and Acceleration

The most important thing to know about this type of problem is that velocity is the derivative 
of position, and acceleration is the derivative of velocity. The following points about position, 
velocity, and acceleration with regard to the chariot race in Figure 8-1 provide some keys to 
approaching these problems.

FIGURE 8-1: 
A 200- 

palameter 
chariot race. 

© John Wiley & Sons, Inc.

 » The finish is 100 palameters from the start as the crow flies, so 100 palameters is the total 
displacement. (A palameter is a little-known unit of distance used in ancient Rome equal to 
the length of Julius Caesar’s palace — roughly 380 feet.) Say the start is at 0 0,  on a coordi-
nate system and the finish is at 100 0, . It’s 100 from 0 to 100, of course, so 100 is the total 
displacement.

 » Distance is different. You can see that the charioteers backtrack 50 palameters in the middle 
of the race. Because there are two extra 50-palameter legs, the total length of the race is 
200 palameters — that’s the distance. Distance is always positive or zero.

 » Displacement to the left is negative (in other problems, down would be negative). When, 
say, Maximus passes Atlas, his position is 75 palameters from the start. At Aphrodite, he’s 
back to only 25 palameters from the start as the crow flies. Displacement equals final posi-
tion minus initial position, so from Atlas to Aphrodite is a displacement of 25 75, or –50 
palameters.

 » Velocity is related to displacement, not distance traveled. Velocity has a special meaning in 
calculus and physics so forget the everyday meaning of it. Like displacement, if you’re going 
left (or down), that’s a negative velocity. And here’s a critical point: When you switch direc-
tions, your velocity is zero. Think of a ball thrown straight up. At its peak, for an infinitesimal 
moment, it is motionless, so its velocity is zero.
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 » Average velocity is defined as total displacement divided by total time. Say Glutius completes 
the race in half an hour. Because he travels 200 palameters, his average speed is 400 palam-
eters per hour. But because the total displacement is only 100, his average velocity is a mere 
200 palameters per hour (roughly 14 miles per hour).

 » Speed is regular old speed, and, unlike velocity, it’s always positive (or zero). If Maximus picks 
up speed to make the jump over the lion pit, his speed, naturally, increases. Note, however, 
that his velocity is decreasing — even though you see him speeding up — because his veloc-
ity is negative and is becoming a larger and larger negative.

 » And here’s the deal with acceleration (for calculus and physics): A positive acceleration means 
the velocity is increasing, and a negative acceleration means the velocity is decreasing. When 
you apply this definition to motion to the right or up, it seems sensible. But when you’re 
dealing with motion to the left or down, it seems strange. When Glutius speeds up to jump 
over the lion pit, you would say, in day-to-day speech, that he’s accelerating. But because 
he’s going left, his velocity is negative, and — since he’s speeding up — his velocity is becom-
ing a larger and larger negative. His velocity, therefore, is decreasing, and that means his 
acceleration is negative. Again, he’s speeding up, but his acceleration is negative — seems 
weird, but that’s the way it works. For calculus (and physics), because of this issue concerning 
motion to the right or up versus motion to the left or down, it’d probably be best to avoid the 
use of the terms accelerating and decelerating. Instead, use the following terms: positive accel-
eration, negative acceleration, positive velocity, negative velocity, speeding up, and slowing down.

For Problems 9, 10, and 11, a duck-billed platypus is swimming back and forth along the side 
of your boat, blithely unaware that he’s the subject for calculus problems in rectilinear motion. 
The back of your boat is at the zero position, and the front of your boat is in the positive direc-
tion (see the following figure). s t  gives the platypus’s position (in feet) as a function of time 
(seconds). Find his a) position, b) velocity, c) speed, and d) acceleration, at t 2 seconds.

9 s t t5 42

© John Wiley & Sons, Inc.
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10 s t t t t3 5 64 3 11 s t
t t
1 8 33

For Problems 12, 13, and 14, a three-toed sloth is hanging onto a tree branch and moving 
right and left along the branch. (The tree trunk is at zero and the positive direction goes out 
from the trunk.) s t  gives his position (in feet) as a function of time (seconds). Between t = 0 
and t 5, for each problem, find a) the intervals when he’s moving away from the trunk, the 
intervals when he’s moving toward the trunk, and when and where he turns around; b) his 
total distance moved and his average speed; and c) his total displacement and his average 
velocity.
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12 s t t t t2 8 53 2 13 s t t t t4 2

14 s t t
t

1
42
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Solutions to Differentiation Problem Solving
1 What are the dimensions of the soup can of greatest volume that can be made with 50 square 

inches of tin? What’s its volume? The dimensions are 3 1
4 inches wide and 3 1

4 inches tall. 
The volume is about 27.14 cubic inches.

1. Draw your diagram (see the following figure).

© John Wiley & Sons, Inc.

2. a. Write a formula for the thing you want to maximize, the volume:

V r h2

b. Use the given information to relate r and h.

Surface Area r rh 

top and bottom lateral area

2 22
6 74 84 674 84

550 2 2

25

2

2

r rh

r rh

c. Solve for h and substitute to create a function of one variable.

rh r

h
r

r

V r h

V r r
r

r

r r

25

25 25

25

2 2

2

3

3. Figure the domain.

r

h

0

0

is obvious

is also obvious

And because 25 2r rh (from Step 2b), when h 0, r 25 ; so to make h > 0, r must be 

less than 25 , or about 2.82 inches.
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4. Find the critical numbers of V r .

V r r

V r r

r

r

r

25

25 3

0 25 3

25
3

25
3

1 63

3

2

2

2

r

.  inchees  You can reject the negative answer because it s outsi’ dde the domain.

5. Evaluate the volume at the critical number.

V 1 63 25 1 63 1 63

27 14

3
. . .

.  cubic inches

That’s about 15 ounces. The can will be 2 1 63.  or about 3 1
4 inches wide and 25

1 63
1 63

.
.   

or about 3 1
4 inches tall. Isn’t that nice? The largest can has the same width and height 

and would thus fit perfectly into a cube. Geometric optimization problems frequently have 
results where the dimensions have some nice, simple mathematical relationship to each 
other.

By the way, did you notice that I skipped evaluating the volume at the endpoints of the 
domain? Can you guess why I did that? Hint: What’s the volume for the smallest and larg-
est value of the radius?

2 What dimensions will minimize the cost of the frame? The dimensions are about 4 3  wide 
and about 5 1  high. The minimum cost is roughly $373.

1. Draw a diagram with variables (see the following figure).

© John Wiley & Sons, Inc.

2. a. Express the thing you want to minimize, the cost.

Cost length of curved frame cost per linear foot

lengt

      

hh of straight frame cost per linear foot

x x

      

25 2 22 20

40 40

y

x x y25
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b. Relate the two variables to each other.

Area Semicircle Rectangle

x xy20
2

2
2

c. Solve for y and substitute.

2 20
2

20
2 4
10

4

40 40
2

2

xy x

y
x

x
x

x
x

Cost x x y

C x x

25

25 440 40 10
4

40 400

40 400

x
x

x

x x
x

x

x x
x

25 10

15

3. Find the domain.

x 0 is obvious. And when x gets large enough, the entire window of 20 square feet in area 
will be one big semicircle, so

20
2

40

3 57

2

2

2

x

x

x

x

40

40

.

Thus, x must be less than or equal to 3.57.

4. Find the critical numbers of C x .

C x x x
x

C x x

x

15

15

15

40 400

40 400

0 40 400

400

2

2

xx

x

x

x

2

2

40

400
40
400

40
2 143

15

15

15
.

Omit –2.143 because it’s outside the domain. So 2.143 is the only critical number.

5. Evaluate the cost at the critical number and at the endpoints.

C x x x
x

C

C

C

15

undefined

40 400

0

2 143 373

3 57 423

. $

. $
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You know C 2 143 373. $  is a min (not a max) because the cost goes up to $423 as x 
increases from 2.143, and as x decreases to zero, the cost also goes up (imagine plugging 
some tiny number like x = 0.001 into C x ; you get an enormous cost).

So, the least expensive frame for a 20-square-foot window will cost about $373 and will be 

2 2 143. , or about 4.286 feet or 4 3  wide at the base. Because y
x

x10
4

, the height of the 

rectangular lower part of the window will be 2.98, or about 3  tall. The total height will thus 
be 2.98 plus 2.14, or about 5 11 .

3 Given that a right triangle’s hypotenuse must pass through the point 2 5, , what are the 
dimensions and area of the smallest such triangle? The hypotenuse meets the y axis at 
0 10,   and the x axis at 4 0,  , and the triangle’s area is 20.

1. Draw a diagram (see the following figure).

© John Wiley & Sons, Inc.

2. a. Write a formula for the thing you want to minimize, the area:

A bh1
2

b. Use the given constraints to relate b and h.

This is a bit tricky — Hint: Consider similar triangles. If you draw a horizontal line 
from 0 5,  to 2 5, , you create a little triangle in the upper-left corner that’s similar 
to the whole triangle. (You can prove their similarity with AA — remember your geom-
etry? — both triangles have a right angle and both share the top angle.)

Because the triangles are similar, their sides are proportional:

height
base

height
bas

big triangle

big triangle

small triangle 

 

 

ee

h
b

h
small triangle 

5
2
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c. Solve for one variable in terms of the other — take your pick — and substitute into 
your formula to create a function of a single variable.

2 5

2 5

2 5

5
2

1
2
1
2

5
2

5

h b h

h bh b

h b b

h b
b

A bh

A b b b
b

bb
b

2

2 4

3. Find the domain.

b must be greater than 2 — do you see why? And there’s no maximum value for b.

4. Find the critical numbers.

A b b
b

A b
b b b b

b

b b

5
2 4

5 2 4 5 2 4

2 4

10 2 4

2

2 2

2

10

2 4

10 40
2 4

10 40
2 4

0

10 40 02

2

2

2

2

2

2
b

b

b b
b

b b
b

b b

110 4 0

0 4

b b

b   or  

Zero is outside the domain, so 4 is the only critical number. The smallest triangle must 
occur at b 4 because near the endpoints of the domain you get triangles with astronomi-
cal areas. (There’s a slight omission in the above math that does not affect the outcome. 
Can you find it? Hint: Look at the derivative’s denominator.)

5. Finish.

b

h b
b

h

4

5
2

5 4
4 2

10

  so

;

And the triangle’s area is thus 20.

4 Given that you want a box with a volume of 72 cubic inches, what dimensions will minimize 
the total cardboard area and thus minimize the cost of the cardboard? The minimizing 
dimensions are 6-by-6-by-2, made with 108 square inches of cardboard.

1. Draw a diagram and label with variables (see the following figure).

© John Wiley & Sons, Inc.
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2. a.  Express the thing you want to minimize, the cardboard area, as a function of the 
variables.

Cardboard area x xy xy 

square base four sides tw

2 4 2
674 84 674 84 oo dividers674 84

A x xy2 6

b. Use the given constraint to relate x to y.

Vol l w h

x x y72

c. Solve for y and substitute in the equation from Step 2a to create a function of one 
variable.

y
x

A x xy

A x x x
x

x
x

72 6

6 72

432

2
2

2
2

2

3. Find the domain.

x

y

0

0

is obvious

is also obvious

And if you make y small enough, say the height of a proton — great box, eh? — x would 
have to be astronomically big to make the volume 72 cubic inches. So, technically, there is 
no maximum value for x.

4. Find the critical numbers.

A x x
x

A x x x

x
x

x
x

x

2

2

2

2

3

432

2 432

0 2 432

432 2

216

6

You know this number has to be a minimum because near the endpoints, say when 
x 0 0001.  or y 0 0001. , you get absurd boxes — either thin and tall like a mile-high 
toothpick or short and flat like a square piece of cardboard as big as a city block with a 
microscopic lip. Both of these would have enormous area and would be of interest only to 
calculus professors. (Whoops; another slight math omission. Do you see it?)
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5. Finish.

x 6, so the total area is

A y
x

y

6 6 432
6

36 72

108

72

2

2
2And because   ,

That’s it — a 6-by-6-by-2 box made with 108 square inches of cardboard.

5 When the depth of the swill falls to 1 foot 8 inches, how fast is the swill level falling? It’s 
falling at a rate of 9 10 inches per minute.

1. Draw a diagram, labeling the diagram with any unchanging measurements and assigning 
variables to any changing things.

See the following figure.

© John Wiley & Sons, Inc.

Note that the figure shows the unchanging dimensions of the trough, 2 feet by 2 feet 6 
inches by 10 feet, and these dimensions are not labeled with variable names like l (for 
length), w (for width), or h (for height). Also note that the changing things — the height 
(or depth) of the swill and the width of the surface of the swill (which gets narrower as 
the swill level falls) — do have variable names, h for height and b for base (I realize it’s at 
the top, but it’s the base of the upside-down triangle shape made by the swill). Finally, 
note that the height of 1 foot 8 inches — which is the height only at one particular point 
in time — is in parentheses to distinguish it from the other unchanging dimensions.
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2. List all given rates and the rate you’re asked to figure out.

Express these rates as derivatives with respect to time. Give yourself a high-five if you 
realized that the thing that matters about the changing volume of swill is the net rate of 
change of volume.

Swill is coming in at 1 cubic foot per minute and is going out at 3 1
2

 cubic feet per minute 

(for the three hogs) plus another 1
2

 cubic feet per minute (the splashing). So the net is 1 
cubic foot per minute going out — that’s a negative rate of change. In calculus language, 
you write:

dV
dt

1 cubic foot per minute

You’re asked to determine how fast the height is changing, so write:

dh
dt

?

3. a. Write down a formula that involves the variables in the problem: V, h, and b.

The technical name for the shape of the trough is a right prism. And the shape of the 
swill in the trough — what you care about here — has the same shape. Imagine tipping 
this up so it stands vertically. Any shape that has a flat base and a flat top and that goes 
straight up from base to top has the same volume formula: Volume area heightbase .

Note that this “base” is the entire swill triangle and totally different from b in the 
figure; also this “height” is totally different from the swill height, h.

The area of the triangular base equals 1
2

bh and the height of the prism is 10 feet, so 

here’s your formula: V bh bh1
2

10 5 .

Because b doesn’t appear in your list of derivatives in Step 2, you want to get rid of it.

b. Find an equation that relates your unwanted variable, b, to some other variable in the 
problem so you can make a substitution and be left with an equation involving only  
V and h.

The triangular face of the swill is the same shape of the triangular side of the trough. If 
you remember geometry, you know that such similar shapes have proportional sides. So,

b h

b h

b h

2 2 5
2 5 2

0 8

.
.

.

Similar triangles often come up in related rate problems involving triangles, triangular 
prisms, and cones.

Now substitute 0.8h for b in the formula from Step 3a:

V bh

h h

h

5

5 0 8

4 2

.

4. Differentiate with respect to t.

dV
dt

h dh
dt

8
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In all related rates problems, make sure you differentiate (like you do here in Step 4) 
before you substitute the values of the variables into the equation (like you do in the next 
step when you plug 1 foot 8 inches into h).

5. Substitute all known quantities into this equation and solve for dh
dt

.

You were given that h 1 8  (you must convert this to feet), and you figured out in Step 2 
that dV

dt
1, so

1 8 1 2
3

1
40
3
3

40
9

10

dh
dt

dh
dt

 ft/min

 inches/min

Thus, when the swill level drops to a depth of 1 foot 8 inches, it’s falling at a rate of 9 10 
inches per minute. Mmm, mmm, good!

6. Ask whether this answer makes sense.

Unlike the example problem, it’s not easy to come up with a common-sense explanation 
of why this answer is or is not reasonable. But there’s another type of check that works 
here and in many other related rates problems.

Take a very small increment of time — something much less than the time unit of the 
rates used in the problem. This problem involves rates per minute, so use 1 second for your 
time increment. Now ask yourself what happens in this problem in 1 second. The swill is 
leaving the trough at 1 cubic foot/minute; so in 1 second, 1

60 cubic foot will leave the 
trough. What does that do to the swill height? Because of the similar triangles mentioned 
in Step 3b, when the swill falls to a depth of 1 foot 8 inches, which is 2 3 of the height of the 
trough, the width of the surface of the swill must be 2 3 of the width of the trough — and 

that comes to 11
3 feet. So the surface area of the swill is 1 1

3
10 feet.

Assuming the trough walls are straight (this type of simplification always works in this 
type of checking process), the swill that leaves the trough would form the shape of a very, 
very short box (“box” sounds funny because this shape is so thin; maybe “thin piece of 
plywood” is a better image).

The volume of a box equals length width height , thus

1
60

10 1 1
3

0 00125

height

height .

This tells you that in 1 second, the height should fall 0.00125 feet or something very close 
to it. (This process sometimes produces an exact answer and sometimes an answer with a 
very small error.) Now, finally, see whether this number agrees with the answer. Your 
answer was 9

10 inches/minute. Convert this to feet/second:

9
10

12 60 0 00125.

It checks.
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6 When it reaches a height of 60 feet, it’s moving up at a rate of 50 feet per second. At this 
point, how fast is the distance from second base to the ball growing? The distance is growing 
at about 21.3 feet per second.

1. Draw your diagram and label it. See the following figure.

© John Wiley & Sons, Inc.

2. List all given rates and the rate you’re asked to figure out.

dh
dt
dd
dt

50 ft/sec

?

3. Write a formula that involves the variables:

h d2 2 290 2

4. Differentiate with respect to time:

2 2h dh
dt

d dd
dt

Like in the example problem, you’re missing a needed value, d. So use the Pythagorean 
Theorem to get it:

h d

d

d

2 2 2

2 2 2

90 2

60 90 2

140 7.  feet  You can reject the  negative answer.
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Now do the substitutions:

2 2

2 60 50 2 140 7

2 60 50
2 140 7

21 3

h dh
dt

d dd
dt

dd
dt

dd
dt

.

.
.  ftt/sec

5. Check whether this answer makes sense.

For this one, you’re on your own. Hint: Use the Pythagorean Theorem to calculate d 1 50 
second after the critical moment. Do you see why I picked this time increment?

7 Five feet before the man crashes into the lamppost, he’s running at a speed of 15 miles per 
hour. At this point, how fast is the tip of the shadow moving? It’s moving at 25 miles per hour.

1. The diagram thing: See the following figure.

© John Wiley & Sons, Inc.

2. List the known and unknown rates.

dc
dt

c15 miles/hour  This is negative because  is shrinkinng.

db
dt

?

3. Write a formula that connects the variables.

This is another similar triangle situation. Note: For your two similar triangles, you can use 
either one of the above figures, but not both of them.

height
height

base
ba

big triangle

little triangle

big triangle 

 

 

sse

b
b c

b c b

b c

b c

little triangle 

15
6

15 15 6

9 15

3 5
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4. Differentiate with respect to t.

3 5db
dt

dc
dt

5. Substitute known values.

3 5 15

25

db
dt
db
dt

 miles/hour

Thus, the top of the shadow is moving toward the lamppost at 25 miles per hour (and is 
thus gaining on the man at a rate of 25 – 15 = 10 miles/hour).

A somewhat unusual twist in this problem is that you never had to plug in the given dis-
tance of 5 feet. This is because the speed of the shadow is independent of the man’s 
position.

8 If the height of the cone-shaped pile is always equal to the radius of the cone’s base, how 
fast is the height of the pile increasing when it’s 18 feet tall? It’s increasing at 2 1

3 inches per 
minute.

1. Draw your diagram: See the following figure.

© John Wiley & Sons, Inc.

2. List the rates: dV
dt

dh
dt

200 cubic feet per minute, ?

3. a. The formula thing:

V r hcone
1
3

2

b. Write an equation relating r and h so that you can get rid of r:

r h

What could be simpler? Now get rid of r:

V h h h1
3

1
3

2 3
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4. Differentiate:

dV
dt

h dh
dt

2

5. Substitute and solve for  dh
dt

 :

200 18

0 196 1
3

2 dh
dt

dh
dt

.  ft/min 2  inches/min

6. Check whether this answer makes sense.

Calculate the increase in the height of the cone from the critical moment h 18  to 1 200 

minute after the critical moment. When h 18, V 1
3

18
3
, or about 6107.256 cubic feet. 

1
200 minute later, the volume (which grows at a rate of 200 cubic feet per minute) will 

increase by 1 cubic foot to about 6108.256 cubic feet. Now solve for h:

6 108 256 1
3

6 108 256
1
3

18 000982

3

3

, .

, .

.

h

h

Thus, in 1 200 minute, the height would grow from 18 feet to 18.000982 feet. That’s a change 
of 0.000982 feet. Multiply that by 200 to get the change in 1 minute: 0 000982 200 0 196. . .

It checks.

9 s t t5 42

a. At t 2, the platypus’s position is s t 24 feet from the back of your boat.

b. v t s t t10 , so at t 2, the platypus’s velocity is s 2 20 feet/second (20 is  
positive so that’s toward the front of the boat).

c. Speed is the absolute value of velocity, so the speed is also 20 ft/sec.

d. Acceleration, a t , equals v t s t 10. That’s a constant, so the platypus’s 

 acceleration is 10 feet/second
second

 at all times.

10 s t t t t3 5 64 3

a. s 2  gives the platypus’s position at t 2; that’s 3 2 5 2 2 64 3 , or 4 feet, from the 
back of the boat.

b. v t s t t t12 15 13 2 . At t 2, the velocity is thus 37 feet per second.

c. Speed is also 37 feet per second.

d. a t v t s t t t36 302 . a 2  equals 84 feet/second
second

.
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11 s t
t t
1 8 33

a. At t 2, s 2  equals 1
2

1 3, or 11
2 feet. This means that the platypus is 11

2 feet behind 
the back of the boat.

b. v t s t t t2 424

v s2 2 2 24 2

1
4

24
16

1 3
4

2 4

 feet/second

A negative velocity means that the platypus is swimming “backward,” in other words, 
he’s swimming toward the left, moving away from the back of the boat.

c. Speed velocity , so the platypus’s speed is 1 3
4

 feet/second.

d. a t v t s t t t2 963 5, or 2 96
3 5t t

. a 2  is therefore 2
8

96
32

, or 3 1
4

feet/second
second

.

Give yourself a pat on the back if you figured out that this positive acceleration with a 
negative velocity means the platypus is actually slowing down.

12 s t t t t2 8 53 2

a. Find the zeros of the velocity:

v t s t t t

t t

t t

6 2 8

0 6 2 8

3 4

2

2

2

No solutions because the discriminant is negative. The discriminant equals b ac2 4 .

The fact that the velocity is never zero means that the sloth never turns around. At t 0, 
v t 8 ft/sec which is positive, so the sloth moves away from the trunk for the entire 
interval t 0 to t 5.

b. and c. Because there are no turnaround points and because the motion is in the positive 
direction, the total distance and total displacement are the same: 265 feet.

Displacement s s5 0 260 5 265

Whenever the total distance equals the total displacement, average speed also equals 
average velocity: 53 ft/sec.

Ave vel total displacement
total time

s s
. .  

 
5 0
5 0

265
5

533 ft/sec

13 s t t t t4 2

a. Find the zeros of v t : v t s t t t4 2 13

You’ll need your calculator for this:

Graph y t t4 2 13  and locate the x intercepts. There’s just one: x 0 385. . That’s the only 
zero of s t v t .
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Don’t forget that a zero of a derivative can be a horizontal inflection as well as a local 
extremum. You get turnaround points only at the local extrema.

Because v 0 1 (a leftward velocity) and v 1 5 (a rightward velocity), s 0 385.  must be 
a turnaround point (and it’s also a local min on the position graph). Does the first deriva-
tive test ring a bell?

Thus, the sloth is going left from t 0 sec to t 0 385.  sec and right from 0.385 to 5 sec. 
He turns around, obviously, at 0.385 sec when he is at s 0 385 0 3854. . 0 385 0 3852. . , 
or –0.215 meters. That’s 0.215 meters to the left of the trunk. I presume you figured out 
that there must be another branch on the tree on the other side of the trunk to allow the 
sloth to go left to a negative position.

b. There are two legs of the sloth’s trip. He goes left from t 0 till t 0 385. , then right from 
t 0 385.  till t 5. Just add up the positive lengths of the two legs.

length s s

length

leg 1

leg 2

 meters

0 385 0

0 215 0

0 215

.

.

.

s s5 0 385

5 5 5 0 215

645 215

4 2

.

.

.  meters

The total distance is thus 0 215 645 215. . , or 645.43 meters. That’s one big tree! The 
branch is over 2,000 feet long.

His average speed is 645 43 5. , or about 129.1 meters/second. That’s one fast sloth! 
Almost 300 miles per hour.

c. Total displacement is s s5 0 , that’s 645 0 645 meters. Lastly, his average veloc-
ity is simply total displacement divided by total time — that’s 645 5, or 129 meters per 
second.

14 s t t
t

1
42

a. Find the zeros of v t :

v t s t
t t t t

t

t t t

t

1 4 1 4

4

4 2 2

2 2

2 2

2 2

22 2

2

2 2

4

2 4

4

t t

t
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Set this equal to zero and solve:

t t

t

t t

t

2

2 2

2

2 4

4
0

2 4 0

2 4 16
2

3 236 1 236. .  or  

Reject the negative solution because it’s outside the interval of interest: t 0 to t 5. So, 
the only zero velocity occurs at t 1 236.  seconds.

Because v 0 0 25.  meters per second and v 5 0 037. , the first derivative test tells you 
that s 1 236.  must be a local max and therefore a turnaround point.

The sloth thus goes right from t 0 till t 1 236.  seconds; then turns around at s 1 236. , 
or about 0.405 meters to the right of the trunk, and goes left till t 5.

b. His total distance is the sum of the lengths of the two legs:

going right

going left

s s

s

1 236 0

0 405 0 25

0 155

5

.

. .

.

ss 1 236

0 198

.

.

Total distance is therefore about 0 155 0 198 0 353. . .  meters. His average speed is thus 
about 0 353 5. , or 0.071 meters per second. That’s roughly a sixth of a mile/hour — 
much more like it for a sloth.

c. Total displacement is defined as final position minus initial position, so that’s

s s5 0 6
29

1
4

0 043.  meters

And thus his average velocity is about 0 043 5. , or −0.0086 meters per second. You’re 
done.
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Even More Practical 
Applications of 
Differentiation

In this chapter, you see more ways to use differentiation to solve real-world problems. The 
three general topics here — tangent line and normal line problems, linear approximation, 
and business and economics problems — all involve lines tangent to a curve. This shouldn’t 

surprise you, because you’re dealing with differentiation here, which is all about the slope of 
a curve (and that’s the same thing as the slope of the line tangent to the curve). The problems 
in this chapter are all “practical” applications of differentiation in a sense, but some of them 
are — to be honest — much more likely to be found in a math book than in the real world. But 
at the other end of the spectrum, you find problems here like the economics problem of finding 
maximum profit. What could be more practical than that?

