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Preface
Calculus is one of the milestones of Western thought. Building on ideas of

Archimedes, Fermat, Newton, Leibniz, Cauchy, and many others, the calcu-
lus is arguably the cornerstone of modern science. Any well-educated person
should at least be acquainted with the ideas of calculus, and a scientifically lit-
erate person must know calculus solidly.

Calculus has two main aspects: differential calculus and integral calculus.
Differential calculus concerns itself with rates of change. Various types of
change, both mathematical and physical, are described by a mathematical quan-
tity called the derivative. Integral calculus is concerned with a generalized type
of addition, or amalgamation, of quantities. Many kinds of summation, both
mathematical and physical, are described by a mathematical quantity called
the integral.

What makes the subject of calculus truly powerful and seminal is the Funda-
mental Theorem of Calculus, which shows how an integral may be calculated by
using the theory of the derivative. The Fundamental Theorem enables a number
of important conceptual breakthroughs and calculational techniques. It makes
the subject of differential equations possible (in the sense that it gives us ways
to solve these equations).

Calculus Demystified� explains these ideas in a step-by-step and accessible
manner. The author, a renowned teacher and expositor, has a strong sense of
the level of the students who will read this book, their backgrounds, and their
strengths, and presents the material in accessible morsels that the student can
study on his or her own. Well-chosen examples and cognate exercises will rein-
force the ideas being presented. Frequent review, assessment, and application

xi
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of the ideas will help students to retain and to internalize all the important
concepts of calculus.

This book will give the student a firm grounding in calculus. The student
who has mastered the book will be able to go on to study physics, engineering,
chemistry, computational biology, computer science, and other basic scientific
areas that use calculus.

Calculus Demystified is a valuable addition to the self-help literature.
Written by an accomplished and experienced teacher (the author of How to
Teach Mathematics), this book will aid the student who is working without
a teacher. It will provide encouragement and reinforcement as needed, and
diagnostic exercises will help the student to measure his or her progress.

Steven G. Krantz



How to Use This Book
Calculus is the language of science. Ever since the time of Isaac Newton and

Gottfried Wilhelm von Leibniz, calculus has been our key tool for opening up
and examining nature. Calculus is the most powerful and versatile collection of
analytical tools ever devised by mankind. It is an essential part of our knowledge
of the world around us, and everyone should be acquainted with its fundamen-
tal principles.

Calculus need not be difficult. The main ideas---functions, limits, derivatives,
and integrals---can all be described using everyday language. The key to getting
a grasp on the concepts is to work examples. And that is what this book will
do for you: It will work dozens of examples, and then walk you through many
more. It will pause to point out the pitfalls and points of confusion. It will look
back to assess what we have learned and then proceed ahead in measured steps.

The book has many learning tools to help you make your way through the
subject. Every new idea has features called ‘‘You Try It.’’ This gives you im-
mediate practice, at the moment of impact, with the new idea. Additional fea-
tures called ‘‘Math Note’’ point out interesting byways and confusing points
and matters of interest. Finally, the ‘‘Still Struggling?’’ passages help students
over difficult points.

Every chapter ends with a quiz to give you practice and to make sure you
have mastered the material at hand. The quizzes are of course ‘‘open book.’’
You definitely want to refer back to the material you have read as you solve
the problems. And the answers are provided at the back of the book. You
should actually write out the solution of each problem---because this is a good
skill to have, and so that you can compare your answers with those in the
book. By writing out the solutions you will also have an archive of your work.

xiii
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A satisfactory score on any quiz is 70%. If you don’t achieve that score on your
first try, then do some reviewing of the trickier parts of the text and try again.
It is best not to proceed until you are comfortable with the chapter you are
finishing.

There is a Final Exam at the end of the book. This draws together the entire
learning experience, and helps you to see everything you have learned. The
Final Exam is multiple choice and is practically oriented. It will help you to
feel good about the concrete and useful body of mathematics that you have
mastered. A score of 75% is a passing grade on the Final Exam.

A good pace for this book is one chapter per week. You ought to be able to
cover each section in a chapter in two or three hours. You don’t want to rush
through the material, but you don’t want to go too slowly either. Set a steady
pace for yourself, and endeavor to stick to it. There is no substitute for strong
work habits.

When you finish this book, it should be part of your working reference li-
brary. You should refer back to it in later courses, and look things up as you
need them. This is an easy book to dip into. We encourage you to do so.

Calculus is fun and exciting. It is full of new ideas---and very important ones.
These are ideas that you will see repeatedly as you go on in engineering or
physics or business or any life path where analytical thinking plays a role.

The key ideas of calculus are ones that make sense in many different con-
texts. Rates of change are central to the way that we understand the world
around us. Aggregation and summation are incisive means of drawing informa-
tion together. The amazing fact about calculus is that these two key ideas are
related---by the Fundamental Theorem of Calculus. That is one of the main things
that you will learn in this book. Learn the Fundamental Theorem and you have
learned what calculus is all about.

You should read the book with pencil in hand. You will want to calculate
and try things as frequently as possible. Be sure to do the quizzes. And take the
Final Exam to be sure that you have mastered the material.

You will find that this book contains bibliographic references of the form
[SCH1]. That is an acronym that summarizes the identity of the book. Using
this acronym, you can easily locate the item in the Bibliography.

This is a seminal journey in your education, and one that you will look back
on with pride and pleasure. Happy hunting!
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c h a p t e r 1
Basics

This chapter reviews key ideas from precalculus. Master this chapter and you
will be well-prepared for calculus.

C H A P T E R O B J E C T I V E S
In this chapter, you will learn

• Number lines

• Graphing

• Sets

• Idea of a function

• Trigonometry

• Plotting the graph of a function

• Composition of functions

• Inverse of a function

1
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1.0 Introductory Remarks
......................................................................................................................................

Calculus is one of the most important parts of mathematics. It is fundamental
to all of modern science. How could one part of mathematics be of such
central importance? It is because calculus gives us the tools to study rates of
change and motion. All analytical subjects, from biology to physics to chemistry
to engineering to mathematics, involve studying quantities that are growing or
shrinking or moving---in other words, they are changing. Astronomers study the
motions of the planets, chemists study the interaction of substances, physicists
study the interactions of physical objects. All of these involve change and
motion.

In order to study calculus effectively, you must be familiar with cartesian
geometry, with trigonometry, and with functions. We will spend this first
chapter reviewing the essential ideas. Some readers will study this chapter selec-
tively, merely reviewing selected sections. Others will, for completeness, wish to
review all the material. The main point is to get started on calculus (Chapter 2).

1.1 Number Systems
......................................................................................................................................

The number systems that we use in calculus are the natural numbers, the inte-
gers, the rational numbers, and the real numbers. Let us describe each of these:

• The natural numbers are the system of positive counting numbers 1, 2, 3,
. . . . We denote the set of all natural numbers by N.

• The integers are the positive and negative whole numbers: . . . , −3, −2,
−1, 0, 1, 2, 3, . . . . We denote the set of all integers by Z.

• The rational numbers are quotients of integers. Any number of the form
p/q, with p, q ∈ Z and q �= 0, is a rational number. We say that p/q and
r/s represent the same rational number precisely when ps = qr . Of course,
you know that in displayed mathematics we write fractions in this way:

1
2

+ 2
3

= 7
6

.

• The real numbers are the set of all decimals, both terminating and non-
terminating. This set is rather sophisticated, and bears a little discussion.
A decimal number of the form

x = 3.16792
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is actually a rational number, for it represents

x = 3.16792 = 316792
100000

.

A decimal number of the form

m = 4.27519191919 . . . ,

with a group of digits that repeats itself interminably, is also a rational
number. To see this, notice that

100 · m = 427.519191919 . . .

and therefore we may subtract:

100m = 427.519191919 . . .

m = 4.275191919 . . .

Subtracting, we see that

99m = 423.244

or

m = 423244
99000

.

So, as we asserted, m is a rational number or quotient of integers.
The third kind of decimal number is one which has a non-terminating

decimal expansion that does not keep repeating. An example is 3.14159265
. . . . This is the decimal expansion for the number that we ordinarily call
π . Such a number is irrational, that is, it cannot be expressed as the quo-
tient of two integers.

In summary: There are three types of real numbers: (i) terminating decimals,
(ii) non-terminating decimals that repeat, (iii) non-terminating decimals that
do not repeat. Types (i) and (ii) are rational numbers. Type (iii) are irrational
numbers.

YOU TRY IT What type of real number is 3.41287548754875 . . . ? Can you

express this number in more compact form?
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_3 _2 _1 0 1 2 3 4

a b

FIGURE 1.1

1.2 Coordinates in One Dimension
......................................................................................................................................

We envision the real numbers as laid out on a line, and we locate real numbers
from left to right on this line. If a < b are real numbers then a will lie to the
left of b on this line. See Figure 1.1.

EXAMPLE 1.1
On a real number line, plot the numbers −4, −1, 2, and 6. Also plot the

sets S = {x ∈ R : −8 ≤ x < −5} and T = {t ∈ R : 7 < t ≤ 9}. Label

the plots.

SOLUTION

Figure 1.2 exhibits the indicated points and the two sets. These sets are

called half-open intervals because each set includes one endpoint and not

the other.

MATH NOTE The notation S = {x ∈ R : −8 ≤ x < −5} is called set builder

notation. It says that S is the set of all numbers x such that x is greater than or equal

to −8 and less than −5. We will use set builder notation throughout the book.

If an interval contains both its endpoints, then it is called a closed interval. If an
interval omits both its endpoints, then it is called a open interval. See Figure 1.3.

_9 _6 _3 0 3 6 9

_9 _6 _3 0 3 6 9

TS

FIGURE 1.2
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open interval closed interval 

FIGURE 1.3
_9 _6 _3 0 3 6 9

FIGURE 1.4

EXAMPLE 1.2
Find the set of points that satisfy x − 2 < 4 and exhibit it on a number line.

SOLUTION

We solve the inequality to obtain x < 6. The set of points satisfying this

inequality is exhibited in Figure 1.4.

EXAMPLE 1.3
Find the set of points that satisfies the condition

|x + 3| ≤ 2 (∗)

and exhibit it on a number line.

SOLUTION

In case x + 3 ≥ 0 then |x + 3| = x + 3 and we may write condition (∗) as

x + 3 ≤ 2

or

x ≤ −1.

Combining x + 3 ≥ 0 and x ≤ −1 gives −3 ≤ x ≤ −1.

On the other hand, if x + 3 < 0 then |x + 3| = −( x + 3). We may then

write condition (∗) as

−( x + 3) ≤ 2

or

−5 ≤ x.

Combining x + 3 < 0 and −5 ≤ x gives −5 ≤ x < −3.
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_9 _6 _3 0 3 6 9

FIGURE 1.5

We have found that our inequality |x + 3| ≤ 2 is true precisely when

either −3 ≤ x ≤ −1 or −5 ≤ x < −3. Putting these together yields

−5 ≤ x ≤ −1. We display this set in Figure 1.5.

YOU TRY IT Solve the inequality |x − 4| > 1. Exhibit your answer on a

number line.

YOU TRY IT On a real number line, sketch the set {x : x2 − 1 < 3}.

1.3 Coordinates in Two Dimensions
......................................................................................................................................

We locate points in the plane by using two coordinate lines (instead of
the single line that we used in one dimension). Refer to Figure 1.6. We
determine the coordinates of the given point P by first determining the
x-displacement, or (signed) distance from the y-axis and then determining
the y-displacement, or (signed) distance from the x-axis. We refer to this
coordinate system as (x, y)-coordinates or cartesian coordinates. The idea is
best understood by way of some examples.

EXAMPLE 1.4
Plot the points P = ( 3, −2) , Q = (−4, 6) , R = ( 2, 5) , and S = (−5, −3) .

y

x

P

FIGURE 1.6
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y

4

1

x

Q

S P

R

1 4

FIGURE 1.7

SOLUTION

The first coordinate 3 of the point P tells us that the point is located 3 units

to the right of the y-axis (because 3 is positive). The second coordinate −2

of the point P tells us that the point is located 2 units below the x-axis

(because −2 is negative). See Figure 1.7.

The first coordinate −4 of the point Q tells us that the point is loc-

ated 4 units to the left of the y-axis (because −4 is negative). The second

coordinate 6 of the point Q tells us that the point is located 6 units above

the x-axis (because 6 is positive). See Figure 1.7.

The first coordinate 2 of the point R tells us that the point is located 2

units to the right of the y-axis (because 2 is positive). The second coordi-

nate 5 of the point R tells us that the point is located 5 units above the

x-axis (because 5 is positive). See Figure 1.7.

The first coordinate −5 of the point S tells us that the point is located 5

units to the left of the y-axis (because −5 is negative). The second coordi-

nate −3 of the point S tells us that the point is located 3 units below the

x-axis (because −3 is negative). See Figure 1.7.

EXAMPLE 1.5
Give the coordinates of the points X , Y, Z , and W exhibited in Figure 1.8.
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y

x

X

W

Z

Y

FIGURE 1.8

SOLUTION

The point X is 1 unit to the right of the y-axis and 3 units below the x-axis.

Therefore its coordinates are ( 1, −3) .

The point Y is 2 units to the left of the y-axis and 1 unit above the x-axis.

Therefore its coordinates are (−2, 1) .

The point Z is 5 units to the right of the y-axis and 4 units above the

x-axis. Therefore its coordinates are ( 5, 4) .

The point W is 6 units to the left of the y-axis and 5 units below the x-

axis. Therefore, its coordinates are (−6, −5) .

YOU TRY IT Sketch the points ( 3, −5) , ( 2, 4) , and (π, π/3) on a set of axes.

Sketch the set {( x, y) : x = 3} on another set of axes.

EXAMPLE 1.6
Sketch the set of points � = {( x, y) : y = 3}. Sketch the set of points k =
{( x, y) : x = −4}.

SOLUTION

The set � consists of all points with y-coordinate equal to 3. This is the set

of all points that lie 3 units above the x-axis. We exhibit � in Figure 1.9. It is

a horizontal line.



Chapter 1 B A S I C S 9

�

FIGURE 1.9

k

FIGURE 1.10

The set k consists of all points with x-coordinate equal to −4. This is

the set of all points that lie 4 units to the left of the y-axis. We exhibit k

in Figure 1.10. It is a vertical line.

EXAMPLE 1.7
Sketch the set of points S = {( x, y) : x > 2} on a pair of coordinate axes.

SOLUTION

Notice that the set S contains all points with x-coordinate greater than 2.

These will be all points to the right of the vertical line x = 2. That set is

exhibited in Figure 1.11.
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x

y

FIGURE 1.11

y

x

1

1

FIGURE 1.12

YOU TRY IT Sketch the set {( x, y) : x + y < 4}.

YOU TRY IT Identify the set (using set builder notation) that is shown in

Figure 1.12.

1.4 The Slope of a Line in the Plane
......................................................................................................................................

A line in the plane may rise gradually from left to right, or it may rise quite
steeply from left to right (Figure 1.13). Likewise, it could fall gradually from
left to right, or it could fall quite steeply from left to right (Figure 1.14). The
number ‘‘slope’’ differentiates among these different rates of rise or fall.
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y

x

FIGURE 1.13

Look at Figure 1.15. We use the two points P = (p1, p2) and Q = (q1, q2) to
calculate the slope. It is

m = q2 − p2

q1 − p1
.

It turns out that, no matter which two points we may choose on a given line,
this calculation will always give the same answer for slope.

y

x

FIGURE 1.14
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y

x

Q

P

FIGURE 1.15

EXAMPLE 1.8
Calculate the slope of the line in Figure 1.16.

SOLUTION

We use the points P = (−1, 0) and Q = ( 1, 3) to calculate the slope of

this line:

m =
3 − 0

1 − (−1)
=

3

2
.

Q = (1,3)

P = (_1,0)

R = (3,6)

y

x

FIGURE 1.16
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We could just as easily have used the points P = (−1, 0) and R = ( 3, 6)

to calculate the slope:

m =
6 − 0

3 − (−1)
=

6

4
=

3

2
.

If a line has slope m, then, for each unit of motion from left to right, the
line rises m units. In the last example, the line rises 3/2 units for each unit of
motion to the right. Or one could say that the line rises 3 units for each 2 units
of motion to the right.

EXAMPLE 1.9
Calculate the slope of the line in Figure 1.17.

SOLUTION

We use the points R = (−2, 10) and T = ( 1, −5) to calculate the slope of

this line:

m =
10 − (−5)

(−2) − 1
= −5.

y

x

R = (_2,10)

S = (_1,5)

T = (1,_5)

2

2
4
6
8
10

4 6

FIGURE 1.17
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We could just as easily have used the points S = (−1, 5) and T = ( 1, −5) :

m =
5 − (−5)

−1 − 1
= −5.

In this example, the line falls 5 units for each 1 unit of left-to-right motion.
The negativity of the slope indicates that the line is falling.

The concept of slope is undefined for a vertical line. Such a line will have any
two points with the same x-coordinate, and calculation of slope would result
in division by 0.

YOU TRY IT What is the slope of the line y = 2x + 8?

YOU TRY IT What is the slope of the line y = 5? What is the slope of the line

x = 3?

Two lines are perpendicular precisely when their slopes are negative recip-
rocals. This makes sense: If one line has slope 5 and the other has slope −1/5
then we see that the first line rises 5 units for each unit of left-to-right motion
while the second line falls 1 unit for each 5 units of left-to-right motion. So the
lines must be perpendicular. See Figure 1.18a.

y

x

FIGURE 1.18a
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y

x

FIGURE 1.18b

YOU TRY IT Sketch the line that is perpendicular to x + 2y = 7 and passes

through ( 1, 4) .

Note also that two lines are parallel precisely when they have the same slope.
See Figure 1.18b.

1.5 The Equation of a Line
......................................................................................................................................

The equation of a line in the plane will describe---in compact form---all the
points that lie on that line. We determine the equation of a given line by writing
its slope in two different ways and then equating them. Some examples best
illustrate the idea.

EXAMPLE 1.10
Determine the equation of the line with slope 3 that passes through the

point ( 2, 1) .

SOLUTION

Let ( x, y) be a variable point on the line. Then we can use that variable

point together with ( 2, 1) to calculate the slope:

m =
y − 1

x − 2
.
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On the other hand, we are given that the slope is m = 3. We may equate

the two expressions for slope to obtain

3 =
y − 1

x − 2
. (∗)

This may be simplified to y = 3x − 5.

MATH NOTE The form y = 3x − 5 for the equation of a line is called the slope-

intercept form. The slope is 3 and the line passes through ( 0, −5) (its y-intercept).

MATH NOTE Equation (∗) may be rewritten as y − 1 = 3( x − 2) . In general, the

line with slope m that passes through the point ( x0, y0) can be written as y − y0 =
m( x − x0) . This is called the point-slope form of the equation of a line. For the spe-

cific example we are considering here, the line passes through ( 2, 1) and has slope 3.

YOU TRY IT Write the equation of the line that passes through the point

(−3, 2) and has slope 4.

EXAMPLE 1.11
Write the equation of the line passing through the points (−4, 5) and

( 6, 2) .

SOLUTION

Let ( x, y) be a variable point on the line. Using the points ( x, y) and

(−4, 5) , we may calculate the slope to be

m =
y − 5

x − (−4)
.

On the other hand, we may use the points (−4, 5) and ( 6, 2) to calculate

the slope:

m =
2 − 5

6 − (−4)
=

−3

10
.

Equating the two expressions for slope, we find that

y − 5

x + 4
=

−3

10
.
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Simplifying this identity, we find that the equation of our line is

y − 5 =
−3

10
· ( x + 4) .

YOU TRY IT Find the equation of the line that passes through the points

( 2, −5) and (−6, 1) .

In general, the line that passes through points (x0, y0) and (x1, y1) has
equation

y − y0

x − x0
= y1 − y0

x1 − x0
.

This is called the two-point form of the equation of a line.

EXAMPLE 1.12
Find the line perpendicular to y = 3x − 6 that passes through the point

( 5, 4) .

SOLUTION

We know from the Math Note after Example 1.10 that the given line has

slope 3. Thus the line we seek (the perpendicular line) has slope −1/3. Us-

ing the point-slope form of a line, we may immediately write the equation

of the line with slope −1/3 and passing through ( 5, 4) as

y − 4 =
−1

3
· ( x − 5) .

In summary, we determine the equation of a line in the plane by finding two
expressions for the slope and equating them.

If a line has slope m and passes through the point (x0, y0) then it has equation

y − y0 = m(x − x0).

This is the point-slope form of a line.



18 C A L C U L U S DeMYSTiF i eD

If a line passes through the points (x0, y0) and (x1, y1) then it has equation

y − y0

x − x0
= y1 − y0

x1 − x0
.

This is the two-point form of a line.

YOU TRY IT Find the line perpendicular to 2x + 5y = 10 that passes through

the point ( 1, 1) . Now find the line that is parallel to the given line and passes

through ( 1, 1) .

1.6 Loci in the Plane
......................................................................................................................................

The most interesting sets of points to graph are collections of points that are
defined by an equation. We call such a graph the locus of the equation. We
cannot give all the theory of loci here, but instead consider a few examples. See
[SCH2] for more on this matter.

EXAMPLE 1.13
Sketch the graph of {( x, y) : y = x2}.

SOLUTION

It is convenient to make a table of values:

x y = x2

−3 9

−2 4

−1 1

0 0

1 1

2 4

3 9

We plot these points on a single set of axes (Figure 1.19). Supposing that

the curve we seek to draw is a smooth interpolation of these points (calcu-

lus will later show us that this supposition is correct), we find that our curve

is as shown in Figure 1.20. This curve is called a parabola.
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y

x

FIGURE 1.19

FIGURE 1.20

EXAMPLE 1.14
Sketch the graph of the curve {( x, y) : y = x3}.

SOLUTION

It is convenient to make a table of values:

x y = x3

−3 −27

−2 −8

−1 −1

0 0

1 1

2 8

3 27
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We plot these points on a single set of axes (Figure 1.21). Supposing that

the curve we seek to draw is a smooth interpolation of these points (calcu-

lus will later show us that this supposition is correct), we find that our curve

is as shown in Figure 1.22. This curve is called a cubic.

YOU TRY IT Sketch the graph of the locus |x| = |y|.

EXAMPLE 1.15
Sketch the graph of the curve y = x2 + x − 1.

SOLUTION

It is convenient to make a table of values:

x y = x2 + x − 1
−4 11

−3 5

−2 1

−1 −1

0 −1

1 1

2 5

3 11

We plot these points on a single set of axes (Figure 1.23). Supposing that

the curve we seek to draw is a smooth interpolation of these points (calcu-

lus will later show us that this supposition is correct), we find that our curve

is as shown in Figure 1.24. This is another example of a parabola.

YOU TRY IT Sketch the locus y2 = x3 + x + 1 on a set of axes.

The reader unfamiliar with cartesian geometry and the theory of loci would
do well to consult [SCH2].

1.7 Trigonometry
......................................................................................................................................

Here we give a whirlwind review of basic ideas of trigonometry. The reader
who needs a more extensive review should consult [SCH1].
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y

x

6
3

3 6

FIGURE 1.21

FIGURE 1.22
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y

x

FIGURE 1.23

When we first learn trigonometry, we do so by studying right triangles and
measuring angles in degrees. Look at Figure 1.25. In calculus, however, it is
convenient to study trigonometry in a more general setting, and to measure
angles in radians.

FIGURE 1.24
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a

a measured in degrees

FIGURE 1.25

Angles will be measured by rotation along the unit circle in the plane, begin-
ning at the positive x-axis. See Figure 1.26. Counterclockwise rotation corre-
sponds to positive angles, and clockwise rotation corresponds to negative angles.
Refer to Figure 1.27. The radian measure of an angle is defined as the length
of the arc of the unit circle that the angle subtends with the positive x-axis
(together with an appropriate + or − sign).

In degree measure, one full rotation about the unit circle is 360◦; in ra-
dian measure, one full rotation about the circle is just the circumference of
the circle or 2π. Let us use the symbol θ to denote an angle. The principle of
proportionality now tells us that

degree measure of θ

360◦ = radian measure of θ

2π
.

a

y

x

positive angle

FIGURE 1.26
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a

y

x

negative angle

FIGURE 1.27

In other words

radian measure of θ = π

180
(degree measure of θ)

and

degree measure of θ = 180
π

(radian measure of θ).

EXAMPLE 1.16
Sketch the angle with radian measure π/6. Give its equivalent degree

measure.

SOLUTION

Since

π/6

2π
=

1

12
,

the angle subtends an arc of the unit circle corresponding to 1/12 of the

full circumference. Since π/6 > 0, the angle represents a counterclock-

wise rotation. It is illustrated in Figure 1.28.

The degree measure of this angle is

180

π
· π

6
= 30◦.
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p/6

x

y

FIGURE 1.28

Still Struggling

In this book we always use radian measure for angles. (The reason is that it makes

the formulas of calculus turn out to be simpler.) Thus, for example, if we refer

to ''the angle 2π/3'' then it should be understood that this is an angle in radian

measure. See Figure 1.29.

Likewise, if we refer to the angle 3 it is also understood to be radian measure.

We sketch this last angle by noting that 3 is approximately .477 of a full rotation

2π ---refer to Figure 1.30.

y

x

2p/3

FIGURE 1.29
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y

x

3

FIGURE 1.30

YOU TRY IT Sketch the angles −2, 1, π, 3π/2, and 10---all on the same coor-

dinate figure. Of course use radian measure.

EXAMPLE 1.17
Several angles are sketched in Figure 1.31, and both their radian and de-

gree measures given.

5p/6 = 150°

p/3 = 60°

_3p/4 = _135°
_ p = _180°

y

x

FIGURE 1.31
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y

x

unit circle P = (x, y)

q
cos q

sin q

FIGURE 1.32

If θ is an angle, let (x, y) be the coordinates of the terminal point of the
corresponding radius (called the terminal radius) on the unit circle. We call P =
(x, y) the terminal point corresponding to θ. Look at Figure 1.32. The number
y is called the sine of θ and is written sin θ. The number x is called the cosine of
θ and is written cos θ.

Since (cos θ , sin θ) are coordinates of a point on the unit circle, the following
two fundamental properties are immediate:

(1) For any number θ ,

(sin θ)2 + (cos θ)2 = 1.

(2) For any number θ ,

−1 ≤ cos θ ≤ 1 and − 1 ≤ sin θ ≤ 1.

Still Struggling

It is common to write

sin2
θ to mean (sin θ)2 and cos2

θ to mean (cos θ)2.

EXAMPLE 1.18
Compute the sine and cosine of π/3.



28 C A L C U L U S DeMYSTiF i eD

unit circle

y

x1
2

p/3

FIGURE 1.33

SOLUTION

We sketch the terminal radius and associated triangle (see Figure 1.33).

This is a 30-60-90 triangle whose sides have ratios 1 :
√

3 : 2. Thus

1

x
= 2 or x =

1

2
.

Likewise,

y

x
=
√

3 or y =
√

3x =

√
3

2
.

It follows that

sin
π

3
=

√
3

2

and

cos
π

3
=

1

2
.

YOU TRY IT The cosine of a certain angle is 2/3. The angle lies in the fourth

quadrant. What is the sine of the angle?
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q
cos q

sin q

unit circle

y

x

FIGURE 1.34

Still Struggling

Notice that if θ is an angle then θ and θ + 2π have the same terminal radius and

the same terminal point (for adding 2π just adds one more trip around the circle-

--look at Figure 1.34).

As a result,

sin θ = x = sin(θ + 2π)

and

cos θ = y = cos(θ + 2π).

We say that the sine and cosine functions have period 2π : the functions repeat

themselves every 2π units.

In practice, when we calculate the trigonometric functions of an angle θ , we
reduce it by multiples of 2π so that we can consider an equivalent angle θ ′,
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unit circle

adjacent side

opposite
side

y

x

(x, y)

FIGURE 1.35

called the associated principal angle, satisfying 0 ≤ θ ′ < 2π. For instance,

15π/2 has associated principal angle 3π/2

(since 15π/2 − 3π/2 = 3 · 2π)

and

−10π/3 has associated principal angle 2π/3

(since − 10π/3 − 2π/3 = −12π/3 = −2 · 2π).

YOU TRY IT What are the principal angles associated with 7π, 11π/2, 8π/3,

−14π/5, and −16π/7?

What does the concept of angle and sine and cosine that we have presented
here have to do with the classical notion using triangles? Notice that any angle θ

such that 0 ≤ θ < π/2 has associated to it a right triangle in the first quadrant,
with vertex on the unit circle, such that the base is the segment connecting
(0, 0) to (x, 0) and the height is the segment connecting (x, 0) to (x, y). See
Figure 1.35.
Then

sin θ = y = y
1

= opposite side of triangle
hypotenuse

and

cos θ = x = x
1

= adjacent side of triangle
hypotenuse

.

Thus, for angles θ between 0 and π/2, the new definition of sine and co-
sine using the unit circle is clearly equivalent to the classical definition using
adjacent and opposite sides and the hypotenuse. For other angles θ , the classical
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approach is to reduce to this special case by subtracting multiples of π/2. Our
approach using the unit circle is considerably clearer because it makes the sig-
natures of sine and cosine obvious.

Besides sine and cosine, there are four other trigonometric functions:

tan θ = y
x

= sin θ

cos θ
,

cot θ = x
y

= cos θ

sin θ
,

sec θ = 1
x

= 1
cos θ

, and

csc θ = 1
y

= 1
sin θ

.

Whereas sine and cosine have domain the entire real line, we notice that tan θ

and sec θ are undefined at odd multiples of π/2 (because cosine will vanish
there) and cot θ and csc θ are undefined at even multiples of π/2 (because sine
will vanish there). The graphs of the six trigonometric functions are shown in
Figures 1.36 a, b, and c.

EXAMPLE 1.19
Compute all the trigonometric functions for the angle θ = 11π/4.

SOLUTION

We first notice that the principal associated angle is 3π/4, so we deal with

that angle. Figure 1.37 shows that the triangle associated to this angle is

an isosceles right triangle with hypetenuse 1.

1

0.5

_1

_6 _4 _2 2 4 6

_0.5

0.5

_1

_6 _4 _2 2 4 6

_0.5

1

FIGURE 1.36a • Graphs of y = sin x and y = cos x .
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_6

_30

_20

_10

10

20

30

_4 _2 4 6 _6

_30

_20

_10

10

20

30

_4 _2 2 4 62

FIGURE 1.36b • Graphs of y = tan x and y = cot x .

_6

_4 _2 2 4

6

15

10

5

_5

_10

_15

_6 _4

_2

2

4 6

15

10

5

_5

_10

_15

FIGURE 1.36c • Graphs of y = sec x and y = csc x .

Therefore x = −1/
√

2 and y = 1/
√

2. It follows that

sinθ = y =
1√

2
,

cosθ = x = − 1√
2

,

tanθ =
y

x
= −1,

cotθ =
x

y
= −1,

secθ =
1

x
= −

√
2, and

cscθ =
1

y
=
√

2.
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unit circle

y

x

11p/4

FIGURE 1.37

Similar calculations allow us to complete the following table for the values

of the trigonometric functions at the principal angles which are multiples

of π/6 or π/4.

Angle Sin Cos Tan Cot Sec Csc

0 0 1 0 undef 1 undef

π/6 1/2
√

3/2 1/
√

3
√

3 2/
√

3 2

π/4
√

2/2
√

2/2 1 1
√

2
√

2

π/3
√

3/2 1/2
√

3 1/
√

3 2 2/
√

3

π/2 1 0 undef 0 undef 1

2π/3
√

3/2 −1/2 −
√

3 −1/
√

3 −2 2/
√

3

3π/4
√

2/2 −
√

2/2 −1 −1 −
√

2
√

2

5π/6 1/2 −
√

3/2 −1/
√

3 −
√

3 −2/
√

3 2

π 0 −1 0 undef −1 undef

7π/6 −1/2 −
√

3/2 1/
√

3
√

3 −2/
√

3 −2

5π/4 −
√

2/2 −
√

2/2 1 1 −
√

2 −
√

2

4π/3 −
√

3/2 −1/2
√

3 1/
√

3 −2 −2/
√

3

3π/2 −1 0 undef 0 undef −1

5π/3 −
√

3/2 1/2 −
√

3 −1/
√

3 2 −2/
√

3

7π/4 −
√

2/2
√

2/2 −1 −1
√

2 −
√

2
11π/6 −1/2

√
3/2 −1/

√
3 −

√
3 2/

√
3 −2
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Besides properties (1) and (2) stated previously, there are certain identities
which are fundamental to our study of the trigonometric functions. Here are
the principal ones:

(3) tan2
θ + 1 = sec2

θ

(4) cot2
θ + 1 = csc2

θ

(5) sin(θ + ψ) = sin θ cos ψ + cos θ sin ψ

(6) cos(θ + ψ) = cos θ cos ψ − sin θ sin ψ

(7) sin(2θ) = 2 sin θ cos θ

(8) cos(2θ) = cos2
θ − sin2

θ

(9) sin(−θ) = − sin θ

(10) cos(−θ) = cos θ

(11) sin2
θ = 1 − cos 2θ

2

(12) cos2
θ = 1 + cos 2θ

2

EXAMPLE 1.20
Prove identity number (3).

SOLUTION

We have

tan
2 θ + 1 =

sin
2 θ

cos
2 θ

+ 1

=
sin

2 θ

cos
2 θ

+
cos

2 θ

cos
2 θ

=
sin

2 θ + cos
2 θ

cos
2 θ

=
1

cos
2 θ

= sec
2 θ (where we have used Property (1)).
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YOU TRY IT Use identities (11) and (12) to calculate cos(π/12) and

sin(π/12) .

1.8 Sets and Functions
......................................................................................................................................

We have seen sets and functions throughout this review chapter, but it is well
to bring out some of the ideas explicitly.

A set is a collection of objects. We denote a set with a capital roman letter,
such as S or T or U. If S is a set and s is an object in that set then we write
s ∈ S and we say that s is an element of S. If S and T are sets then the collection
of elements common to the two sets is called the intersection of S and T and is
written S ∩ T . The set of elements that are in S or in T or in both is called the
union of S and T and is written S ∪ T .

A function from a set S to a set T is a rule that assigns to each element of S
a unique element of T . We write f : S → T.

EXAMPLE 1.21
Let S be the set of all people who are alive on October 10, 2004 and T the

set of all real numbers. Let f be the rule that assigns to each person his

or her weight in pounds at precisely noon on October 10, 2004. Discuss

whether f : S → T is a function.

SOLUTION

Indeed f is a function since it assigns to each element of S a unique el-

ement of T . Notice that each person has just one weight at noon on Oc-

tober 10, 2004: that is a part of the definition of ``function.'' However two

different people may have the same weight---that is allowed.

EXAMPLE 1.22
Let S be the set of all people and T be the set of all people. Let f be the

rule that assigns to each person his or her brother. Is f a function?

SOLUTION

In this case f is not a function. For many people have no brother (so the

rule makes no sense for them) and many people have several brothers (so

the rule is ambiguous for them).
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EXAMPLE 1.23
Let S be the set of all people and T be the set of all strings of letters not

exceeding 1500 characters (including blank spaces). Let f be the rule that

assigns to each person his or her legal name. (Some people have rather

long names; according to the Guinness Book of World Records, the longest

has 1063 letters.) Determine whether f : S → T is a function.

SOLUTION

This f is a function because every person has one and only one legal name.

Notice that several people may have the same name (such as Jack Arm-

strong), but that is allowed in the definition of function.

YOU TRY IT Let f be the rule that assigns to each real number its cube root. Is

this a function?

In calculus, the set S (called the domain of the function) and the set T (called
the range of the function) will usually be sets of numbers; in fact they will often
consist of one or more intervals in R. The rule f will usually be given by one or
more formulas. Many times the domain and range will not be given explicitly.
These ideas will be illustrated in the examples below.

YOU TRY IT Consider the rule that assigns to each real number its absolute

value. Is this a function? Why or why not? If it is a function, then what are its do-

main and range?

1.8.1 Examples of Functions of a Real Variable

EXAMPLE 1.24
Let S = R, T = R, and let f ( x) = x2. This is mathematical shorthand for

the rule ``assign to each x ∈ S its square.'' Determine whether f : R → R

is a function.

SOLUTION

We see that f is a function since it assigns to each element of S a unique

element of T ---namely its square.
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Still Struggling

Notice that, in the definition of function, there is some imprecision in the def-

inition of T . For instance, in Example 1.24, we could have let T = [0, ∞) or

T = (−6, ∞) with no significant change in the function. In the example of the

''name'' function (Example 1.23), we could have let T be all strings of letters not

exceeding 5000 characters in length. Or we could have made it all strings with-

out regard to length. Likewise, in any of the examples we could make the set S

smaller and the function would still make sense.

It is frequently convenient not to describe S and T explicitly.

EXAMPLE 1.25
Let f ( x) = +

√
1 − x2. Determine a domain and range for f which make

f a function.

SOLUTION

Notice that f makes sense for x ∈ [−1, 1] (we cannot take the square

root of a negative number, so we cannot allow x > 1 or x < −1). If we

understand f to have domain [−1, 1] and range R, then f : [−1, 1] → R

is a function.

Still Struggling

When a function is given by a formula, as in Example 1.25, with no statement

about the domain, then the domain is understood to be the set of all x for which

the formula makes sense.

YOU TRY IT Let g( x) =
x

x2 + 4x + 3
. What are the domain and range of this

function?
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EXAMPLE 1.26
Let

f ( x) =

{
−3 if x ≤ 1

2x2 if x > 1

Determine whether f is a function.

SOLUTION

Notice that f unambiguously assigns to each real number another real

number. The rule is given in two pieces, but it is still a valid rule. There-

fore it is a function with domain equal to R and range equal to R. It is

also perfectly correct to take the range to be (−4, ∞) , for example, since

f only takes values in this set.

Still Struggling

One point that you should learn from this example is that a function may be spec-

ified by different formulas on different parts of the domain.

YOU TRY IT Does the expression

g( x) =

{
4 if x < 3

x2 − 7 if x ≥ 2

define a function? Why or why not?

EXAMPLE 1.27
Let f ( x) = ±√

x. Discuss whether f is a function.

SOLUTION

This f can only make sense for x ≥ 0. But even then f is not a function

since it is ambiguous. For instance, it assigns to x = 1 both the numbers 1

and −1.
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1.8.2 Graphs of Functions
It is useful to be able to draw pictures which represent functions. These pictures,
or graphs, are a device for helping us to think about functions. In this book we
will only graph functions whose domains and ranges are subsets of the real
numbers.

We graph functions in the x-y plane. The elements of the domain of a func-
tion are thought of as points of the x-axis. The values of a function are measured
on the y-axis. The graph of f associates to x the unique y value that the func-
tion f assigns to x. In other words, a point (x, y) lies on the graph of f if and
only if y = f (x).

EXAMPLE 1.28
Let f ( x) = ( x2 + 2)/( x − 1) . Determine whether there are points of the

graph of f corresponding to x = 3, 4, and 1.

SOLUTION

The y value corresponding to x = 3 is y = f ( 3) = 11/2. Therefore the

point ( 3, 11/2) lies on the graph of f. Similarly, f ( 4) = 6 so that ( 4, 6)

lies on the graph. However, f is undefined at x = 1, so there is no point

on the graph with x coordinate 1. The sketch in Figure 1.38 was obtained

by plotting several points.

Still Struggling

Notice that, for each x in the domain of the function, there is one and only one

point on the graph---namely the unique point with y value equal to f (x). If x is

not in the domain of f, then there is no point on the graph that corresponds to x .

EXAMPLE 1.29
Is the curve in Figure 1.39 the graph of a function?
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FIGURE 1.38

FIGURE 1.39

SOLUTION

Observe that, corresponding to x = 3, for instance, there are two y values

on the curve. Therefore the curve cannot be the graph of a function.

YOU TRY IT Graph the function y = x + |x|.
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FIGURE 1.40

EXAMPLE 1.30
Is the curve in Figure 1.40 the graph of a function?

SOLUTION

Notice that each x in the domain has just one y value corresponding to it.

Thus, even though we cannot give a formula for the function, the curve is

the graph of a function. The domain of this function is (−∞, 3) ∪ ( 5, 7) .

MATH NOTE A nice, geometrical way to think about the condition that each x in

the domain has corresponding to it precisely one y value is this:

If every vertical line drawn through a curve intersects that curve just once, then

the curve is the graph of a function.

YOU TRY IT Use the vertical line test to determine whether the locus x2 +
y2 = 1 is the graph of a function.

1.8.3 Plotting the Graph of a Function
Until we learn some more sophisticated techniques, the basic method that we
shall use for graphing functions is to plot points and then to connect them in a
plausible manner.
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EXAMPLE 1.31
Sketch the graph of f ( x) = x3 − x.

SOLUTION

We complete a table of values of the function f .

x y = x3 − x

−3 −24

−2 −6

−1 0

0 0

1 0

2 6

3 24

We plot these points on a pair of axes and connect them in a reasonable

way (Figure 1.41). Notice that the domain of f is all of R, so we extend the

graph to the edges of the picture.

FIGURE 1.41
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EXAMPLE 1.32
Sketch the graph of

f ( x) =

{
−1 if x ≤ 2

x if x > 2

SOLUTION

We again start with a table of values.

x y = f (x)

−3 −1

−2 −1

−1 −1

0 −1

1 −1

2 −1

3 3

4 4

5 5

We plot these on a pair of axes (Figure 1.42).

Since the definition of the function changes at x = 2, we would be

mistaken to connect these dots blindly. First notice that, for x ≤ 2, the

function is identically constant. Its graph is a horizontal line. For x > 2,

the function is a line of slope 1. Now we can sketch the graph accurately

(Figure 1.43).

YOU TRY IT Sketch the graph of h( x) = |x| · 3
√

x.

y

x

FIGURE 1.42
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y

x

FIGURE 1.43

EXAMPLE 1.33
Sketch the graph of f ( x) =

√
x + 1.

SOLUTION

We begin by noticing that the domain of f, that is the values of x for which

the function makes sense, is {x : x ≥ −1}. The square root is understood

to be the positive square root. Now we compute a table of values and plot

some points.

x y =
√

x + 1

−1 0

0 1

1
√

2

2
√

3

3 2

4
√

5

5
√

6

6
√

7

Connecting the points in a plausible way gives a sketch for the graph of

f (Figure 1.44).

EXAMPLE 1.34
Sketch the graph of x = y2.
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FIGURE 1.44

SOLUTION

The sketch in Figure 1.45 is obtained by plotting points. This curve is not

the graph of a function.

A curve that is the plot of an equation but which is not necessarily the

graph of a function is sometimes called the locus of the equation. When the

curve is the graph of a function we usually emphasize this fact by writing

the equation in the form y = f ( x) .

FIGURE 1.45
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YOU TRY IT Sketch the locus x = y2 + y.

1.8.4 Composition of Functions
Suppose that f and g are functions and that the domain of g contains the range
of f . This means that if x is in the domain of f then not only f (x) makes sense
but also g may be applied to f (x) (Figure 1.46). The result of these two oper-
ations, one following the other, is called g composed with f or the composition
of g with f . We write

(g ◦ f )(x) = g ( f (x)).

EXAMPLE 1.35
Let f ( x) = x2 − 1 and g( x) = 3x + 4. Calculate g ◦ f.

SOLUTION

We have

( g ◦ f ) ( x) = g( f ( x) ) = g( x2 − 1) . (∗)

Notice that we have started to work inside the parentheses: the first step

was to substitute the definition of f , namely x2 − 1, into our equation.

Now the definition of g says that we take g of any argument by multi-

plying that argument by 3 and then adding 4. In the present case we are

applying g to x2 − 1. Therefore the right side of equation (∗) equals

3 · ( x2 − 1) + 4.

This easily simplifies to 3x2 + 1. In conclusion,

g ◦ f ( x) = 3x2 + 1.

EXAMPLE 1.36
Let f ( t) = ( t2 − 2)/( t + 1) and g( t) = 2t + 1.Calculate g ◦ f and f ◦ g.

x f (x) g ( f (x))

FIGURE 1.46
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SOLUTION

We calculate that

( g ◦ f ) ( t) = g( f ( t) ) = g

(
t2 − 2

t + 1

)
. (∗∗)

We compute g of any argument by doubling it and adding 1. Thus equation

(∗∗) equals

2

(
t2 − 2

t + 1

)
+ 1

=
2t2 − 4

t + 1
+ 1

=
2t2 + t − 3

t + 1
.

One of the main points of this example is to see that f ◦ g is different

from g ◦ f . We compute f ◦ g:

( f ◦ g) ( t) = f ( g( t) )

= f ( 2t + 1)

=
( 2t + 1) 2 − 2

( 2t + 1) + 1

=
4t2 + 4t − 1

2t + 2
.

So f ◦ g and g ◦ f are different functions.

YOU TRY IT Let f ( x) = |x| and g( x) =
√

x/x. Calculate f ◦ g( x) and g ◦
f ( x) .

We say a few words about recognizing compositions of functions.

EXAMPLE 1.37
How can we write the function k( x) = ( 2x + 3) 2 as the composition of

two functions g and f ?
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SOLUTION

Notice that the function k can be thought of as two operations applied in

sequence. First we double and add 3, then we square. Thus define f ( x) =
2x + 3 and g( x) = x2. Then k( x) = ( g ◦ f ) ( x) .

We can also compose three (or more) functions. Define

(h ◦ g ◦ f )(x) = h
(
g ( f (x))

)
.

EXAMPLE 1.38
Write the function k from the last example as the composition of three

functions (instead of just two).

SOLUTION

First we double, then we add 3, then we square. So let f ( x) = 2x, g( x) =
x + 3, h( x) = x2. Then k( x) = ( h ◦ g ◦ f ) ( x) .

EXAMPLE 1.39
Write the function

r ( t) =
2

t2 + 3

as the composition of two functions.

SOLUTION

First we square t and add 3, then we divide 2 by the quantity just obtained.

As a result, we define f ( t) = t2 + 3 and g( t) = 2/t. It follows that r ( t) =
( g ◦ f ) ( t) .

YOU TRY IT Express the function g( x) = 3

x2+5
as the composition of two func-

tions. Can you express it as the composition of three functions?

1.8.5 The Inverse of a Function
Let f be the function which assigns to each working adult American his or
her Social Security number (a 9-digit string of integers). Let g be the function
which assigns to each working adult American his or her age in years (an integer
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between 0 and 150). Both functions have the same domain, and both take val-
ues in the non-negative integers. But there is a fundamental difference between
f and g . If you are given a Social Security number, then you can determine
the person to whom it belongs. There will be one and only one person with
that number. But if you are given a number between 0 and 150, then there will
probably be millions of people with that age. You cannot identify a person by
his/her age. In summary, if you know g (x) then you generally cannot determine
what x is. But if you know f (x) then you can determine what x is. This leads
to the main idea of this subsection.

Let f : S → T be a function. We say that f has an inverse (is invertible)
if there is a function f −1 : T → S such that ( f ◦ f −1)(t) = t for all t ∈ T and
( f −1 ◦ f )(s) = s for all s ∈ S. Notice that the symbol f −1 denotes a new func-
tion which we call the inverse of f .

Basic Rule for Finding Inverses
To find the inverse of a function f, we solve the equation

( f ◦ f −1)(t) = t

for the function f −1(t).

EXAMPLE 1.40
Find the inverse of the function f ( s) = 3s.

SOLUTION

We solve the equation

( f ◦ f −1) ( t) = t.

This is the same as

f ( f −1( t) ) = t.

We can rewrite the last line as

3 · f −1( t) = t
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or

f −1( t) =
t

3
.

Thus f −1( t) = t/3.

EXAMPLE 1.41
Let f : R → R be defined by f ( s) = 3s5. Find f −1.

SOLUTION

We solve

( f ◦ f −1) ( t) = t

or

f ( f −1( t) ) = t

or

3[ f −1( t) ]5 = t

or

[ f −1( t) ]5 =
t

3

or

f −1( t) =
(

t

3

)1/5

.

YOU TRY IT Find the inverse of the function g( x) = 3
√

x − 5.

It is important to understand that some functions do not have inverses.

EXAMPLE 1.42
Let f : R → {t : t ≥ 0} be defined by f ( s) = s2. If possible, find f −1.
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SOLUTION

Using the Basic Rule, we attempt to solve

( f ◦ f −1) ( t) = t.

Writing this out, we have

[ f −1( t) ]2 = t.

But now there is a problem: we cannot solve this equation uniquely for

f −1( t) . We do not know whether f −1( t) = +
√

t or f −1( t) = −
√

t. Thus

f −1 is not a well-defined function. Therefore f is not invertible and f −1

does not exist.

MATH NOTE There is a simple device which often enables us to obtain an

inverse---even in situations like Example 1.42. We change the domain of the function.

This idea is illustrated in the next example.

EXAMPLE 1.43
Define f̃ : {s : s ≥ 0} → {t : t ≥ 0} by the formula f̃ ( s) = s2. Find f̃ −1.

SOLUTION

We attempt to solve

( f̃ ◦ f̃ −1) ( t) = t.

Writing this out, we have

f̃ ( f̃ −1( t) ) = t

or

[ f̃ −1( t) ]2 = t.

This looks like the same situation we had in Example 1.42. But in fact things

have improved. Now we know that f̃ −1( t) must be+
√

t, because f̃ −1 must

have range S = {s : s ≥ 0}.Thus f̃ −1 : {t : t ≥ 0} → {s : s ≥ 0} is given

by f̃ −1( t) = +
√

t.
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YOU TRY IT The equation y = x2 + 3x does not describe the graph of an in-

vertible function. Find a way to restrict the domain so that it is invertible.

Now we consider the graph of the inverse function. Suppose that f : S → T
is invertible and that (s, t) is a point on the graph of f . Then t = f (s) hence s =
f −1(t) so that (t, s) is on the graph of f −1. The geometrical connection between
the points (s, t) and (t, s) is exhibited in Figure 1.47: they are reflections of each
other in the line y = x. We have discovered the following important principle:

The graph of f −1 is the reflectionin the line y = x of the graph of f.

Refer to Figure 1.48.

EXAMPLE 1.44
Sketch the graph of the inverse of the function f whose graph is shown in

Figure 1.49.

SOLUTION

By inspection of the graph we see that f is one-to-one (i.e., takes different

domain values to different range values) and onto (i.e., takes on all values

in the range) from S = [−2, 3] to T = [1, 5]. Therefore f has an inverse.

