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PREFACE

There are some things that only manga can do.

You have just picked up and opened this book. You must be
one of the following types of people.

The first type is someone who just loves manga and thinks,
“Calculus illustrated with manga? Awesome!” If you are this type
of person, you should immediately take this book to the cashier—
you won’t regret it. This is a very enjoyable manga title. It’'s no
surprise—Shin Togami, a popular manga artist, drew the manga,
and Becom Ltd., a real manga production company, wrote the
scenario.

“But, manga that teaches about math has never been very
enjoyable,” you may argue. That’s true. In fact, when an editor at
Ohmsha asked me to write this book, I nearly turned down the
opportunity. Many of the so-called “manga for education” books
are quite disappointing. They may have lots of illustrations and
large pictures, but they aren’t really manga. But after seeing a
sample from Ohmsha (it was The Manga Guide to Statistics), I
totally changed my mind. Unlike many such manga guides, the
sample was enjoyable enough to actually read. The editor told me
that my book would be like this, too—so I accepted his offer. In
fact, I have often thought that I might be able to teach mathemat-
ics better by using manga, so I saw this as a good opportunity to
put the idea into practice. I guarantee you that the bigger manga
freak you are, the more you will enjoy this book. So, what are you
waiting for? Take it up to the cashier and buy it already!

Now, the second type of person is someone who picked up this
book thinking, “Although I am terrible at and/or allergic to calcu-
lus, manga may help me understand it.” If you are this type of per-
son, then this is also the book for you. It is equipped with various
rehabilitation methods for those who have been hurt by calculus
in the past. Not only does it explain calculus using manga, but
the way it explains calculus is fundamentally different from the
method used in conventional textbooks. First, the book repeatedly



Xl PREFACE

presents the notion of what calculus really does. You will never
understand this through the teaching methods that stick to limits
(or -6 logic). Unless you have a clear image of what calculus really
does and why it is useful in the world, you will never really under-
stand or use it freely. You will simply fall into a miserable state of
memorizing formulas and rules. This book explains all the formu-
las based on the concept of the first-order approximation, helping
you to visualize the meaning of formulas and understand them
easily. Because of this unique teaching method, you can quickly
and easily proceed from differentiation to integration. Further-
more, I have adopted an original method, which is not described in
ordinary textbooks, of explaining the differentiation and integra-
tion of trigonometric and exponential functions—usually, this is
all Greek to many people even after repeated explanations. This
book also goes further in depth than existing manga books on
calculus do, explaining even Taylor expansions and partial dif-
ferentiation. Finally, I have invited three regular customers of
calculus—physics, statistics, and economics—to be part of this
book and presented many examples to show that calculus is truly
practical. With all of these devices, you will come to view calculus
not as a hardship, but as a useful tool.

I would like to emphasize again: All of this has been made
possible because of manga. Why can you gain more information
by reading a manga book than by reading a novel? It is because
manga is visual data presented as animation. Calculus is a branch
of mathematics that describes dynamic phenomena—thus, calcu-
lus is a perfect concept to teach with manga. Now, turn the pages
and enjoy a beautiful integration of manga and mathematics.

HIROYUKI KOJIMA

NOVEMBER 2005

NOTE: For ease of understanding, some figures are not drawn
to scale.
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THE ASAGAKE
TIMES'S SANDA-CHO
OFFICE MUST BE
AROUND HERE.

.

JUST THINK—ME,
NORIKO HIKIMA, A
JOURNALIST! MY

CAREER STARTS
| HERE!
U
_ TLL WORK
IT'S A SMALL \ £ HARDE

NEWSPAPER AND
JUST A BRANCH
OFFICE. BUT I'M

STILL A JOURNALIST!

Z PROLOGUE



THE ASAGAKE TIMES
SANDA-CHO DISTRIBUTOR

A NEWSPAPER
DISTRIBUTOR?

SANDA-CHO OFFICE... )
PO 1 HAVE THE
WRONG MAP?

IT'S NEXT
DOOR.

YOU'RE LOOKING
FOR THE SANDA-CHO
BRANCH OFFICE?

EVERYBODY MISTAKES

US FOR THE OFFICE
BECAUSE WE ARE
LARGER.

WHAT IS A FUNCTION? 3
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OH, NO!!

|
L

.

\

e IT'S A BRANCH
; i s OFFICE, BUT IT'S
DON'T..DON'T GET s i oL He REAL
UPSET, NORIKO. SCAGIKE THIES.




GOOD
MORNING!

HERE GOES
NOTHING!

7
Mily

/

iy

!

DELIVERY?

WHAT IS5 A FUNCTION? 5



WILL YOU
LEAVE IT,
PLEASE?

ALY R |

WAIT, WHAT?

OH, YOU HAVE
BEEN ASSIONED
HERE TODAY.

LONG TRIP,
WASN'T ITZ? IT'M
KAKERU S$EKI, THE
HEAD OF THIS
OFFICE.

6 PROLOGUE

THE BIG GUY THERE
IS FUTOSHI MASUI,
MY ONLY SOLDIER.

[




THINKING...?
THIS 1S A GO0D

PLACE. A PERFECT
ENVIRONMENT FOR

THINKING ABOUT
THINGS.

YES! THINKING
ABOUT FACTS.

A FACT 1S SOMEHOW
RELATED TO
ANOTHER FACT.

UNLESS YOU UNDERSTAND
THESE RELATIONSHIPS,
YOU WON'T BE A REAL

REPORTER.

TRUE JOURNALISM!!

WHAT IS A FUNCTION? 7



WELL, YOU
MAJOREPD IN THE
HUMANITIES.

YES! THAT'S
TRUE-T'VE STUDIED
LITERATURE SINCE
I WAS A JUNIOR IN
HIGH SCHOOL.

YOU HAVE A LOT OF
CATCHING UP TO DO,
THEN. LET'S BEGIN
WITH FUNCTIONS.

FU...FUNCTIONS?
MATH? WHAT?

WHEN ONE THING
CHANGES, IT INFLUENCES A FUNCTION DESCRIBES A

' RELATION, CAUSALITY, OR

ANOTHER THING. ; / !

A FUNCTION IS A ‘ CHANGE.
CORRELATION. YOU CAN THINK OF

THE WORLD ITSELF AS
ONE BIG FUNCTION.

AS JOURNALISTS,
OUR JOB IS TO FIND
THE REASON WHY
THINGS HAPPEN—
THE CAUSALITY.




DID YOU KNOW A mmm

FUNCTION 15 OFTEN
EXPRESSED AS
y =fx)?

XL

NOPE!!

FOR EXAMPLE,
ASSUME x
AND y ARE

PR ANIMALS.

Animalx | — | f | — | Animal y

ASSUME x 1S A FROG. IF

YOU PUT THE FROG INTO

BOX f AND CONVERT [T,

TADPOLE y COMES OUT
OF THE BOX.

BUT, UH...
WHAT IS f?2

THE f STANDS FOR
FUNCTION, NATURALLY.

unction

Sf 15 USED TO SHOW THAT
THE VARIABLE y HAS A
PARTICULAR RELATIONSHIP
TO x.

AND WE CAN
ACTUALLY USE ANY
LETTER INSTEAD

OF f.

WHAT IS A FUNCTION? 9



IN THIS CASE, f
EXPRESSES THE
RELATIONSHIP

2 N

A PARENT

OR RULE
BETWEEN
“A PARENT”

AN OFFSPRING

OKAY! NOW
LOOK AT THIS.