Make Sure You Know Your Lines:  
Tangents and Normals

In everyday life, it’s perfectly normal to go off on a tangent now and then. In calculus, on the 
other hand, there is nothing at all normal about a tangent. You need only note a couple points 
before you’re ready to try some problems:

Chapter 9

IN THIS CHAPTER

 » Going off on a tangent

 » Doing 37  in your head
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Q. Find all lines through 1 4,  either tangent to or normal to y x 3. For each tangent 
line, give the point of tangency and the equation of the line; for the normal lines, give 
only the points of normalcy.

A. Point of tangency is 2 8,  ; equation of tangent line is y x12 16. Points of nor-
malcy are approximately 1 539 3 645. , . , 0 335 0 038. , . , and 0 250 016. , . 0 .

1. Find the derivative.

y x

y x

3

23

2. For the tangent lines, set the slope from the general point x x,  3  to 1 4,  equal to 
the derivative and solve.

4
1

3

4 3 3

2 3 4 0

2

3
2

3 2 3

3 2

x
x

x

x x x

x x

x I used my calculatorr.

3. Plug this solution into the original function to find the point of tangency.

The point is 2 8, .

4. Get your algebra fix by finding the equation of the tangent line that passes through 
1 4,  and 2 8,  .

You can use either the point-slope form or the two-point form to arrive at 
y x12 16.

 » At its point of tangency, a tangent line has the same slope as the curve it’s tangent to. In 
calculus, whenever a problem involves slope, you should immediately think derivative. The 
derivative is the key to all tangent line problems.

 » At its point of intersection to a curve, a normal line is perpendicular to the tangent line drawn 
at that same point. When any problem involves perpendicular lines, you use the rule that 
perpendicular lines have slopes that are opposite reciprocals. So all you do is use the deriva-
tive to get the slope of the tangent line, and then the opposite reciprocal of that gives you 
the slope of the normal line.

Ready to try a few problems? Say, that reminds me. I once had this problem with my carburetor. 
I took my car into the shop, and the mechanic told me the problem would be easy to fix, but 
when I went back to pick up my car . . . Wait a minute. Where was I?
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5. For the normal lines, set the slope from the general point x x,  3  to 1 4,  equal to the opposite 
reciprocal of the derivative and solve.

4
1

1
3

12 3 1

3 12 1 0

1 539 0 335

3

2

2 5

5 2

x
x x

x x x

x x x

x . , . , 

oor     Use your calculator0 250. .

6. Plug these solutions into the original function to find the points of normalcy.

Plugging the points into y x 3 gives you the three points: 1 539 3 645. , . , 0 335 0 038. , . , and 
0 250 0 016. , . .

1 Two lines through the point 1 3,  are tan-
gent to the parabola y x 2. Determine the 
points of tangency.

2 The Earth has a radius of 4,000 miles. Say 
you’re standing on the shore and your eyes are 
5 3 36 .  above the surface of the water. How far 
out can you see to the horizon before the 
Earth’s curvature makes the water dip below 
the horizon? See the following figure.

© John Wiley & Sons, Inc.
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3 Find all lines through 0 1,  normal to the 
curve y x 4. The results may surprise you. 
Before you begin solving this, graph y x 4 
and put the cursor at 0 1, . Now guess where 
normal lines will be and whether they repre-
sent shortest paths or longest paths from 
0 1,  to y x 4. Note: Do ZoomSqr to get the 

distances on the graph to appear properly 
proportional to each other.

4 An ill-prepared adventurer has run out of 
water on a hot, sunny day in the desert.  
He’s 30 miles due north and 7 miles due  
east of his camp. His map shows a winding 
river — that by some odd coincidence hap-
pens to flow according to the function 

y x x x10
10

10
5

sin cos  (where his camp 

lies at the origin). See the following figure. 
What point along the river is closest to him? 
He figures that he and his camel can just 
barely make it another 15 miles or so. (Hint: 
The closest point must occur at a point of 
normalcy.)

© John Wiley & Sons, Inc.
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Q. Use linear approximation to estimate 
703 .

A. 4.125.

1. Find a perfect cube root near 703 .

You notice that 703  is near a 
no-brainer, 643 , which, of course, 
is 4. That gives you the point 
64 4,  on the graph of y x3 .

2. Find the slope of y x3  (which 
is the slope of the tangent line) at 
x 64.

y x1
3

2 3, so the slope at 64 is 1
48

.

This tells you that — to approxi-
mate cube roots near 64 — you 
add (or subtract) 1 48 to 4 for each 
increase (or decrease) of one from 
64. For example, the cube root of 
65 is about 4 1

48, the cube root of 66 
is about 4 2

48, or 4 1
24, the cube root 

of 67 is about 4 3
48, or 4 1

16, and the 
cube root of 63 is about 3 47

48.

3. Use the point-slope form to write 
the equation of the tangent line at 
64 4,  .

y y m x x

y x

y x

1 1

4 1
48

64

4 1
48

64

  

In the third line of the above 
equation, I put the 4 in the front of 
the right side of the equation 
(instead of at the far right, which 
might seem more natural) for two 
reasons. First, because doing so 
makes this equation jibe with the 
explanation at the end of Step 2 
about starting at 4 and going up 
(or down) from there as you move 
away from the point of tangency. 
And second, to make this equation 
agree with the explanation at the 
end of Step 4. You’ll see how it all 
works in a minute.

Looking Smart with Linear Approximation
Linear approximation is easy to do, and once you get the hang of it, you can impress your 
friends by approximating things like 703  in your head — like this: Bingo! 4.125. How did I do 
it? Look at Figure 9-1 and then at the example to see how I did it.

FIGURE 9-1: 
The line 

tangent to 
the curve at 

(64, 4) can be 
used to 

approximate 
cube roots or 

numbers 
near 64. 

© John Wiley & Sons, Inc.
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5 Estimate the 4th root of 17. 6 Approximate 3 015. .

4. Because this tangent line runs so 
close to the function y x3  near 
x 64, you can use it to estimate 
cube roots of numbers near 64, 
like at x 70.

y 4 1
48

70 64

4 6
48

4 1
8

By the way, in your calc text, the 
simple point-slope form from 
algebra (first equation line in 
Step 3 above) is probably rewritten 
in highfalutin calculus terms —  
like this:

l x f x f x x x0 0 0

Don’t be intimidated by this 
equation. It’s just your friendly old 
algebra equation in disguise! Look 
carefully at it term by term and 
you’ll see that it’s mathematically 
identical to the point-slope 
equation tweaked like this: 
y y m x x1 1 . (The different 
subscript numbers, 0 and 1, have 
no significance.)
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7 Estimate sin
180 ; that’s one degree, of 

course.

8 Approximate ln e10 5 .

Calculus in the Real World:  
Business and Economics

This chapter concerns practical applications of differentiation. But the topics of the first two 
sections of the chapter — tangent and normal lines and linear approximation — though cer-
tainly applications of differentiation, are not exactly practical. So, in this section, you finally 
see honest-to-goodness practical problems about business and economics. Specifically, you 
see problems about marginals: marginal cost, marginal revenue, and marginal profit.

Marginals work exactly like linear approximation. In the example in the previous section on 
linear approximation, you take the derivative of y x3  to find that the slope of the tangent line 
to y x3  at 64 4,  is 1 48. And that tells you that if you go one to the right (from 64 to 65) along 
y x3 , the curve goes up approximately 1 48 (from 4 to about 4 1

48). In economics problems, that 
extra bit that you go up (or down) — like that 1 48 — is called a marginal.

Marginal cost tells you the approximate increase in the cost function as you go one to the right 
along the function. It thus tells you the approximate cost of producing one more item. Marginal 
revenue and marginal profit work the same way. (Marginal cost and marginal revenue are almost 
always positive; marginal profit can be positive or negative.)

Marginal cost equals the derivative of the cost function.

Marginal revenue equals the derivative of the revenue function.

Marginal profit equals the derivative of the profit function.
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Q. A thingamajob manufacturer finds that the demand function for his thingamajobs is

p x600 2 3

where p is the price of a thingamajob and x is the number of thingamajobs demanded. 
(Note that a demand function like this can also be called a price function.) The cost of 
producing x thingamajobs is given by the function,

C x x x4 150 1 0003 ,

Determine the following:

a. the approximate cost of producing the 126th thingamajob

b. the approximate revenue from the 126th thingamajob

c. the approximate profit from the 126th thingamajob

A. a. $6.00.

C x x x

x x

C x x

4 150 1 000

4 150 1 000

4 50

3

1 3

2 3

,

,

That first derivative is the marginal cost function. The approximate cost of producing 
the 126th thingamajob is given by C 125 , so

C 125 4 50 125

4 50 1
25

6

2 3

The marginal cost at x 125 is $6.00. That’s your answer.

b. $8.00.

Revenue equals the number of items sold, x, times the price per item, p, thus,

R x x p

x x600 2 3   (using the demand or price function)

6600

200

1 3

2 3

x

R x x

That’s the marginal revenue function. The approximate revenue generated by the 126th 
thingamajob is given by R 125 :

R 125 200 125

200 1
25

8

2 3
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The marginal revenue at x 125 is $8.00, and that represents the approximate extra 
revenue generated for the firm by the sale of the 126th thingamajob. (By the way, 
strange as it may seem, this is not the same amount as the price of the 126th thing-
amajob. Don’t sweat this; it has to do with the fact that if 126 thingamajobs are sold, 
the price for all 126 thingamajobs would be, in theory, a bit less than if only 125 thing-
amajobs are sold.)

c. $2.00.

Profit equals revenue minus cost, so

P x R x C x

x x x

x x

P x

600 4 150 1000

4 450 1000

1 3 1 3

1 3

4 150 2 3x

That’s the marginal profit function. By the way, I do the above differentiation because I 
want to reinforce the idea that marginal profit is the derivative of the profit function. 
But you can get marginal profit more quickly in this problem — since you already have 
R x  and C x  — by using the fact that

P x R x C x

You just subtract marginal cost from marginal revenue to get marginal profit.

Finally, find the profit generated for the firm by the sale of the 126th thingamajob.

P 125 4 150 125

4 150 1
25

2

2 3

Thus, the 126th thingamajob generates a profit of $2.00. And here’s another shortcut. 
Did you notice that — since you already know R 125  and C 125  — all you needed to 
do to get P 125  was to subtract C 125  from R 125 ?

P R C125 125 125

6 4

2

I did it the long way because you often need to do it that way.

For Problems 9 through 12, use the following demand (or price) and cost functions for 
the production and sale of some widgets.

p x x

C x x x

400 0 0002

50 000 100 0 0001

1 5

3

.

, .

.
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11 What’s the profit generated by the 401st, 
901st, and 1,601st widgets?

12 a.  How many widgets should be manufac-
tured and sold to maximize the firm’s 
profit?

b. What is that maximum profit?

c.  What price should the widgets be sold for 
to achieve this maximum profit?

9 a. What’s the marginal cost at x 100?

b.  What’s the cost of producing the 201st 
widget?

10 a. What’s the marginal revenue function?

b.  What additional revenue is generated for 
the firm by the 101st, 401st, and 901st 
widgets?
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Solutions to Differentiation Problem Solving
1 Two lines through the point 1 3,  are tangent to the parabola y x 2. Determine the points of 

tangency. The points of tangency are 1 1,   and 3 9,  .

1. Express a point on the parabola in terms of x.

The equation of the parabola is y x 2, so you can take a general point on the parabola 
x y,   and substitute x 2 for y. So your point is x x,  2 .

2. Take the derivative of the parabola.

y x

y x

2

2

3. Using the slope formula, m
y y
x x

2 1

2 1

, set the slope of the tangent line from 1 3,  to 

x x,  2  equal to the derivative. Then solve for x.

x
x

x

x x x

x x

x x

x

2

2 2

2

3
1

2

3 2 2

2 3 0

1 3 0

1 3  or  

4. Plug these x coordinates into y x 2 to get the y coordinates.

y

y

1 1

3 9

2

2

and

So there’s one line through 1 3,  that’s tangent to the parabola at 1 1,  and another 
through 1 3,  that’s tangent at 3 9, . You may want to confirm these answers by 
graphing the parabola and your two tangent lines:

y x

y x

2 1 1

6 3 9

and

2 How far out can you see to the horizon before the Earth’s curvature makes the water dip 
below the horizon? The horizon is about 2.83 miles away.

1. Write the equation of the Earth’s circumference as a function of y (see the figure in the 
problem).

x y

y x

2 2 2

2 2

4 000

4 000

,

,

You can disregard the negative half of this circle because your line of sight will obvi-
ously be tangent to the upper half of the Earth.

2. Express a point on the circle in terms of x: x x, , 4 0002 2 .
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3. Take the derivative of the circle.

y x

y x x

x
x

4 000

1
2

4 000 2

4 000

2 2

2 2 1 2

2 2

,

,

,

Chain Rule

4. Using the slope formula, set the slope of the tangent line from your eyes to 
x, x4,0002 2  equal to the derivative and then solve for x.

Your eyes are 5 3 36 .  above the top of the Earth at the point 0 4 000, ,  on the circle. 
Convert your height to miles; that’s exactly 0.001 miles (what an amazing coincidence!). 
So the coordinates of your eyes are 0 4 000 001, , . .

y y
x x

m

x
x

x
x

x x

2 1

2 1

2 2

2 2

2 2

4 000 4 000 001
0 4 000

4 000

, , .

,

, 22 2 2

2

4 000 001 4 000

4 000 4 0

, . ,

, ,

x Cross-multiplication.

000 001 4 000

3 999 999

2 2. ,

, .

x Use your calculator, of course.

4 000

15 999 992 4 000

2 2

2 2

2

,

, , ,

x

x

x

Now square both sides.

88

2 2 2 83x .  miles

Many people are surprised that the horizon is so close. What do you think?

By the way, you can solve this problem much more quickly with some basic high school 
geometry; no calculus is needed. Can you do it?

3 Find all lines through 0 1,  normal to the curve y x 4. Five normal lines can be drawn to 
y x 4 from 0 1,  . The points of normalcy are 0 915 0 702. , . , 0 519 0 073. , . , 0 0,  , 
0 519 0 073. , . , and 0 915 0 702. , . .

1. Express a point on the curve in terms of x: A general point is x, x 4 .

2. Take the derivative.

y x

y x

4

34

3. Set the slope from 0, 1  to x, x 4  equal to the opposite reciprocal of the derivative and 
solve.

x
x x

x x x

x x x

4

3

7 3

6 2

1
0

1
4

4 4 0

4 4 1 0

x x x0 4 4 1 06 2     or     
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Unless you have a special gift for solving 6th-degree equations, you better use your 
calculator — just graph y x x4 4 16 2  and find all the x intercepts. There are x 
intercepts at about –0.915, –0.519, 0.519, and 0.915. Dig those palindromic numbers!

4. Plug these four solutions into y = x 4 to get the y coordinates (there’s also the x = 0 
no-brainer).

0 519 0 519 0 073

0 915 0 915 0 702

4 4

4 4

. . ~ .

. . ~ .

You’re done. Five normal lines can be drawn to y x 4 from 0 1, . The points of nor-
malcy are 0 915 0 702. , . , 0 519 0 073. , . , 0 0, , 0 519 0 073. , . , and 0 915 0 702. , . .

I find this result interesting. First, because there are so many normal lines, and second, 
because the normal lines from 0 1,  to 0 915 0 702. , . , 0 0, , and 0 915 0 702. , .  are all short-
est paths (compared to other points in their respective vicinities). The other two normals are 
longest paths. This is curious: When a curve is concave away from a point, a normal to the 
curve can only be a local shortest path, so you might think that in the current problem, 
where y x 4 is everywhere concave toward 0 1, , you could get only locally longest paths. But 
it turns out that when a curve is concave toward a point, you can get either a local shortest or 
a local longest path.

I played slightly fast and loose with the math for the x 0 solution. Did you notice that x 0 

doesn’t work if you plug it back into the equation x
x x

4

3
1
0

1
4

 because both denominators 

become zero? However — promise not to leak this to your calculus teacher — this is okay 

here because both sides of the equation become non-zero number
zero

. (Actually, they’re both 1
0

, 

but something like 5
0

2
0

 would also work.) Non-zero over zero means a vertical line with 

undefined slope. So the 1
0

1
0

 tells you that you have a vertical normal line at x 0.

4 What point along the river is closest to the adventurer? The closest point is 6 11 15 26. , . , 
which is 14.77 miles away.

1. Express a point on the curve in terms of x:

x x x x, sin cos 10
10

10
5

2. Take the derivative.

y x x x

y x x

x

10
10

10
5

10
10

1
10

10
10

1
5

1

sin cos

cos sin

cos
110

2
5

1sin x

3. Set the slope from 7, 30  to the general point equal to the opposite reciprocal of the 
derivative and solve.

30 10
10

10
5

7
1

10
2

5
1

sin cos

cos sin

x x x

x x x
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Unless you wear a pocket protector, don’t even think about solving this equation 
without a calculator.

Solve on your calculator by graphing the following equation and finding the x intercepts:

y

x x x

x x x

30 10
10

10
5

7
1

10
2

5
1

sin cos

cos sin

It’s a bit tricky to find the x intercepts for this hairy function. You have to play around 
with your calculator’s window settings a bit. And don’t forget that your calculator will 
draw vertical asymptotes that look like zeros of the function, but are not. Now, it turns 
out that this function has an infinite number of x intercepts (I think). There’s one 
between x 18 and –19 and there are more at bigger negatives. And there’s one 
between x 97 and 98 and there are more at bigger positives. But these zeros represent 
points on the river so far away that they need not be considered. Only three zeros are 
plausible candidates for the closest trip to the river. To see the first candidate zero, set 
xmin 1, xmax 10, xscl 1, ymin 5, ymax 25, and yscl 5. To see the other two, 
set xmin 10, xmax 30, xscl 1, ymin 2, ymax 10, and yscl 1. These zeros are at 
roughly 6.11, 13.75, and 20.58.

4. Plug the zeros into the original function to obtain the y coordinates.

You get the following points of normalcy: 6 11 15 26. , . , 13 75 14 32. , . , and 20 58 23 80. , . .

5. Use the distance formula, D = x x + y y2 1

2

2 1

2
, to find the distance from our 

parched adventurer to the three points of normalcy.

The distances are 14.77 miles to 6 11 15 26. , . , 17.07 miles to 13 75 14 32. , . , and 14.93 
miles to 20 58 23 80. , . . Using his trusty compass, he heads mostly south and a little west 
to 6 11 15 26. , . . An added benefit of this route is that it’s in the direction of his camp.

5 Estimate the 4th root of 17. The approximation is 2.03125.

1. Write a function based on the thing you’re trying to estimate.

f x x4

2. Find a “round” number near 17 where the 4th root is very easy to get: that’s 16, of 
course.

And you know 16 24 . So the point 16 2,  is on f.

3. Determine the slope at your point.

f x x

f x x

f

4

3 41
4

16 1
32

4. Use the point-slope form of a line to write the equation of the tangent line at 16, 2 .

y x2 1
32

16



CHAPTER 9  Even More Practical Applications of Differentiation      187

5. Plug your number into the tangent line and you have your approximation.

y 2 1
32

17 16

2 1
32

2 03125  or  .

The exact answer is about 2.03054. Your estimate is only 3 100 of 1 percent too big! Not too 
shabby. Extra credit question: No matter what 4th root you estimate with linear approxima-
tion, your answer will be too big. Do you see why?

6 Approximate 3 015. . The approximation is 247.05.

1. Write your function.

g x x 5

2. Find your round number.

That’s 3; well, duh. So your point is 3 243, .

3. Find the slope at your point.

g x x

g

5

3 405

4

4. Write the tangent line equation.

y y m x x

y x

1 1

243 405 3

5. Get your approximation.

y 243 405 3 01 3 247 05. .

Only 1 100 of a percent off.

7 Estimate sin
180

; that’s one degree, of course. The approximation is 
180

.

You know the routine (the angle size near 1 degree whose sine you can easily compute is zero 
degrees):

p x x

p

p x x

p

sin

,

cos

0 0 0 0

0 1

,  so   is your point

,,  so 1 is the slope at  0 0,

y y m x x

y x

y x

1 1

0 1 0

  is the tangent line

Your number is x
180

, so, since y x, you get y
180

.
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This shows that for very small angles, the sine of the angle and the angle itself are approxi-
mately equal. (The same is true of the tangent of an angle, by the way.) The approximation of 

180
 is only 1 200 of a percent too big!

8 Approximate ln e10 5 . The approximation is 10 5
10e

.

Just imagine all the situations where such an approximation will come in handy!

q x x

q e e

q x
x

q

ln

,10 1010 0

1

,  so  1  is your point

ee
e e

e10
10 10

101 1 10,  so  is the slope at  ,

y y m x x

y
e

x e

y
e

x e

1 1

10
10

10
10

10 1

10 1   is the tangennt line

Now you can plug in your number, x e10 5:

y
e

e e

y
e

10 1 5

10 5

10
10 10

10

Hold on to your hat. This approximation is a mere 0.00000026% too big!

9 a. What’s the marginal cost at x 100? $103.00.

C x x x

C x x

C

50 000 100 0 0001

100 0 0003

100 100 0 0

3

2

, .

.

. 0003 100

100 3

103

2

b. What’s the cost of producing the 201st widget? $112.00.

C 200 100 0 0003 200

100 12

112

2
.
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10 a. What’s the marginal revenue function? R x x400 0 0005 1 5. ..

1. Find the revenue function.

Revenue # of  items sold price per item  

R x x 400 0 000. 22

400 0 0002

1 5

2 5

x

x x

.

..

    using the price function

2. Take its derivative.

R x x400 0 0005 1 5. .

b. What additional revenue is generated for the firm by the 101st, 401st, and 901st widgets? 
$399.50, $396.00, and $386.50, respectively.

R

R

100 400 0 0005 100 399 50

400 400 0 0005 400

1 5

1

. .

.

.

.55

1 5

396 00

900 400 0 0005 900 386 50

.

. .
.

R

11 What’s the profit generated by the 401st, 901st, and 1,601st widgets? $248.00, $43.50, and 
$ .500 00, respectively.

Marginal profit marginal revenue marginal cost

P

  

x R x C x

x x

x

400 0 0005 100 0 0003

300 0 0005 0

1 5 2

1 5

. .

. .

.

. 00003 2x

And so. . .

P

P

400 300 0 0005 400 0 0003 400 248

900 300 0 0

1 5 2
. .

.

.

0005 900 0 0003 900 43 5

1600 300 0 0005 1600

1 5 2

1 5

.

.

. .

.P 0 0003 1600 500
2

.

This negative profit for the 1,601st widget tells you that the firm would lose money if it were 
to produce and sell that widget. Therefore, it will obviously want to produce and sell fewer 
widgets than that. See the solution to the next problem.

12 a.  How many widgets should be manufactured and sold to maximize the firm’s profit?  
974 widgets.

Like with any maximization problem, to find the maximum profit, you set the first deriva-
tive equal to zero and solve for x.

P x x x

x x

x

300 0 0005 0 0003

0 300 0 0005 0 0003

97

1 5 2

1 5 2

. .

. .

.

.

44 33.

(You have to use your calculator for this gnarly function.)
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Thus, the firm should produce and sell 974 widgets to maximize profits. (It’s kind of obvi-
ous in this problem that the profit function hits a maximum at this x value; but, if you 
want to be more rigorous, you should show that this x value is indeed where a maximum 
occurs, as opposed to a minimum or a horizontal inflection point.) I did this problem like 
any maximization problem, without mentioning marginals. But, as you know, the first 
derivative of the profit is the marginal profit. So, the preceding math shows that the mar-
ginal profit is zero when 974 widgets are sold. Do you see why the maximum profit should 
occur where the marginal profit equals zero?

b. What is the maximum profit? $143,877.52.

Determine the profit function and evaluate it at x 974. (This is a very unusual calculus 
problem, by the way, where you determined the derivative, P x , before you had the func-
tion itself, P x .)

P x R x C x

x x x x400 0 0002 50 000 100 0 0001

50

2 5 3. , .

,

.

0000 300 0 0002 0 0001

974 143 877 52

2 5 3x x x

P

. .

, .

.

c. What price should the widgets be sold for to achieve this maximum profit? $393.92.

Just plug 974 into the price function.

p x x

p

400 0 0002

974 400 0 0002 974

400 6 08

393

1 5

1 5

.

.

.

.

.

.

992



4Integration and 
Infinite Series



IN THIS PART . . .
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Get to know integration rules.

Work with integrals.

Tackle infinite series.
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Getting into Integration

In this chapter, you begin the second major topic in calculus: integration. With integration 
you can find the total area or volume of weird shapes that, unlike triangles, spheres, cones, 
and other basic shapes, don’t have simple area or volume formulas. You can use integra-

tion to total up other things as well. The basic idea is that when you have something (like a 
weird shape, say, an hourglass that doesn’t have a volume formula) that you can’t calculate 
directly, you use the magic of limits to sort of cut up the thing into an infinite number of tiny, 
infinitesimal pieces; you then calculate the volume of each tiny piece, and finally you add up 
the volumes of all the tiny pieces to get the total volume. But before getting into integration, 
you’re going to warm up with some easy stuff: pre-pre-pre-calc — the area of rectangles.

By the way, despite the “kid stuff” quip, much of the material in this chapter and the first section 
of Chapter 11 is both more difficult and less useful than what follows it. If ever there was a time 
for the perennial complaint — “What is the point of learning this stuff?” — this is it. Now, some 
calculus teachers would give you all sorts of fancy arguments and pedagogical justifications for 
why this material is taught, but, let’s be honest, the sole purpose of teaching these topics is to 
inflict maximum pain on calculus students. Well, you’re stuck with it, so deal with it. The good 
news is that this material will make everything that comes later seem easy by comparison.

Adding Up the Area of Rectangles: Kid Stuff
The material in this section — using rectangles to approximate the area of strange shapes —  
is part of every calculus course because integration rests on this foundation. But, in a sense, 
this material doesn’t involve calculus at all. You could do everything in this section without 
calculus, and if calculus had never been invented, you could still approximate area with the 
methods described here.

Chapter 10

IN THIS CHAPTER

 » Reconnoitering rectangles

 » Trying trapezoids

 » Summing sigma sums

 » Defining definite integration
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Q. Using 10 right rectangles, estimate the 
area under f x xln  from 1 to 6.

A. The approximate area is 6.181.

1. Sketch f x ln x and divide 
the interval from 1 to 6 into ten 
equal increments.

Each increment will have a 
length of 1

2, of course. See the 
figure in Step 2.

2. Draw a right rectangle for each 
of the ten increments.

You’re doing right rectangles, 
so put your pen on the right end 
of the base of the first rectangle 
(that’s at x 1 5. ), draw straight 
up till you hit the curve, and 
then straight left till you’re 
directly above the left end of 
the base (x 1). Finally, going 
straight down, draw the left 
side of the first rectangle. See 
the following figure. I’ve 
indicated with arrows how you 
draw the first rectangle. Draw 
the rest the same way.