The graph of f −1 is exhibited in Figure 1.50.

y

x

FIGURE 1.47
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y

x

FIGURE 1.48

FIGURE 1.49

FIGURE 1.50

YOU TRY IT Sketch f ( x) = x3 + x and its inverse.

Another useful fact is this: Since an invertible function must be one-to-one,
two different x values cannot correspond to (that is, be ‘‘sent by the function
to’’) the same y value. Looking at Figures 1.51 and 1.52, we see that this means:
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FIGURE 1.51

In order for f to be invertible, no horizontal line can intersect the graph
of f more than once.

In Figure 1.51, the fact that the line y = 2 intersects the graph twice means
that the function f takes the value 2 at two different points of its domain
(namely at x = −2 and x = 6). Thus f is not one-to-one so it cannot be
invertible. Figure 1.52 shows what happens if we try to invert f : the result-
ing curve is not the graph of a function.

FIGURE 1.52
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FIGURE 1.53

EXAMPLE 1.45
Look at Figures 1.53 and 1.55. Are the functions whose graphs are shown

in parts (a) and (b) of each figure invertible?

SOLUTION

Graphs (a) and (b) in Figure 1.53 are the graphs of invertible functions

since no horizontal line intersects each graph more than once. Of course

we must choose the domain and range appropriately. For (a) we take

S = [−4, 4] and T = [−2, 3]; for (b) we take S = (−3, 4) and T = ( 0, 5) .

Graphs (a) and (b) in Figure 1.54 are the graphs of the inverse functions cor-

responding to (a) and (b) of Figure 1.53, respectively. They are obtained by

reflection in the line y = x.

In Figure 1.55, graphs (a) and (b) are not the graphs of invertible func-

tions. For each there is exhibited a horizontal line that intersects the graph

twice. However graphs (a) and (b) in Figure 1.56 exhibit a way to restrict

FIGURE 1.54
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FIGURE 1.55

FIGURE 1.56

FIGURE 1.57

the domains of the functions in (a) and (b) of Figure 1.55 to make them

invertible. Graphs (a) and (b) in Figure 1.57 show their respective inverses.

YOU TRY IT Give an example of a function from R to R that is not invertible,

even when it is restricted to any interval of length 2.
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1.9 A Few Words about Logarithms and Exponentials
......................................................................................................................................

We will give a more thorough treatment of the logarithm and exponential func-
tions in Chapter 6. For the moment we record a few simple facts so that we
may use these functions in the sections that immediately follow.

The logarithm is a function that is characterized by the property that

log(x · y) = log x + log y.

It follows from this property that

log(x/y) = log x − log y

and

log(xn) = n · log x.

It is useful to think of loga b as the power to which we raise a to get b, for
any a, b > 0. For example, log2 8 = 3 and log3(1/27) = −3. This introduces the
idea of the logarithm to a base.

YOU TRY IT Calculate log5 125, log3( 1/81) , and log2 16.

The most important base for the logarithm is Euler’s number e ≈
2.71828 . . . . We write ln x = loge x. For the moment we take the logarithm
to the base e, or the natural logarithm, to be given. It is characterized among all
logarithm functions by the fact that its graph has tangent line with slope 1 at
x = 1. See Figure 1.58. Then we set

loga x = ln x
ln a

.

Note that this formula gives immediately that loge x = ln x, once we accept
that loge e = 1.
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FIGURE 1.58

Still Struggling

In mathematics, we commonly write log x to mean the natural logarithm. Thus

you will sometimes encounter ln x and sometimes encounter log x (without any

subscript); they are both understood to mean loge x , the natural logarithm.

FIGURE 1.59
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The exponential function exp x is defined to be the inverse function to ln x.
Figure 1.59 shows the graph of y = exp x = exp(x). In fact we will see later that
exp x = ex. More generally, the function ax is the inverse function to loga x. The
exponential has these properties:

(a) ab+c = ab · ac

(b) (ab)c = ab·c

(c) ab−c = ab

ac

These are really just restatements of properties of the logarithm function that
we have already considered.

YOU TRY IT Simplify the expressions 32 · 54/( 15) 3 and 24 · 63 · 12−4.
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QUIZ

1. Each of the following is a rational number. Write it as the quotient of two
integers.
(a) 3/4 − 2/3
(b) 32.21734

(c)
−33
513

· 2
3

(d)
3

4.5676767 . . .
(e) −67.1456456 . . .

(f)
2
3

−9
2 + 1

2

(g)
−2
5 + 1

3
−7
5 + 2

7

(h) 5.81646464 . . .

2. Plot the numbers 2.3, −π/3, π ,
√

2 − 1,
√

2 · 3, and 5/2, −9/10 on a real
number line. Label each plotted point.

3. Sketch each of the following sets on a separate real number line.
(a) S = {x ∈ R : |x − 1| < 2}
(b) T = {t ∈ R : t2 + 2 = 4}
(c) U = {s ∈ R : 2s − 3 ≤ 5}
(d) V = {y ∈ R : |3y + 1| > 1}
(e) S = {x ∈ R : x2 + 1 < 2}
(f) T = {s ∈ R : |s| = |s − 1|}

4. Plot each of the points (1, −3), (−2, 1), (π2, −π), (−
√

2,
√

3), (
√

3π, −1),
and (1/2, −7/4) on a pair of cartesian coordinate axes. Label each point.

5. Plot each of these planar loci on a separate set of axes.
(a) {(x, y) : y = x2 + 1}
(b) {(x, y) : x2 + y2 = 3}
(c) y = x2 − x
(d) x = y2 + y
(e) x = y3 − 2y3

(f) x4 + y2 = 1
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6. Plot each of these regions in the plane.
(a) {(x, y) : x2 + y2 < 2}
(b) {(x, y) : y < 3x2}
(c) {(x, y) : y > −x3}
(d) {(x, y) : x ≤ y − 2}
(e) {(x, y) : y ≥ −2x + 1}
(f) {(x, y) : x − 2y ≤ 3}

7. Calculate the slope of each of the following lines:
(a) The line through the points (−4, 3) and (1, 4)
(b) The line perpendicular to the line through (1, 1) and (2, 5)
(c) The line y − 2x = 4
(d) The line x−3y

x+y = 5
(e) The line through the points (1, −1) and (8, 3)
(f) The line x − 2y = 5

8. Write the equation of each of the following lines.
(a) The line parallel to x + 2y = −1 and passing through the point

(2, −3).
(b) The line perpendicular to x − y = 1 and passing through the point

(−1, −2).
(c) The line passing through the point (2, 3) and having slope −4
(d) The line passing through (−3, 4) and (2, 3)
(e) The line passing through the origin and having slope 4
(f) The line perpendicular to y = 3x − 2 and passing through (−2, 1)

9. Graph each of the lines in Exercise 8 on its own set of axes. Label your
graphs.

10. Which of the following is a function and which is not? Give a reason in
each case.
(a) f assigns to each person his biological mother
(b) g assigns to each man his sister
(c) h assigns to each real number its cube root
(d) f assigns to each positive integer its square
(e) g assigns to each car its passenger
(f) h assigns to each toe its foot
(g) f assigns to each rational number the least integer that exceeds it
(h) g assigns to each integer the previous integer
(i) h assigns to each real number its cube plus four
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11. Graph each of these functions on a separate set of axes. Label your graph.
(a) f (x) = x2 − 3x

(b) g (x) = x + 1
2x

(c) h(x) = x2 − x
(d) f (x) = 2x + 1
(e) g (x) = x2 + x
(f) h(x) = √

x + 5

12. Calculate each of the following trigonometric quantities.
(a) sin(2π/3)
(b) tan(−π/6)
(c) sec(3π/4)
(d) csc(5π/4)
(e) cot(−11π/4)
(f) cos(−π/4)

13. Calculate the left and right sides of the twelve fundamental trigonomet-
ric identities for the values θ = π/6 and ψ = −π/3, thus confirming the
identities for these particular values.

14. Sketch the graphs of each of the following trigonometric functions.
(a) f (x) = cos 2x
(b) g (x) = sin(x − π/2)
(c) h(x) = cot(x + π)
(d) f (x) = tan(x + π)
(e) g (x) = cos(x/6)
(f) h(x) = cos(π + [x/2])

15. Convert each of the following angles from radian measure to degree
measure.
(a) θ = π/12
(b) θ = −π/2
(c) θ = 27π/4
(d) θ = 3π/16
(e) θ = 4
(f) θ = −7

16. Convert each of the following angles from degree measure to radian
measure.
(a) θ = 45◦

(b) θ = 20◦
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(c) θ = −55◦

(d) θ = −100◦

(e) θ = 2π◦

(f) θ = −3.14◦

17. For each of the following pairs of functions, calculate f ◦ g and g ◦ f .
(a) f (x) = x2 − 2x g (x) = (x + 1)2

(b) f (x) =
√

x − 1 g (x) =
√

x2 + 2
(c) f (x) = sin(x − x2) g (x) = cos(x2 + x)
(d) f (x) = ex−2 g (x) = ln(x + 3)
(e) f (x) = sin(x2 − x) g (x) = ln(x2 + 2x)
(f) f (x) = ex g (x) = e−2x2

(g) f (x) = x(x − 1)(x + 3) g (x) = (2x − 1)(x + 2)

18. Consider each of the following as functions from R to R and say whether
the function is invertible. If it is, find the inverse with an explicit formula.
(a) f (x) = x3 + 1
(b) g (x) = x2 + x
(c) h(x) = sgn x ·

√
|x|, where sgn x is +1 if x is positive, −1 if x is nega-

tive, 0 if x is 0.
(d) f (x) = x3 − 8
(e) g (x) = e3x

(f) h(x) = cos x
(g) f (x) = cot x
(h) g (x) = sgn x · x2, where sgn x is +1 if x is positive, −1 if x is negative,

0 if x is 0.

19. For each of the functions in Exercise 18, graph both the function and its
inverse in the same set of axes.

20. Determine whether each of the following functions, on the given domain
S, is invertible. If it is, then find the inverse explicitly.
(a) f (x) = x3, S = [1, 7]
(b) g (x) = ln x, S = [5, 10]
(c) h(x) = cos x, S = [0, π/2]
(d) f (x) = sin x, S = [0, π]
(e) g (x) = cot x, S = [−π/2, 0]
(f) h(x) = x2, S = [−1, 1]
(g) f (x) = x2 + x, S = [2, 5]
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c h a p t e r 2
Foundations
of Calculus

The big idea in this chapter is the concept of limit. The ancient Greeks wres-
tled with limits when they calculated areas and volumes of exotic figures. Isaac
Newton worked with limits (although he never really understood them) in the
development of calculus. It was not until the nineteenth century, and the ad-
vent of Augustin Cauchy and Karl Weierstrass, that limits were finally given a
rigorous and satisfactory definition.

From today’s point of view, limits are central to everything that we do. They
are used to understand continuity, and they are used to define the derivative
(one of the two key concepts of calculus).

This chapter lays the foundations for differential calculus. Later chapters in
the book will build on what we do here.

C H A P T E R O B J E C T I V E S
In this chapter, you will learn

• Limits

• Continuity

• The derivative

• Rules for calculating derivatives

• The derivative of an inverse function

• The derivative as a rate of change 65
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2.1 Limits
......................................................................................................................................

The single most important idea in calculus is the idea of limit. More than 2000
years ago, the ancient Greeks wrestled with the limit concept, and they did not
succeed. It is only in the past 200 years that we have finally come up with a firm
understanding of limits. Here we give a brief sketch of the essential parts of the
limit notion.

Suppose that f is a function whose domain contains two neighboring in-
tervals: f : (a, c) ∪ (c, b) → R. We wish to consider the behavior of f as the
variable x approaches c. If f (x) approaches a particular finite value � as x ap-
proaches c, then we say that the function f has the limit � as x approaches c. We
write

lim
x→c

f (x) = �.

The rigorous mathematical definition of limit is this:

Definition 2.1
Let a < c < b and let f be a function whose domain contains (a, c) ∪ (c, b). We
say that f has limit � at c, and we write limx→c f (x) = � when this condition
holds: For each ε > 0 there is a δ > 0 such that

| f (x) − �| < ε

whenever 0 < |x − c| < δ.

It is important to know that there is a rigorous definition of the limit concept,
and any development of mathematical theory relies in an essential way on this
rigorous definition. However, in the present book we may make good use of
an intuitive understanding of limit. We now develop that understanding with
some carefully chosen examples.

EXAMPLE 2.1
Define

f ( x) =

{
3 − x if x < 1

x2 + 1 if x > 1

See Figure 2.1. Calculate limx→1 f ( x) .
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FIGURE 2.1

SOLUTION

Observe that, when x is to the left of 1 and very near to 1 then f ( x) =
3 − x is very near to 2. Likewise, when x is to the right of 1 and very near

to 1 then f ( x) = x2 + 1 is very near to 2. We conclude that

lim
x→1

f ( x) = 2.

We have successfully calculated our first limit. Figure 2.1 confirms the con-
clusion that our calculations gave.

EXAMPLE 2.2
Define

g( x) =
x2 − 4

x − 2
.

Calculate limx→2 g( x) .

SOLUTION

We observe that both the numerator and the denominator of the fraction

defining g tend to 0 as x → 2 (i.e., as x tends to 2). Thus the question seems

to be indeterminate.

However, we may factor the numerator as x2 − 4 = ( x − 2) ( x + 2) . As

long as x �= 2 (and these are the only x that we examine when we calculate

limx→2), we can then divide the denominator of the expression defining g



68 C A L C U L U S DeMYSTiF i eD

FIGURE 2.2

into the numerator. Thus

g( x) = x + 2 for x �= 2.

Now

lim
x→2

g( x) = lim
x→2

x + 2 = 4.

The graph of the function g is shown in Figure 2.2. We encourage the

reader to use a pocket calculator to calculate values of g for x near 2 but

unequal to 2 to check the validity of our answer. For example,

x g(x) = [x2 − 4]/[x − 2]
1.8 3.8

1.9 3.9

1.99 3.99

1.999 3.999

2.001 4.001

2.01 4.01

2.1 4.1

2.2 4.2

We see that, when x is close to 2, then g( x) is close (indeed, as close as

we please) to 4.

YOU TRY IT Calculate the limit, limx→3( x3 − 3x2 + x − 3)/( x − 3) .



Chapter 2 F O U N D A T I O N S O F C A L C U L U S 69

Still Struggling

It must be stressed that, when we calculate limx→c f (x), we do not evaluate

f at c. In the last example it would have been impossible to do so. We want

to determine what we anticipate f will do as x approaches c, not what value

(if any) f actually takes at c. The next example illustrates this point rather

dramatically.

EXAMPLE 2.3
Define

h( x) =

{
3 if x �= 7

1 if x = 7

Calculate limx→7 h( x) .

SOLUTION

Refer to Figure 2.3 for the graph of the function. It would be incorrect to

simply plug the value 7 into the function h and thereby to conclude that

the limit is 1. In fact when x is near to 7 but unequal to 7, we see that h takes

the value 3. This statement is true no matter how close x is to 7. We conclude

that limx→7 h( x) = 3.

YOU TRY IT Calculate limx→4[x2 − x − 12]/[x − 4].

FIGURE 2.3
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2.1.1 One-Sided Limits
There is also a concept of one-sided limit. We say that

lim
x→c−

f (x) = �

if the values of f become closer and closer to � when x is near to c but on the
left. In other words, in studying limx→c− f (x), we only consider values of x that
are less than c.

Likewise, we say that

lim
x→c+

f (x) = �

if the values of f become closer and closer to � when x is near to c but on the
right. In other words, in studying limx→c+ f (x), we only consider values of x
that are greater than c.

EXAMPLE 2.4
Discuss the limits of the function

f ( x) =

{
2x − 4 if x < 2

x2 if x ≥ 2

at c = 2.

SOLUTION

As x approaches 2 from the left, f ( x) = 2x − 4 approaches 0. As x ap-

proaches 2 from the right, f ( x) = x2 approaches 4. Thus we see that f

has left limit 0 at c = 2, written

lim
x→2−

f ( x) = 0 ,

and f has right limit 4 at c = 2, written

lim
x→2+

f ( x) = 4.

Note that the full limit limx→2 f ( x) does not exist (because the left and right

limits are unequal).
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YOU TRY IT Discuss one-sided limits at c = 3 for the function

f ( x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x3 − x if x < 3

24 if x = 3

4x + 1 if x > 3

All the properties of limits that will be developed in this chapter, as well as
the rest of the book, apply equally well to one-sided limits as to two-sided (or
standard) limits.

2.2 Properties of Limits
......................................................................................................................................

To increase our facility in manipulating limits, we have certain arithmetical and
functional rules about limits. Any of these may be verified using the rigorous
definition of limit that was provided at the beginning of the last section. We
shall state the rules and get right to the examples.

If f and g are two functions, c is a real number, and limx→c f (x) and
limx→c g (x) exist, then

Theorem 2.1
(a) limx→c( f ± g )(x) = limx→c f (x) ± limx→c g (x);

(b) limx→c ( f · g ) (x) = (
limx→c f (x)

) · (limx→c g (x)
)

;

(c) lim
x→c

(
f
g

)
(x) = limx→c f (x)

limx→c g (x)
provided that limx→c g (x) �= 0;

(d) limx→c (α · f (x)) = α · (limx→c f (x)
)

for any constant α.

Some theoretical results, which will prove useful throughout our study of
calculus, are these:

Theorem 2.2
Let a < c < b. A function f cannot have two distinct limits at c.
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Theorem 2.3
If

lim
x→c

g (x) = 0

and

lim
x→c

f (x) either does not exist or exists and is not zero

then

lim
x→c

f (x)
g (x)

does not exist.

Theorem 2.4 (The Pinching Theorem)
Suppose that f, g , and h are functions whose domains each contain S = (a, c) ∪
(c, b). Assume further that

g (x) ≤ f (x) ≤ h(x)

for all x ∈ S. Refer to Figure 2.4.
If

lim
x→c

g (x) = �

and

lim
x→c

h(x) = �

then

lim
x→c

f (x) = �.

a bc

y = h(x)

y = f (x)

y = g (x)

FIGURE 2.4
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EXAMPLE 2.5
Calculate limx→3 4x3 − 7x2 + 5x − 9.

SOLUTION

We may apply Theorem 2.1(a) repeatedly to see that

lim
x→3

4x3 − 7x2 + 5x − 9 = lim
x→3

4x3 − lim
x→3

7x2 + lim
x→3

5x − lim
x→3

9. (∗)

We next observe that limx→3 x = 3. This assertion is self-evident, for when

x is near to 3 then x is near to 3. Applying Theorem 2.1(d) and Theorem

2.1(b) repeatedly, we now see that

lim
x→3

4x3 = 4 · [ lim
x→3

x] · [ lim
x→3

x] · [ lim
x→3

x] = 4 · 3 · 3 · 3 = 108.

Also

lim
x→3

7x2 = 7 · [ lim
x→3

x] · [ lim
x→3

x] = 7 · 3 · 3 = 63 ,

lim
x→3

5x = 5 · [ lim
x→3

x] = 5 · 3 = 15.

Of course limx→3 9 = 9.

Putting all this information into equation (∗) gives

lim
x→3

4x3 − 7x2 + 5x − 9 = 108 − 63 + 15 − 9 = 51.

EXAMPLE 2.6
Use the Pinching Theorem to analyze the limit

lim
x→0

|x| sin x.

SOLUTION

We observe that

−|x| ≡ g( x) ≤ f ( x) = |x| sin x ≤ h( x) ≡ |x|.
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Thus we may apply the Pinching Theorem. Obviously

lim
x→0

g( x) = lim
x→0

h( x) = 0.

We conclude that limx→0 f ( x) = 0.

EXAMPLE 2.7
Analyze the limit

lim
x→−2

x2 + 4

x + 2
.

SOLUTION

The denominator tends to 0 while the numerator does not. According to

Theorem 2.3, the limit cannot exist.

YOU TRY IT Use the Pinching Theorem to calculate limx→0 x2 sin x.

YOU TRY IT What can you say about limx→−1 x2/( x2 − 1) ?

2.3 Continuity
......................................................................................................................................

Let f be a function whose domain contains the interval (a, b). Assume that c
is a point within (a, b). We say that the function f is continuous at c if

lim
x→c

f (x) = f (c).

Conceptually, f is continuous at c if the expected value of f at c equals the
actual value of f at c.

EXAMPLE 2.8
Is the function

f ( x) =

{
2x2 − x if x < 2

3x if x ≥ 2

continuous at x = 2?
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FIGURE 2.5

SOLUTION

We easily check that limx→2 f ( x) = 6. Also the actual value of f at 2, given

by the second part of the formula, is equal to 6. By the definition of conti-

nuity, we may conclude that f is continuous at x = 2. See Figure 2.5.

EXAMPLE 2.9
Where is the function

g( x) =

⎧⎪⎨⎪⎩
1

x − 3
if x < 4

2x + 3 if x ≥ 4

continuous?

SOLUTION

If x < 3 then the function is plainly continuous. The function is undefined

at x = 3 so we may not even speak of continuity at x = 3. The function is

also obviously continuous for 3 < x < 4. At x = 4 the limit of g does not

exist---it is 1 from the left and 11 from the right. So the function is not con-

tinuous (we sometimes say that it is discontinuous) at x = 4. By inspection,

the function is continuous for x > 4.
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YOU TRY IT Discuss continuity of the function

g( x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x − x2 if x < −2

10 if x = −2

−5x if x > −2

We note that Theorem 2.1 guarantees that the collection of continuous func-
tions is closed under addition, subtraction, multiplication, division (as long as
we do not divide by 0), and scalar multiplication.

Still Struggling

If f ◦ g makes sense, if limx→c g(x) = �, and if lims→� f (s) = m, then it does not

necessarily follow that limx→c f ◦ g(x) = m. [We invite the reader to find an ex-

ample.] One must assume, in addition, that f is continuous at �. This point will

come up from time to time in our later studies.

We further record the important fact that differentiability is a stronger prop-
erty than continuity. If a function f is differentiable at c then it is continuous at
c. This assertion really follows from Theorem 2.3: If limh→0[ f (c + h) − f (c)]/h
exists then limh→0[ f (c + h) − f (c)] must be 0. We invite the reader to fill in
the details. In the next section, we discuss the concept of differentiability in
greater detail.

2.4 The Derivative
......................................................................................................................................

Suppose that f is a function whose domain contains the interval (a, b). Let c
be a point of (a, b). If the limit

lim
h→0

f (c + h) − f (c)
h

(	)

exists then we say that f is differentiable at c and we call the limit the derivative
of f at c.
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EXAMPLE 2.10
Is the function f ( x) = x2 + x differentiable at x = 2? If it is, calculate the

derivative.

SOLUTION

We calculate the limit (�) , with the role of c played by 2:

lim
h→0

f ( 2 + h) − f ( 2)

h
= lim

h→0

[( 2 + h) 2 + ( 2 + h) ] − [22 + 2]

h

= lim
h→0

[( 4 + 4h + h2) + ( 2 + h) ] − [6]

h

= lim
h→0

5h + h2

h

= lim
h→0

5 + h

= 5.

We see that the required limit (�) exists, and that it equals 5. Thus the func-

tion f ( x) = x2 + x is differentiable at x = 2, and the value of the deriva-

tive is 5.

Still Struggling

When the derivative of a function f exists at a point c, we denote the deriva-

tive either by f ′(c) or by
d

dx
f (c) = d f

dx
(c). In some contexts (e.g., physics) the

notation ḟ (c) is used. In the last example, we calcuated that f ′(2) = 5.

The importance of the derivative is two-fold: it can be interpreted as rate of
change and it can be interpreted as the slope. Let us now consider both of these
ideas.
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Suppose that ϕ(t) represents the position (in inches or feet or some other
standard unit) of a moving body at time t. At time 0 the body is at ϕ(0), at
time 3 the body is at ϕ(3), and so forth. Imagine that we want to determine the
instantaneous velocity of the body at time t = c. What could this mean? One
reasonable interpretation is that we can calculate the average velocity over a
small interval at c, and let the length of that interval shrink to zero to determine
the instantaneous velocity. To carry out this program, imagine a short interval
[c, c + h]. The average velocity of the moving body over that interval is

vav ≡ ϕ(c + h) − ϕ(c)
h

.

This is a familiar expression (see (	)). As we let h → 0, we know that this
expression tends to the derivative of ϕ at c. On the other hand, it is reasonable
to declare this limit to be the instantaneous velocity. We have discovered the
following important rule:

Let ϕ be a differentiable function on an interval (a, b). Suppose that ϕ(t)
represents the position of a moving body. Let c ∈ (a, b). Then

ϕ′(c) = instantaneous velocity of the moving body at c.

Now let us consider slope. Look at the graph of the function y = f (x) in
Figure 2.6. We wish to determine the ‘‘slope’’ of the graph at the point x = c.
This is the same as determining the slope of the tangent line to the graph of f
at x = c, where the tangent line is the line that best approximates the graph at
that point. See Figure 2.7. What could this mean? After all, it takes two points
to determine the slope of a line, yet we are only given the point (c, f (c)) on

FIGURE 2.6
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FIGURE 2.7

the graph. One reasonable interpretation of the slope at (c, f (c)) is that it is
the limit of the slopes of secant lines determined by (c, f (c)) and nearby points
(c + h, f (c + h)). See Figure 2.8. Let us calculate this limit:

lim
h→0

f (c + h) − f (c)
(c + h) − c

= lim
h→0

f (c + h) − f (c)
h

.

We know that this last limit (the same as (	)) is the derivative of f at c. We
have learned the following:

Let f be a differentiable function on an interval (a, b). Let c ∈ (a, b).
Then the slope of the tangent line to the graph of f at c is f ′(c).

FIGURE 2.8
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EXAMPLE 2.11
Calculate the instantaneous velocity at time t = 5 of an automobile whose

position at time t seconds is given by g( t) = t3 + 4t2 + 10 feet.

SOLUTION

We know that the required instantaneous velocity is g′( 5) . We calculate

g′( 5) = lim
h→0

g( 5 + h) − g( 5)

h

= lim
h→0

[( 5 + h) 3 + 4( 5 + h) 2 + 10] − [53 + 4 · 52 + 10]

h

= lim
h→0

[( 125 + 75h + 15h2 + h3) + 4 · ( 25 + 10h + h2) + 10)

h

− ( 125 + 100 + 10)

h

= lim
h→0

115h + 19h2 + h3

h

= lim
h→0

115 + 19h + h2

= 115.

We conclude that the instantaneous velocity of the moving body at time

t = 5 is g′( 5) = 115 ft./sec.

MATH NOTE Since position (or distance) is measured in feet, and time in seconds,

then we measure velocity in feet per second.

EXAMPLE 2.12
Calculate the slope of the tangent line to the graph of y = f ( x) = x3 − 3x

at x = −2. Write the equation of the tangent line. Draw a figure illustrating

these ideas.
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SOLUTION

We know that the desired slope is equal to f ′(−2) . We calculate

f ′(−2) = lim
h→0

f (−2 + h) − f (−2)

h

= lim
h→0

[(−2 + h) 3 − 3(−2 + h) ] − [(−2) 3 − 3(−2) ]

h

= lim
h→0

[(−8 + 12h − 6h2 + h3) + ( 6 − 3h) ] + [2]

h

= lim
h→0

h3 − 6h2 + 9h

h

= lim
h→0

h2 − 6h + 9

= 9.

We conclude that the slope of the tangent line to the graph of y = x3 − 3x

at x = −2 is 9. The tangent line passes through (−2, f (−2) ) = (−2, −2)

and has slope 9. Thus it has equation

y − (−2) = 9( x − (−2) ) .

The graph of the function and the tangent line are exhibited in Figure 2.9.

YOU TRY IT Calculate the tangent line to the graph of f ( x) = 4x2 − 5x + 2

at the point where x = 2.

EXAMPLE 2.13
A rubber balloon is losing air steadily. At time t minutes the balloon con-

tains 75 − 10t2 + t cubic inches of air. What is the rate of loss of air in the

balloon at time t = 1?
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x

FIGURE 2.9

SOLUTION

Letψ( t) = 75 − 10t2 + t. Of course the rate of loss of air is given byψ′( 1) .

We therefore calculate

ψ′( 1) = lim
h→0

ψ( 1 + h) − ψ( 1)

h

= lim
h→0

[75 − 10( 1 + h) 2 + ( 1 + h) ] − [75 − 10 · 12 + 1]

h

= lim
h→0

[75 − ( 10 + 20h + 10h2) + ( 1 + h) ] − [66]

h

= lim
h→0

−19h − 10h2

h

= lim
h→0

−19 − 10h

= −19.

In conclusion, the rate of air loss in the balloon at time t = 1 is ψ′( 1) =
−19 cu. ft./sec. Observe that the negative sign in this answer indicates

that the change is negative, i.e., that the quantity is decreasing.



Chapter 2 F O U N D A T I O N S O F C A L C U L U S 83

YOU TRY IT The amount of water in a leaky tank is given by W ( t) = 50 −
5t2 + t gallons. What is the rate of leakage of the water at time t = 2?

Still Struggling

We have noted that the derivative may be used to describe a rate of change and

also to denote the slope of the tangent line to a graph. These are really two dif-

ferent manifestations of the same thing, for a slope is the rate of change of rise

with respect to run (see Section 1.4 on the slope of a line).

2.5 Rules for Calculating Derivatives
......................................................................................................................................

Calculus is a powerful tool, for much of the physical world that we wish to
analyze is best understood in terms of rates of change. It becomes even more
powerful when we can find some simple rules that enable us to calculate deriva-
tives quickly and easily. This section is devoted to that topic.

I. Derivative of a Sum [The Sum Rule]: We calculate the derivative of a sum
(or difference) by

(
f (x) ± g (x)

)′ = f ′(x) ± g ′(x).

In our many examples, we have used this fact implicitly. We are now
just enunciating it formally.

II. Derivative of a Product [The Product Rule]: We calculate the derivative
of a product by

[ f (x) · g (x)]′ = f ′(x) · g (x) + f (x) · g ′(x).

We urge the reader to test this formula on functions that we have
worked with before. It has a surprising form. Note in particular that it
is not the case that [ f (x) · g (x)]′ = f ′(x) · g ′(x).
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III. Derivative of a Quotient [The Quotient Rule]: We calculate the derivative
of a quotient by

[
f (x)
g (x)

]′
= g (x) · f ′(x) − f (x) · g ′(x)

g 2(x)
.

In fact one can derive this new formula by applying the product formula
to g (x) · [ f (x)/g (x)]. We leave the details for the interested readers.

IV. Derivative of a Composition [The Chain Rule]: We calculate the deriva-
tive of a composition by

[ f ◦ g (x)]′ = f ′(g (x)) · g ′(x).

To make optimum use of these four new formulas, we need a library of
functions to which to apply them.

A. Derivatives of Powers of x: If f (x) = xk then f ′(x) = k · xk−1, where
k ∈ {0, 1, 2, . . . }.

Still Struggling

If you glance back at the examples we have done, you will notice that we have

already calculated that the derivative of x is 1, the derivative of x 2 is 2x , and the

derivative of x 3 is 3x 2. The rule just enunciated is a generalization of these facts,

and is established in just the same way.

B. Derivatives of Trigonometric Functions: The rules for differentiating
sine and cosine are simple and elegant:

1.
d

dx
sin x = cos x.

2.
d

dx
cos x = − sin x.

We can find the derivatives of the other trigonometric functions by
using these two facts together with the quotient rule from above:
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3.
d

dx
tan x = d

dx
sin x
cos x

= cos x d
dx sin x − sin x d

dx cos x

(cos x)2

= (cos x)2 + (sin x)2

(cos x)2
= 1

(cos x)2
= (sec x)2.

Similarly we have

4.
d

dx
cot x = −(csc x)2.

5.
d

dx
sec x = sec x tan x.

6.
d

dx
csc x = − csc x cot x.

C. Derivatives of lnx and ex: We conclude our library of derivatives of
basic functions with

d
dx

ex = ex

and

d
dx

ln x = 1
x
.

We may apply the Chain Rule to obtain the following particularly useful gen-
eralization of this logarithmic derivative:

d
dx

ln ϕ(x) = ϕ′(x)
ϕ(x)

.

Now it is time to learn to differentiate the functions that we will commonly
encounter in our work. We do so by applying the rules for sums, products, quo-
tients, and compositions to the formulas for the derivatives of the elementary
functions. Practice is the essential tool in mastery of these ideas. Be sure to do
all the “You Try It” problems in this section.

EXAMPLE 2.14
Calculate the derivative

d

dx

[
( sin x + x) ( x3 − ln x)

]
.
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SOLUTION

We know that d
dx sin x = cos x, d

dx x = 1, d
dx x3 = 3x2, and d

dx ln x = 1

x .

Therefore, by the addition rule,

d

dx
( sin x + x) =

d

dx
sin x +

d

dx
x = cos x + 1

and

d

dx
( x3 − ln x) =

d

dx
x3 − d

dx
ln x = 3x2 − 1

x
.

Now we may conclude the calculation by applying the product rule:

( sin x + x) ( x3 − ln x)

=
d

dx
( sin x + x) · ( x3 − ln x) + ( sin x + x) · d

dx
( x3 − ln x)

= ( cos x + 1) · ( x3 − ln x) + ( sin x + x) ·
(

3x2 − 1

x

)

= ( 4x3 − 1) +
(

x3 cos x + 3x2 sin x − 1

x
sin x

)
− ( ln x cos x + ln x) .

EXAMPLE 2.15
Calculate the derivative

d

dx

(
ex + x sin x

tan x

)
.

SOLUTION

We know that d
dx ex = ex , d

dx x = 1, d
dx sin x = cos x, and d

dx tan x = sec
2 x.

By the product rule,

d

dx
x sin x =

(
d

dx
x

)
· sin x + x · d

dx
sin x = 1 · sin x + x · cos x.
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Therefore, by the quotient rule,

d

dx

(
ex + x sin x

tan x

)
=

tan x · d
dx ( ex + x sin x) − ( ex + x sin x) d

dx tan x

( tan x) 2

=
tan x · ( ex + sin x + x cos x) − ( ex + x sin x) · ( sec x) 2

( tan x) 2

=
ex tan x + tan x sin x + x sin x − ex sec

2 x − x sin x sec
2 x

tan
2 x

.

This is the derivative that we wished to calculate.

YOU TRY IT Calculate the derivative
d

dx

(
sin x ·

(
cos x − x

ex + ln x

))
.

EXAMPLE 2.16
Calculate the derivative

d

dx
( sin( x3 − x2) ) .

SOLUTION

This is the composition of functions, so we must apply the Chain Rule. It is

essential to recognize what function will play the role of f and what func-

tion will play the role of g.

Notice that, if x is the variable, then x3 − x2 is applied first and sin ap-

plied next. So it must be that g( x) = x3 − x2 and f ( s) = sin s. Notice that
d

ds f ( s) = cos s and d
dx g( x) = 3x2 − 2x. Then

sin( x3 − x2) = f ◦ g( x)
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and

d

dx
( sin( x3 − x2) ) =

d

dx
( f ◦ g( x) )

=
[

d f

ds
( g( x) )

]
· d

dx
g( x)

= cos( g( x) ) · ( 3x2 − 2x)

=
[
cos( x3 − x2)

]
· ( 3x2 − 2x) .

That is the derivative that we wish to calculate.

EXAMPLE 2.17
Calculate the derivative

d

dx
ln

(
x2

x − 2

)
.

SOLUTION

Let

h( x) = ln

(
x2

x − 2

)
.

Then

h = f ◦ g ,
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where f ( s) = ln s and g( x) = x2/( x − 2) . So d
ds f ( s) = 1

s and d
dx g( x) =

( x−2) ·2x−x2·1
( x−2) 2 = ( x2 − 4x)/( x − 2) 2. As a result,

d

dx
h( x) =

d

dx

(
f ◦ g

)
( x)

=
[

d f

ds
( g( x) )

]
· d

dx
g( x)

=
1

g( x)
· x2 − 4x

( x − 2) 2

=
1

x2/( x − 2)
· x2 − 4x

( x − 2) 2

=
x − 4

x( x − 2)
.

YOU TRY IT Perform the differentiation in the last example by first applying a

rule of logarithms to simplify the function to be differentiated.

YOU TRY IT Calculate the derivative of tan( ex − x) .

EXAMPLE 2.18
Calculate the tangent line to the graph of f ( x) = x · ex2

at the point ( 1, e) .

SOLUTION

The slope of the tangent line will be the derivative. Now

f ′( x) = [x]′ · ex2

+ x · [ex2

]′ = ex2

+ x · [2x · ex2

].

In the last derivative we have of course used the Chain Rule. Thus f ′( 1) =
e + 2e = 3e. Therefore the equation of the tangent line is

( y − e) = 3e( x − 1) .
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YOU TRY IT Calculate the equation of the tangent line to the graph of g( x) =

cos

(
x2 − 2

ln x

)
at the point ( 2, cos[2/ ln 2]) .

MATH NOTE Calculate
d

dx
( x2/x) using the quotient rule. Of course x2/x = x,

and you may calculate the derivative directly. Observe that the two answers are the

same. The calculation confirms the validity of the quotient rule by way of an exam-

ple. Use a similar example to confirm the validity of the product rule.

2.5.1 The Derivative of an Inverse
An important formula in the calculus relates the derivative of the inverse of a
function to the derivative of the function itself. The formula is

[ f −1]′(t) = 1
f ′( f −1(t))

. (		)

We encourage you to apply the Chain Rule to the formula f ( f −1(x)) = x to
obtain a formal derivation of the formula (		).

EXAMPLE 2.19
Calculate the derivative of g( t) = t1/3.

SOLUTION

Set f ( s) = s3 and apply formula (��) . Then f ′( s) = 3s2 and f −1( t) =
t1/3. With s = f −1( t) we then have

[ f −1]′( t) =
1

f ′( f −1( t) )
=

1

3s2
=

1

3 · [t1/3]2
=

1

3
· t−2/3.

Formula (		) may be applied to obtain some interesting new derivatives to
add to our library. We record some of them here:

I.
d

dx
arcsin x = 1√

1 − x2

II.
d

dx
arccos x = − 1√

1 − x2
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III.
d

dx
arctan x = 1

1 + x2

YOU TRY IT Calculate the derivative of f ( x) =
√

x. Calculate the derivative

of g( x) = k
√

x for any k ∈ {2, 3, 4, . . .}.

2.6 The Derivative as a Rate of Change
......................................................................................................................................

If f (t) represents the position of a moving body, or the amount of a changing
quantity, at time t, then the derivative f ′(t) (equivalently, d

dt f (t)) denotes the
rate of change of position (also called velocity) or the rate of change of the
quantity. When f ′(t) represents velocity, then sometimes we calculate another
derivative---( f ′)′(t)---and this quantity denotes the rate of change of velocity, or
acceleration. In specialized applications, even more derivatives are sometimes
used. For example, sometimes the derivative of the acceleration is called jerk
and sometimes the derivative of jerk is called surge.

EXAMPLE 2.20
The position of a body moving along a linear track is given by p( t) =
3t2 − 5t + 7 feet. Calculate the velocity and the acceleration at time t = 3

seconds.

SOLUTION

The velocity is given by

p′( t) = 6t − 5.

At time t = 3 we therefore find that the velocity is p′( 3) = 18 − 5 =
13 ft./sec.

The acceleration is given by the second derivative:

p′′( t) = ( p′) ′( t) = ( 6t − 5) ′ = 6.

The acceleration at time t = 3 is therefore 6 ft./sec.2.
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Still Struggling

As previously noted, velocity is measured in feet per second (or ft./sec.). Acceler-

ation is the rate of change of velocity with respect to time; therefore acceleration

is measured in ``feet per second per second'' (or ft./sec.2).

EXAMPLE 2.21
A massive ball is dropped from a tower. It is known that a falling body

descends (near the surface of the earth) with an acceleration of about

32 ft./sec. From this information one can determine that the equation for

the position of the ball at time t is

p( t) = −16t2 + v0t + h0 ft.

Here v0 is the initial velocity and h0 is the initial height of the ball in feet.1

Also t is time measured in seconds. If the ball hits the earth after 5 seconds,

determine the height from which the ball is dropped.

SOLUTION

Observe that the velocity is

v( t) = p′( t) = −32t + v0.

Obviously the initial velocity of a falling body is 0. Thus

0 = v( 0) = −32 · 0 + v0.

It follows that v0 = 0, thus confirming our intuition that the initial velocity

is 0. Thus

p( t) = −16t2 + h0.

1 We shall say more about this equation, and this technique, in Section 3.4.
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Now we also know that p( 5) = 0; that is, at time t = 5 the ball is at

height 0. Thus

0 = p( 5) = −16 · 52 + h0.

We may solve this equation for h0 to determine that h0 = 400.

We conclude that

p( t) = −16t2 + 400.

Furthermore, p( 0) = 400, so the initial height of the ball is 400 feet.

YOU TRY IT Suppose that a massive ball falls from a height of 600 feet. After

how many seconds will it strike the ground?
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QUIZ

1. Calculate, if possible, each of these limits. Give reasons for each step of
your solution.
(a) lim

x→0
x · e−x

(b) lim
x→2

x2 − 4
x − 2

(c) lim
x→4

(x − 4) · cot(x − 4)

(d) lim
x→0

√
x · ln x

(e) lim
t→2

t2 − 5t + 6
t − 2

(f) lim
s→3

s2 − 2s − 3
s − 3

(g) lim
x→2

ln(x/2)
x − 2

(h) lim
x→−4

x2 − 16
x + 4

2. Determine whether the given function f is continuous at the given point
c. Give careful justifications for your answers.

(a) f (x) = x − 2
x + 2

c = −2

(b) f (x) = x − 3
x + 3

c = 1

(c) f (x) = x · cos(1/x) c = 0

(d) f (x) = x2 · ln x c = 0

(e) f (x) =
{

x3 if x ≤ 1

x2 if 1 < x

(f) f (x) =
{

x3 if x ≤ 1

3x if 1 < x
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(g) f (x) =
{

sin x if x ≤ 2π

(x − 2π) if 2π < x

(h) f (x) = eln x−x c = 2

3. Use the definition of derivative to calculate each of these derivatives.
(a) f ′(2) when f (x) = x2 − 3x
(b) f ′(3) when f (x) = −3/x2

4. Calculate each of these derivatives. Justify each step of your calculation.

(a)
[

x
x2 − 2

]′

(b)
d

dx
cos(x2)

(c)
d
dt

cot(t3 − t2)

(d)
d

dx
x2 + 1
x2 − 1

(e) [x · ln(cos x)]′

(f)
d
ds

es(s−3)

(g)
d

dx
ecos(x2)

(h) [ln(ex − x)]′

5. Imitate the example in the text to do each of these falling body problems.
(a) A ball is dropped from a height of 64 feet. How long will it take that

ball to hit the ground?
(b) Suppose that the ball from part (a) is thrown straight down with an

initial velocity of 5 feet per second. Then how long will it take the
ball to hit the ground?

(c) Suppose that the ball from part (a) is thrown straight up with an initial
velocity of 20 feet per second. Then how long will it take the ball to
hit the ground?

6. Use the Chain Rule to perform each of these differentiations:

(a)
d

dx
cos(ln(sin x))
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(b)
d

dx
ecos(sin x)

(c)
d

dx
ln(ecos x + x)

(d)
d

dx
arccos(x2 + sec x)

(e)
d

dx
arcsin(ln x + ex/2)

(f)
d

dx
arctan(x − ex)

7. If a car has position p(t) = 3t2 − 2t + 10 feet, where t is measured in sec-
onds, then what is the velocity of that car at time t = 4? What is the
average velocity of that car from t = 2 to t = 6? What is the greatest ve-
locity over the time interval [4, 10]?

8. In each of these problems, use the formula for the derivative of an inverse
function to find [ f −1]′(1).
(a) f (0) = 1, f ′(0) = 2
(b) f (2) = 1, f ′(2) = 6
(c) f (3) = 1, f ′(3) = π

(d) f (1) = 1, f ′(1) = 20
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c h a p t e r 3
Applications of
the Derivative

One of the things that makes the derivative so important is its many applications
to the study of functions and the study of physical processes. Isaac Newton was
motivated in his work by the applications of calculus, not by its theory. Leibniz,
on the other hand, cared mostly about the theory. In this chapter we get our
first exposure to some of these key ideas.

Each type of problem discussed in this chapter has its own special features.
Physics plays a significant role in most of them. Certainly, throughout history,
calculus and physics have been inextricably intertwined.

C H A P T E R O B J E C T I V E S
In this chapter, you will learn

• Graphing of functions

• Maximum/minimum problems

• Related rate problems

• Falling body problems

97
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3.1 Graphing of Functions
......................................................................................................................................

We know that the value of the derivative of a function f at a point x represents
the slope of the tangent line to the graph of f at the point (x, f (x)). If that slope
is positive, then the tangent line rises as x increases from left to right, hence so
does the curve (we say that the function is increasing). If instead the slope of
the tangent line is negative, then the tangent line falls as x increases from left
to right, hence so does the curve (we say that the function is decreasing). We
summarize:

On an interval where f ′ > 0 the graph of f goes uphill.
On an interval where f ′ < 0 the graph of f goes downhill.

See Figure 3.1.
With some additional thought, we can also get useful information from the

second derivative. If f ′′ = ( f ′)′ > 0 at a point, then f ′ is increasing. Hence
the slope of the tangent line is getting ever greater (the graph is concave up).
The picture must be as in Figure 3.2(a) or 3.2(b). If instead f ′′ = ( f ′)′ < 0 at
a point then f ′ is decreasing. Hence the slope of the tangent line is getting
ever less (the graph is concave down). The picture must be as in Figure 3.3(a)
or 3.3(b).

Using information about the first and second derivatives, we can render
rather accurate graphs of functions. We now illustrate with some examples.

FIGURE 3.1
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FIGURE 3.2

EXAMPLE 3.1
Sketch the graph of f ( x) = x2.

SOLUTION

Of course this is a simple and familiar function, and you know that its graph

is a parabola. But it is satisfying to see calculus confirms the shape of the

graph. Let us see how this works.

First observe that f ′( x) = 2x. We see that f ′ < 0 when x < 0 and f ′ >

0 when x > 0. So the graph is decreasing on the negative real axis and the

graph is increasing on the positive real axis.

Next observe that f ′′( x) = 2. Thus f ′′ > 0 at all points. Thus the graph

is concave up everywhere.

Finally note that the graph passes through the origin.

We summarize this information in the graph shown in Figure 3.4.

FIGURE 3.3
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FIGURE 3.4

EXAMPLE 3.2
Sketch the graph of f ( x) = x3.

SOLUTION

First observe that f ′( x) = 3x2. Thus f ′ ≥ 0 everywhere. The function is

always increasing.

Second observe that f ′′( x) = 6x. Thus f ′′( x) < 0 when x < 0 and

f ′′( x) > 0 when x > 0. So the graph is concave down on the negative real

axis and concave up on the positive real axis.

Finally note that the graph passes through the origin.

We summarize our findings in the graph shown in Figure 3.5.

FIGURE 3.5
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YOU TRY IT Use calculus to aid you in sketching the graph of f ( x) = x3 + x.

EXAMPLE 3.3
Sketch the graph of g( x) = x + sin x.

SOLUTION

We see that g′( x) = 1 + cos x. Since −1 ≤ cos x ≤ 1, it follows that

g′( x) ≥ 0. Hence the graph of g is always increasing.

Now g′′( x) = − sin x. This function is positive sometimes and negative

sometimes. In fact

− sin x is positive when kπ < x < ( k + 1)π, k odd

and

− sin x is negative when kπ < x < ( k + 1)π, k even.

So the graph alternates between being concave down and concave up. Of

course it also passes through the origin. We amalgamate all our informa-

tion in the graph shown in Figure 3.6.

6

4

2

_2

_ p p 2p

FIGURE 3.6
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FIGURE 3.7

EXAMPLE 3.4
Sketch the graph of h( x) = x

x+1
.

SOLUTION

First note that the function is undefined at x = −1.

We calculate that h′( x) = 1

( x+1) 2 . Thus the graph is everywhere increas-

ing (except at x = −1).

We also calculate that h′′( x) = −2

( x+1) 3 . Hence h′′ > 0 and the graph is

concave up when x < −1. Likewise h′′ < 0 and the graph is concave down

when x > −1.

Finally, as x tends to −1 from the left we notice that h tends to +∞ and

as x tends to −1 from the right we see that h tends to −∞.

Putting all this information together, we obtain the graph shown in

Figure 3.7.

YOU TRY IT Sketch the graph of the function k( x) = x ·
√

x + 1.

EXAMPLE 3.5
Sketch the graph of k( x) = x3 + 3x2 − 9x + 6.
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FIGURE 3.8

SOLUTION

We notice that k′( x) = 3x2 + 6x − 9 = 3( x − 1) ( x + 3) . So the sign of k′

changes at x = 1 and x = −3. We conclude that

k′ is positive when x < −3;

k′ is negative when −3 < x < 1;

k′ is positive when x > 3.

Finally, k′′( x) = 6x + 6. Thus the graph is concave down when x < −1

and the graph is concave up when x > −1.

Putting all this information together, and using the facts that k( x) →
−∞ when x → −∞ and k( x) → +∞ when x → +∞, we obtain the

graph shown in Figure 3.8.

3.2 Maximum/Minimum Problems
......................................................................................................................................

One of the great classical applications of the calculus is to determine the max-
ima and minima of functions. Look at Figure 3.9. It shows some (local) maxima
and (local) minima of the function f .

Notice that a maximum has the characteristic property that it looks like a
hump: the function is increasing to the left of the hump and decreasing to the
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FIGURE 3.9

right of the hump. The derivative at the hump is 0: the function neither increases
nor decreases at a local maximum. This is sometimes called Fermat’s test. Also,
we see that the graph is concave down at a local maximum.

It is common to refer to the points where the derivative vanishes as critical
points. In some contexts, we will designate the endpoints of the domain of our
function to be critical points as well.

Now look at a local minimum. Notice that a minimum has the characteristic
property that it looks like a valley: the function is decreasing to the left of the
valley and increasing to the right of the valley. The derivative at the valley is 0:
the function neither increases nor decreases at a local minimum. This is another
manifestation of Fermat’s test. Also, we see that the graph is concave up at a
local minimum.