10 Af//{[.]///

TRUE OF ALMOST

AND THIS
RELATIONSHIP 1S

ANY ANIMAL. IF x
15 ABIRD, y 15 A

FOR EXAMPLE,

THE RELATIONSHIP
BETWEEN INCOMES
AND EXPENDITURES
CAN BE SEEN AS A
FUNCTION.

LIKE HOW WHEN
THE SALES AT A
COMPANY GO UP,
THE EMPLOYEES
GET BONUSES?

THE SPEED OF SOUND
AND THE TEMPERATURE

AS A FUNCTION. WHEN
THE TEMPERATURE GOES
UP BY 1°C, THE SPEED
OF SOUND GOES UP BY
0.6 METERS/SECOND,

CAN ALSO BE EXPRESSED

TEMPERATURE IN THE

0.5°C EACH TIME YOU
GO UP 100 METERS,

AT

AND THE

MOUNTAINS GOES
DOWN BY ABOUT

DOESN'T IT?

10 PROLOGUE



WE HAVE PLENTY
OF TIME HERE TO

DO YOU GET IT? WE
ARE SURROUNDED BY T ey aHE7E
FUNCTIONS.

I SEE WHAT
YOU MEAN!

THE THINGS YOU
THINK ABOUT HERE
MAY BECOME USEFUL

SOMEDAY.

IT'S A SMALL
OFFICE, BUT 1 HOPE
YOU WILL DO YOUR

|
o

:

WHAT IS A FUNCTION? 11



ARE YOU ALL

OH, LUNCH IS HERE
ALREADY? WHERE 1S MY
BEEF BOWL?

FUTOSHI, LUNCH
HASN'T COME
YET. THIS 1S...

NOT YET? PLEASE
WAKE ME UP WHEN
LUNCH 1S HERE.
ZZZ...

NO, FUTOSHI,
WE HAVE A
NEW...

12 PROLOGUE




TABLE 1: CHARACTERISTICS OF FUNCTIONS

SUBJECT

CALCULATION

GRAPH

Causality

The frequency of a cricket’s chirp is
determined by temperature. We can
express the relationship between

y chirps per minute of a cricket at
temperature x°C approximately as

y=9g(x)=7x-30
I !

x=27° 7x27-30

The result is 159 chirps a minute.

Changes

The speed of sound y in meters per sec-
ond (m/s) in the air at x°C is expressed as

y=v(x)=0.6x+331

At 15°C,
y=v(15)=0.6x15 + 331 = 340 m/s

At -5°C,
y=v(-5)=0.6x(-5)+ 331 = 328 m/s

Unit
Conversion

Converting x degrees Fahrenheit (°F) into
y degrees Celsius (°C)

y=J(x)=2(x-32)

So now we know 50°F is equivalent to

5

4 (80-32)=10°"C

When we graph these
functions, the result is
a straight line. That’s
why we call them linear
functions.

Y,

Computers store numbers using a binary
system (1s and Os). A binary number with
x bits (or binary digits) has the potential
to store y numbers.

y=b(x)=2"

(This is described in more detail on
page 131.)

The graph is an expo-
nential function.

Yy
1024

Y

WHAT IS A FUNCTION? 13



THE GRAPHS OF SOME FUNCTIONS CANNOT BE EXPRESSED
BY STRAIGHT LINES OR CURVES WITH A REGULAR SHAPE.

The stock price P of company A in month x in 2009 is
y =Px)

300 +

Yen

200 +

100 +

1 2 3 4 5 6

A4

Month

P(x) cannot be expressed by a known function, but it is still a function.
If you could find a way to predict P(7), the stock price in July, you could
make a big profit.

COMBINING TWO OR MORE FUNCTIONS 1S CALLED “THE
COMPOSITION OF FUNCTIONS.” COMBINING FUNCTIONS
ALLOWS US TO EXPAND THE RANGE OF CAUSALITY.

A composite function
of fand g

x—| f|— fix)—| g | — g(f(x))

EXERCISE

1. Find an equation that expresses the frequency of z chirps/minute of a
cricket at x°F.

14 PROLOGUE
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APPROXIMATING WITH FUNCTIONS

ALL RIGHT, IM
DONE FOR THE
DAY.

NORIKO, I HEARD
A POSH ITALIAN
RESTAURANT JUST
OPENED NEARBY.
WOULD YOU LIKE
TO GO?

WOW! I LOVE
ITALIAN FOOD.
LET'S GO!

BUT..YOU'RE
FINISHED
ALREADY?
IT'S NOT EVEN
NOON.

WE OPERATE
D O\ A DiFFERENT
| @0 SCHEDULE.

| —

THIS IS A
BRANCH OFFICE.

16 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!
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TO: EDITORS
SUBJECT: TODAY'S HEADLINES

A BEAR RAMPAGES |N A HOUSE AGAIN—-NO INJURIES

THE REPUTATION OF sANDA
-CH

DO YOU..DO
YOU ALWAYS
FILE STORIES
LIKE THIS?

LOCAL NEWS LIKE

THIS 15 NOT BAD.

BESIDES, HUMAN-

INTEREST STORIES
CAN BE...

POLITICS, FOREIGON

AFFAIRS, THE

ECONOMY... I WANT TO
COVER THE
HARD-HITTING

I55UES!! AH..THAT'S

IMPOSSIBLE.

APPROXIMATING WITH FUNCTIONS 17



IT'S NOT LIKE A
SUMMIT MEETING
WILL BE HELD
AROUND HERE.

NOTHING EXCITING
EVER HAPPENS,
AND TIME GOES

BY VERY SLOWLY.

I KNEW IT.
I DON'T WANNA WORK

HERE!!

M

:ﬁiﬁt

NORIKO, YOU CAN
STILL BENEFIT
FROM YOUR
EXPERIENCES

I DON'T KNOW
WHICH BEAT YOU
WANT TO COVER,

\
N \
N\ W

\\\\\\ \

\
A

\
\ 0
\

AN
NN

TS
L IR
\\\Q\&\\\ \\\\\\\\\
W
\

BUT I WILL TRAIN YOU
WELL SO THAT YOU
CAN BE ACCEPTED AT
THE MAIN OFFICE.

18 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!



BY THE WAY,
DO YOU THINK
THE JAPANESE

ECONOMY IS STILL

I THINK $O. 1 FEEL
IT IN MY DAILY LIFE.

ECONOMIC
STIMULUS

b g [ QI
EXPERIENCING T
DEFLATION? U // / /// /////////// H

THE GOVERNMENT
REPEATEDLY SAID
THAT THE ECONOMY
WOULD RECOVER.

BUT IT TOOK A LONG
TIME UNTIL SIGNS OF
RECOVERY APPEARED.

1 HAVE A BAD

A TRUE JOURNALIST FEELING ABOUT

MUST FIRST ASK
HIMSELF, *WHAT DO
I WANT TO KNOW?”

APPROXIMATING WITH FUNCTIONS 19



IF YOU CAN APPROXIMATE WHAT
YOU WANT TO KNOW WITH A
SIMPLE FUNCTION, YOU CAN SEE
THE ANSWER MORE CLEARLY.

HERE WE

USE A LINEAR
EXPRESS|ION: NOW, WHAT WE WANT
y=ax+b TO KNOW MOST 16 IF

PRICES ARE GOING
UP OR DOWN.

\v_/_/w//
. \

Turned to inflation

(Prices) y=ax+b
. '
[ ) [ ]
1 [ ] ®
SO IFals
NEGATIVE, WE KNOW
APPIZOUXIMUATIN@ | | | | | THAT DEFLATION 15
T:'LEPF;ITCg; a-lli I‘l('I-D-IN 2004 2005 2006 x STILL CONTINUING.
y = ax + b GIVES... (Year)
\\
) /
0 a>0 0 a<0

Still in deflation

20 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!