© John Wiley & Sons, Inc.

3. Use your calculator to calculate the 
height of each rectangle.

The heights are given by f 1 5. , 
f 2 , f 2 5. , and so on, which are 
ln .1 5, ln2, and so on again.

4. Because you multiply each height 
by the same base of 1 2, you can save 
some time by doing the computa-
tion, like this:

1
2

1 5 2 2 5 3 3 5

4 4 5 5 5 5 6

1
2

0

ln . ln ln . ln ln .

ln ln . ln ln . ln

.4405 0 693 0 916 1 1 253

1 386 1 504 1 609 1 705 1 79

. . . .

. . . . .

099

22

1
2

12 362

6 181

.

.
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1 a.  Estimate the area under f x xln  from 
1 to 6 (as in the example), but this time 
with 10 left rectangles.

b.  How is this approximation related to the 
area obtained with 10 right rectangles? 
Hint: Compare individual rectangles from 
both estimates.

2 Approximate the same area again with  
10 midpoint rectangles.

3 Rank the approximations from the example 
and Problems 1 and 2 from best to worst and 
defend your ranking. Obviously, you’re not 
allowed to cheat by first finding the exact 
area with your calculator.

4 Use 8 left, right, and midpoint rectangles to 
approximate the area under sin x  from 0 to .
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Sigma Notation and Riemann Sums: Geek Stuff
Now that you’re warmed up, it’s time to segue into summing some sophisticated sigma sums. 
Sigma notation may look difficult, but it’s really just a shorthand way of writing a long sum.

In a sigma sum problem, you can pull anything through the sigma symbol to the outside except 
for a function of the index of summation (the i in the following example). Note that you can use 
any letter you like for the index of summation, though i and k are customary.

Q. Evaluate 5 2

4

12

i
i

.

A. The sum is 3,180.

1. Pull the 5 through the sigma symbol.

5 2

4

12

i
i

2. Plug 4 into i, then 5, then 6, and so 
on up to 12, adding up all the terms.

5 4 5 6 7 8 9 10 11 122 2 2 2 2 2 2 2 2

3. Finish on your calculator.

5 636 3 180,

Q. Express 50 60 70 80 1503 3 3 3 3  
with sigma notation.

A. 1 000 4
3

1

11

, i
i

.

1. Create the argument of the sigma 
function.

The jump amount between terms in 
a long sum will become the coeffi-
cient of the index of summation in a 
sigma sum, so you know that 10i is 
the basic term of your argument. 
You want to cube each term, so that 
gives you the following argument.

10
3

i

2. Set the range of the sum.

Ask yourself what i must be to make the 
first term equal 503: That’s 5, of course. 
And ask the same question about the last 
term of 1503: i must be 15. Put the  
5 and the 15 on the sigma symbol like 
this:

10
3

5

15

i
i

3. Simplify.

10

1 000

3 3

5

15

3

5

15

i

i

i

i

,

4. (Optional) Set the i to begin at zero  
or one.

It’s often desirable to have i begin at 0 
or 1. To turn the 5 into a 1, you 
subtract 4. Then subtract 4 from the 15 
as well. To compensate for this 
subtraction, you add 4 to the i in the 
argument:

1 000 4
3

1

11

, i
i
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Q. Estimate the area under f x x x2 3  
from 0 to 5 using 20 right rectangles. 
Use sigma notation where appropriate. 
Then use sigma notation to express 
the area approximation when you use 
n right rectangles.

A. For 20 rectangles: ≈ 84.2; for n 

 rectangles: 475 600 125
6

2

2
n n

n
.

1. Sketch the function and the first 
few and the last right rectangles.

See the following figure.

© John Wiley & Sons, Inc..

2. Add up the area of 20 rectangles.

Each has an area of base times 
height. So for starters you have

base height
20 rectangles

3. Plug in the base and height informa-
tion to get your sigma summation.

The base of each rectangle is 
5 0
20

, 

or 1
4

. So you have 

1
4

1
420 20

height height .

The height of the first rectangle is 

f 1
4

, the second is f 2
4

, the third 

is f 3
4

, and so on until the last 

rectangle, which has a height of 
f 5 . This is where the index, i, 
comes in. You can see that the jump 

amount from term to term is 1
4

,  

so the argument will contain  

1
4

i:1
4

1
420

f i .

4. Create the sum range.

i has to equal 1 to make the first term 

f 1
4

. And because you have to add up  

20 rectangles, i has to run through  
20 numbers, so it goes from 1 to 20: 
1
4

1
41

20

f i
i

.

5. Replace the general function expression 
with your specific function, 
f x x x2 3 .

1
4

1
4

3 1
4

2

1

20

i i
i

6. Simplify, pulling everything to the  
outside, except functions of i.

1
4

1
4

1
4

3 1
4

1
4

1
16

1
4

3
4

1

2

1

20

1

20

2

1

20

1

20

i i

i i

i i

i i

664
3

16
2

1

20

1

20

i i
i i

7. Compute the area, using the following 
rules for summing consecutive integers 
and consecutive squares of integers.

The sum of the first n integers equals 

n n 1
2

, and the sum of the squares 

of the first n integers equals 

n n n1 2 1
6

.

So now you’ve got:

1
64

20 20 1 2 20 1
6

3
16

20 20 1
2

1
64

20 21 41
6

3
16

10 21

17 220
384

630
16

84 2

,

.
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8. Express the sum of n rectangles 
instead of 20 rectangles.

Look back at Step 5. The 1
4

 

outside and the two 1
4

s inside 

come from the width of the 

rectangles that you got by 
dividing 5 (the span) by 20. So 

the width of each rectangle could 

have been written as 5
20

. To add 

n rectangles instead of 20, just 
replace the 20 with an n — that’s 
5
n

. So the three 1
4

s become 5
n

. At 

the same time, replace the 20 on 
top of the  with an n:

5 5 3 52

1n n
i

n
i

i

n

9. Simplify as in Step 6.

5 5 5 3 5

5 25 5 15

125

2

1 1

2
2

1 1

n n
i

n n
i

n n
i

n n
i

i

n

i

n

i

n

i

n

nn
i

n
i

i

n

i

n

3
2

1
2

1

75

10.  Now replace the sigma sums with the 
expressions for the sums of integers 
and squares of integers, like you did in 
Step 7.

125 1 2 1
6

75 1
2

250 375

3 2

2

n

n n n

n

n n

n n 125
6

75 75
2

475 600 125
6

2

2

2

2

2

n
n n

n
n n

n

Done! Finally! That’s the formula for 
approximating the area under 
f x x x2 3  from 0 to 5 with n 
rectangles — the more you use, the 
better your estimate. I bet you can’t 
wait to do one of these problems on 
your own.

Check this result by plugging 20 into 
n to see whether you get the same 
answer as with the 20-rectangle 
version of this problem.

475 20 600 20 125

6 20
84 2

2

2 .

It checks.

5 Evaluate 4
1

10

i

. 6 Evaluate 1 1
2

0

9
i

i

i .
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7 Evaluate 3 22

1

50

i i
i

. 8 Express the following sum with sigma 
 notation: 30 35 40 45 50 55 60.

9 Express the following sum with sigma 
 notation: 8 27 64 125 216.

10 Use sigma notation to express the following: 
2 4 8 16 32 64 128 256 512 1 024, .
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*11 Use sigma notation to express an 8-right-
rectangle approximation of the area under 
g x x2 52  from 0 to 4. Then compute the 
approximation.

*12 Using your result from Problem 11, write a 
formula for approximating the area under g 
from 0 to 5 with n rectangles.

Close Isn’t Good Enough: The Definite  
Integral and Exact Area

Now, finally, the first calculus in this chapter. Why settle for approximate areas when you can 
use the definite integral to get exact areas?

The exact area under a curve between a and b is given by the definite integral, which is defined 
as follows:

f x dx f x b a
n

a

b

n i
i

n

lim
1

In plain English, this simply means that you can calculate the exact area under a curve between 
two points by using the kind of formula you got in Step 10 of the previous example and then 
taking the limit of that formula as n approaches infinity. This gives you the exact area because 
it sort of uses an infinite number of infinitely narrow rectangles. (Okay, so maybe that wasn’t 
plain, but at least it was English.)

The function inside the definite integral is called the integrand.
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Q. The answer for the example in the last 
section gives the approximate area 
under f x x x2 3  from 0 to 5 given 

by n rectangles as 475 600 125
6

2

2
n n

n
. 

For 20 rectangles, you found the 
approximate area of ~84.2. With this 
formula and your calculator, compute 
the approximate area given by 50, 100, 
1,000, and 10,000 rectangles; then use 
the definition of the definite integral 
to compute the exact area.

A. The exact area is 79 16. .

Area

Area

Area

R

R

50

2

2

100

1

475 50 600 50 125
6 50

81 175

80 169

.

.

,,

,

.

.
000

1 000

79 267

79 267
R

RArea

These estimates are getting better and 
better; they appear to be headed toward 
something near 79. Now for the magic

of calculus — actually (sort of) adding up 
an infinite number of rectangles.

f x dx f x b a
n

x x dx

a

b

n i
i

n

n

lim

lim

1

2

0

5

3 4475 600 125
6

475
6

79 16 79 1
6

2

2
n n

n

.   or  

The answer of 475
6

 follows immediately 

from the horizontal asymptote rule (see 
Chapter 4). You can also break the fraction 
in Line 2 above into three pieces and do 
the limit the long way:

lim

lim lim lim

n

n n n

n n
n

n

475 600 125
6

475
6

100

2

2

125
6

475
6

0 0

475
6

2n

13 In Problem 11, you estimate the area under 
g x x2 52  from 0 to 4 with 8 right rect-
angles. The result is 71 square units.

a.  Use your result from Problem 12 to 
approximate the area under g with 50, 
100, 1,000, and 10,000 right rectangles.

b.  Now use your result from Problem 12 and 
the definition of the definite integral to 
determine the exact area under 
g x x2 52  from 0 to 4.

14 a.  Given the following formulas for n left, 
right, and midpoint rectangles for the 
area under x 2 1 from 0 to 3, approxi-
mate the area with 50, 100, 1,000, and 
10,000 rectangles with each of the three 
formulas:

L n n
n

R n n
n

M n

n rect

n rect

n rect

 

 

 

.

.

.

24 27 9
2

24 27 9
2

48

2

2

2

2

2 99
4 2n

b.  Use the definition of the definite integral 
with each of three formulas from the first 
part of the problem to determine the 
exact area under x 2 1 from 0 to 3.
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Finding Area with the Trapezoid  
Rule and Simpson’s Rule

To close this chapter, I give you two more ways to approximate an area. You can use these 
methods when finding the exact area is impossible. (Just take my word for it that there are 
functions that can’t be handled with ordinary integration to get an exact area.) With the  
trapezoid rule, you draw trapezoids under the curve instead of rectangles. See Figure  10-1, 
which shows the same function I used for the first example in this chapter.

Note: You can’t actually see the trapezoids, because their tops mesh with the curve, y xln . But 
between each pair of points, such as A and B, there’s a straight trapezoid top in addition to the 
curved piece of y xln .

The Trapezoid Rule: You can approximate the exact area under a curve between a and b with a 
sum of trapezoids given by the following formula. In general, the more trapezoids, the better 
the estimate.

T b a
n

f x f x f x f x f x f xn n n2
2 2 2 20 1 2 3 1

where n is the number of trapezoids, x0 equals a, and x1 through xn are the equally spaced  
x coordinates of the right edges of trapezoids 1 through n.

Simpson’s Rule also uses trapezoid-like shapes, except that the top of each “trapezoid” —  
instead of being a straight, slanting segment, as “shown” in Figure 10-1 — is a curve (actually 
a small piece of a parabola) that very closely hugs the function. Because these little parabola 
pieces are so close to the function, Simpson’s Rule gives the best area approximation of any of 
the methods. If you’re wondering why you should learn the Trapezoid Rule when you can just 
as easily use Simpson’s Rule and get a more accurate estimate, chalk it up to just one more 
instance of the sadism of calculus teachers.

FIGURE 10-1: 
Ten 

trapezoids 
(actually, 

one’s a 
triangle, but 

it works 
exactly like a 

trapezoid). 
© John Wiley & Sons, Inc.
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Simpson’s Rule: You can approximate the exact area under a curve between a and b with a 
sum of parabola-topped “trapezoids,” given by the following formula. In general, the more  
“trapezoids,” the better the estimate.

S b a
n

f x f x f x f x f x f x f xn n n3
4 2 4 2 40 1 2 3 4 1

where n is twice the number of “trapezoids” and x0 through xn are the n 1 evenly spaced  
x coordinates from a to b.

Q. Estimate the area under f x xln  
from 1 to 6 with 10 trapezoids. Then 
compute the percent error.

A. The approximate area is 5.733. The 
error is about 0.31%.

1. Sketch the function and the  
10 trapezoids.

Already done — refer to 
Figure 10-1.

2. List the values for a, b, and n,  
and determine the 11 x values, x0 
through x10 (the left edge of the 
first trapezoid plus the 10 right 
edges of the 10 trapezoids).

Note that in this and all similar 
problems, a equals x0 and b 
equals xn (x10 here).

a

b

n

x x x x x

1

6

10

1 1 5 2 2 5 60 1 2 3 10, . , , . , ,      

3. Plug these values into the Trapezoid Rule 
formula and solve.

T10
6 1
2 10

1 2 1 5 2 2 2 2 5

2 3 2 3 5 2 4 2 4 5

ln ln . ln ln .

ln ln . ln ln .

2 5 2 5 5 6

5
20

0 0 811 1 386 1 833 2 197

2 506 2 7

ln ln . ln

. . . .

. . 773 3 008 3 219

3 409 1 792

5 733

. .

. .

.

4. Compute the percent error.

My TI-89 tells me that the exact area 
is 5.7505568153635. . . For this 
problem, round that off to 5.751. The 
percent error is given by the error 
divided by the exact area. So that  
gives you:

percent error 5 751 5 733
5 751

0 0031 0 31. .
.

. . %

Compare this to the 10-midpoint- 
rectangle error you compute in the 
solution to Problem 2: a 0.14% error. 
In general, the error with a trapezoid 
estimate is roughly twice the corre-
sponding  midpoint-rectangle error.
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Q. Estimate the area under f x xln  
from 1 to 6 with 10 Simpson’s Rule 
“trapezoids.” Then compute the 
 percent error.

A. The approximate area is 5.751. The 
error is a mere 0.00069%.

1. List the values for a, b, and n, and 
determine the 21 x values, x0 
through x20 (the 11 edges and the  
10 base midpoints of the 10 curvy-
topped “trapezoids”).

a

b

n

x x x x x

1

6

20

1 1 5 2 2 5 60 1 2 3 20, . , , . , ,      

2. Plug these values into the formula.

S20
6 1
3 20

1 4 1 25 2 1 5 4 1 75

2 2 4 5 75 6

ln ln . ln . ln .

ln ln . ln

5
60

69 006202893232

5 7505169

.

.

3. Figure the percent error.

The exact answer, again, is 
5.7505568153635. Round that off to 
5.7505568.

percent error 5 7505568
5 7505568

5 7505169

0 0000069

0 000

.
.

.

.

. 669%

— way better than either the midpoint or 
trapezoid estimate. Impressed?

15 Continuing with Problem 4, estimate the 
area under y xsin  from 0 to  with 8 
 trapezoids, and compute the percent error.

16 Estimate the same area as Problem 15 with 
16 and 24 trapezoids, and compute the 
 percent errors.
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17 Approximate the same area as Problem 15 
with eight Simpson’s Rule “trapezoids” and 
compute the percent error.

18 Use the following shortcut to figure S20 for 
the area under ln x from 1 to 6. (Use the 
results from Problem 2 and the first example 
in this section.)

Shortcut: If you know the midpoint and 
 trapezoid estimates for n rectangles, you can 
easily compute the Simpson’s Rule estimates 
for n curvy-topped “trapezoids” with the 
following formula:

S M M T
n

n n n
2 3

Solutions to Getting into Integration
1 a.  Estimate the area under f x xln  from 1 to 6, but this time with 10 left rectangles.  

The area is 5.285.

1. Sketch a graph and divide the intervals into 10 subintervals.

2. a.  Draw the first left rectangle by putting your pen at the left end of the first base 
(that’s at x 1 ) and going straight up till you hit the function.

Whoops. You’re already on the function at x 1, right? So, guess what? For this 
 particular problem, there is no first rectangle — or you could say it’s a rectangle 
with a height of zero and an area of zero.

b. Draw the “second” rectangle by putting your pen at x 1 5. , going straight up till 
you hit f x ln x; then go right till you’re directly above x 2; and then go down 
to the x axis.

See the following figure.

© John Wiley & Sons, Inc.
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3. Draw the rest of the rectangles.

See the following figure.

© John Wiley & Sons, Inc.

4. Compute your approximation.

Area10
1
2

1 1 5 2 2 5 3 3 5 4 4 5 5 LRs ln ln . ln ln . ln ln . ln ln . ln lnn .

. . . . . . . .

5 5

1
2

0 0 405 0 693 0 916 1 099 1 253 1 386 1 504 1 6099 1 705

1
2

10 57

5 285

.

.

.

b. How is this approximation related to the area obtained with 10 right rectangles?  
The only difference is that the sum for left rectangles has a 0 at the left end and the 
sum for right rectangles has a 1.792 at the right end. The other 9 numbers in both 
sums are the same. Look at the second line in the computation in Step 4 above. Note 
that the sum of the 10 numbers inside the parentheses includes the first 9 numbers in 
the computation for right rectangles, which you see in Step 4 of the answer to the first 
example in this chapter. The only difference in the two sums is the left-most number 
in the left-rectangle sum and the right-most number in the right-rectangle sum.

If you look at the figure in Step 2 of the example and at the figure in Step 3 of the solution 
to 1(a), you’ll see why this works out this way. The first rectangle in the example figure is 
identical to the second rectangle in the solution 1(a) figure. The second rectangle in the 
example figure is identical to the third rectangle in the solution 1(a) figure, and so on. The 
only difference is that the solution 1(a) figure contains the left-most “rectangle” (the one 
with a height of zero) and the example figure contains the tall, right-most rectangle.

A left-rectangle sum and a right-rectangle sum will always differ by an amount equal 
to the difference in area of the left-most left rectangle and the right-most right rect-
angle. (Memorize this sentence and recite it in class — with your right index finger 
pointed upward for effect. You’ll instantly become a babe [dude] magnet.)

2 Approximate the same area again with 10 midpoint rectangles. The approximate  
area is 5.759.

1. Sketch your curve and the 10 subintervals again.

2. Compute the midpoints of the bases of all rectangles.

This should be a no-brainer: 1.25, 1.75, 2.25, . . . , 5.75.
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3. Draw the first rectangle.

Start on the point on f x xln  directly above x 1 25. , then go left till you’re above 
x 1 and right till you’re above x 1 5. , and then go down from both these points to 
make the two sides.

4. Draw the other nine rectangles.

See the following figure.

© John Wiley & Sons, Inc.

5. Compute your estimate.

Area10
1
2

1 25 1 75 2 25 2 75 3 25 3 75 4 LRs ln . ln . ln . ln . ln . ln . ln .. ln . ln . ln .

. . . . .

25 4 75 5 25 5 75

1
2

0 223 0 560 0 811 1 012 1 1799 1 322 1 447 1 558 1 658 1 749

5 760

. . . . .

.

3 Rank the approximations from the example and Problems 1 and 2 from best to worst and 
defend your ranking. The midpoint rectangles give the best estimate because each rectangle 
goes above the curve (in this sense, it’s too big) and also leaves an uncounted gap below the 
curve (in this sense, it’s too small). These two errors cancel each other out to some extent. 
By the way, the exact area is about 5.751. The approximate area with 10 midpoint rectangles, 
5.759, is only about 0.14% off.

It’s harder to rank the left versus the right rectangle estimates. Kudos if you noticed that 
because of the shape of f x xln , right rectangles will give a slightly better estimate 
(technically, it’s because ln x is concave down and increasing). It turns out that the right-
rectangle approximation is off by 7.48%, and the left-rectangle estimate is off by 8.10%. If 
you missed this question, don’t sweat it. It’s basically an extra-credit type question.

4 Use 8 left, right, and midpoint rectangles to approximate the area under sin x  from 0 to . 
The approximations are, respectively, 1.974, 1.974, and 2.013.

Let’s cut to the chase. Here are the computations for 8 left rectangles, 8 right rectangles, and 
8 midpoint rectangles:

Area8 8
0

8 8 8 8 8 8 LR
2 3 4 5 6sin sin sin sin sin sin ssin iin

. . . . . . .

7
8

8
0 0 383 0 707 0 924 1 0 924 0 707 0 383

8
5 0227 1 974.
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Area8 8 8 8 8 8 8 8 8 RR
2 3 4 5 6 7sin sin sin sin sin sin sin sin

. . . . . . .
8

0 383 0 707 0 924 1 0 924 0 707 0 383 0
8

5 0227 1 974.

Area8 8 16 16 16 16 16 16 MR
3 5 7 9 11sin sin sin sin sin sin sin sin

. . . . . .

13 15
16 16

8
0 195 0 556 0 831 0 981 0 981 0 8311 0 556 0 195

8
5 126 2 013. . . .

The exact area under sin x  from 0 to  has the wonderfully simple answer of 2. The error of 
the midpoint rectangle estimate is 0.65%, and the other two have an error of 1.3%. The left 
and right rectangle estimates are the same, by the way, because of the symmetry of the sine 
wave.

5 4 40
1

10

i

As often happens with many types of problems in mathematics, this very simple version of a 
sigma sum problem is surprisingly tricky. Here, there’s no place to plug in the i values, so all 
the i does is work as a counter:

4 4 4 4 4 4 4 4 4 4 4 10 4 40
1

10

i

6 1 1
2

0

9
i

i

i 55

1 0 1 1 1 1 1 2 1

1 2 3 4 5 6 7

0 2 1 2 2 2

2 2 2 2 2 2



22 2 2 28 9 10

55

7 3 2 131 3252

1

50

i i
i

,

3 2 3 2

3
50 50 1 2 50 1

6

2

1

50

1

50
2

1

50

1

50

i i i i
i i i i

2
50 50 1

2
131 325,

8 30 35 40 45 50 55 60  5
6

12

k
k

  or  5 5
1

7

k
k

  or  5 25
1

7

k
k

9 8 27 64 125 216  k
k

3

2

6

 or k 1
3

k 1

5

Did you recognize this pattern of consecutive cubes?

10 2 4 8 16 32 64 128 256 512 1 024,  1 2
1

10
i i

i

 or   2
1

10
i

i

To make the terms in a sigma sum alternate between positive and negative, use a –1 raised to 
a power in the argument. The power will usually be i or i 1 .
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*11 Use sigma notation to express an eight-right-rectangle approximation of the area  
under g x x2 52  from 0 to 4. Then compute the approximation. The notation and 
 approximation are 1

4
20 712

1

8

i
i

.

1. Sketch g x .

You’re on your own.

2. Express the basic idea of your sum:

base height
8 rectangles

3. Figure the base and plug in.

base

height height

4 0
8

1
2

1
2

1
28 8

4. Express the height as a function of the index of summation, and add the limits of 
summation:

1
2

1
21

8

g i
i

5. Plug in your function, g x x2 52 .

1
2

2 1
2

5
2

1

8

i
i

6. Simplify:

1
2

2 1
2

1
2

5 1
2

1
2

40 1
4

20
2

1

8

1

8 2
2

1

8
2

1

8

i i i
i i i i

7. Use the sum of squares rule to finish:

1
4

8 8 1 2 8 1
6

20 51 20 71

*12 Using your result from Problem 11, write a formula for approximating the area under g from 

0 to 5 with n rectangles. The formula is 188 192 64
3

2

2
n n

n
.

1. Convert the sigma formula for summing eight rectangles to one for summing n 
rectangles.

Look at Step 5 from the previous solution. The number 1
2

 appears twice. You got 1
2

 

when you computed the width of the base of each rectangle. That’s 4 0
8

, or 4
8

.  

You want a formula for n rectangles instead of 8, so that’s 4
n

 instead of 4
8

; also, you 

replace the 8 on top of  with an n:

4 2 4 5
2

1n n
i

i

n
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2. Simplify:

4 2 4 4 5 4 2 16 4 5 1282

1 1
2

2

1n n
i

n n n
i

n
n

ni

n

i

n

i

n

33
2

1
20i

i

n

3. Use the sum of squares formula.

128 1 2 1
6

20 128 192 64
3

20 188 1
3

2

2

2

n

n n n n n
n

n 992 64
3 2

n
n

13 a.  Use your result from Problem 12 to approximate the area with 50, 100, 1,000 and 10,000 
right rectangles. The approximations are, respectively, 63.955, 63.309, 62.731, and 
62.673.

Area n n
n

Area

n rect

rect

 

 

.

.

188 192 64
3

188 50 192 50 64

2

2

50

2

33 50
63 955

2

.

Because all right-rectangle estimates with this curve will be over-estimates, this result 
shows how far off the approximation of 71 square units was (from Problem 11). The 
answers for the rest of the approximations are

Area

Area

Area

R

R

R

100

1 000

10 000

63 309

62 731

62 673

.

.

.
,

,

b. Now use your result from Problem 12 and the definition of the definite integral to deter-
mine the exact area under 2 52x  from 0 to 4. The area is 62 6.  or 62 2

3
.

f x dx f x b a
n

x dx

a

b

n i
i

n

a

b

n

lim

lim

1

22 5 1888 192 64
3

188
3

62 6 62 2
3

2

2
n n

n

.   or  

14 a.  Given the following formulas for left, right, and midpoint rectangles for the area under 
x 2 1 from 0 to 3, approximate the area with 50, 100, 1,000, and 10,000 rectangles with 
each of the three formulas.

L R M

L R
R R R

R

50 50 50

100 100

11 732 12 272 11 9991

11 865

. . .

.

      

  RR R

R R

M

L R M

12 135 11 999775

11 987 12 014
100

1 000 1 000 1 00

. .

. ., , ,

 

00

10 000 10 000 10 000

11 99999775

11 999 12 001 1
R

R R RL R M

.

. ., , ,   11 9999999775.

You can see from the results how much better the midpoint-rectangle estimates are than 
the other two.
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b. Use the definition of the definite integral with each of three formulas from the first part of 
the problem to determine the exact area under x 2 1 from 0 to 3.

For left rectangles, x dx n n
nn

2

0

3 2

21 24 27 9
2

24
2

12lim

For right rectangles, x dx n n
nn

2

0

3 2

21 24 27 9
2

4
2

12lim 2

And for midpoint rectangles, x dx n
nn

2

0

3 2

21 48 9
4

48
4

12lim

Big surprise — they all equal 12. They had better all come out the same since you’re  
computing the exact area.