Let us now apply these mathematical ideas to some concrete examples.

EXAMPLE 3.6
Find all local maxima and minima of the function k( x) = x3 − 3x2 −
24x + 5.

SOLUTION

We begin by calculating the first derivative:

k′( x) = 3x2 − 6x − 24 = 3( x + 2) ( x − 4) .
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FIGURE 3.10

We notice that k′ vanishes only when x = −2 or x = 4. These are the only

candidates for local maxima or minima. The second derivative is k′′( x) =
6x − 6. Now k′′( 4) = 18 > 0, so x = 4 is the location of a local minimum.

Also k′′(−2) = −18 < 0, so x = −2 is the location of a local maximum.

A glance at the graph of this function, as depicted in Figure 3.10, confirms

our calculations.

EXAMPLE 3.7
Find all local maxima and minima of the function g( x) = x + sin x.

SOLUTION

First we calculate that

g′( x) = 1 + cos x.

Thus g′ vanishes at the points ( 2k + 1)π for k = . . . , −2,−1,0, 1, 2, . . . .

Now g′′( x) = sin x. And g′′( ( 2k + 1)π) = 0. Thus the second derivative
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6

4

2

_2

_ p p 2p

FIGURE 3.11

test is inconclusive. Let us instead look at the first derivative. We notice

that it is always ≥ 0. But, as we have already noticed, the first derivative

changes sign at a local maximum or minimum. We conclude that none of

the points ( 2k + 1)π is either a maximum nor a minimum. The graph in

Figure 3.11 confirms this calculation.

YOU TRY IT Find all local maxima and minima of the function g( x) = 2x3 −
15x2 + 24x + 6.

EXAMPLE 3.8
A box is to be made from a sheet of cardboard that measures 12′′ × 12′′.

The construction will be achieved by cutting a square from each corner of

the sheet and then folding up the sides (see Figure 3.12). What is the box

of greatest volume that can be constructed in this fashion?

SOLUTION

It is important in a problem of this kind to introduce a variable. Let x be the

side length of the squares that are to be cut from the sheet of cardboard.

Then the side length of the resulting box will be 12 − 2x (see Figure 3.13).

Also the height of the box will be x. As a result, the volume of the box
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FIGURE 3.12

will be

V ( x) = x · ( 12 − 2x) · ( 12 − 2x) = 144x − 48x2 + 4x3.

Our job is to maximize this function V .

Now V ′( x) = 144 − 96x + 12x2. We may solve the quadratic equation

144 − 96x + 12x2 = 0

to find the critical points for this problem. Using the quadratic formula,

we find that x = 2 and x = 6 are the critical points for the problem. Now

V ′′( x) = −96 + 24x. Since V ′′( 2) = −48 < 0, we conclude that x = 2 is

a local maximum for the problem. In fact we can sketch a graph of V ( x)

using ideas from calculus and see that x = 2 is a global maximum.

We conclude that if squares of side 2′′ are cut from the sheet of card-

board then a box of maximum volume will result.

Observe in passing that if squares of side 6′′ are cut from the sheet then

(there will be no cardboard left!) the resulting box will have zero volume.

This value for x gives a minimum for the problem.

x

12 _ 2x

FIGURE 3.13
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x

x

100 _ 2x

garage

FIGURE 3.14

EXAMPLE 3.9
A rectangular garden is to be constructed against the side of a garage. The

gardener has 100 feet of fencing, and will construct a three-sided fence;

the side of the garage will form the fourth side. What dimensions will give

the garden of greatest area?

SOLUTION

Look at Figure 3.14. Let x denote the side of the garden that is perpendic-

ular to the side of the garage. Then the resulting garden has width x feet

and length 100 − 2x feet. The area of the garden is

A( x) = x · ( 100 − 2x) = 100x − 2x2.

We calculate A′( x) = 100 − 4x and find that the only critical point for

the problem is x = 25. Since A′′( x) = −4 for all x, we determine that

x = 25 is a local maximum. By inspection, we see that the graph of A is

a downward-opening parabola. So x = 25 must also be the global maxi-

mum that we seek. The optimal dimensions for the garden are

width = 25 ft. length = 50 ft.

YOU TRY IT Find the right circular cylinder of greatest volume that can be con-

tained in a sphere of radius 1.
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EXAMPLE 3.10
The sum of two positive numbers is 60. How can we choose them so as to

maximize their product?

SOLUTION

Let x be one of the two numbers. Then the other is 60 − x. Their product

is

P ( x) = x · ( 60 − x) = 60x − x2.

Thus P is the quantity that we wish to maximize. Calculating the derivative,

we find that

P ′( x) = 60 − 2x.

Thus the only critical point for the problem is x = 30. Since P ′′( x) ≡
−2, we find that x = 30 is a local maximum. Since the graph of P is a

downward-opening parabola, we can in fact be sure that x = 30 is a global

maximum.

We conclude that the two numbers that add to 60 and maximize the

product are 30 and 30.

YOU TRY IT A rectangular box is to be placed in the first quadrant {( x, y) :

x ≥ 0, y ≥ 0} in such a way that one side lies on the positive x-axis and one side

lies on the positive y-axis. The box is to lie below the line y = −2x + 5. Give the

dimensions of such a box having greatest possible area.

3.3 Related Rates
......................................................................................................................................

If a tree is growing in a forest, then both its height and its radius will be increas-
ing. These two growths will depend in turn on (i) the amount of sunlight that
hits the tree, (ii) the amount of nutrients in the soil, and (iii) the proximity of
other trees. We may wish to study the relationship among these various param-
eters. For example, if we know that the amount of sunlight and nutrients are
increasing at a certain rate then we may wish to know how that affects the rate
of change of the radius. This consideration gives rise to related rates problems.
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EXAMPLE 3.11
A toy balloon is in the shape of a sphere. It is being inflated at the rate of

20 cu. in./min. At the moment that the sphere has volume 64 cubic inches,

what is the rate of change of the radius?

SOLUTION

We know that volume and radius of a sphere are related by the formula

V =
4π

3
r 3. (∗)

The free variable in this problem is time, so we differentiate equation (∗)

with respect to time t. It is important that we keep the Chain Rule in mind

as we do so.1 The result is

dV

dt
=

4π

3
· 3r 2 · dr

dt
. (∗∗)

Now we are given that dV/dt = 20. Our question is posed at the moment

that V = 64. But, according to (∗) , this means that r = 3
√

48/π. Substitut-

ing these values into equation (∗∗) yields

20 =
4π

3
· 3

[
3

√
48/π

]2

· dr

dt
.

Solving for dr/dt yields

dr

dt
=

5

482/3 · π1/3
.

Thus the radius is increasing at the specified rate.

EXAMPLE 3.12
A 13-foot ladder leans against a wall (Figure 3.15). The foot of the ladder

begins to slide away from the wall at the rate of 1 foot per minute. When

the foot is 5 feet from the wall, at what rate is the top of the ladder falling?

1The point is that we are not differentiating with respect to r .
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FIGURE 3.15

SOLUTION

Let h( t) be the height of the ladder at time t and b( t) be the distance of

the base of the ladder to the wall at time t. Then the Pythagorean theorem

tells us that

h( t) 2 + b( t) 2 = 132.

We may differentiate both sides of this equation with respect to the vari-

able t (which is time in minutes) to obtain

2 · h( t) · h′( t) + 2 · b( t) · b′( t) = 0.

Solving for h′( t) yields

h′( t) = −b( t) · b′( t)

h( t)
.

At the instant the problem is posed, b( t) = 5, h( t) = 12 (by the

Pythagorean theorem), and b′( t) = 1. Substituting these values into the

equation yields

h′( t) = −5 · 1

12
= − 5

12
ft./min.

Observe that the answer is negative, which is appropriate since the top of

the ladder is falling.
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YOU TRY IT Suppose that a square sheet of aluminum is placed in the hot sun.

It begins to expand very slowly so that its diagonal is increasing at the rate of

1 millimeter per minute. At the moment that the diagonal is 100 millimeters, at

what rate is the area increasing?

EXAMPLE 3.13
A sponge is in the shape of a right circular cone (Figure 3.16). As it soaks

up water, it grows in size. At a certain moment, the height equals 6 inches,

and is increasing at the rate of 0.3 inches per second. At that same moment,

the radius is 4 inches, and is increasing at the rate of 0.2 inches per second.

How is the volume changing at that time?

SOLUTION

We know that the volume V of a right circular cone is related to the height

h and the radius r by the formula

V =
1

3
πr 2h.

Differentiating both sides with respect to the variable t (for time in sec-

onds) yields

dV

dt
=

1

3
π

[
2r

dr

dt
h + r 2 dh

dt

]
.

FIGURE 3.16
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Substituting the values for r, dr/dt, h, and dh/dt into the right-hand side

yields

dV

dt
=

1

3
π
[

2 · 4 · ( 0.2) · 6 + 42 · ( 0.3)
]
=

1

3
π[9.6 + 4.8] =

24π

5
.

YOU TRY IT In the heat of the sun, a sheet of aluminum in the shape of an

equilateral triangle is expanding so that its side length increases by 1 millimeter

per hour. When the side length is 100 millimeters, how is the area increasing?

3.4 Falling Bodies
......................................................................................................................................

It is known that, near the surface of the earth, a body falls with acceleration
(due to gravity) of about 32 ft./sec.2. If we let h(t) be the height of the object
at time t (measured in seconds), then our information is that

h′′(t) = −32.

Observe the minus sign to indicate that height is decreasing.
Now we will do some organized guessing. What could h′ be? It is some

function whose derivative is the constant −32. Our experience indicates that
polynomials decrease in degree when we differentiate them. That is, the de-
gree goes from 5 to 4, or from 3 to 2. Since, h′′ is a polynomial of degree 0,
we therefore determine that h′ will be a polynomial of degree 1. A moment’s
thought then suggests that h′(t) = −32t. This works! If h′(t) = −32t then
h′′(t) = [h′(t)]′ = −32. In fact we can do a bit better. Since constants differen-
tiate to zero, our best guess of what the velocity should be is h′(t) = −32t + v0,
where v0 is an undetermined constant.

Now let us guess what form h(t) should have. We can learn from our ex-
perience in the last paragraph. The ‘‘antiderivative’’ of −32t (a polynomial of
degree 1) should be a polynomial of degree 2. After a little fiddling, we guess
−16t2. And this works. The antiderivative of v0 (a polynomial of degree 0)
should be a polynomial of degree 1. After a little fiddling, we guess v0t. And
this works. Taking all this information together, we find that the ‘‘antideriva-
tive’’ of h′(t) = −32t + v0 is

h(t) = −16t2 + v0t + h0. (†)
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FIGURE 3.17

Notice that we have once again thrown in an additive constant h0. This does
no harm:

h′(t) = [−16t2]′ + [v0t]′ + [h0]′ = −32t + v0,

just as we wish. And, to repeat what we have already confirmed,

h′′(t) = [h′(t)]′ = [−32t]′ + [v0]′ = −32.

We now have a general formula (namely (†)) for the position of a falling body
at time t. (Recall that we were first introduced to this formula in Section 2.6.)
See Figure 3.17.

Before doing some examples, we observe that a falling body will have initial
velocity 0. Thus

0 = h′(0) = −32 · 0 + v0.

Hence, for a falling body, v0 = 0. In some problems we may give the body an
initial push, and then v0 will not be zero.

EXAMPLE 3.14
Suppose that a falling body hits the ground with velocity −100 ft./sec.

What was the initial height of the body?
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SOLUTION

With notation as developed above, we know that velocity is given by

h′( t) = −32t + 0.

We have taken v0 to be 0 because the body is a falling body; it had no initial

push. If T is the time at which the body hits the ground, then we know that

−100 = h′( T ) = −32 · T .

As a result, T = 25/8 sec.

When the body hits the ground, its height is 0. Thus we know that

0 = h( T ) = h( 25/8) = −16 · ( 25/8) 2 + h0.

We may solve for h0 to obtain

h0 =
625

4
.

Thus all the information about our falling body is given by

h( t) = −16t2 +
625

4
.

At time t = 0 we have

h( 0) =
625

4
.

Thus the initial height of the falling body is 625/4 ft. = 156.25 ft.

Notice that, in the process of solving the last example, and in the discussion
preceding it, we learned that h0 represents the initial height of the falling body
and v0 represents the initial velocity of the falling body. This information will
be useful in the other examples that we examine.

EXAMPLE 3.15
A body is thrown straight down with an initial velocity of 10 feet per sec-

ond. It strikes the ground in 12 seconds. What was the initial height?
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SOLUTION

We know that v0 = −10 and that h( 12) = 0. This is the information that

we must exploit in solving the problem. Now

h( t) = −16t2 − 10t + h0.

Thus

0 = h( 12) = −16 · 122 − 10 · 12 + h0.

We may solve for h0 to obtain

h0 = 2424 ft.

The initial height is 2424 feet.

YOU TRY IT A body is thrown straight up with initial velocity 5 feet per second

from a height of 40 feet. After how many seconds will it hit the ground? What will

be its maximum height?

EXAMPLE 3.16
A body is launched straight up from height 100 feet with some initial ve-

locity. It hits the ground after 10 second. What was that initial velocity?

SOLUTION

We are given that h0 = 100. Thus

h( t) = −16t2 + v0t + 100.

Our job is to find v0. We also know that

0 = h( 10) = −16 · 102 + v0 · 10 + 100.

We solve this equation to find that v0 = 150 ft./sec.

YOU TRY IT On a certain planet, bodies fall with an acceleration due to gravity

of 10 ft./sec.2. A certain body is thrown down with an initial velocity of 5 feet per

second, and hits the surface 12 seconds later. From what height was it launched?
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QUIZ

1. Sketch the graph of f (x) = 2x/[x2 + 1], indicating all local maxima and
minima together with concavity properties.

2. What is the right circular cylinder of greatest volume that can be inscribed
upright in a sphere of radius 5?

3. An air mattress (in the shape of a rectangular parallelepiped) is being in-
flated in such a way that, at a given moment, its length is increasing by
2 inches per minute, its width is decreasing by 1 inch per minute, and its
height is increasing by 0.5 inch per minute. At the moment its dimen-
sions are � = 90′′, w = 50′′, and h = 10′′. How is its volume changing at
that time?

4. A certain body is thrown straight down at an initial velocity of 10 ft./sec.
It strikes the ground in 3 seconds. What is its initial height?

5. Because of viral infection, the shape of a certain cone-shaped cell is chang-
ing. The height is increasing at the rate of 2 microns per minute. For
metabolic reasons, the volume remains constantly equal to 10π cubic mi-
crons. At the moment that the radius is 3 microns, what is the rate of
change of the radius of the cell?

6. A silo is to hold 5,000 cubic feet of grain. The silo will be cylindrical in
shape and have a flat top. The floor of the silo will be the earth. What
dimensions of the silo will use the least material for construction?

7. Sketch the graph of the function g (x) = x · cos x. Show maxim and
minima.

8. A body is launched straight down at a velocity of 10 ft./sec. from height
500 feet. How long will it take this body to reach the ground?

9. Sketch the graph of the function h(x) = x
x2 − 4

. Exhibit maxima, minima,

and concavity.

10. A punctured balloon, in the shape of a sphere, is losing air at the rate
of 3 cu. in./sec. At the moment that the balloon has volume 25π cubic
inches, how is the radius changing?

11. A twenty-pound stone and a thirty-pound stone are each dropped from
height 100 feet at the same moment. Which will strike the ground first?
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12. A man wants to determine how far below the surface of the earth is the
water in a well. How can he use the theory of falling bodies to do so?

13. A rectangle is to be placed in the first quadrant, with one side on the x-
axis and one side on the y-axis, so that the rectangle lies below the line
2x + 3y = 6. What dimensions of the rectangle will give greatest area?

14. A rectangular box with square base is to be constructed to hold 120 cubic
inches. The material for the base and the top costs 8 cents per square
inch and the material for the sides costs 16 cents per square inch. What
dimensions will give the most economical box?

15. Sketch the graph of the function f (x) = [x2 − 4]/[x2 + 4]. Exhibit max-
ima, minima, and concavity.

16. On the planet Glug, the acceleration due to gravity of a falling body near
the surface of the planet is 12 ft./sec. A body is dropped from height
50 feet. How long will it take that body to hit the surface of Glug?
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The Integral

Besides the derivative, the other big idea in calculus is the integral. A way of
adding or amalgamating infinite quantities, integration is a powerful tool in
mathematical physics, engineering, and many other disciplines. Central to the
importance of the integral is the Fundamental Theorem of Calculus---which links
differentiation and integration. The fact that we can use the derivative to com-
pute the integral changes the face of the subject.

C H A P T E R O B J E C T I V E S
In this chapter, you will learn

• Antiderivatives

• Indefinite integrals

• Area

• Signed area

• Area between two curves

• Rules of integration

119
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4.0 Introduction
......................................................................................................................................

Many processes, both in mathematics and in nature, involve addition. You are
familiar with the discrete process of addition, in which you add finitely many
numbers to obtain a sum or aggregate. But there are important instances in
which we wish to add infinitely many terms. One important example is in the
calculation of area---especially the area of an unusual (non-rectilinear) shape.
A standard strategy is to approximate the desired area by the sum of small,
thin rectangular regions (whose areas are easy to calculate). A second example
is the calculation of work, in which we think of the work performed over
an interval or curve as the aggregate of small increments of work performed
over very short intervals. We need a mathematical formalism for making
such summation processes natural and comfortable. Thus we will develop the
concept of the integral.

4.1 Antiderivatives and Indefinite Integrals
......................................................................................................................................

4.1.1 The Concept of Antiderivative
Let f be a given function. We have already seen in the theory of falling bodies
(Section 3.4) that it can be useful to find a function F such that F ′ = f . We
call such a function F an antiderivative of f . In fact we often want to find the
most general function F , or a family of functions, whose derivative equals f . We
can sometimes achieve this goal by a process of organized guessing.

Suppose that f (x) = cos x. If we want to guess an antiderivative, then we
are certainly not going to try a polynomial. For if we differentiate a polyno-
mial then we get another polynomial. So that will not do the job. For similar
reasons we are not going to guess a logarithm or an exponential. In fact, the
way that we get a trigonometric function through differentiation is by differ-
entiating another trigonometric function. What trigonometric function, when
differentiated, gives cos x? There are only six functions to try, and a moment’s
thought reveals that F (x) = sin x does the trick. In fact, an even better answer
is F (x) = sin x + C. The constant differentiates to 0, so F ′(x) = f (x) = cos x.
We have seen in our study of falling bodies that the additive constant gives us
a certain amount of flexibility in solving problems.

Now suppose that f (x) = x2. We have already noted that the way to get
a polynomial through differentiation is to differentiate another polynomial.
Since differentiation reduces the degree of the polynomial by 1, it is natural to
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guess that the F we seek is a polynomial of degree 3. What about F (x) = x3?
We calculate that F ′(x) = 3x2. That does not quite work. We seek x2 for our
derivative, but we get 3x2. This result suggests adjusting our guess. We instead
try F (x) = x3/3. Then, indeed, F ′(x) = 3x2/3 = x2, as desired. We will write
F (x) = x3/3 + C for our antiderivative.

More generally, suppose that f (x) = ax3 + bx2 + cx + d. Using the rea-
soning in the last paragraph, we may find fairly easily that F (x) = ax4/4 +
bx3/3 + cx2/2 + dx + e. Notice that, once again, we have thrown in an additive
constant.

YOU TRY IT Find a family of antiderivatives for the function f ( x) = sin 2x −
x4 + ex .

4.1.2 The Indefinite Integral
In practice, it is useful to have a compact notation for the antiderivative. What
we do, instead of saying that ‘‘the antiderivative of f (x) is F (x) + C,’’ is to write∫

f (x) dx = F (x) + C.

So, for example, ∫
cos x dx = sin x + C

and

∫
x3 + x dx = x4

4
+ x2

2
+ C

and

∫
e2x dx = e2x

2
+ C.

The symbol
∫

is called an integral sign (the symbol is in fact an elongated ‘‘S’’)
and the symbol ‘‘dx’’ plays a traditional role to remind us what the variable is.
We call an expression like ∫

f (x) dx
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an indefinite integral. The name comes from the fact that later on we will have a
notion of ‘‘definite integral’’ that specifies what value C will take---so it is more
definite in the answer that it gives.

EXAMPLE 4.1
Calculate

∫
sin( 3x + 1) dx.

SOLUTION

We know that we must guess a trigonometric function. Running through

the choices, cosine seems like the best candidate. The derivative of cos x is

− sin x. So we immediately see that − cos x is a better guess---its derivative

is sin x. But then we adjust our guess to F ( x) = − cos( 3x + 1) to take into

account the form of the argument. This almost works: we may calculate

that F ′( x) = 3 sin( 3x + 1) . We determine that we must adjust by a factor

of 1/3. Now we can record our final answer as

∫
sin( 3x + 1) dx = −1

3
cos( 3x + 1) + C .

We invite the reader to verify that the derivative of the answer on the right-

hand side gives sin( 3x + 1) .

EXAMPLE 4.2
Calculate

∫
x

x2 + 3
dx.

SOLUTION

We notice that the numerator of the fraction is nearly the derivative of the

denominator. Put in other words, if we were asked to integrate

2x

x2 + 3
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then we would see that we are integrating an expression of the form

ϕ′( x)

ϕ( x)

(which we in fact encountered among our differentiation rules in Section

2.5). As we know, expressions like this arise from differentiating logϕ( x) .

Returning to the original problem, we pose our initial guess as log[x2 +
3]. Differentiation of this expression gives the answer 2x/[x2 + 3]. This is

close to what we want, but we must adjust by a factor of 1/2. We write our

final answer as

∫
x

x2 + 3
dx =

1

2
log[x2 + 3] + C .

YOU TRY IT Calculate the indefinite integral∫
xe3x2+5 dx.

EXAMPLE 4.3
Calculate the indefinite integral∫

( x3 + x2 + 1) 50 · ( 6x2 + 4x) dx.

SOLUTION

We observe that the expression 6x2 + 4x is nearly the derivative of x3 +
x2 + 1. In fact if we set ϕ( x) = x3 + x2 + 1 then the integrand (the quan-

tity that we are asked to integrate) is

[ϕ( x) ]50 · 2ϕ′( x) .

It is natural to guess as our antiderivative [ϕ( x) ]51. Checking our work,

we find that

(
[ϕ( x) ]51

)′
= 51[ϕ( x) ]50 · ϕ′( x) .
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We see that the answer obtained is quite close to the answer we seek; it is

off by a numerical factor of 2/51. With this knowledge, we write our final

answer as

∫
( x3 + x2 + 1) 50 · ( 6x2 + 4x) dx =

2

51
· [x3 + x2 + 1]51 + C .

YOU TRY IT Calculate the indefinite integral

∫
x2

x3 + 5
dx.

4.2 Area
......................................................................................................................................

Consider the curve shown in Figure 4.1. The curve is the graph of y = f (x).
We set for ourselves the task of calculating the area A that is (i) under the curve,
(ii) above the x-axis, and (iii) between x = a and x = b. Refer to Figure 4.2 to
see the geometric region we are considering.

We take it for granted that the area of a rectangle of length � and width
w is � × w. Now our strategy is to divide the base interval [a, b] into equal
subintervals. Fix an integer k > 0. We designate the points

P = {x0, x1, x2, . . . , xk} ,

with x0 = a and xk = b. We require that |xj − xj−1| = |b − a|/k ≡ �x for j =
1, . . . k. In other words, the points x0, x1, . . . , xk are equally spaced. We call the

y = f (x)

FIGURE 4.1
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a b

y = f (x)

FIGURE 4.2

set P a partition. Sometimes, to be more specific, we call it a uniform partition
(to indicate that all the subintervals have the same length). Refer to Figure 4.3.

The idea is to build an approximation to the area A by erecting rectangles
over the segments determined by the partition. The first rectangle R1 will have
as base the interval [x0, x1] and height chosen so that the rectangle touches the
curve at its upper right hand corner; this means that the height of the rectangle
is f (x1). The second rectangle R2 has base the interval [x1, x2] and height f (x2).
Refer to Figure 4.4.

Continuing in this manner, we construct precisely k rectangles, R1,
R2, . . . , Rk, as shown in Figure 4.5. Now the sum of the areas of these rect-
angles is not exactly equal to the area A that we seek. But it is close. The error
is the sum of the little semi-triangular pieces that are shaded in Figure 4.6. We
can make that error as small as we please by making the partition finer . Figure 4.7
illustrates this idea.

b _ a
k

x0 = a xj xk = b

FIGURE 4.3
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x0 = a xk = bx1 x2

y = f (x)

FIGURE 4.4

Let us denote by R( f, P) the sum of the areas of the rectangles that we
created from the partition P. This is called a Riemann sum. Thus

R( f, P) =
k∑

j=1

f (xj) · �x ≡ f (x1) · �x + f (x2) · �x + · · · + f (xk) · �x.

Here the symbol
∑k

j=1 denotes the sum of the expression to its right for each
of the instances j = 1 to j = k.

The reasoning just presented suggests that the true area A is given by

lim
k→∞

R( f, P).

x0 = a xk = bx1 x2

y = f (x)

FIGURE 4.5
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x0 = a xk = bx1 x2

y = f (x)

FIGURE 4.6

We call this limit the integral of f from x = a to x = b and we write it as∫ b

a
f (x) dx.

Thus we have learned that

the area of A =
∫ b

a
f (x) dx.

It is well to take a moment and comment on the integral notation. First, the
integral sign ∫
is an elongated ‘‘S’’, coming from ‘‘summation.’’ The dx is an historical artifact,
coming partly from traditional methods of developing the integral, and partly

y = f (x)

ba

FIGURE 4.7
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from a need to know explicitly what the variable is. The numbers a and b are
called the limits of integration---the number a is the lower limit and b is the upper
limit. The function f is called the integrand.

Before we can present a detailed example, we need to record some important
information about sums:

I. We need to calculate the sum S = 1 + 2 + · · · + N = ∑N
j=1 j . To achieve

this goal, we write

S = 1 + 2 + · · · + (N − 1) + N

S = N + (N − 1) + · · · + 2 + 1

Adding each column, we obtain

2S = (N + 1) + (N + 1) + · · · + (N + 1) + (N + 1)︸ ︷︷ ︸
N times

.

Thus

2S = N · (N + 1)

or

S = N · (N + 1)
2

.

This is a famous formula that was discovered by Carl Friedrich Gauss
(1777--1855) when he was a child. There is also evidence that the formula
was known to the ancients.

II. The sum S = 12 + 22 + · + N2 = ∑n
j=1 j2 is given by

S = 2N3 + 3N2 + N
6

.

We shall not provide the details of the proof of this formula, but refer the
interested reader to [SCH2].
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For our first example, we calculate the area under a parabola:

EXAMPLE 4.4
Calculate the area under the curve y = x2, above the x-axis, and between

x = 0 and x = 2.

SOLUTION

Refer to Figure 4.8 as we reason along. Let f ( x) = x2.

Consider the partition P of the interval [1, 2] consisting of k + 1 points

x0, x1, . . . , xk. The corresponding Riemann sum is

R( f, P) =
k∑

j=1

f ( x j ) · �x.

Of course

�x =
2 − 0

k
=

2

k

and

x j = j · 2

k
.

FIGURE 4.8
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In addition,

f ( x j ) =
(

j · 2

k

)2

=
4 j 2

k2
.

As a result, the Riemann sum for the partition P is

R( f, P) =
k∑

j=1

4 j 2

k2
· 2

k

=
k∑

j=1

8 j 2

k3

=
8

k3

k∑
j=1

j 2.

Now formula II above enables us to calculate the last sum explicitly. The

result is that

R( f, P) =
8

k3
· 2k3 + 3k2 + k

6

=
8

3
+

4

k
+

4

3k2
.

In sum,

∫ 2

0

x2 dx = lim
k→∞

R( f, P) = lim
k→∞

[
8

3
+

4

k
+

4

3k2

]
=

8

3
.

We conclude that the desired area is 8/3.

YOU TRY IT Use the method presented in the last example to calculate the

area under the graph of y = 2x and above the x-axis, between x = 1 and x =
2. You should obtain the answer 3, which of course can also be determined by

elementary considerations---without taking limits.

The most important idea in all of calculus is that it is possible to calculate an
integral without calculating Riemann sums and passing to the limit. This is the
Fundamental Theorem of Calculus, attributed to Leibniz and Newton. We now
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state the theorem, illustrate it with examples, and then briefly discuss why it is
true.

Theorem 4.1 (Fundamental Theorem of Calculus)
Let f be a continuous function on the interval [a, b]. If F is any antiderivative
of f then ∫ b

a
f (x) dx = F (b) − F (a).

EXAMPLE 4.5
Calculate ∫ 2

0

x2 dx.

SOLUTION

We use the Fundamental Theorem. In this example, f ( x) = x2. We need

to find an antiderivative F . From our experience in Section 4.1, we can de-

termine that F ( x) = x3/3 will do. Then, by the Fundamental Theorem of

Calculus, ∫ 2

0

x2 dx = F ( 2) − F ( 0) =
23

3
− 03

3
=

8

3
.

Notice that this is the same answer that we obtained using Riemann sums

in Example 4.4.

EXAMPLE 4.6
Calculate ∫ π

0

sin x dx.

SOLUTION

In this example, f ( x) = sin x. An antiderivative for f is F ( x) = − cos x.

Then∫ π

0

sin x dx = F (π) − F ( 0) = (− cosπ) − (− cos 0) = 1 + 1 = 2.
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EXAMPLE 4.7
Calculate ∫ 2

1

( ex − cos 2x + x3 − 4x) dx.

SOLUTION

In this example, f ( x) = ex − cos 2x + x3 − 4x. An antiderivative for f is

F ( x) = ex − ( 1/2) sin 2x + x4/4 − 2x2. Therefore∫ 2

1

( ex − cos 2x + x3 − 4x) dx = F ( 2) − F ( 1)

=

(
e2 − 1

2
sin( 2 · 2) +

24

4
− 2 · 22

)

−
(

e1 − 1

2
sin( 2 · 1) +

14

4
− 2 · 12

)

= ( e2 − e) − 1

2
[sin 4 − sin 2] − 9

4
.

YOU TRY IT Calculate the integral

∫ −1

−3

( x3 − cos x + x) dx.

Still Struggling

Observe in this last example, in fact in all of our examples, you can use any an-

tiderivative of the integrand when you apply the Fundamental Theorem of Calcu-

lus. In the last example, we could have taken F (x) = ex − (1/2) sin 2x + x 4/4 −
2x 2 + 5 and the same answer would have resulted. We invite you to provide the

details of this assertion.
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Justification for the Fundamental Theorem
Let f be a continuous function on the interval [a, b]. Define the area function
F by

F (x) = area under f , above the x-axis, and between 0 and x.

Let us use a pictorial method to calculate the derivative of F . Refer to
Figure 4.9 as you read on. Now

F (x + h) − F (x)
h

= [area between x and x + h, below f ]
h

≈ f (x) · h
h

= f (x).

As h → 0, the approximation in the last display becomes nearer and nearer to
equality. So we find that

lim
h→0

F (x + h) − F (x)
h

= f (x).

But this just says that F ′(x) = f (x).
What is the practical significance of this calculation? Suppose that we wish

to calculate the area under the curve f , above the x-axis, and between x = a
and x = b. Obviously this area is F (b) − F (a). See Figure 4.10. But we also
know that that area is

∫ b
a f (x) dx. We conclude therefore that

∫ b

a
f (x) dx = F (b) − F (a).

x + h

FIGURE 4.9
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a b

y = f (x)

F (b) _ F (a)

FIGURE 4.10

Finally, if G is any other antiderivative for f then G(x) = F (x) + C. Hence

G(b) − G(a) = [F (b) + C] − [F (a) + C] = F (b) − F (a) =
∫ b

a
f (x) dx.

That is the content of the Fundamental Theorem of Calculus.

YOU TRY IT Calculate the area below the curve y = −x2 + 2x + 4 and above

the x-axis.

4.3 Signed Area
......................................................................................................................................

Without saying so explicitly, we have implicitly assumed in our discussion of
area in the last section that our function f is positive, that is, its graph lies about
the x-axis. But of course many functions do not share that property. We never-
theless would like to be able to calculate areas determined by such functions,
and to calculate the corresponding integrals.

This turns out to be simple to do. Consider the function y = f (x) shown
in Figure 4.11. It is negative on the interval [a, b] and positive on the interval
[b, c]. Suppose that we wish to calculate the shaded area as in Figure 4.12. We
can do so by breaking the problem into pieces.

Of course, because f ≥ 0, the area between x = b and x = c is given by
the integral

∫ c
b f (x) dx, just as we have discussed in the last section. But our
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FIGURE 4.11

discussions do not apply directly to the area between x = a and x = b. What
we can do is instead consider the function g = − f . Its graph is shown in
Figure 4.13. Of course g is a positive function, except at the endpoints a and b;
and the area under g ---between x = a and x = b---is just the same as the shaded
area between x = a and x = b in Figure 4.14 (refer also to Figure 4.12). That
area is ∫ b

a
g (x) dx = −

∫ b

a
f (x) dx.

FIGURE 4.12
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FIGURE 4.13

In total, the aggregate shaded area exhibited in Figure 4.15, over the entire
interval [a, c], is

−
∫ b

a
f (x) dx +

∫ c

b
f (x) dx.

What we have learned is this: If f (x) < 0 on the interval under discussion,
then the integral of f will be a negative number. If we want to calculate positive
area then we must interject a minus sign.

FIGURE 4.14
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FIGURE 4.15

Let us nail down our understanding of these ideas by considering some
examples.

EXAMPLE 4.8
Calculate the (positive) area, between the graph of f ( x) = x3 − 2x2 −
11x + 12 and the x-axis, between x = −3 and x = 4.

SOLUTION

Consider Figure 4.16. It was drawn using the technique of Section 3.1, and

it plainly shows that f is positive on [−3, 1] and negative on [1, 4]. From

the discussion preceding this example, we know then that

Area =
∫ 1

−3

f ( x) dx −
∫ 4

1

f ( x) dx

=
∫ 1

−3

x3 − 2x2 − 11x + 12 dx −
∫ 4

1

x3 − 2x2 − 11x + 12 dx

=

(
x4

4
− 2x3

3
− 11x2

2
+ 12x

)∣∣∣∣1
−3

−
(

x4

4
− 2x3

3
− 11x2

2
+ 12x

)∣∣∣∣4
1

.

(∗)
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FIGURE 4.16

Here we are using the standard shorthand

F ( x)

∣∣∣∣b

a

to stand for

F ( b) − F ( a) .

Thus we have

(∗) =
160

3
+

297

12
.

Notice that, by design each component of the area has made a positive

contribution to the final answer. The total area is then

Area =
937

12
.

EXAMPLE 4.9
Calculate the (positive) area between f ( x) = sin x and the x-axis for

−2π ≤ x ≤ 2π.
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SOLUTION

We observe that f ( x) = sin x ≥ 0 for −2π ≤ x ≤ −π and 0 ≤ x ≤ π.

Likewise, f ( x) = sin x ≤ 0 for −π ≤ x ≤ 0 and π ≤ x ≤ 2π.

As a result

Area =
∫ −π

−2π

sin x dx −
∫ 0

−π

sin x dx +
∫ π

0

sin x dx −
∫ 2π

π

sin x dx.

This is easily calculated to equal

2 + 2 + 2 + 2 = 8.

YOU TRY IT Calculate the (positive) area between y = x3 − 6x2 + 11x − 6

and the x-axis.

EXAMPLE 4.10
Calculate the signed area between the graph of y = cos x + 1/2 and the

x-axis, −π/2 ≤ x ≤ π.

SOLUTION

This is easy, because the solution we seek is just the value of the integral:

Area =
∫ π

−π/2

(
cos x +

1

2

)
dx

= sin x +
x

2

∣∣∣∣π
−π/2

=
[

0 +
π

2

]
−
[
−1 +

−π

4

]

=
3π

4
+ 1.
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Still Struggling

In the last example, we have counted positive area as positive and negative area

as negative. Our calculation shows that the aggregate area is positive---but bear

in mind that the calculation entailed counting area above the x-axis as positive

and area below the x-axis as negative (so there was some cancellation). We en-

courage the reader to draw a graph to make this result plausible.

YOU TRY IT Calculate the actual positive area between the graph of y = x2 −
4, −5 ≤ x ≤ 5 and the x-axis.

YOU TRY IT Calculate the signed area between the graph of y = x2 − 4 and

the x-axis, −4 ≤ x ≤ 5.

4.4 The Area Between Two Curves
......................................................................................................................................

Frequently it is useful to find the area between two curves. See Figure 4.17.
Following the model that we have set up earlier, we first note that the region
bounded by the two curves has left endpoint at x = a and right endpoint at

FIGURE 4.17



Chapter 4 T H E I N T E G R A L 141

FIGURE 4.18

x = b. We partition the interval [a, b] as shown in Figure 4.18. Call the partition

P = {x0, x1, . . . , xk}.

Then, as usual, we erect rectangles over the intervals determined by the parti-
tion (Figure 4.19).

Notice that the upper curve, over the interval [a, b], is y = f (x) and the
lower curve is y = g (x) (Figure 4.17). The sum of the areas of the rectangles is
therefore

k∑
j=1

[ f (xj) − g (x)] · �x.
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But of course this is a Riemann sum for the integral∫ b

a
[ f (x) − g (x)] dx.

We declare this integral to be the area determined by the two curves.

EXAMPLE 4.11
Find the area between the curves y = x2 − 2 and y = −( x − 1) 2 + 3.

SOLUTION

We set the two equations equal and solve to find that the curves intersect

at x = −1 and x = 2. The situation is shown in Figure 4.20. Notice that

y = −( x − 1) 2 + 3 is the upper curve and y = x2 − 2 is the lower curve.

Thus the desired area is

Area =
∫ 2

−1

[−( x − 1) 2 + 3] − [x2 − 2] dx

=
∫ 2

−1

−2x2 + 2x + 4 dx

=
−2x3

3
+ x2 + 4x

∣∣∣∣2
−1

=
[−16

3
+ 4 + 8

]
−
[

2

3
+ 1 − 4

]
= 9.

The area of the region enclosed by the two intersecting# parabolas is 9.

FIGURE 4.20
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EXAMPLE 4.12
Find the area between y = sin x and y = cos x for π/4 ≤ x ≤ 5π/4.

SOLUTION

On the given interval, sin x ≥ cos x. See Figure 4.21. Thus the area we wish

to compute is

Area =
∫ 5π/4

π/4

[sin x − cos x] dx

=
[
− cos x − sin x

]x=5π/4

x=π/4

=

[√
2

2
−
(

−
√

2

2

)]
−
[
−
√

2

2
−
√

2

2

]

= 2

√
2.

y

x

y = sin x

y = cos x

FIGURE 4.21
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YOU TRY IT Calculate the area between y = sin x and y = cos x, −π ≤
x ≤ 2π.

YOU TRY IT Calculate the area between y = x2 and y = 3x + 4.

4.5 Rules of Integration
......................................................................................................................................

We have been using various rules of integration without enunciating them ex-
plicitly. It is well to have them recorded for future reference.

4.5.1 Linear Properties
I. If f, g are continuous functions on [a, b] then

∫ b

a
f (x) + g (x) dx =

∫ b

a
f (x) dx +

∫ b

a
g (x) dx.

II. If f is a continuous function on [a, b] and c is a constant then

∫ b

a
c f (x) dx = c

∫ b

a
f (x) dx.

4.5.2 Additivity
III. If f is a continuous on [a, c] and a < b < c then

∫ b

a
f (x) dx +

∫ c

b
f (x) dx =

∫ c

a
f (x) dx.

YOU TRY IT Calculate

∫ 3

1

( 4x3 − 3x2 + 7x − 12 cos x) dx.



Chapter 4 T H E I N T E G R A L 145

QUIZ

1. Calculate each of the following antiderivatives:
(a) Antiderivative of x3 + cos x
(b) Antiderivative of ex + x2 − 1

(c) Antiderivative of t2 + ln2 t
t

(d) Antiderivative of tan x + sin x − cos 3x
(e) Antiderivative of sin 3x + cos 4x + 1
(f) Antiderivative of (sin x) · ecos x

2. Calculate each of the following indefinite integrals:
(a)

∫
x2 sin x3 dx

(b)
∫ 2

x ln x3 dx

(c)
∫

sin2 x · cos x dx
(d)

∫
cot x · ln sin x dx

(e)
∫

sec2 x · etan x dx
(f)

∫
(3x2 + 2) · (x3 + 2x + 3)43 dx

3. Use Riemann sums to calculate each of the following integrals:
(a)

∫ 2
1 x2 − x dx

(b)
∫ 1
−1

−x2

2 dx

4. Use the Fundamental Theorem of Calculus to evaluate each of the fol-
lowing integrals:
(a)

∫ 3
1 x2 − x3 + 3 dx

(b)
∫ 6

2 x sin(x2) + sin x cos x dx

(c)
∫ 4

1
ln x
x + x cos x2 dx

(d)
∫ 2

1 cot x − x2 sin x3 dx

5. Calculate the area under the given function and above the x-axis over the
indicated interval.
(a) f (x) = x2 − 2x + 6 [4, 6]
(b) g (x) = sin x cos x [0, π/3]
(c) h(x) = xex2

[2, 3]
(d) k(x) = ln x

x [e, e2]
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6. Draw a careful sketch of each function on the given interval, indicating
subintervals where the area between the graph and the x-axis is positive
and where the area is negative.
(a) f (x) = x2 + x [−2, 2]
(b) g (x) = sin 2x cos 2x [−2π, 2π]
(c) h(x) = ln x

x [1, e]
(d) m(x) = x2ex3

[−3, 3]

7. For each function in Exercise 6, calculate the positive area between the
graph of the given function and the x-axis over the indicated interval.

8. In each part of Exercise 6, calculate the signed area between the graph of
the given function and the x-axis over the indicated interval.

9. Calculate the area between the two given curves over the indicated
interval.
(a) f (x) = x2 − 2 , g (x) = −x2 + 6 − 1 ≤ x ≤ 1
(b) f (x) = x2 , g (x) = x3 0 ≤ x ≤ 1
(c) f (x) = 2x , g (x) = −2x2 + 1 − 3 ≤ x ≤ 1
(d) f (x) = ln x , g (x) = 2x 1 ≤ x ≤ e

10. Calculate the area enclosed by the two given curves.
(a) f (x) = x , g (x) = x3

(b) f (x) = √
x , g (x) = x4

(c) f (x) = x4 , g (x) = 2x2

(d) f (x) = x4 , g (x) = −2x2 + 1
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c h a p t e r 5
Indeterminate
Forms

An indeterminate form is an expression that appears to be ambiguous or non-
sensical, but which after careful analysis can be given a concrete meaning. Many
of the most subtle and important ideas in mathematics arise in this fashion. Cer-
tainly calculus, because it involves tricky limits, has many indeterminate forms.
In this chapter we learn how to use ideas from calculus to master indeterminate
forms.

C H A P T E R O B J E C T I V E S
In this chapter, you will learn

• l'Hôpital's rule

• Algebraic variants of l'Hôpital's rule

• Improper integrals with infinite integrands

• Improper integrals on an infinite interval

147
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5.1 l'Hôpital's Rule
......................................................................................................................................

5.1.1 Introduction
Consider the limit

lim
x→c

f (x)
g (x)

. (∗)

If limx→c f (x) exists and limx→c g (x) exists and is not zero then the limit
(∗) is straightforward to evaluate. However, as we saw in Theorem 2.3,
when limx→c g (x) = 0 then the situation is more complicated (especially when
limx→c f (x) = 0 as well).

For example, if f (x) = sin x and g (x) = x then the limit of the quotient as
x → 0 exists and equals 1. However if f (x) = x and g (x) = x2 then the limit
of the quotient as x → 0 does not exist.

In this section we learn a rule for evaluating indeterminate forms of
the type (∗) when either limx→c f (x) = limx→c g (x) = 0 or limx→c f (x) =
limx→c g (x) = ±∞. Such limits, or ‘‘forms,’’ are considered indeterminate be-
cause the limit of the quotient might actually exist and be finite or might not
exist; one cannot analyze such a form by elementary means.

5.1.2 l'Hôpital's Rule
Theorem 5.1 (l'Hôpital's Rule)
Let f (x) and g (x) be differentiable functions on (a, c) ∪ (c, b). If

lim
x→c

f (x) = lim
x→c

g (x) = 0

then

lim
x→c

f (x)
g (x)

= lim
x→c

f ′(x)
g ′(x)

,

provided this last limit exists.
Let us learn how to use this new result.



Chapter 5 I N D E T E R M I N A T E F O R M S 149

EXAMPLE 5.1
Evaluate

lim
x→1

ln x

x2 + x − 2
.

SOLUTION

We first notice that both the numerator and denominator have limit zero

as x tends to 1. Thus the quotient is indeterminate at 1 and of the form

0/0. l'Hôpital's Rule therefore applies and the limit equals

lim
x→1

d
dx ( ln x)

d
dx ( x2 + x − 2)

,

provided this last limit exists. The last limit is

lim
x→1

1/x

2x + 1
= lim

x→1

1

2x2 + x
.

Therefore we see that

lim
x→1

ln x

x2 + x − 2
=

1

3
.

YOU TRY IT Apply l'Hôpital's Rule on limx→2 sin(πx)/( x2 − 4) .

YOU TRY IT Use l'Hôpital's Rule to evaluate limh→0

sin h

h
and

limh→0

cos h − 1

h
. These limits are important in the theory of calculus.

EXAMPLE 5.2
Evaluate the limit

lim
x→0

x3

x − sin x
.
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SOLUTION

As x → 0 both numerator and denominator tend to zero, so the quotient is

indeterminate at 0 of the form 0/0. Thus l'Hôpital's Rule applies. Our limit

equals

lim
x→0

d
dx x3

d
dx ( x − sin x)

,

provided that this last limit exists. It equals

lim
x→0

3x2

1 − cos x
.

This is another indeterminate form. So we must again apply l'Hôpital's

Rule. The result is

lim
x→0

6x

sin x
.

This is again indeterminate; another application of l'Hôpital's Rule gives us

finally

lim
x→0

6

cos x
= 6.

We conclude that the original limit equals 6.

YOU TRY IT Apply l'Hôpital's Rule to the limit limx→0 x/[1/ ln |x|].

Indeterminate Forms Involving ∞
We handle indeterminate forms involving infinity as follows: Let f (x) and g (x)
be differentiable functions on (a, c) ∪ (c, b). If

lim
x→c

f (x) and lim
x→c

g (x)
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both exist and equal +∞ or −∞ (they may have the same sign or different
signs) then

lim
x→c

f (x)
g (x)

= lim
x→c

f ′(x)
g ′(x)

,

provided this last limit exists either as a finite or infinite limit.
Let us look at some examples.

EXAMPLE 5.3
Evaluate the limit

lim
x→0

x2 · ln |x|.

SOLUTION

This may be rewritten as

lim
x→0

ln |x|
1/x2

.

Notice that the numerator tends to −∞ and the denominator tends to

+∞ as x → 0.Thus the quotient is indeterminate at 0 of the form −∞/ +
∞. So we may apply l'Hôpital's Rule for infinite limits to see that the limit

equals

lim
x→0

1/x

−2x−3
= lim

x→0

−x2/2 = 0.

Yet another version of l’Hôpital’s Rule, this time for unbounded intervals,
is this: Let f and g be differentiable functions on an interval of the form
[A, +∞). If limx→+∞ f (x) = limx→+∞ g (x) = 0 or if limx→+∞ f (x) = ±∞ and
limx→+∞ g (x) = ±∞, then

lim
x→+∞

f (x)
g (x)

= lim
x→+∞

f ′(x)
g ′(x)

provided that this last limit exists either as a finite or infinite limit. The same
result holds for f and g defined on an interval of the form (−∞, B] and for the
limit as x → −∞.
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EXAMPLE 5.4
Evaluate

lim
x→+∞

x4

ex
.

SOLUTION

We first notice that both the numerator and the denominator tend to

+∞ as x → +∞. Thus the quotient is indeterminate at +∞ of the form

+∞/ + ∞. Therefore the new version of l'Hôpital applies and our limit

equals

lim
x→+∞

4x3

ex
.

Again the numerator and denominator tend to +∞ as x → +∞, so we

once more apply l'Hôpital. The limit equals

lim
x→+∞

12x2

ex
= 0.

We must apply l'Hôpital two more times. We first obtain

lim
x→+∞

24x

ex

and then

lim
x→+∞

24

ex
.

We conclude that

lim
x→+∞

x4

ex
= 0.

YOU TRY IT Evaluate the limit limx→+∞
ex

x ln x
.

YOU TRY IT Evaluate the limit limx→−∞ x4 · ex .
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EXAMPLE 5.5
Evaluate the limit

lim
x→−∞

sin( 2/x)

sin( 5/x)
.

SOLUTION

We note that both numerator and denominator tend to 0, so the quotient

is indeterminate at −∞ of the form 0/0.We may therefore apply l'Hôpital.

Our limit equals

lim
x→−∞

(−2/x2) cos( 2/x)

(−5/x2) cos( 5/x)
.

This in turn simplifies to

lim
x→−∞

2 cos( 2/x)

5 cos( 5/x)
=

2

5
.

l’Hôpital’s Rule also applies to one-sided limits. Here is an example.

EXAMPLE 5.6
Evaluate the limit

lim
x→0+

sin
√

x√
x

.

SOLUTION

Both numerator and denominator tend to zero so the quotient is indeter-

minate at 0 of the form 0/0. We may apply l'Hôpital's Rule; differentiating

numerator and denominator, we find that the limit equals

lim
x→0+

[cos
√

x] · ( 1/2) x−1/2

( 1/2) x−1/2
= lim

x→0+

cos
√

x

= 1.

YOU TRY IT How can we apply l'Hôpital's Rule to evaluate limx→0+ x · ln x?
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5.2 Other Indeterminate Forms
......................................................................................................................................

5.2.1 Introduction
By using some algebraic manipulations, we can reduce a variety of indetermi-
nate limits to expressions which can be treated by l’Hôpital’s Rule. We explore
some of these techniques in this section.

5.2.2 Writing a Product as a Quotient
The technique of the first example is a simple one, but it is used frequently.

EXAMPLE 5.7
Evaluate the limit

lim
x→−∞

x2 · e3x.