THAT'S RIGHT.
YOU ARE A
QUICK STUDY.

NOW, LET'S \
DO THE REST
AT THE ITALIAN

RESTAURANT. /z

——

LET'S GET
OUTTA
HERE! |

FUTOSH|, WE'RE
LEAVING FOR
LUNCH. DON'T
EAT TOO MANY

SNACKS.

SPEAKING OF SNACKS,
DO YOU KNOW ABOUT
JOHNNY FANTASTIC,
THE ROCKSTAR WHOSE
BOOK ON DIETING
HAS BECOME A BEST
SELLER?

APPROXIMATING WITH FUNCTIONS 21



BUT HE SUDDENLY
BEGAN TO GAIN
WEIGHT AGAIN
AFTER A BAD
BREAK-UP.

ALTHOUGH HIS MY WEIGHT
AGENT WARNED GAIN HAS WHETHER
ALREADY JOHNNY’S WEIGHT

HIM ABOUT [T,

PASSED ITS GAIN IS REALLY

SLOWING DOWN
LIKE HE SAID.

HE WAS CERTAIN.
NOW WHAT HIS
AGENT WANTS TO

KNOW 15...

@'ze RIGHT. NOW,

LET'S IMITATE HIS
WEIGHT GAIN WITH

_ 2
y=ax +bx+c y=ax’ +bx+c

Weight (kg) Weight (kg) \

(o]
70 o ° 70 |-

8 9 10 11 12 8 9 10 11 12
Days Days

2Z CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!



WEIGHT GAIN 15 WEIGHT GAN IS -
ACCELERATING. SLOWING DOWN. ] IF a 1S POSITIVE, HIS WEIGHT
A N GAIN |15 ACCELERATING.
AND IF a IS NEGATIVE, IT'S
SLOWING DOWN.
GOOD!
— > YOU'RE )
as>o a<o DOING WELL. .6@

EH, I DON'T
REALLY CARE
ABOUT THAT.

LET'S ASSUME YOU
WANT TO KNOW
HOW TIGHT EACH

CURVE |5.

\ ’%‘\’Q
RN
é}%ﬁkﬁm

WE CAN
APPROXIMATE
EACH CURVE WITH

A CIRCLE.

~7 THERE ARE LOTS
OF TIGHT CURVES

AROUND HERE.

APPROXIMATING WITH FUNCTIONS 23



LOOK. ASSUME THE
CURVATURE OF THE ROAD 15
ON THE CIRCUMFERENCE OF
A CIRCLE WITH RADIUS R.

______

THE SMALLER
R |5, THE
TIGHTER THE
CURVE |5.

(x-a)’+(y-b)’ =R*

LET'S IMITATE IT WITH THE FORMULA
FOR A CIRCLE WITH RADIUS R
CENTERED AT POINT (a, b).

Wo .
/('

- W ' N o T
T,
AVW/-- A 1, M_'I ﬂ

Wi

0 1 ITHINK sO..

24 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!



WELL, THAT'S THE
ITALIAN RESTAURANT
WE WANT TO GO TO.

OH!! T'VE
GOT AN
IDEA!

IT'S STILL SO
FAR AWAY.

LET'S DENOTE
THIS ACCIDENT

SITE WITH
POINT P.

e

ITALIAN
RESTAURANT

ACCIDENT
SITE

AND LET'S THINK

OF THE ROAD AS
A GRAPH OF THE
FUNCTION f(x) = x°.

APPROXIMATING WITH FUNCTIONS 25



Italian
y restaurant
ﬁ y=gx
4 P
Imitate with
1 ) gix)=4x-4
X) =x
x=2 'x

AT POINT P
THE SLOPE RISES
4 KILOMETERS VERTICALLY
FOR EVERY 1 KILOMETER
IT GOES HORIZONTALLY. IN
REALITY, MOST OF THIS ROAD
IS NOT SO STEEP.

THE LINEAR FUNCTION THAT
APPROXIMATES THE FUNCTION
fix) = x> (OUR ROAD) AT x=2 15
g(x) = 4x - 4. THIS EXPRESSION
CAN BE USED TO FIND OUT,
FOR EXAMPLE, THE SLOPE AT
THIS PARTICULAR POINT.

* THE REASON IS GIVEN ON PAGE 349.

FUTOSHI? WE'VE
HAD AN ACCIDENT.
WILL YOU HELP US?

WHAT FUNCTION
SHOULD 1 USE TO
APPROXIMATE THE
INSIDE OF YOUR
HEAD?

THE ACCIDENT
SITE? IT'S
POINT P.

26 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!



CALCULATING THE RELATIVE ERROR

-
Vo \ )} | ! W-h
: E@ i LN
/ Wi , : \f*{[.‘(' i\‘\&gf‘ ' u;}(k‘” THE RELATIVE ERROR
) . o GIVES THE RATIO OF THE
Wi DIFFERENCE BETWEEN THE
WHILE WE WAIT FOR “ Vo A VALUES OF f(x) AND g(x) TO
FUTOSHI, T'LL TELL ) N THE VARIATION OF x WHEN x
YOU ABOUT RELATIVE M\%W » IS CHANGED. THAT 15...
ERROR, WHICH 15 - RELATIVE
ALSO IMPORTANT. M ERROR?
Ve
Pl Vi
fffe N7 W,
L, i\

N i =

Our Our
original approximating
function function

Difference between f(x) and g(x)
Relative error =

Change of x

I DON'T CARE
ABOUT RELATIVE
DIFFERENCE. 1
JUST WANT SOME
LUNCH.
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ASSUME THAT x
EQUALS Z AT THE
POINT WHERE WE ARE
NOW AND THAT THE
DISTANCE FROM HERE
TO THE RAMEN SHOP

\IG_OLA

R L B L LT

~> e

N deemcmcmccaa e D

\\"

LET'S CHANGE
xBY01l:x=2
BECOMES x = 2.1.

2.1"= 4.4
4x2[-4-4.4

fa)
9(2‘”

50 THE DIFFERENCE 15
f(2.1) - g(2.1) = 0.01, AND THE
RELATIVE ERROR 15 0.01 /0.1 =
0.1 (10 PERCENT).

NOW, ASSUME THE POINT
WHERE 1 AM STANDING IS
0.01 FROM P.

.4
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CHANGE x BY 0.01: x = 2
BECOMES x = 2.01.

erroR 1 (0))- (200 4401 ~404 - 0.000

RELATIVE ERROR

b.gll = 00,

THE RELATIVE ERROR
[1%] FOR THIS POINT 15
SMALLER THAN FOR
THE RAMEN SHOP.

IN OTHER WORDS, THE
CLOSER I STAND TO
THE ACCIDENT SITE, THE
BETTER g(x) IMITATES f(x).

As the variation approaches 0, the relative error also approaches 0.

Variation of Jx) gx) Error Relative
x from 2 error
1 9 8 1 100.0%
0.1 4.41 4.4 0.01 10.0%
0.01 4.0401 4.04 0.0001 1.0%
0.001 4.004001 4.004 0.000001 0.1%

1 1

1 1

v v

0 0
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THAT'S NOT SO
SURPRISING, 1S IT?

GREAT! YOU
ALREADY
UNDERSTAND
DERIVATIVES.