15 Continuing with Problem 4, estimate the area under y xsin  from 0 to  with eight trape-
zoids, and compute the percent error. The approximate area is 1.974 and the error is 1.3%.

1. List the values for a, b, and n, and determine the x values x0 through x8.

a b n

x x x x x

0 8

0
8 8 8

4
80 1 2 3 4

, ,

, , , , ,

    

  2  3   ..... ,,  x8
8
8

2. Plug these values into the formula.

T8
0

2 8
0 2

8
2

8
2

8
2

8

16
0

sin sin sin sin sin sin2 3 7

0 765 1 414 1 848 0 765 0 1 974. . . . .

The exact area of 2 was given in Problem 4, and thus the percent error is 2 1 974 2. , 
or 1.3%.

16 Estimate the same area with 16 and 24 trapezoids and compute the percent error.

T16
0

2 16
0 2

16
2

16
2

16
2

16
sin sin sin sin sin sin2 3 15

32
0 0 390 0 765 0 765 0 1 994. . . .

The approximate area for 16 trapezoids is 1.994 and the percent error is about 0.3%.

T24
0

2 24
0 2

24
2

24
2

24
2

24
sin sin sin sin sin sin2 3 23

48
0 0 261 0 518 0 1 997. . .

The approximate area for 24 trapezoids is 1.997 and the percent error is about 0.15%.

17 Approximate the same area with eight Simpson’s Rule “trapezoids” and compute the percent 
error. The area for eight “trapezoids” is 2.00001659 and the error is 0.000830%.

For eight Simpson’s “trapezoids”:

1. List the values for a, b, and n, and determine the x values x0 through x16, the nine edges 
and the eight base midpoints of the eight curvy-topped “trapezoids.”

a b n

x x x x x

0 16

0
16 16 16

4
160 1 2 3 4

,

, , , , ,

  ,  

  2  3   ......  , x16
16
16
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2. Plug these values into the formula.

S16
0

3 16
0 4

16
2

16
4

16
2

16
4sin sin sin sin sin sin2 3 4 1 55

16
2

48
0 0 7804 0 7654 2 2223 1 4142 0 7804 0

sin

. . . . . 2 00001659.

The percent error for eight Simpson “trapezoids” is about 0.000830%.

18 Use the following shortcut to figure S20 for the area under ln x from 1 to 6. S20 5 750. .

Using the formula given in Problem 18 and the results from Problem 2 and the example 
problem, you get:

S M M T

S M M T

n
n n n

2

20
10 10 10

3

3
5 759 5 759 5 733

3
5 750

. . .

.

This agrees (except for a small round-off error) with the result obtained the hard way in the 
Simpson’s Rule example problem.
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Integration: Reverse 
Differentiation

In this chapter, you really get into integration in full swing. First you look at the annoying 
area function, then the Fundamental Theorem of Calculus, and then two beginner integra-
tion methods.

The Absolutely Atrocious and  
Annoying Area Function

The area function is both more difficult and less useful than the material that follows it. With 
any luck, your calc teacher will skip it or just give you a cursory introduction to it. Once you 
finish this section and get to the next section on the Fundamental Theorem of Calculus, you’ll 
have no more use for the area function. It’s taught because it’s the foundation for the all- 
important Fundamental Theorem.

The area function is an odd duck and doesn’t look like any function you’ve ever seen before:

A x f t dtf
s

x

Chapter 11

IN THIS CHAPTER

 » Analyzing the area function

 » Getting off your fundament (butt) 
to study the Fundamental 
Theorem

 » Guessing and checking

 » Pulling the switcheroo
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The input of the function (its argument) is the x on top of the integral symbol. Note that f t  
is not the argument. The output, A xf , tells you how much area is swept out under the curve, 
f t , as you sweep along the horizontal axis from left to right from some starting point, s, up to 
the x value. (Note that the horizontal axis is called the t axis in these problems.) For example, 
consider the simple horizontal line g t 10 and the area function based on it, A x dtg

x
10

3
.

This area function tells you how much area is under the horizontal line (which is at a height of 
10) between vertical lines at 3 and at the x value. When x 4, the area is 10 because you have a 
rectangle with a base of 1 (from 3 to 4) and a height of 10. When x 5, the rectangle’s base is 
now 2, so it’s area and the output of the function is 20; when x 6, the output is 30, and so on. 
(For an excellent and thorough explanation of the area function and how it relates to the Fun-
damental Theorem, check out Calculus For Dummies, 2nd Edition.) The best way to get a handle 
on this weird function is to see it in action, so here goes.

Don’t forget that when using an area function (or a definite integral — stay tuned), area below 
the horizontal axis counts as negative area.

Q. Consider f t , shown in the following 
figure. Given the area function 
A x f t dtf

x

2
, approximate Af 4 , 

Af 5 , Af 2 , and Af 0 . Also, is Af  
increasing or decreasing between x 5 
and x 6? Between x 8 and x 9?

© John Wiley & Sons, Inc.

A. Af 4  is the area under f t  between 2 
and 4. That’s roughly a rectangle with 
a base of 2 and a height of 3, so the area 
is about 6. (See the shaded area in the 
figure.)

Af 5  adds a bit to Af 4  — the added 
shape is roughly a trapezoid with 
“height” of 1 and “bases” of 2 and 3 
(along the dotted lines at x 4 and x 5)  
that thus has an area of about 2.5 — so 
Af 5  is roughly 6 plus 2.5, or 8.5.

Af 2  is the area between 2 and 2, 
which is zero.

Af 0  is another area roughly in the 
shape of a trapezoid. Its height is 2 
and its bases are 2 and 3, so its area is 
about 5. But because you go backward 
from 2 to zero, Af 0  equals about –5.

Between x = 5 and x = 6, Af is 
increasing. Be careful here: f t  is 
decreasing between 5 and 6, but as 
you go from 5 to 6, Af  sweeps out 
more and more area so it’s increasing.

Between x = 8 and x = 9, while f t  
is increasing Af is decreasing. Area 
below the t axis counts as negative 
area, so in moving from 8 to 9, Af  
sweeps out more and more negative 
area, and it thus grows more and 
more negative. Af  is therefore 
decreasing.

For Problems 1 through 4, use the 

area function A x g t dtg

x

1 2
 and 

the following figure. Most answers 
will be approximations.
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1 Where (from x = 0 to x = 8) does Ag  equal 0?

© John Wiley & Sons, Inc.

2 Where (from x 0 to x 8) does Ag  reach

a. its maximum value?

b. its minimum value?

3 In what intervals between 0 and 8 is Ag

a. increasing?

b. decreasing?

4 Approximate Ag 1 , Ag 3 , and Ag 5 .
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Sound the Trumpets: The Fundamental 
Theorem of Calculus

The absolutely incredibly fantastic Fundamental Theorem of Calculus — some say one of or 
perhaps the greatest theorem in the history of mathematics — gives you a neat shortcut for 
finding area so you don’t have to deal with the annoying area function or that rectangle mumbo 
jumbo from Chapter 10. The basic idea is that you use the antiderivative of a function to find the 
area under it.

Let me jog your memory on antiderivatives: Because 3 2x  is the derivative of x 3, x 3 is an antide-
rivative of 3 2x . But so is x 3 5 because its derivative is also 3 2x . So anything of the form x C3  
(where C is a constant) is an antiderivative of 3 2x . (Technically, you say that x C3  is the family 
of antiderivatives of 3 2x , not that it is the antiderivative of 3 2x ; but you can say that x C3  is 
the indefinite integral of 3 2x .)

The Fundamental Theorem comes in two versions: the easy, more useful version and the diffi-
cult, less useful version. You learn the difficult, less useful version for basically the same reason 
you studied geometry proofs in high school, namely, “just because.”

The Fundamental Theorem of Calculus (the difficult, less useful version): Given an area function 

Af  that sweeps out area under f t , A x f t dtf s

x
, the rate at which area is being swept out is 

equal to the height of the original function. So, because the rate is the derivative, the derivative 

of the area function equals the original function: d
dx

A x f xf . Because A x f t dtf s

x
, 

you can also write the previous equation as follows: d
dx

f t dt f x
s

x
.

The Fundamental Theorem of Calculus (the easy, more useful version): Let F be any antideriva-
tive of the function f; then

f x dx F b F a
a

b

Q. a.  For the area function 

A x t t dtf

x 2

10
5 , what’s 

d
dx

A xf ?

 b. For the area function 

B x t dtf

x
sin

4

3 2

, what’s d
dx

B xf ?

A. a.  No work needed here. The answer is 
simply x x2 5 .

 b.  6 3 2x xsin .

The argument of an area function is 
the expression at the top of the inte-
gral  symbol — not the integrand. 
Because the argument of this area 
function, 3 2x , is something other 
than a plain old x, this is a chain rule 
problem. Thus, 
d
dx

B x x xf sin 3 62 , or 

6 3 2x xsin .
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Q. What’s the area under 2 52x  from  
0 to 4? Note this is the same question 
you worked on in Chapter 10 with the 
difficult, sigma-sum-rectangle 
method.

A. 188
3

.

Using the second version of the 
Fundamental Theorem, 

2 5 4 02

0

4
x dx F F , where F is 

any antiderivative of 2 52x .

Anything of the form 2
3

53x x C  is 

an antiderivative of 2 52x . You 
should use the simplest antiderivative 

where C = 0, namely, 2
3

53x x . Thus,

2 5 2
3

5

2
3

4 5 4 2
3

0 5 0

188
3

2

0

4
3

0

4

3 3

x dx x x

The same answer with much less work 
than adding up all those rectangles!

5 a. If A x t dtf

x
sin

0
, what’s d

dx
A xf ?

b. If A x t dtg

x
sin

4
, what’s d

dx
A xg ?

 *6 Given that A x t dtf

x
sin

cos

4
, find d

dx
A xf .
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7 For A xf  from Problem 5a, where does d
dx

Af  
equal zero?

 *8 For A xf  from Problem 6, evaluate Af 4
.

9 What’s the area under y xsin  from 0 to ? 10 Evaluate sin x dx
0

2
.
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11 Evaluate x x x dx3 2

2

3
4 5 10 . 12 Evaluate e dxx

1

2
.

Finding Antiderivatives: The Guess- 
and-Check Method

Your textbook, as well as the Cheat Sheet in Calculus For Dummies, 2nd Edition, lists a set of anti-

derivatives that you should memorize, such as the antiderivatives of sin x , 1
x

, or 1
1 2x

. (Most 

of them are simply the basic derivative rules you know written in reverse.) When you face a 

problem that’s similar to one of these — like finding the antiderivative of sin 5x  or 1
8x

 — you 

can use the guess-and-check method: Just guess your answer and check it by differentiating; 
then if it’s wrong, tweak it till it works.

Q. What’s sin 3x dx?

A. 1
3

3cos x.

You’ve memorized that the antideriv-
ative of sin x  is cos x. (You get that 
by considering the basic derivative 
rule. The derivative of cos x is sin x , 
which gives you, of course, that the 
derivative of cos x is sin x . Now 
reverse that to produce the antideriv-
ative rule.) So a good guess for this 

antiderivative would be cos 3x . 
When you check that guess by taking 
its derivative with the chain rule, you 
get 3 3sin x , which is what you want 
except for that first 3. To compensate 
for that, simply divide your guess by 3: 

cos 3
3

x . That’s it. If you have any 

doubts about this second guess, take 
its derivative and you’ll see that it 
gives you the desired integrand, 
sin 3x .
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13 Determine 4 1
3

x dx . 14 What’s sec2 6x dx?

15 Determine cos x dx1
2

. 16 What’s 3
2 5

dt
t

?
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17 Compute the definite integral, 
5 5 5

0
sec tant t dt.

18 Find 4 5
1 9 2

.
x

dx.

The Substitution Method: 
Pulling the Switcheroo

The group of guess-and-check problems in the previous section involves integrands that  differ 
from the standard integrand of a memorized antiderivative rule by a numerical amount. The 
next set of problems involves integrands where the extra thing they contain includes a variable 
expression. For these problems, you can still use the guess-and-check method, but the tradi-
tional way of doing such problems is with the substitution method.

Q. Find x x dx2 3sin  with the substitution 
method.

A. 1
3

3cos x C .

1. If a function in the integrand 
has something other than a 
plain old x for its argument, set 
u equal to that argument.

u x 3

2. Take the derivative of u with 
respect to x; then throw the dx 
to the right side.

du
dx

x

du x dx

3

3

2

2

3. Tweak your integrand so it 
contains the result from Step 
2 (3 2x dx), and compensate 
for this tweak amount by 
multiplying the integral by 
the reciprocal of the tweak 
number.

x x dx2 3sin
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You need a 3 in the integrand, 
so put in a 3 and compensate 
with a 1

3
.

1
3

3

1
3

2 3x x dxsin

sin x x dx
u du

3 23{124 34

4. Pull the switcheroo.

1
3

sinu du

5. Antidifferentiate by using the 
derivative of cos u in reverse.

1
3

cosu C

6. Get rid of the u by switch-
ing back to the original 
expression.

1
3

3cos x C

Q. Evaluate x x dx2 3

0

3

sin .

A. 2
3
1. This is the same as the previ-

ous Step 1 except that at the 
same time as setting u equal to 
x 3, you take the two x indices 
of integration and turn them 
into u indices of integration.

This is how it’s done:

u x

x u

x u

3

3 3 3

0 0when  

when  

,

,

So 0 and  are the two u indices of 
integration.

 2-3. Steps 2–3 are identical to Steps 
2–3 in the previous example 
except that you happen to be 
dealing with a definite integral 
in this problem.

4. Pull the switcheroo. This time, 
in addition to replacing the 
x 3 and the 3 2x dx with their u 
equivalents, you replace the x 
indices with the u indices:

1
3

0

sinu du

5. Evaluate.

1
3

1
3

1 1 2
3

0
cosu

If you prefer, you can skip deter-
mining the u indices of integra-
tion; just replace the u with x 3 like 
you did in Step 6 of the first 
example problem, and then evalu-
ate the definite integral with the 
original indices of integration. 
(Your calc teacher may not like 
this, however, because it’s not the 
book method.)

1
3

1
3

0

1
3

1 1 2
3

3

0

3 3 3

3

cos

cos cos

x
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19 Find the antiderivative, sin
cos

x
x

dx, with the 
substitution method.

20 Find the antiderivative, x x dx4 53 2 6 , with 
the substitution method.

21 Use substitution to determine 5 3 4

x e dxx . 22 Use substitution to determine sec2 x
x

dx.
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23 Evaluate 
t dt

t 2 40

2

5
. Change the indices of 

integration.

24 Evaluate 
s

s
ds

2 3 3

31

8 5
 without changing the 

indices of integration.
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Solutions to Reverse Differentiation Problems
1 Where (from x 0 to x 8) does Ag  equal 0? At about x 2 or 2 1

2 and about x 6.

Ag  equals zero twice between x 0 and x 8. First, somewhere between x 2 and x 21
2 

where the negative area beginning at x 1 cancels out the positive area between x 1
2 and 

x 1. The second zero of Ag  is somewhere between x 51
2 and x 6. After the first zero at 

about x 21
4 , negative area is added between 21

4  and 4. The positive area from 4 to, say, 53
4 

roughly cancels that out, so Ag  returns to zero at about x 53
4.

2 Where (from x 0 to x 8) does Ag  reach

a. its maximum value? Ag  reaches its max at about x 8. After the zero at about x 5 3
4, Ag  

grows by roughly 3 1
4  square units by the time x gets to 8.

b. its minimum value? The minimum value of Ag  is at x 4 where it equals something like 
11

2. Note that this minimum occurs at the point where all the negative area has been 
added (minimums often occur at points like that) and that when you move to the right 
past x 4, the area crosses above the t axis and the area begins to increase.

3 In what intervals between 0 and 8 is Ag

a. increasing? Ag  is increasing from 0 to 1 and from 4 to 8.

b. decreasing? Ag  is decreasing from 1 to 4.

4 Approximate Ag 1 , Ag 3 , and Ag 5 .

Ag 1  is a bit bigger than the right triangle with base from x 1
2 to x 1 on the t axis and 

vertex maybe at 1
2 4,  , which has an area of 1. So the area in question is slightly more than 1.

There’s a zero at about 21
4 . Between there and x 3 the area is very roughly –1, so Ag 3  is 

about –1.

In Problem 2b, you estimate Ag 4  to be about 11
2. Between 4 and 5, there’s sort of a trian-

gular shape with a rough area of 1 2. Thus Ag 5  equals about 11
2

1
2 or roughly –1.

5 a. If A x t dtf

x
sin

0
, d

dx
A x xf sin .

b. If A x t dtg

x
sin

4
, d

dx
A x xg sin .

 *6 Given that A x t dtf

x
sin

cos

4
, find d

dx
A xf . The answer is  sin sin cosx x .

This is a chain rule problem. Because the derivative of sin t dt
x

4
 is sin x , the derivative  

of sin t dt
stuff

4

 is sin stuff stuff . Thus the derivative of sin
cos

t dt
x

4
 is 

sin cos cos sin sin cosx x x x .

7 For A xf  from Problem 5a, where does d
dx

Af  equal zero? d
dx

A xf sin , so d
dx

Af  is zero at 

all the zeros of sin x, namely at all multiples of  : k  (for any integer, k).

 *8 For A xf  from Problem 6, evaluate Af 4
. In Problem 6, you found that 

A x x xf sin sin cos , so Af 4 4 4
2
2

2
2

0 459sin sin cos sin . .

9 What’s the area under y xsin  from 0 to ? The area is 2. The derivative of cos x is sin x , so 
cos x is an antiderivative of sin x . Thus, by the Fundamental Theorem, 
sin cosx dx x

0 0
1 1 2 2.
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10 sin cosx dx x
0

2

0

2
1 1 0. Do you see why the answer is zero?

11 x x x dx3 2

2

3

4 5 10 6 58.

x x x dx

x x x x

3 2

2

3

4 3 2

2

3

4 5 10

1
4

4
3

5
2

10

1
4

81 4
3

27 5
2

9 30 1
4

16 4
3

8 5
2

4 20

6 58.

12 e dxx

1

2

7 02.

e ex x, so e x is its own antiderivative as well as its own derivative. Thus, 

e dx e e ex x

1

2

1

2 2 1 7 02. .

13 4 1 1
16

4 1
3 4

x dx x C

1. Guess your answer: 1
4

4 1
4

x .

2. Differentiate: 4 1 4
3

x  (by the chain rule).

It’s 4 times too much.

3. Tweak guess: 1
16

4 1
4

x .

4. Differentiate to check: 1
4

4 1 4 4 1
3 3

x x .

Bingo.

14 sec tan2 6 1
6

6x dx x C

Your guess at the antiderivative, tan 6x , gives you tan sec6 6 62x x . Tweak the guess 

to 1
6

6tan x . Check: 1
6

6 1
6

6 6 62 2tan sec secx x x .

15 cos sinx dx x C1
2

2 1
2

Your guess is sin x 1
2

. Differentiating that gives you cos x 1
2

1
2

.

The tweaked guess is 2 1
2

sin x . That’s it.

16 3
2 5

3
2

2 5dt
t

t Cln

ln 2 5t  is your guess. Differentiating gives you: 1
2 5

2
t

.

You wanted a 3, but you got a 2, so tweak your guess by 3 over 2. (I’m a poet!)

This “poem” always works. Try it for the other problems. Often what you want is a 1. For 
example, for Problem 15, you’d have “You wanted a 1 but you got 1 2, so tweak your guess by 1 
over 1 2.” That’s 2, of course. It works!

Back to Problem 16. Your tweaked guess is 3
2

2 5ln t . That’s it.

17 5 5 5 2
0

sec tant t dt

Don’t let all those 5s and s distract you — they’re just a smoke screen.

Guess: sec 5t . Diff: sec tan5 5 5t t .
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Tweak: 1 5sec t . Diff: 1 5 5 5sec tant t . Bingo. So now —

1 5 1 4 2
0

sec sec sect .

18 4 5
1 9

3
2

32
1. tan

x
dx x C

I bet you’ve got the method down by now: Guess, diff, tweak, diff.

Guess: tan 1 3x . Diff: 1
1 3

32
x

.

Tweak: 3
2

31tan x . Diff: 3
2

1
1 3

32
x

. That’s it.

19 sin
cos

cosx
x

dx x C2

1. It’s not plain old x , so substitute u xcos .

2. Differentiate and solve for du.

du
dx

x

du x dx

sin

sin

3. Tweak inside and outside of the integral with negative signs: sin
cos

x
x

dx.

4. Pull the switch: du
u

.

5. Antidifferentiate with the reverse power rule: u du u C1 2 1 22 .

6. Get rid of u: 2 2
1 2

cos cosx C x C .

20 x x dx
x x

C4 53

5 53

2 6
3 3 2 6

20

1. It’s not plain old x , so substitute u x2 65 .

2. Differentiate and solve for du.

du
dx

x

du x dx

10

10

4

4

3. Tweak inside and outside: 1
10

10 2 64 53x x dx.

4. Pull the switcheroo: 1
10

3 u du.

5. Apply the power rule in reverse: 1
10

3
4

3
40

4 3
3

u C u u C .

6. Switch back: 
3 2 6 2 6

40
3 3 2 6

20

5 53 5 53x x
C

x x
C.

21 5 5
4

3 4 4

x e dx e Cx x

1. It’s not e plain old x , so u x 4.

2. You know the drill: du x dx4 3 .

3. Tweak: 5
4

4 3 4

x e dxx .
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4. Switch: 5
4

e duu .

5. Antidifferentiate: 5
4

eu C .

6. Switch back: 5
4

4

e Cx .

22 sec tan
2

2x
x

dx x C

1. It’s not sec2 plain old x , so u x .

2. Differentiate: du x dx
x

dx1
2

1
2

1 2 .

3. Tweak: 2
2

2sec x
x

dx.

4. Switch: 2 2sec u du.

5. Antidifferentiate: 2 tanu C .

6. Switch back: 2 tan x C .

23 
t dt

t 2 40

2

5
0 0011.

1. Do the U and Diff (it’s sweeping the nation!), and find the u indices of integration.

u t t u

du t dt t u

2 5 0 5

2 2 9

when  

when  

,

,

2. The tweak: 1
2

2

52 40

2 t dt

t
.

3. The switch: 1
2 45

9 du
u

.

4. Antidifferentiate and evaluate: 1
2

1
3

1
6

9 5 0 00113

5

9

3 3u . .

24 
s

s
ds

2 3 3

31

8 5
1 974 375, .

You know the drill: u s2 3 5; du s ds
s

ds2
3

2
3

1 3
3

.

s

s
ds

s

s
ds

u du

2 3 3

3
1

8 2 3 3

3
1

8

3

1

8

5 3
2

2 5

3

3
2

You’ll get a math ticket if you put an equal sign in front of the last line because it is not equal 
to the line before it. When you don’t change the limits of integration, you get this mixed-up 
integral with an integrand in terms of u, but with limits of integration in terms of x (s in this 
problem). This may be one reason why the preferred book method includes switching the 
limits of integration — it’s mathematically cleaner.

Now just antidifferentiate, switch back, and evaluate:

3
2

1
4

3
2

1
4

5 3
8

9 6 1 974 375

4

2 3 4

1

8
4 4

u

s , .
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Integration Rules for 
Calculus Connoisseurs

In this chapter, you work on some complex and challenging integration techniques. The 
methods may seem quite difficult at first, but, like with anything, they’re not that bad at all 
after some practice.

Integration by Parts: Here’s How u du It
Integration by parts is the counterpart of the product rule for differentiation (see Chapter 6), 
because the integrand in question is the product of two functions (usually). Here’s the method 
in a nutshell. You split up the two functions in the integrand, differentiate one, integrate the 
other, and then apply the integration-by-parts formula. This process converts the original 
integrand — which you can’t integrate — into an integrand you can integrate. Clear as mud, 
right? You’ll catch on to the technique real quick if you use the following LIATE acronym and 
the box method in the example. First, here’s the formula:

For integration by parts, here’s what u du: u dv uv v du.

Don’t try to understand that until you work through an example problem. Your first challenge 
in an integration-by-parts problem is to decide what function in your original integrand will 
play the role of the u in the formula. Here’s how you do it.

Chapter 12

IN THIS CHAPTER

 » Imbibing integration

 » Transfixing on trigonometric 
integrals

 » Partaking of partial fractions
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Q. Integrate x x dx2 ln .

A. 1
3

1
3

3x x Cln .

1. Pick your u function.

The integrand contains a logarith-
mic function (first on the LIATE 
list), so ln x is your u. Everything 
else in the integrand — namely 
x dx2  — is automatically your dv.

2. Use a box like the following one to 
organize the four elements of the 
problem.

© John Wiley & Sons, Inc.

To select your u function, just go down the following list; the first function type from this list 
that’s in your integrand is your u. To remember the list, just remember the acronym LIATE:

 » Logarithmic (like ln x)

 » Inverse trigonometric (like arcsin x)

 » Algebraic (like 4 103x )

 » Trigonometric (like sin x )

 » Exponential (like 5 x)

I wish I could take credit for this LIATE method, but credit goes to Herbert Kasube (see his 
article in American Mathematical Monthly 90, 1983). I can, however, take credit for the follow-
ing brilliant mnemonic device to help you remember the acronym: Lilliputians In Africa Tackle 
Elephants.

Put your u and your dv in the appro-
priate cells, as the following figure 
shows.

© John Wiley & Sons, Inc.

3. Differentiate the u and integrate the 
dv, as the arrows in the next figure 
show.

© John Wiley & Sons, Inc.
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4. Follow the arrows in the following 
box to help you remember how to 
use the integration-by-parts 
formula.

© John Wiley & Sons, Inc.

Your original integral equals the 
product of the two cells along the 
top minus the integral of the prod-
uct of the cells on the diagonal. 
(Think of drawing a “7” — that’s 
your order.)

x x dx x x x
x

dx2 3 31
3

1
3

1ln ln

5. Simplify and integrate.

1
3

1
3

1
3

1
3

1
3

1
3

1
9

1
3

3 2

3 3

3 3

x x x dx

x x x C

x x x C

x

ln

ln

ln ,  or

33 1
3

ln x C

You’re done.

1 What’s x x dxcos 5 2 ? 2 Integrate arctan x dx . Tip: Sometimes 
 integration by parts works when the 
 integrand contains only a single function.
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*5 What’s x e dxx2 ? Tip: Sometimes you have 
to do integration by parts more than once.

*6 Integrate e x dxx sin . Tip: Sometimes you 
circle back to where you started from — 
that’s a good thing!

3 Evaluate x x dxarctan . 4 Evaluate x dxx10
1

1

.
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Transfiguring Trigonometric Integrals
Don’t you just love trig? I’ll bet you didn’t realize that studying calculus was going to give you 
the opportunity to do so much more trig. Remember this next Thanksgiving when everyone 
around the dinner table is invited to mention something that they’re thankful for.