SOLUTION

Notice that x2 → +∞ while e3x → 0. So the limit is indeterminate of the

form 0 · ∞. We rewrite the limit as

lim
x→−∞

x2

e−3x
.

Now both numerator and denominator tend to infinity and we may apply

l'Hôpital's Rule. The result is that the limit equals

lim
x→−∞

2x

−3e−3x
.

Again the numerator and denominator both tend to infinity so we apply

l'Hôpital's Rule to obtain:

lim
x→−∞

2

9e−3x
.

It is clear that the limit of this last expression is zero. We conclude that

lim
x→−∞

x · e3x = 0.

YOU TRY IT Evaluate the limit limx→+∞ e−√
x · x.
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5.2.3 The Use of the Logarithm
The natural logarithm can be used to reduce an expression involving exponen-
tials to one involving a product or a quotient.

EXAMPLE 5.8
Evaluate the limit

lim
x→0+

xx.

SOLUTION

We study the limit of f ( x) = xx by considering ln f ( x) = x · ln x. We

rewrite this as

lim
x→0+

ln f ( x) = lim
x→0+

ln x

1/x
.

Both numerator and denominator tend to ±∞, so the quotient is indeter-

minate of the form −∞/∞. Thus l'Hôpital's Rule applies. The limit equals

lim
x→0+

1/x

−1/x2
= lim

x→0+

−x = 0.

Now the only way that ln f ( x) can tend to zero is if f ( x) = xx tends to 1.

We conclude that

lim
x→0+

xx = 1.

EXAMPLE 5.9
Evaluate the limit

lim
x→0

( 1 + x2) ln |x|.

SOLUTION

Let f ( x) = ( 1 + x2) ln |x| and consider ln f ( x) = ln |x| · ln( 1 + x2) . This

expression is indeterminate of the form −∞ · 0.
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We rewrite it as

lim
x→0

ln( 1 + x2)

1/ ln |x| ,

so that both the numerator and denominator tend to 0. So l'Hôpital's Rule

applies and we have

lim
x→0

ln f ( x) = lim
x→0

2x/( 1 + x2)

−1/[x ln
2( |x|) ]

= lim
x→0

−2x2 ln
2( |x|)

( 1 + x2)
.

The numerator tends to 0 (see Example 5.3) and the denominator tends to

1. Thus

lim
x→0

ln f ( x) = 0.

But the only way that ln f ( x) can tend to zero is if f ( x) tends to 1. We

conclude that

lim
x→0

( 1 + x2) ln |x| = 1.

YOU TRY IT Evaluate the limit limx→0+ ( 1/x) x .

YOU TRY IT Evaluate the limit limx→0+ ( 1 + x) 1/x . In fact this limit gives an

important way to define Euler's constant e (see Sections 1.9 and 6.2.3).

5.2.4 Putting Terms over a Common Denominator
Many times a simple algebraic manipulation will put a limit into a form which
can be studied using l’Hôpital’s Rule.
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EXAMPLE 5.10
Evaluate the limit

lim
x→0

[
1

sin 3x
− 1

3x

]
.

SOLUTION

We put the fractions over a common denominator to rewrite our limit as

lim
x→0

[
3x − sin 3x

3x · sin 3x

]
.

Both numerator and denominator vanish as x → 0. Thus the quotient has

indeterminate form 0/0. By l'Hôpital's rule, the limit is therefore equal to

lim
x→0

3 − 3 cos 3x

3 sin 3x + 9x cos 3x
.

This quotient is still indeterminate; we apply l'Hôpital's rule again to obtain

lim
x→0

9 sin 3x

18 cos 3x − 27x sin 3x
= 0.

EXAMPLE 5.11
Evaluate the limit

lim
x→0

[
1

4x
− 1

e4x − 1

]
.

SOLUTION

The expression is indeterminate of the form ∞ − ∞. We put the two frac-

tions over a common denominator to obtain

lim
x→0

e4x − 1 − 4x

4x( e4x − 1)
.

Notice that the numerator and denominator both tend to zero as x → 0,

so this is indeterminate of the form 0/0. Therefore l'Hôpital's Rule applies
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and our limit equals

lim
x→0

4e4x − 4

4e4x( 1 + 4x) − 4
.

Again the numerator and denominator tend to zero and we apply

l'Hôpital's Rule; the limit equals

lim
x→0

16e4x

16e4x( 2 + 4x)
=

1

2
.

YOU TRY IT Evaluate the limit limx→0

1√
1 + 2x

− 1

1 + x
.

5.2.5 Other Algebraic Manipulations
Sometimes a factorization helps to clarify a subtle limit:

EXAMPLE 5.12
Evaluate the limit

lim
x→+∞

[
x2 − ( x4 + 4x2 + 5) 1/2

]
.

SOLUTION

The limit as written is of the form ∞ − ∞. We rewrite it as

lim
x→+∞

x2
[
1 − ( 1 + 4x−2 + 5x−4) 1/2

]
= lim

x→+∞

1 − ( 1 + 4x−2 + 5x−4) 1/2

x−2
.

Notice that both the numerator and denominator tend to zero, so it is

now indeterminate of the form 0/0. We may thus apply l'Hôpital's Rule.
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The result is that the limit equals

lim
x→+∞

(−1/2) ( 1 + 4x−2 + 5x−4) −1/2 · (−8x−3 − 20x−5)

−2x−3

= lim
x→+∞

−( 1 + 4x−2 + 5x−4) −1/2 · ( 2 + 5x−2) .

Since this last limit is −2, we conclude that

lim
x→+∞

[
x2 − ( x4 + 4x2 + 5) 1/2

]
= −2.

EXAMPLE 5.13
Evaluate

lim
x→−∞

[
e−x − ( e−3x − x4) 1/3

]
.

SOLUTION

First rewrite the limit as

lim
x→−∞

e−x
[
1 − ( 1 − x4e3x) 1/3

]
= lim

x→−∞

1 − ( 1 − x4e3x) 1/3

ex
.

Notice that both the numerator and denominator tend to zero (here we

use the result analogous to Example 5.7 that x4e3x → 0) . So our new ex-

pression is indeterminate of the form 0/0. l'Hôpital's Rule applies and our

limit equals

lim
x→−∞

−( 1/3) ( 1 − x4e3x) −2/3 · (−4x3 · e3x − x4 · 3e3x)

ex

= lim
x→−∞

( 1/3) ( 1 − x4e3x) −2/3( 4x3 · e2x + 3x4 · e2x) .

Just as in Example 5.7, x4 · e3x and x3e3x both tend to zero. We conclude

that our limit equals 0.

YOU TRY IT Evaluate limx→+∞
[√

x + 1 − √
x
]
.
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5.3 Improper Integrals: A First Look
......................................................................................................................................

5.3.1 Introduction
The theory of the integral that we learned earlier enables us to integrate a
continuous function f (x) on a closed, bounded interval [a, b]. See Figure 5.1.
However it is frequently convenient to be able to integrate an unbounded func-
tion, or a function defined on an unbounded interval. In this section and the
next we learn to do so, and we see some applications of this new technique.
The basic idea is that the integral of an unbounded function is the limit of inte-
grals of bounded functions; likewise, the integral of a function on an unbounded
interval is the limit of the integral on bounded intervals.

5.3.2 Integrals with Infinite Integrands
Let f be a continuous function on the interval [a, b) which is unbounded as
x → b−. See Figure 5.2. The integral

∫ b

a
f (x) dx

is then called an improper integral with infinite integrand at b. We often just say
‘‘improper integral’’ because the source of the improperness will usually be clear
from context. The next definition tells us how such an integral is evaluated.

If

∫ b

a
f (x) dx

FIGURE 5.1
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FIGURE 5.2

is an improper integral with infinite integrand at b then the value of the integral
is defined to be

lim
ε→0+

∫ b−ε

a
f (x) dx,

provided that this limit exists. See Figure 5.3.

FIGURE 5.3
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EXAMPLE 5.14
Evaluate the integral

∫ 8

2

4( 8 − x) −1/3 dx.

SOLUTION

The integral

∫ 8

2

4( 8 − x) −1/3 dx

is an improper integral with infinite integrand at 8. According to the defi-

nition, the value of this integral is

lim
ε→0+

∫ 8−ε

2

4( 8 − x) −1/3 dx ,

provided the limit exists. Since the integrand is continuous on the interval

[2, 8 − ε], we may calculate this last integral directly. We have

lim
ε→0+

[
− 6( 8 − x) 2/3

]∣∣8−ε

2
= lim

ε→0+

−6
[
ε2/3 − 62/3

]
.

This limit is easy to evaluate: it equals 65/3. We conclude that the integral

is convergent and

∫ 8

2

4( 8 − x) −1/3 dx = 65/3.

We see that, even though the integrand function is evidently unbounded

(thus we seem to be calculating the area of an unbounded region), the ac-

tual value of the area is finite.

EXAMPLE 5.15
Analyze the integral

∫ 3

2

( x − 3) −2 dx.
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SOLUTION

This is an improper integral with infinite integrand at 3. We evaluate this

integral by considering

lim
ε→0+

∫ 3−ε

2

( x − 3) −2 dx = lim
ε→0+

−( x − 3) −1
∣∣3−ε

2

= lim
ε→0+

[
ε−1 − 1−1

]
.

This last limit is +∞. We therefore conclude that the improper integral

diverges.

YOU TRY IT Evaluate the improper integral
∫ −1

−2

dx

( x + 1) 4/5
dx.

Improper integrals with integrand which is infinite at the left endpoint of
integration are handled in a manner similar to the right endpoint case:

EXAMPLE 5.16
Evaluate the integral

∫ 1/2

0

1

x · ln
2 x

dx.

SOLUTION

This integral is improper with infinite integrand at 0. The value of the inte-

gral is defined to be

lim
ε→0+

∫ 1/2

ε

1

x · ln
2 x

dx ,

provided that this limit exists.

Since 1/( x ln
2 x) is continuous on the interval [ε, 1/2] for ε > 0, this

last integral can be evaluated directly and will have a finite real value.

For clarity, write ϕ( x) = ln x, ϕ′( x) = 1/x. Then the (indefinite) integral
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becomes

∫
ϕ′( x)

ϕ2( x)
dx.

Clearly the antiderivative is −1/ϕ( x) . Thus we see that

lim
ε→0+

∫ 1/2

ε

1

x · ln
2 x

dx = lim
ε→0+

− 1

ln x

∣∣∣∣1/2

ε

= lim
ε→0+

([
− 1

ln( 1/2)

]
−
[
− 1

ln ε

])
.

Now as ε → 0+ we have ln ε → −∞ hence 1/ ln ε → 0. We conclude that

the improper integral converges to 1/ ln 2.

YOU TRY IT Evaluate the improper integral
∫ 0

−2
1/( x + 2) −1/2 dx.

Many times the integrand has a singularity in the middle of the interval of
integration. In these circumstances we divide the integral into two pieces for
each of which the integrand is infinite at one endpoint, and evaluate each piece
separately.

EXAMPLE 5.17
Evaluate the improper integral

∫ 4

−4

4( x + 1) −1/5 dx.

SOLUTION

The integrand is unbounded as x tends to −1. Therefore we evaluate sep-

arately the two improper integrals

∫ −1

−4

4( x + 1) −1/5 dx and

∫ 4

−1

4( x + 1) −1/5 dx.
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The first of these has the value

lim
ε→0+

∫ −1−ε

−4

4( x + 1) −1/5 dx = lim
ε→0+

5( x + 1) 4/5
∣∣−1−ε

−4

= lim
ε→0+

5
{

(−ε) 4/5 − (−3) 4/5
}

= 5 · 34/5

The second integral has the value

lim
ε→0+

∫ 4

−1+ε

4( x + 1) −1/5 dx = lim
ε→0+

5( x + 1) 4/5
∣∣4
−1+ε

= lim
ε→0+

5
{

54/5 − ε4/5
}

= 59/5.

We conclude that the original integral converges and

∫ 4

−4

4( x + 1) −1/5 dx

=
∫ −1

−4

4( x + 1) −1/5 dx +
∫ 4

−1

4( x + 1) −1/5 dx

= 5 · 34/5 + 59/5.

YOU TRY IT Evaluate the improper integral
∫ 3

−4
x−1 dx.

It is dangerous to try to save work by not dividing the integral at the singu-
larity. The next example illustrates what can go wrong.

EXAMPLE 5.18
Evaluate the improper integral

∫ 2

−2

x−4 dx.
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SOLUTION

What we should do is divide this problem into the two integrals

∫ 0

−2

x−4 dx and

∫ 2

0

x−4 dx. (∗)

Suppose that instead we try to save work and just antidifferentiate:

∫ 2

−2

x−4 dx = − 1

3
x−3

∣∣∣∣2
−2

= − 1

12
.

A glance at Figure 5.4 shows that something is wrong. The function x−4 is

positive, hence its integral should be positive too. However, since we used

an incorrect method, we got a negative answer.

In fact each of the integrals in line (∗) diverges, so by definition the im-

proper integral

∫ 2

−2

x−4 dx

diverges.

FIGURE 5.4
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EXAMPLE 5.19
Analyze the integral ∫ 1

0

1

x( 1 − x) 1/2
dx.

SOLUTION

The key idea is that we can only handle one singularity at a time. This in-

tegrand is singular at both endpoints 0 and 1. Therefore we divide the do-

main of integration somewhere in the middle---at 1/2 say (it does not really

matter where we divide)---and treat the two singularities separately.

First we treat the integral∫ 1/2

0

1

x( 1 − x) 1/2
dx.

Since the integrand has a singularity at 0, we consider

lim
ε→0+

∫ 1/2

ε

1

x( 1 − x) 1/2
dx.

This is a tricky integral to evaluate directly. But notice that

1

x( 1 − x) 1/2
≥ 1

x · ( 1) 1/2

when 0 < ε ≤ x ≤ 1/2. Thus∫ 1/2

ε

1

x( 1 − x) 1/2
dx ≥

∫ 1/2

ε

1

x · ( 1) 1/2
dx =

∫ 1/2

ε

1

x
dx.

We evaluate the integral: it equals − ln ε. Finally,

lim
ε→0+

− ln ε = +∞.

The first of our integrals therefore diverges.

But the full integral ∫ 1

0

1

x( 1 − x) 1/2
dx
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converges if and only if each of the component integrals

∫ 1/2

0

1

x( 1 − x) 1/2
dx

and

∫ 1

1/2

1

x( 1 − x) 1/2
dx

converges. Since the first integral diverges, we conclude that the original

integral diverges as well.

YOU TRY IT Calculate
∫ 3

−2
( 2x) −1/3 dx as an improper integral.

5.3.3 An Application to Area
Suppose that f is a non-negative, continuous function on the interval (a, b]
which is unbounded as x → a+. Look at Figure 5.5. Let us consider the area
under the graph of f and above the x-axis over the interval (a, b]. The area of

FIGURE 5.5
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the part of the region over the interval [a + ε, b], ε > 0, is

∫ b

a+ε

f (x) dx.

Therefore it is natural to consider the area of the entire region, over the
interval (a, b], to be

lim
ε→0+

∫ b

a+ε

f (x) dx.

This is just the improper integral

Area =
∫ b

a
f (x) dx.

EXAMPLE 5.20
Calculate the area above the x-axis and under the curve

y =
1

x · ln
4/3 x

, 0 < x ≤ 1/2.

SOLUTION

According to the preceding discussion, this area is equal to the value of the

improper integral

∫ 1/2

0

1

x · ln
4/3 x

dx = lim
ε→0+

∫ 1/2

ε

1

x · ln
4/3 x

dx.

For clarity we let ϕ( x) = ln x, ϕ′( x) = 1/x. Then the (indefinite) integral

becomes

∫
ϕ′( x)

ϕ4/3( x)
dx = − 3

ϕ1/3( x)
.
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Thus

lim
ε→0+

∫ 1/2

ε

1

x · ln
4/3 x

dx = lim
ε→0+

− 3

ln
1/3 x

∣∣∣∣∣
1/2

ε

= lim
ε→0+

[ −3

[ln 2]1/3
− −3

[ln ε]1/3

]
.

Now as ε → 0 then ln ε → −∞ hence 1/[ln ε]1/3 → 0. We conclude that

our improper integral converges and the area under the curve and above

the x-axis equals −3/[ln 2]1/3.

5.4 More on Improper Integrals
......................................................................................................................................

5.4.1 Introduction
Suppose that we want to calculate the integral of a continuous function f (x)
over an unbounded interval of the form [A, +∞) or (−∞, B]. The theory of
the integral that we learned earlier does not cover this situation, and some new
concepts are needed. We treat improper integrals on infinite intervals in this
section, and give some applications at the end.

5.4.2 The Integral on an Infinite Interval
Let f be a continuous function whose domain contains an interval of the form
[A, +∞). The value of the improper integral

∫ +∞

A
f (x) dx

is defined to be

lim
N→+∞

∫ N

A
f (x) dx.
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Similarly, let g be a continuous function whose domain contains an interval
of the form (−∞, B]. The value of the improper integral

∫ B

−∞
g (x) dx

is defined to be

lim
M→−∞

∫ B

M
f (x) dx.

EXAMPLE 5.21
Calculate the improper integral

∫ +∞

1

x−3 dx.

SOLUTION

We do this problem by evaluating the limit

lim
N→+∞

∫ N

1

x−3 dx = lim
N→+∞

[
− ( 1/2) x−2

∣∣N

1

]
= lim

N→+∞
−( 1/2)

[
N −2 − 1−2

]

=
1

2
.

We conclude that the integral converges and has value 1/2.

EXAMPLE 5.22
Evaluate the improper integral

∫ −32

−∞
x−1/5 dx.
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SOLUTION

We do this problem by evaluating the limit

lim
M→−∞

∫ −32

M
x−1/5 dx = lim

M→−∞

5

4
x4/5

∣∣∣∣−32

M

= lim
M→−∞

5

4

[
(−32) 4/5 − M 4/5

]

= lim
M→−∞

5

4

[
16 − M 4/5

]
.

This limit equals −∞. Therefore the integral diverges.

YOU TRY IT Evaluate
∫∞

1
( 1 + x) −3 dx.

Sometimes we have occasion to evaluate a doubly infinite integral. We do so
by breaking the integral up into two separate improper integrals, each of which
can be evaluated with just one limit.

EXAMPLE 5.23
Evaluate the improper integral∫ ∞

−∞

1

1 + x2
dx.

SOLUTION

The interval of integration is (−∞, +∞) . To evaluate this integral, we

break the interval up into two pieces:

(−∞, +∞) = (−∞, 0] ∪ [0, +∞) .

(The choice of zero as a place to break the interval is not important; any

other point would do in this example.) Thus we will evaluate separately

the integrals

∫ +∞

0

1

1 + x2
dx and

∫ 0

−∞

1

1 + x2
dx.
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For the first one we consider the limit

lim
N→+∞

∫ N

0

1

1 + x2
dx = lim

N→+∞
Tan

−1 x
∣∣∣N

0

= lim
N→+∞

[
Tan

−1 N − Tan
−1

0
]

=
π

2
.

The second integral is evaluated similarly:

lim
M→−∞

∫ 0

M

1

1 + x2
dx = lim

M→−∞
Tan

−1 x
∣∣∣0

M

= lim
M→−∞

[
Tan

−1
0 − Tan

−1 M
]

=
π

2
.

Since each of the integrals on the half line is convergent, we conclude that

the original improper integral over the entire real line is convergent and

that its value is

π

2
+

π

2
= π.

YOU TRY IT Discuss
∫∞

1
( 1 + x) −1 dx.

5.4.3 Some Applications
Now we may use improper integrals over infinite intervals to calculate area.

EXAMPLE 5.24
Calculate the area under the curve y = 1/[x · ( ln x) 4] and above the x-axis,

2 ≤ x < ∞.



174 C A L C U L U S DeMYSTiF i eD

SOLUTION

The area is given by the improper integral∫ +∞

2

1

x · ( ln x) 4
dx = lim

N→+∞

∫ N

2

1

x · ( ln x) 4
dx.

For clarity, we let ϕ( x) = ln x, ϕ′( x) = 1/x. Thus the (indefinite) integral

becomes ∫
ϕ′( x)

ϕ4( x)
dx = − 1/3

ϕ3( x)
.

Thus

lim
N→+∞

∫ N

2

1

x · ( ln x) 4
dx = lim

N→+∞

[
− 1/3

ln
3 x

]N

2

= lim
N→+∞

−
[

1/3

ln
3 N

− 1/3

ln
3

2

]

=
1/3

ln
3

2
.

Thus the area under the curve and above the x-axis is 1/( 3 ln
3

2) .

EXAMPLE 5.25
Because of inflation, the value of a dollar decreases as time goes on. In-

deed, this decrease in the value of money is directly related to the contin-

uous compounding of interest. For if one dollar today is invested at 6%

continuously compounded interest for ten years then that dollar will have

grown to e0.06·10 = $1.82 (see Section 6.5 for more detail on this matter).

This means that a dollar in the currency of ten years from now corresponds

to only e−0.06·10 = $0.55 in today's currency.

Now suppose that a trust is established in your name which pays 2t + 50

dollars per year for every year in perpetuity, where t is time measured in

years (here the present corresponds to time t = 0). Assume a constant in-

terest rate of 6%, and that all interest is reinvested. What is the total value,

in today's dollars, of all the money that will ever be earned by your trust

account?



Chapter 5 I N D E T E R M I N A T E F O R M S 175

SOLUTION

Over a short time increment [tj−1, tj ], the value in today's currency of the

money earned is about

( 2tj + 50) ·
(

e−0.06·tj
)
· Δtj .

The corresponding sum over time increments is∑
j

( 2tj + 50) · e−0.06·tj Δtj .

This in turn is a Riemann sum for the integral∫
( 2t + 50) e−0.06t dt.

If we want to calculate the value in today's dollars of all the money earned

from now on, in perpetuity, this would be the value of the improper

integral ∫ +∞

0

( 2t + 50) e−0.06t dt.

This value is easily calculated to be $1388.89, rounded to the nearest cent.

YOU TRY IT A trust is established in your name which pays t + 10 dollars

per year for every year in perpetuity, where t is time measured in years (here the

present corresponds to time t = 0). Assume a constant interest rate of 4%. What

is the total value, in today's dollars, of all the money that will ever be earned by

your trust account?
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QUIZ

1. If possible, use l’Hôpital’s Rule to evaluate each of the following limits. In
each case, check carefully that the hypotheses of l’Hôpital’s Rule apply.

a. lim
x→0

cos x − 1
x4 + x2

b. lim
x→0

e2x − 1 − 2x
x2 + x6

c. lim
x→0

cos x
x3

d. lim
x→1

[ln x]2

(x2 − 1)

e. lim
x→2

(x − 2)4

sin(x − 2) − (x − 2)

f. lim
x→1

ex − 1
x2 − 1

2. If possible, use l’Hôpital’s Rule to evaluate each of the following limits. In
each case, check carefully that the hypotheses of l’Hôpital’s Rule apply.

a. lim
x→+∞

x3

ex − 1 − x − x2/2

b. lim
x→+∞

ln x
x2

c. lim
x→+∞

e−2x

ln[x/(x + 1)]

d. lim
x→+∞

sin x
e−2x

e. lim
x→−∞

ex

1/x2

f. lim
x→−∞

ln |x|
e−2x
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3. If possible, use some algebraic manipulations, plus l’Hôpital’s Rule, to
evaluate each of the following limits. In each case, check carefully that
the hypotheses of l’Hôpital’s Rule apply.

a. lim
x→+∞

x2e−x

b. lim
x→+∞

x2 · sin[1/x2]

c. lim
x→+∞

ln[x/(x + 1)] · 1
x2 + 1

d. lim
x→+∞

ln2 x · e−x

e. lim
x→−∞

e2x · x4

f. lim
x→0

x · e1/x2

4. Evaluate each of the following improper integrals. In each case, be sure to
write the integral as an appropriate limit.

a.
∫ 1

0
x−4/5 dx

b.
∫ 3

1
(x − 3)−6/5 dx

c.
∫ 2

−2

1
(x + 1)1/5

dx

d.
∫ 6

−4

x
(x − 2)(x + 1)

dx

e.
∫ 8

4

x + 5
(x − 2)1/3

dx

f.
∫ 3

0

sin x
x

dx

5. Evaluate each of the following improper integrals. In each case, be sure to
write the integral as an appropriate limit.

a.
∫ ∞

1
e−2x dx
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b.
∫ ∞

2
x2e−2x dx

c.
∫ ∞

0
x2 ln x dx

d.
∫ ∞

1

dx
1 + x2

e.
∫ ∞

1

dx
x2

f.
∫

−∞
−1

dx
−x2 + x
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c h a p t e r 6
Transcendental
Functions

Polynomials are the simplest functions that we know, and they are easy to un-
derstand. It only requires the most rudimentary understanding of multiplication
and addition to calculate the values of a polynomials.

But many of the most important functions that arise in serious scientific work
are transcendental functions. A transcendental function is one that cannot be ex-
pressed as a polynomial, a root of a polynomial, or the quotient of polynomials.
Examples of transcendental functions are sin x, tan x, log x, and ex. There are
a great many more. In this chapter we study properties of some of the most
fundamental transcendental functions.

C H A P T E R O B J E C T I V E S
In this chapter, you will learn

• Logarithms

• Logarithms to different bases

• Exponential functions

• Exponential functions with different bases

• Calculus with logarithmic and exponential functions

• Exponential growth and decay

• Inverse trigonometric functions
179
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6.0 Introductory Remarks
......................................................................................................................................

There are two types of functions: polynomial (and functions manufactured
from polynomials) and transcendental. A polynomial of degree k is a function
of the form p(x) = a0 + a1x + a2x2 + · · · + akxk. Such a polynomial has pre-
cisely k roots, and there are algorithms that enable us to solve for those roots.
For most purposes, polynomials are the most accessible and easy-to-understand
functions. But there are other functions that are important in mathematics and
physics. These are the transcendental functions. Among these more sophisti-
cated types of functions are sine, cosine, the other trigonometric functions, and
also the logarithm and the exponential. The present chapter is devoted to the
study of transcendental functions.

6.1 Logarithm Basics
......................................................................................................................................

A convenient way to think about the logarithm function is as the inverse to the
exponential function. Proceeding intuitively, let us consider the function

f (x) = 3x.

To operate with this f, we choose an x and take 3 to the power x. For example,

f (4) = 34 = 3 · 3 · 3 · 3 = 81

f (−2) = 3−2 = 1
9

f (0) = 30 = 1.

The inverse of the function f is the function g which assigns to x the power to
which you need to raise 3 to obtain x. For instance,

g (9) = 2 because f (2) = 9

g (1/27) = −3 because f (−3) = 1/27

g (1) = 0 because f (0) = 1.

We usually call the function g the ‘‘logarithm to the base 3’’ and we write
g (x) = log3 x. Logarithms to other bases are defined similarly.
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While this approach to logarithms has intuitive appeal, it has many draw-
backs: we do not really know what 3x means when x is not a rational number;
we have no way to determine the derivative of f or of g ; we have no way to
determine the integral of f or of g . Because of these difficulties, we are going
to use an entirely new method for studying logarithms. It turns out to be equiv-
alent to the intuitive method described above, and leads rapidly to the calculus
results that we need.

6.1.1 A New Approach to Logarithms
When you studied logarithms in the past you learned the formula

log(x · y) = log x + log y;

this says that logs convert multiplication to addition. It turns out that this prop-
erty alone uniquely determines the logarithm function.

Let �(x) be a differentiable function with domain the positive real numbers
and whose derivative function �′(x) is continuous. Assume that � satisfies the
multiplicative law

�(x · y) = �(x) + �(y) (∗)

for all positive x and y. Then it must be that �(1) = 0 and there is a constant C
such that

�′(x) = C
x

.

In other words

�(x) =
∫ x

1

C
t

dt.

A function �(x) that satisfies these properties is called a logarithm function.
The particular logarithm function which satisfies �′(1) = 1 is called the natural
logarithm. In other words,

natural logarithm = ln x =
∫ x

1

1
t

dt.

For 0 < x < 1, the value of ln x is the negative of the actual area between
the graph and the x-axis. This is so because the limits of integration, x and 1,
occur in reverse order: ln x = ∫ x

1 (1/t) dt with x < 1.
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FIGURE 6.1

Notice the following simple properties of ln x which can be determined from
looking at Figure 6.1:

(i) When x > 1, ln x > 0 (after all, ln x is an area).

(ii) When x = 1, ln x = 0.

(iii) When 0 < x < 1, ln x < 0(
since

∫ x

1

1
t

dt = −
∫ 1

x

1
t

dt < 0

)
.

(iv) If 0 < x1 < x2 then ln x1 < ln x2.

We already know that the logarithm satisfies the multiplicative property. By
applying this property repeatedly, we obtain that: If x > 0 and n is any integer
then

ln(xn) = n · ln x.

A companion result is the division rule: If a and b are positive numbers then

ln
(a

b

)
= ln a − ln b.

EXAMPLE 6.1
Simplify the expression

A = ln

(
a3 · b2

c−4 · d

)
.
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SOLUTION

We can write A in simpler terms by using the multiplicative and quotient

properties:

A = ln( a3 · b2) − ln( c−4 · d)

=
[

ln a3 + ln( b2)
]
−
[

ln( c−4) + ln d
]

=
[
3 ln a + 2 · ln b

]
−
[
(−4) · ln c + ln d

]
= 3 ln a + 2 · ln b + 4 · ln c − ln d.

The last basic property of the logarithm is the reciprocal law: For any x > 0
we have

ln(1/x) = − ln x.

EXAMPLE 6.2
Express ln( 1/7) in terms of ln 7. Express ln( 9/5) in terms of ln 3 and ln 5.

SOLUTION

We calculate that

ln( 1/7) = − ln 7,

ln( 9/5) = ln 9 − ln 5 = ln 32 − ln 5 = 2 ln 3 − ln 5.

YOU TRY IT Simplify ln( a2b−3/c5) .

6.1.2 The Logarithm Function and the Derivative
Now you will see why our new definition of logarithm is so convenient. If we
want to differentiate the logarithm function, we can apply the Fundamental
Theorem of Calculus:

d
dx

ln x = d
dx

∫ x

1

1
t

dt = 1
x
.
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More generally,

d
dx

ln u = 1
u

du
dx

.

EXAMPLE 6.3
Calculate

d

dx
ln( 4 + x) ,

d

dx
ln( x3 − x) ,

d

dx
ln( cos x) ,

d

dx

[
( ln x) 5

]
,

d

dx
[( ln x) · ( cot x) ] .

SOLUTION

For the first problem, we let u = 4 + x and du/dx = 1.Therefore, we have

d

dx
ln( 4 + x) =

1

4 + x
· d

dx
( 4 + x) =

1

4 + x
.

Similarly,

d

dx
ln( x3 − x) =

1

x3 − x
· d

dx
( x3 − x) =

3x2 − 1

x3 − x

d

dx
ln( cos x) =

1

cos x
· d

dx
( cos x) =

− sin x

cos x

d

dx

[
( ln x) 5

]
= 5( ln x) 4 · d

dx
( ln x) = 5( ln x) 4 · 1

x
=

5( ln x) 4

x

d

dx

[
( ln x) · ( cot x)

]
=
[

d

dx
ln x

]
· ( cot x) + ( ln x) ·

[
d

dx
cot x

]

=
1

x
· cot x + ( ln x) · (− csc

2 x) .

YOU TRY IT What is the derivative of the function ln( x3 + x2) ?



Chapter 6 T R A N S C E N D E N T A L F U N C T I O N S 185

FIGURE 6.2

Now we examine the graph of y = ln x. Since

(i) d
dx (ln x) = 1

x > 0,

(ii) d2

dx2 (ln x) = d
dx (1

x ) = − 1
x2 < 0,

(iii) ln(1) = 0,

we know that ln x is an increasing, concave down function whose graph passes
through (1, 0). There are no relative maxima or minima (since the derivative is
never 0). Certainly ln 0.9 < 0; the formula ln(0.9n) = n ln 0.9 therefore tells us
that ln x is negative without bound as x → 0+. Since ln x = − ln(1/x), we may
also conclude that ln x is positive without bound as x → +∞. A sketch of the
graph of y = ln x appears in Figure 6.2.

We learned in the last paragraph that the function ln x takes negative values,
which are arbitrarily large in absolute value when x is small and positive. In
particular, the negative y axis is a vertical asymptote. Since ln(1/x) = − ln x,
we then find that ln x takes arbitrarily large positive values when x is large and
positive.

Since we have only defined the function ln x when x > 0, the graph is only
sketched in Figure 6.2 to the right of the y-axis. However it certainly makes
sense to discuss the function ln |x| when x �= 0 (Figure 6.3):

If x �= 0 then

d
dx

(ln |x|) = 1
x
.

In other words, ∫
1
x

dx = ln |x| + C.
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FIGURE 6.3

More generally, we have

d
dx

ln |u| = 1
u

du
dx

and

∫
1
u

du
dx

dx = ln |u| + C.

EXAMPLE 6.4
Calculate

∫
4

x + 1
dx,

∫
1

−2 + 3x
dx.

SOLUTION

∫
4

x + 1
dx = 4

∫
1

x + 1
dx = 4 ln |x + 1| + C

∫
1

−2 + 3x
dx =

1

3
ln | − 2 + 3x|.

YOU TRY IT Calculate the integral

∫
cos x

2 + sin x
dx.
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YOU TRY IT Calculate the integral

∫ e

1

1

x · ln x
dx.

EXAMPLE 6.5
Evaluate the integral

∫
cos x

3 sin x − 4
dx.

SOLUTION

For clarity we set ϕ( x) = 3 sin x − 4, ϕ′( x) = 3( cos x) . The integral then

has the form

1

3

∫
ϕ′( x)

ϕ( x)
dx =

1

3
ln |ϕ( x) | + C .

Resubstituting the expression for ϕ( x) yields that

∫
cos x

3 sin x − 4
dx =

1

3
ln |3 sin x − 4| + C .

YOU TRY IT Evaluate
∫

x2

1 − x3
dx.

EXAMPLE 6.6
Calculate

∫
cot x dx.

SOLUTION

We rewrite the integral as

∫
cos x

sin x
dx.
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For clarity we takeϕ( x) = sin x,ϕ′( x) = cos x. Then the integral becomes

∫
ϕ′( x)

ϕ( x)
dx = ln |ϕ( x) | + C .

Resubstituting the expression for ϕ yields the solution:

∫
cot x dx = ln | sin x| + C .

6.2 Exponential Basics
......................................................................................................................................

Examine Figure 6.4, which shows the graph of the function

f (x) = ln x, x > 0.

As we observed in Section 6.1, the function f takes on all real values. We already
have noticed that, since

d
dx

ln x = 1
x

> 0,

FIGURE 6.4
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the function ln x is increasing. As a result,

ln : {x : x > 0} → R

is one-to-one and onto. Hence the natural logarithm function has an inverse.
The inverse function to the natural logarithm function is called the exponen-

tial function and is written exp(x). The domain of exp is the entire real line. The
range is the set of positive real numbers.

EXAMPLE 6.7
Using the definition of the exponential function, simplify the expressions

exp( ln a + ln b) and ln( 7 · [exp( c) ]) .

SOLUTION

We use the key property that the exponential function is the inverse of the

logarithm function. We have

exp( ln a + ln b) = exp( ln( a · b) ) = a · b,

ln( 7 · [exp( c) ]) = ln 7 + ln( exp( c) ) = ln 7 + c.

YOU TRY IT Simplify the expression ln( a3 · 35 · 5−4) .

6.2.1 Facts about the Exponential Function
First review the properties of inverse functions that we learned in Subsection
1.8.5. The graph of exp(x) is obtained by reflecting the graph of ln x in the line
y = x. We exhibit the graph of y = exp(x) in Figure 6.5.

We see, from inspection of this figure, that exp(x) is increasing and is concave
up. Since ln(1) = 0 we may conclude that exp(0) = 1. Next we turn to some
of the algebraic properties of the exponential function.

For all real numbers a and b we have

(a) exp(a + b) = [exp(a)] · [exp(b)].

(b) For any a and b we have exp(a − b) = exp(a)
exp(b)

.
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FIGURE 6.5

These properties are verified just by exploiting the fact that the exponential
is the inverse of the logarithm, as we saw in Example 6.7.

EXAMPLE 6.8
Use the basic properties to simplify the expression

[exp( a) ]2 · [exp( b) ]3

[exp( c) ]4
.

SOLUTION

We calculate that

[exp( a) ]2 · [exp( b) ]3

[exp( c) ]4
=

[exp( a) ] · [exp( a) ] · [exp( b) ] · [exp( b) ] · [exp( b) ]

[exp( c) ] · [exp( c) ] · [exp( c) ] · [exp( c) ]

=
exp( a + a + b + b + b)

exp( c + c + c + c)
= exp( a + a + b + b + b − c − c − c − c)

= exp( 2a + 3b − 4c) .

YOU TRY IT Simplify the expression ( exp a) −3 · ( exp b) 2/( exp c) 5.
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6.2.2 Calculus Properties of the Exponential
Now we want to learn some ‘‘calculus properties’’ of our new function exp(x).
These are derived from the standard formula for the derivative of an inverse, as
in Section 2.5.1.

For all x we have

d
dx

(exp(x)) = exp(x).

In other words, ∫
exp(x) dx = exp(x).

More generally,

d
dx

exp(u) = exp(u)
du
dx

and ∫
exp(u)

du
dx

dx = exp(u) + C.

We note for the record that the exponential function is the only function (up
to constant multiples) that is its own derivative. This fact will come up later in
our applications of the exponential

EXAMPLE 6.9
Compute the derivatives:

d

dx
exp( 4x) ,

d

dx
( exp( cos x) ) ,

d

dx
( [exp( x) ] · [cot x]) .

SOLUTION

For the first problem, notice that u = 4x hence du/dx = 4. Therefore we

have

d

dx
exp( 4x) = [exp( 4x) ] · d

dx
( 4x) = 4 · exp( 4x) .



192 C A L C U L U S DeMYSTiF i eD

Similarly,

d

dx
( exp( cos x) ) = [exp( cos x) ] ·

(
d

dx
cos x

)
= [exp( cos x) ] · (− sin x) ,

d

dx
( [exp( x) ] · [cot x]) =

[
d

dx
exp( x)

]
· ( cot x) + [exp( x) ] ·

(
d

dx
cot x

)
= [exp( x) ] · ( cot x) + [exp( x) ] · (− csc

2 x) .

YOU TRY IT Calculate ( d/dx)
(
exp( x · sin x)

)
.

EXAMPLE 6.10
Calculate the integrals:∫

exp( 5x) dx,
∫

[exp( x) ]3 dx,
∫

exp( 2x + 7) dx.

SOLUTION

We have

∫
exp( 5x) dx =

1

5
exp( 5x) + C

∫
[exp( x) ]3 dx =

∫
[exp( x) ] · [exp( x) ] · [exp( x) ] dx

=
∫

exp( 3x) dx =
1

3
exp( 3x) + C

∫
exp( 2x + 7) dx =

1

2

∫
exp( 2x + 7) · 2 dx =

1

2
exp( 2x + 7) + C .

EXAMPLE 6.11
Evaluate the integral∫

[exp( cos
3 x) ] · sin x · cos

2 x dx.
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SOLUTION

For clarity, we let ϕ( x) = exp( cos
3 x) , ϕ′( x) = 3 cos

2 x · (− sin x) . Then

the integral becomes

−1

3

∫
exp(ϕ( x) ) · ϕ′( x) dx = −1

3
exp(ϕ( x) ) + C .

Resubstituting the expression for ϕ( x) gives∫
[exp( cos

3 x) ] · sin x · cos
2 x dx = −1

3
exp( cos

3 x) + C .

EXAMPLE 6.12
Evaluate the integral∫

exp( x) + exp(−x)

exp( x) − exp(−x)
dx.

SOLUTION

For clarity, we set ϕ( x) = exp( x) − exp(−x) , ϕ′( x) = exp( x) +
exp(−x) . Then our integral becomes∫

ϕ′( x) dx

ϕ( x)
= ln |ϕ( x) | + C .

Resubstituting the expression for ϕ( x) gives∫
exp( x) + exp(−x)

exp( x) − exp(−x)
dx = ln

∣∣exp( x) − exp(−x)
∣∣+ C .

YOU TRY IT Calculate
∫

x · exp( x2 − 3) dx.

6.2.3 The Number e
The number exp(1) is a special constant which arises in many mathematical and
physical contexts. It is denoted by the symbol e in honor of the Swiss mathe-
matician Leonhard Euler (1707--1783) who first studied this constant. We next
see how to calculate the decimal expansion for the number e.
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In fact, as can be proved in a more advanced course, Euler’s constant e satis-
fies the identity

lim
n→+∞

(
1 + 1

n

)n

= e.

[Refer to the ‘‘You Try It’’ following Example 5.9 in Subsection 5.2.3 for a
consideration of this limit.]

This formula tells us that, for large values of n, the expression

(
1 + 1

n

)n

gives a good approximation to the value of e. Use your calculator or computer
to check that the following calculations are correct:

n = 10
(
1 + 1

n

)n
= 2.5937424601

n = 50
(
1 + 1

n

)n
= 2.69158802907

n = 100
(
1 + 1

n

)n
= 2.70481382942

n = 1000
(
1 + 1

n

)n
= 2.71692393224

n = 10000000
(
1 + 1

n

)n
= 2.71828169254.

With the use of a sufficiently large value of n, together with estimates for the
error term

∣∣∣∣e −
(

1 + 1
n

)n∣∣∣∣ ,
it can be determined that

e = 2.71828182846

to eleven place decimal accuracy. Like the number π, the number e is an irra-
tional number. Notice that, since exp(1) = e, we also know that ln e = 1.
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EXAMPLE 6.13
Simplify the expression

ln( e5 · 8−3) .

SOLUTION

We calculate that

ln( e5 · 8−3) = ln( e5) + ln( 8−3)

= 5 ln( e) − 3 ln 8

= 5 − 3 ln 8.

YOU TRY IT Use your calculator to compute log10 e and loge 10. Confirm

that these numbers are reciprocals of each other.

6.3 Exponentials with Arbitrary Bases
......................................................................................................................................

6.3.1 Arbitrary Powers
We know how to define integer powers of real numbers. For instance

64 = 6 · 6 · 6 · 6 = 1296 and 9−3 = 1
9 · 9 · 9

= 1
729

.

But what does it mean to calculate

4π or π e?

You can calculate values for these numbers by punching suitable buttons on
your calculator, but that does not explain what the numbers mean or how the
calculator was programmed to calculate them. We will use our understanding
of the exponential and logarithm functions to now define these exponential
expressions.

If a > 0 and b is any real number then we define

ab = exp(b · ln a). (∗)



196 C A L C U L U S DeMYSTiF i eD

To come to grips with this rather abstract formulation, we begin to examine
some properties of this new notion of exponentiation:

If a is a positive number and b is any real number then

ln(ab) = b · ln a.

In fact

ln(ab) = ln(exp(b · ln a)).

But ln and exp are inverse, so that the last expression simplifies to b · ln a.

EXAMPLE 6.14
Let a > 0. Compare the new definition of a4 with the more elementary

definition of a4 in terms of multiplying a by itself four times.

SOLUTION

We ordinarily think of a4 as meaning

a · a · a · a.

According to our new definition of ab we have

a4 = exp( 4 · ln a) = exp( ln a + ln a + ln a + ln a)

= exp( ln[a · a · a · a]) = a · a · a · a.

It is reassuring to see that our new definition of exponentiation is consis-

tent with the familiar notion for integer exponents.

EXAMPLE 6.15
Express exp( x) as a power of e.

SOLUTION

According to our definition,

ex = exp( x · ln( e) ) .
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But we learned in the last section that ln( e) = 1. As a result,

ex = exp( x) .

YOU TRY IT Simplify the expression ln[ex · xe].

Because of this last example we will not in the future write the exponential
function as exp(x) but will use the more common notation ex. Thus

exp(ln x) = x becomes eln x = x

ln(exp(x)) = x becomes ln(ex) = x

exp(a + b) = [exp(a)] · [exp(b)] becomes ea+b = eaeb

exp(a − b) = exp(a)
exp(b)

becomes ea−b = ea

eb

ab = exp(b · ln a) becomes ab = eb·ln a.

EXAMPLE 6.16
Use our new definitions to simplify the expression

A = e[5·ln 2−3·ln 4].

SOLUTION

We write

A = e[ln( 25)−ln( 43) ] = eln 32−ln 64 =
eln( 32)

eln( 64)
=

32

64
=

1

2
.

We next see that our new notion of exponentiation satisfies certain familiar
rules.

If a, d > 0 and b, c ∈ R then

(i) ab+c = ab · ac

(ii) ab−c = ab

ac
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(iii)
(
ab
)c = ab·c

(iv) ab = d if and only if d1/b = a (provided b �= 0)

(v) a0 = 1

(vi) a1 = a

(vii) (a · d)c = ac · dc .

EXAMPLE 6.17
Simplify each of the expressions

( e4) ln 3,
5−7 · π4

5−3 · π2
, ( 32 · x3) 4.

SOLUTION

We calculate:

( e4) ln 3 = e4·ln 3 = ( eln 3) 4 = 34 = 81;

5−7 · π4

5−3 · π2
= 5−7−(−3) · π4−2 = 5−4 · π2 =

1

625
· π2;

( 32 · x3) 4 = ( 32) 4 · ( x3) 4 = 38 · x12 = 6561 · x12.

YOU TRY IT Simplify the expression ln[e3x · e−y−5 · 24].

EXAMPLE 6.18
Solve the equation

( x3 · 5) 8 = 9.

for x.

SOLUTION

We have

( x3 · 5) 8 = 9 ⇒ x3 · 5 = 91/8

⇒ x3 = 91/8 · 5−1 ⇒ x = ( 91/8 · 5−1) 1/3 ⇒ x =
91/24

51/3
.
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YOU TRY IT Solve the equation 4x · 32x = 7. [Hint: Take the logarithm of both

sides.]

6.3.2 Logarithms with Arbitrary Bases
If you review the first few paragraphs of Section 1, you will find an intuitively
appealing definition of the logarithm to the base 2:

log2 x is the power to which you need
to raise 2 to obtain x.

With this intuitive notion we readily see that

log2 16 = ‘‘the power to which we raise 2 to obtain 16 ’’ = 4

and

log2(1/4) = ‘‘the power to which we raise 2 to obtain 1/4’’ = −2.

However, this intuitive approach does not work so well if we want to take logπ 5
or log2

√
7. Therefore we will give a new definition of the logarithm to any base

a > 0 which in simple cases coincides with the intuitive notion of logarithm.

If a > 0 and b > 0 then

loga b = ln b
ln a

.

EXAMPLE 6.19
Calculate log2 32.

SOLUTION

We see that

log2 32 =
ln 32

ln 2
=

ln 25

ln 2
=

5 · ln 2

ln 2
= 5.

Notice that, in this example, the new definition of log2 32 agrees with the

intuitive notion just discussed.
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EXAMPLE 6.20
Express ln x as the logarithm to some base.

SOLUTION

If x > 0 then

loge x =
ln x

ln e
=

ln x

1
= ln x.

Thus we see that the natural logarithm ln x is precisely the same as loge x.

MATH NOTE In mathematics, it is common to write ln x rather than loge x.

YOU TRY IT Calculate log3 27 + log5( 1/25) − log2 8.

We will be able to do calculations much more easily if we learn some simple
properties of logarithms and exponentials.

If a > 0 and b > 0 then

a(loga b) = b.

If a > 0 and b ∈ R is arbitrary then

loga(ab) = b.

If a > 0, b > 0, and c > 0 then

(i) loga(b · c) = loga b + loga c

(ii) loga(b/c) = loga b − loga c

(iii) loga b = logc b
logc a

(iv) loga b = 1
logb a

(v) loga 1 = 0

(vi) loga a = 1

(vii) For any exponent α, loga(bα) = α · (loga b)
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We next give several examples to familiarize you with logarithmic and ex-
ponential operations.

EXAMPLE 6.21
Simplify the expression

log3 81 − 5 · log2 8 − 3 · ln( e4) .

SOLUTION

The expression equals

log3( 34) − 5 · log2( 23) − 3 · ln e4 = 4 · log3 3 − 5 ·
[
3 · log2 2

]
− 3 ·

[
4 · ln e

]
= 4 · 1 − 5 · 3 · 1 − 3 · 4 · 1 = −23.

YOU TRY IT What does log3 5 mean in terms of natural logarithms?

EXAMPLE 6.22
Solve the equation

5x · 23x =
4

7x

for the unknown x.

SOLUTION

We take the natural logarithm of both sides:

ln( 5x · 23x) = ln

(
4

7x

)
.

Applying the rules for logarithms we obtain

ln( 5x) + ln( 23x) = ln 4 − ln( 7x)

or

x · ln 5 + 3x · ln 2 = ln 4 − x · ln 7.
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Gathering together all the terms involving x yields

x · [ln 5 + 3 · ln 2 + ln 7] = ln 4

or

x · [ln( 5 · 23 · 7) ] = ln 4.

Solving for x gives

x =
ln 4

ln 280
= log280 4.

EXAMPLE 6.23
Simplify the expression

B =
5 · log7 3 − ( 1/4) · log7 16

3 · log7 5 + ( 1/5) · log7 32
.

SOLUTION

The numerator of B equals

log7( 35) − log7( 161/4) = log7 243 − log7 2 = log7( 243/2) .

Similarly, the denominator can be rewritten as

log7 53 + log7( 321/5) = log7 125 + log7 2 = log7( 125 · 2) = log7 250.

Putting these two results together, we find that

B =
log7 243/2

log7 250
= log250( 243/2) .

YOU TRY IT What does 3
√

2 mean (in terms of the natural logarithm func-

tion)?

EXAMPLE 6.24
Simplify the expression ( log4 9) · ( log9 16) .
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SOLUTION

We have

( log4 9) · ( log9 15) =

(
1

log9 4

)
· log9 16

= log4 16 = 2.

6.4 Calculus with Logs and Exponentials to Arbitrary Bases
......................................................................................................................................

6.4.1 Differentiation and Integration of loga x and a x

We begin by noting these facts:
If a > 0 then

(i) d
dx ax = ax · ln a; equivalently,

∫
ax dx = ax

ln a + C.