50, THE
RESTAURANT BE STRAIGHT WITH YES. TODAY WE WILL
HAVING THE ME! WE'RE GONNA EAT AT THE RAMEN
SMALLEST EAT AT THE RAMEN SHOP, WHICH 1S

RELATIVE

SHOP, AREN'T WE? CLOSER TO POINT P.

THE RAMEN
SHOP.

THE APPROXIMATE LINEAR FUNCTION 1S SUCH THAT ITS
RELATIVE ERROR WITH RESPECT TO THE ORIGINAL
FUNCTION 1S LOCALLY ZERO.

50, AS LONG AS LOCAL PROPERTIES ARE CONCERNED,
WE CAN DERIVE THE CORRECT RESULT BY USING THE
APPROXIMATE LINEAR FUNCTION FOR THE ORIGINAL

FUNCTION.

SEE PAGE 39 FOR THE DETAILED CALCULATION.
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RAMEN SANDA B WHY 15 FUTOSHI
. _— EATING SO MUCH?
HE JUST CAME TO

RESCUE US.

NORIKO, WE CAN ALSO
ESTIMATE THE COST-
EFFECTIVENESS OF
TV COMMERCIALS
USING APPROXIMATE
FUNCTIONS.

SIGH. I LIKE RAMEN,
BUT I WANTED TO EAT
ITALIAN FOOD.
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THE DERIVATIVE IN ACTION!

LET'S CONSIDER
WHETHER ONE OF
THEIR EXECUTIVES
INCREASED OR
DECREASED THE AIRTIME
OF THE COMPANY’S TV

YOU KNOW THE X

COMMERCIAL TO RAISE
MABN%\;EAE?S:\eg THE PROFIT FROM ITS
AMALGAMATED POPULAR PRODUCTS.
COLA?
OKAY, I GUESS. WHEN I WORKED AT \ TLL DO IT' T WILL
THE MAIN OFFICE, ONLY \ WORK HARD.
ONE MAN SOLVED THIS PLEASE TELL ME
PROBLEM. HE IS NOW A THE STORY.
HIGH-POWERED...

YOU KNOW...

ASSUME AMALGAMATED COLA
AIRS ITS TV COMMERCIAL x
HOURS PER MONTH.

IT 15 KNOWN THAT THE PROFIT
FROM INCREASED SALES DUE TO
x HOURS OF COMMERCIALS 15
flx) =20x

(N HUNDREDS OF MILLION YEN).

L
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AMALGAMATED COLA ]
NOW AIRS THE TV el
COMMERCIAL FOR ® ;
4 HOURS PER MONTH. /. ” o

AND SINCE

f(4)=20+/4 =40, THE

COMPANY MAKES A PROFIT
OF 4 BILLION YEN.

1-MINUTE COMMERCIAL =

THE FEE FOR THE %10 MILLION

< 7. TEN MILLION
TV COMMERCIAL 15 :

YENI?

10 MILLION YEN PER NN
MINUTE. N
\f\x\\\\

f(x) =20Vx HUNDRED MILLION YEN

1-MIN COMMERCIAL = ¥10 MILLION

NOW, A NEWLY
APPOINTED EXECUTIVE
HAS DECIDED TO
RECONSIDER THE
AIRTIME OF THE TV
COMMERCIAL. DO YOU
THINK HE WILL INCREASE

THE AIRTIME OR
DECREASE IT?
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STEP 1

SINCE f(x)=20x
HUNDRED MILLION YEN
IS5 A COMPLICATED

f0-20

HUNDRED MILLION YEN

SINCE IT'S IMPOSSIBLE
TO IMITATE THE WHOLE
FUNCTION WITH A LINEAR
FUNCTION, WE WILL
IMITATE IT IN THE VICINITY
OF THE CURRENT AIRTIME
OF x = 4.

FUNCTION, LET'S
MAKE A SIMILAR
LINEAR FUNCTION TO
ROUGHLY ESTIMATE
THE RESULT.

IMITATE

9(%)

STEP 2

WE WILL DRAW A
TANGENT LINE® TO
THE GRAPH OF

flx) =204x
AT POINT (4, 40).

P):V

* Here is the calculation of the tangent line. (See also the explanation of the
derivative on page 39.)

For f(x)=20+/x, f/(4) is given as follows.

f(4+£)—f(4)_20m_20x2_20(\/4+8—Z)X(\/4+e +2)
B B gx(\/4+g+2)

& &

4+c-4 20

s(\/4+s +2):\/4+8 +2

=20

When ¢ approaches 0, the denominator of ® V4 +¢ +2 — 4.
Therefore, ® —» 20 - 4 = 5.
Thus, the approximate linear function g(x)=5(x-4)+40 =5x +20
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IF THE CHANGE N x IS
LARGE —FOR EXAMPLE, AN
HOUR —THEN g(x) DIFFERS
FROM f(x) TOO MUCH AND

CANNOT BE USED.

IN REALITY, THE CHANGE
IN AIRTIME OF THE TV
COMMERCIAL MUST ONLY
BE A SMALL AMOUNT,
EITHER AN INCREASE OR A
DECREASE.

IF YOU CONSIDER AN
INCREASE OR DECREASE
OF, FOR EXAMPLE,

6 MINUTES (0.1 HOUR),
THIS APPROXIMATION
CAN BE USED, BECAUSE
THE RELATIVE ERROR
IS SMALL WHEN THE
CHANGE N x 1S SMALL.

STEP 3

IN THE VICINITY OF x =4
HOURS, f(x) CAN BE SAFELY
APPROXIMATED AS ROUGHLY
g(x) = 5x + 20.

THE FACT THAT THE
COEFFICIENT OF x IN g(x) IS
5 MEANS A PROFIT INCREASE
OF 5 HUNDRED MILLION YEN
PER HOUR. 50 IF THE CHANGE
IS ONLY & MINUTES (0.1 HOUR),
THEN WHAT HAPPENS?

WE FIND THAT
AN INCREASE OF
6 MINUTES BRINGS
A PROFIT INCREASE
OF ABOUT 5 X O.1 =
0.5 HUNDRED MILLION

THAT'S RIGHT. BUT
HOW MUCH DOES IT
COST TO INCREASE
THE AIRTIME OF THE
COMMERCIAL BY

6 MINUTES?

THE FEE FOR THE
INCREASE IS & X O.1 =
0.6 HUNDRED 5
MILLION YEN.

IF, INSTEAD, THE AIRTIME
1S DECREASED BY
6 MINUTES, THE PROFIT
DECREASES ABOUT
0.5 BILLION YEN. BUT
SINCE YOU DON'T HAVE
TO PAY THE FEE OF
0.6 HUNDRED MILLION
YEN...
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THE ANSWER 15..THE COMPANY
DECIDED TO DECREASE THE
COMMERCIAL TIME!

CORRECT!

PEOPLE USE FUNCTIONS
TO SOLVE PROBLEMS
IN BUSINESS AND LIFE IN

THE REAL WORLD.

THAT'S TRUE
WHETHER THEY ARE
CONSCIOUS OF
FUNCTIONS OR NOT.

BY THE WAY, WHO 1S5 THE
MAN THAT SOLVED THIS
PROBLEM?
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BUT YOU
SAID HE WAS
HIGH-POWERED,
DIDN'T YOU?

HE /5 A HIGH-
POWERED
BRANCH-OFFICE
JOURNALIST.

YOU'RE
KIDDING!

T 77

_yANK’

AS 1 EXPECTED..SOLVING
MATH PROBLEMS HAS
NOTHING TO DO WITH

BEING A HIGH-POWERED

JOURNALIST.
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THIS 1S ABSURD!
I WON'T GIVE UP!