This section lets you practice integrating expressions containing trigonometric functions. The 
basic idea is to fiddle with the integrand until you’re able to finish with a u-substitution (see 
Chapter 11). In the next section, you use some fancy trigonometric substitutions to solve inte-
grals that don’t contain trig functions.

Q. Integrate sin cos3 6 d .

A. 1
7

1
9

7 9cos cos C .

1. Split up the sin3  into sin sin2  
and rewrite as follows:

sin cos sin2 6 d

2. Use the Pythagorean Identity to 
convert the even number of sines 
(the ones on the left) into cosines.

The Pythagorean Identity tells 
you that sin cos2 2 1x x  for any 
angle x. (If you divide both sides of 
this identity by sin2 x , by the way, 
you get another form of the iden-
tity: 1 2 2cot cscx x. If you divide 
by cos2 x , you get tan sec2 21x x.)

1 2 6

6 8

cos cos sin

cos sin cos sin

d

d d

3. Integrate with u-substitution with 
u cos  for both integrals.

u du u du

u du u du

u u C

6 8

6 8

7 9

7

1
7

1
9

1
7

1
9

cos coss9 C

7 sin cosx x dx3 3 *8 Evaluate cos sin4 2

0

6
t t dt . Hint: When the 

powers of both sine and cosine are even, you 
convert all sines and cosines into odd powers 
of cosine with these handy trig identities: 

sin cos2 1 2
2

x x  and cos cos2 1 2
2

x x .
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*11 tan8 t dt 12 csc cotx x dx3

*9 sec tan3 3x x dx . Hints: 1) This works pretty 
much like the example in this section; 2) 
Convert into secants.

*10 Evaluate tan sec2 4

4

3
d . Hint: After the 

split-up, you convert into tangents.
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Trigonometric Substitution:  
It’s Your Lucky Day!

In this section, you tackle integrals containing radicals of the following three forms: u a2 2 ,  

u a2 2 , and a u2 2 , as well as powers of those roots. To solve these problems, you use a 
SohCahToa right triangle, the Pythagorean Theorem, and some fancy trigonometric substitu-
tions. I’m sure you’ll have no trouble with this technique — it’s even easier than string theory.

Q. Find dx
x4 252

.

A. 1
2

4 25 22ln x x C .

1. Rewrite the function to fit the form 

u a2 2
.

dx

x2 5
2 2

2. Draw a SohCahToa right triangle 

where tan  equals u
a

, namely 2
5
x .

Note that when you make the 
 opposite side equal to 2x and the 
adjacent side equal to 5, the hypot-
enuse automatically becomes your 
radical, 4 252x . (This follows 
from the Pythagorean Theorem.) 
See the following figure.

© John Wiley & Sons, Inc.

3. Solve tan 2
5
x  for x, differentiate, 

and solve for dx.

2
5

5
2

5
2
5
2

2

2

x

x

dx
d

dx d

tan

tan

sec

sec

4. Determine which trig function is rep-
resented by the radical over the a; 
then solve for the radical.

In the figure in Step 2, the radical is 
on the Hypotenuse, and the a, namely 
5, is the Adjacent side. H

A
 is secant so 

you’ve got

4 25
5

4 25 5

2

2

x

x

sec

sec
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13 Integrate dx
x x9 4 9 42 2

. 14 What’s dx
x25 2 ? Hint: This is a a u2 2  

problem where u
a

sin .

5. Use the results from Steps 3 
and 4 to make substitu-
tions in the original inte-
gral and then integrate.

dx
x

d

4 25
5
2

5
1
2

2

2sec

sec
     from Step 3

 from Step 4

ssec

ln sec tan

d

C1
2

Get this last integral from 
your textbook, the Calculus 
For Dummies, 2nd Edition, 
Cheat Sheet, or from 
memory.

6. Use Steps 2 and 4 or the triangle to get rid of 
the sec  and tan .

1
2

4 25
5

2
5

1
2

4 25 2 1
2

5

1
2

4 25 2

2

2

2

ln

ln ln

ln

x x C

x x C

x x C

( 1
2

5ln C  in the second line is just another 

constant, so you can replace it with C in the 
third line.)

Remember that Step 2 always involves u
a

, 

and Step 4 always involves 
a

. How about U 
Are Radically Awesome?



CHAPTER 12  Integration Rules for Calculus Connoisseurs      237

15 Integrate dx
x625 1212

. Hint: This is a 

u a2 2  problem where u
a

sec .

16 Last one: 4 12x
x

dx. Same hint as in 

Problem 15.

Partaking of Partial Fractions
The basic idea behind the partial fractions technique is what I call “unaddition” of fractions. 

Because 1
2

1
6

2
3

, had you started with 2
3

, you could have taken it apart — or “unadded” it — 

and arrived at 1
2

1
6

. You do the same thing in this section except that you do the unadding with 

rational functions instead of simple fractions.

Q. Integrate 3
3 42
x

x x
dx.

A. 3
5

1 12
5

4ln lnx x C.

1. Factor the denominator.

3
1 4

x
x x

dx

2. Break up the fraction.

3
1 4 1 4

x
x x

A
x

B
x

3. Multiply both sides by the denomi-
nator of the fraction on the left.

3 4 1x A x B x

4. Plug the roots of the linear factors 
into x one at a time.

Plug in 

Plug in 

4 3 4 4 1 12
5

1 3 5 3
5

:

:

B B

A A

5. Split up the integral and integrate.

3
1 4 1 4

3 5
1

12 5
4

3
5 1

x dx
x x

A
x

dx B
x

dx

x
dx

x
dx

dx
x

12
5 4

3
5

1 12
5

4

dx
x

x x Cln ln
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Q. Integrate 2 1

13 2 2
x

x x
dx.

A. 
ln arctanx

x
x

x
x x x

C

2

2

2 2

1 3

2 1
2 1

1
2

2 .

1. Factor the denominator. I did this 
step for you — a random act of 
kindness. Note that x 2 1 can’t be 
factored.

2. Break up the fraction into a sum of 
fractions.

2 1

1 1 13 2 2 2 3 2 2 2
x

x x

A
x

B
x

C
x

Dx E
x

Fx G

x

Note the difference between the 
numerators of fractions with x in 
their denominator and those with 
x 2 1  — an irreducible qua-

dratic — in their denominator. Also 
note there is a fraction for each 
power of each different factor of the 
original fraction.

3. Multiply both sides of this equation 
by the left-side denominator.

2 1 1 1

1 1

2 2 2 2 2

2 2 3 2 3

x Ax x Bx x

C x Dx E x x Fx G x

4. Plug the roots of the linear factors 
into x (0 is the only root).

Plugging 0 into x eliminates every 
term but the C term. One down, six 
to go.

0 1 0 1

1

2 2
C

C

5. Equate coefficients of like terms.

Because Step 4 only gave you one 
term, take a different tack. If you mul-
tiply (FOIL) everything out in the Step 
3 equation, the right side of the equa-
tion will contain a constant term and 
terms in x, x 2, x 3, x 4, x 5, and x 6. This 
equation is an identity, so the coeffi-
cient of, say, the x 5 term on the right 
has to equal the coefficient of the x 5 
term on the left (which is 0 in this 
problem). So set the coefficient of each 
term on the right equal to the coeffi-
cient of its corresponding term on the 
left. Here’s your final result:

Constant term: 1 C

x term: 2 B

x 2 term: 0 2A C

x 3 term: 0 2B E G

x 4 term: 0 2A C D F

x 5 term: 0 B E

x 6 term: 0 A D

You can quickly obtain the values of all 
seven unknowns from these seven 
equations, and thus you could have 
skipped Step 4. But plugging in roots 
is so easy, and the values you get may 
help you finish the problem faster, so 
it’s always a good thing to do.

And there’s a third way to solve for 
the unknowns. You can obtain a 
system of equations like the one in 
this step by plugging non-root values 
into x in the equation from Step 3. 
(You should use small numbers that 
are easy to calculate with.) After doing 
several partial fraction problems, 
you’ll get a feel for what combination 
of the three techniques works best for 
each problem.
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17 Integrate 5
2 7 42

dx
x x

. 18 Integrate 2 3
3 1 4 5

x
x x x

dx.

From the above system of equa-
tions, you get the following values:

A 2, B 2, C 1, D 2, E 2, 
F 1, and G 2.

6. Split up your integral and 
integrate.

2 1

1

2

2 1 2 2
1

2

1

3 2 2

2 3 2

2

x

x x
dx

x
dx

x
dx

x
dx x

x
dx

x

x
2 dx

The first three are easy: 

2 2 1
2 2ln x

x x
. Then split up  

the last two:

2
1

2 1
1

1
2 1

1

2 2

2 2 2 2

x
x

dx
x

dx

x

x
dx

x
dx

The first and third above can be done 
with a simple u-substitution; the 
second is arctangent; and the fourth 
is very tricky, so I’m just going to 
give it to you:

ln arctan

arctan

x x
x

x x
x

2

2

2

1 2 1
2 1

2
2 2 1

Finally, here’s the whole enchilada:

2 1

1

1

3 2 1
2 1

1
2

2

3 2 2

2

2

2 2

x

x x
dx x

x

x x
x x x

C

ln

arctan

Take five.
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*21 Integrate 4 3 2 1
1

3 2

4
x x x

x
dx. *22 What’s x x

x x x
dx

2

2 21 1 2
?

19 What’s x x
x x x

dx
2

3 2
1

3 3 1
? 20 Integrate dx

x x4 26 5
.
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Solutions for Integration Rules
1 x x x x x Ccos 5 2 1

5
sin 5 2 1

25
cos 5 2dx

1. Pick x as your u, because the algebraic function x is the first on the LIATE list.

2. Fill in your box.

© John Wiley & Sons, Inc.

3. Use the “7” rule.

x x dx x x x dxcos sin sin5 2 1
5

5 2 1
5

5 2

4. Finish by integrating.

1
5

5 2 1
25

5 2x x x Csin cos

2 arctan arctan 1
2

ln 1 2x x x x Cdx

1. Pick arctan x  as your u. You’ve got no choice.

2. Do the box thing.

© John Wiley & Sons, Inc.
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3. Apply the “7” rule.

arctan arctan arctan lnx dx x x
x dx

x
x x x C

1
1
2

12
2

3 x dx arctan 1
2

arctan 1
2

1
2

arctan2x x x x x C

1. Pick arctan x  as your u.

2. Do the box.

© John Wiley & Sons, Inc.

3. Apply the “7” rule.

x x dx x x
x dx

x

x x x

arctan arctan

arctan

1
2

1
2 1

1
2

1
2

1 1
1

2
2

2

2
2

xx
dx

x x dx dx
x

x x x

2

2
2

2

1
2

1
2

1
2 1

1
2

1
2

1
2

arctan

arctan arctann arctanx C x x x C  or  
2 1
2 2

4 x dx10
101 ln10 99

10 ln10
2

x

1

1

1. Pick the algebraic x as your u.

2. Box it.

© John Wiley & Sons, Inc.



CHAPTER 12  Integration Rules for Calculus Connoisseurs      243

3. Do the “7.”

x dx x dxx
x

x10 10
10

1
10

10

10
10

1
10 10

1

1

1

1

1

1

1

ln ln

ln ln lnn ln

ln ln ln ln

10
10

10

10
10

1
10 10

10
10

1
10 10

101

1

1

2 2

x

lln
ln
10 99

10 10
2

*5 x e dx2 x e x x Cx 2 2 2

1. Pick x 2 as your u.

2. Box it.

© John Wiley & Sons, Inc.

3. “7” it.

x e dx x e xe dxx x x2 2 2

In the second integral, the power of x is reduced by 1, so you’re making progress.

4. Repeat the process for the second integral: Pick it and box it.

© John Wiley & Sons, Inc.
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5. Apply the “7” rule for the second integral.

xe dx xe e dx xe e Cx x x x x

6. Take this result and plug it into the second integral from Step 3.

x e dx x e xe e C

x e xe e C e x

x x x x

x x x x

2 2

2 2

2

2 2 22 2x C

*6 e x dxx
x xe x e x

Csin
sin
2

cos
2

1. Pick sin x as your u — it’s a T from LIATE.

2. Box it.

© John Wiley & Sons, Inc.

3. “7” it.

e x dx e x e x dxx x xsin sin cos

Doesn’t look like progress, but it is. Repeat this process for e x dxx cos .

4. Pick cos x as your u and box it.

© John Wiley & Sons, Inc.

5. “7” it.

e x dx e x e x dxx x xcos cos sin

The prodigal son returns home and is rewarded.
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6. Plug this result into the second integral from Step 3.

e x dx e x e x e x dxx x x xsin sin cos sin

7. You want to solve for e x dxx sin , so bring them both to the left side and solve.

2

2 2

e x dx e x e x C

e x dx e x e x C

x x x

x
x x

sin sin cos

sin sin cos

7 sin cosx dx3 3 4 3 10 33
4

sin 3
10

sinx x x C

1. Split off one cos x.

sin cos cosx x x dx3 2

2. Convert the even number of cosines into sines with the Pythagorean Identity.

sin sin cos sin cos sin cosx x x dx x x dx x x dx3 2 1 3 7 31

3. Integrate with u-substitution with u xsin .

3
4

3
10

4 3 10 3sin sinx x C

*8 cos sin4 2

0
t t dt

6

96

1. Convert to odd powers of cosine with trig identities cos
cos

2
1 2

2
x

x
 and 

sin
cos

2
1 2

2
x

x
.

1 2
2

1 2
2

2

0

6 cos cost t
dt

2. Simplify and FOIL.

1
8

1 2 1 2 1
8

1 1
8

22

0

6

0

6

0

6

cos cos cost t dt dt t dt 1
8

2 1
8

22

0

6
3

0

6

cos cost dt t dt

3. Integrate.

The first and second are simple; for the third, you use the same trig identity again; the 
fourth is handled like you handled Problem 7. Here’s what you should get:

1
8

1 1
8

2 1
16

1 1
16

4 1
80

6

0

6

0

6

0

6

dt t dt dt t dtcos cos coos sin cos

cos

2 1
8

2 2

1
16

1
16

4

0

6
2

0

6

0

6

t dt t t dt

dt t ddt t t dt

t t

0

6
2

0

6

0

6

0

1
8

2 2

1
16

1
64

4

sin cos

sin
66

3

0

6
1

48
2

96
3

128
3

128

96

sin t



246      PART 4  Integration and Infinite Series

*9 sec tan3 3x x dx 1
5

sec 1
3

sec5 3x x C

1. Split off sec tanx x: sec tan sec tan2 2x x x x dx.

2. Use the Pythagorean Identity to convert the even number of tangents into secants.

sec sec sec tan

sec sec tan sec sec tan

2 2

4 2

1x x x x dx

x x x dx x x x dxx

3. Integrate with u-substitution.

1
5

1
3

5 3sec secx x C

*10 tan2

4

3

 sec 14 3
5

8
15

4 d

1. Split off a sec2 .

tan sec sec2 23 2

4
d

2. Convert to tangents.

tan tan sec tan sec tan sec2 2 2

4

3
4 2

4

3
2 21 d d d

4

3

3. Do u-substitution with u tan .

1
5

1
3

1
5

3 1
5

1 1
3

3 1
3

1

14 3
5

5

4

3
3

4

3

5 5 3 3

tan tan

88
15

*11 tan8 t dt 1
7

tan 1
5

tan 1
3

tan tan7 5 3t t t t t C

1. Split off a tan2 t  and convert it to secants:

tan sec tan sec tan6 2 6 2 61t t dt t t dt t dt

2. Do the first integral with a u-substitution and repeat Step 1 with the second; then keep 
repeating until you get rid of all the tangents in the second integral.

1
7

1

1
7

1
5

1

7 4 2

7 5 2 2

tan tan sec

tan tan tan sec

t t t dt

t t t t dtt

t t t t dt

t t

1
7

1
5

1
3

1

1
7

1
5

1

7 5 3 2

7 5

tan tan tan sec

tan tan
33

3tan tant t t C
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12 csc cotx x dx3 5 2 1 22
5

csc 2 cscx x C

1. Split off csc cotx x.

csc cot csc cot1 2 2x x x x dx

2. Convert the even number of cotangents to cosecants with the Pythagorean Identity.

csc csc csc cot1 2 2 1x x x x dx

3. Finish with a u-substitution.

csc csc cot csc csc cot3 2 1 2

3 2 1 2

x x x dx x x x dx

u du u du

2
5

2

2
5

2

5 2 1 2

5 2 1 2

u u C

x x Ccsc csc

13 dx
x x

x
x

C
9 4 9 42 2 24 9 4

1. Rewrite as 
dx

x3 2
2 2

3 .

2. Draw your triangle, remembering that tan u
a

.

See the following figure.

© John Wiley & Sons, Inc.

3. Solve tan 3
2
x  for x, differentiate, and solve for dx.

3 2 2
3

2
3

2x x dx dtan tan sec

4. Do the 
a

 thing.

9 4
2

9 4 2
2

2x xsec sec
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5. Substitute.

   dx

x

d d d

9 4
2
3

2
1

12
1

12

2
3

2

3

sec

sec sec
cos

6. Integrate to get 1
12

sin C .

7. Switch back to x (use the triangle).

1
12

3
9 4 4 9 42 2

x
x

C x
x

C

14 d
x

x x
x

C
25 2

1
5

ln 5
25 2

1. Rewrite as dx
x52 2 .

2. Draw your triangle.

For this problem, sin u
a

. Check out the figure.

© John Wiley & Sons, Inc.

3. Solve sin x
5

 for x, and then get dx.

x dx d5 5sin cos

4. Do the 
a

 thing.

25
5

25 5
2

2x xcos cos

5. Substitute.

   dx
x

d

d

25
5

5

1
5

2

2

cos

cos

sec
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6. Integrate (you may want to just look up this antiderivative in a table):

You should get 1
5

ln sec tan C .

7. Switch back to x (use your triangle).

1
5

5
25 25

1
5

5
252 2 2

ln ln
x

x
x

C x
x

C

15 dx
x

x x x C
625 1212

21
25

ln 25 625 121

1. Rewrite as 

dx

x25 11
2 2 .

2. Do the triangle thing.

For this problem, sec u
a

.

© John Wiley & Sons, Inc.

3. Solve sec 25
11

x  for x and find dx.

x dx d11
25

11
25

sec sec tan

4. Do the 
a

 thing.

625 121
11

625 121 11
2

2x xtan tan

5. Substitute.

dx
x

d
d

625 121

11
25

11
1
252

sec tan

tan
sec

6. Integrate.

1
25

ln sec tan C
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7. Switch back to x (see Steps 3 and 4).

1
25

25
11

625 121
11

1
25

25 625 121 1
25

11

1
25

2

2

ln

ln ln

x x C

x x C

lln 25 625 1212x x C

16 4 1x
x

2
2 24 1 arctan 4 1dx x x C

1. Rewrite as 
2 1

2 2x

x
dx.

2. Draw your triangle.

© John Wiley & Sons, Inc.

3. Solve sec 2
1
x  for x; get dx.

x dx d1
2

1
2

sec sec tan

4. Do the 
a

 thing.

4 12x tan

5. Substitute.

4 1

1
2

1
2

2

2

x
x

dx

d dtan

sec
sec tan tan

6. Integrate.

sec tan2 1 d C
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7. Switch back to x (see Step 4).

4 1 4 1

4 1 2

2 2

2

x x C

x x C

arctan

arcsec

or

17 
5

2
d

x
x
x

x
x

C2 7 4
5
9

ln 2 1
4

1. Factor the denominator.

5
2 1 4

dx
x x

2. Break up the fraction into a sum of partial fractions.

5
2 1 4 2 1 4x x

A
x

B
x

3. Multiply both sides by the least common denominator.

5 4 2 1A x B x

4. Plug the roots of the factors into x one at a time.

x x

B

B

A

A

4 1
2

5 9

5
9

5 9
2
10
9

  gives you   gives you

5. Split up your integral and integrate.

5
2 7 4

10
9 2 1

5
9 4

10
9

2 1 5
9

4 5
92

dx
x x

dx
x

dx
x

x x Cln ln lnn 2 1
4

x
x

C

18 2 3
3 1 4 5

x
x x x

dx x x x C7
208

ln 3 1 11
13

ln 4 13
16

ln 5

1. The denominator is already factored, so go ahead and write your sum of partial fractions.

2 3
3 1 4 5 3 1 4 5

x
x x x

A
x

B
x

C
x

2. Multiply both sides by the LCD.

2 3 4 5 3 1 5 3 1 4x A x x B x x C x x

3. Plug the roots of the factors into x one at a time.

x A A

x B B

x

1
3

7
3

208
9

21
208

4 11 13 11
13

 gives you:

"  " :

;

;

5 13 16 13
16

"  " : C C;
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4. Split up and integrate.

2 3
3 1 4 5

21
208 3 1

11
13 4

13
16

x
x x x

dx dx
x

dx
x

dx
x 55

7
208

3 1 11
13

4 13
16

5ln ln lnx x x C

19 x
x

x x
x

x
C

2

2
1

3 3 1
x

x x
d3 2ln 1

3 2 1

2 1

1. Factor the denominator.

x x
x

dx
2

3
1

1

2. Write the partial fractions.

x x
x

A
x

B
x

C
x

2

3 2 3
1

1 1 1 1

3. Multiply by the LCD.

x x A x B x C2 2
1 1 1

4. Plug in the single root, which is 1, giving you C 3.

5. Equate coefficients of like terms.

Without multiplying out the entire right side in Step 3, you can see that the x 2 term on the 
right will be Ax 2. Because the coefficient of x 2 on the left is 1, A must equal 1.

6. Plug in 0 for x in the Step 3 equation, giving you 1 A B C .

Because you know A is 1 and C is 3, B must be 3.

Note: You can solve for A, B, and C in many ways, but the way I did it is probably the 
quickest.

7. Split up and integrate.

x x
x x x

dx dx
x

dx
x

dx
x

x
x

2

3 2 2 3
1

3 3 1 1
3

1
3

1
1 3ln

1
3

2 1
2

x
C

20 dx
x x4 6 52

1
4

arctan 5
20

arctan 5
5

x x C

1. Factor.

dx
x x2 25 1

2. Write the partial fractions.

1
5 1 5 12 2 2 2x x

Ax B
x

Cx D
x

3. Multiply by the LCD.

1 1 52 2Ax B x Cx D x
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4. Plug in the easiest numbers to work with, 0 and 1, to effortlessly get two equations.

x B D

x A B C D

0 1 5

1 1 2 2 6 6

:

:

5. After FOILing out the equation in Step 3, equate coefficients of like terms to come up 
with two more equations.

The x 2 term gives you 0 B D.

This equation plus the first one in Step 4 give you B 1
4

, D 1
4

.

The x 3 term gives you 0 A C .

Now this equation plus the second one in Step 4 plus the known values of B and D give you 
A 0 and C 0.

6. Split up and integrate.

dx
x x

dx

x

dx

x
dx

x
dx

x

4 2 2 2

2 2

6 5

1
4

5

1
4

1
1
4 5

1
4 1

1
4 5

aarctan arctanx x C
5

1
4

*21 4 3 2 1
1

3

4
x x x

x

2
2 51

2
ln 1 1 1 arctandx x x x x C

1. Factor.

4 3 2 1
1 1 1

3 2

2

x x x
x x x

dx

2. Write the partial fractions.

4 3 2 1
1 1 1 1 1 1

3 2

2 2
x x x

x x x
A

x
B

x
Cx D
x

3. Multiply by the LCD.

4 3 2 1 1 1 1 1 1 13 2 2 2x x x A x x B x x Cx D x x

4. Plug in roots.

x A A

x B B

1 10 4 2 5

1 2 4 0 5

: ; .

: ; .

5. Equating the coefficients of the x 3  term gives you C.

4

2 5 0 5 1

A B C

A B C. , . ,    so  

6. Plugging in zero and the known values of A, B, and C gets you D.

1 2 5 0 5

1

. . D

D
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7. Integrate.

4 3 2 1
1

2 5
1

0 5
1

1
1

2 5

3 2

4 2
x x x

x
dx dx

x
dx

x
x
x

dx

x

. .

. ln 11 0 5 1 0 5 1

1
2

1 1 1

2

2 5

. ln . ln arctan

ln arct

x x x C

x x x aan x C

*22 x x
x x

2

21 1 2x
dx

x
x

x x
2

2

2
1
6

ln
1
2

arctan 2 2
3

arctan 22
2

C

1. Break the already factored function into partial fractions.

x
x x x

A
x

Bx C
x

D
x

2

2 2 2 21 1 2 1 1 2
x x E

2. Multiply by the LCD.

x x A x x Bx C x x Dx E x x2 2 2 2 21 2 1 2 1 1

3. Plug in the single root (–1).

2 6 1
3

A A

4. Plug 0, 1, and –2 into x and 1
3

 into A.

x C E

x B C D E

x B C D E

0 0 2
3

2

1 0 2 6 6 4 4

2 6 10 12 6 10 5

:

:

:

5. Equate coefficients of the x 4 terms (with A 1
3

 ).

0 1
3

B D

6. Solve the system of four equations from Steps 4 and 5. You get the following:

B C D E0 1 1
3

4
3

If you find an easier way to solve for A through E, go to my website and send me an email.

7. Integrate.

x x
x x x

dx dx
x

dx
x

x
x

dx
2

2 2 2 21 1 2
1
3 1 1

1
3

4
2

1
3

lnn arctan ln arctan

ln arc

x x x x C

x

x

1 1
6

2 2 2
3

2
2

1
6

1

2

2

2

2 ttan arctanx x C2 2
3

2
2
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Who Needs Freud? 
Using the Integral to 
Solve Your Problems

Now that you’re an expert at integrating, it’s time to put that awesome power to use to 
solve some . . . ahem . . . real-world problems. All right, I admit it — the problems you 
see in this chapter won’t seem to bear much connection to reality. But, in fact, inte-

gration is a powerful and practical mathematical tool. Engineers, scientists, and economists, 
among others, do important, practical work with integration that they couldn’t do without it.

Finding a Function’s Average Value
With differentiation, you can determine the maximum and minimum heights of a function, 
its steepest points, its inflection points, its concavity, and so on. But there’s a simple question 
about a function that differentiation cannot answer: What’s the function’s average height? To 
answer that, you need integration.

Chapter 13

IN THIS CHAPTER

 » Weird areas, surfaces, and 
volumes

 » The average height of a function

 » Arc length and surfaces of 
revolution

 » Other stuff you’ll never use
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Q. What’s the average value (height) of 
sin x  between 0 and ?

A. Piece o’ cake: 
Average value total area

base

sin

cos

x dx

x

0

0

0

2

Finding the Area between Curves
In elementary school and high school geometry, you learned area formulas for all sorts of 
shapes like rectangles, circles, triangles, parallelograms, kites, and so on. Big deal. With inte-
gration, you can determine things like the area between f x x 2 and g x xarctan  — now 
that is something.