(ii) d
dx (loga x) = 1

x·ln a

Still Struggling

As always, we can state these last formulas more generally as

d

dx
au = au · du

dx
· ln a

and

d

dx
loga u = 1

u
· du

dx
· 1

ln a
.
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EXAMPLE 6.25
Calculate

d

dx
( 5x) ,

d

dx
( 3cos x) ,

d

dx
( log8 x) ,

d

dx
( log4( x · cos x) ) .

SOLUTION

We see that

d

dx
( 5x) = 5x · ln 5.

For the second problem, we apply our general formulation with a = 3,

u = cos x to obtain

d

dx
( 3cos x) = 3cos x ·

(
d

dx
cos x

)
· ln 3 = 3cos x · (− sin x) · ln 3.

Similarly,

d

dx
( log8 x) =

1

x · ln 8

d

dx

(
log4( x · cos x)

)
=

1

( x · cos x) · ln 4
· d

dx
( x · cos x)

=
cos x + ( x · (− sin x) )

( x · cos x) · ln 4
.

EXAMPLE 6.26
Integrate ∫

3cot x · (− csc
2 x) dx.

SOLUTION

For clarity we set ϕ( x) = cot x, ϕ′( x) = − csc
2 x. Then our integral be-

comes∫
3ϕ( x) · ϕ′( x) dx =

(
1

ln 3

)
·
∫

3ϕ( x) · ϕ′( x) · ln 3 dx =
(

1

ln 3

)
· 3ϕ( x) + C .
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Resubstituting the expression for ϕ( x) now gives

∫
3cot x · (− csc

2 x) dx =
1

ln 3
· 3cot x + C .

YOU TRY IT Evaluate
∫

log6( x3) dx.

YOU TRY IT Calculate the integral

∫
x · 3x2

dx.

Our new ideas about arbitrary exponents and bases now allow us to formu-
late a general result about derivatives of powers:

For any real exponent a we have

d
dx

xa = a · xa−1.

EXAMPLE 6.27
Calculate the derivative of x−π, x

√
3, xe.

SOLUTION

We have

d

dx
x−π = −π · x−π−1 ,

d

dx
x
√

3 =
√

3 · x
√

3−1 ,

d

dx
xe = e · xe−1.

YOU TRY IT Calculate
d

dx
5sin x−x2

. Calculate
d

dx
x4π .
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FIGURE 6.6

6.4.2 Graphing of Logarithmic and Exponential Functions
If a > 0 and f (x) = loga x, x > 0, then

f ′(x) = 1
x · ln a

f ′′(x) = −1
x2 · ln a

f (1) = 0.

Using this information, we can sketch the graph of f (x) = loga x.

If a > 1 then ln a > 0 so that f ′(x) > 0 and f ′′(x) < 0. The graph of f is
exhibited in Figure 6.6.

If 0 < a < 1 then ln a = − ln(1/a) < 0 so that f ′(x) < 0 and f ′′(x) > 0. The
graph of f is sketched in Figure 6.7.

FIGURE 6.7
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FIGURE 6.8

Since g (x) = ax is the inverse function to f (x) = loga x, the graph of g is
the reflection in the line y = x of the graph of f (Figures 6.6 and 6.7). See
Figures 6.8 and 6.9.

Figure 6.10 shows the graphs of loga x for several different values of a > 1.

Figure 6.11 shows the graphs of ax for several different values of a > 1.

YOU TRY IT Sketch the graph of y = 4x and y = log4 x on the same set of

axes.

FIGURE 6.9
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FIGURE 6.10

6.4.3 Logarithmic Differentiation
We next show how to use the logarithm as an aid to differentiation. The key
idea is that if F is a function taking positive values, we can exploit the formula

[ln F ]′ = F ′

F
. (∗)

FIGURE 6.11
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EXAMPLE 6.28
Calculate the derivative of the function

F ( x) = ( cos x) ( sin x) , 0 < x < π.

SOLUTION

We take the natural logarithm of both sides:

ln F ( x) = ln( ( cos x) ( sin x) ) = ( sin x) · ( ln( cos x) ) . (†)

Now we calculate the derivative using the formula (∗) preceding this ex-

ample: The derivative of the left side of (†) is

F ′( x)

F ( x)
.

Using the product rule, we see that the derivative of the far right side of

(†) is

( cos x) · ( ln( cos x) ) + ( sin x) ·
(− sin x

cos x

)
.

We conclude that

F ′( x)

F ( x)
= ( cos x) · ( ln( cos x) ) + ( sin x) ·

(− sin x

cos x

)
.

Thus

F ′( x) =

[
( cos x) · ( ln( cos x) ) − sin

2 x

cos x

]
· F ( x)

=

[
( cos x) · ln( cos x) − sin

2 x

cos x

]
· ( cos x) ( sin x)

YOU TRY IT Differentiate log9 | cos x|.

YOU TRY IT Differentiate 3sin( 3x) . Differentiate xsin 3x .
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EXAMPLE 6.29
Calculate the derivative of F ( x) = x2 · ( sin x) · 5x .

SOLUTION

We have

[ln F ( x) ]′ = [ln( x2 · ( sin x) · 5x) ]′

= [( 2 · ln x) + ln( sin x) + ( x · ln 5) ]′

=
2

x
+

cos x

sin x
+ ln 5.

Using formula (∗) , we conclude that

F ′( x)

F ( x)
=

2

x
+

cos x

sin x
+ ln 5

hence

F ′( x) =
[

2

x
+

cos x

sin x
+ ln 5

]
· [x2 · ( sin x) · 5x].

YOU TRY IT Calculate
d

dx
[( ln x) ln x].

6.5 Exponential Growth and Decay
......................................................................................................................................

Many processes of nature and many mathematical applications involve loga-
rithmic and exponential functions. For example, if we examine a population of
bacteria, we notice that the rate at which the population grows is proportional
to the number of bacteria present. To see that this makes good sense, suppose
that a bacterium reproduces itself every 4 hours. If we begin with 5 thousand
bacteria then

after 4 hours there are 10 thousand bacteria

after 8 hours there are 20 thousand bacteria
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FIGURE 6.12

after 12 hours there are 40 thousand bacteria

after 16 hours there are 80 thousand bacteria . . .

etc.

The point is that each new generation of bacteria also reproduces, and the older
generations reproduce as well. A sketch (Figure 6.12) of the bacteria population
against time shows that the growth is certainly not linear---indeed the shape of
the curve appears to be of exponential form.

Notice that, when the number of bacteria is large, then different generations
of bacteria will be reproducing at different times. So, averaging out, it makes
sense to hypothesize that the growth of the bacteria population varies contin-
uously as in Figure 6.13. Here we are using a standard device of mathematical
analysis: even though the number of bacteria is always an integer, we represent
the graph of the population of bacteria by a smooth curve. This enables us to
apply the tools of calculus to the problem.

6.5.1 A Differential Equation
If B(t) represents the number of bacteria present in a given population at time
t, then the preceding discussion suggests that

dB
dt

= K · B(t),
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FIGURE 6.13

where K is a constant of proportionality. This equation expresses quantitatively
the assertion that the rate of change of B(t) (that is to say, the quantity dB/dt)
is proportional to B(t). To solve this equation, we rewrite it as

1
B(t)

· dB
dt

= K.

We integrate both sides with respect to the variable t:∫
1

B(t)
· dB

dt
dt =

∫
K dt.

The left side is

ln |B(t)| + C

and the right side is

Kt + C̃,

where C and C̃ are constants of integration. We thus obtain

ln |B(t)| = Kt + D,

where we have amalgamated the two constants into a single constant D. Expo-
nentiating both sides gives

|B(t)| = eKt+D
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or

B(t) = eD · eKt = P · eKt . (	)

Notice that we have omitted the absolute value signs since the number of bac-
teria is always positive. Also we have renamed the constant eD with the simpler
symbol P .

Equation (	) will be our key to solving exponential growth and decay prob-
lems.

We motivated our calculation by discussing bacteria, but in fact the calcula-
tion applies to any function that grows at a rate proportional to the size of the
function.

Next we turn to some examples.

6.5.2 Bacterial Growth

EXAMPLE 6.30
A population of bacteria tends to double every four hours. If there are 5000

bacteria at 9:00 a.m., then how many will there be at noon?

SOLUTION

To answer this question, let B( t) be the number of bacteria at time t. For

convenience, let t = 0 correspond to 9:00 a.m. and suppose that time is

measured in hours. Thus noon corresponds to t = 3.

Equation (�) guarantees that

B( t) = P · eK t

for some undetermined constants P and K . We also know that

5000 = B( 0) = P · eK ·0 = P .

We see that P = 5000 and B( t) = 5000 · eK t. We still need to solve for K .

Since the population tends to double in four hours, there will be 10, 000

bacteria at time t = 4; hence

10000 = B( 4) = 5000 · eK ·4.
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We divide by 5000 to obtain

2 = eK ·4.

Taking the natural logarithm of both sides yields

ln 2 = ln( eK ·4) = 4K .

We conclude that K = [ln 2]/4. As a result,

B( t) = 5000 ·
(

e( [ln 2]/4) t
)
.

We simplify this equation by noting that

e( [ln 2]/4) t = ( eln 2) t/4 = 2t/4.

In conclusion,

B( t) = 5000 · 2t/4.

The number of bacteria at noon (time t = 3) is then given by

B( 3) = 5000 · 23/4 ≈ 8409.

It is important to realize that population growth problems cannot be de-
scribed using just arithmetic. Exponential growth is nonlinear, and advanced
analytical ideas (such as calculus) must be used to understand it.

EXAMPLE 6.31
Suppose that a certain petri dish contains 6000 bacteria at 9:00 p.m. and

10,000 bacteria at 11:00 p.m. How many of the bacteria were there at 7:00

p.m?

SOLUTION

We know that

B( t) = P · eK t.
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The algebra is always simpler if we take one of the times in the initial data

to correspond to t = 0.So let us say that 9:00 p.m. is t = 0.Then 11:00 p.m.

is t = 2 and 7:00 p.m. is t = −2. The initial data then tell us that

6000 = P · eK ·0 (∗)

10000 = P · eK ·2. (∗∗)

From equation (∗) we may immediately conclude that P = 6000. Substi-

tuting this into (∗∗) gives

10000 = 6000 · ( eK ) 2.

We conclude that

eK =

√
5√
3
.

As a result,

B( t) = 6000 ·
(√

5√
3

)t

.

At time t = −2 (7:00 p.m.) the number of bacteria was therefore

B(−2) = 6000 ·
(√

5√
3

)−2

=
3

5
· 6000 = 3600.

YOU TRY IT A petri dish has 5000 bacteria at 1:00 p.m. on a certain day and

8000 bacteria at 5:00 p.m. that same day. How many bacteria were there at noon?

6.5.3 Radioactive Decay
Another natural phenomenon which fits into our theoretical framework is ra-
dioactive decay. Radioactive material, such as C14 (radioactive carbon), has a
half life. Saying that the half life of a material is h years means that if A grams
of material is present at time t then A/2 grams will be present at time t + h.
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In other words, half of the material decays every h years. But this is another
way of saying that the rate at which the radioactive material vanishes is pro-
portional to the amount present. So equation (	) will apply to problems about
radioactive decay.

EXAMPLE 6.32
Five grams of a certain radioactive isotope decay to three grams in 100

years. After how many more years will there be just one gram?

SOLUTION

First note that the answer is not ``we lose two grams every hundred years

so. . . .'' The rate of decay depends on the amount of material present. That

is the key.

Instead, we let R( t) denote the amount of radioactive material at time

t. Equation (�) guarantees that R has the form

R( t) = P · eK t.

Letting t = 0 denote the time at which there are 5 grams of isotope, and

measuring time in years, we have

R( 0) = 5 and R( 100) = 3.

From the first piece of information we learn that

5 = P · eK ·0 = P .

Hence P = 5 and

R( t) = 5 · eK t = 5 · ( eK ) t.

The second piece of information yields

3 = R( 100) = 5 · ( eK ) 100.

We conclude that

( eK ) 100 =
3

5
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or

eK =
(

3

5

)1/100

.

Thus the formula for the amount of isotope present at time t is

R( t) = 5 ·
(

3

5

)t/100

.

Thus we have complete information about the function R , and we can an-

swer the original question.

There will be 1 gram of material present when

1 = R( t) = 5 ·
(

3

5

)t/100

or

1

5
=
(

3

5

)t/100

.

We solve for t by taking the natural logarithm of both sides:

ln( 1/5) = ln

[(
3

5

)t/100
]

=
t

100
· ln( 3/5) .

We conclude that there is 1 gram of radioactive material remaining when

t = 100 · ln( 1/5)

ln( 3/5)
≈ 315.066.

So at time t = 315.066, or after 215.066 more years, there will be 1 gram

of the isotope remaining.

YOU TRY IT Our analysis of exponential growth and decay is derived from

the hypothesis that the rate of growth is proportional to the amount of matter

present. Suppose instead that we are studying a system in which the rate of de-

cay is proportional to the square of the amount of matter. Let M ( t) denote the
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amount of matter at time t. Then our physical law is expressed as

dM

dt
= C · M 2.

Here C is a (negative) constant of proportionality. We apply the method of ``sep-

aration of variables'' described earlier in the section. Thus

dM/dt

M 2
= C

so that ∫
dM/dt

M 2
dt =

∫
C dt.

Evaluating the integrals, we find that

− 1

M
= C t + D.

We have combined the constants from the two integrations. In summary,

M ( t) = − 1

C t + D
.

For the problem to be realistic, we will require that C < 0 (so that M > 0
for large values of t) and we see that the population decays like the reciprocal
of a linear function when t becomes large.

YOU TRY IT Re-calculate Example 6.32 using this new law of exponential

decay.

6.5.4 Compound Interest
Yet a third illustration of exponential growth is in the compounding of interest.
If principal P dollars is put in the bank at p percent simple interest per year
then after one year the account has

P ·
(

1 + p
100

)
dollars. [Here we assume, of course, that all interest is re-invested in the ac-
count.] But if the interest is compounded n times during the year then the year
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is divided into n equal pieces and at each time interval of length 1/n an interest
payment of percent p/n is added to the account. Each time this fraction of the
interest is added to the account, the money in the account is multiplied by

1 + p/n
100

.

Since this is done n times during the year, the result at the end of the year is
that the account holds

P ·
(

1 + p
100n

)n

(∗)

dollars at the end of the year. Similarly, at the end of t years, the money accu-
mulated will be

P ·
(

1 + p
100n

)nt

.

Let us set

k = n · 100
p

and rewrite (∗) as

P ·
[
1 + 1

k

]kp/100

= P ·
[(

1 + 1
k

)k
]p/100

.

It is useful to know the behavior of the account if the number of times the inter-
est is compounded per year becomes arbitrarily large (this is called continuous
compounding of interest). Continuous compounding corresponds to calculating
the limit of the last formula as k (or, equivalently, n), tends to infinity.

We know from the discussion in Subsection 6.2.3 that the expression (1 +
1/k)k tends to e. Therefore, the size of the account after one year of continuous
compounding of interest is

P · e p/100.

After t years of continuous compounding of interest the total money is

P · e pt/100. (		)
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EXAMPLE 6.33
If $6000 is placed in a savings account with 5% annual interest com-

pounded continuously, then how large is the account after four and one

half years?

SOLUTION

If M ( t) is the amount of money in the account at time t, then the preceding

discussion guarantees that

M ( t) = 6000 · e5t/100.

After four and one half years the size of the account is therefore

M ( 9/2) = 6000 · e5·( 9/2)/100 ≈ $7513.94.

EXAMPLE 6.34
A wealthy woman wishes to set up an endowment for her nephew. She

wants the endowment to pay the young man $100,000 in cash on the day

of his twenty-first birthday. The endowment is set up on the day of the

nephew's birth and is locked in at 11% interest compounded continuously.

How much principal should be put into the account to yield the desired

payoff?

SOLUTION

Let P be the initial principal deposited in the account on the day of the

nephew's birth. Using our compound interest equation (��) , we have

100000 = P · e11·21/100,

expressing the fact that after 21 years at 11% interest compounded con-

tinuously we want the value of the account to be $100,000.

Solving for P gives

P = 100000 · e−0.11·21 = 100000 · e−2.31 = 9926.13.

The aunt needs to endow the fund with an initial $9926.13.
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YOU TRY IT Suppose that we want a certain endowment to pay $50,000 in

cash ten years from now. The endowment will be set up today with $5,000 princi-

pal and locked in at a fixed interest rate. What interest rate (compounded contin-

uously) is needed to guarantee the desired payoff?

6.6 Inverse Trigonometric Functions
......................................................................................................................................

6.6.1 Introductory Remarks
Figure 6.14 shows the graphs of each of the six trigonometric functions. Notice
that each graph has the property that some horizontal line intersects the graph
at least twice. Therefore none of these functions is invertible. Another way of
seeing this point is that each of the trigonometric functions is 2π-periodic (that
is, the function repeats itself every 2π units: f (x + 2π) = f (x)), hence each of
these functions is not one-to-one.

If we want to discuss inverses for the trigonometric functions, then we must
restrict their domains (this concept was introduced in Subsection 1.8.5). In this

_2 _1 1 2 3_3

_3

_2

_1

2

3

1

sin x

sec x

cos x

tan x cot x

csc x

FIGURE 6.14



222 C A L C U L U S DeMYSTiF i eD

section we learn the standard methods for performing this restriction operation
with the trigonometric functions.

6.6.2 Inverse Sine and Cosine
Consider the sine function with domain restricted to the interval [−π/2, π/2]
(Figure 6.15). We use the notation Sin x to denote this restricted function.
Observe that

d
dx

Sin x = cos x > 0

on the interval (−π/2, π/2). At the endpoints of the interval, and only there,
the function Sin x takes the values −1 and +1. Therefore Sin x is increasing on
its entire domain. So it is one-to-one. Furthermore the Sine function assumes
every value in the interval [−1, 1]. Thus Sin : [−π/2, π/2] → [−1, 1] is one-
to-one and onto; therefore f (x) = Sin x is an invertible function.

We can obtain the graph of Sin−1x by the principle of reflection in the line
y = x (Figure 6.16). The function Sin−1 : [−1, 1] → [−π/2, π/2] is increasing,
one-to-one, and onto.

The study of the inverse of cosine involves similar considerations, but we
must select a different domain for our function. We define Cos x to be the
cosine function restricted to the interval [0, π]. Then, as Figure 6.17 shows,

y

x/2

1
y = Sin x

FIGURE 6.15
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/2

1

y

x

_ /2

y = Sin
_1 x

FIGURE 6.16

g (x) = Cos x is a one-to-one function. It takes on all the values in the inter-
val [−1, 1]. Thus Cos : [0, π] → [−1, 1] is one-to-one and onto; therefore it
possesses an inverse.

We reflect the graph of Cos x in the line y = x to obtain the graph of the
function Cos−1

. The result is shown in Figure 6.18.

y

x

y = Cos x
1

/2

FIGURE 6.17
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x1

y

/2
y = Cos

_1 x

FIGURE 6.18

EXAMPLE 6.35
Calculate

Sin
−1

(√
3

2

)
, Sin

−1
0, Sin

−1

(
−
√

2

2

)
, Cos

−1

(
−
√

3

2

)
,

Cos
−1

0, Cos
−1

(√
2

2

)
.

SOLUTION

We have

Sin
−1

(√
3

2

)
=

π

3
,

Sin
−1

0 = 0,

Sin
−1

(
−
√

2

2

)
= −π

4
.
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Notice that, even though the sine function takes the value
√

3/2 at many

different values of the variable x, the function Sine takes this value only at

x = π/3. Similar comments apply to the other two examples.

We also have

Cos
−1

(
−
√

3

2

)
=

5π

6
,

Cos
−1

0 =
π

2
,

Cos
−1

(√
2

2

)
=

π

4
.

We calculate the derivative of f (x) = Sin−1 x by using the usual trick for
inverse functions. The result is

d
dx

(
Sin−1(x)

) = 1

cos(Sin−1x)
= 1√

1 − sin2(Sin−1x)
= 1√

1 − x2
.

The derivative of the function Cos−1 x is calculated much like that of Sin−1 x.

We find that

d
dx

(
Cos−1(x)

) = − 1√
1 − x2

.

EXAMPLE 6.36
Calculate the following derivatives:

d

dx
Sin

−1 x

∣∣∣∣
x=

√
2/2

,
d

dx
Sin

−1( x2 + x)

∣∣∣∣
x=1/3

,
d

dx
Sin

−1

(
1

x

)∣∣∣∣
x=−

√
3

.
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SOLUTION

We have

d

dx
Sin

−1 x

∣∣∣∣
x=

√
2/2

=
1√

1 − x2

∣∣∣∣∣
x=

√
2/2

=
√

2 ,

d

dx
Sin

−1( x2 + x)

∣∣∣∣
x=1/3

=
1√

1 − ( x2 + x) 2
· ( 2x + 1)

∣∣∣∣∣
x=1/3

=
15√

65
,

d

dx
Sin

−1( 1/x)

∣∣∣∣
x=−

√
3

=
1√

1 − ( 1/x) 2
·
(

− 1

x2

)∣∣∣∣∣
x=−

√
3

= − 1√
6
.

YOU TRY IT Calculate
d

dx
Cos

−1
[x2 + x]. Also calculate

d

dx
Sin

−1
[ln x − x3].

EXAMPLE 6.37
Calculate each of the following derivatives:

d

dx
Cos

−1 x

∣∣∣∣
x=1/2

,
d

dx
Cos

−1( ln x)

∣∣∣∣
x=

√
e

,
d

dx
Cos

−1(
√

x)

∣∣∣∣
x=1/2

.

SOLUTION

We have

d

dx
Cos

−1 x

∣∣∣∣
x=1/2

= − 1√
1 − x2

∣∣∣∣∣
x=1/2

= − 2√
3

,

d

dx
Cos

−1( ln x)

∣∣∣∣
x=

√
e

= − 1√
1 − ( ln x) 2

·
(

1

x

)∣∣∣∣∣
x=

√
e

= − −2√
3e

,

d

dx
Cos

−1(
√

x)

∣∣∣∣
x=1/2

= − 1√
1 − (

√
x) 2

·
(

1

2
x−1/2

)∣∣∣∣∣
x=1/2

= −1.

YOU TRY IT Calculate
d

dx
ln[Cos

−1 x] and
d

dx
exp[Sin

−1 x].
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y

x

y = Tan x

FIGURE 6.19

6.6.3 The Inverse Tangent Function
Define the function Tan x to be the restriction of tan x to the interval
(−π/2, π/2). Observe that the tangent function is undefined at the endpoints
of this interval. Since

d
dx

Tan x = sec2x

we see that Tan x is increasing, hence it is one-to-one (Figure 6.19). Also Tan
takes arbitrarily large positive values when x is near to, but less than, π/2. And
Tan takes negative values that are arbitrarily large in absolute value when x is
near to, but greater than, −π/2. Therefore, Tan takes all real values. Since Tan :
(−π/2, π/2) → (−∞, ∞) is one-to-one and onto, the inverse function Tan−1 :
(−∞, ∞) → (−π/2, π/2) exists. The graph of this inverse function is shown
in Figure 6.20. It is obtained by the usual procedure of reflecting in the line
y = x.

EXAMPLE 6.38
Calculate

Tan
−1

1, Tan
−1

1/
√

3, Tan
−1(−

√
3) .
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y

x

y = Tan
_1 x

FIGURE 6.20

SOLUTION

We have

Tan
−1

1 =
π

4
,

Tan
−1

1/
√

3 =
π

6
,

Tan
−1(−

√
3) = −π

3
.

As with the first two trigonometric functions, we note that the tangent

function takes each of the values 1, 1/
√

3, −
√

3 at many different points

of its domain. But Tan x takes each of these values at just one point of its

domain.

The derivative of our new function may be calculated in the usual way. The
result is

d
dx

Tan−1 x = 1
1 + x2

.

Next we calculate some derivatives:
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EXAMPLE 6.39
Calculate the following derivatives:

d

dx
Tan

−1 x

∣∣∣∣
x=1

,
d

dx
Tan

−1( x3)

∣∣∣∣
x=

√
2

,
d

dx
Tan

−1( ex)

∣∣∣∣
x=0

.

SOLUTION

We have

d

dx
Tan

−1 x

∣∣∣∣
x=1

=
1

1 + x2

∣∣∣∣
x=1

=
1

2
,

d

dx
Tan

−1( x3)

∣∣∣∣
x=

√
2

=
1

1 + ( x3) 2
· 3x2

∣∣∣∣
x=

√
2

=
2

3
,

d

dx
Tan

−1( ex)

∣∣∣∣
x=0

=
1

1 + ( ex) 2
· ex

∣∣∣∣
x=0

=
1

2
.

YOU TRY IT Calculate
d

dx
Tan

−1
[ln x + x3] and

d

dx
ln[Tan

−1 x].

6.6.4 Integrals in Which Inverse Trigonometric Functions Arise
Our differentiation formulas for inverse trigonometric functions can be written
in reverse, as antidifferentiation formulas. We have

∫
du√

1 − u2
= Sin−1 u + C;

∫
du√

1 − u2
= − Cos−1 u + C;

∫
du

1 + u2
du = Tan−1 u + C.

The important lesson here is that, while the integrands involve only polynomi-
als and roots, the antiderivatives involve inverse trigonometric functions.
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EXAMPLE 6.40
Evaluate the integral ∫

sin x

1 + cos
2 x

dx.

SOLUTION

For clarity we set ϕ( x) = cos x, ϕ′( x) = − sin x. The integral becomes

−
∫

ϕ′( x) dx

1 + ϕ2( x)
.

By what we have just learned about Tan
−1

, this last integral is equal to

− Tan
−1 ϕ( x) + C .

Resubstituting ϕ( x) = cos x yields that∫
sin x

1 + cos
2 x

dx = − Tan
−1( cos x) + C .

YOU TRY IT Calculate
∫

x/( 1 + x4) dx.

EXAMPLE 6.41
Calculate the integral ∫

3x2√
1 − x6

dx.

SOLUTION

For clarity we set ϕ( x) = x3, ϕ′( x) = 3x2. The integral then becomes∫
ϕ′( x) dx√
1 − ϕ2( x)

.

We know that this last integral equals

Sin
−1 ϕ( x) + C .
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Resubstituting the formula for ϕ gives a final answer of

∫
3x2√

1 − x6
dx = Sin

−1( x3) + C .

YOU TRY IT Evaluate the integral∫
x dx√
1 − x4

.

6.6.5 Other Inverse Trigonometric Functions
The most important inverse trigonometric functions are Sin−1, Cos−1, and
Tan−1

. We say just a few words about the other three.
Define Cot x to be the restriction of the cotangent function to the interval

(0, π) (Figure 6.21). Then Cot is decreasing on that interval and takes on all
real values. Therefore the inverse

Cot−1 : (−∞, ∞) → (0, π)

y

x

y = Cot x

FIGURE 6.21
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y

x

y = Cot
_1 x

FIGURE 6.22

is well defined. Look at Figure 6.22 for the graph. It can be shown that

d
dx

Cot−1x = − 1
1 + x2

.

Define Sec x to be the function sec x restricted to the set [0, π/2) ∪ (π/2, π]
(Figure 6.23). Then Sec x is one-to-one. For these values of the variable x, the
cosine function takes all values in the interval [−1, 1] except for 0. Passing to

y

x

1

y = Sec x

FIGURE 6.23
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y

x1

y = Sec
_1 x

FIGURE 6.24

the reciprocal, we see that secant takes all values greater than or equal to 1 and
all values less than or equal to −1. The inverse function is

Sec−1 : (−∞, −1] ∪ [1, ∞) → [0, π/2) ∪ (π/2, π]

(Figure 6.24). It can be shown that

d
dx

Sec−1 x = 1

|x| ·
√

x2 − 1
, |x| > 1.

The function Csc x is defined to be the restriction of Csc x to the set
[−π/2, 0) ∪ (0, π/2]. The graph is exhibited in Figure 6.25. Then Csc x is one-
to-one. For these values of the x variable, the sine function takes on all values
in the interval [−1, 1] except for 0. Therefore Csc takes on all values greater
than or equal to 1 and all values less than or equal to −1; Csc−1 therefore has
domain (−∞, −1] ∪ [1, ∞) and takes values in [−1, 0) ∪ (0, 1] (Figure 6.26).

It is possible to show that

d
dx

Csc−1 x = − 1

|x| ·
√

x2 − 1
, |x| > 1.

YOU TRY IT What is Sec
−1(−2/

√
3) ? What is Csc

−1(−
√

2) ?
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y

x/2_ /2

FIGURE 6.25

y

x

/2

_ /2

FIGURE 6.26
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Summary of Key Facts About the Inverse Trigonometric Functions
Sin x = sin x, −π

2
≤ x ≤ π

2
; Cos x = cos x, 0 ≤ x ≤ π ;

Tan x = tan x, −π

2
< x <

π

2
; Cot x = cot x, 0 < x < π ;

Sec x = sec x, x ∈ [0, π/2) ∪ (π/2, π]; Csc x = csc x, x ∈ [−π/2, 0) ∪ (0, π/2].

d
dx

Sin−1 x = 1√
1 − x2

, −1 < x < 1;
d

dx
Cos−1 x = − 1√

1 − x2
, −1 < x < 1;

d
dx

Tan−1 x = 1
1 + x2

, −∞ < x < ∞;
d

dx
Cot−1x = − 1

1 + x2
, −∞ < x < ∞;

d
dx

Sec−1 x = 1

|x| ·
√

x2 − 1
, |x| > 1;

d
dx

Csc−1 x = − 1

|x| ·
√

x2 − 1
, |x| > 1;

∫
du√

1 − u2
= Sin−1 u + C;

∫
du√

1 − u2
= − Cos−1 u + C;

∫
du

1 + u2
du = Tan−1 u + C;

∫
du

1 + u2
du = −Cot−1u + C;∫

du

|u| ·
√

u2 − 1
= Sec−1 u + C;

∫
du

|u| ·
√

u2 − 1
= − Csc−1 u + C.

YOU TRY IT What is the derivative of Sec
−1 x2?

6.6.6 An Example Involving Inverse Trigonometric Functions

EXAMPLE 6.42
Hypatia is viewing a ten-foot-long tapestry that is hung lengthwise on a

wall. The bottom end of the tapestry is two feet above her eye level. At

what distance should she stand from the tapestry in order to obtain the

most favorable view?

SOLUTION

For the purposes of this problem, view A is considered more favorable than

view B if it provides a greater sweep for the eyes. In other words, form the

triangle with vertices (i) the eye of the viewer, (ii) the top of the tapestry,

and (iii) the bottom of the tapestry (Figure 6.27). Angle α is the angle at

the eye of the viewer. We want the viewer to choose her position so that

the angle α at the eye of the viewer is maximized.
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10 ft

2 ft

x ft

FIGURE 6.27

The figure shows a mathematical model for the problem. The angle α is

the angle θ less the angle ψ. Thus we have

α = θ − ψ = Cot
−1( x/12) − Cot

−1( x/2) .

Notice that when the viewer is standing with her face against the wall then

θ = ψ = π/2 so thatα = 0.Also, when the viewer is far from the tapestry

then θ − α is quite small. So the maximum value for α will occur for some

finite, positive value of x. That value can be found by differentiatingαwith

respect to x, setting the derivative equal to zero, and solving for x.

We leave it to you to perform the calculation and discover that
√

24 ft.

is the optimal distance at which the viewer should stand.

YOU TRY IT Redo the last example if the tapestry is 20 feet high and the bot-

tom of the tapestry is 6 inches above eye level.
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QUIZ

1. Simplify these logarithmic expressions.

(a) ln
a3 · b−2

c5 · d

(b)
log2(a3b)

log3(ab2)
(c) ln[e2x · z3 · w−2]

(d) log10[1000w ·
√

100]

2. Solve each of these equations for x.
(a) 2x · 3−x = 2x · e2

(b)
2x

3−x · 52x
= 10x · 10

(c) 22x · 33x · 44x = 6

(d)
5

32x · e3x
= 2

3x · 2−x

3. Calculate each of these derivatives.

(a)
d

dx
ln[cos(x2)]

(b)
d

dx
ln

[
x3

x − 1

]
(c)

d
dx

ecos(ex)

(d)
d

dx
cos(ln x)

4. Calculate each of these integrals.

(a)
∫

e−xx2 dx

(b)
∫

x · ln3 x dx

(c)
∫ e

1

ln x
x2

dx

(d)
∫ 2

1

ex

ex − 1
dx

5. Use the technique of logarithmic differentiation to calculate the derivative
of each of the following functions.

(a) x3 · x2 − x
x3 + 1
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(b)
sin x · (x3 − x)

x2

(c) (x2 + x3)4 · (x2 − x)−3

(d)
x · sin x

ln x

6. There are 7 grams of a certain radioactive substance present at noon on
January 10 and 5 grams present at noon on January 15. How much will
be present on January 20?

7. A petri dish has 10,000 bacteria present at 10:00 a.m. and 17,000 present
at 2:00 p.m. How many bacteria will there be at 3:00 p.m.?

8. A sum of $5000 is deposited on January 1, 2005 at 4% interest, com-
pounded continuously. All interest is reinvested. How much money will
be in the account on January 1, 2009?

9. Calculate these derivatives.

(a)
d

dx
Cos−1 (x · ex)

(b)
d

dx
Cot−1

(
x

x + 1

)
(c)

d
dx

Tan−1 [ln(x2 + x)]

(d)
d

dx
Sec−1 tan x

10. Calculate each of these integrals.

(a)
∫

x
1 + x4

x dx

(b)
∫

x2√
1 − x6

dx

(c)
∫ π/2

0

2 cos x sin x√
1 − cos4 x

dx

(d)
∫

dx
3 + x2
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c h a p t e r 7
Methods
of Integration

Whereas (as we have learned) differentiation is a straightforward process, inte-
gration is not. The Fundamental Theorem of Calculus tells us that integration
is ‘‘reverse differentiation,’’ and that reverse process can be quite tricky.

Thus there are various techniques of integration that one must master. That
is the subject of this chapter. The aggregate of these techniques will give us a
potent collection of tools for performing applications of the integral.

C H A P T E R O B J E C T I V E S
In this chapter, you will learn

• Integration by parts

• Partial fractions

• Substitutions

• Integration of trigonometric functions

239
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7.1 Integration by Parts
......................................................................................................................................

We learned in Section 4.5 that the integral of the sum of two functions is the
sum of the respective integrals. But what of the integral of a product? The
following reasoning is incorrect:∫

x2 dx =
∫

x · x dx =
∫

x dx ·
∫

x dx

because the left-hand side is x3/3 while the right-hand side is (x2/2) · (x2/2) =
x4/4.

The correct technique for handling the integral of a product is a bit more
subtle, and is called integration by parts. It is based on the product rule

(u · v)′ = u′ · v + u · v′.

Integrating both sides of this equation, we have∫
(u · v)′ dx =

∫
u′ · v dx +

∫
u · v′ dx.

The Fundamental Theorem of Calculus tells us that the left-hand side is u · v.
Thus

u · v =
∫

u′ · v dx +
∫

u · v′ dx

or ∫
u · v′ dx = u · v −

∫
v · u′ dx.

It is traditional to abbreviate u′(x) dx = du and v′(x) dx = dv. Thus the in-
tegration by parts formula becomes∫

u dv = uv −
∫

v du.

Let us now learn how to use this simple new formula.

EXAMPLE 7.1
Calculate ∫

x · cos x dx.
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SOLUTION

We observe that the integrand is a product. Let us use the integration by

parts formula by setting u( x) = x and dv = cos x dx. Then

u( x) = x du = u′( x) dx = 1 dx = dx

v( x) = sin x dv = v′( x) dx = cos x dx

Of course we calculate v by anti-differentiation.

According to the integration by parts formula,∫
x · cos x dx =

∫
u dv

= u · v −
∫

v du

= x · sin x −
∫

sin x dx

= x · sin x − (− cos x) + C

= x · sin x + cos x + C .

MATH NOTE Observe that we can check the answer in the last example just by

differentiation:

d

dx

[
x · sin x + cos x + C

]
= 1 · sin x + x · cos x − sin x = x · cos x.

The choice of u and v in the integration by parts technique is significant. We
selected u to be x because then du will be 1 dx, thereby simplifying the integral.
If we had instead selected u = cos x and dv = x dx then we would have found
that v = x2/2 and du = − sin x dx and the new integral∫

v du =
∫

x2

2
(− sin x) dx

is more complicated.

EXAMPLE 7.2
Calculate the integral ∫

x2 · ex dx.
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SOLUTION

Keeping in mind that we want to choose u and v so as to simplify the inte-

gral, we take u = x2 and dv = ex dx. Then

u( x) = x2 du = u′( x) dx = 2x dx

v( x) = ex dv = v′( x) dx = ex dx

Then the integration by parts formula tells us that∫
x2ex dx =

∫
u dv = uv −

∫
v du = x2 · ex −

∫
ex · 2x dx. (∗)

We see that we have transformed the integral into a simpler one (in-

volving x · ex instead of x2 · ex), but another integration by parts will be

required. Now we take u = 2x and dv = ex dx. Then

u( x) = 2x du = u′( x) dx = 2 dx

v( x) = ex dv = v′( x) dx = ex dx

So equation (∗) equals

x2 · ex −
∫

u dv = x2 · ex −
[

u · v −
∫

v du

]
= x2 · ex −

[
2x · ex −

∫
ex · 2 dx

]
= x2 · ex − 2x · ex + 2ex + C .

We leave it to the reader to check this last answer by differentiation.

YOU TRY IT Calculate the integral∫
x2 log x dx.

EXAMPLE 7.3
Calculate

∫ 2

1

log x dx.
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SOLUTION

This example differs from the previous ones because now we are evalu-

ating a definiteintegral (i.e., an integral with numerical limits). We still use

the integration by parts formula, keeping track of the numerical limits of

integration.

We first notice that, on the one hand, the integrand is not a product. On

the other hand, we certainly do not know an antiderivative for log x. We

remedy the situation by writing log x = 1 · log x. Now the only reasonable

choice is to take u = log x and dv = 1 dx. Therefore

u( x) = log x du = u′( x) dx = ( 1/x) dx

v( x) = x dv = v′( x) dx = 1 dx

and ∫ 2

1

1 · log x dx =
∫ 2

1

u dv

= uv

∣∣∣∣2
1

−
∫ 2

1

v du

= ( log x) · x

∣∣∣∣2
1

−
∫ 2

1

x · 1

x
dx

= 2 · log 2 − 1 · log 1 −
∫ 2

1

1 dx

= 2 · log 2 − x

∣∣∣∣2
1

= 2 · log 2 − ( 2 − 1)

= 2 · log 2 − 1.

YOU TRY IT Evaluate ∫ 4

0

x2 · sin x dx.

We conclude this section by doing another definite integral, but we use a
slightly different approach from that in Example 7.3.
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EXAMPLE 7.4
Calculate the integral

∫ 2π

π/2

sin x cos x dx.

SOLUTION

We use integration by parts, but we apply the technique to the correspond-

ing indefinite integral. We let u = sin x and dv = cos x dx. Then

u( x) = sin x du = u′( x) dx = cos x dx

v( x) = sin x dv = v′( x) dx = cos x dx

So ∫
sin x cos x dx =

∫
u dv

= uv −
∫

v du

= ( sin x) · ( sin x) −
∫

sin x cos x dx.

At first blush, it appears that we have accomplished nothing. The new

integral is just the same as the old integral. But, in fact, we can move the

new integral (on the right) to the left-hand side to obtain

2

∫
sin x cos x dx = sin

2 x.

Throwing in the usual constant of integration, we obtain∫
sin x cos x dx =

1

2
sin

2 x + C .

Now we complete our work by evaluating the definite integral:

∫ 2π

π/2

sin x cos xdx =
1

2
sin

2 x

∣∣∣∣2π
π/2

=
1

2
[sin

2
2π − sin

2(π/2) ] = −1

2
.
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We see that there are two ways to treat a definite integral using integration by
parts. One is to carry the limits of integration along with the parts calculation.
The other is to do the parts calculation first (with an indefinite integral) and
then plug in the limits of integration at the end. Either method will lead to the
same solution.

YOU TRY IT Calculate the integral

∫ 2

0

e−x cos 2x dx.

7.2 Partial Fractions
......................................................................................................................................

7.2.1 Introductory Remarks
The method of partial fractions is used to integrate rational functions, or quo-
tients of polynomials. We shall treat here some of the basic aspects of the
technique.

The first fundamental observation is that there are some elementary rational
functions whose integrals we already know.

I. Integrals of Reciprocals of Linear Functions
An integral

∫
1

ax + b
dx

with a �= 0 is always a logarithmic function. In fact we can calculate

∫
1

ax + b
dx = 1

a

∫
1

x + b/a
dx = 1

a
log |x + b/a|.

II. Integrals of Reciprocals of Quadratic Expressions
An integral

∫
1

c + ax2
dx ,
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when a and c are positive, is an inverse trigonometric function. In fact we can
use what we learned in Section 6.6.3 to write

∫
1

c + ax2
dx = 1

c

∫
1

1 + (a/c)x2
dx

= 1
c

∫
1

1 + (
√

a/cx)2
dx

= 1√
ac

√
a√
c

∫
1

1 + (
√

a/cx)2
dx

= 1√
ac

arctan(
√

a/cx) + C.

III. More Integrals of Reciprocals of Quadratic Expressions
An integral

∫
1

ax2 + bx + c
dx

with a > 0, and discriminant b2 − 4ac negative, will also be an inverse trigono-
metric function. To see this, we notice that we can write

ax2 + bx + c = a
(

x2 + b
a

x+
)

+ c

= a

(
x2 + b

a
x + b2

4a2

)
+
(

c − b2

4a

)

= a ·
(

x + b
2a

)2

+
(

c − b2

4a

)
.

Since b2 − 4ac < 0, the final expression in parentheses is positive. For simplic-
ity, let λ = b/2a and let γ = c − b2/(4a). Then our integral is

∫
1

γ + a · (x + λ)2
dx.
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Of course we can handle this using II above. We find that∫
1

ax2 + bx + c
dx =

∫
1

γ + a · (x + λ)2
dx

= 1√
aγ

· arctan
(√

a√
γ

· (x + λ)
)

+ C.

IV. Even More on Integrals of Reciprocals of Quadratic Expressions
Evaluation of the integral ∫

1
ax2 + bx + c

dx

when the discriminant b2 − 4ac is ≥ 0 will be a consequence of the work we
do below with partial fractions. We will say no more about it here.

7.2.2 Products of Linear Factors
We illustrate the technique of partial fractions by way of examples.

EXAMPLE 7.5
Here we treat the case of distinct linear factors.

Let us calculate ∫
1

x2 − 3x + 2
dx.

SOLUTION

We notice that the integrand factors as

1

x2 − 3x + 2
=

1

( x − 1) ( x − 2)
. (∗∗)

[Notice that the quadratic polynomial in the denominator will factor pre-

cisely when the discriminant is ≥ 0, which is case IV from Subsection 7.2.1.]

Our goal is to write the fraction on the right-hand side of (∗∗) as a sum of

simpler fractions. With this thought in mind, we write

1

( x − 1) ( x − 2)
=

A

x − 1
+

B

x − 2
,
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where A and B are constants to be determined. Let us put together the

two fractions on the right by placing them over the common denominator

( x − 1) ( x − 2) . Thus

1

( x − 1) ( x − 2)
=

A

x − 1
+

B

x − 2
=

A( x − 2) + B( x − 1)

( x − 1) ( x − 2)
.

The only way that the fraction on the far left can equal the fraction on

the far right is if their numerators are equal. This observation leads to the

equation

1 = A( x − 2) + B( x − 1)

or

0 = ( A + B) x + (−2 A − B − 1) .

Now this equation is to be identically true in x; in other words, it must hold

for every value of x. So the coefficients must be 0.

At long last, then, we have a system of two equations in two unknowns:

A + B = 0

−2 A − B −1 = 0

Of course this system is easily solved and the solutions found to be

A = −1, B = 1.

We conclude that

1

( x − 1) ( x − 2)
=

−1

x − 1
+

1

x − 2
.

What we have learned, then, is that∫
1

x2 − 3x + 2
dx =

∫ −1

x − 1
dx +

∫
1

x − 2
dx.

Each of the individual integrals on the right may be evaluated using the

information in I of Subsection 7.2.1. As a result,∫
1

x2 − 3x + 2
dx = − log |x − 1| + log |x − 2| + C .



Chapter 7 M E T H O D S O F I N T E G R A T I O N 249

YOU TRY IT Calculate the integral

∫ 4

1

dx

x2 + 5x + 4
.

Now we consider repeated linear factors.

EXAMPLE 7.6
Let us evaluate the integral∫

dx

x3 − 4x2 − 3x + 18
.

SOLUTION

In order to apply the method of partial fractions, we first must factor the

denominator of the integrand. It is known that every polynomial with real

coefficients will factor into linear and quadratic factors. How do we find

this factorization? Of course we must find a root. For a polynomial of the

form

xk + ak−1xk−1 + ak−2xk−2 + · · · + a1x + a0 ,

any integer root will be a factor of a0. This leads us to try ±1, ±2, ±3, ±6,

±9 and ±18. We find that −2 and 3 are roots of x3 − 4x2 − 3x + 18. In

point of fact,

x3 − 4x2 − 3x + 18 = ( x + 2) · ( x − 3) 2.

An attempt to write

1

x3 − 4x2 − 3x + 18
=

A

x + 2
+

B

x − 3

will not work. We encourage the reader to try this for himself so that he will

understand why an extra idea is needed.

In fact we will use the paradigm

1

x3 − 4x2 − 3x + 18
=

A

x + 2
+

B

x − 3
+

C

( x − 3) 2
.
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Putting the right-hand side over a common denominator yields

1

x3 − 4x2 − 3x + 18
=

A( x − 3) 2 + B( x + 2) ( x − 3) + C ( x + 2)

x3 − 4x2 − 3x + 18
.

Of course the numerators must be equal, so

1 = A( x − 3) 2 + B( x + 2) ( x − 3) + C ( x + 2) .

We rearrange the equation as

( A + B) x2 + (−6 A − B + C ) x + ( 9 A − 6B + 2C − 1) = 0.

Since this must be an identity in x, we arrive at the system of equations

A + B = 0

−6 A − B + C = 0

9 A − 6B + 2C −1 = 0

This system is easily solved to yield A = 1/25, B = −1/25, C = 1/5.

As a result of these calculations, our integral can be transformed as

follows:

∫
1

x3 − 4x2 − 3x + 18
dx =

∫
1/25

x + 2
dx +

∫ −1/25

x − 3
dx +

∫
1/5

( x − 3) 2
dx.

The first integral equals ( 1/25) log |x + 2|, the second integral equals

−( 1/25) log |x − 3|, and the third integral equals −( 1/5)/( x − 3) .

In summary, we have found that

∫
1

x3 − 4x2 − 3x + 18
dx =

log |x + 2|
25

− log |x − 3|
25

− 1

5( x − 3)
+ C .

We see that our integral of the reciprocal of a cubic polynomial leads to the

sum of three factors; two of these are logarithmic, but one is not.
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YOU TRY IT Evaluate the integral

∫ 4

2

x dx

x3 + 5x2 + 7x + 3
.

7.2.3 Quadratic Factors

EXAMPLE 7.7
Evaluate the integral

∫
x dx

x3 + 2x2 + x + 2
.

SOLUTION

Since the denominator is a cubic polynomial, it must factor. The factors of

the constant term are ±1 and ±2. After some experimentation, we find

that x = −2 is a root and in fact the polynomial factors as

x3 + 2x2 + x + 2 = ( x + 2) ( x2 + 1) .

Thus we wish to write the integrand as the sum of a factor with denomi-

nator ( x + 2) and another factor with denominator ( x2 + 1) . The correct

way to do this is

x

x3 + 2x2 + x + 2
=

x

( x + 2) ( x2 + 1)
=

A

x + 2
+

B x + C

x2 + 1
.

We put the right-hand side over a common denominator to obtain

x

x3 + 2x2 + x + 2
=

A( x2 + 1) + ( B x + C ) ( x + 2)

x3 + 2x2 + x + 2
.

Identifying numerators leads to

x = ( A + B) x2 + ( 2B + C ) x + ( A + 2C ) .
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This equation must be identically true, so we find (identifying powers of x)

that

A + B = 0

2B + C = 1

A + 2C = 0

Solving this system, we find that A = −2/5, B = 2/5, C = 1/5. So∫
x dx

x3 + 2x2 + x + 2
=
∫ −2/5

x + 2
dx +

∫
( 2/5) x + ( 1/5)

x2 + 1
dx

=
−2

5
log |x + 2| + 1

5

∫
2x

x2 + 1
dx +

1

5

∫
1

x2 + 1
dx

=
−2

5
log |x + 2| + 1

5
log |x2 + 1| + 1

5
arctan x + C .

YOU TRY IT Calculate the integral

∫ 1

0

dx

x3 + 6x2 + 9x
.

YOU TRY IT Calculate the integral∫
dx

x3 + x
.

7.3 Substitution
......................................................................................................................................

Sometimes it is convenient to transform a given integral into another one by
means of a change of variable. This method is often called ‘‘the method of
change of variable’’ or ‘‘u-substitution.’’

To see a model situation, imagine an integral∫ b

a
f (x) dx.

If the techniques that we know will not suffice to evaluate the integral, then
we might attempt to transform this to another integral by a change of variable
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x = ϕ(t). This entails dx = ϕ′(t)dt. Also

x = a ←→ t = ϕ−1(a) and x = b ←→ t = ϕ−1(b).

Thus the original integral is transformed to

∫ ϕ−1(b)

ϕ−1(a)
f (ϕ(t)) · ϕ′(t) dt.

It turns out that, with a little notation, we can make this process both conve-
nient and straightforward.

We now illustrate this new paradigm with some examples. We begin with an
indefinite integral.

EXAMPLE 7.8
Evaluate ∫

[sin x]5 · cos x dx.

SOLUTION

On looking at the integral, we see that the expression cos x is the deriva-

tive of sin x. This observation suggests the substitution sin x = u. Thus

cos x dx = du. We must now substitute these expressions into the integral,

replacing all x-expressions with u-expressions. When we are through with

this process, no x expressions can remain. The result is∫
u5 du.

This is of course an easy integral for us. So we have∫
[sin x]5 · cos x dx =

∫
u5 du =

u6

6
+ C .