Y

\ LUNCHTIME 15 OVER. [ wem
LET'S FIX THE CARY/

““-—

—
—_—

N—

A

A\

A\

FUTOSH, LIFT THE
CAR UP MORE!
YOU'RE A HIGH-

POWERED BRANCH-
OFFICE JOURNALIST,
AREN'T YOU?

I DON'T THINK
THIS HAS
ANYTHING TO DO
WITH BEING A
JOURNALIST...
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CALCULATING THE DERIVATIVE

Let’s find the imitating linear function g(x) = kx + 1 of function f(x) at x = a.
We need to find slope k.

O g(x)=k(x-a)+ f(a) (g(x) coincides with f(a) when x = a.)

Now, let’s calculate the relative error when x changes from x = a to
X=a+e.

Difference between f and g after x has changed

Relative error =
Change of x from x=a

Sfla+e)-g(a+e)

~

gla+e)=k(a+ec-a)+ f(a)

_fla+e)-(ke+ f(a)) =ke + f(a)
= > \
When ¢ approaches O,
_ Sfla+e)-f(a) K 0 the relative error also
£ 20 approaches 0.
a+¢)- fla )
k= limw f(a+ég)- f(a) approaches k

2 when ¢ — O.

(The lim notation expresses the operation that obtains the value when ¢
approaches 0.)

Linear function @, or g(x), with this Ik, is an approximate function of f(x).

k is called the differential coefficient of f(x) at x = a.

. f(a + s) - f(a) Slope of the line tangent to y = f(x) at
lim .
£50 £ any point (a, f(a)).

We make symbol f’ by attaching a prime to f.

f'(a)=1lim Sf(a+e)-f(a)  f’(a) is the slope of the line tangent to
T 50 € y =flx) at x = a.

Letter a can be replaced with x.
Since f’ can been seen as a function of x, it is called “the function
derived from function f,” or the derivative of function f.

CALCULATING THE DERIVATIVE 39



CALCULATING THE DERIVATIVE OF A CONSTANT, LINEAR, OR QUADRATIC
FUNCTION

1. Let’s find the derivative of constant function f(x) = a. The differential
coefficient of f(x) at x = a is

im(@te)-f(@) _a-a oo

-0 & -0 Fos -0

Thus, the derivative of f(x) is f'(x) = 0. This makes sense, since our
function is constant—the rate of change is O.

NoTE The differential coefficient of f(x) at x = a is often simply called the
derivative of f(x) at x = a, or just f'(a).

2. Let’s calculate the derivative of linear function f(x) = ax + 5. The deriva-
tive of f(x) at x = a is

limf(a+s)—f(a):lima(a+s)+ﬁ—(aa+ﬁ):lima:a
£—0 £ £—0 ol £—0

Thus, the derivative of f(x) is f'(x) = a, a constant value. This result
should also be intuitive—linear functions have a constant rate of change
by definition.

3. Let’s find the derivative of f(x) = x*>, which appeared in the story. The dif-
ferential coefficient of f(x) at x = a is

- P _aq? 2
im S (@)= S(@)_yp (@ve) —al 20646 1 dass)-2a
£—0 & £—0 fad £—0 & £—0

Thus, the differential coefficient of f(x) at x = a is 2a, or f(a) = 2a.
Therefore, the derivative of f(x) is_f'(x) = 2x.

SUMMARY

* The calculation of a limit that appears in calculus is simply a formula
calculating an error.

* Alimit is used to obtain a derivative.
* The derivative is the slope of the tangent line at a given point.
¢ The derivative is nothing but the rate of change.
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The derivative of f(x) at x = a is calculated by

limf(a+g)—f(a)

£—0 &

g(x) =f(a) (x - a) + f(a) is then the approximate linear function of f(x).

f'(x), which expresses the slope of the line tangent to f(x) at the point
(%, f(x)), is called the derivative of f(x), because it is derived from f(x).

Other than f’(x), the following symbols are also used to denote the
derivative of y = f(x).

, dy df d
Vo i i axd ™
EXERCISES

1. We have function f(x) and linear function g(x) = 8x + 10. It is known
that the relative error of the two functions approaches 0 when x
approaches 5.

A.  Obtain f(5).
B. Obtain f/5).

2. For flx) = x°, obtain its derivative Jf'(x).
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LET'S LEARN DIFFERENTIATION
TECHNIQUES!




Criminal Charges
Brought Against
Megatrox

Construction Contract
Violates Antitrust Laws

IR

WOW! MEGATROX 15 A
HUGE COMPANY!

THIS 1S A GREAT
SCOOP, ISN'T IT?
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OF COURSE!
1 SUPPOSE YOU
WANT TO WRITE A BIG
STORY SOMEDAY?

YOU TWO MUST
HAVE GOT SOME
REALLY EXCITING

SCOOPS WHEN YOU
WERE AT THE MAIN
OFFICE. TELL ME!

I OFTEN FAILED TO

REPORT BIG NEWS., 1 THAT'S
HAVE ALSO WRITTEN A NOTHING TO
LETTER OF APOLOGY BE PROUD
FOR INCLUDING FALSE OF!

INFORMATION IN MY
REPORTING.

I UNDERSTAND THAT
YOU HAVE HIGH
EXPECTATIONS
FOR NEWSPAPER
JOURNALISM, BUT THE
BASICS ARE MOST
IMPORTANT.

CALM DOWN,
NORIKO.
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ALSO, DON'T PRETEND TO
{ | kKNoW EVERYTHING. IF YOU
WRITE SIMPLY AND COME ACROSS ANYTHING
CLEARLY—DON'T USE BIG YOU DON'T KNOW, ALWAYS  cjrocy) 15 STILL
WORDS OR JARGON. ASK I?%’G?%% R%FZE LCQECK YOUNG, BUT

' HIS ABILITY TO

INVESTIGATE 15
EXCEPTIONALLY

DON'T FORGET
ABOUT THE
READERS ON
MAIN STREET.

I DON'T PRETEND TO
KNOW EVERYTHING!

BY THE WAY,

7

WHAT IS THE ANTITRUST
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WELL, YOU KNOW THAT
THE FEDERAL TRADE
COMMISSION KEEPS AN
EYE ON COMPANIES TO

SEE IF THEY DO ANYTHING

OF COURSE!

THAT HINDERS FREE

COMPETITION,
DON'T YOU?

DOUBTFUL
C)

COMPANIES AND STORES
ARE ALWAYS TRYING TO
SUPPLY CONSUMERS WITH
BETTER MERCHANDISE AT
LOWER PRICES.

THE RESULT OF THEIR
COMPETITION SHOULD
BE BETTER QUALITY AND

LOWER PRICES.

BUT IF SOME COMPANIES
AGREE NOT TO COMPETE
WITH EACH OTHER, OR
SOMETHING ELSE HAPPENS
TO HINDER COMPETITION,
CONSUMERS WILL BE
GREATLY DISADVANTAGED.
THE AIM OF THE FEDERAL
TRADE COMMISSION 1S TO
CONTROL SUCH ACTIVITIES.

NOW, I WILL TELL
YOU ABOUT A MOVING
WALKWAY TO EXPLAIN

WHY WE MUST THINK OF
THE ANTITRUST LAW IN
TERMS OF CALCULUS.

WE'LL DISCUSS
THE SUM RULE OF
DIFFERENTIATION.
YOU SHOULD
REMEMBER THIS
BECAUSE IT IS
USEFUL.

NORIKO WANTS A SCOOP!
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THE SUM RULE OF DIFFERENTIATION

LET'S LOOK

FORMULA 2-1: INTO THIS BY
THE SUM RULE OF DIFFERENTIATION APPROXIMATING
AROUND x = a.