Q. What’s the area between sin x  and 
cos x from x 0 to x ?

A. The area is 2 2 .

1. Graph the two functions to get 
a feel for the size of the area in 
question and where the func-
tions intersect.

1 What’s the average value of f x x

x 2 3
1

 
from 1 to 3?

2 A car’s speed in feet per second is given by 
f t t t1 7 6 80. . What’s its average speed 
from t 5 seconds to t 15 seconds? What’s 
that in miles per hour?

2. Find the point of intersection.

(In some problems, there will 
be more than one point of 
intersection. In this problem, 
your graph clearly shows that 
there’s only one.)
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sin cos

sin
cos
tan

x x

x
x
x

x

1

1

4

3. Figure the area from x 0 to 
x

4
.

Between 0 and 
4

, the cosine 
curve is on top so you want 
cosine minus sine:

Area cos sin

sin cos

x x dx

x x

0

4

0

4

2
2

2
2

0 1

2 1

4. Figure the area between 
4

 and .

This time sine’s on top:

Area sin cos

cos sin

x x dx

x x

4

4

1 0 2
2

2
2

1 2

5. Add the two areas for your 
final answer.

2 1 1 2 2 2

3 What’s the area enclosed by f x x 2 and 
g x x ?

4 What’s the total area enclosed by f t t 3 
and g t t 5?
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*5  The lines y x, y x2 5, and y x2 3 
form a triangle in the first and fourth quad-
rants. What’s the area of this triangle?

6 What’s the area of the triangular shape in 
the first quadrant enclosed by sin x , cos x, 
and the line y 1

2
? (I’m referring to the tri-

angular shape that begins at about x 0 5.  
and ends at about x 1.)

Volumes of Weird Solids: No, You’re  
Never Going to Need This

Integration works by cutting something up into an infinite number of infinitesimal pieces and 
then adding the pieces up to compute the total. In this way, integration is able to determine 
the volume of bizarre shapes that don’t have volume formulas: It cuts the shapes up into thin 
pieces that have ordinary shapes that can be calculated with ordinary geometry formulas. This 
section shows you three different methods:

 » The meat slicer method: This works just like a deli meat slicer — you cut a shape into flat, 
thin slices. You then add up the volume of the slices. This method is used for odd, some-
times asymmetrical shapes.

 » The disk/washer method: With this method, you cut up the given shape into thin, flat disks 
or washers. This method is used for shapes with circular cross-sections.

 » The cylindrical shell method: Here, you cut your volume up into thin nested shells. Each 
one fits snugly inside the next widest one, like telescoping tubes or nested Russian dolls. 
This method is also used for shapes with circular cross-sections.
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Q. What’s the volume of the shape shown in the following figure? Its base is formed by the 
functions f x x  and g x x . Its cross-sections are isosceles triangles whose 
heights grow linearly from zero at the origin to 1 when x 1.

© John Wiley & Sons, Inc.

A. The volume is 2
5

 cubic units.

1. Always try to sketch the figure first (of course, I’ve done it for you here).

2. Indicate on your sketch a representative thin slice of the volume in question.

This slice should always be perpendicular to the axis or direction along which 
you are integrating. In other words, if your integrand contains, say, a dx, your 
slice should be perpendicular to the x axis. Also, the slice should not be at either 
end of the three-dimensional figure or at any other special place. Rather, it 
should be at some arbitrary, nondescript location within the shape.

3. Express the volume of this slice.

It’s easy to show — trust me — that the height of each triangle is the same as its 
x coordinate. Its base goes from x  up to x  and is thus 2 x . And its thickness 
is dx.

Therefore, Volumeslice
1
2

2 x x dx x x dx .

4. Add up the slices from 0 to 1 by integrating.

x x dx x dx x
0

1
3 2

0

1
5 2

0

1
2
5

2
5

 cubic units
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Q. Using the disk/washer method, what’s the volume of the glass that makes up the vase 
shown in the following figure?

© John Wiley & Sons, Inc.

A. The volume is 45
2

.

First, here’s how the vase is “created.” The light-gray shaded area shown in the 
figure lies between x  and 0 75 1. x  from x 0 to x 9. The three-dimensional vase 
shape is generated by revolving the shaded area about the x axis.

1. Sketch the 3-D shape (already done for you).

2. Indicate a representative slice (see the dark-gray shaded area in the figure).

3. Express the volume of the representative slice.

A representative slice in a washer problem looks like — can you guess? — a 
washer. See the following figure.

© John Wiley & Sons, Inc.

The large circle has an area of R 2, and the hole an area of r 2. So a washer’s 
cross-sectional area is R r2 2, or R r2 2 . It’s thickness is dx, so its volume 
is R r dx2 2 .

Back to the problem at hand. Big R in the vase problem is x  and little r is 
0 75 1. x , so the volume of a representative washer is 

x x dx
2 2

0 75 1. .
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4. Add up the washers by integrating from 0 to 9.

But wait; did you notice the slight snag in this problem? The “washers” from 
x 0 to x 1 have no holes, so there’s no little-r circle to subtract from the big-R 
circle. A washer without a hole is called a disk, but you treat it the same as a 
washer except you don’t subtract a hole.

5. Add up the disks from 0 to 1 and the washers from 1 to 9 for the total volume.

Volumevase x dx x x dx

x dx x x

2

0

1
2 2

1

9

0

1

0 75 1

9
16

.

11

9
16

1

9
16

1

1

9

0

1

1

9

1

9

0

9

dx

x dx x dx x dx

x dx x dx

x x

1

9

2

0

9
2

1

9

2
9
32

1

2
18

2

81

45

Q. Now tip the same glass vase up vertically. This time find the volume of its glass with 
the cylindrical shells method. See the following figure.

© John Wiley & Sons, Inc.

A. The volume is 45
2

.

Again, this is the same vase as in the disk/washer example, but this time it’s repre-
sented by different functions. In a random act of kindness, I figured the new functions 
for you.



262      PART 4  Integration and Infinite Series

1. Express the volume of your representative shell.

To figure the volume of a representative shell, imagine taking the label off a can 
of soup — when you lay it flat, it’s a rectangle, right? The area is thus 
base height, and the base of the rectangle comes from the circumference of the 
can. So the area is 2 rh. (r equals x and h depends on the given functions.) The 
thickness of the shell is dx, so its volume is 2 rh dx .

Wait! Another snag — a bit similar to the snag in the previous example. The 

smaller shells, with right edges at x 0 up to x 3 2
2

, have heights that measure 

from f x  up to g x . But the larger shells, with right edges at x 3 2
2

 to x 3, 

have heights that measure from f x  up to 9. So you have to integrate the two 
batches of shells separately.

Volumesmaller shells

 

 2

2 16
9

12 2

rh dx

x x x

top g x
bo

:
1 24 34

tttom f x

dx

rhdx

x

: 

larger shells

124 34

Volume 2

2 99 2x dx

2. Add up all the shells by integrating.

With the cylindrical shells method, you integrate from the center to the outer 
edge.

  2 16
9

1 2 9

2 7
9

2 2

0

3 2 2
2

3 2 2

3

3

0

3 2 2

x x x dx x x dx

x x dx 2 9

2 7
36

1
2

2 1
4

9
2

3

3 2 2

3

4 2

0

3 2 2
4 2

x x dx

x x x x
3 2 2

3

2 63
16

9
4

2 81
4

81
2

81
16

81
4

45
2

Amazing! This actually agrees (which, of course, it should) with the result from 
the washer method. By the way, I got a bit carried away with these example 
problems. Your practice problems won’t be this tough.
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*7 Use the meat slicer method to derive the for-
mula for the volume of a pyramid with a 
square base (see the following figure). Hint: 
Integrate from 0 to h along the positive side 
of the upside-down y axis. (I set the problem 
up this way because it simplifies it. You can 
draw the y axis the regular way if you like, 
but then you get an upside-down pyramid.) 
Your formula should be in terms of s and h.

© John Wiley & Sons, Inc.

8 Use the washer method to find the volume of 
the solid that results when the area enclosed 
by f x x  and g x x  is revolved around 
the x axis.
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9 Same as Problem 8, but with f x x 2 and 
g x x4 .

*10 Use the disk method to derive the formula 
for the volume of a cone. Hint: What’s your 
function? See the following figure. Your for-
mula should be in terms of r and h.

© John Wiley & Sons, Inc.

11 Use the cylindrical shells method to find the 
volume of the solid that results when the 
area enclosed by f x x 2 and g x x 3 is 
revolved about the y axis.

*12 Use the cylindrical shells method to find the 
volume of the solid that results when the 
area enclosed by sin x , cos x, and the x axis 
is revolved about the y axis.
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Arc Length and Surfaces of Revolution
You can use integration to determine the length of a curve by sort of cutting up the curve into 
an infinite number of infinitesimal segments, each of which is basically the hypotenuse of a 
tiny right triangle. Then your pedestrian Pythagorean Theorem does the rest. The same basic 
idea applies to surfaces of revolution. Here are two handy formulas for solving these problems:

 » Arc length: The length along a function, f x , from a to b is given by

Arc Length 1
2

f x dx
a

b

 » Surface of revolution: The surface area generated by revolving the portion of a function, 
f x , between x a and x b about the x axis is given by

Surface Area 2 1
2

f x f x dx
a

b

Q. What’s the arc length along f x x 2 3 
from x 8 to x 27?

A. The arc length is about 19.65.

1. Find f x .

f x x f x x2 3 1 32
3

2. Plug into the arc length 
formula.

Arc Length8 to 27 1 4
9

2 3

8

27

x dx

3. Integrate.

These arc length problems tend 
to produce tricky integrals; I’m 
not going to show all the work 
here.

1
3

9 4

1
3

9 4

2 3

8

27

1 3 2 3

8

27

x dx

x x dx

You finish this with a u- 
substitution, where u x9 42 3 .

1
3

1
6

1
18

2
3

85 85 80 10
27

19 65

1 2

40

85

3 2

40

85

u du

u

.

An eminently sensible answer, 
because from x 8 to x 27, 
the graph of x 2 3 is very close 
to the straight line from 8, 4  
to 27, 9 , which you can see 
would have a length of a little 
more than 19.
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Q. Find the surface area generated by 
revolving 

f x x x x1
3

0 23  from  to  about 

the x axis.

A. The area is 
9

17 17 1 .

1. Find the function’s derivative.

f x x f x x1
3

3 2

2. Plug into the surface area 
formula.

Surface Area 2 1
3

1

2
3

1

3 2 2

0

2

3 4

0

2

x x dx

x x dx

You can do this integral with 
u-substitution.

u x x u

du x dx x u

1 0 1

4 2

4

3

          when  

         when  

,

, 117

2
3

1
4

4 1

6

6
2
3

9
17 17

3 4

0

2

1 2

1

17

3 2

1

17

x x dx

u du

u

1

13 Find the distance from 2 1,  to 5 10,  with 
the arc length formula.

14 What’s the surface area generated by revolv-

ing f x x3
4

 from x 0 to x 4 about the  

x axis?
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15 a.  Confirm your answer to Problem 13 with 
the distance formula.

b.  Confirm your answer to Problem 14 with 
the formula for the lateral area of a cone, 
LA r, where  is the slant height of the 
cone.

16 What’s the surface area generated by revolv-
ing f x x  from x 0 to x 9 about the 
x axis?
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Solutions to Integration Application Problems
1 What’s the average value of f x x

x 2 3
1

 from 1 to 3? The average value is 0.03.

Average value total area
base

x

x
dx

2 3
1

3

1

3 1

Do this with a u-substitution.

u x x u

du x dx x u

x

x

2

2

1 1 2

2 3 10

1
2

2

when  

   when          

,

,

1

2

1
4

1
8
1
8

10 2

0 03

3
1

3

3
2

10

2

2

10

2 2

dx

du
u

u

.

2 A car’s speed in feet per second is given by f t t t1 7 6 80. . What’s its average speed from 
t 5 seconds to t 15 seconds? What’s that in miles per hour? Its average speed is about 
72.62 feet per second or 49.51 miles per hour.

Average speed total distance
total time

t t dt1 7

5

15

6 80

1

.

55 5

1
2 7

3 80

10
554 73 675 1 200 28 57 75 40

2 7 2

5

15

.

. , .

.t t t

00
10

72 62

49 51

.

.

 feet per second

 miles per hour

3 What’s the area enclosed by f x x 2 and g x x ? The area is 1 3.

1. Graph the functions.

2. Find the points of intersection.

They’re nice and simple: 0 0,  and 1 1, .

3. Find the area.

The rectangular slices have a height given by top minus bottom.

Area x x dx x x2

0

1
3 2 3

0

1
2
3

1
3

2
3

1
3

1
3
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4 What’s the total area enclosed by f t t 3 and g t t 5? The area is 1 6.

1. Graph the functions.

You should see three points of intersection.

2. Find the points.

The points are 1 1, , 0 0, , and 1 1, .

3. Find the area on the left.

t 5 is above t 3, so

Area t t dt t t5 3

1

0
6 4

1

0
1
6

1
4

0 1
6

1
4

1
12

4. Find the area on the right.

t 3 is on top for this chunk; find the area then add it to the left-side area.

Area t t dt t t3 5

0

1
4 6

0

1
1
4

1
6

1
4

1
6

1
12

Therefore, the total area is 1
12

1
12

, or 1
6

.

Note that had you observed that both t 3 and t 5 are odd functions, you could have 
reasoned that the two areas are the same, and then calculated just one of them and 
doubled the result.

*5 The lines y x, y x2 5, and y x2 3 form a triangle in the first and fourth quadrants. 
What’s the area of this triangle? The area is 6.

1. Graph the three lines.

2. Find the three points of intersection.

a. y x intersects y x2 5 at x x2 5; x 5 and, thus, y 5.

b. y x intersects y x2 3 at x x2 3; x 1 and, thus, y 1.

c. y x2 5 intersects y x2 3 at 2 5 2 3x x ; x 2 and, thus, y 1.

3. Integrate to find the area from x 1 to x 2.

y x is on the top and y x2 3 is on the bottom, so

Area x x dx

x dx

x x

2 3

3 1

3 1
2

3 2 2 1

1

2

1

3

2

1

2

22
1 3

2
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4. Integrate to find the area from x 2 to x 5.

y x is on the top again, but, for this chunk, y x2 5 is on the bottom, thus

Area x x dx

x dx

x x

2 5

5

1
2

5

25
2

25 2

2

5

2

5

2

2

5

110 9
2

The grand total from Steps 3 and 4 equals 6.

Granted, using calculus for this problem is loads of fun, but it’s totally unnecessary. If 
you cut the triangle into two triangles — corresponding to Steps 3 and 4 above — you 
can get the total area with simple coordinate geometry.

6 What’s the area of the triangular shape in the first quadrant enclosed by sin x , cos x, and the 

line y 1
2

? The area is 3 2
12

.

1. Do the graph and find the intersections.

a. From the example, you know that sin x  and cos x intersect at x
4

.

b. y 1
2

 intersects sin x  at sin x 1
2

, so x
6

.

c. y 1
2

 intersects cos x at cos x 1
2

, so x
3

.

2. Integrate to find the area from 6  to 4  and from 4  to 3 .

Area sin cos

cos si

x dx x dx

x x

1
2

1
2

1
2

6

4

4

3

6

4

nn x x1
2

2
2 8

3
2 12

3
2 6

2
2 8

3 2

4

3

12
   Cool answer, eh?

*7 Use the meat slicer method to derive the formula for the volume of a pyramid with a square 
base. The volume formula is 1

3
2s h.

Using similar triangles, you can establish the following proportion: y
h

l
s

.

You want to express the side of your representative slice as a function of y (and the con-

stants, s and h), so that’s l ys
h

.

The volume of your representative square slice equals its cross-sectional area times its thick-
ness, dy, so now you have

Volumeslice
ys
h

dy
2
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Don’t forget that when integrating, constants behave just like ordinary numbers.

Volumepyramid
ys
h

dy s
h

y dy s
h

y s
h h h2

0

2

2
2

0

2

2
3

0

1
3

22

2
3 21

3
1
3h

h s h

That’s the old familiar pyramid volume formula: 1
3

base height— the hard way.

8 Use the washer method to find the volume of the solid that results when the area enclosed by 
f x x  and g x x  is revolved about the x axis. The volume is 

6
.

1. Sketch the solid, including a representative slice.

See the following figure.

© John Wiley & Sons, Inc.

2. Express the volume of your representative slice.

Volumewasher R r dx x x dx x x dx2 2 2 2 2

3. Add up the infinite number of infinitely thin washers from 0 to 1 by integrating.

Volumesolid x x dx x x2

0

1
2 3

0

1
1
2

1
3

1
2

1
3 6

9 Same as Problem 8, but with f x x 2 and g x x4 . The volume is 2 048
15

,  cubic units.

1. Sketch the solid and a representative slice.

See the following figure.



272      PART 4  Integration and Infinite Series

© John Wiley & Sons, Inc.

2. Determine where the functions intersect.

The functions intersect at where f x g x , so

x x

x x

x x

2

2

4

4 0

4 0

Thus, x 0 and x 4, and the functions intersect at 0 0,  and 4, 16 .

3. Express the volume of a representative washer.

Volumewasher R r dx x x dx x x dx2 2 2 2 2 2 44 16

4. Add up the washers from 0 to 4 by integrating.

Volumesolid 16 16
3

1
5

1 024
3

12 4

0

4
3 5

0

4

x x dx x x , ,0024
5

2 048
15

,

*10 Use the disk method to derive the formula for the volume of a cone. The formula is 
Volume 1

3
2r h.

1. Find the function that revolves about the x axis to generate the cone.

The function is the line that goes through 0 0,  and h r,  . Its slope is thus r
h

, and its 
equation is therefore f x r

h
x .

2. Express the volume of a representative disk.

The radius of your representative disk is f x  and its thickness is dx. Thus, its volume is 
given by

Volumedisk f x dx r
h

x dx
2 2
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3. Add up the disks from x 0 to x h by integrating.

Don’t forget that r and h are constants that behave like numbers.

Vcone
r
h

x dx r
h

x dx r
h

x r
h

h h h2

0

2

2
2

0

2

2
3

0

2

2
1
3

1
3

hh r h3 21
3

11 Use the cylindrical shells method to find the volume of the solid that results when the area 
enclosed by f x x 2 and g x x 3 is revolved about the y axis. The volume is 

10
.

1. Sketch your solid.

See the following figure.

© John Wiley & Sons, Inc.

2. Express the volume of your representative shell.

The height of the shell equals top minus bottom, or x x2 3. Its radius is x, and its 
thickness is dx. Its volume is thus

Volumeshell 2 2 2 3rh dx x x x dx

3. Add up the shells from x 0 to x 1 (center to right end) by integrating.

Volumebowl 2 2 1
4

1
5 10

3 4

0

1
4 5

0

1

x x dx x x

*12   Use the cylindrical shells method to find the volume of the solid that results when the area 
enclosed by sin x , cos x, and the x axis is revolved about the y axis. The volume is  

2
2 2
2

.

1. Sketch the dog bowl.

See the following figure.
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© John Wiley & Sons, Inc.

2. Determine where the two functions cross.

You should obtain 
4

2
2

, .

3. Express the volume of your representative shell.

I’m sure you noticed that the shells with a radius less than 
4

 have a height of sin x , 
while the larger shells have a height of cos x. So you have to add up two batches of 
shells:

Volume

Volume

smaller shell

larger shell

2

2

2

rh dx

x x dx

x

sin

ccos x dx

4. Add up the two batches of shells.

Volumedog bowl 2 2
0

4

4

2

x x dx x x dxsin cos

Both of these integrals are easy to do with the integration-by-parts method with u = x 
in both cases. I leave it up to you. You should obtain the following:

2 2

2
4

2
2

2
2

2

0

4

4

2
x x x x x xcos sin sin cos

2 4
2
2

2
2

2
2

2
2

13 Find the distance from 2 1,  to 5 10,  with the arc length formula. The distance is 3 10 .

1. Find a function for the “arc.”

It’s really a line, of course — that connects the two points. I’m sure you remember the 
point-slope formula from your algebra days:

y y m x x

y x

y x

1 1

1 3 2

3 5



CHAPTER 13  Who Needs Freud? Using the Integral to Solve Your Problems      275

2. “Find” y .

I hope you don’t have to look very far: y 3.

3. Plug into the formula.

Arc Length 1 3 10 3 102

2

5

2

5
dx x

14 What’s the surface area generated by revolving f x x3
4

 from x 0 to x 4 about the  
x axis? The surface area is 15 .

1. Sketch the function and the surface.

2. Plug the function and its derivative into the formula.

SA 2 3
4

1 3
4

3
2

25
16

15
8

1
2

15
2

0

4

0

4
2

0

4

x dx x dx x

15 a.  Confirm your answer to Problem 13 with the distance formula.

d x x y y2 1

2

2 1

2 2 2
5 2 10 1 3 10

b. Confirm your answer to Problem 14 with the formula for the lateral area of a cone, 
LA r, where  is the slant height of the cone.

1. Determine the radius and slant height of the cone.

From your sketch and the function, you can easily determine that the function goes 
through 4 3, , and that, therefore, the radius is 3 and the slant height is 5 (it’s the 
hypotenuse of a 3-4-5 triangle).

2. Plug into the formula.

Lateral Area r 15

It checks.

16 What’s the surface area generated by revolving f x x  from x 0 to x 9 about the x axis? 
The surface area is 

6
37 37 1 .

1. Plug the function and its derivative into the formula.

f x x f x
x

x
x

dx x
x

d

1
2

2 1 1
2

2 1 1
4

2

0

9

Surface Area xx x dx
0

9

0

9

2 1
4

2. Integrate.

2 2
3

1
4

4
3

37
4

1
4 6

37 37 1
3 2

0

9 3 2 3 2

x
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Infinite (Sort of) 
Integrals

The main topic of this chapter is really amazing when you stop and think about it: cal-
culating the area (or volume) of shapes that are infinitely long. The word infinity comes 
up in mathematics so often that perhaps we become jaded about the concept and forget 

how truly incredible it is. It’s about 93 million miles from the earth to the sun. That distance 
is so great that it’s nearly impossible to wrap our minds around it, but it’s nothing compared 
to the distance to Alpha Centauri A (the nearest star), which is 4.24 light-years away — about 
268,000 times as far as the distance to the sun. Our Milky Way Galaxy is about 100,000 light-
years across, and it’s about 4½ million light-years to our nearest spiral galaxy neighbor, the 
Andromeda Galaxy. Go out about 10,000 times that far and you reach the “edge” of the observ-
able universe at about 46 or 47 billion light-years away. That’s definitely quite a ways out 
there, but it’s nothing compared to infinity.

The shapes you deal with in this chapter are not just bigger than the entire universe; they’re so 
big that they make the universe seem like a speck of dust by comparison. And, yet, using the 
powerful tools of calculus (including L’Hôpital’s Rule), we’re able to compute the area of these 
gargantuan shapes. And some of them turn out to have nice, manageable areas like, say, 10 
square inches! It’s time to get started.

Chapter 14

IN THIS CHAPTER

 » L’Hôpital’s Rule

 » Misbehaving integrals
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Getting Your Hopes Up with L’Hôpital’s Rule
This powerful little rule enables you to easily compute limits that are either difficult or impos-
sible without it.

L’Hôpital’s Rule: When plugging the arrow-number into a limit expression gives you 0 0  
or , you replace the numerator and denominator with their respective derivatives and 
do the limit problem again — repeating this process if necessary — until you arrive at a limit 
you can solve.

If you’re wondering why this limit rule is in the middle of this chapter about integration, it’s 
because you need L’Hôpital’s Rule for the next section and the next chapter.

Q. What’s lim
logx

x
x

?

A. The limit is .

1. Plug  into x:

You get . Not an answer, 

but just what you want for 
L’Hôpital’s Rule.

2. Replace the numerator and 
denominator of the limit 
fraction with their respective 
derivatives.

lim

ln

lim ln
x x

x

x1
1

10

10

3. Now you can plug in.

ln10

If substituting the arrow-number 
into x gives you 0, , 1 , 00, 
or 0 — the so-called unaccept-
able forms — instead of one of the 
acceptable forms, 0

0
 or , you have 

to manipulate the limit problem to 
convert it into one of the accepta-
ble forms.

Q. What’s lim
x

xx e2 ?

A. The limit is 0.

1. Plug  into x.

You get 0, one of the unac-
ceptable forms.

2. Rewrite e x  as 1
e x  to produce lim

x x
x
e

2

.

Plugging in  now gives you one 
of the acceptable forms, .

3. Replace numerator and denomina-
tor with their derivatives.

lim
x x

x
e
2

4. Plugging in gives you  again, so 

you use L’Hôpital’s Rule a second 
time.

lim
x xe e

2 2 2 0
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1 What’s lim cos
x

x

x2

2

? 2 lim cos ?
x

x
x0 2

1

3 Evaluate lim tan sec
x

x x
4

1 6 . 4 What’s lim
cosx x x0

1 1
1

?

5 Evaluate lim csc log
x

x x
0

. *6 What’s lim
x

x
x

0

1
1 ? Tip: When plugging in 

gives you one of the exponential forms, 00, 
0, or 1 , set the limit equal to y, take the 

natural log of both sides, use the log of a 
power rule, and take it from there.
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Disciplining Those Improper Integrals
In this section, you bring some discipline to integrals that misbehave by going up, down, left, 
or right to infinity. You handle infinity, as usual, with limits. The first example’s an integral 
that goes up to infinity.

Q. Evaluate 1
2

1

2

x
dx .

A. The area is infinite.

1. Check whether the function is 
defined everywhere between and at 
the limits of integration.

You note that when x 0, the 
function shoots up to infinity. So 
you’ve got an improper integral. 
In a minute, you’ll see what 
happens if you fail to note this.

2. Break the integral in two at the 
critical x value.

1 1 1
2

1

2

2
1

0

2
0

2

x
dx

x
dx

x
dx

3. Replace the critical x value with 
constants and turn each integral 
into a one-sided limit.

lim lim
a

a

b
bx

dx
x

dx
0 2

1
0 2

2
1 1

4. Integrate.

lim lim

lim

a

a

b b

a

x x

a

0 1 0

2

0

1 1

1 1
1

lim
b b0

1
2

1

Therefore, this limit does not 
exist (DNE).

If you split up an integral in 
two, and one piece equals  and 
the other equals , you cannot 
add the two to obtain an answer 
of zero. When this happens, the 
limit DNE.

Now, watch what happens if you 
fail to notice that this function is 
undefined at x 0.

1 1 1
2

1
1

3
22

1

2

1

2

x
dx

x

Wrong! (And absurd, because the 
function is positive everywhere 
from x 1 to x 2.)

The next example integral goes to 
infinity to the right.

Q. Evaluate 1
2

1 x
dx.