Now the important final step is to resubstitute the x-expressions in

place of the u-expressions. The result is then

∫
[sin x]5 · cos x dx =

sin
6 x

6
+ C .
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MATH NOTE Always be sure to check your work. You can differentiate the an-

swer in the last example to recover the integrand, confirming that the integration

has been performed correctly.

EXAMPLE 7.9
Evaluate the integral ∫ 3

0

2x
√

x2 + 1 dx.

SOLUTION

We recognize that the expression 2x is the derivative of x2 + 1. This sug-

gests the substitution u = x2 + 1. Thus du = 2x dx. Also x = 0 ←→ u =
1 and x = 3 ←→ u = 10. The integral is thus transformed to∫ 10

1

√
u du.

This new integral is a bit easier to understand if we write the square root

as a fractional power:

∫ 10

1

u1/2 du =
u3/2

3/2

∣∣∣∣10

1

=
103/2

3/2
− 13/2

3/2
=

2 · 103/2

3
− 2

3
.

YOU TRY IT Evaluate the integral∫ 5

3

dx

x · log |x| .

Still Struggling

Just as with integration by parts, we always have the option of first evaluating

the indefinite integral and then evaluating the limits at the very end. The next

example illustrates this idea.
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EXAMPLE 7.10
Evaluate

∫ π/2

π/3

cos x

sin x
dx.

SOLUTION

Since cos x is the derivative of sin x, it is natural to attempt the substitution

u = sin x. Then du = cos x dx. [Explain why it would be a bad idea to let

u = cos x.] We first treat the improper integral. We find that

∫
cos x

sin x
dx =

∫
du

u
= log |u| + C .

Now we resubstitute the x-expressions to obtain

∫
cos x

sin x
dx = log | sin x| + C .

Finally we can evaluate the original definite integral:

∫ π/2

π/3

cos x

sin x
dx = log | sin x|

∣∣∣∣π/2

π/3

= log | sinπ/2| − log | sinπ/3|

= log 1 − log

√
3

2

= −1

2
log 3 + log 2.

YOU TRY IT Calculate the integral

∫ 3

−2

tdt

( t2 + 1) log( t2 + 1)
.
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7.4 Integrals of Trigonometric Expressions
......................................................................................................................................

Trigonometric expressions arise frequently in our work, especially as a result
of substitutions. In this section we develop a few examples of trigonometric
integrals.

The following trigonometric identities will be particularly useful for us.

I. We have

sin2 x = 1 − cos 2x
2

.

The reason is that

cos 2x = cos2 x − sin2 x = [1 − sin2 x] − sin2 x = 1 − 2 sin2 x.

II. We have

cos2 x = 1 + cos 2x
2

.

The reason is that

cos 2x = cos2 x − sin2 x = cos2 x − [1 − cos2 x] = 2 cos2 x − 1.

Now we can turn to some examples.

EXAMPLE 7.11
Calculate the integral ∫

cos
2 x dx.

SOLUTION

Of course we will use formula II. We write∫
cos

2 x dx =
∫

1 + cos 2x

2
dx

=
∫

1

2
dx +

∫
1

2
cos 2x dx

=
x

2
+

1

4
sin 2x + C .
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EXAMPLE 7.12
Calculate the integral ∫

sin
3 x cos

2 x dx.

SOLUTION

When sines and cosines occur together, we always focus on the odd power

(when one occurs). We write

sin
3 x cos

2 x = sin x sin
2 x cos

2 x = sin x( 1 − cos
2 x) cos

2 x

= [cos
2 x − cos

4 x] sin x.

Then ∫
sin

3 x cos
2 dx =

∫
[cos

2 x − cos
4 x] sin x dx.

A u-substitution is suggested: We let u = cos x, du = − sin x dx. Then

the integral becomes

−
∫

[u2 − u4] du = −u3

3
+

u5

5
+ C .

Resubstiting for the u variable, we obtain the final solution of

∫
sin

3 x cos
2 dx = −cos

3 x

3
+

cos
5 x

5
+ C .

YOU TRY IT Calculate the integral∫
sin

2
3x cos

5
3x dx.

EXAMPLE 7.13
Calculate

∫ π/2

0

sin
4 x cos

4 x dx.
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SOLUTION

Substituting

sin
2 x =

1 − cos 2x

2
and cos

2 x =
1 + cos 2x

2

into the integrand yields

∫ π/2

0

(
1 − cos 2x

2

)2

·
(

1 + cos 2x

2

)2

dx =
1

16

∫ π/2

0

1 − 2 cos
2

2x + cos
4

2x dx.

Again using formula II, we find that our integral becomes

1

16

∫ π/2

0

1 − [1 + cos 4x] +
[

1 + cos 4x

2

]2

dx

=
1

16

∫ π/2

0

1 − [1 + cos 4x] +
1

4
[1 + 2 cos 4x + cos

2
4x] dx.

Applying formula II one last time yields

1

16

∫ π/2

0

1 − [1 + cos 4x] +
1

4

[
1 + 2 cos 4x +

1 + cos 8x

2

]
dx

=
1

16

[
−1

4
sin 4x +

1

4

(
x +

1

2
sin 4x +

x

2
+

sin 8x

16

)]π/2

0

=
1

16

([
−0 +

1

4

(
π

2
+ 0 +

π

4
+ 0

)]
−
[
−0 +

1

4
( 0 + 0 + 0 + 0)

])

=
3π

256
.

We see that it is often useful to apply I and II several times.

YOU TRY IT Calculate the integral

∫ π/3

π/4

sin
3 s cos

3 s ds.
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YOU TRY IT Calculate the integral

∫ π/3

π/4

sin
2 s cos

4 s ds.

Integrals involving the other trigonometric functions can also be handled
with suitable trigonometric identities. We illustrate the idea with some exam-
ples that are handled with the identity

tan2 x + 1 = sin2 x

cos2 x
+ 1 = sin2 x + cos2 x

cos2 x
= 1

cos2 x
= sec2 x.

EXAMPLE 7.14
Calculate ∫

tan
3 x sec

3 x dx.

SOLUTION

Using the same philosophy about odd exponents as we did with sines and

cosines, we substitute sec
2 x − 1 for tan

2 x. The result is∫
tan x( sec

2 x − 1) sec
3 x dx.

We may regroup the terms in the integrand to obtain∫
[sec

4 x − sec
2 x] sec x tan x dx.

A u-substitution suggests itself: We let u = sec x and therefore

du = sec x tan x dx. Thus our integral becomes∫
u4 − u2 du =

u5

5
− u3

3
+ C .

Resubstituting the value of u gives

∫
tan

3 x sec
3 x dx =

sec
5 x

5
− sec

3 x

3
+ C .
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EXAMPLE 7.15
Calculate ∫ π/4

0

sec
4 x dx.

SOLUTION

We write ∫ π/4

0

sec
4 x dx =

∫ π/4

0

sec
2 x · sec

2 x dx

=
∫ π/4

0

( tan
2 x + 1) sec

2 x dx.

Letting u = tan x and du = sec
2 x dx then gives the integral

∫ 1

0

u2 + 1 du =
u3

3
+ u

∣∣∣∣1
0

=
4

3
.

YOU TRY IT Calculate the integral∫ 2π

π

sin
6 x cos

4 x dx.

Further techniques in the evaluation of trigonometric integrals will be ex-
plored in the exercises.
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QUIZ

1. Use integration by parts to evaluate each of the following indefinite
integrals.

(a)
∫

log2 x dx

(b)
∫

x · e2x dx

(c)
∫

x2 sin x dx

(d)
∫

t sin 2t cos 2t dt

(e)
∫

sin y ln cos y dy

(f)
∫

x ln x dx

2. Use partial fractions to evaluate each of the following indefinite
integrals.

(a)
∫

dx
(x + 1)(x − 3)

(b)
∫

dx
(x − 1)(x2 + 1)

(c)
∫

dx
x3 + 2x2 − 5x − 6

(d)
∫

dx
x2 − 1

(e)
∫

dx
x3 − 3x + 2

(f)
∫

x
x3 − x2 + x − 1
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3. Use the method of u-substitution to evaluate each of the following indef-
inite integrals.

(a)
∫

(1 + cos2 x)22 sin x cos x dx

(b)
∫

cos
√

x√
x

dx

(c)
∫

sin(ln x) cos(ln x)
x

dx

(d)
∫

esin x cos x dx

(e)
∫

cos x

1 + sin2 x
dx

(f)
∫

sec2 x

1 − tan2 x
dx

4. Evaluate each of the following indefinite trigonometric integrals.

(a)
∫

cos x sin2 x dx

(b)
∫

cos3 x sin2 x dx

(c)
∫

tan2 x sec2 x dx

(d)
∫

tan x sec3 x dx

(e)
∫

sin2 x cos2 x dx

(f)
∫

cos x sin4 x dx
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5. Calculate each of the following definite integrals.

(a)
∫ 1

0
ex cos x dx

(b)
∫ e

1
x ln x dx

(c)
∫ 4

2

(2x − 1) dx
x3 − x2

(d)
∫ π

0
sin2 x cos2 x dx

(e)
∫ π/3

π/4
cot x csc x dx

(f)
∫ π/4

0

tan x
cos x

dx
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c h a p t e r 8
Applications
of the Integral

As the pinnacle of our work in this book, we now present a number of substan-
tial applications of the technique of integration. Most of these are physical in
nature, and that is the way that Isaac Newton would have liked it. Many of the
laws of physics are expressed in the language of integrals.

This chapter involves a good deal of technique. In order to use the integral
to study an application, one must understand how to transform the physical
problem into a mathematical one. This requires a notable understanding of how
the integral is constructed, and what is the concept behind the integral. You may
find yourself flipping back to Chapter 4 to review key ideas.

C H A P T E R O B J E C T I V E S
In this chapter, you will learn

• Volumes by slicing

• Volumes of solids of revolution

• Calculation of work

• Calculation of averages

• Calculation of arc length and surface area

• Hydrostatic pressure

• Numerical techniques of integration
265
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8.1 Volumes by Slicing
......................................................................................................................................

8.1.0 Introduction
When we learned the theory of the integral, we found that the basic idea was
that one can calculate the area of an irregularly shaped region by subdividing
the region into ‘‘rectangles.’’ We put the word ‘‘rectangle’’ here in quotation
marks because the region is not literally broken up into rectangles; the union of
the rectangles differs from the actual region under consideration by some small
errors (see Figure 8.1). But the contribution made by these errors vanishes as
the mesh of the rectangles become finer and finer.

We will now implement this same philosophy to calculate certain volumes.
Some of these will be volumes that you have heard about (e.g., the sphere or
cone), but have never known why the volume had the value that it had. Others
will be entirely new (e.g., the paraboloid of revolution). We will again use the
method of slicing.

8.1.1 The Basic Strategy
Imagine a solid object situated as in Figure 8.2. Observe the axes in the diagram,
and imagine that we slice the figure with slices that are vertical (i.e., that rise
out of the x-y plane) and that are perpendicular to the x-axis (and parallel to
the y-axis). Look at Figure 8.3. Notice, in the figure, that the figure extends
from x = a to x = b.

If we can express the area of the slice at position x as a function A(x) of x,
then (see Figure 8.4) the volume of a slice of thickness �x at position x will be

y = f (x)

a b

FIGURE 8.1
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FIGURE 8.2

FIGURE 8.3

FIGURE 8.4

about A(x) · �x. If P = {x0, x1, . . . , xk} is a partition of the interval [a, b] then
the volume of the original solid object will be about

Ṽ =
∑

j

A(xj) · �x.

As the mesh of the partition becomes finer and finer, this (Riemann) sum will
tend to the integral ∫ b

a
A(x) dx.

We declare the value of this integral to be the volume V of the solid object.
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8.1.2 Examples

EXAMPLE 8.1
Calculate the volume of the right circular cone with base a disc of radius 3

and height 6.

SOLUTION

Examine Figure 8.5. We have laid the cone on its side, so that it extends

from x = 0 to x = 6. The upper edge of the figure is the line y = 3 − x/2.

At position x, the height of the upper edge is 3 − x/2, and that number is

also the radius of the circular slice at position x (Figure 8.6). Thus the area

of that slice is

A( x) = π

(
3 − x

2

)2

.

We find then that the volume we seek is

V =
∫ 6

0

A( x) dx =
∫ 6

0

π

(
3 − x

2

)2

dx = −π
2( 3 − x/2) 3

3

∣∣∣∣6
0

= 18π.

y

x

3

6

FIGURE 8.5
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thickness x

3 _ x/2

FIGURE 8.6

YOU TRY IT Any book of tables (see [CRC]) will tell you that the volume of a

right circular cone of base radius r and height h is 1

3
πr 2h. This formula is consis-

tent with the result that we obtained in the last example for r = 3 and h = 6. Use

the technique of Example 8.1 to verify this formula.

EXAMPLE 8.2
The base of a solid is a unit disc in the x-y plane. The vertical cross section

at position x is an equilateral triangle. Calculate the volume.

SOLUTION

Examine Figure 8.7. The unit circle has equation x2 + y2 = 1. For our pur-

poses, this is more conveniently written as

y = ±
√

1 − x2. (�)

FIGURE 8.7
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√3
2

bbb

b

FIGURE 8.8

Thus the endpoints of the base of the equilateral triangle at position x are

the points ( x, ±
√

1 − x2) . In other words, the base of this triangle is

b = 2

√
1 − x2.

Examine Figure 8.8. We see that an equilateral triangle of side b has height√
3b/2. Thus the area of the triangle is

√
3b2/4. In our case then, the equi-

lateral triangular slice at position x has area

A( x) =

√
3

4
·
[

2

√
1 − x2

]2

=
√

3( 1 − x2) .

Finally, we may conclude that the volume we seek is

V =
∫ 1

−1

A( x) dx

=
∫ 1

−1

√
3( 1 − x2) dx

=
√

3

[
x − x3

3

]1

−1

=
√

3

[(
1 − 1

3

)
−
(

(−1) − −1

3

)]

=
4
√

3

3
.
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FIGURE 8.9

EXAMPLE 8.3
A solid has base in the x-y plane consisting of a unit square with center at

the origin and vertices on the axes. The vertical cross section at position x

is itself a square. Refer to Figure 8.9. What is the volume of this solid?

SOLUTION

It is sufficient to calculate the volume of the right half of this solid, and

to double the answer. Of course the extent of x is then 0 ≤ x ≤ 1/
√

2. At

position x, the height of the upper edge of the square base is 1/
√

2 − x.

So the base of the vertical square slice is 2( 1/
√

2 − x) (Figure 8.10). The

area of the slice is then

A( x) = [2( 1/
√

2 − x) ]2 = (
√

2 − 2x) 2.

2(1/√2 _ x)

2(1/√2 _ x)

FIGURE 8.10
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It follows that

V = 2 ·
∫ 1/

√
2

0

A( x) dx

= 2

∫ 1/
√

2

0

(
√

2 − 2x) 2 dx

= 2

[
− (

√
2 − 2x) 3

6

]1/
√

2

0

= 2

[
−03

6
−
(

−2
√

2

6

)]

=
2
√

2

3
.

YOU TRY IT Calculate the volume of the solid with base in the plane an equi-

lateral triangle of side 1, with base on the x axis, and with vertical cross section

parallel to the y-axis consisting of an equilateral triangle.

EXAMPLE 8.4
Calculate the volume inside a sphere of radius 1.

SOLUTION

It is convenient for us to think of the sphere as centered at the origin in the

x-y plane. Thus (Figure 8.11) the slice at position x, −1 ≤ x ≤ 1, is a disc.

Since we are working with base the unit circle, we may calculate (just as in

Example 8.2) that the diameter of this disc is 2
√

1 − x2. Thus the radius is

FIGURE 8.11
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√
1 − x2 and the area is

A( x) = π · (
√

1 − x2) 2 = π · ( 1 − x2) .

In conclusion, the volume we seek is

V =
∫ 1

−1

π( 1 − x2) dx.

We easily evaluate this integral as follows:

V = π ·
[

x − x3

3

]1

−1

= π ·
[(

1 − 1

3

)
−
(

−1 − −1

3

)]
=

4

3
π.

YOU TRY IT Any book of tables (see [CRC]) will tell you that the volume inside

a sphere of radius r is 4πr 3/3. This formula is consistent with the answer we ob-

tained in the last example for r = 1. Use the method of this section to derive this

more general formula for arbitrary r .

8.2 Volumes of Solids of Revolution
......................................................................................................................................

8.2.0 Introduction
A useful way---and one that we encounter frequently in everyday life---for gen-
erating solids is by revolving a planar region about an axis. For example, we can
think of a ball (the interior of a sphere) as the solid obtained by rotating a disc
about an axis (Figure 8.12). We can think of a cylinder as the solid obtained by
rotating a rectangle about an axis (Figure 8.13). We can think of a tubular solid
as obtained by rotating a rectangle around a non-adjacent axis (Figure 8.14).

There are two main methods for calculating volumes of solids of revolution:
the method of washers and the method of cylinders. The first of these is really
an instance of volume by slicing, just as we saw in the last section. The second
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FIGURE 8.12

FIGURE 8.13

FIGURE 8.14

uses a different geometry; instead of slices one uses cylindrical shells. We shall
develop both techniques by way of some examples.

8.2.1 The Method of Washers

EXAMPLE 8.5
A solid is formed by rotating the triangle with vertices ( 0, 0) , ( 2, 0) , and

( 1, 1) about the x-axis. See Figure 8.15. What is the resulting volume?

SOLUTION

For 0 ≤ x ≤ 1, the upper edge of the triangle has equation y = x. Thus the

segment being rotated extends from ( x, 0) to ( x, x) . Under rotation, it will

generate a disc of radius x, and hence area A( x) = πx2. Thus the volume
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(1,1)

(2,0)(0,0)

FIGURE 8.15

generated over the segment 0 ≤ x ≤ 1 is

V1 =
∫ 1

0

πx2 dx.

Similarly, for 1 ≤ x ≤ 2, the upper edge of the triangle has equation

y = 2 − x. Thus the segment being rotated extends from ( x, 0) to ( x, 2 −
x) . Under rotation, it will generate a disc of radius 2 − x, and hence area

A( x) = π( 2 − x) 2. Thus the volume generated over the segment 1 ≤
x ≤ 2 is

V2 =
∫ 2

1

π( 2 − x) 2 dx.

In summary, the total volume of our solid of revolution is

V = V1 + V2

= π

[
x3

3

∣∣∣∣1
0

+
−( 2 − x) 3

3

∣∣∣∣2
1

]

= π

(
1

3
− 0

)
+
(

−0 −
[
−1

3

])

=
2π

3
.
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FIGURE 8.16

EXAMPLE 8.6
The portion of the curve y = x2 between x = 1 and x = 4 is rotated about

the x-axis (Figure 8.16). What volume does the resulting surface enclose?

SOLUTION

At position x, the curve is x2 units above the x-axis. The point ( x, x2) , under

rotation, therefore generates a circle of radius x2. The disc that the circle

bounds has area A( x) = π · ( x2) 2. Thus the described volume is

V =
∫ 4

1

π · x4 dx = π · x5

5

∣∣∣∣4
1

=
1023π

5
.

Still Struggling

The reasoning we have used in the last two examples shows this: If the curve

y = f (x), a ≤ x ≤ b, is rotated about the x-axis then the volume enclosed by

the resulting surface is

V =
∫ b

a
π · [ f (x)]2 dx .
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YOU TRY IT Calculate the volume enclosed by the surface obtained by rotat-

ing the curve y =
√

x + 1, 4 ≤ x ≤ 9, about the x-axis.

EXAMPLE 8.7
The curve y = x3, 0 ≤ x ≤ 3, is rotated about the y-axis. What volume

does the resulting surface enclose?

SOLUTION

It is convenient in this problem to treat y as the independent variable and x

as the dependent variable. So we write the curve as x = y1/3. Then, at posi-

tion y, the curve is distanced y1/3 from the axis so the disc generated under

rotation will have radius y1/3 (Figure 8.17). Thus, the disc will have area

A( y) = π · [y1/3]2. Also, since x ranges from 0 to 3 we see that y ranges

from 0 to 27. As a result, the volume enclosed is

V =
∫ 27

0

π · y2/3 dy = π · y5/3

5/3

∣∣∣∣27

0

=
729π

5
.

FIGURE 8.17
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Still Struggling

The reasoning we have used in the last example shows this: If the curve x = g(y),

c ≤ y ≤ d, is rotated about the y-axis then the volume enclosed by the resulting

surface is

V =
∫ d

c
π · [g(y)]2 dy.

YOU TRY IT Calculate the volume enclosed when the curve y = x1/3, 32 ≤
x ≤ 243, is rotated about the y-axis.

EXAMPLE 8.8
Set up, but do not evaluate, the integral that represents the volume gen-

erated when the planar region between y = x2 + 1 and y = 2x + 4 is

rotated about the x-axis.

SOLUTION

When the planar is rotated about the x axis, it will generate a donut-shaped

solid. Notice that the curves intersect at x = −1 and x = 3; hence the in-

tersection lies over the interval [−1, 3]. For each x in that interval, the

segment connecting ( x, x2 + 1) to ( x, 2x + 4) will be rotated about the

x-axis. It will generate a washer. See Figure 8.18. The area of that washer is

A( x) = π · [2x + 4]2 − π · [x2 + 1].

[Notice that we calculate the area of a washer by subtracting the areas of

two circles---not by subtracting the radii and then squaring.]

It follows that the volume of the solid generated is

V =
∫ 3

−1

π · [2x + 4]2 − π · [x2 + 1] dx.
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FIGURE 8.18

8.2.2 The Method of Cylindrical Shells
Our philosophy will now change. After we divide our region up into vertical
strips, we will now rotate each strip about the y-axis instead of the x-axis. Thus,
instead of generating a disc with each strip, we will now generate a cylinder.

Look at Figure 8.19. When a strip of height h and thickness �x, with distance
r from the y-axis, is rotated about the y-axis, the resulting cylinder has surface
area 2πr · h and volume about 2πr · h · �x. This is the expression that we will
treat in order to sum up the volumes of the cylinders.

y

x

h

r

FIGURE 8.19
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EXAMPLE 8.9
Use the method of cylindrical shells to calculate the volume of the solid

enclosed when the curve y = x2, 1 ≤ x ≤ 3, is rotated about the y-axis.

SOLUTION

As usual, we think of the region under y = x2 and above the x-axis as com-

posed of vertical segments or strips. The segment at position x has height

x2. Thus, in this instance, h = x2, r = x, and the volume of the cylinder is

2πx · x2 · �x. As a result, the requested volume is

V =
∫ 3

1

2πx · x2 dx.

We easily calculate this to equal

V = 2π ·
∫ 3

1

x3 dx = 2π
x4

4

∣∣∣∣3
1

= 2π

[
34

4
− 14

4

]
= 40π.

EXAMPLE 8.10
Use the method of cylindrical shells to calculate the volume enclosed when

the curve y = x2, 0 ≤ x ≤ 3, is rotated about the x-axis (Figure 8.20).

y

x

FIGURE 8.20
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SOLUTION

We reverse, in our analysis, the roles of the x- and y-axes. Of course y

ranges from 0 to 9. For each position y in that range, there is a segment

stretching from x =
√

y to x = 3. Thus it has length 3 − √
y. Then the

cylinder generated when this segment (thickened to a strip of width �y)

is rotated about the x-axis has volume

V ( y) = 2πy · [3 − √
y] � y.

The aggregate volume is then

V =
∫ 9

0

2πy · [3 − √
y] dy

= 2π ·
∫ 9

0

3y − y3/2 dy

= 2π ·
[

3y2

2
− y5/2

5/2

]9

0

dy

= 2π ·
[(

243

2
− 2 · 243

5

)
−
(

0

2
− 0

5

)]
= 2π · 243

10

=
243π

5
.

YOU TRY IT Use the method of cylindrical shells to calculate the volume en-

closed when the region 0 ≤ y ≤ sin x, 0 ≤ x ≤ π/2, is rotated about the y-axis.

8.2.3 Different Axes
Sometimes it is convenient to rotate a curve about some line other than the
coordinate axes. We now provide a couple of examples of that type of problem.
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y

x

y = √x

FIGURE 8.21

EXAMPLE 8.11
Use the method of washers to calculate the volume of the solid enclosed

when the curve y =
√

x, 1 ≤ x ≤ 4, is rotated about the line y = −1. See

Figure 8.21.

SOLUTION

The key is to notice that, at position x, the segment to be rotated has

height
√

x − (−1) ---the distance from the point ( x,
√

x) on the curve to

the line y = −1. Thus the disc generated has area A( x) = π · (
√

x + 1) 2.

The resulting aggregate volume is

V =
∫ 4

1

π · (
√

x + 1) 2 dx

= π

∫ 4

1

x + 2
√

x + 1 dx

= π

[
x2

2
+

2x3/2

3/2
+ x

]4

1

= π ·
[

42

2
+

2 · 8

3/2
+ 4

]
− π ·

[
12

2
+

2 · 1

3/2
+ 1

]

=
119

6
π.
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YOU TRY IT Calculate the volume inside the surface generated when y =
3
√

x + x is rotated about the line y = −1, 1 ≤ x ≤ 4.

EXAMPLE 8.12
Calculate the volume of the solid enclosed when the area between the

curves x = ( y − 2) 2 + 1 and x = −( y − 2) 2 + 9 is rotated about the line

y = −2.

SOLUTION

Solving the equations simultaneously, we find that the points of intersec-

tion are ( 5, 0) and ( 5, 4) . The region between the two curves is illustrated

in Figure 8.22.

At height y, the horizontal segment that is to be rotated stretches from

( ( y − 2) 2 + 1, y) to (−( y − 2) 2 + 9, y) . Thus the cylindrical shell that is

generated has radius y − 2, height 8 − 2( y − 2) 2, and thickness �y. It

therefore generates the element of volume given by

2π · ( y − 2) · [8 − 2( y − 2) 2] · �y.

The aggregate volume that we seek is therefore

V =
∫ 4

0

2π · ( y − 2) · [8 − 2( y − 2) 2] dy

=
∫ 4

0

16π( y − 2) − 4π( y − 2) 3 dy

= 8π( y − 2) 2 − π( y − 4) 4

∣∣∣∣4
0

= 256π.

y

x

x = (y _ 2)2 + 1 x = _(y _ 2)2 + 9

FIGURE 8.22
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YOU TRY IT Calculate the volume enclosed when the curve y = cos x is ro-

tated about the line y = 4, π ≤ x ≤ 3π.

8.3 Work
......................................................................................................................................

One of the basic principles of physics is that work performed is force times
distance: If you apply force F pounds in moving an object d feet, then the
work is

W = F · d foot-pounds.

The problem becomes more interesting (than simple arithmetic) if the force is
varying from point to point. We now consider some problems of that type.

EXAMPLE 8.13
A weight is pushed in the plane from x = 0 to x = 10. Because of a prevail-

ing wind, the force that must be applied at point x is F ( x) = 3x2 − x + 10

foot-pounds. What is the total work performed?

SOLUTION

Following the way that we usually do things in calculus, we break the

problem up into pieces. In moving the object from position x to position

x + �x, the distance moved is �x feet and the force applied is about

F ( x) = 3x2 − x + 10. See Figure 8.23. Thus work performed in that little

bit of the move is w( x) = ( 3x2 − x + 10) · �x. The aggregate of the work

is obtained by summation. In this instance, the integral is the appropriate

device:

W =
∫ 10

0

( 3x2 − x + 10) dx = x3 − x2

2
+ 10x

∣∣∣∣10

0

= 1050 foot-pounds.

10 0

FIGURE 8.23
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EXAMPLE 8.14
A man is carrying a 100 lb. sack of sand up a 20-foot ladder at the rate of

5 feet per minute. The sack has a hole in it and sand leaks out continuously

at a rate of 4 lbs. per minute. How much work does the man do in carrying

the sack?

SOLUTION

It takes four minutes for the man to climb the ladder. At time t, the sack

has 100 − 4t pounds of sand in it. From time t to time t + �t, the man

moves 5 · �t feet up the ladder. He therefore performs about w( t) =
( 100 − 4t) · 5 � t foot-pounds of work. See Figure 8.24. The total work is

then the integral

W =
∫ 4

0

( 100 − 4t) 5dt = 500t − 10t2

∣∣∣∣4
0

= 1840 foot-pounds.

FIGURE 8.24
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YOU TRY IT A man drags a 100 pound weight from x = 0 to x = 300. He re-

sists a wind which at position x applies a force of magnitude F ( x) = x3 + x +
40. How much work does he perform?

EXAMPLE 8.15
According to Hooke's Law, the amount of force exerted by a spring is pro-

portional to the distance of its displacement from the rest position. The

constant of proportionality is called the Hooke's constant. A certain spring

exerts a force of 10 pounds when stretched 1/2 foot beyond its rest state.

What is the work performed in stretching the spring from rest to 1/3 foot

beyond its rest length?

SOLUTION

Let the x-variable denote the position of the right end of the spring

(Figure 8.25), with x = 0 the rest position. The left end of the spring is

pinned down. Imagine that the spring is being stretched to the right. We

know that the force exerted by the spring has the form

F ( x) = kx ,

with k a negative constant (since the spring will pull to the left). Also

F ( 0.5) = −10. It follows that k = −20, so that

F ( x) = −20x.

Now the work done in moving the spring from position x to position x +
�x will be about ( 20x) · �x (the sign is + since we will pull the spring

to the right---against the pull of the spring). Thus the total work done in

FIGURE 8.25
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Radius at depth x

equals √100 _ x2

FIGURE 8.26

stretching the right end of the spring from x = 0 to x = 1/3 is

W =
∫ 1/3

0

( 20x) dx = 10x2

∣∣∣∣1/3

0

=
10

9
foot-pounds.

EXAMPLE 8.16
Imagine that a water tank in the shape of a hemisphere of radius 10 feet is

being pumped out (Figure 8.26). Find the work done in lowering the water

level from 1 foot from the top of the tank to 3 feet from the top of the tank.

SOLUTION

A glance at Figure 8.27 shows that the horizontal planar slice of the tank, at

the level x feet below the top, is a disc of radius
√

100 − x2. This disc there-

fore has area A( x) = π · ( 100 − x2) . Thus a slice at that level of thickness

x
100

√100 _ x2

FIGURE 8.27
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�x will have volume

V ( x) = π · ( 100 − x2) · �x

and (assuming that water weights 62.4 pounds per cubic foot) weight

equal to

w( x) = 62.4π · ( 100 − x2) · �x.

Thus the work in raising this slice to the top of the tank (where it can

then be dumped) is

W ( x) =
[
62.4π · ( 100 − x2) · �x

]
· x foot-pounds.

We calculate the total work by adding all these elements together using an

integral. The result is

W =
∫ 3

1

[
62.4π · ( 100 − x2) · x

]
dx

= 62.4π ·
∫ 3

1

100x − x3 dx

= 62.4π

[
50x2 − x4

4

]3

1

= 62.4π

[(
450 − 81

4

)
−
(

50 − 1

4

)]
= 23, 712π foot-pounds.

YOU TRY IT A spring has Hooke's constant 5. How much work is performed in

stretching the spring half a foot from its rest position?
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8.4 Averages
......................................................................................................................................

In ordinary conversation, when we average a collection p1, . . . , pk of k numbers,
we add them together and divide by the number of items:

σ = Average = p1 + · · · + pk

k
.

The significance of the number σ is that if we wanted all the k numbers to be
equal, but for the total to be the same, then that common value would have to
be σ .

Now suppose that we want to average a continuous function f over an in-
terval [a, b] of its domain. We can partition the interval,

P = {x0, x1, . . . , xk} ,

with x0 = a and xk = b as usual. We assume that this is a uniform partition, with
xj − xj−1 = �x = (b − a)/k for all j . Then an ‘‘approximate average’’ of f
would be given by

σapp = f (x1) + f (x2) + · · · + f (xk)
k

.

It is convenient to write this expression as

σapp = 1
b − a

k∑
j=1

f (xj) · b − a
k

= 1
b − a

k∑
j=1

f (xj) · �x.

This last is a Riemann sum for the integral (1/[b − a]) · ∫ b
a f (x) dx. Thus, letting

the mesh of the partition go to zero, we declare

average of f = σ = 1
b − a

∫ b

a
f (x) dx.

EXAMPLE 8.17
In a tropical rain forest, the rainfall at time t is given by ϕ( t) = 0.1 −
0.1t + 0.05t2 inches per hour, 0 ≤ t ≤ 10. What is the average rainfall for

times 0 ≤ t ≤ 6?
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SOLUTION

We need to only average the function ϕ:

average rainfall = σ =
1

6 − 0

∫ 6

0

ϕ( t) dt

=
1

6

∫ 6

0

0.1 − 0.1t + 0.05t2 dt

=
1

6

[
0.1t − 0.5t2 +

0.5

3
t3

]6

0

= 0.1 − 0.3 + 0.6

= 0.4 inches per hour.

EXAMPLE 8.18
Let f ( x) = x/2 − sin x on the interval [−2, 5]. Compare the average value

of this function on the interval with its minimum and maximum.

SOLUTION

Observe that

f ′( x) =
1

2
− cos x.

Thus the critical points occur when cos x = 1/2, or at −π/3, π/3. We also

must consider the endpoints −2, 5. The values at these points are

f (−2) = −1 + sin 2 ≈ −0.0907

f (−π/3) = −π

6
+

1

2
≈ 0.3424262

f (π/3) =
π

6
− 1

2
≈ −0.3424262

f ( 5) =
5

2
− sin 5 ≈ 3.458924.
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Plainly, the maximum value is f ( 5) = 5/2 − sin 5 ≈ 3.458924. The mini-

mum value is f (π/3) ≈ −0.3424262.

The average value of our function is

σ =
1

5 − (−2)

∫ 5

−2

x

2
− sin x dx

=
1

7

[
x2

4
+ cos x

]5

−2

=
1

7

[(
25

4
+ cos 5

)
−
(

4

4
+ cos 2

)]

=
1

7

[
21

4
+ cos 5 − cos 2

]
≈ 0.84997.

You can see that the average value lies between the maximum and the

minimum, as it should. This is an instance of a general phenomenon.

YOU TRY IT On a certain tree line, the height of trees at position x is about

100 − 3x + sin 5x. What is the average height of trees from x = 2 to x = 200?

EXAMPLE 8.19
What is the average value of the function g( x) = sin x over the interval

[0, 2π]?

SOLUTION

We calculate that

σ =
1

2π − 0

∫ 2π

0

sin x dx =
1

2π
[− cos x]

∣∣∣∣2π
0

=
1

2π
[−1 − (−1) ] = 0.

We see that this answer is consistent with our intuition: the function

g( x) = sin x takes positive values and negative values with equal weight

over the interval [0, 2π]. The average is intuitively equal to zero. And that

is the actual computed value.
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YOU TRY IT Give an example of a function on the real line whose average over

every interval of length 4 is 0.

8.5 Arc Length and Surface Area
......................................................................................................................................

Just as the integral may be used to calculate planar area and spatial volume,
so this tool may also be used to calculate the arc length of a curve and surface
area. The basic idea is to approximate the length of a curve by the length of its
piecewise linear approximation. A similar comment applies to the surface area.
We begin by describing the basic rubric.

8.5.1 Arc Length
Suppose that f (x) is a function on the interval [a, b]. Let us see how to cal-
culate the length of the curve consisting of the graph of f over this interval
(Figure 8.28). We partition the interval:

a = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xk−1 ≤ xk = b.

Look at Figure 8.29. Corresponding to each pair of points xj−1, xj in the par-
tition is a segment connecting two points on the curve; the segment has end-
points (xj−1, f (xj−1)) and (xj , f (xj)). The length � j of this segment is given by
the usual planar distance formula:

� j = (
[xj − xj−1]2 + [ f (xj) − f (xj−1)]2)1/2

.

ba

y = f (x)

FIGURE 8.28



Chapter 8 A P P L I C A T I O N S O F T H E I N T E G R A L 293

y = f (x)

(xj, f (xj))

(xj _ 1, f (xj _ 1))

xj –1 xj

FIGURE 8.29

We denote the quantity xj − xj−1 by �x and apply the definition of the deriva-
tive to obtain

f (xj) − f (xj−1)
�x

≈ f ′(xj).

Now we may rewrite the formula for � j as

� j = (
[�x]2 + [ f ′(xj)�x]2)1/2

= (
1 + [ f ′(xj)]2)1/2

�x.

Summing up the lengths � j (Figure 8.30) gives an approximate length for the
curve:

length of curve ≈
k∑

j=1

� j =
k∑

j=1

(
1 + [ f ′(xj)]2)1/2

�x.

FIGURE 8.30
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But this last is a Riemann sum for the integral

� =
∫ b

a
(1 + [ f ′(x)]2)1/2 dx. (	)

As the mesh of the partition becomes finer, the approximating sum is ever
closer to what we think of as the length of the curve, and it also converges to
this integral. Thus the integral represents the length of the curve.

EXAMPLE 8.20
Let us calculate the arc length of the graph of f ( x) = 4x3/2 over the

interval [0, 3].

SOLUTION

The length is

∫ 3

0

(
1 + [ f ′( x) ]2

)1/2
dx =

∫ 3

0

(
1 + [6x1/2]2

)1/2
dx

=
∫ 3

0

( 1 + 36x) 1/2 dx

=
1

54
· ( 1 + 36x) 3/2

∣∣∣∣3
0

=
1

54

[
1093/2 − 13/2

]
=

( 109) 3/2 − 1

54
.

EXAMPLE 8.21
Let us calculate the length of the graph of the function f ( x) = ( 1/2) ( ex +
e−x) over the interval [1, ln 8].

SOLUTION

We calculate that

f ′( x) = ( 1/2) ( ex − e−x) .
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Therefore the length of the curve is

∫ ln 8

1

(
1 + [( 1/2) ( ex − e−x) ]2

)1/2
dx

=
∫ ln 8

1

(
e2x

4
+

1

2
+

e−2x

4

)1/2

dx

=
1

2

∫ ln 8

1

ex + e−x dx

=
1

2

[
ex − e−x

]ln 8

1

=
63

16
− e

2
+

1

2e
.

YOU TRY IT Set up, but do not evaluate, the integral for the arc length of the

graph of y =
√

sin x on the interval π/4 ≤ x ≤ 3π/4.

Sometimes an arc length problem is more conveniently solved if we think of
the curve as being the graph of x = g (y). Here is an example.

EXAMPLE 8.22
Calculate the length of that portion of the graph of the curve 16x2 = 9y3

between the points ( 0, 0) and ( 6, 4) .

SOLUTION

We express the curve as

x =
3

4
y3/2.

Then dx/dy = 9

8
y1/2. Now, reversing the roles of x and y in (�) , we find

that the requested length is

∫ 4

0

√
1 + [( 9/8) y1/2]2 dy =

∫ 4

0

√
1 + ( 81/64) y dy.
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This integral is easily evaluated and we see that it has value [2 · ( 97) 3/2 −
128]/243.

Notice that the last example would have been considerably more difficult
(the integral would have been harder to evaluate) had we expressed the curve
in the form y = f (x).

YOU TRY IT Write the integral that represents the length of a semi-circle and

evaluate it.

8.5.2 Surface Area
Let f (x) be a non-negative function on the interval [a, b]. Imagine rotating the
graph of f about the x−axis. This procedure will generate a surface of revolu-
tion, as shown in Figure 8.31. We will develop a procedure for determining the
area of such a surface.

We partition the interval [a, b] :

a = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xk−1 ≤ xk = b.

Corresponding to each pair of elements xj−1, xj in the partition is a portion of
curve, as shown in Figure 8.32. When that piece of curve is rotated about the
x−axis, we obtain a cylindrical surface. Now the area of a true right circular
cylinder is 2π · r · h. We do not have a true cylinder, so we proceed as follows.
We may approximate the radius by f (xj). And the height of the cylinder can be

ba

y = f (x)

FIGURE 8.31
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ba

y = f (x)

FIGURE 8.32

approximated by the length of the curve spanning the pair xj−1, xj . This length
was determined above to be about(

1 + [ f ′(xj)]2)1/2
�xj .

Thus the area contribution of this cylindrical increment of our surface is about

2π · f (xj)
(
1 + [ f ′(xj)]2)1/2

�xj .

See Figure 8.33. If we sum up the area contribution from each subinterval of
the partition we obtain that the area of our surface of revolution is about

k∑
j=1

2π · f (xj)
(
1 + [ f ′(xj)]2)1/2

�xj . (∗)

x

FIGURE 8.33
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But this sum is also a Riemann sum for the integral

2π

∫ b

a
f (x)

(
1 + [ f ′(x)]2)1/2 dx.

As the mesh of the partition gets finer, the sum (∗) more closely approximates
what we think of as the area of the surface, but it also converges to the integral.
We conclude that the integral

2π

∫ b

a
f (x)

(
1 + [ f ′(x)]2)1/2 dx

represents the area of the surface of revolution.

EXAMPLE 8.23
Let f ( x) = 2x3. For 1 ≤ x ≤ 2 we rotate the graph of f about the x−axis.

Calculate the resulting surface area.

SOLUTION

According to our definition, the area is

2π

∫ 2

1

f ( x)
(
1 + [ f ′( x) ]2

)1/2
dx

= 2π

∫ 2

1

2x3
(
1 + [6x2]2

)1/2
dx

=
π

54

∫ 2

1

3

2
( 1 + 36x4) 1/2( 144x3) dx.

This integral is easily calculated using the u-substitution u = 36x4, du =
144x3 dx. With this substitution the limits of integration become 36 and

576; the area is thus equal to

π

54

∫ 576

36

3

2
( 1 + u) 1/2 du =

π

54
( 1 + u) 3/2

∣∣∣∣576

36

=
π

54

[
( 577) 3/2 − ( 37) 3/2

]
≈ 793.24866.
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y

x

FIGURE 8.34

EXAMPLE 8.24
Find the surface area of a right circular cone with base of radius 4 and

height 8.

SOLUTION

It is convenient to think of such a cone as the surface obtained by rotat-

ing the graph of f ( x) = x/2, 0 ≤ x ≤ 8, about the x-axis (Figure 8.34).

According to our definition, the surface area of the cone is

2π

∫ 8

0

x

2
[1 + ( 1/2) 2]1/2 dx = 2π

√
5

4

∫ 8

0

x dx

= 16

√
5π.

YOU TRY IT The standard formula for the surface area of a cone is

S = πr
√

h2 + r 2.

Derive this formula by the method of Example 8.24.
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We may also consider the area of a surface obtained by rotating the graph of
a function about the y-axis. We do so by using y as the independent variable.
Here is an example:

EXAMPLE 8.25
Set up, but do not evaluate, the integral for finding the area of the surface

obtained when the graph of f ( x) = x6, 1 ≤ x ≤ 4, is rotated about the

y-axis.

SOLUTION

We think of the curve as the graph of φ( y) = y1/6, 1 ≤ y ≤ 4096. Then

the formula for surface area is

2π

∫ 4096

1

φ( y)
(
1 + [φ′( y) ]2

)1/2
dy.

Calculating φ′( y) and substituting, we find that the desired surface area is

the value of the integral

2π

∫ 4096

1

y1/6
(
1 + [( 1/6) y−5/6]2

)1/2
dy.

YOU TRY IT Write the integral that represents the surface area of a hemi-

sphere of radius one and evaluate it.

8.6 Hydrostatic Pressure
......................................................................................................................................

If a liquid sits in a tank, then it exerts force on the side of the tank. This force
is caused by gravity, and the greater the depth of the liquid then the greater the
force. Pascal’s principle asserts that the force exerted by a body of water depends
on depth alone, and is the same in all directions. Thus the force on a point in
the side of the tank is defined to be the depth of the liquid at that point times
the density of the liquid. Naturally, if we want to design tanks which will not
burst their seams, it is important to be able to calculate this force precisely.

Imagine a tank of liquid having density ρ pounds per cubic foot as shown in
Figure 8.35. We want to calculate the force on one flat side wall of the tank.
Thus we will use the independent variable h to denote depth, measured down
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FIGURE 8.35

from the surface of the water, and calculate the force on the wall of the tank
between depths h = a and h = b (Figure 8.36). We partition the interval [a, b]:

a = h0 ≤ h1 ≤ h2 ≤ · · · ≤ hk−1 ≤ hk = b.

Assume that the width of the tank at depth h is w(h). The portion of the wall
between h = h j−1 and h = h j is then approximated by a rectangle Rj of length
w(h j) and width �h = h j − h j−1 (Figure 8.37).

h = a

h = b

FIGURE 8.36

w(hj)

h

FIGURE 8.37
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Now we have the following data:

Area of Rectangle = w(h j) · �h square feet

Depth of Water ≈ h j feet

Density of Liquid = ρ pounds per cubic foot.

It follows that the force exerted on this thin portion of the wall is about

Pj = h j · ρ · w(h j) · �h.

Adding up the force on each Rj gives a total force of

k∑
j=1

Pj =
k∑

j=1

h jρ w(h j)�h.

But this last expression is a Riemann sum for the integral

∫ b

a
hρw(h)dh. (∗)

EXAMPLE 8.26
A swimming pool is rectangular in shape, with vertical sides. The bottom

of the pool has dimensions 10 feet by 20 feet and the depth of the water is

8 feet. Refer to Figure 8.38. The pool is full. Calculate the total force on one

of the long sides of the pool.

10
8

20

FIGURE 8.38
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SOLUTION

We let the independent variable h denote depth, measured vertically

down from the surface of the water. Since the pool is rectangular with ver-

tical sides, w( h) is constantly equal to 20 (because we are interested in the

long side). We use 62.4 pounds per cubic foot for the density of water. Ac-

cording to (∗) , the total force on the long side is

∫ 8

0

h · 62.4 · w( h) dh =
∫ 8

0

h · 62.4 · 20 dh = 39936 lbs.

YOU TRY IT A tank full of water is in the shape of a cube of side 10 feet. How

much force is exerted against the wall of the tank between the depths of 3 feet

and 6 feet?

EXAMPLE 8.27
A tank has vertical cross section in the shape of an inverted isosceles trian-

gle with horizontal base, as shown in Figure 8.39. Notice that the base of

the tank has length 4 feet and the height is 9 feet. The tank is filled with

water to a depth of 5 feet. Water has density 62.4 pounds per cubic foot.

Calculate the total force on one end of the tank.

SOLUTION

As shown in Figure 8.40, at depth h (measured down from the surface of

the water), the tank has width corresponding to the base of an isosceles

triangle similar to the triangle describing the end of the tank. The height

9 ft

4 ft

5 ft

FIGURE 8.39
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9

4

5
5 _ h

FIGURE 8.40

of this triangle is 5 − h. Thus we can solve

w( h)

5 − h
=

4

9
.

We find that

w( h) =
4

9
( 5 − h) .

According to (∗) , the total force on the side is then

∫ 5

0

h · 62.4 · 4

9
( 5 − h) dh ≈ 577.778 lbs.

EXAMPLE 8.28
An aquarium tank is filled with a mixture of water and algicide to keep the

liquid clear for viewing. The liquid has a density of 50 pounds per cubic

foot. For viewing purposes, a window is located in the side of the tank, with

center 20 feet below the surface. The window is in the shape of a square of

side 4
√

2 feet with vertical and horizontal diagonals (see Figure 8.41). What

is the total force on this window?

SOLUTION

As usual, we measure depth downward from the surface with independent

variable h. Then the range of integration will be h = 20 − 4 = 16 to h =
20 + 4 = 24.Refer to Figure 8.42. For h between 16 and 20, we notice that

the right triangle in Figure 8.42 is isosceles and hence has base of length
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4√2

FIGURE 8.41

h − 16. Therefore

w( h) = 2( h − 16) = 2h − 32.

According to our analysis, the total force on the upper half of the window

is thus

∫ 20

16

h · 50 · ( 2h − 32) dh =
44880

3
lbs.

For the lower half of the window, we examine the isosceles right triangle

in Figure 8.43. It has base 24 − h. Therefore, for h ranging from 20 to 24,

we have

w( h) = 2( 24 − h) = 48 − 2h.

h = 16

h = 24

h _ 16

4√2

FIGURE 8.42
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h = 16

h = 24

4√2

24 _ h

FIGURE 8.43

According to our analysis, the total force on the lower half of the window is

∫ 24

20

h · 50 · ( 48 − 2h) dh =
51200

3
lbs.

The total force on the entire window is thus

44880

3
+

51200

3
=

96080

3
lbs.

YOU TRY IT A tank of water has flat sides. On one side, with center 4 feet below

the surface of the water, is a circular window of radius 1 foot. What is the total

force on the window?

8.7 Numerical Methods of Integration
......................................................................................................................................

While there are many integrals that we can calculate explicitly, there are many
others that we cannot. For example, it is impossible to evaluate∫

e−x2
dx. (∗)
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That is to say, it can be proved mathematically that no closed-form antideriva-
tive can be written down for the function e−x2

. Nevertheless, (∗) is one of the
most important integrals in all of mathematics, for it is the Gaussian probability
distribution integral that plays such an important role in statistics and proba-
bility.

Thus we need other methods for getting our hands on the value of an integral.
One method would be to return to the original definition, that is to the Riemann
sums. If we need to know the value of

∫ 1

0
e−x2

dx

then we can approximate this value by a Riemann sum

∫ 1

0
e−x2

dx ≈ e−(0.25)2 · 0.25 + e−(0.5)2 · 0.25 + e−(0.75)2 · 0.25 + e−12 · 0.25.

A more accurate approximation could be attained with a finer approximation:

∫ 1

0
e−x2

dx ≈
10∑
j=1

e−( j ·0.1)2 · 0.1 (∗∗)

or

∫ 1

0
e−x2

dx ≈
100∑
j=1

e−( j ·0.01)2 · 0.01 (	)

The trouble with these ‘‘numerical approximations’’ is that they are calcu-
lationally expensive: the degree of accuracy achieved compared to the number
of calculations required is not attractive.

Fortunately, there are more accurate and more rapidly converging methods
for calculating integrals with numerical techniques. We shall explore some of
these in the present section.

It should be noted, and it is nearly obvious to say so, that the techniques of
this section require the use of a computer. While the Riemann sum (∗∗) could
be computed by hand with some considerable effort, the Riemann sum (	) is all
but infeasible to do by hand. Many times one wishes to approximate an integral
by the sum of a thousand terms (if, perhaps, five decimal places of accuracy are
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needed). In such an instance, use of a high-speed digital computer is virtually
mandatory.