For  h(x)=f(x)+g(x)

R(x)= 5 (%) +9'(x) ~

WE DID
THIS
BEFORE.

THAT 15, THE
DERIVATIVE OF A
FUNCTION IS EQUAL
TO THE SUM OF THE
DERIVATIVES OF THE
FUNCTIONS THAT
COMPOSE IT.

WHAT
DOES THAT
MEAN? X

fo~tou-a)+f@ o e

APPROXIMATING SRUsge

g =gla)z-a)+ g(a) o

APPROXIMATING

GIVEN THAT
SINCE h(x) =f(x) + g(x),
SUBSTITUTE © AND @ IN
THIS EQUATION.

h(x)zk(z—a) +f e

APPROXIMATING

WE WANT TO KNOW k.
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WE ALSO
KNOW THAT...

h(z) = ffa)(z-a) + 10 (@) + 9’(a)(1—a) +g(a) o

........
........

50 IF WE REARRANGE  |.-1-+1+ 110" RIGHT!
THE TERMS OF o, SEICICOEIENENE k=f(a)+gla)!
EQUATION © SAYS /. D THE
THE COEFFICIENT OF /. .
(e — @) WILL BE k. LET'S SEE. DIFFERENTIAL
COEFFICIENT EQUALS

THE DERIVATIVE. 50,
k=h'a=
Sf'@+g'(a).

NOW, LET ME T'D RATHER NOT
EXPLAIN ABOUT THINK ABOUT IT,
THE MOVING '

BUT I GUESS
WALKWAY. T WILL.
SUPPOSE FUTOSHI
IS WALKING DOWN
THE SIDEWALK.
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SUPPOSE THE
DISTANCE HE WALKED SUPPOSE x MINUTES
IN x MINUTES FROM LATER, HE IS AT
THE REFERENCE POINT POINT P.
0 IS f(x) METERS.

a MINUTES LATER,
HE 1S AT POINT A.

N/

THAT'S RIGHT.
BUT DOES
IT MEAN
ANYTHING?

THIS MEANS THAT HE
TRAVELED FROM A TO P
IN (x — a) MINUTES.

MR. SEK), THE
SUPPOSE THIS LEFT SIDE OF
TRAVEL TIME THIS EQUATION 15
x - a) 15 Ve @) x—a)a DISTANCE TRAVELED
EXTREMELY S(x)= S (a)(x-a)+ f(a) DIVIDED BY TRAVEL
SHORT. TIME. 50, 15 THIS
THE SPEED?

THIS CAN BE
CHANGED
INTO...

f(x)-f(a) EXACTLY! 50,
—————=f(a) f'(@) REPRESENTS
FUTOSHI'S SPEED
WHEN HE PASSES
POINT A.
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THAT'S RIGHT. 50, IF
h(x) =f(x) + g(x), THEN
h'(x) = f'(x) + g'(x)
MEANS THE
FOLLOWING.

THAT MEANS THAT TO

DIFFERENTIATE IS TO FIND
THE SPEED WHEN f(x) 1S A
FUNCTION EXPRESSING THE
DISTANCE!

THIS TIME, LET HIM
WALK ON A MOVING
WALKWAY, LIKE YOU

MIGHT SEE AT AN =

AIRPORT. --
TRAVELS g(x) METERS

IN x MINUTES

THE MOVING WALKWAY MOVES
f(x) METERS IN x MINUTES.
WHEN MEASURED ON THE
WALKWAY, FUTOSHI TRAVELS
g(x) METERS IN x MINUTES.

MOVES f(x) METERS

IN x MINUTES
50 THE TOTAL

DISTANCE FUTOSHI
TRAVELS IN x
MINUTES BECOMES

h(x) = f(x) + g(x).
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IT MEANS FUTOSHI'S TRAVEL

THEN, WHAT DOES SPEED, AS SEEN FROM
h'(x) =f'(x) + g'(x) SOMEONE NOT ON THE WALKWAY,
MEAN? 1S THE SUM OF HIS SPEED ON

THE WALKWAY AND THE SPEED
OF THE WALKWAY ITSELF,
DOESN'T IT?

BUT, IT'S NOT SO
SURPRISING, 1S5
IT? DOES THIS
HAVE ANYTHING

TO DO WITH THE
ANTITRUST LAW?

BE PATIENT
FOR A LITTLE
WHILE LONGER,
GRASSHOPPER.
I TOLD YOU THAT
THE BASICS ARE

IMPORTANT.

THE NEXT RULE IS
ALSO FUNDAMENTAL,
50 REMEMBER THIS

ONE, TOO.

FPANT, PANT
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THE PRODUCT RULE OF DIFFERENTIATION

FORMULA 2-2:

THE PRODUCT RULE OF DIFFERENTIATION ONLY ONE

FUNCTION?
For  h(x)=f(x)g(x)

The derivative of a product is the sum
of the products with only one function
differentiated.

YES. LET'S
CONSIDER x = a.

(x-a)ls ASMALL
CHANGE. THAT MEANS
(x — a)® 15 VERY, VERY
SMALL. SINCE WE ARE
APPROXIMATING, WE CAN
THROW THAT TERM OUT.

h(x)={f(a)g(a)+ f(a)g (@} (x~a)+ f(a)g(a)
k=s(a)g(a)+ f(a)g'(a)

WE GET THIS.
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NOW, I WILL USE
DIFFERENTIATION
TO EXPLAIN WHY A
MONOPOLY SHOULD
NOT BE ALLOWED.

HOW PO YOU
SOLVE A SOCIAL
PROBLEM USING

DIFFERENTIATION?

ISN'T IT RATHER
AN ISSUE OF

MORALITY, JUSTICE,

AND TRUTH?

LET'S LOOK AT THE
WORLD IN A MORE
BUSINESSLIKE
MANNER.

A MARKET WHERE MANY
COMPANIES SUPPLY
PRODUCTS THAT CANNOT
BE DISCRIMINATED
BETWEEN 1S CALLED “A
PERFECTLY COMPETITIVE
MARKET.”

PERFECTLY
EXAMPLE? COMPETITIVE MARKET

FOR

LET'S SEE...
VIDEO RENTAL
SHOPS?

THAT'S RIGHT." COMPANIES
IN A PERFECTLY
COMPETITIVE MARKET
ACCEPT THE COMMODITY
PRICE DETERMINED BY THE
MARKET AND CONTINUE
TO PRODUCE AND SUPPLY
THEIR PRODUCT AS LONG
AS THEY MAKE PROFITS.

* IN REALITY, THERE ARE USUALLY BIG-NAME BRANDS FOR ANY COMMODITY.
54 CHAPTER 2 THERE ARE FAMOUS CHAIN SHOPS IN THE VIDEO RENTAL MARKET—NO MARKET CAN
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SUPPOSE, FOR EXAMPLE, A COMPANY
PRODUCING CD PLAYERS WHOSE
MARKET PRICE 1S ¥12,000 PER UNIT
CONSIDERS WHETHER OR NOT IT
WILL INCREASE PRODUCTION VOLUME.

IF THE COST OF
PRODUCING ONE MORE
UNIT 1S ¥10,000, THE
COMPANY WILL SURELY
INCREASE PRODUCTION,
BECAUSE IT WILL MAKE

MORE PROFIT.

SINCE MANY
OTHER COMPANIES
PRODUCE THE SAME
KIND OF PRODUCT, THE
COMPANY BELIEVES
THAT ITS INCREASE IN
PRODUCTION WILL CAUSE
THE PRICE TO DECREASE.