A. The area is 1.

1. Replace  with c, and turn the 
integral into a limit.

lim
c

c

x
dx1

2
1

2. Integrate.

lim lim
c

c

cx c
1 1 1 1 1 1

1

Amazing! This infinitely long, 
curving sliver of area has an area of 
the beautifully simple amount of  
1 square unit.
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7 Evaluate dx
x5

32

1

. 8 Compute x x dxln
0

6

.

9 dx
x x 2

1 1
? Hint: Split up at x 2. 10 What’s 1

1
x

dx?
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*11 1
1

x
x dxarctan ? Hint: Use Problem 10. *12 1228 1

x
dx ? Hint: Break into four parts.
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Solutions to Infinite (Sort of) Integrals
1 lim cos 

2
2x

x

x
1

1. Plug in: 0
0

 — onward!

2. Replace numerator and denominator with their derivatives: lim sin
x

x
2 1

.

3. Plug in again: 
sin

2
1

1.

2 lim 1 cos 
0 2x

x
x

1
2

1. Plug in: 0
0

; no worries.

2. Replace with derivatives: lim sin
x

x
x0 2

.

3. Plug in: 0
0  

again, so repeat.

4. Replace with derivatives again: lim cos
x

x
0 2

.

5. Finish: 1
2

.

3 lim tan sec
x

x x
4

1 6 1
3

1. Plugging in gives you 0 , so on to Step 2.

2. Rewrite: lim tan
cosx

x
x4

1
6

0
0

. Copasetic.

3. Replace with derivatives: lim sec
sinx

x
x4

2

6 6
.

4. Plug in to finish: 
sec

sin

2

4
6 3

2

2
6

1
3

.

4 lim
cosx x x0

1 1
1

1. Plugging in gives you , so you have to tweak it.

2. Rewrite by adding the fractions: lim cos
cosx

x x
x x0

1
1

.

That’s a good bingo: 0
0

.

3. Replace with derivatives: lim sin
cos sinx

x
x x x0

1
1

.

4. Plug in to finish: 1
0“ ”

.

This 0 is “negative” because the denominator in Step 3 is negative when x is approach-
ing zero from the right. By the way, don’t use “–0” in class — your teacher will call a 
technical on you.
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5 lim csc log
x

x x
0

This limit equals , which equals . You’re done! L’Hôpital’s Rule isn’t needed. 
You gotta be on your toes.

*6 lim
x

x
x

0

1
1 e

1. This is a 1  case — time for a new technique.

2. Set your limit equal to y and take the natural log of both sides.

y x

y x

x

x

x

x

lim

ln ln lim

0

1

0

1

1

1

3. I give you permission to pull the limit to the outside.

ln lim lny x
x

x

0

1
1

4. Use the log of a power rule.

ln lim lny
x

x
x 0

1 1

5. Plugging in gives you a 0 case, so rewrite.

ln lim
ln

y
x

xx 0

1

6. Now you’ve got a 0
0

 case — I’m down with it.

7. Replace with derivatives.

ln limy x
x 0

1
1

1
1

8. Your original limit equals y, so you have to solve for y.

ln y

y e

1

7 dx
x5

32

1

18.75

1. The integrand is undefined at x 0, so break in two.

dx
x

dx
x

dx
x5

32

1

5
32

0

5
0

1

2. Turn into one-sided limits.

lim lim
a

a

b
b

dx
x

dx
x0 5

32
0 5

1

3. Integrate.

lim lim
a

a

b b
x x

0

4 5

32 0

4 5
1

5
4

5
4

0 5
4

16 5
4

0 18 75. .
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8 x x dxln
0

6

18 ln 6 9

1. The integral is improper because it’s undefined at x 0, so turn it into a limit.

lim ln
c

c

x x dx
0

6

2. Integrate by parts.

Hint: ln x is L from LIATE. You should obtain:

lim ln

lim ln ln

c c

c

x x x

c c

0

2 2
6

0

2

1
2

1
4

1
2

36 6 9 1
2

1
4

cc

c c
c

2

0

218 6 9 1
2

ln lim ln

3. Time to practice L’Hôpital’s Rule.

This is a 0  limit, so turn it into a  one:

18 6 9 1
2 10

2

ln lim ln
c

c

c

4. Replace numerator and denominator with derivatives and finish.

18 6 9 1
2

1

2
18 6 9 1

2 2
18 6

0
3

0

2

ln lim ln lim ln
c c

c

c

c 9

9 dx
x x 2

1 1 2

This is a doubly improper integral because it goes up to infinity and right to infinity. You 
have to split it up and tackle each infinite integral separately.

1. It doesn’t matter where you split it up; how about splitting it in two, a nice, easy-to-deal- 
with number.

dx
x x

dx
x x2

1

2

2
21 1

2. Turn each integral into a limit.

lim lim
a

a
b

b
dx

x x
dx

x x1 2

2

2
21 1

3. Integrate.

lim arcsec lim arcsec

lim arcsec arcse
a a b

b

a

x x
1

2

2

1
2 cc lim arcsec arcsec

arcsec arcsec

a b
b

2

2 0
2

2

2
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10 1
1 x

dx

1. Turn into a limit: = lim
c

c

x
dx1

1

.

2. Integrate and finish: lim ln lim ln ln
c

c

c
x c

1
1 .

*11 1
1 x

x dxarctan

No work is required for this one, “just” logic. You know from Problem 10 that 1
1 x

dx . 

Now, compare 1
1 x

x dxarctan  to 1
1 x

dx. But first note that because 1
1 x

dx equals infinity, 

so will 1
10 x

dx, 1
100 x

dx, or 1
1 000 000 x

dx
, ,

, because the area under 1
x

 from 1 to any other number 

must be finite.

From 3  to , arctan x 1; therefore, arctan x 1, and thus 1 1
x

x
x

arctan . Finally, because 

1
3 x

dx  and because between 3  and , 1
x

xarctan  is always greater than 1
x

, 

1
3 x

x dxarctan  must also equal . Finally, because 1
3 x

x dxarctan  equals , 

1
1 x

x dxarctan  must as well.

Aren’t you glad no work was required for this problem?

*12 1
x

dx is undefined.

Quadrupely improper!

1. Split into four parts.

1 1 1 1 1
1

1

0

0

1

1
x

dx
x

dx
x

dx
x

dx
x

dx

2. Turn into limits.

lim lim lim lim
a

a
b

b

c
c

dx
dx

x
dx

x
dx

x
dx1 1 1 1

1

0
1

0

1

11

d

3. Integrate.

lim ln lim ln lim ln lim
a a b

b

c c d
x x x

1

0 1 0

1
ln

lim ln ln lim ln ln lim ln

x

a b

d

a b c

1

0 0
1 1 1 lln lim ln lnc d

d
1

4. Finish: .

Therefore, the limit doesn’t exist, and the definite integral is thus undefined.

If you look at the graph of y
x
1 , its perfect symmetry may make you think that 1

x
dx  

would equal zero. But — strange as it seems — it doesn’t work that way. And, to repeat 
the warning from earlier in this chapter, you can’t simplify Step 4 to  and sum that 
up to zero.
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Infinite Series: Welcome 
to the Outer Limits

Like Chapter 14, this chapter deals with the infinite. In Chapter 15, you investigate lists of 
numbers that never end. And, quite remarkably, you discover that some of these infinitely 
long lists of numbers (that wouldn’t even fit in the entire universe if written out com-

pletely) can actually be added up — summing to a nice, ordinary finite number! These lists of 
numbers that can be added up are called convergent series. The lists of numbers you can’t total 
up are called divergent series. Your task in this chapter is to decide which are which.

The Nifty nth Term Test
One of the easiest tests you can use to help you decide whether a series converges or diverges 
is the nth term test. This test sort of looks at what’s happening way out toward the “end” of 
an infinite list of numbers. (Of course, there isn’t actually an end of an infinite list.) You might 
say that the nth term test looks at what’s happening to the numbers in the list the farther and 
farther you go out along the list. Before defining the test formally, I go over a couple terms.

A sequence is a finite or infinite list of numbers (this chapter deals only with infinite sequences). 
When you add up the terms of a sequence, the sequence becomes a series. For example,

1 2 4 8 16 32 64, , , , , , ,...       is a sequence, and
1 2 4 8 16 32 64  is the related series.

Chapter 15

IN THIS CHAPTER

 » Twilight zone stuff

 » Serious series

 » Tests, tests, and more tests



288      PART 4  Integration and Infinite Series

The nth term test: If lim
n na 0, then an  diverges. In English, this says that if a series’ under-

lying sequence does not converge to zero, then the series must diverge.

It does not follow that if a series’ underlying sequence converges to zero, then the series will 
definitely converge. It may converge, but there’s no guarantee.

Q Does 1
1

1 n
n

n

 converge or diverge?

A. It diverges.

You can answer this question with 
common sense if your calc teacher 
allows such a thing. As n gets larger 

and larger, 1
1
n

 increases and gets 

closer and closer to one. And when you 
take any root of a number like 0.9, the 
root is larger than the original 
number — and the higher the root 
index, the larger the answer is. So 

1
1
n

n  has to get larger as n increases, 

and thus lim
n

n

n
1

1
 cannot possibly 

equal zero. The series, therefore, 
diverges by the nth term test.

If your teacher doesn’t like that 
approach, you can do the following: 

Plugging  into the limit produces 

1
1 1

, which is 10, and that 

equals 1 — you’re done. (Note that 
10 is not one of the forms that gives 
you a L’Hôpital’s Rule problem — 

see Chapter 14.) Because lim
n

n

n
1

1
 

equals 1, 1
1

1 n
n

n

 diverges by the 

nth term test. (If your teacher is a 
real stickler for rigor, he or she 
might not like this approach either 
because, technically, you’re not 
supposed to plug  into n even 
though it works just fine. Oh, 
well. . . . )

1 Does 
2 9 8

5 20 12

2

2
1

n n
n nn

 converge or diverge? 2 Does 
1

1 nn

 converge or diverge?
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Testing Three Basic Series
In this section, you figure out whether geometric series, p-series, and telescoping series are 
convergent or divergent.

 » Geometric series: If 0 1r , the geometric series ar n

n 0

 converges to 
a

r1
.

If r 1, the series diverges. Have you heard the riddle about walking halfway to the wall, 
then halfway again, then half the remaining distance, and so on? The lengths of those steps 
make up a geometric series.

 » p-series: The p-series 
1
np

 converges if p 1 and diverges if p 1.

 » Telescoping series: The telescoping series, written as 
h h h h h h h hn n1 2 2 3 3 4 1 , converges if hn 1 converges. In that case, the 

series converges to h h
n n1 1lim . If hn 1 diverges, so does the series. This series is very rare, 

so I don’t make you practice any problems.

When analyzing the series in this section and the rest of the chapter, remember that multiply-

ing a series by a constant never affects whether it converges or diverges. For example, if un
n 1

 

converges, then so will 1 000
1

, un
n

. Disregarding any number of initial terms also has no effect 

on convergence or divergence: If un
n 1

 diverges, so will un
n 982

.

Q. Does 1
1
2

1
4

1
8

1
16

 converge or 

diverge? And if it converges, what 
does it converge to?

A. Each term is the preceding one multi-

plied by 
1
2

. This is, therefore, a geo-

metric series with r
1
2

. The first 

term, a, equals one, so the series  

converges to 
a

r1
1

1
1
2

2.

Q. Does 
1

n
 converge or diverge?

A. 1

n
 is the p-series 

1
1 2n

 where 

p
1
2

. Because p 1, the series 

diverges.
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3 Does 0 008 0 006 0 0045 0 003375. . . .  
0.00253125– . . . . . . converge or diverge? If it 
converges, what’s the infinite sum?

4 Does 1

1 nn

 converge or diverge?

5 Does 1
2

2
3

3
4

4

4 4 4 4


n

n
 converge or 

diverge?

*6 Does 
1
2

1
4

1
8

1
12

1
16

1
20

 converge or 

diverge?
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Apples and Oranges . . . and Guavas:  
Three Comparison Tests

With the three comparison tests, you compare the series in question to a benchmark series. If 
the benchmark converges, so does the given series; if the benchmark diverges, the given series 
does as well.

 » The direct comparison test: Given that 0 a bn n for all n, if bn  converges, so does 
an, and if an diverges, so does bn .

This could be called the well, duh test. All it says is that a series with terms equal to or 
greater than the terms of a divergent series must also diverge, and that a series with terms 
equal to or less than the terms of a convergent series must also converge.

 » The limit comparison test: For two series an and bn , if an 0, bn 0, and lim
n

n

n

a
b

L, 

where L is finite and positive, then either both series converge or both diverge.

 » The integral comparison test: If f x  is positive, continuous, and decreasing for all x 1 

and if a f nn , then an
n 1

 and f x dx
1

 either both converge or both diverge. Note that 

for some strange reason, other books don’t refer to this as a comparison test, despite the 
fact that the logic of the three tests in this section is the same.

Use one or more of the three comparison tests to determine the convergence or divergence of 
the series in the practice problems. Note that you can often solve these problems in more than 
one way.

Q. Does 
1

2 lnnn
 converge or diverge? A. It diverges.

Note that the nth term test is no 

help because lim
lnn n
1

0. You know 

from the p-series rule that 
1

1 nn
 

diverges. 
1

2 nn
, of course, also 

diverges. The direct comparison 

test now tells you that 
1

2 lnnn
 must 

diverge as well because each term 

of 
1

2 lnnn
 is greater than the 

corresponding term of 
1

2 nn
.
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Q. Does 
1

2
2 n nn

 converge or diverge?

A. It converges.

1. Try the nth term test.

No good: lim
n n n

1
0

2

2. Try the direct comparison test.
1

2
2 n nn

 resembles 
1

2
2 nn

, 

which you know converges by 
the p-series rule. But the direct 
comparison test is no help 

because each term of 
1

2
2 n nn

 

is greater than your known 
convergent series.

3. Try the limit comparison test 

with 
1

2
2 nn

. Piece o’ cake.

It’s best to put your known 
benchmark series in the 
denominator.

lim

lim

n

n

n n

n
n

n n

1

1

1

2

2

2

2

 by the horizontal asymptote rrule

Because the limit is finite and 

positive and because 
1

2
2 nn

 

converges, 
1

2
2 n nn

 also 

converges.

Q. Does 
1

2 n nn ln
 converge or diverge?

A. It diverges.

Tip: If you can see that you’ll be 
able to integrate the series 
expression, you’re home free. 
So always ask yourself whether 
you can use the integral 
comparison test.

1. Ask yourself whether you 
know how to integrate this 
expression.

Sure. It’s an easy u-substitution.

2. Do the integration.

1 1

2 2

1

2 2x x
dx

x x
dx

u x x u

du
x

dx

c

c

ln
lim

ln

ln , lnwhen  

when   x c u c

u du

u

c

c

c

c

c

, ln

lim

lim

lim

ln

ln

ln

ln

1 2

2

1 2

2
2

2 2 2ln lnc

Because this improper integral 
diverges, so does the companion 
series.
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For problems 7 through 14, determine whether the 
series converges or diverges.

7 10 0 9

1

.
n

n n

8 1 1
101

. n

n n

9 1
1 001

1
2 001

1
3 001

1
4 001, , , ,

 10 
1

1 n n nn ln
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*11 
1

3 3
1 n nn ln

*12 
1

2 n n nn ln sin

*13 
n

en
n

2

1
3 *14 

n
nn

3

1 !
 (Given that 

1
n!

 converges.)
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Ratiocinating the Two “R” Tests
Here you practice the ratio test and the root test. With both tests, a result less than 1 means that 
the series in question converges; a result greater than 1 means that the series diverges; and a 
result of 1 tells you nothing.

 » The ratio test: Given a series un , consider the limit of the ratio of a term to the previ-

ous term, lim
n

n

n

u
u

1 . If this limit is less than 1, the series converges. If it’s greater than 1 (this 

includes ), the series diverges. And if it equals 1, the ratio test tells you nothing.

 » The root test: Note its similarity to the ratio test. Given a series un , consider the limit 
of the nth root of the nth term, lim

n n
n u . If this limit is less than 1, the series converges. If 

it’s greater than one (including ), the series diverges. And if it equals 1, the root test says 
nothing.

The ratio test is a good test to try if the series involves factorials like n! or where n is in the 
power, like 2n. The root test also works well when the series contains nth powers. If you’re not 
sure which test to try first, start with the ratio test — it’s often the easier one to use.

Q. Does 
n
n

n 21

 converge or diverge?

A. Try the ratio test.

lim lim lim
n

n

n

n

n

n n

n

n
n

n
n

n

1
2

2

2 1

2
1

2
1
2

1

1

Because this is less than 1, the 
series converges.

Q. Does 
53 4

3
1

n

n
n n

 converge or diverge?

A. Consider the limit of the nth root of 
the nth term:

lim lim lim
n

n

n
n

n

n

n

n

n

n

n n n
5 5 5

0
3 4

3

3 4

3

1 3 4

3

Because this limit is less than 1, the 
series converges.
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For problems 15 through 20, determine whether the 
series converges or diverges.

15 1

21 ln n
n

n

16 n

n

n

n
n 1

*17 n
nn

n

!

1

*18 n
n

n

3
41
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19 
n
n

n

n !1

20 
n

n
n

!
41

He Loves Me, He Loves Me Not:  
Alternating Series

Alternating series look just like any other series except that they contain an extra 1
n or 1

1n . 
This extra term causes the terms of the series to alternate between positive and negative.

An alternating series converges if two conditions are met:

1. Its nth term converges to zero.

2. Its terms are non-increasing.

In other words, each term is either smaller than or the same as its predecessor (ignoring 
the minus sign).

For the problems in this section, determine whether the series converges or diverges. If it 
 converges, determine whether the convergence is absolute or conditional.

If you take a convergent alternating series and make all the terms positive and it still con-
verges, then the alternating series is said to converge absolutely. If, on the other hand, the series 
of positive terms diverges, then the alternating series converges conditionally.
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Q. 1
1

1

n

n n

A. The series is conditionally 
convergent.

If you make this a series of positive 
terms, it becomes a p-series with 

p
1
2

, which you know diverges. Thus, 

the above alternating series is not 
absolutely convergent. It is, however, 
conditionally convergent because it 
obviously satisfies the two conditions 
of the alternating series test:

1. The nth term converges to zero.

lim
n n

1 0

2. The terms are non-increasing.

The series is thus conditionally 
convergent.

For problems 21 and 22, determine whether the 
series converges or diverges. If the series converges, 
determine whether the convergence is absolute or 
conditional.

21 1
1

3 1
1

1

n

n

n
n

*22 1
1
22

3

n

n

n
n
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Solutions to Infinite Series
1 2 9 8

5 20 12

2

2
1

n n
n nn  

diverges. You know (vaguely remember?) from Chapter 4 on limits that 

lim
n

n n
n n
2 9 8

5 20 12
2
5

2

2  by the horizontal asymptote rule. Because this limit doesn’t converge to 

zero, neither does the underlying sequence of the series. And, therefore, the nth term test 
tells you that the series must diverge.

2 1
1 nn  

converges to zero . . . NOT. It should be obvious that lim
n n

1 0. If you conclude that the 

series, 1
1 nn

, must therefore converge by the nth term test, I’ve got some good news and some 

bad news for you. The bad news is that you’re wrong — you have to use the p-series test to 
find out whether this converges or not (check out the solution to Problem 5). The good news 
is that you made this mistake here instead of on a test.

Don’t forget that the nth term test is no help in determining the convergence or divergence 
of a series when the underlying sequence converges to zero.

3 0 008 0 006 0 0045 0 003375 0 00253125. . . . .  converges to 4
875

.

1. Determine the ratio of the second term to the first term.

0 006
0 008

3
4

.
.

2. Check to see whether all the other ratios of the other pairs of consecutive terms equal 3
4

.

0 0045
0 006

3
4

0 003375
0 0045

3
4

0 002.
.

.
.

.?  check. ?  check. 553125
0 003375

3
4.

?  check.

Voila! A geometric series with r 3
4

.

3. Apply the geometric series rule.

Because 1 1r , the series converges to

a
r1

0 008

1 3
4

4
875

.

“r” is for ratio, but you may prefer, as I do, to think of r ( in this problem) as a multi-
plier because it’s the number you multiply each term by to obtain the next.

4 1
1 nn  

diverges.

1
n

, called the harmonic series 1 1
2

1
3

1
4

1
5

1
n

, is probably the most important 

p-series. Because p 1, the p-series rule tells you that the harmonic series diverges.

5 1 2
2

3
3

4
4

4 4 4 4


n
n

 diverges.

This may not look like a p-series, but you can’t always judge a book by its cover.

1. Rewrite the terms with exponents instead of roots.

1 2
2

3
3

4
4

1 4 1 4 1 4 1 4

 n
n
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2. Use ordinary laws of exponents to move each numerator to the denominator, and then 
simplify.

1 1
2

1
3

1
3

1
3 4 3 4 3 4 3 4

n

3. Apply the p-series rule.

You’ve got a p-series with p 3
4

, so this series diverges.

*6 
1
2

1
4

1
8

1
12

1
16

1
20

   diverges.

This looks like it might be a geometric series, so. . . .

1. Find the first ratio.

1
4
1
2

1
2

2. Test the other pairs.

1
8
1
4

1
2

1
12
1
8

1
2

? ?  check.   No.

Thus, this is not a geometric series, and therefore the geometric series rule does not apply. 
And you can’t actually finish this problem with the ideas presented in this section — sorry 
about that. But can you guess whether this series converges or not (assuming the pattern  
4, 8, 12, 16, 20 continues)? To finish the problem, you need to use the limit comparison test 
covered in the “Apples and Oranges . . . and Guavas” section. You can prove that this series 
diverges by comparing it to the divergent harmonic series.

This is a bit tricky. You first have to notice — ignoring the first term (1/2 ) — that the rest of 
the denominators make a simple pattern of multiples of four: 4, 8, 12, 16, 20. . . . This allows 

you to rewrite the series — again, ignoring the first term — as 1
41 nn

. Now you’re ready to 

finish with the limit comparison test, using the divergent harmonic series, 1
1 nn

, as your 
benchmark series:

lim lim lim
n n n

n

n

n
n

1
4
1 4

1
4

1
4

Because this limit is finite and positive, the limit comparison test tells you that 1
41 nn

 

diverges along with the benchmark series. Ignoring the first term of 1/2 doesn’t affect this 
result, and, therefore, the original series diverges.

7 
10 0 9

1

.
n

n n  
converges.

1. Look in the summation expression for a series you recognize that can be used for your 
benchmark series.

You should recognize 0 9. n as a convergent geometric series, because r, namely 0.9, is 
between 0 and 1.
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2. Use the direct comparison test to compare 
10 0 9

1

.
n

n n
 to 0 9

1

. n

n

.

First, you can pull the 10 out and ignore it because multiplying a series by a constant 

has no effect on its convergence or divergence. That gives you 0 9
1

. n

n n
.

Now, because each term of 0 9
1

. n

n n
 is less than or equal to the corresponding term of  

the convergent series 0 9
1

. n

n

, 0 9
1

. n

n n
 has to converge as well. Finally, because 0 9

1

. n

n n
  

converges, so does 
10 0 9

1

.
n

n n
.

8 1 1
101

. n

n n
diverges.

1. Find an appropriate benchmark series.

Like in Problem 7, there is a geometric series in the numerator, 1 1
1

. n

n

. By the geomet-

ric series rule, it diverges. But unlike Problem 7, this doesn’t help you, because the 
given series is less than this divergent geometric series. Use the series in the denomina-
tor instead.

1 1
10

1
10

1 1
1 1

. .n

n

n

nn n
. The denominator of 1 1

1

. n

n n
 is the divergent p-series 1

1 nn

.

2. Apply the direct comparison test.

Because each term of 1 1
1

. n

n n
 is greater than the corresponding term of the divergent 

series 1
1 nn

, 1 1
1

. n

n n
 diverges as well — and therefore so does 1 1

101

. n

n n
.

9 1
1 001

1
2 001

1
3 001

1
4 001, , , ,


 
diverges.

1. Ask yourself what this series resembles.

It’s sort of like the divergent harmonic series, 1
1

1
2

1
3

1
4

, right?

2. Multiply the given series by 1,001 so that you can compare it to the harmonic series.

1 001 1
1 001

1
2 001

1
3 001

1
4 001

1 001
1 001

1 001
2

,
, , , ,

,
,

,


,,
,
,

,
,001

1 001
3 001

1 001
4 001



3. Use the direct comparison test.

It’s easy to show that the terms of the series in Step 2 are greater than or equal to the 
terms of the divergent p-series, so it, and thus your given series, diverges as well.

10 1
1 n n nn ln

 diverges.

Try the limit comparison test: Use the divergent harmonic series 1
1 nn

 as your benchmark.
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lim ln

lim
ln

lim

n

n

n

n n n

n
n

n n n

n n

1

1

1

1 1
2

1
by L H pita’ ô ll s Rule’

1

Because the limit is finite and positive, the limit comparison test tells you that 1
1 n n nn ln

 

diverges along with the benchmark series. By the way, you could do this problem with the 
direct comparison test as well. Do you see how? Hint: You can use the harmonic series as your 
benchmark, but you have to tweak it first.

*11 1
3 3

1 n nn ln  
converges.

1. Do a quick check to see whether the direct comparison test will give you an immediate 
answer.

It doesn’t because 1
3 3

1 n nn ln
 is greater than the known convergent p-series 1

3
1 nn

.

2. Try the limit comparison test with 1
3

1 nn

 as your benchmark.

lim
ln

lim
ln

lim
ln

li

n

n

n

n n

n
n

n n

n
n

1

1

1

1

3 3

3

3

3 3

3

3

mm
ln

lim ln

n

n

n
n

n
n

1

1

1

1

3

3 Just take my word for it.

1

1

1

1
1

3

lim ln

lim

n

n

n
n

n

Just take my word for it.

11

1

3 L H pital s Rule from Chapter 14’ ô ’

Because this is finite and positive, the limit comparison test tells you that since the bench-

mark series converges, 1
3 3

1 n nn ln
 must converge as well.



CHAPTER 15  Infinite Series: Welcome to the Outer Limits      303

*12 1
2 n n nn ln sin

 diverges.

1. You know you can integrate 1
x x

dx
ln

 with a simple u-substitution, so do it, and then 

you’ll be able to use the integral comparison test.

  

when  

when 

dx
x x

dx
x x

u x x u

du dx
x

c

ln

lim
ln

ln , ln
2

2

2 2

xx c u c

du
u

u

c

c

c

c

c

c

, ln

lim

lim ln

lim ln ln

ln

ln

ln

ln

 

2

2

ln ln2

By the integral comparison test, 1
2 n nn ln

 diverges along with its companion improper 

integral, dx
x xln

2

.

2. Try the direct comparison test.

It won’t work yet because 1
n n nln sin

 is sometimes less than the divergent series 1
n nln

.