8.7.1 The Trapezoid Rule
The method of using Riemann sums to approximate an integral is sometimes
called ‘‘the method of rectangles.’’ It is adequate, but it does not converge very
quickly and it begs more efficient methods. In this subsection we consider the
method of approximating by trapezoids.

Let f be a continuous function on an interval [a, b] and consider a partition
P = {x0, x1, . . . , xk} of the interval. As usual, we take x0 = a and xk = b. We
also assume that the partition is uniform.

In the method of rectangles we consider a sum of the areas of rectangles.
Figure 8.44 shows one rectangle, how it approximates the curve, and what error
is made in this particular approximation. The rectangle gives rise to a ‘‘triangu-
lar’’ error region (the difference between the true area under the curve and the
area of the rectangle). We put quotation marks around the word ‘‘triangular’’
since the region in question is not a true triangle but instead is a sort of curvilin-
ear triangle. If we instead approximate by trapezoids, as in Figure 8.45 (which,
again, shows just one region), then at least visually the errors seem to be much
smaller.

In fact, letting �x = xj − xj−1 as usual, we see that the first trapezoid in the
figure has area [ f (x0) + f (x1)] · �x/2. The second has area [ f (x1) + f (x2)] ·

FIGURE 8.44
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FIGURE 8.45

�x/2, and so forth. In sum, the aggregate of the areas of all the trapezoids is

1
2

· { f (x0) + f (x1)
} · �x + 1

2
· { f (x1) + f (x2)

} · �x + · · ·

+1
2

· { f (xk−1) + f (xk)
} · �x

= �x
2

· { f (x0) + 2 f (x1) + 2 f (x2) + · · · + 2 f (xk−1) + f (xk)}. (†)

It is known that, if the second derivative of f on the interval [a, b] does not
exceed M then the approximation given by the sum (†) is accurate to within

M · (b − a)3

12k2
.

[By contrast, the accuracy of the method of rectangles is generally not better
than

N · (b − a)2

2k
,

where N is an upper bound for the first derivative of f . We see that the
method of trapezoids introduces an extra power of (b − a) in the numerator
of the error estimate and, perhaps more importantly, an extra factor of k in the
denominator.]
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EXAMPLE 8.29
Calculate the integral ∫ 1

0

e−x2

dx

to two decimal places of accuracy.

SOLUTION

We first calculate that if f ( x) = e−x2

then f ′′( x) = ( 4x2 − 2) e−x2

and

therefore | f ′′( x) | ≤ 2 = M for 0 ≤ x ≤ 1. In order to control the error,

and to have two decimal places of accuracy, we need to have

M · ( b − a) 3

12k2
< 0.005

or

2 · 13

12k2
< 0.005.

Rearranging this inequality gives

100

3
< k2.

Obviously k = 6 will do.

So we will use the partition P = {0, 1/6, 1/3, 1/2, 2/3, 5/6, 1}. The

corresponding trapezoidal sum is

S =
1/6

2
·
{

e−02

+ 2e−( 1/6) 2

+ 2e−( 1/3) 2

+ 2e−( 1/2) 2

+2e−( 2/3) 2

+ 2e−( 5/6) 2

+ e−12
}
.

Some tedious but feasible calculation yields then that

S =
1

12
· {1 + 2 · .9726 + 2 · .8948 + 2 · .7880 + 2 · .6412

+2 · .4994 + .3679}

=
8.9599

12
= .7451.
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We may use a computer algebra utility like Mathematica or Maple to

calculate the integral exactly (to six decimal places) to equal 0.746824.

We thus see that the answer we obtained with the Trapezoid Rule is cer-

tainly accurate to two decimal places. It is not accurate to three decimal

places.

It should be noted that Maple and Mathematica both use numerical tech-
niques, like the ones being developed in this section, to calculate integrals.
So our calculations merely emulate what these computer algebra utilities do
so swiftly and so well.

YOU TRY IT How fine a partition would we have needed to use if we wanted

four decimal places of accuracy in the last example? If you have some facility with

a computer, use the Trapezoid Rule with that partition and confirm that your an-

swer agrees with Mathematica's answer to four decimal places.

EXAMPLE 8.30
Use the Trapezoid Rule with k = 4 to estimate

∫ 1

0

1

1 + x2
dx.

SOLUTION

Of course we could calculate this integral precisely by hand, but the point

here is to get some practice with the Trapezoid Rule. We calculate

S =
1/4

2
·

⎧⎨⎩ 1

1 + 02
+ 2 · 1

1 + ( 1

4
) 2

+ 2 · 1

1 + ( 2

4
) 2

+ 2 · 1

1 + ( 3

4
) 2

+
1

1 + 12

⎫⎬⎭.

A bit of calculation reveals that

S =
1

8
· 5323

850
≈ 0.782794 . . . .

Now if we take f ( x) = 1/( 1 + x2) then f ′′( x) = ( 6x2 − 2)/( 1 + x2) 3.

Thus, on the interval [0, 1], we have that | f ′′( x) | ≤ 4 = M . Thus the error
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estimate for the Trapezoid Rule predicts accuracy of

M · ( b − a) 3

12k2
=

4 · 13

12 · 42
≈ 0.020833 . . . .

This suggests accuracy of one decimal place.

Now we know that the true and exact value of the integral is arctan 1 ≈
0.78539816 . . . . Thus our Trapezoid Rule approximation is good to two,

and nearly to three, decimal places---better than predicted.

8.7.2 Simpson's Rule
Simpson’s Rule takes our philosophy another step: If rectangles are good, and
trapezoids better, then why not approximate by curves? In Simpson’s Rule, we
approximate by parabolas.

We have a continuous function f on the interval [a, b] and we have a
partition P = {x0, x1, . . . , xk} of our partition as usual. It is convenient in this
technique to assume that we have an even number of intervals in the partition.

Now each rectangle, over each segment of the partition, is capped off by an
arc of a parabola. Figure 8.46 shows just one such rectangle. In fact, for each
pair of intervals [x2 j−2, x2 j−1], [x2 j−1, x2 j], we consider the unique parabola
passing through the endpoints

(x2 j−2, f (x2 j−2)) , (x2 j−1, f (x2 j−1)) , (x2 j , f (x2 j)). (∗)

FIGURE 8.46
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Note that a parabola y = Ax2 + Bx + C has three undetermined coefficients,
so three points as in (∗) will determine A, B, C and pin down the parabola.

In fact (pictorially) the difference between the parabola and the graph of f
is so small that the error is almost indiscernible. This should therefore give rise
to a startling accurate approximation, and it does.

Summing up the areas under all the approximating parabolas (we shall not
perform the calculations) gives the following approximation to the integral:

∫ b

a
f (x) dx ≈ �x

3

{
f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3)

+2 f (x4) + · · · + 2 f (xk−2) + 4 f (xk−1) + f (xk)
}
.

If it is known that the fourth derivative f (iv)(x) satisfies | f (iv)(x)| ≤ M on [a, b],
then the error resulting from Simpson’s method does not exceed

M · (b − a)5

180 · k4
.

EXAMPLE 8.31
Use Simpson's Rule to calculate

∫ 1

0
e−x2

dx to two decimal places of

accuracy.

SOLUTION

If we set f ( x) = e−x2

then it is easy to calculate that

f ( iv) ( x) = e−x2 · [12 − 72x2 + 32x4].

Thus | f ( x) | ≤ 12 = M .

In order to achieve the desired degree of accuracy, we require that

M · ( b − a) 5

180 · k4
< 0.005

or

12 · 15

180 · k4
< 0.005.
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Simple manipulation yields

200

15
< k4.

This condition is satisfied when k = 2.

Thus our job is easy. We take the partition P = {0, 1/2, 1}. The sum

arising from Simpson's Rule is then

S =
1/2

3
{ f ( 0) + 4 f ( 1/2) + f ( 1)}

=
1

6
{e−02

+ 4 · e−( 1/2) 2

+ e−12}

=
1

6
{1 + 3.1152 + 0.3679}

≈ 1

6
· 4.4831

≈ 0.7472

Comparing with the ``exact value'' 0.746824 for the integral that we noted

in Example 8.29, we find that we have achieved two decimal places of

accuracy.

It is interesting to note that if we had chosen a partition with k = 6, as

we did in Example 8.29, then Simpson's Rule would have guaranteed an

accuracy of

M · ( b − a) 5

180 · k4
=

12 · 15

180 · 64
≈ 0.00005144 ,

or nearly four decimal places of accuracy.

EXAMPLE 8.32
Estimate the integral ∫ 1

0

1

1 + x2
dx

using Simpson's Rule with a partition having four intervals. What degree

of accuracy does this represent?
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SOLUTION

Of course this example is parallel to Example 8.30, and you should compare

the two examples. Our function is f ( x) = 1/( 1 + x2) and our partition is

P = {0, 1/4, 2/4, 3/4, 1}. The sum from Simpson's Rule is

S =
1/4

3
· { f ( 0) + 4 f ( 1/4) + 2 f ( 1/2) + 4 f ( 3/4) + f ( 1)}

=
1

12
·
{

1

1 + 02
+ 4 · 1

1 + ( 1/4) 2

+ 2 · 1

1 + ( 1/2) 2
+ 4 · 1

1 + ( 3/4) 2
+

1

1 + 12

}

≈ 1

12
· {1 + 3.7647 + 1.6 + 2.56 + 0.5}

≈ 0.785392.

Comparing with Example 8.30, we see that this answer is accurate to four

decimal places. We invite the reader to do the necessary calculation with

the Simpson's Rule error term to confirm that we could have predicted this

degree of accuracy.

YOU TRY IT Estimate the integral

∫ e2

e

1

ln x
dx

using both the Trapezoid Rule and Simpson's Rule with a partition having six

points. Use the error term estimate to state what the accuracy prediction of each

of your calculations is. If the software Mathematica or Maple is available to

you, check the answers you have obtained against those provided by these com-

puter algebra systems.
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QUIZ

1. A solid has base the unit circle in the x-y plane and vertical slices, parallel
to the y-axis, which are discs with centers in the x-y plane and diameters
extending across the base circle. Calculate the volume of this solid.

2. A solid has base a unit square with center at the origin and vertices on the
x- and y- axes at the points (±1, 0) and (0, ±1). The vertical cross section
of this solid, parallel to the y-axis, is an equilateral triangle. What is the
volume of this solid?

3. Set up the integral to calculate the volume enclosed when the indicated
curve over the indicated interval is rotated about the indicated line. Do
not evaluate the integral.
(a) y = x3 2 ≤ x ≤ 4 x-axis
(b) y = 3

√
x 1 ≤ x ≤ 8 y-axis

(c) y = x1/2 0 ≤ x ≤ 2 y = −1
(d) y = x + 3 −1 ≤ x ≤ 2 y = 4
(e) y = x1/2 4 ≤ x ≤ 6 x = −1
(f) y = cos x 0 ≤ x ≤ π/2 y = 0

4. Set up the integral to evaluate the indicated surface area. Do not
evaluate.
(a) The area of the surface obtained when y = x1/3, 0 ≤ x ≤ 4, is rotated

about the x-axis.
(b) The area of the surface obtained when y = x−1/5, 1 ≤ x ≤ 3, is rotated

about the y-axis.
(c) The area of the surface obtained when y = x3, 0 ≤ x ≤ 3, is rotated

about the line y = −2.
(d) The area of the surface obtained when y = cos x, 0 ≤ x ≤ π/2, is ro-

tated about the x-axis.
(e) The area of the surface obtained when y = x1/3, 1 ≤ x ≤ 4, is rotated

about the line x = −2.
(f) The area of the surface obtained when y = x4, 0 ≤ x ≤ 1, is rotated

about the x-axis.

5. A water tank has a submerged window that is in the shape of a circle
of radius 3 feet. The center of this circular window is 10 feet below the
surface. Set up, but do not calculate, the integral for the pressure on the
lower half of this window---assuming that water weighs 62.4 pounds per
cubic foot.
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6. A swimming pool is V-shaped. Each end of the pool is an inverted equi-
lateral triangle of side 8 feet. The pool is 20 feet long. The pool is full.
Set up, but do not calculate, the integral for the pressure on one end of
the pool.

7. A man climbs a ladder with a 80-pound sack of sand that is leaking one
pound per minute. If he climbs steadily at the rate of 4 feet per minute,
and if the ladder is 20 feet high, then how much work does he do in
climbing the ladder?

8. Because of a prevailing wind, the force that opposes a certain runner is
2x2 + 3x + 4 pounds at position x. How much work does this runner per-
form as he runs from x = 2 to x = 10 (with distance measured in feet)?

9. Set up, but do not evaluate, the integrals for each of the following arc
length problems.
(a) The length of the curve y = cos x, 0 ≤ x ≤ π/2
(b) The length of the curve x2 = y3, 1 ≤ x ≤ 4
(c) The length of the curve sin y = x, 0 ≤ y ≤ π/2
(d) The length of the curve y = x2, 1 ≤ x ≤ 3

10. Set up the integral for, but do not calculate, the average value of the given
function on the given interval.
(a) f (x) = sin2 x [1, 4]
(b) g (x) = tan x [0, π/3]

(c) h(x) = 2x
x + 1

, [−2, 2]

(d) f (x) = sin x
2 + cos x

[−π/2, π]

11. Write down the sum that will estimate the given integral using the method
of rectangles with mesh of size k. You need not actually evaluate the sum.

(a)
∫ 4

0
e−x2

dx k = 4

(b)
∫ 2

−2
cos(ex) dx k = 8

(c)
∫ 0

−2
sin x2 dx k = 5

(d)
∫ 4

0

ex

2 + cos x
dx k = 10

12. Do each of the problems in Exercise 11 with ‘‘method of rectangles’’ re-
placed by ‘‘trapezoid rule.’’



This page intentionally left blank 



5

5
–

p̈

Final Exam

1. The number 3.96545454 written as a rational fraction is
(a) 3894/999
(b) 3152/1000
(c) 39258/9900
(d) 41445/9999
(e) 5312/2122

2. The intersection of the sets [2, 4] and (3, 6) is
(a) (3, 4]
(b) [2, 6)
(c) (3, 5)
(d) (2, 6]
(e) [3, 4]

3. The intersection of the sets {(x, y) : x2 + y2 < 1} and {(x, y) : y > 0} is
(a) a half-disc with boundary
(b) a quarter-disc
(c) a disc without boundary
(d) a disc with boundary
(e) a half-disc without boundary

4. The line through the points (2, −4) and (1, 6) has slope
(a) 10
(b) −10
(c) 5
(d) 3
(e) −2

319
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5. The equation of the line through (1, 2) that is perpendicular to
y = 3x + 6 is
(a) y − 1 = [1/3](x − 2)
(b) y − 2 = 3(x − 1)
(c) y = [1/3](x + 1)
(d) y − 2 = [−1/3](x − 1)
(e) y − 2 = [1/3](x − 1)

6. The equation of the line through (−2, 5) that is parallel to
y = −4x + 2 is
(a) y − 5 = −4(x + 2)
(b) y − 2 = −4(x + 5)
(c) y + 5 = 4(x − 2)
(d) y − 5 = 4(x − 2)
(e) y + 2 = 4(x − 5)

7. The line passing through the points (2, 1) and (5, 3) has equation
(a) y + 2 = [3/2](x + 1)
(b) y − 2 = [2/3](x − 1)
(c) y − 1 = [−2/3](x − 2)
(d) y − 1 = [2/3](x − 2)
(e) y + 1 = [2/3](x + 2)

8. The equation y + y2 − 3x + 2 = 0 describes
(a) a circle
(b) a parabola
(c) a line
(d) a cardioid
(e) an ellipse

9. The curve y = x3 intersects the line y = x
(a) in a segment
(b) in a circle
(c) in an arc
(d) in two points
(e) in one point

10. The sine of an angle is always
(a) between 1 and 2 inclusive
(b) between −1 and 0 exclusive
(c) between −1 and 1 inclusive
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(d) between 0 and 1 inclusive
(e) between 5 and 10 exclusive

11. The sine and cosine of π/3 are
(a) 1/2 and

√
3/2

(b)
√

3/2 and 1/2

(c)
√

2/2 and
√

2/2

(d) −
√

3/2 and 1/2

(e) −1/2 and
√

3/2

12. Let S be the set of all people and let T be the set of all people. Let f be
the rule that assigns to each person his guru. Is f a function?
(a) no
(b) yes
(c) sometimes
(d) maybe
(e) definitely

13. If f (x) = x2 + 1 and g (x) = 3x − 5 then g ◦ f (x) equals

(a) x2 − x
(b) x − 5
(c) 9x2 + x + 4
(d) x2 − 2
(e) 3x2 − 2

14. If f (x) = x3 + 1 then f −1(x) equals

(a) 3
√

x − 1
(b)

√
x − 1

(c) x − 1
(d) (x − 1)3

(e) x3

15. The limit limx→2
x2 − 4
x − 2

equals

(a) −2
(b) 1
(c) 4
(d) 3
(e) 2
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16. The limit of a function f at a point c, if it exists, is
(a) asymptotic
(b) mellifluous
(c) ambiguous
(d) unique
(e) well-defined

17. Let f (x) =
{

−2 if x < 3
x2 if x ≥ 3

. Then

(a) limx→3− f (x) = 1
(b) limx→3+ f (x) = 12
(c) limx→3− f (x) = 1
(d) limx→3− f (x) = −2
(e) limx→3+ f (x) = −2

18. The value of limx→1(x − 1)2 sin(1/(x − 1)) is
(a) −2
(b) 2
(c) −1
(d) 1
(e) 0

19. The function f (x) =
{

−x2 if x < 3
−x3 + 18 if x ≥ 3

is

(a) continuous at x = 3
(b) discontinuous at x = 3
(c) limited at x = 3
(d) attenuated at x = 3
(e) undefined at x = 3

20. The derivative of the function f (x) = x3 − x2 at x = 3 is
(a) 20
(b) 21
(c) 19
(d) 18
(e) 17

21. The function f (x) =
√

|x − 1| is
(a) ambiguous at 1
(b) precisely at 1
(c) undefined at 1
(d) differentiable at 1
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(e) not differentiable at 1

22. The instantaneous velocity of a car whose motion is given by p(t) = t/(t +
1) at time t = 2 is
(a) 1/6
(b) 1/9
(c) 1/8
(d) 1/7
(e) 1/10

23. If f is differentiable at the point c then f is
(a) approachable at the point c
(b) attenuated at the point c
(c) continuous at the point c
(d) indivisible at the point c
(e) ambiguous at the point c

24. The tangent line to the curve y = x3 + x at the point (1, 2) has equation
(a) y + 2 = 4(x + 1)
(b) y + 2 = 3(x − 4)
(c) y − 1 = 4(x − 2)
(d) y − 4 = 2(x − 1)
(e) y − 2 = 4(x − 1)

25. The derivative of the function f (x) = ln x/ex is

(a)
1/x − ln x

ex

(b)
1/x + ln x

ex

(c)
ln x − 2/x

ex

(d)
ex − 1

ln x + 1

(e)
ex

ex + 1

26. If f is an invertible, differentiable function and f (0) = 1 and f ′(0) = 2
then the derivative of f −1 at the point 1 is
(a) 2
(b) 3
(c) 4
(d) 1/3
(e) 1/2
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27. The function f (x) = x3 + x has a graph which is
(a) concave up at all points
(b) concave down when x < 0 and concave up when x > 0
(c) concave up when x < 0 and concave down when x > 0
(d) concave down at all points
(e) decreasing at all point

28. The function g (x) = x2

x + 1
has a graph which is

(a) increasing on (−∞, −2) and (0, ∞), decreasing on (−2, 0)
(b) decreasing on (−∞, −2) and (0, ∞), increasing on (−2, 0)
(c) increasing on (−∞, −2), decreasing on (0, ∞), decreasing on (−2, 0)
(d) decreasing on (−∞, −2), increasing on (0, ∞), decreasing on (−2, 0)
(e) increasing everywhere

29. The function h(x) = x
x2 + 1

has

(a) a local minimum at x = 2
(b) a local maximum at x = −1 and a local maximum at x = 1
(c) a local minimum at x = −1 and a local maximum at x = 1
(d) a local maximum at x = −1 and a local minimum at x = 1
(e) a local minimum at x = −1 and a local minimum at x = 1

30. A cylindrical can is to hold 20 cubic inches. What dimensions for the can
will use the least material?
(a) r = 3

√
20/π , h = 2 3

√
20/π

(b) r = 2 3
√

10/π , h = 3
√

10/π

(c) r = 3
√

10π , h = 2 3
√

10π

(d) r = 2
√

10/π , h = 2 2
√

10/π

(e) r = 3
√

10/π , h = 2 3
√

10/π

31. The function f (x) = x2 sin x, 0 < x < ∞ has
(a) no local maxima
(b) no local minima
(c) finitely many local minima
(d) infinitely many local maxima
(e) finitely many local maxima

32. A cubic polynomial function will
(a) always have a local maximum
(b) always have a local minimum
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(c) never have a local maximum
(d) sometimes have a local maximum
(e) never have a local minimum

33. A basketball is losing air at the rate of 3 cubic inches per minute. At
the moment that the radius equals 5 inches, at what rate is the radius
changing?
(a) −3/(50π) inches per minute
(b) −3/(100π) inches per minute
(c) −6/(100π) inches per minute
(d) −3/(10π) inches per minute
(e) −3/(7π) inches per minute

34. A ball is dropped from a height of 100 feet from the surface of the Earth.
After how many seconds does it hit the ground?
(a) 5/2 seconds
(b) 2 seconds
(c) 3 seconds
(d) 7/2 seconds
(e) 1 second

35. The graph of the function f (x) = x4 + 10x is
(a) always concave down
(b) concave up only when x < 0
(c) always concave up
(d) never concave up
(e) concave up only when x > 0

36. A ball is thrown straight down toward the earth with a velocity of 10 feet
per second. It hits the ground after 3 seconds. From what height was the
ball launched?
(a) 194 feet
(b) 150 feet
(c) 174 feet
(d) 200 feet
(e) 19 feet

37. An antiderivative of the function f (x) = x2 + x is
(a) F (x) = x3/3 + x2/2
(b) F (x) = x3/3 − x2/2
(c) F (x) = x3/2 + x2/3
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(d) F (x) = x3 + x2

(e) F (x) = x3/4 + x2/5

38. An antiderivative for the function g (x) = x sin(x2) is

(a) G(x) = 1
3

· sin(x2)

(b) G(x) = cos(x2)

(c) G(x) = −1
4

· cos(x2)

(d) G(x) = −1
2

· cos(x2)

(e) G(x) = 1
3

· cos(x2)

39. The indefinite integral
∫

x
x2 + 1

dx equals

(a) [1/x2] ln(x2 + 1)
(b) [1/x] ln(x2 + 1)
(c) [1/2] ln(x2 − 1)
(d) [1/3] ln(x2 + 1)
(e) [1/2] ln(x2 + 1)

40. The area under the curve f (x) = x2 + x, above the x-axis, and between
x = 2 and x = 4 equals
(a) 74/3
(b) 72/5
(c) 65/7
(d) 33/10
(e) 77/2

41. The area between the curve y = sin x and the x-axis over the interval
[π/2, 5π/2] is
(a) 4
(b) 3
(c) 5
(d) 2
(e) 1

42. The value of the integral
∫ √

2π

√
π/2

2x cos(x2) dx is

(a) π

(b) 2
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(c) 0
(d) −1
(e) 1

43. The area between the curves y = sin x and y = cos x over the interval
[π/2, 9π/4] is
(a) 5

√
2 − 1

(b) 4
√

2 − 1
(c)

√
2 − 5

(d) 5
√

2 + 1
(e)

√
2 + 1

44. If
∫ 5

3 f (x) dx = 2 and
∫ 4

3 f (x) dx = 7 then
∫ 5

4 f (x) dx equals
(a) −4
(b) −5
(c) 5
(d) 4
(e) 2

45. If
∫ b

a f (x) dx = 7 and
∫ b

a g (x) dx = −3 then
∫ b

a 5 f (x) − 4g (x) dx equals

(a) 50
(b) 40
(c) 48
(d) 46
(e) 47

46. The area between the parabolas y = x2 + 1 and y = −x2 + 4x + 7 equals
(a) 64/3
(b) 61/3
(c) 64/5
(d) 59/2
(e) 63/7

47. The area between the parabola y = x2 − 8 − 2x and the x-axis is
(a) 52
(b) 40
(c) 12
(d) 36
(e) 24
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48. If
∫ b

a f (x) dx = 1 and
∫ b

a g (x) dx = 1 then
∫ b

a f (x) · g (x) dx equals

(a) 1
(b) 0
(c) cannot be determined
(d) −1
(e) too large to measure

49. The limit limx→0
cos x − 1

sin2 x
equals

(a) 1/2
(b) −1/2
(c) 1/3
(d) −1/3
(e) 1

50. The limit limx→+∞ xe−x equals
(a) −2
(b) 2
(c) −1
(d) 1
(e) 0

51. The limit limx→0+ | ln x|x equals
(a) 1
(b) 0
(c) 2
(d) e
(e) −1

52. The limit limx→+∞

√
x − x/2

x2
equals

(a) 3
(b) 2
(c) 0
(d) 1
(e) −1

53. The limit limx→0 x ln2 |x| equals
(a) 3
(b) 2
(c) 0
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(d) 1
(e) −2

54. The limit limx→0

(
1

ln(1 + x)
− 1

x

)
equals

(a) −1/3
(b) −1/2
(c) 1/4
(d) 1/3
(e) 1/2

55. The limit limx→+∞
(

3
√

x + 1 − 3
√

x
)

equals

(a) 0
(b) 1
(c) 2
(d) −1
(e) −2

56. The integral
∫ 2

1 (x − 1)−1/2 dx equals
(a) 1
(b) 2
(c) 3
(d) −2
(e) −1

57. The integral
∫ 1
−1 x−2 dx is

(a) divergent
(b) convergent and equal to 1
(c) convergent and equal to 2
(d) conditionally convergent
(e) conditionally divergent

58. The integral
∫ +∞

2 x−2 dx
(a) diverges
(b) converges and equals 1/2
(c) converges and equals 1/3
(d) converges and equals 1
(e) is indeterminate

59. The integral
∫ ∞

5

1
x ln x

dx

(a) converges and equals 1
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(b) converges and equals 2
(c) diverges
(d) oscillates
(e) permutates

60. The area under the curve f (x) = x−3/2, above the x-axis, and over the
interval [2, ∞), is equal to
(a) 4
(b) 1/2
(c) 2
(d)

√
2

(e) 3
√

2

61. Simplify the expression log10

[
100x · 3−x

10y · (
√

10)4

]
.

(a) x + x log10 2 − 3y − 6
(b) 2x − x log10 3 − y − 2
(c) x log10 2 − 3y + 5
(d) x − 3 log10 y + log10 x
(e) x log10 y

62. Express ln(16/125) in terms of ln 2 and ln 5.
(a) 3 ln 2 + 4 ln 5
(b) 4 ln 2 − 3 ln 5
(c) 5 ln 2 − 2 ln 5
(d) ln 5 − ln 2
(e) (ln 5) · (ln 2)

63. The derivative of f (x) = ln(x2 + x) is
(a) (2x + 1)/(x2 + x)
(b) (x + 1)/(x2 + x)
(c) x/(x2 + x)
(d) x/(x + 1)
(e) x2/(x − 1)

64. The derivative of h(x) = (ln x)5 is
(a) 4(ln x)3 · (1/x2)

(b) (ln x)2 · x
(c) 5(ln x)4 · (1/x)
(d) x · ln x
(e) x/(ln x)
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65. The integral
∫

2x
1 + x2

dx evaluates to

(a) ln(x − x2) + C
(b) ln(x + 1) + C
(c) ln x + C
(d) ln(1 − x2) + C
(e) ln(1 + x2) + C

66. Evaluate the integral
∫

cos x
3 sin x − 5

dx.

(a) [1/3] ln(3 sin x − 5) + C
(b) [1/5] ln(3 sin x + 5) + C
(c) [1/2] ln(3 sin x − 3) + C
(d) [1/3] ln(3 sin x + 5) + C
(e) [1/9] ln(2 sin x − 5) + C

67. Simplify the expressions exp(ln a − ln b) and ln(5 exp b).
(a) b/a and ln b + 5
(b) a/b and ln 5 + b
(c) ab and ln(5b)
(d) a/b and b ln 5
(e) b/a and 5 ln b

68. Simplify the expression
[exp(a)]3 · [exp(b)]2

[exp(c)]5

(a) exp(a − b + c)
(b) exp(3a − 4b + 5c)
(c) exp(a + b + c)
(d) exp(3a + 2b − 5c)
(e) exp(2a − 3b + 5c)

69. The derivative of the function f (x) = exp(sin2 x) is
(a) exp(cos2 x) · (2 sin x · cos x)
(b) exp(sin x) · (2 sin x · cos x)
(c) exp(sin2 x) · (2 sin x)
(d) exp(sin x cos x) · (2 sin x · cos x)
(e) exp(sin2 x) · (2 sin x · cos x)

70. Calculate the integral
∫

exp[sin x] · cos x dx.
(a) exp[tan x] + C
(b) exp[cos x] + C
(c) exp[sin x] + C
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(d) exp[sin x] + cos x + C
(e) exp[cos x] + sin x + C

71. Calculate
∫

[exp(2x)]3 dx.
(a) [exp(3x)]2 + C

(b) [exp(2x)]3 + C

(c) [exp(2x)]4/4 + C

(d) [1/6][exp(2x)]3 + C

(e) [1/5][exp(2x)]4 + C

72. Simplify ln(e3 · 54).
(a) 3 + 4 ln 5
(b) 3 − 4 ln 5
( ) 5 + 3 ln 4
(c) 4 + 5 ln 3
(d) 5 − 5 ln 5

73. Simplify the expression ln[e3x · 5e].
(a) x + e ln 5
(b) 3x + 3 ln 5
(c) 3x + e ln 5
(d) x − e ln 5
(e) 3x + 5 ln e

74. Simplify the expression e4 ln 7−2 ln 3.
(a) 74/32

(b) 72/34

(c) 77/33

(d) 44/33

(e) 47/23

75. Calculate log2 8 − log3 81 + log5 125.
(a) 1
(b) 2
(c) 3
(d) −2
(e) −1

76. Solve the equation 3x · 52x = 3/7x for x.
(a) x = log5 323
(b) x = log3 525
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(c) x = log252 3
(d) x = log52 3
(e) x = log525 3

77. Calculate
d

dx
log3(sin x).

(a) cos x/[ln 3 · sin x]
(b) sin x/[ln 3 · cos x]
(c) sin x/ cos x
(d) cos x/[ln sin x]
(e) cos x/[ln 3 ln sin x]

78. Calculate
d

dx
5cos x.

(a) 5sin x · ln 5 · cos x
(b) 5cos x · ln 5 · (− sin x)
(c) 5sin x · ln 5
(d) 5cos x · ln 5
(e) 5cos x sin x · ln 5 · cos x

79. Calculate
∫

3sin x · cos x dx.
(a) 3sin x cos x · ln 3
(b) 3cos x · ln 3
(c) 3sin x · ln 3
(d) 3sin x/ ln 3
(e) 3cos x/ ln 3

80. The derivative of g (x) = xsin x is

(a) (sin x)(cos x)xsin x

(b) (sin x) · xcos x

(c) (cos x) · xsin x

(d) (sin x) · xsin x−1

(e)
[
cos x · ln x + sin x

x

]
· xsin x

81. A population of bacteria tends to double every three hours. If there are
10,000 bacteria at 10:00 a.m., then how many will there be at noon?
(a) 14,444
(b) 16,355
(c) 12,991
(d) 15,874
(e) 13,565
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82. Calculate
d

dx
Sin−1(x2 + x).

(a) (x2 + x) · Sin−1(x)
(b) Cos−1(x2 + x)
(c) (2x + 1)/

√
1 − x4 − 2x3 = x2

(d) (x + 1)/
√

1 − x4 − x2

(e) (x2 + x)/
√

1 − x2 − x

83. Calculate
∫

x2 cos x dx.
(a) x2 sin x + 2x sin x + sin x + C
(b) x2 cos x + x sin x + x
(c) x2 sin x + 2 cos x − sin x + C
(d) x2 cos x − 2x sin x + 2 cos x + C
(e) x2 sin x + 2x cos x − 2 sin x + C

84. Evaluate
∫

ln x dx.
(a) x ln x − x + C
(b) x ln x + x + C
(c) ln x − x + C
(d) x ln x − ln x + C
(e) ln x − x2 ln x + C

85. Calculate the integral
∫

dx
(x − 1)(x + 2)

dx.

(a) [2/3] ln |x − 1| + [1/3] ln |x + 2| + C
(b) [1/3] ln |x − 1| − [1/3] ln |x + 2| + C
(c) [−1/3] ln |x + 1| − [2/3] ln |x − 2| + C
(d) ln |x − 1| − ln |x + 2| + C
(e) ln |x − 3| − ln |x + 3| + C

86. Calculate the integral
∫

x dx
(x + 1)(x2 + 1)

dx.

(a) ln[x(x2 + 1)] − ln | + 1| + C
(b) ln |x − 1| − ln(x2 − 1) − tan x + C
(c) ln |x + 1| + ln(x2 + 1) + x2 + 1 + C
(d) [−1/2] ln |x + 1| + [1/4] ln(x2 + 1) + [1/2]Tan−1x + C
(e) ln |x + 1| − ln(x2 + 1) + Tan−1x + C

87. Evaluate the integral
∫

2x dx
(x2 + 1)3

.

(a) [−1/2](x2 + 1)−2 + C
(b) [1/2](x2 + 1)3 + C
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(c) (x2 + 1)4 + C
(d) (x2 + 1)−3 + C
(e) (x2 + x)−3

88. Evaluate the integral
∫

sin2 x cos3 x dx.
(a) cos3 x − sin4 x + C
(b) cos3 x sin4 x + C
(c) sin3 x cos4 x + C
(d) sin3 x/3 − sin5 x/5 + C
(e) sin3 x/3 + sin5 x/5 + C

89. Calculate
∫

sin2 x cos2 x dx.
(a) x/8 + sin 4x + C
(b) x/8 − (sin 4x)/32 + C
(c) 1/4 − (sin 4x)/4 + C
(d) x/4 + (cos 4x)/32 + C
(e) x/8 + (sin 4x)/4 + C

90. A solid region has base a square in the plane with vertices (±1, 0) and
(0, ±1). The vertical slices parallel to the y-axis are squares with base in
the x-y plane. What is the volume of the solid?
(a) 8/3
(b) 10/3
(c) 7/3
(d) 5/2
(e) 6/5

91. A solid is obtained by rotating the region below y = √
x, above the

x-axis, and between x = 2 and x = 4 about the x-axis. What is the re-
sulting volume?
(a) 2π

(b) 3π

(c) 6π

(d) 5π

(e) 4π

92. A body is moved along the real line from x = 1 to x = 4 while resist-
ing a force of x3 + 2x + 4 pounds. How much work is performed in the
process?
(a) 500/6 ft. lbs.
(b) 125/2 ft. lbs.
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(c) 255/3 ft. lbs.
(d) 363/4 ft. lbs.
(e) 325/4 ft. lbs.

93. Calculate the average of the function g (x) = sin 3x over the interval
[π/2, π].
(a) −2/[3π]
(b) 5/π

(c) 3/[2π]
(d) 2/π

(e) 2/[3π]

94. Set up (but do not calculate) the integral that represents the length of that
portion of the graph of f (x) = x2 + x over the interval [2, 5].
(a)

∫ 5
2

√
2x2 + 2x + 2 dx

(b)
∫ 5

2
3
√

4x2 + 4x + 2 dx

(c)
∫ 5

2

√
4x2 + 4x + 2 dx

(d)
∫ 5

2

√
4x2 + 4x + 4 dx

(e)
∫ 5

2

√
x2 + 2x + 2 dx

95. Set up, but do not calculate, the integral that represents the surface area of
the surface obtained when the curve y = √

x, 1 ≤ x ≤ 4, is rotated about
the x-axis.
(a)

∫ 4
1 2π

√
1/sqr tx ·

√
1 + x2 dx

(b)
∫ 4

1 2π
√

x ·
√

1 + [1/(4x)] dx

(c)
∫ 4

1 2π
√

x ·
√

1 + 4x dx

(d)
∫ 4

1 2π
√

x ·
√

1 + 4x2 dx

(e)
∫ 4

1 2π
√

x ·
√

1 + [1/(4x2)] dx

96. A swimming pool is rectangular in shape with vertical sides. The bottom
of the pool has dimensions 20 feet by 40 feet, and the pool is 10 feet deep.
The pool is full. Calculate the total hydrostatic pressure on that portion
of the short side of the pool between depths 2 feet and 5 feet.
(a) 1210.4
(b) 1310.4
(c) 1110.4
(d) 1001.4
(e) 1020.4
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97. Give the trapezoidal rule approximation to the integral
∫ 2

0 e−x2
dx with a

uniform partition having four intervals.
(a) [1/4] ·

[
e−02 + 2e−(1/2)2 + 4e−(1)2 + 2e−(3/2)2 + e−22

]
(b)

[
e−02 + 2e−(1/2)2 + 2e−(1)2 + 2e−(3/2)2 + e−22

]
(c) [1/4] ·

[
e−02 + e−(1/2)2 + e−(1)2 + e−(3/2)2 + e−22

]
(d) [1/4] ·

[
e−02 + 2e−(1/2)2 + 2e−(1)2 + 2e−(3/2)2 + e−22

]
(e) [1/2] ·

[
2e−02 + 2e−(1/2)2 + 2e−(1)2 + 2e−(3/2)2 + 2e−22

]
98. The advantage of Simpson’s rule over the trapezoid rule (for approxima-

tion of integrals) is that
(a) it is more accurate
(b) it is more complicated
(c) it is more confusing
(d) it involves double precision arithmetic
(e) it uses fractions

99. The reason that we use numerical methods to approximate integrals
is that
(a) it is fun to program the computer
(b) we are lazy
(c) many integrals cannot be calculated explicitly
(d) the textbook demands it
(e) we have no choice

100. Integration by parts is a technique for calculating
(a) the integral of many different functions
(b) the integral of a difference of functions
(c) the integral of a quotient of functions
(d) the integral of a product of functions
(e) the integral of a sum of functions
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Answers to Quizzes
and Final Exam

This book has a great many exercises. For some we provide sketches of solutions
and for others we provide just the answers. For some, where there is repetition,
we provide no answer. For the sake of mastery, we encourage the reader to write
out complete solutions to all the problems.

Chapter 1

1. (a)
1
12

(b)
3221734
100000

(c)
−66
1539

(d)
2970
4522

(e)
−670785

9990

(f)
−1
6

(g)
7

117

(h)
57583
9900

339
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2. In Figure S1.2, set A = 2.3, B = −π/3, C = π , D =
√

2 − 1, E =
√

2 · 3,
F = 5/2, G = −9/10.

G B D

0 x

A F C E

FIGURE S1.2

3.

FIGURE S1.3a

FIGURE S1.3b

FIGURE S1.3c

FIGURE S1.3d

FIGURE S1.3e

FIGURE S1.3f
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4. Let A = (1, −3), B = (−2, 1), C = (π2, −π), D = (−
√

2,
√

3), E =
(
√

3π, −1), F = (1/2, −7/4).

B

C

F
A

E

D

x

y

FIGURE S1.4

5.

FIGURE S1.5a
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FIGURE S1.5b

FIGURE S1.5c
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FIGURE S1.5d

FIGURE S1.5e
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FIGURE S1.5f

6.

FIGURE S1.6a
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FIGURE S1.6b

FIGURE S1.6c
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FIGURE S1.6d

FIGURE S1.6e
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FIGURE S1.6f

7. (a) The given line has slope 1/5.
(b) Given line has slope 4, hence the requested line has slope −1/4.
(c) Write y = 2x + 4 hence slope is 2.
(d) Write y = (−1/2)x hence slope is −1/2.
(e) Slope = 4/7.
(f) Write y = x/2 − 5/2 hence slope is 1/2.

8. (a) y + x/2 = −2
(b) y + x + 3 = 0
(c) y + 4x = 11
(d) y + x/5 = 17/5
(e) y = 4x
(f) y + x/3 = 1/3

9.

y

x

)a(

y

x

)b(
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y

x

)c(

y

x

)d(

y

x

)e(

y

x

)f(

10. (a) Each person has one and only one mother. This is a function.
(b) Some men have more than one sister, others have none. This is not a

function.
(c) Each real numbers has exactly one cube root. This is a function.
(d) Each positive integer has just one square. This is a function.
(e) Some cars have several passengers. Some have none. So this is not a

function.
(f) Each toe is attached to one and only one foot. This is a function.
(g) Each rational number has precisely one integer which just follows it.

This is a function.
(h) Each integer has one and only one predecessor. This is a function.
(i) Each real number has a well-defined cube, and adding four is a well-

defined operation. This is a function.
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11.

(a) (b)

(c) (d)

(e) (f)

12. (a)
√

3/2
(b) −1/

√
3

(c) −
√

2
(d) −

√
2

(e) −1
(f)

√
2/2
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13. We check the first six identities.
(a) sin π/6 = 1/2, sin π/6 =

√
3/2, sin2

π/6 + cos2
π/6 = [1/2]2 +

[
√

3/2]2 = 1/4 + 3/4 = 1.
(b) cos π/6 =

√
3/2, sin π/6 = 1/2, −1 ≤

√
3/2 ≤ 1, −1 ≤ 1/2 ≤ 1.

(c) tan π/6 = 1/
√

3, sec π/6 = 2/
√

3, tan2
π/6 + 1 = [1/

√
3]2 + 1 =

4/3 = sec2
π/6.

(d) cot π/6 =
√

3, csc π/6 = 2, cot2
π/6 + 1 = [

√
3]2 + 1 = 4 = 22 =

csc2
π/6.

(e) sin(π/6 + (−π/3)) = sin(−π/6) = −1/2, sin π/6 cos(−π/3) +
cos π/6 sin(−π/3) = [1/2][1/2] + [

√
3/2][−

√
3/2] = −1/2.

(f) cos(π/6 + (−π/3)) = cos(−π/6) =
√

3/2, cos π/6 cos(−π/3) −
sin π/6 sin(−π/3) = [

√
3/2][1/2] − [1/2][−

√
3/2] =

√
3/2.

14. We shall do (a), (c), (e).

/2

FIGURE S1.14a

FIGURE S1.14c
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FIGURE S1.14e

15. (a) θ = 15◦

(b) θ = −90◦

(c) θ = 1215◦

(d) θ = (135/4)◦

(e) θ = (720/π)◦

(f) θ = (−1260/π)◦

16. (a) θ = π/4 radians
(b) θ = π/9 radians
(c) θ = −11π/36 radians
(d) θ = −5π/9 radians
(e) θ = π2/90 radians
(f) θ = 1.57π/90 radians

17. We do (a), (c), (e), and (g).
(a) f ◦ g (x) = [(x + 1)2]2 − 2(x + 1)2;

g ◦ f (x) = ([x2 − 2x] + 1)2.
(c) f ◦ g (x) = sin(cos(x2 + x) − cos2(x2 + x))

g ◦ f (x) = cos(sin2(x − x2) + sin(x − x2))
(e) f ◦ g (x) = sin(ln2(x2 + 2x) − ln(x2 + 2x))

g ◦ f (x) = ln(sin2(x2 − x) + 2 sin(x2 − x))
(g) f ◦ g (x) = [(2x − 1)(x + 2)] · [(2x − 1)(x + 2) − 1] · [(2x − 1)(x +

2) + 3]
g ◦ f (x) = [2x(x − 1)(x + 3) − 1] · [x(x − 1)(x + 3) + 2]

18. We do (a), (c), (e), (g).
(a) f is invertible, with f −1(t) = (t − 1)1/3.
(c) h is invertible, with h−1(t) = (sgn x) · x2.
(e) h is invertible as long as we restrict the range to the positive real num-

bers. Then the inverse is f −1(t) = (1/3) ln t.
(g) f is not invertible because cot(π/2) = cot(5π/2) = 0.
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19. We will do (a), (c), (e), and (g).

FIGURE S1.19a

FIGURE S1.19c
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FIGURE S1.19e

(g) Not invertible.

20. We will do (a), (c), (e), and (g).
(a) Invertible, f −1(t) = 3

√
t.

(c) Invertible, h−1(t) = cos−1(t).
(e) Invertible, g −1(t) = cot−1(t).

(g) Invertible, f −1(t) = −1 ±
√

1 + 4t
2

.

Chapter 2
1. (a) lim

x→0
x · e−x = 0 because x tends to 0 and e−x tends to 1.

(b) lim
x→2

x2 − 4
x − 2

= lim
x→2

x + 2 = 4.

(c) lim
x→4

(x − 4) · cot(x − 4) = lim
x→4

[(x − 4)/ sin(x − 4)] · cos(x − 4) =
1 · 1 = 1. [Here we use the non-trivial fact, explored in Chapter 5,
that limh→0(sin h/h) = 1.]

(d) lim
x→0

√
x · ln x = lim

x→0
ln x

√
x ≤ lim

x→0
ln

√
x

√
x = ln 1 = 0. [Here we use

the non-trivial fact, explored in Chapter 5, that limx→0 xx = 1.]

(e) lim
t→2

t2 − 5t + 6
t − 2

= lim
t→2

(t − 3) = −1.

(f) lim
s→3

s2 − 2s − 3
s − 3

= lim
s→3

(s + 1) = 4.
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(g) lim
x→2

ln(x/2)
x − 2

= lim
x→2

ln[(x/2)1/(x−2)] = lim
h→0

ln(1 + h/2)1/h =

lim
h→0

ln[(1 + h/2)2/h]1/2 ln e1/2 = 1/2. [Here we use the non-trivial

fact, explored in Chapters 5 and 6, that limh→0(1 + h)1/h = e, where
e is Euler’s number.]

(h) lim
x→−4

x2 − 16
x + 4

= lim
x→−4

x − 4 = −8.

2. (a) The function is undefined at c = −2.
(b) lim

x→1
f (x) = −1/2 and f (1) = −1/2 so f is continuous at c = 1.

(c) lim
x→0

f (x) = 0. If we define f (0) = 0, which is plausible from the

graph, then f is continuous at 0.
(d) lim

x→0
f (x) = 0. If we define f (0) = 0, which is plausible from the

graph, then f is continuous at 0.
(e) lim

x→1
f (x) = 1 and f (1) = 1 so f is continuous at c = 1.

(f) lim
x→1

f (x) does not exist so f is not continuous at c = 1.

(g) lim
x→2π

f (x) = 0 and f (2π) = 0 so f is continuous at c = 2π .

(h) lim
x→2

f (x) = eln 2−2 and f (2) = eln 2−2 so f is continuous at c = 2.

3. (a) We calculate

f ′(2) = lim
h→0

f (2 + h) − f (2)
h

= lim
h→0

[(2 + h)2 − 3(2 + h)] − [22 − 3 · 2]
h

= lim
h→0

[4 + 4h + h2 − 6 − 3h] − [4 − 6]
h

= lim
h→0

h2 + h
h

= lim
h→0

h + 1

= 1 .

The derivative is therefore equal to 1.
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(b) We calculate

f ′(3) = lim
h→0

f (3 + h) − f (3)
h

= lim
h→0

[−3/(3 + h)2] − [−3/32]
h

= lim
h→0

−9 + (3 + h)2

3h(3 + h)2

= lim
h→0

6h + h2

3h(3 + h)2

= lim
h→0

6 + h
3(3 + h)2

= 2
9

.

The derivative is therefore equal to 2/9.

4. (a)
d

dx
x

x2 − 2
= (x2 − 2) · 1 − x · 2x

(x2 − 2)2
= −x2 − 2

(x2 − 2)2
.

(b)
d

dx
cos(x2) =

[
d

dx
cos

]
(x2) ·

(
d

dx
x2
)

= [− sin(x2)] · 2x.

(c)
d
dt

[cot(t3 − t2)] =
[

d
dt

cot
]

(t3 − t2) · d
dt

(t3 − t2) =[
− csc2(t3 − t2)

]
· (3t2 − 2t).

(d)
d

dx

(
x2 + 1
x2 − 1

)
= (x2 − 1) · (2x) − (x2 + 1) · (2x)

(x2 − 1)2
= −4x

(x2 − 1)2
.

(e)
d

dx
[x · ln(cos x)] = 1 · ln(cos x) + x · − sin x

cos x
= ln(cos x) − x · tan x.

(f)
d
ds

es(s−3) = es(s−3) · [1 · (s − 3) + s · 1] = es(s−3) · [2s − 3].

(g)
d

dx
ecos(x2) = ecos(x2) · d

dx
[cos(x2)] = ecos(x2) · [− sin(x2) · 2x].

(h) [ln(ex − x)]′ = 1
ex − x

· (ex − 1) = ex − 1
ex − x

.

5. (a) Since the ball is dropped, v0 = 0. The initial height is h0 = 64. There-
fore the position of the body at time t is given by

p(t) = −16t2 + 0 · t + 64 .
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The body hits the ground when

0 = p(t) = −16t2 + 64

or t = 2 seconds.
(b) Since the ball has initial velocity 5 feet/second straight down, we

know that v0 = −5. The initial height is h0 = 64. Therefore the posi-
tion of the body at time t is given by

p(t) = −16t2 − 5 · t + 64 .

The body hits the ground when

0 = p(t) = −16t2 − 5t + 64

or t ≈ 1.8498 seconds.
(c) Since the ball has initial velocity 20 feet/second straight up, we know

that v0 = 20. The initial height is h0 = 64. Therefore the position of
the body at time t is given by

p(t) = −16t2 + 20 · t + 64 .

The body hits the ground when

0 = p(t) = −16t2 + 20t + 64

or t ≈ 2.7204 seconds.

6. (a)
d

dx
cos(ln(sin x)) = − sin(ln(sin x)) · 1

sin x
· (cos x).

(b)
d

dx
ecos(sin x) = ecos(sin x) · (− sin(sin x)) · (cos x).

(c)
d

dx
ln(ecos x + x) = 1

ecos x + x
· (ecos x(− sin x) + 1).

(d)
d

dx
arccos(x2 + sec x) = −1√

1 − [x2 + sec x]2
· [2x + sec x tan x].