50 THE COMPANY WILL CONSIDER
MAKING ADDITIONAL UNITS. BUT THE
COST OF MAKING ONE MORE UNIT
CHANGES, AND THE COMPANY'S
PRODUCTION EFFICIENCY WILL
CHANGE. EVENTUALLY, THE COST
OF MAKING ONE MORE UNIT
WILL REACH THE MARKET PRICE
OF ¥1Z,000. AT THAT POINT, AN
INCREASE IN PRODUCTION WOULD
NOT BE WORTH THE COST.

IN SHORT, THE MARKET
STABILIZES WHEN THE
MARKET PRICE OF
THE UNIT EQUALS THE
COST OF PRODUCING

ANOTHER UNIT.

ON THE OTHER HAND, THE
STORY 1S DIFFERENT IN A
MONOPOLY MARKET, WHERE
ONLY ONE COMPANY SUPFLIES
A PARTICULAR PRODUCT. THEN

JUST ONE COMPANY IS THE
ENTIRE MARKET.

MONOPOLY MARKET

WHEN YOU LOOK
AT THE MARKET
AS A WHOLE, AN
INCREASE IN SUPPLY
WILL CAUSE THE
PRICE TO GO DOWN.
THAT'S JUST SUPPLY
AND DEMAND.
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NOW, LET'S ASSUME
WE KNOW THAT THE
PRICE THAT ALLOWS
THE COMPANY TO SELL
EVERY UNIT SUPPLIED
IN QUANTITY x 1S p(x),
A FUNCTION OF x.

BY THE WAY, p'(x), WHICH
EXPRESSES THE CHANGE
IN PRICE, 15 NEGATIVE
BECAUSE THE UNIT'S
PRICE DECREASES IF

THAT'S RIGHT.
THE COMPANY'S
REVENUE FROM THIS
PRODUCT 1S GIVEN

Revenue = R(x) = price x quantity = p(x) x x

BY THIS...

SQRUEAK
SQRUEAK

FORMULA 2-3:
THE COMPANY'S REVENUE

Since R(x)~R'(a)(x-a)+R(a)
we know that

R(x)-R(a)=R'(a)(x-a)

CHANGE IN
REVENUE

CHANGE IN
PRODUCTION
VOLUME

THIS SHOWS
US THAT THE
ADDITIONAL REVENUE
FROM AN INCREASE
IN PRODUCTION IS
R'(a) PER UNIT.

2

I GET IT! THE COMPANY
NEEDS TO CALCULATE THIS
TO DECIDE WHETHER TO

INCREASE PRODUCTION,
WHILE COMPARING IT
AGAINST THE COSTS OF
PRODUCING THE UNITS.

YOU'RE RIGHT. SINCE

R(x) = p() x x,
REMEMBER THAT

PRODUCT RULE OF

DIFFERENTIATION.

ITHINK I
REMEMBER...
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WE GET R'(a) =p'(a) x a + p(a) x 1

RIGHT. PRODUCTION
SHOULD BE
STOPPED AT THE
EXACT MOMENT IT
BECOMES LESS
THAN THE COST
OF PRODUCTION
INCREASE PER UNIT.

]

* THE DERIVATIVE OF x IS 1 (GEE PAGE 40 FOR MORE ON DIFFERENTIATING LINEAR FUNCTIONS).

IN OTHER WORDS,
PRODUCTION WILL BE STOPPED
WHEN p’(a) x a + p(a) = CO5T
OF PRODUCTION. WE KNOW
THAT THE FIRST TERM IS
NEGATIVE, SO THE MARKET
PRICE p(a) IS GREATER
THAN THE COST.

BUT THE PRICE IS
ACTUALLY GREATER

THAN THE COST
OF PRODUCING AN
ADDITIONAL UNIT WHEN
A MONOPOLISTIC
COMPANY STOPS

PRODUCTION.

THAT'S UNDUE
PRICE-FIXING,

ISN'T IT? 15e8.

YOU ARE RIGHT, BUT YOU
SHOULD TAKE A CLOSER
LOOK. COMPANIES DO
THIS NOT BECAUSE OF
MALICIOUS MOTIVES BUT
BASED ON A RATIONAL
JUDGMENT.

LOOK AT THE
EXPRESSION
AGAIN.
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Sales increase (per unit) when production is increased a little more:
R'(a)=p'(a)a+p(a)
The two terms in the last expression mean the following:

p(a) represents the revenue from selling a units

p'(a)a = Rate of price decrease x Amount of production
= A heavy loss due to price decrease influencing all units

WHAT DO YOU

WHAT DO THE MONOPOLY
THINK, NORIKO?

I THINK? STOPS PRODUCTION,

CONSIDERING BOTH
HOW MUCH IT OBTAINS
BY SELLING ONE MORE

UNIT AND HOW MUCH
LOSS IT SUFFERS DUE
TO A PRICE DECREASE.

IF SO, IT 1S NOT DOING
A "BAD” THIN@ BUT 15 X
JUST SIMPLY ACTING IN COMPANY'S BEHAVIOR
ACCORDANCE WITH A 1S THE CAUSE OF HIGH
CAPITALIST PRINCIPLE \3 AL ’ PRICES, WHICH 1S hIlOT
OF PROFIT-SEEKING. DESIRABLE. THAT'S
THEREFORE, ACCUSING WHY MONOPOLIES ARE
THE COMPANY OF BEING PROHIBITED BY LAW.
MORALLY WRONG IS OF
NO USE.

BUT, FOR CONSUMERS
AND SOCIETY, THE
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MR. 5EKI, THAT'S GREAT!!
o7 ALL OF SOCIETY'S
PROBLEMS CAN BE SOLVED
WITH DIFFERENTIATION,
CANT THEY?

AMAZING!!

YOU MUST
TELL ME.

WHAT ABOUT
LOVE? HOW
DO YOU SOLVE
FOR LOVE?

YOU CAN'T BE SERIOUS.
IT'S IMPOSSIBLE!

ARGHHH!
I HATE

you!!

THE PRODUCT RULE OF DIFFERENTIATION 59



%

ASAGAKE TIMES, OH, HELLO,
SANDA-CHO B...BOSS!
OFFICE.

’f,\)

1

B e

THE ASAGAKE TIMES | THE NEWSPAPER
MANOPFICE | WANTS TO ASK YOU
A FEW QUESTIONS
ABOUT THAT ARTICLE
YOU WROTE.
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THEY WANT TO
KNOW MORE ABOUT
YOUR SOURCES AND

ANY BACKGROUND
INFORMATION. THIS MAY

TO RESTORE YOUR

WHAT'S THE
MATTER? YOU
DON'T LOOK

SO GOO0PD.

BE A GOOD OPPORTUNITY / -

YES..1
UNDERSTAND.

........

THANK YOU FOR
CALLING ME. T'LL GET
EVERYTHING TOGETHER.

OH, NO. IT'S
NOTHING
SERIOUS.

MR. SEKI GETS A CALL &1



DIFFERENTIATING POLYNOMIALS

SUBJECT.

AS A WRAP-UP,
MONOMIAL LET'S
3 MEMORIZE THE
y=ax FORMULAS FOR
DIFFERENTIATING
LET'S CHANGE THE TERM POLYNOMIALS. THE

DIFFERENTIATION
£ ) I l OF ANY
y=ax“+bx+c POLYNOMIAL CAN

 — BE PERFORMED

i - - / POLYNOMIAL BY COMBINING
....... 8 , THREE FORMULAS.