3. Try multiplication by a constant (always easy to do and always a good thing to try).

1
2 n nn ln

 diverges, thus so does 1
2

1 1
22 2n n n nn nln ln

.

4. Now try the direct comparison test again.

It’s easy to show that 1
n n nln sin

 is always greater than 1
2

2
n n

n
ln

  for , and thus  

the direct comparison test tells you that 1
2 n n nn ln sin

 must diverge along with  
1

22 n nn ln
.

13 n
e n

n

2

1
3

 
converges.

This is tailor-made for the integral test:

x
e

dx x
e

dx du
e

e
x c x

c

c u

c

c

u
2

1

2

1 1
3 3

3

1
3

1
3

lim lim lim
1

3

3

1
3

1 1 1
3

c

c ce e e
lim

Because the integral converges, so does the series.

*14 n
nn

3

1 !  
converges.

1. Try the limit comparison test with the convergent series, 1
1 nn !

, as the benchmark.

lim !

!

lim !
!

.
n n

n
n

n

n n
n

3

3

1
 No good. This result tells you nothing.
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2. Try the following nifty trick.

Ignore the first three terms of n
nn

3

1 !
, which doesn’t affect the convergence or diver-

gence of the series. (You ignore three terms because the power on n is 3; that’s what 

makes this trick work.) The series is now 4
4

5
5

6
6

3 3 3

! ! !
, which can be written as 

n

nn

3
3

3

1 !
.

3. Try the limit comparison test again.

  lim
!

!

lim
!

!

lim

n

n

n

n
n

n

n n

n

n

n

3
3

1

3
3

3

3

3

3

3 2 1
3

3

n n

n n
nn

lim lesser powers of 
lesser powerss of 

 by the horizontal asymptote rule

n

1

Thus, 
n

nn

3
3

3

1 !
 converges by the limit comparison test. And because n

nn

3

1 !
 is the same 

series except for its first three terms, it converges as well.

15 1

21 ln n
n

n

 converges.

Try the root test:

   lim
ln

lim
ln

n n

n

n

n

n

1

2

1
2

0

1

This is less than 1, so the series converges.

16 n
n

n

n
n 1

 converges.

Try the root test again:

lim lim lim lim
n

n

n

n

n

n n

n n n n

n
n

n
n n n

1

1 2 1 2 1 2
1 1

1
0

n

Thus the series converges.



CHAPTER 15  Infinite Series: Welcome to the Outer Limits      305

*17 n
nn

n

!
1  

converges.

There’s a factorial, so try the ratio test:

  lim

!

!

lim
!

!

lim

n

n

n

n

n

n

n

n

n
n
n

n n

n n

1

1

1

1

1

1

nn n

n

n
n

n
n

n

n

n

n

n

n

n

1

1

1

1

1

lim

lim

Finish in the  right

column by setting the limit

equal to  and then takiy nng

the log of both sides.

y n
n

y n
n

n

n

n

lim

ln ln lim

1

1

nn

n

n

n

n
n

n
n

n

lim ln

lim
ln

1

1
1

llim
n

n
n

n n
n

n

1 1
1

1

2

2

  L H pital s Rule’ ô ’

lim

ln

.

n

n
n

y

y e
e

1
1

1 0 371

Because this is less thaan  the series converges.1,

*18 n
n

n

3
41  

converges.

Rewrite this so it’s one big nth power: n n
n

n

1

1

3
4

. Now look at the limit of the nth root.

       

  An 

lim

lim

lim

n

n
n n

n

n

n

n

n

n

n

3
4

3
4

3
4

1

1

1

1 uunacceptable L H pital s Rule case: ’ ô ’ 0
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Now, set the limit equal to y, and take the log of both sides:

y n

y n

n

n

n

n

n

n

n

3
4

3
4

3
4
3
4

1

1

1

lim

ln ln lim

ln lim ln

ln liim ln

ln lim

ln ln

n

n

n
n

n

y

y

3
4

1

1
3
4

3
4

  L H pital s Rule’ ô ’

Thus the limit of the nth root is 3
4

, and therefore the series converges.

19 n
n

n

n !1  
converges.

Try the ratio test:

lim
!

!

lim
!

!
lim

n

n

n n

n

n n

n
n

n
n

n n

n n

n
1

1 1

1

1

1
11

1

1
0

1 1 1n

n n

n

nn n

n

n
lim

(Okay, I admit it, I used my calculator to get that last limit.)

By the ratio test, the series converges.

20 n
n

n

!
41  

diverges.

Try the ratio test: lim

!

!
lim

!

!
lim

n

n

n
n

n

n n

n

n
n

n
n

1
4

4

1 4

4
1

4
1

1

Thus the series diverges.

21 1 1
3 1

1

1

n

n

n
n  

diverges.

This one is a no-brainer, because lim
n

n
n

1
3 1

1
3

, the first condition of the alternating series 

test, is not satisfied, which means that both the alternating series and the series of positive 
terms are divergent.

*22 1 1
22

3

n

n

n
n  

converges conditionally.

Check the two conditions of the alternating series test:

1. Does the limit equal zero?

   

  L H pital s Rule

Check.

lim

lim

n

n

n
n

n

1
2

1
2

0

2

’ ô ’
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2. Are the terms non-increasing?

n
n

n

n

n
n

n
n n

n n n

1
2

1 1

1 2

1
2

2
2 1

1 2 1

2 2

2 2

2

?

?

??

?

?

n n

n n n n n n n n

n n n n

2 2

2 2 1 2 2 4

3 1 2

2

3 2 2 3 2

3 2 3 nn n

n n

2

2

2 4

3 3 0 Check.

Thus the series is at least conditionally convergent. And it is easy to show that it is only 
conditionally convergent and not absolutely convergent by the direct comparison test. 

Each term of the given series, n
nn

1
22

3
, is greater than the corresponding term of the 

series n
nn

2
3

, because each term of n
nn

1
22

3
 has a larger numerator and a smaller 

denominator. Since n
nn

2
3

 is the same as the divergent harmonic series, 1
3 nn

, it follows 

that n
nn

1
22

3
 is divergent as well.





5The Part of Tens



IN THIS PART . . .

Find out when limits, continuity, and derivatives don’t 
exist.

Get familiar with the difference quotient.
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Ten Things about 
Limits, Continuity, 
and Infinite Series

In this very short chapter, I give you two great mnemonics for memorizing a great deal about 
limits, continuity, derivatives, and infinite series. If I do say so myself, you’re getting a lot 
of bang for your buck here.

The 33333 Mnemonic
This mnemonic is a memory aid for limits, continuity, and derivatives. First, note that I’ve put 
the word “limil” under the five threes. That’s “limit” with the t changed to an l. Also note the 
nice parallel between “limil” and the second mnemonic in this chapter, the 13231 mnemonic — 
in both cases, you have two pairs surrounding a single letter or number in the center.

3 3 3 3 3

l i m i l

Chapter 16

IN THIS CHAPTER

 » When limits, continuity, and 
derivatives don’t exist

 » Ten tests for convergence
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First 3 over the “l”: 3 parts to the  
definition of a limit
You can find the formal definition of a limit in Chapter 3. This mnemonic helps you remember 
that it has three parts. And — take my word for it — just that is usually enough to help you 
remember what the three parts are. Try it.

Fifth 3 over the “l”: 3 cases where  
a limit fails to exist
The three cases are

 » At a vertical asymptote. This is an infinite discontinuity.

 » At a jump discontinuity.

 » With the limit at infinity or negative infinity of an oscillating function like limcos
x

x , where the 

function keeps oscillating up and down forever, never homing in on a single y value.

Second 3 over the “i”: 3 parts to  
the definition of continuity
First notice the oh-so-clever fact that the letter i can’t be drawn without taking your pen off 
the paper and, thus, that it’s not continuous. This will help you remember that the second and 
fourth 3s concern continuity.

The three-part, formal definition of continuity is in Chapter 3. The mnemonic will help you 
remember that it has three parts. And — just like with the definition of a limit — that’s enough 
to help you remember what the three parts are.

Fourth 3 over the “i”: 3 cases where  
continuity fails to exist
The three cases are

 » A removable discontinuity — the highfalutin calculus term for a hole.

 » An infinite discontinuity.

 » A jump discontinuity.
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Third 3 over the “m”: 3 cases where  
a derivative fails to exist
Note that m often stands for slope, right? And the slope is the same thing as the derivative. The 
three cases where it fails to exist are

 » At any type of discontinuity.

 » At a sharp point along a function (there are two types, corners and cusps). These sharp 
points only occur in weird functions you won’t see very often.

 » At a vertical tangent. (A vertical line has an undefined slope and thus an undefined 
derivative.)

The 13231 Mnemonic
This mnemonic helps you remember the ten tests for the convergence or divergence of an infi-
nite series covered in Chapter 15. 1 3 2 3 1 10 total tests.

First 1: The nth term test of divergence
For any series, if the nth term doesn’t converge to zero, the series diverges.

Second 1: The nth term test of convergence  
for alternating series
The real name of this test is the alternating series test. But I’m referring to it as the nth term test 
of convergence because that’s a pretty good way to think about it for three reasons: because it 
has a lot in common with the nth term test of divergence, because these two tests make nice 
bookends for the other eight tests, and, last but not least, because it’s my book.

An alternating series will converge if 1) its nth term converges to 0, and 2) each term is less 
than or equal to the preceding term (ignoring the negative signs).

Note the following nice parallel between the two nth term tests: With the nth term test of diver-
gence, if the nth term fails to converge to zero, then the series must fail to converge, but it is not 
true that if the nth term does converge to zero, then the series must converge. With the alter-
nating series nth term test, it’s the other way around (sort of). If the test succeeds, then the 
series must converge, but it is not true that if the test fails, then the series must fail to converge.

First 3: The three tests with names
This “3” helps you remember the three types of series that have names: geometric series (which 
converge if r 1), p-series (which converge if p 1), and telescoping series.
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Second 3: The three comparison tests
The direct comparison test, the limit comparison test, and the integral comparison test all work 
the same way. You compare a given series to a known benchmark series. If the benchmark con-
verges, so does the given series, and ditto for divergence.

The 2 in the middle: The two R tests
The ratio test and the root test make a coherent pair because for both tests, if the limit is less 
than 1, the series converges; if the limit is greater than 1, the series diverges; and if the limit 
equals 1, the test tells you nothing.
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Ten Things You Better 
Remember about 
Differentiation

In this chapter, I give you ten important things you should know about differentiation. Refer 
to these pages often. When you get these ten things down cold, you’ll have taken a not-
insignificant step toward becoming a differentiation expert.

The Difference Quotient
The formal definition of a derivative is based on the difference quotient: f x

f x h f x
hh

lim
0

; 

this says basically the same thing as slope rise
run

.

The First Derivative Is a Rate
A first derivative tells you how much y changes per unit change in x along a line tangent to a 
function. For example, if y is in miles and x is in hours, and if at some point along the function 

Chapter 17

IN THIS CHAPTER

 » Psst, over here

 » The difference quotient

 » Extrema, concavity, and inflection 
points

 » The product and quotient rules
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(on the tangent line), y goes up 3 when x goes over 1, you’ve got 3 miles per 1 hour, or 3 mph. 
That’s the rate and that’s the derivative.

The First Derivative Is a Slope
In the previous example, when y goes up 3 (the rise) as x goes over 1 (the run) on a line tangent 
to the function, the slope (rise/run) at that point of the function would be 3 over 1, or 3 of course. 
That’s the slope and that’s the derivative.

Extrema, Sign Changes, and the First Derivative
When the sign of the first derivative changes from positive to negative or vice versa, that means 
that you went up and then down (and thus passed over the top of a hill, a local max), or you went 
down and then up (and thus passed through the bottom of a valley, a local min). In both of these 
cases (called local extrema), when you hit the very max or min, the first derivative will usually 
equal zero, though it may be undefined (if the local extremum is at a cusp or a corner). Also, note 
that if the first derivative equals zero, you may have a horizontal inflection point rather than a 
local extremum.

The Second Derivative and Concavity
A positive second derivative tells you that a function is concave up (like a spoon holding water 
or like a smile). A negative second derivative means concave down (like a spoon spilling water 
or like a frown).

Inflection Points and Sign Changes  
in the Second Derivative

Note the nice parallels between second derivative sign changes and first derivative sign changes 
described in the section above.

When the sign of the second derivative changes from positive to negative or vice versa, that 
means that the concavity of the function changed from up to down or down to up. In either 
case, you’re likely at an inflection point (though you could be at a cusp or a corner). At an inflec-
tion point, the second derivative will usually equal zero, though it may be undefined if there’s 
a vertical tangent at the inflection point. Also, if the second derivative equals zero, that does not 
guarantee that you’re at an inflection point. The second derivative can equal zero at a point 
where the function is concave up or down (like, for example, at 0 0,  on the curve y x 4 where 
the second derivative equals zero but the curve is concave up).
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The Product Rule
The derivative of a product of two functions equals the derivative of the first times the second 

plus the first times the derivative of the second. In symbols, d
dx

uv u v uv .

The Quotient Rule
The derivative of a quotient of two functions equals the derivative of the top times the bot-
tom minus the top times the derivative of the bottom, all over the bottom squared. In symbols, 
d
dx

u
v

u v uv
v2 .

Note that the numerator of the quotient rule is identical to the product rule except for the sub-
traction. For both rules, you begin by taking the derivative of the first thing you read: the left 
function in a product and the top function in a quotient.

Linear Approximation
Here’s the fancy calculus formula for a linear approximation: l x f x f x x x1 1 1 .  
If trying to memorize this leaves you feeling frustrated, flabbergasted, feebleminded, 
 flummoxed, or fit to be tied, consider this: It’s just an equation of a line, and its meaning is 
identical to the point-slope form for the equation of a line you learned in algebra I (tweaked a 
bit): y y m x x1 1 .

“PSST,” Here’s a Good Way to Remember  
the Derivatives of Trig Functions

Say you’re taking a test and you can’t remember the derivative of cosecant. You lean to the 
guy/gal next to you and whisper: “PSST, what’s the derivative of cosecant?” (I hope it goes 
without saying that I’m not recommending this.) Now, take the last three letters in PSST and 
write down the trig functions that begin with those letters: secant, secant, tangent. Below these 
write their co-functions, cosecant, cosecant, cotangent, and add a negative sign in front of the 
csc in the middle. Then add arrows. The arrows point to the derivatives. For example, the arrow 
after secant points to its derivative, sec tan; and the arrow next to tangent points backward 
to its derivative, sec2. This mnemonic may seem a bit convoluted, but it works. Here you go:

sec sec tan

csc csc cot

     

   





Index      319

Index
13231 mnemonic, 313–314
33333 mnemonic, 311–313

A
absolute convergence, 297
absolute extrema, 122–125
acceleration, 153–156
adjacent side, 235
algebra

review
problems, 9–11
solutions, 17–20

solving limit problems with, 54–59
alternating series, 297–298
alternating series test, 313
antiderivatives. See also integration

area function, 213–215
definition, 216
finding, 219–224
Fundamental Theorem of Calculus,  

216–219
guess and check method, 216–219
negative area, 214
solutions, 225–228
substitution method, 221–224

arc length, 265–267
arccosecant, 106
arccosine, 106
arccotangent, 106
arcsec, 106
arcsin, 106
arctan, 106
area function, 213–215
areas

under curves, 193–195, 202–205
between curves, 256–258
definite integral, 200–201
exact area, 200–201
index of summation, 196
infinite limits of, 280–282
integrands, 200
irregular shapes, 193–195

length along function, 265–267
long sums, shorthand for, 196–200
problems, 194–205, 256–267
rectangles, 193–195
Riemann sums, 196–200
sigma notation, 196–200
Simpson’s rule, 202–205
solutions, 205–212, 268–275
surfaces of revolution, 265–267
Trapezoid rule, 202–205

argument, 214, 216
average speed, 154
average velocity, 154

B 
business, 179

C 
calculator, solving limit problems with, 59–61
Calculus for Dummies, 81, 214
canceling method, 54–59
chain rule, 94–98
comparison tests, 291–294, 314
concavity

curves, 126–129
second derivative test, 316

conditional convergence, 297
conjugate multiplication method, 54–59
constants, derivatives of, 89
continuity

13231 mnemonic, 313–314
33333 mnemonic, 311–313
definition, 44
problems, 47–49
solutions, 50–52

convergence
absolute, 297
conditional, 297
nth term test of, 313
testing for, 289–298

convergent series, 287
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curves
approximating area under, 193–195, 202–205
areas between, 256–258
concavity, 126–129
definite integral, 200–201
exact area, 200–201
graphs of

identifying as function, 25
review, 26–28
vertical line test, 25

index of summation, 196
inflection points, 126–129
integrands, 200
long sums, shorthand for, 196–200
problems, 194–205
rectangles, 193–195
Riemann sums, 196–200
shapes analysis

absolute extrema, 122–125
concavity, 126–129
first derivative test, 117–120
highest/lowest points, 122–125
inflection points, 126–129
local extrema, 117–122
Mean Value Theorem, 129–130
problems, 117–130
rate, calculating average, 129–130
second derivative test, 120–122
slope, calculating average, 129–130
solutions, 131–146

shapes of, 131–146
sigma notation, 196–200
Simpson’s rule, 202–205
solutions, 205–212
Trapezoid rule, 202–205

cylindrical shell method, 258–264

D 
definite integral, 200–201
degree/radian conversions, 30
derivative-of-a-constant rule, 89
derivatives. See also curves; functions; rates; slope

absolute extrema, 122–125
concavity of curves, 126–129
of constants, 89
definition, 79
of derivatives, 101–102

difference quotient
definition, 81
problems, 82–83
solutions, 84–87

first derivative test
local extrema, 117–120, 316
rates, 315–316
sign changes, 316
slopes, 316

higher order, 101–102
highest/lowest points in curves, 122–125
inflection points in curves, 126–129
local extrema, 117–122
Mean Value Theorem, 129–130
problems, 80–81
product of two functions, 92–94
quotient of two functions, 92–94
rate, calculating average, 129–130
rules for

chain, 94–98
chain rule. See also implicit differentiation
derivative of a constant, 89
higher order derivatives, 101–102
implicit differentiation, 98–100. See also chain rule
power, 89
problems, 90–102
product, 92–94
quotient, 92–94
solutions, 103–115

second derivative test
concavity, 316
inflection points, 316
local extrema, 120–122
negative, 316
positive, 316
sign changes, 316

slope, calculating average, 129–130
solutions, 103–115
solutions for, 131–146
symbol for, 8

difference quotient
definition, 8, 81, 315
problems, 82–83
solutions, 84–87

differentiation. See also antiderivatives
acceleration, 153–156
average velocity, 154
definition, 79
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implicit d, 98–100
linear approximation, 177–179
negative velocity, 154
normals, 173–176
optimization, 147–149
position, 153–156
related rates, 150–152
reverse. See antiderivatives
rules for

beginners, 89–91
chain, 94–98. See also implicit differentiation
chain rule. See also implicit differentiation
derivative of a constant, 89
higher order derivatives, 101–102
implicit differentiation, 98–100. See also chain rule
power, 89
problems, 90–102
product, 92–94
quotient, 92–94
solutions, 103–115

solutions, 157–172, 183–190
speed, 154
speed and distance travelled, 153–156
tangents, 173–176
velocity, 153–156

direct comparison test, 291–294, 314
disk/washer method, 258–264
displacement, 153
distance, 153
divergence

nth term test of, 313
testing for, 289–298

divergent series, 287

E 
economics, 179
estimation

area under curves, 193–195, 202–205
linear approximation, 177–179, 317

exact area, 200–201
expressions with trigonometric functions, 232–234

F 
factoring method, 54–59
first derivative test

local extrema, 117–120, 316
rates, 315–316

sign changes, 316
slopes, 316

FOILing method, 54–59
fractions

difference quotient, 8
partial, 237–240
review

problems, 8
solutions, 16

functions. See also derivatives; graphs
argument, 214, 216
average value of, 255–256
continuity

definition, 44
problems, 47–49
solutions, 50–52

definition, 25
horizontal asymptote, 63
identifying graph curve as, 25
length along, 265–267
limits

definition, 44
problems, 47–49
solutions, 50–52

product of two, 289–290
quotient of two, 289–290
rational, 63
review

problems, 26–28
solutions, 33–36

selecting, 230–233
vertical line test, 25

Fundamental Theorem of Calculus, 216–219

G 
geometric series, 289–290
geometry review

problems, 11–15
solutions, 20–23

graphs. See also functions
continuity

definition, 44
problems, 47–49
solutions, 50–52

of curves
identifying as function, 25
review, 26–28
vertical line test, 25
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graphs (continued)
limits

definition, 44
problems, 47–49
solutions, 50–52

guess-and-check method, 216–219

H 
higher order derivatives, 101–102
highest/lowest points, curves, 122–125
horizontal asymptote, 63
horizontal inflection point, 316
hypotenuse, 235

I 
implicit differentiation, 98–100
improper integrals, 280–282
index of summation, 196
infinite discontinuity, 312
infinite integrals

improper integrals, 280–282
L’Hôpital’s Rule, 277–279
solutions, 283–286

infinite limits of integration,  
280–282

infinite series, 291–294
13231 mnemonic, 313–314
33333 mnemonic, 311–313
absolute convergence, 317
alternating series, 297–298
comparison tests, 291–294, 314
conditional convergence, 297
convergent series, 287
definition, 287
direct comparison test, 291–294, 314
divergent series, 287
geometric series, 289–290
integral comparison test, 291–294, 314
limit comparison test, 291–294, 314
nth term test, 287–288, 313
problems, 288–298
p-series, 289–290
ratio test, 295–297, 314
root test, 295–297, 314
sequence, 287
solutions, 298–307

telescoping series, 289–290
testing for divergence/convergence, 289–298

infinity, limits at, 63–66
inflection points

curves, 126–129
second derivative test, 316

integral comparison test, 291–294, 314
integrals

arc length, 265–267
areas between curves, 256–258, 265–267
average value of functions, 255–256
cylindrical shell method, 258–264
definite, 200–201
disk/washer method, 258–264
improper, 280–282
infinite limit of, 280–282
irregular solids, 258–264
length along, 265–267
meat slicer method, 258–265
problems, 256–267
solutions, 268–275
surfaces of revolution, 265–267
volume calculation, 258–264

integrands, 200
integration

arc length, 265–267
areas. See also antiderivatives

under curves, 193–195, 202–205
between curves, 256–258
definite integral, 200–201
exact area, 200–201
index of summation, 196
infinite limits of, 280–282
integrands, 200
irregular shapes, 193–195
length along function, 265–267
long sums, shorthand for, 196–200
problems, 194–205, 256–267
rectangles, 193–195
Riemann sums, 196–200
sigma notation, 196–200
Simpson’s rule, 202–205
solutions, 205–212, 268–275
surfaces of revolution, 265–267
Trapezoid rule, 202–205

cylindrical shell method, 258–264
disk/washer method, 258–264
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functions, average value of, 255–256
meat slicer method, 258–264
by parts. See also product rule

definition, 229
expressions with trigonometric functions,  

232–234
LIATE mnemonic, 230
partial fractions, 237–240
problems, 230–240
Pythagorean Theorem, 235–237
solutions, 241–254
trigonometric substitution, 235–237

problems, 256–267
solutions, 268–275
volumes, 258–264

K 
Kasube, Herbert, 230

L 
least common denominator method, 54–59
L’Hôpital’s Rule, 277–279
LIATE mnemonic, 230
limit comparison test, 291–294, 314
limit problems

limits at infinity, 63–66
solutions, 67–76
solving

with algebra, 54–59
with calculator, 59–61
canceling method, 54–59
conjugate multiplication method, 54–59
factoring method, 54–59
FOILing method, 54–59
least common denominator method, 54–59
sandwich method, 61–64
simplification method, 54–59
squeeze method, 61–64

limits
13231 mnemonic, 313–314
33333 mnemonic, 311–313
definition, 44
at infinity, 63–66
memorizing, 55–56
review

problems, 47–49
solutions, 50–52

linear approximation, 177–179, 317
lines

normal, 173–176
straight, 25
tangent, 173–176

local extrema
first derivative test, 117–120, 316
second derivative test, 120–122

local max, 316
local min, 316
long sums, shorthand for, 196–200
lowest/highest points, curves, 122–125

M 
marginal, 179–181
marginal profit, 179–181
marginal revenue, 179–181
Mean Value Theorem, 129–130
meat slicer method, 258–264
mnemonics

13231, 313–314
33333, 311–313
continuity, 311–314
limits, 311–314
PSST, 317

N 
negative acceleration, 154
negative area, 214
negative second derivative, 316
negative velocity, 153, 154
normals, 173–176
nth term test, 287–288, 313

O 
13231 mnemonic, 313–314
optimization, 147–149

P 
palameter, 153
parallelogram, area calculation, 13
partial fractions, 237–240
position, 153–156
positive acceleration, 154
positive second derivative, 316
positive velocity, 154
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power rule, 89
product rule, 92–94, 317. See also integration, by parts
p-series, 289–290
PSST mnemonic, 317
Pythagorean Theorem, 235–237

Q 
quotient rule, 92–94, 317

R 
radian/degree conversions, 13
rates. See also derivatives

calculating average, 129–130
first derivative test, 315–316
related, 150–152

ratio test, 295–297, 314
rational function, 63
rectangles, area of, 193–195
related rates, 150–152
removable discontinuity, 312
reverse differentiation. See antiderivatives
Riemann sums, 196–200
right triangles, 235–237
root test, 295–297, 314
rules

for differentiation
beginners, 89–91
chain, 94–98. See also implicit differentiation
derivative of a constant, 89
higher order derivatives, 101–102
implicit differentiation, 98–100. See also chain rule
power, 89
problems, 90–102
product, 92–94
quotient, 92–94
solutions, 103–115

L’Hôpital’s, 277–279
Simpson’s, 202–205
Trapezoid, 202–205

S 
sandwich method, 61–64
second derivative test

concavity, 316
inflection points, 316

local extrema, 120–122
negative, 316
positive, 316
sign changes, 316

sequence, 287
series, 287

divergent series, 287
sigma notation, 196–200
sign changes

first derivative test, 316
second derivative test, 316

simplification method, 54–59
Simpson’s Rule, 202–205
slope

calculating average, 129–130
first derivative test, 316

SohCahToa right triangle, 235–237
speed, average, 154
squeeze method, 61–64
straight lines, 25
substitution method, 221–224
surfaces of revolution, 265–267

T 
tangents, 173–176
telescoping series, 289–290
33333 mnemonic, 311–313
total displacement, 154
Trapezoid Rule, 202–205
triangles

area, 11–12
geometry review, 11–15
hypotenuse, 235
Pythagorean Theorem, 235–237
right, 235–237

trigonometric substitution, 235–237
trigonometry review

problems, 29–32
solutions, 36–40

V 
velocity, 153–156
vertical line test, 25
vertical tangent, 313, 316
volumes, 258–264
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