(e)
d

dx
arcsin(ln x + ex/2) = 1√

1 − [ln x + ex/2]2
·
[

1
x

+ ex

2

]
.

(f)
d

dx
arctan(x − ex) = 1

1 + (x − ex)2
· [1 − ex].
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7. Of course v(t) = p′(t) = 6t − 2 so v(4) = 22 feet per second. The average
velocity from t = 2 to t = 6 is

vav = p(6) − p(2)
4

= 106 − 16
4

= 45
2

.

The derivative of the velocity function is (v′)′(t) = 6. This derivative never
vanishes, so the extrema of the velocity function on the interval [4, 10]
occur at t = 4 and t = 10. Since v(4) = 22 and v(10) = 58, we see that
the maximum velocity on this time interval is 58 feet per second at t = 10.

8. (a) We know that

[ f −1]′(1) = 1
f ′(0)

= 1
2

.

(b) We know that

[ f −1]′(1) = 1
f ′(2)

= 1
6

.

(c) We know that

[ f −1]′(1) = 1
f ′(3)

= 1
π

.

(d) We know that

[ f −1]′(1) = 1
f ′(1)

= 1
20

.
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Chapter 3
1.

FIGURE S3.1

2. The figure shows a schematic of the imbedded cylinder. We see that the
volume of the imbedded cylinder, as a function of height h, is

V(h) = π · h · (25 − h2/4) .

Then we solve

0 = V′(h) = π · [25 − 3h2/4] .

The roots of this equation are h = ±10/
√

3. We find that the solution of

our problem is height 10/
√

3, radius
√

50/3.

FIGURE S3.2
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3. We know that

V = � · w · h

hence

dV
dt

= d�

dt
· w · h + � · dw

dt
· h + � · w · dh

dt

= 2 · 50 · 10 + 90 · (−1) · 10 + 90 · 50 · 0.5

= 100 + 2250

= 2350 in./min.

4. We know that v0 = −10. Therefore the position of the body is given by

p(t) = −16t2 − 10t + h0 .

Since

0 = p(3) = −16 · 32 − 10 · 3 + h0 ,

we find that h0 = 174. The body has initial height 174 feet.

5. We know that

V = 1
3

· πr 2 · h .

Therefore

0 = d
dt

V = 1
3

· π · r 2 · dh
dt

+ 1
3

· π · 2r · dr
dt

· h .

At the moment of the problem, dh/dt = 2, r = 3, h = 10/3. Hence

0 = π · 3 · 2 + π · 2 · dr
dt

· 10
3

or

0 = 6π + (20π/3) · dr
dt

.

We conclude that dr/dt = −9/10 microns per minute.
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6. Of course

5000 = V = π · r 2 · h .

We conclude that

h = 5000
π · r 2

.

We wish to minimize

A = (area of top) + (area of sides) = π · r 2 + 2π · r · h

= π · r 2 + 2π · r · 5000
πr 2

.

Thus the function to minimize is

A(r ) = π · r 2 + 10000
r

.

Thus

0 = A′(r ) = 2πr − 10000
r 2

.

We find therefore that

r 3 = 5000
π

or r = 3
√

5000/π . Since the problem makes sense for 0 < r < ∞, and
since it clearly has no maximum, we conclude that r = 3

√
5000/π , h =

3
√

5000/π .

7. We calculate that g ′(x) = sin x + x cos x and g ′′(x) = 2 cos x − x sin x. The
roots of these transcendental functions are best estimated with a calculator
or computer. The provided sketch gives an idea of where the extrema and
inflection points are located.
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FIGURE S3.7

8. We know that v0 = −10 and h0 = 500. Hence

p(t) = −16t2 − 10t + 500 .

The body hits the ground when

0 = p(t) = −16t2 − 10t + 500 .

Solving, we find that t ≈ 5.286 seconds.

9. We see that

h(x) = x
x2 − 4

h′(x) = − x2 + 4
(x2 − 4)2

h′′(x) = 2x(x2 + 12)
(x2 − 4)3

We see that the function is undefined at ±2, decreasing everywhere, and
has an inflection point only at 0. The sketch is shown.
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FIGURE S3.9

10. We know that

V = 4π

3
r 3 .

Therefore

dV
dt

= 4π

3
· 3r 2 dr

dt
.

Using the values V = 25π , r = 3
√

75/4, dV/dt = −3, we find that

−3 = 4π · ( 3

√
75/4)2 · dr

dt

hence

dr
dt

= − 3
4π(75/4)2/3

in. per sec.

11. The acceleration due to gravity, near the surface of the earth, is about
−32 ft./sec.2 regardless of the mass of the object being dropped. The two
stones will strike the ground at the same time.
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12. He can drop a rock into the well and time how long it takes the rock to
strike the water. Then he can use the equation

p(t) = −16t2 + 0t + h0

to solve for the depth. If the well is very deep, then he will have to know
the speed of sound and compensate for how long it takes the splash to
reach his ears.

13. Let (x, y) be the point where the rectangle touches the line. Then the area
of the rectangle is

A = x · y .

But of course 2x + 3y = 6 or y = 2 − (2/3)x. Hence

A = x · [2 − (2/3)x] .

We may differentiate and set equal to zero to find that x = 3/2 and y = 1
is the solution to our problem.

14. Let s be a side of the base and let h be the height. The area of the base is
s2 and the same for the top. The area of each side is s · h. Thus the cost of
the base and top is

C1 = [s2 + s2] · 8 cents

while the cost of the sides is

C2 = 4(s · h) · 16 cents .

We find that the total cost is

C = C1 + C2 = 16s2 + 64sh . (∗)

But

120 = volume = s2 · h

hence

h = 120/s2 .
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Substituting this last formula into (∗) gives

C(s) = 16s2 + 64s · [120/s2] = 16s2 + 7680
s

.

We may calculate that

0 = C′(s) = 32s − 7680
s2

.

Solving for s gives the solution s = 3
√

240 and then h = 120/( 3
√

240)2.

15. We see that

f (x) = x2 − 4
x2 + 4

f ′(x) = 16x
(x2 + 4)2

f ′′(x) = −48x2 + 64
(x2 + 4)3

Thus there are a critical point at x = 0 and inflection points at x = ±2/
√

3.
The figure exhibits the complete graph.

FIGURE S3.15
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16. We see that the equation for the position of a falling body will now be

p(t) = −12
2

t2 + v0t + h0 .

It is given that v0 = 0 and h0 = 50. Hence

p(t) = −6t2 + 0t + 50 .

The body hits the surface when

0 = p(t) = −6t2 + 50 .

This occurs at time t =
√

25/3.

Chapter 4
1. (a) F (x) = x4/4 + sin x + C

(b) F (x) = ex + x3/3 − x + C
(c) F (t) = t3/3 + [ln t]3/3 + C
(d) F (x) = − ln(cos x) − cos x − [sin 3x]/3 + C
(e) F (x) = [sin 4x]/4 − [cos 3x]/3 + x + C
(f) F (x) = −ecos x + C

2. (a)
∫

x2 sin x3 dx = − cos x3

3
+ C

(b)
∫

2
x

ln x3 dx = 3 ln2 x + C

(c)
∫

sin2 x · cos x dx = 1
3

sin3 x + C

(d)
∫

cot x · ln sin x dx = 1
2

ln2 sin x + C

(e)
∫

sec2 x · etan x dx = etan x + C

(f)
∫

(3x2 + 2) · (x3 + 2x + 3)43 dx = 1
44

(x3 + 2x + 3)44 + C
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3. (a) We have

∫ 2

1
x2 − x dx = lim

k→∞

k∑
j=1

[(
1 + j

k

)2

−
(

1 + j
k

)]
· 1

k

= lim
k→∞

k∑
j=1

[
1 + 2 j

k
+ j2

k2
− 1 − j

k

]
1
k

= lim
k→∞

k∑
j=1

[
j

k2
+ j2

k3

]

= lim
k→∞

[
k2 + k

2
· 1

k2
+ 2k3 + 3k2 + k

6
· 1

k3

]

= lim
k→∞

[
1
2

+ 1
2k

+ 1
3

+ 1
2k

+ 1
6k2

]
= 1

2
+ 1

3

= 5
6

.

(b) We have

∫ 1

−1
−x2

2
dx = lim

k→∞

k∑
j=1

−
(
−1 + 2 j

k

)2

2
· 2

k

= lim
k→∞

k∑
j=1

−1
2k

(
1 − 4 j

k
+ 4 j2

k2

)

= lim
k→∞

k∑
j=1

(
− 1

2k
+ 2 j

k2
− 2 j2

k3

)

= lim
k→∞

−k · 1
2k

+ k2 + k
2

· 1
k2

− 2k3 + 3k2 + k
6

· 2
k3

= −1
2

+ 1
2

− 4
6

= −2
3

.
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4. (a)
∫ 3

1
x2 − x3 + 3 dx =

[
x3

3
− x4

4
+ 3x

]3

1

=
(

33

3
− 34

4
+ 3 · 3

)
−(

13

3
− 14

4
+ 3 · 1

)
=
(

9 − 81
4

+ 9
)

−
(

1
3

− 1
4

+ 3
)

= −16
3

.

(b)
∫ π

π/2
x sin(x2) − sin x cos x dx =

[
−cos(x2)

2
+ sin2 x

2

]π

π/2

=(
−cos(π2)

2
+ 0

)
−
(

−cos(π2/4)
2

+ 1
2

)
= − cos(π2)

2
+

cos(π2/4)
2

− 1
2

.

(c)
∫ 4

1

ln x
x

+ x cos x2 dx =
[

ln2 x
2

+ sin x2

2

]4

1

=
(

ln2 4
2

+ sin 42

2

)
−(

ln2 1
2

+ sin 12

2

)
= ln2 4

2
+ sin 16

2
− sin 1

2
.

(d)
∫ 2

1
cot x − x2 sin x3 dx =

[
ln | sin x| + cos x3

3

]2

1

=(
ln | sin 2| + cos 23

3

)
−
(

ln | sin 1| + cos 13

3

)
= ln | sin 2| + cos 8

3
−

ln | sin 1| − cos 1
3

.

5. (a) Area =
∫ 6

4
x2 − 2x + 6 dx =

[
x3

3
− x2 + 6x

]6

4

=(
63

3
− 62 + 36

)
−
(

43

3
− 16 + 24 · 2

)
= 128

3
.

(b) Area =
∫ π/3

0
sin x cos x dx =

[
sin2 x

2

]π/3

0

= sin2
π/3

2
− sin2 0

2
=

(
√

3/2)2

2
− 0 = 3

8
.

(c) Area =
∫ 3

2
xex2

dx =
[

ex2

2

]3

2

= e32

2
− e22

2
= e9

2
− e4

2
.

(d) Area =
∫ e2

e

ln x
x

dx =
[

ln2 x
2

]e2

e

= ln2 e2

2
− ln2 e

2
= 4

2
− 1

2
= 3

2
.
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6.

FIGURE S4.6a

ππ

ε π π
ε π π

FIGURE S4.6b
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FIGURE S4.6c

FIGURE S4.6d

7. (a) Area =
∫ −1

−2
x2 + x dx −

∫ 0

−1
x2 + x dx +

∫ 2

0
x2 + x dx

=
[

x3

3
+ x2

2

]−1

−2

−
[

x3

3
+ x2

2

]0

−1

+
[

x3

3
+ x2

2

]2

0

= 19
3

.
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(b)
Area = 2 · 8 ·

∫ π/4

0
sin 4x dx

= 16 · − cos 4x
4

]π/4

0

= 16 ·
(

1
4

+ 1
4

)
= 8 .

(c) Area =
∫ e

1

ln x
x

dx = ln2 x
2

]e

1
= 1

2
− 0 = 1

2
.

(d) Area = −
∫ 0

−3
xex dx +

∫ 3

0
xex dx = − [xex − ex]0

−3 + [xex − ex]3
0 =

2 − 4e−3 + 2e3.

8. (a) Area =
∫ −1

−2
x2 + x dx +

∫ 0

−1
x2 + x dx +

∫ 2

0
x2 + x dx

=
[

x3

3
+ x2

2

]−1

−2

+
[

x3

3
+ x2

2

]0

−1

+
[

x3

3
+ x2

2

]2

0

= 6 .

(b) Area = 0.

(c) Area = ∫ e
1

ln x
x dx = ln2 x

2

]e

1
= 1

2 − 0 = 1
2 .

(d) Area =
∫ 0

−3
xex dx +

∫ 3

0
xex dx = [xex − ex]0

−3 + [xex − ex]3
0 =

(−1 + 3e−3 + e−3) + (3e3 − e3 + 1) = 4e−3 + 2e3.

9. (a) Area =
∫ 1

−1
[−x2 + 6] − [x2 − 2] dx =

∫ 1

−1
−2x2 + 8 dx =[

−2x3

3
+ 8x

]1

−1

=
(−2

3
+ 8

)
−
(

2
3

− 8
)

= 44
3

.

(b) Area =
∫ 1

0
x2 − x3 dx =

[
x3

3
− x4

4

]1

0

=
(

1
3

− 1
4

)
−
(

0
3

− 0
4

)
= 1

12
.
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(c) Area =
∫ 1/4

−1
[−2x2 + 1] − 2x dx =

[
−2x3

3
+ x − x2

]1/4

−1

=
(

−−2
3

· 1
64

+ 1
4

− 1
16

)
−
(

2
3

− 1 − 1
)

= 145
96

.

(d) Area =
∫ e

1
2x − ln x dx =

[
x2 − x ln x + x

]e

1
=
(
e2 − e ln e + e

)
−(

1 − 0 + 1
) = e2 − 2.

10. (a) Area = 2
∫ 1

0
x − x3 dx = 2

[
x2

2
− x4

4

]1

0

= 2
(

1
2

− 1
4

)
−

2
(

0
2

− 0
4

)
= 1

2
.

(b) Area =
∫ 1

0

√
x − x4 dx =

[
x3/2

3/2
− x5

5

]1

0

=
(

2
3

− 1
5

)
−(

0
3/2

− 0
5

)
= 7

15
.

(c) Area =
∫ √

2

−
√

2
2x2 − x4 dx =

[
2x3

3
− x5

5

]√
2

−
√

2

=
(

2 · 23/2

3
− 25/2

5

)
−
(

−2 · 23/2

3
+ 25/2

5

)
= 16

5

√
2.

(d) Area =
∫ √

−1+
√

2

−
√

−1+
√

2
[−2x2 + 1] − x4 dx =

[
−2x3

3
+ x − x5

5

]√−1+
√

2

−
√

−1+
√

2

= 2 ·

⎛⎜⎜⎜⎝−2
3

(√
−1 +

√
2

)3

+
√

−1 +
√

2 −

(√
−1 +

√
2
)5

5

⎞⎟⎟⎟⎠
=
√

−1 +
√

2 ·
(

32
15

− 8
15

√
2
)

Chapter 5
1. (a) limx→0(cos x − 1) = 0 and limx→0 x4 + x2 = 0 so l’Hôpital’s Rule

applies. Thus

lim
x→0

cos x − 1
x4 + x2

= lim
x→0

− sin x
4x3 + 2x

.
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Now l’Hôpital’s Rule applies again to yield

= lim
x→0

− cos x
12x2 + 2

= −1
2

.

(b) limx→0 e2x − 1 − 2x = 0 and limx→0 x2 + x6 = 0 so l’Hôpital’s Rule
applies. Thus

lim
x→0

e2x − 1 − 2x
x2 + x6

= lim
x→0

2e2x − 2
2x + 6x5

.

l’Hôpital’s Rule applies again to yield

= lim
x→0

4e2x

2 + 30x4
= 2 .

(c) limx→0 cos x �= 0, so l’Hôpital’s Rule does not apply. In fact the limit
does not exist.

(d) limx→1[ln x]2 = 0 and limx→1(x2 − 1) = 0 so l’Hôpital’s Rule applies.
Thus

lim
x→1

[ln x]2

(x2 − 1)
= lim

x→1

[2 ln x]/x
2x

= 0 .

(e) limx→2(x − 2)4 = 0 and limx→2 sin(x − 2) − (x − 2) = 0 so
l’Hôpital’s Rule applies. Thus

lim
x→2

(x − 2)4

sin(x − 2) − (x − 2)
= lim

x→2

4(x − 2)3

cos(x − 2) − 1
.

Now l’Hôpital’s Rule applies again to yield

= lim
x→2

12(x − 2)2

− sin(x − 2)
.

We apply l’Hôpital’s Rule one last time to obtain

= lim
x→2

24(x − 2)
− cos(x − 2)

= 0 .
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(f) limx→1(ex − 1) �= 0 and limx→1(x − 1) = 0 so l’Hôpital’s Rule does
not apply. In fact the limit does not exist.

2. (a) limx→+∞ x3 = limx→+∞(ex − 1 − x − x2/2) = +∞ so l’Hôpital’s
Rule applies. Thus

lim
x→+∞

x3

ex − 1 − x − x2/2
= lim

x→+∞
3x2

ex − 1 − x
.

l’Hôpital’s Rule applies again to yield

= lim
x→+∞

6x
ex − 1

.

l’Hôpital’s Rule applies one more time to finally yield

lim
x→+∞

6
ex

= 0 .

(b) limx→+∞ ln x = limx→+∞ x2 = +∞ so l’Hôpital’s Rule applies. Thus

lim
x→+∞

ln x
x2

= lim
x→+∞

1/x
2x

= 0 .

(c) limx→+∞ e−2x = limx→+∞ ln[x/(x + 1)] = 0 so l’Hôpital’s Rule ap-
plies. Thus

lim
x→+∞

e−2x

ln[x/(x + 1)]
= lim

x→+∞
−2e−2x

1/x − 1/[x + 1]
.

It is convenient to rewrite this expression as

lim
x→+∞

2(x2 + x)
−e2x

.

Now l’Hôpital’s Rule applies once more to yield

lim
x→+∞

4x + 2
−2e2x

.
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We apply l’Hôpital’s Rule a last time to obtain

= lim
x→+∞

4
−2e2x

= 0 .

(d) Since limx→+∞ sin x does not exist, l’Hôpital’s Rule does not apply. In
fact the requested limit does not exist.

(e) It is convenient to rewrite this limit as

lim
x→−∞

x2

e−x .

Since limx→−∞ x2 = limx→−∞ e−x = ±∞, l’Hôpital’s Rule applies.
Thus

lim
x→−∞

x2

e−x = lim
x→−∞

2x
−e−x .

A final application of l’Hôpital’s Ruleshows that this last limit is

lim
x→−∞

2
e−x = 0 .

(f) Since limx→−∞ ln |x| = limx→−∞ e−2x = +∞, l’Hôpital’s Rule applies.
Thus

lim
x→−∞

ln |x|
e−2x

= lim
x→−∞

1/x
−2e−2x

= 0 .

3. (a) We write the limit as limx→+∞ x2/ex. Since limx→+∞ x2 =
limx→+∞ ex = +∞, l’Hôpital’s Rule applies. Thus

lim
x→+∞

x2e−x = lim
x→+∞

x2

ex = lim
x→+∞

2x
ex .

We apply l’Hôpital’s Rule again to obtain

= lim
x→+∞

2
ex

.

Of course this limit is 0.
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(b) We write the limit as limx→+∞
sin(1/x2)

1/x2 . Since limx→+∞ sin(1/x2) =
limx→+∞ 1/x2 = 0, l’Hôpital’s Rule applies. Hence

lim
x→+∞

x2 · sin[1/x2] = lim
x→+∞

sin(1/x2)
1/x2

= lim
x→+∞

[cos(1/x2)] · [−2/x3]
−2/x3

= lim
x→+∞

cos(1/x2)
1

= 1 .

(c) We rewrite the limit as limx→+∞
ln[x/(x+1)]

x2+1
. Since limx→+∞ ln[x/(x +

1)] = 0 and limx→+∞ x2 + 1 = +∞, l’Hôpital’s Rule does not apply.
In fact the limit is 0 by inspection.

(d) We rewrite the limit as limx→+∞[ln2 x]/ex. Since limx→+∞ ln2 x =
limx→+∞ ex = +∞, l’Hôpital’s Rule applies. Thus

lim
x→+∞

ln2 x · e−x = lim
x→+∞

ln2 x
ex = lim

x→+∞
2 ln x · 1/x

ex = 0 .

(e) We write the limit as limx→−∞ x4/e−2x. Since limx→−∞ lim x4 =
limx→−∞ e−2x = +∞, l’Hôpital’s Rule applies. Thus

lim
x→−∞

e2x · x4 = lim
x→−∞

x4

e−2x
= lim

x→−∞
4x3

−2e−2x
.

l’Hôpital’s Rule applies one more time to yield

= lim
x→−∞

12x2

4e−2x
.

Two more applications of l’Hôpital’s Rule show that the limit is 0.



376 C A L C U L U S DeMYSTiF i eD

(f) We rewrite the limit as limx→0 e1/x2
/[1/x]. Since limx→0 e1/x2 =

limx→0 1/x = +∞, l’Hôpital’s Rule applies. Thus

lim
x→0

x · e1/x2 = lim
x→0

e1/x2

1/x
= lim

x→0

e1/x2 · [−2/x3]
−1/x2

= lim
x→0

2 · e1/x2

x
= +∞ .

4. We do (a), (b), (c), (d).

(a)
∫ 1

0
x−4/5 dx = lim

ε→0+

∫ 1

ε

x−4/5 dx = lim
ε→0+

[
x1/5

1/5

]1

ε

=

lim
ε→0+

(
11/5

1/5
− ε1/5

1/5

)
= 5.

(b)
∫ 3

1
(x − 3)−6/5 dx = lim

ε→0+

∫ 3−ε

1
(x − 3)−6/5 dx =

lim
ε→0+

[
(x − 3)−1/5

−1/5

]3−ε

1

= lim
ε→0+

(
−ε−1/5

−1/5
− −2−1/5

−1/5

)
. But the limit

does not exist; so the integral does not converge.

(c)
∫ 2

−2

1
(x + 1)1/5

dx = lim
ε→0+

∫ −1−ε

−2

1
(x + 1)1/5

dx +

lim
ε→0+

∫ 2

−1+ε

1
(x + 1)1/5

dx = lim
ε→0+

[
(x + 1)4/5

4/5

]−1−ε

−2

+

lim
ε→0+

[
(x + 1)4/5

4/5

]2

−1+ε

= lim
ε→0+

(
(−ε)4/5

4/5
− (−1)4/5

4/5

)
+

lim
ε→0+

(
34/5

4/5
− (ε)4/5

4/5

)
= 5

4
·
(
34/5 − 1

)
.

(d)
∫ 6

−4

x
(x − 2)(x + 1)

dx = lim
ε→0+

∫ −1−ε

−4

x
(x − 2)(x + 1)

dx +

lim
ε→0+

∫ 0

−1+ε

x
(x − 1)(x + 2)

dx + lim
ε→0+

∫ 2−ε

0

x
(x − 1)(x + 2)

dx +

lim
ε→0+

∫ 6

2+ε

x
(x − 1)(x + 2)

dx. Now

x
(x − 2)(x + 1)

= 2/3
x − 2

+ 1/3
x + 1

.
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Therefore

∫ 6

−4

x
(x − 2)(x + 1)

dx = lim
ε→0+

∫ −1−ε

−4

2/3
x − 2

+ 1/3
x + 1

dx

+ lim
ε→0+

∫ 0

−1+ε

2/3
x − 2

+ 1/3
x + 1

dx

+ lim
ε→0+

∫ 2−ε

0

2/3
x − 2

+ 1/3
x + 1

dx

+ lim
ε→0+

∫ 6

2+ε

2/3
x − 2

+ 1/3
x + 1

dx

= lim
ε→0+

[
2
3

ln |x − 2| + 1
3

ln |x + 1|
]−1−ε

−4

+ lim
ε→0+

[
2
3

ln |x − 2| + 1
3

ln |x + 1|
]0

−1+ε

+ lim
ε→0+

[
2
3

ln |x − 2| + 1
3

ln |x + 1|
]2−ε

0

+ lim
ε→0+

[
2
3

ln |x − 2| + 1
3

ln |x + 1|
]6

2+ε

.

Now this equals

lim
ε→0+

(
2
3

· ln | − 3 − ε| + 1
3

ln ε

)
−
(

2
3

· ln 6 + 1
3

ln 3
)

+ etc.

The second limit does not exist, so the original integral does not
converge.
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5. We do (a), (b), (c), (d).

(a)
∫ ∞

1
e−3x dx = lim

N→+∞

∫ N

1
e−3x dx = lim

N→+∞

[
e−3x

−3

]N

1

=

lim
N→+∞

(
e−3N

−3
− e−3

−3

)
= e−3

3
.

(b)
∫ ∞

2
x2e−2x dx = lim

N→+∞

∫ N

2
x2e−2x dx =

lim
N→+∞

[
−x2e−2x/2 − xe−2x/2 − e−2x/4

]N

2
=

lim
N→+∞

[(
−N2e−2N/2 − Ne−2N/2 − e−2N/4

)
−(

−22e−4/2 − 2 · e−4/2 − e−4/4
)]

= 2e−4 + e−4 + e−4/4 = 13e−4/4.

(c)
∫ ∞

0
x ln x dx = lim

ε→0+

∫ 1

ε

x ln x dx + lim
N→+∞

∫ N

1
x ln x dx =

lim
ε→+

[x ln x − x]1
ε + lim

N→+∞
[x ln x − x]N

1 =
lim

ε→0+

[(
1 · ln 1 − 1

)− (
ε · ln ε − ε

)]+
lim

N→+∞

[(
N · ln N − N

)− (
1 ln 1 − 1

)] = lim
ε→0+

[−1 + ε] +
lim

N→+∞
[N ln N − N + 1] = lim

N→+∞
[N ln N − N]. This last limit

diverges, so the integral diverges.

(d)
∫ ∞

1

dx
1 + x2

= lim
N→+∞

∫ N

1

dx
1 + x2

= lim
N→+∞

[arctan x]N
1 =

lim
N→+∞

(
arctan N − arctan 1

) = π

2
− π

4
= π

4
.

Chapter 6
1. (a) 3 ln a − 2 ln b − 5 ln c − ln d

(b) 3 log2 a + log2 b − log3 a − 2 log3 b
(c) 2x + 3 ln z − 2 ln w
(d) 3w + 1

2. We do (a) and (b).
(a) 2x · 3−x = 2x · e2

x ln 2 − x ln 3 = x ln 2 + 2

−x · ln 3 = 2

x = 2
ln 3

.
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(b) 2x

3−x · 52x
= 10x · 10

x log10 2 + x log10 3 − 2x log10 5 = x + 1

x[log10 2 + log10 3 − 2 log10 5 − 1] = 1

x = 1
log10 2 + log10 3 − 2 log10 5 − 1

.

3. (a)
−2x · sin(x2)

cos(x2)

(b)
3
x

− 1
x − 1

(c) −ecos(ex) · sin(ex) · ex

(d) − sin(ln x) · 1
x

4. (a) −x2e−x − 2xe−x − 2e−x + C

(b)
x2

2
ln3 x − 3

4
x2 ln2 x + 3

4
x2 ln x − 3

8
x2 + C

(c)
[
−1

x
ln x − 1

x

]e

1
= −2

e
+ 1

(d) [ln(ex − 1)]2
1 = ln(e + 1)

5. We do (a) and (b).

(a) Let A = x3 · x2 − x
x3 + 1

. Then

ln A = 3 ln x + ln(x2 − x) − ln(x3 + 1)

hence

dA/dx
A

= d
dx

ln A = 3
x

+ 2x − 1
x2 − x

− 3x2

x3 + 1
.

Multiplying through by A gives

dA
dx

=
(

x3 · x2 − x
x3 + 1

)
·
[

3
x

+ 2x − 1
x2 − x

− 3x2

x3 + 1

]
.
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(b) Let A = sin x · (x3 − x)
x2

. Then

ln A = ln sin x + ln(x3 − x) − ln x2

hence

dA/dx
A

= d
dx

ln A = cos x
sin x

+ 3x2 − 1
x3 − x

− 2x
x2

.

Multiplying through by A gives

dA
dx

=
(

sin x · (x3 − x)
x2

)
·
[

cos x
sin x

+ 3x2 − 1
x3 − x

− 2
x

]
.

6. Let R(t) denote the amount of substance present at time t. Let noon on
January 10 correspond to t = 0 and noon on January 15 correspond to
t = 1. Then R(0) = 7 and R(1) = 5. We know that

R(t) = P · eKt .

Since

7 = R(0) = P · eK·0 ,

we see that P = 7. Since

5 = R(1) = 7 · eK·1 ,

we find that K = ln 5/7. Thus

R(t) = 7 · et ln(5/7) = 7 ·
(

5
7

)t

.

Taking January 20 to be t = 2, we find that the amount of radioactive
material present on January 20 is

R(2) = 7 ·
(

5
7

)2

= 25
7

.
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7. Let the amount of bacteria present at time t be

B(t) = P · eKt .

Let t = 0 be 10:00 a.m. We know that B(0) = 10000 and B(4) = 17000.
Thus

10000 = B(0) = P · eK·0

so P = 10000. Also

17000 = B(4) = 10000 · eK·4

hence

K = 1
4

· ln(17/10) .

As a result,

B(t) = 10000 · et·[1/4] ln(17/10)

or

B(t) = 10000 ·
(

17
10

)t/4

.

We find that, at 3:00 p.m., the number of bacteria is

B(5) = 10000 ·
(

17
10

)5/4

.

8. If M(t) is the amount of money in the account at time t then we know
that

M(t) = 5000 · e4t/100 .

Here t = 0 corresponds to January 1, 2005. Then, on January 1, 2009, the
amount of money present is

M(4) = 5000 · e4·4/100 ≈ 5867.46 .
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9. (a) − 1√
1 − (x · ex)2

· [ex + x · ex]

(b)
−1

2x2 + 2x + 1

(c)
1

1 + [ln2(x2 + x)]
· 2x + 1

x2 + x

(d)
1

| tan x|
√

[tan x]2 − 1
· sec2 x

10. (a)
1
2

Tan−1x2 + C

(b)
1
3

Sin−1x3 + C

(c)
[
Sin−1(cos2 x)

]π/2

0
= Sin−10 − Sin−11 = −π

2
.

(d)
1
3

∫
dx

1 + [
√

1/3x]2
= 1√

3
· Tan−1

(
x√
3

)
+ C

Chapter 7
1. We do (a), (b), (c), (d).

(a) Let u = log2 x and dv = 1 dx. Then∫
log2 x dx = log2 x · x −

∫
x · 2 log x · 1

x
dx

= x log2 x − 2
∫

log x dx .

Now let u = log x and dv = 1 dx. Then∫
log2 x dx = x log2 x − 2

[
log x · x −

∫
x · 1

x
dx
]

= x log2 x − 2x log x + 2x + C .

(b) Let u = x and dv = e2x dx. Then

∫
x · e2x dx = x · e2x

2
−
∫

e2x

2
· 1 dx

= x · e2x

2
− e2x

4
+ C .
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(c) Let u = x2 and dv = sin x dx. Then∫
x2 sin x dx = −x2 · cos x −

∫
− cos x · 2x dx .

Now let u = 2x and dv = cos x dx. Then∫
x2 sin x dx = −x2 · cos x +

[
2x · (sin x) −

∫
sin x · 2 dx

]
= −x2 cos x + 2x sin x + 2 cos x + C .

(d) Notice that
∫

t sin 2t cos 2t dt = 1
2

∫
t sin 4t dt. Now let u = t and

dv = sin 4t dt. Then

1
2

∫
t sin 4t dt = 1

2

[
t ·
(

−1
4

cos 4t
)

−
∫ (

−1
4

cos 4t
)

· 1 dt
]

= − t
8

cos 4t + 1
32

sin 4t + C .

2. We do (a), (b), (c), (d).

(a)
1

(x + 1)(x − 3)
= −1/4

x + 1
+ 1/4

x − 3
hence

∫
dx

(x + 1)(x − 3)
=
∫ −1/4 dx

x + 1
+
∫

1/4 dx
x − 3

= −1
4

ln |x + 1| + 1
4

ln |x − 3| + C .

(b)
1

(x − 1)(x2 + 1)
= 1/2

x − 1
+ −x/2 − 1/2

x2 + 1
hence

∫
dx

(x − 1)(x2 + 1)
=
∫

1/2
x − 1

dx +
∫ −x/2

x2 + 1
dx +

∫ −1/2
x2 + 1

dx

= 1
2

ln |x − 1| − 1
4

ln |x2 + 1| − 1
2

Tan−1x + C .

(c) Now x3 + 2x2 − 5x − 6 = (x + 3)(x − 2)(x + 1). Then

1
x3 + 2x2 − 5x − 6

= 1/10
x + 3

+ 1/15
x − 2

+ −1/6
x + 1

.
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As a result,∫
dx

x3 + 2x2 − 5x − 6
=
∫

1/10
x + 3

dx +
∫

1/15
x − 2

dx +
∫ −1/6

x + 1
dx

= 1
10

ln |x + 3| + 1
15

ln |x − 2| − 1
6

ln |x + 1| + C .

(d) Now x2 − 1 = (x − 1)(x + 1). Hence

1
x2 − 1

= 1/2
x − 1

− 1/2
x + 1

.

We conclude that∫
dx

x2 − 1
= 1

2
ln |x − 1| − 1

2
ln |x + 1| .

3. We do (a), (b), (c), (d).
(a) Let u = cos x, du = − sin x dx. Then the integral becomes

−
∫

(1 + u2)22u du = −(1 + u2)3

3
+ C .

Resubstituting x, we obtain the final answer

∫
(1 + cos2 x)22 sin x cos x dx = −(1 + cos2 x)3

3
+ C .

(b) Let u = √
x, du = 1/[2

√
x] dx. Then the integral becomes∫

2 cos u du = 2 sin u + C .

Resubstituting x, we obtain the final answer∫
cos

√
x√

x
dx = 2 sin

√
x + C .

(c) Let u = ln x, du = [1/x] dx. Then the integral becomes∫
sin u cos u du = 1

2

∫
sin 2u du = −1

4
cos 2u + C .
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Resubstituting x, we obtain the final answer

∫
sin(ln x) cos(ln x)

x
dx = −1

4
cos(2 ln x) + C .

(d) Let u = sin x, du = cos x dx. Then the integral becomes∫
eu du = eu + C .

Resubstituting x, we obtain the final answer∫
esin x cos x dx = esin x + C .

4. We do (a), (b), (c), (d).
(a) Let u = sin x, du = cos x dx. Then the integral becomes

∫
u2 du = u3

3
+ C .

Resubsituting x, we obtain the final answer

∫
cos x sin2 x dx = sin3 x

3
+ C .

(b) Write ∫
cos3 x sin2 x dx =

∫
cos x(1 − sin2 x) sin2 x dx .

Let u = sin x, du = cos x dx. Then the integral becomes

∫
(1 − u2)u2 du = u3

3
− u5

5
+ C .

Resubstituting x, we obtain the final answer

∫
cos3 x sin2 x dx = sin3 x

3
− sin5 x

5
+ C .
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(c) Let u = tan x, du = sec2 x dx. Then the integral becomes

∫
u2 du = u3

3
+ C .

Resubstituting x, we obtain the final answer

∫
tan2 x sec2 x dx = tan3 x

3
+ C .

(d) Let u = sec x, du = sec x tan x. Then the integral becomes

∫
u2 du = u3

3
+ C .

Resubstituting x, we obtain the final answer

∫
tan x sec3 x dx = sec3 x

3
+ C .

5. We do (a), (b), (c), (d).
(a) Use integration by parts twice:

∫ 1

0
ex cos x dx = cos x · ex

∣∣∣∣1
0
−
∫ 1

0
ex(− sin x) dx

= [e · cos 1 − 1] +
[

sin xex
∣∣∣∣1
0
−
∫ 1

0
ex cos x dx

]

= e · cos 1 + e · sin 1 − 1 −
∫ 1

0
ex cos x dx .

We may now solve for the desired integral:

∫ 1

0
ex cos x dx = 1

2
[e · cos 1 + e · sin 1 − 1] .
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(b) Integrate by parts with u = ln x, dv = x dx. Thus

∫ e

1
x ln x dx = ln x · x2

2

∣∣∣∣e
1
−
∫ e

1

x2

2
· 1

x
dx

= 1 · e2

2
− 0 · 12

2
− x2

4

∣∣∣∣e
1

= e2

2
− e2

4
+ 12

4
.

(c) We write

2x − 1
x3 − x2

= 1
x − 1

− 1
x2

− 1
x

.

Thus

∫ 4

2

(2x − 1) dx
x3 − x2

=
∫ 4

2

1
x − 1

dx −
∫ 4

2

1
x2

dx −
∫ 4

2

1
x

dx

= [ln 3 − ln 1] +
[

1
4

− 1
2

]
− [ln 4 − ln 2] .

(d) We write ∫ π

0
sin2 x cos2 x dx = 1

4

∫ π

0
sin2 2x dx

= 1
4

∫ π

0

1 − cos 4x
2

dx

= 1
8

[
x − sin 4x

4

]π

0

= 1
8

[(
π − 0

)− (0 − 0)
]

= π

8
.

Chapter 8
1. At position x in the base circle, the y-coordinate is

√
1 − x2. Therefore

the disc slice has radius
√

1 − x2 and area π(1 − x2). The volume of the
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solid is then

V =
∫ 1

−1
π(1 − x2) dx

= π

[
x − x3

3

]1

−1

= π

[(
1 − 1

3

)
−
(

(−1) − −1
3

)]
= 4π

3
.

2. We calculate the volume of half the solid and then double the answer.
For 0 ≤ x ≤ 1, at position x in the base square, the y extent is −(1 − x) ≤
y ≤ 1 − x. Thus the equilateral triangular slice has side 2(1 − x) and area√

3(1 − x)2. Thus the volume of the solid is

V = 2
∫ 1

0

√
3(1 − x)2 dx

= −2
√

3
(1 − x)3

3

]1

0

= 2√
3

.

3. We do (a), (b), (c), (d).

(a)
∫ 4

2
π[x3]2 dx

(b)
∫ 2

1
π[y3]2 dy

(c)
∫ 2

0
π[x1/2 + 1]2 dx

(d)
∫ 2

−1
π[8 − (x + 3)]2 dx

4. We do (a), (b), (c), (d).

(a)
∫ 4

0
2π · x1/3 ·

√
1 + [(1/3)x−2/3]2 dx
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(b)
∫ 3

1
2π · x−1/5 ·

√
1 + [(−1/5)x−6/5]2 dy

(c)
∫ √

3

0
2π · [x3 − (−2)] ·

√
1 + [3x2]2 dx

(d)
∫ π/2

0
2π · cos x ·

√
1 + [− sin x]2 dx

5. The depth of points in the window ranges from 7 to 13 feet. At depth h
in this range, the window has chord of length 2

√
9 − (h − 10)2. Thus the

total pressure on the lower half of the window is

P =
∫ 13

7
62.4 · h · 2

√
9 − (h − 10)2 dh .

6. At depth h, the corresponding subtriangle has side-length 2(4 − h/
√

3).
Therefore the total pressure on one end of the pool is

P =
∫ 4

√
3

0
62.4 · h · 2(4 − h/

√
3) dh .

7. Let t = 0 be the moment when the climb begins. The weight of the sack at
time t is then 80 − t pounds. Then the work performed during the climb
is

W =
∫ 5

0
(80 − t) · 4 dt .

Thus

W =
[
320t − 2t2

]5

0
= 1550 ft. lbs.

8. The work performed is

W =
∫ 100

2
[2x2 + 3x + 4] dx

=
[

2
3

x3 + 3
2

x2 + 4x
]100

2

=
(

2000
3

+ 300
2

+ 40
)

−
(

16
3

+ 12
3

+ 8
)

ft. lbs.



390 C A L C U L U S DeMYSTiF i eD

9. (a)
∫ π/2

0

√
1 + [− sin x]2 dx

(b)
∫ 4

1

√
1 + [(2/3)x−1/3]2 dx

(c)
∫ π/2

0

√
1 + [cos y]2 dy

(d)
∫ 3

1

√
1 + [2x]2 dx

10. (a)
1
3

∫ 4

1
sin2 x dx

(b)
1

π/3

∫ π/3

0
tan x dx

(c)
1
4

∫ 2

−2

2x
x + 1

dx

(d)
1

3π/2

∫ π

−π/2

sin x
2 + cos x

dx

11. (a)
4∑

j=1

e− j2 · 1

(b)
8∑

j=1

cos(e−2+ j/2) · 1
2

(c)
5∑

j=1

sin(−2 + 2 j/5)2 · 2
5

(d)
10∑
j=1

e4 j/10

2 + cos(4 j/10)
· 4

10

12. We do (a) and (b).

(a)
1
2

{
e−02 + 2 · e−12 + 2 · e−22 + 2 · e−32 + e−42

}
(b)

1/2
2

{
cos(e−2) + 2 · cos(e−3/2) + · · · + 2 · cos(e3/2) + cos(e2)

}
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Final Exam

1. (c) 26. (e) 51. (a) 76. (e)
2. (a) 27. (b) 52. (c) 77. (a)
3. (e) 28. (a) 53. (c) 78. (b)
4. (b) 29. (c) 54. (e) 79. (d)
5. (d) 30. (e) 55. (a) 80. (e)
6. (a) 31. (d) 56. (b) 81. (d)
7. (d) 32. (d) 57. (a) 82. (c)
8. (b) 33. (b) 58. (b) 83. (e)
9. (e) 34. (a) 59. (c) 84. (a)

10. (c) 35. (c) 60. (d) 85. (b)
11. (b) 36. (c) 61. (b) 86. (d)
12. (a) 37. (a) 62. (b) 87. (a)
13. (e) 38. (d) 63. (a) 88. (d)
14. (a) 39. (e) 64. (c) 89. (b)
15. (c) 40. (a) 65. (e) 90. (a)
16. (d) 41. (c) 66. (a) 91. (c)
17. (d) 42. (d) 67. (b) 92. (d)
18. (e) 43. (a) 68. (d) 93. (e)
19. (a) 44. (b) 69. (e) 94. (c)
20. (b) 45. (e) 70. (c) 95. (b)
21. (e) 46. (a) 71. (d) 96. (b)
22. (b) 47. (d) 72. (a) 97. (d)
23. (c) 48. (c) 73. (c) 98. (a)
24. (e) 49. (b) 74. (a) 99. (c)
25. (a) 50. (e) 75. (b) 100. (d)
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Index

A

acceleration as a second derivative, 91
adjacent side of a triangle, 30
angle, sketching, 24
angles, in degree measure, 24
angles, in radian measure 24, 25, 26
antiderivative, concept of, 120
antiderivatives as organized guessing, 113
antiderivatives, 113
arc length, 292
arc length, calculation of, 294
area and volume, analysis of with improper

integrals, 168, 173
area function, 133
area of a rectangle, 124
area, calculation of, 124
area, examples of, 129
area, signed, 134
average value of a function, 289
average value, comparison with minimum

and maximum, 290
average velocity, 78

B

bacterial growth, 213

C

cartesian coordinates, 2
closed interval, 4
composed function, 46
composition not commutative, 47
composition of functions, 46

compositions, recognizing, 47, 48
compound interest, 218
concave down, 98
concave up, 98
cone, surface area of, 299
constant of integration, 121
continuity, 74
continuity measuring expected value, 74
coordinates in one dimension, 4
coordinates in two dimensions, 6
cosecant function, 31
cosine function, 232
cosine function, principal, 222
cosine of an angle, 27
cotangent function, 31
critical point, 104
cubic, 20
cylindrical shells, method of, 279

D

decreasing function, 98
derivative, 76
derivative of a logarithm, 85
derivative of a power, 84
derivative of a trigonometric function, 84
derivative of an exponential, 109
derivative, application of, 91
derivative, chain rule for, 84
derivative, importance of, 77
derivative, product rule for, 83
derivative, quotient rule for, 84
derivative, sum rule for, 83
derivatives, rules for calculating, 83

395
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differentiable, 76
differential equation for exponential decay,

211
differential equation for exponential growth,

211
domain of a function, 36

E

element of a set, 35
endowment, growth of, 220
Euler, Leonhard, 194
Euler’s constant, value of, 194
Euler’s number e, 194
exponential decay, 215
exponential function, 188, 189
exponential function, as inverse of the

logarithm, 189
exponential function, calculus properties of,

191
exponential function, graph of, 190
exponential function, properties of, 188
exponential function, uniqueness of, 191
exponential functions, graph of, 211
exponential growth, 213
exponentials with arbitrary bases, 195
exponentials, calculus with, 191
exponentials, properties of, 189
exponentials, rules for, 189

F

falling bodies, 92, 95
falling body, examples of, 95
Fermat’s test, 104
function, 35
function specified by more than one formula,

38
functions with domain and range understood,

36
functions, examples of, 35, 36
Fundamental Theorem of Calculus,

justification for, 133

G

Gauss, Carl Friedrich, 128
graph functions, using calculus to, 98
graph of a function, 39
graph of a function, plotting, 41
graph of a function, point on, 39
graphs of trigonometric functions, 32
growth and decay, alternative model for, 217

H

half-open interval, 4
Hooke’s Law, 286
hydrostatic pressure, 300
hydrostatic pressure, calculation of, 302

I

improper integrals, 160
improper integrals, applications of, 173
improper integral, convergence of, 161
improper integral, divergence of, 163
improper integrals, doubly infinite, 172
improper integral, incorrect analysis of, 165
improper integrals over unbounded intervals,

170
improper integral with infinite integrand, 160
improper integrals with infinite integrand, 160
improper integral with interior singularity, 164
increasing function, 98
indefinite integral, 120, 121
indefinite integral, calculation of, 122
indeterminate forms, 148
indeterminate forms involving algebraic

manipulation, 154
indeterminate forms, using algebraic

manipulations to evaluate, 154
indeterminate forms, using common

denominator to evaluate, 156
indeterminate forms, using logarithm to

evaluate, 155
initial height, 114
initial velocity, 114
inside the parentheses, working, 46
instantaneous velocity as derivative, 78
instantaneous velocity, 78
integral sign, 121, 127
integrals involving inverse trigonometric

functions, 229
integrals involving tangent, secant, etc., 259
integrals, numerical methods for, 306
integrand, 123
integration by parts, 240
integration by parts, choice of u and v, 241
integration by parts, definite integrals, 242
integration by parts, limits of integration, 244
interest, continuous compounding of, 219
intersection of sets, 35
inverse cosecant, 233
inverse cosine function, derivative of 225
inverse cosine, graph of, 224
inverse cotangent, 231, 232
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inverse, derivative of, 90
inverse secant, 233
inverse sine function, derivative of, 225
inverse sine, graph of, 223
inverse tangent function, 227
inverse tangent function, derivative

of, 228
inverse trigonometric functions, application

of, 235
inverse trigonometric functions, graphs of,

223, 224, 228, 232, 233, 234
inverse trigonometric functions, key

facts, 235

L

Leibniz, Gottfried, 130
l’Hôpital’s Rule, 148, 149, 152, 153, 154
limit as anticipated value rather than actual

value, 69
limit, ε-δ definition of, 66
limit, informal definition of, 66
limit, non-existence of, 70
limit, rigorous definition of, 66
limit, uniqueness of, 71
limits, 66
limits of integration, 128
limits, one-sided, 70
limits, properties of, 71
line, equation of, 15
line, key idea for finding the equation

of, 15
line, point-slope form for, 16
line, two-point form for, 17
loci in the plane, 18
locus of points, 45
locus, plotting of, 8
logarithm, formal definition of, 181
logarithm function as inverse to exponential,

189
logarithm function, derivative of, 183
logarithm functions, graph of, 185, 186
logarithm, graph of, 185
logarithm, natural 181
logarithm of the absolute value, 185
logarithm, properties of, 182
logarithm, reciprocal law for, 183
logarithm to a base, 199
logarithmic derivative, 85, 109
logarithmic differentiation, 208
logarithms, calculus with, 203
logarithms, properties of, 182
logarithms with arbitrary bases, 199

M

Maple, 311
Mathematica, 311
maxima and minima, applied, 103
maximum, derivative vanishing at, 104
maximum/minimum problems, 103
minimum, derivative vanishing at, 104
money, depreciation of, 174

N

natural logarithm as log to the base e, 200
Newton, Isaac, 130
non-repeating decimal expansion, 3
numerical approximation, 306

O

open interval, 4
opposite side of a triangle, 30

P

parabola, 20
parallel lines have equal slopes, 15
partial fractions, products of linear factors, 247
partial fractions, quadratic factors, 251
partial fractions, repeated linear factors, 249
period of a trigonometric function, 29
perpendicular lines have negative reciprocal

slopes, 14
pinching theorem, 72
points in the plane, plotting, 6
points in the reals, plotting, 4
power, derivatives of, 205
principal angle, associated, 30

Q

quotient, writing a product as, 154

R

radioactive decay, 215
range of a function, 36
rate of change and slope of tangent line, 78
rational numbers, 2
real numbers, 2
reciprocals of linear functions, integrals of, 245
reciprocals of quadratic expressions, integrals

of, 245, 246
rectangles, method of, 308
related rates, 109
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repeating decimal expansion, 3
Riemann sum, 129
rise over run, 10

S

secant function, 31
set builder notation, 4
sets, 35
Simpson’s rule, 312, 314
Simpson’s rule, error in, 313
sine and cosine, fundamental properties

of, 27
Sine function, 222
sine function, principal, 222
sine of an angle, 27
sines and cosines, odd powers of, 257
slope of a line, 10
slope, undefined for vertical line, 14
springs, 286, 287, 288,
substitution, method of, 252
surface area, 296
surface area, calculation of, 298

T

tangent function, 31, 227
tangent line, calculation of, 78
tangent line, slope of, 78
terminal point for an angle, 27
trapezoid rule, 308, 309

trapezoid rule, error in, 309
trigonometric expressions, integrals of, 256
trigonometric functions, additional, 41
trigonometric functions, fundamental

identities, 33
trigonometric functions, inverse, 221
trigonometric functions, table of values, 34
trigonometric identities, useful, 256
trigonometry, 20
trigonometry, classical formulation of, 30

U

u-substitution, 252
union of sets, 35
unit circle, 23

V

vertical line test for a function, 41
volume by slicing, 266
volume of solids of revolution, 273, 274
volume, calculation of, 266

W

washers, method of, 274
water, pumping, 287
water, weight of, 288
work, 284
work, calculation of, 284, 285
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