FORMULA 2-4: THE DERIVATIVE OF AN nTH-DEGREE FUNCTION

The derivative of h(x)=x" is h'(x)=nx""

repeatedly.

How do we get this general rule? We use the product rule of differentiation

For h(x)=x?, since h(x)=xxx,h’(x)=xx1+1xx=2x

THIS RESULT 15 USED

The formula is correct in this case.

For h(x)=x°, since h(x)= x*xx, h'(x)= (x2 ), X X+ x% X (x), =(2x)x + x
The formula is correct in this case, too.

For h(x)=x*, since h(x)=x°xx, h'(x) = (xg')/><x+x3 x(x)/ =3xrxx+x°

be differentiated by combining the three formulas!

x1=23x2

x1=4x3

Again, the formula is correct. This continues forever. Any polynomial can

FORMULA 2-5: THE DIFFERENTIATION FORMULAS OF SUM RULE,
CONSTANT MULTIPLICATION, AND x™

’

® Constant multiplication: {af(x)} =af'(x)

® Sumrule: {f(x)+g(x)] = f'(x)+g'(x) © Power rule (x"): {x } =nx""!

Let’s see it in action! Differentiate h(x) = x® + 2x* +5x + 3
rule ®

h'(x)= {x3 +2x% +5x + 3}/ =I(x3 )/ + (2)(2 )/ + (5x)/ + (3)/

=(x3)/ +2(x2)/ +5(x), =3x"+2(2x)+5x1=3x*+4x+5
L ] 1
rule rule ©
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I'M GOING OUT
FOR A WHILE.

DON'T WORRY
ABOUT HIM.

I WANT YOU TO GO OUT
AND DO SOME REPORTING.

REALLY?

SANDA-CHO AMUSEMENT
PARK WAS JUST
RENOVATED.

sz T

JUST A LOCAL
ROLLER COASTER...

DIFFERENTIATING POLYNOMIALS €3



FINDING MAXIMA AND MINIMA

of a function.

solution.

OOH!
— )
I A ™
EEK! \ \ 1
\\u\
NS~
Vi
J L
Maximum
y
SOMETHING o x
LIKE A Minimum
ROLLER
COASTER
TRACK

* SANDA-CHO
SANDALAND
AMUSEMENT

PARK

Maxima and minima are where a function changes from a decrease to an
increase or vice versa. Thus they are important for examining the properties

Since a maximum or minimum is often the absolute maximum or
minimum, respectively, it is an important point for obtaining an optimum

THEOREM 2-1: THE CONDITIONS FOR EXTREMA

If y = f(x) has a maximum or minimum at x = a, then f'(a) = 0.

CLICKETY-
CLACK

WHAT'S THAT?
I HATE ROLLER

This means that we can find maxima or minima by finding values of a
that satisfy f'(a) = 0. These values are also called extrema.

COASTERS...
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Assume f'(a) > 0.

Since f(x) ~f'(a) (x - a) +_f(a) near x = a,
f'(a) > 0 means that the approximate
linear function is increasing at x = a.
Thus, so is f(x).

In other words, the roller
coaster is ascending, and it is not at
the top or at the bottom.

Similarly, y = f(x) is descending
when f'(a) < 0, and it is not at the
top or the bottom, either.

If y = f(x) is ascending or descending when f'(a) > O or f'(a) < 0, respectively,
we can only have f'(a) = O at the top or bottom.

In fact, the approximate linear function y = f'(a) (x - a) + fla) =0 x (x — a)
+ f(a) is a horizontal constant function when f'(a) = 0, which fits our under-
standing of maxima and minima.

(a, fla)

Sla=0
J@=0

(@, fla)

THIS
DISCUSSION CAN
BE SUMMARIZED INTO
THE FOLLOWING
THEOREM.

THEOREM 2-2: THE CRITERIA FOR INCREASING AND DECREASING
y =f(x) is increasing around x = a when f'(a) > 0.

y =f(x) is decreasing around x = a when f'(a) < 0.
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LA, LA, LA!

I LOVE
DIFFERENTIATION!
I CAN SEE
SOCIETY WITH IT!
OH, 50 You
’ )
TEE HEE HEE! UNDERSTAND!

WHAT? YOU HAVE
ANYTHING NEW TO
SAY? ALL YOU SAY

IS DIFFERENTIATION,

DIFFERENTIATION.

WHAT? YOU
JUST SAID YOU

NO, THANK YOU. I DON'T
WANT TO DRINK TOO
MUCH TONIGHT.

MR. SEKI,
WOULD YOU LIKE
ANOTHER DRINK?

IT'S BECAUSE
OF THAT CALL,
ISN'T ITZ? WHAT
DID THE BOSS
SAY?
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DELICIOUS! DRAFT
BEER IS THE BEST
BEER!

HERE 1S A QUESTION! THERE
ARE TWO TYPES OF BEER
BUBBLES. RELATIVELY
SMALL ONES THAT BECOME
EVEN SMALLER AND
FINALLY DISAPPEAR...

AND RELATIVELY LARGE
ONES THAT QUICKLY BECOME
LARGER, RISE UP TO THE
SURFACE, AND POP THERE.
NOW, EXPLAIN WHY THIS

HAPPENS!
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T
. | 5INCE CARBON DIOXIDE IN

CARBONATED DRINKS, SUCH AS
BEER, 1S SUPERSATURATED, IT 1S
AH! MORE STABLE AS A GAS THAN

’ WHEN IT IS DISSOLVED IN FLUID.

50, THE ENERGY OF
A BUBBLE DECREASES
IN PROPORTION TO

4 . IT5 VOLUME
(= ar®, WITH r BEING THE
RADIUS).

4
PLEASURE!

ON THE OTHER HAND, SURFACE
TENSION ACTS ON THE BOUNDARY
SURFACE BETWEEN THE BUBBLE
AND THE FLUID, TRYING TO
REDUCE THE SURFACE AREA.

GAS (BUBBLE) :

SURFACE TENSION ACTS THEREFORE, THE ENERGY OF

THE BUBBLE DUE TO THIS FORCE
INCREASES IN PROPORTION TO
\ THE SURFACE AREA, 4nr.

\
CONSIDERING THESE SURFACE
TWO EFFECTS, THE VOLUME AREA
OF A OF A

ENERGY E(r) OF A
BUBBLE OF RADIUS r
CAN BE EXPRESSED

SPHERE SPHERE

E(r)= —a[%nrs J + b(47rr2)
L 11 I
TERM TERM

FORTHE  FOR THE
VOLUME AREA
AS SHOWN HERE.
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TO SIMPLIFY THE PROBLEM,
THE BUBBLE TRIES TO I SEE. LET'S ASSUME a AND b
REDUCE ITS ENERGY AS IMPRESSIVE, ARE 1 AND CHANGE THE
MUCH AS POSSIBLE. IF FUTOSHI! VALUE OF r 5O THAT
WE FIND OUT HOW E(r) E(r)=-r’+3r’" THAT 15
BEHAVES TO REDUCE 4 ENOUGH TO SEE THE
ITSELF, WE WILL SOLVE GENERAL SHAPE OF E(r).
THE MYSTERY OF BEER / —
BUBBLES. ,

it b
Ll ||

* THIS 1S CALLED NORMALIZING A VARIABLE. WE'VE SIMPLY MULTIPLIED EACH TERM BY 3/(4n).

a4
FIRST, LET'S SINCE ,
FIND THE E'(r)=(-r) +(3r%)
EXTREMUM.

=-3r? + 6r
=-3r(r-2)

WHEN r=2, E'(r) = 0,
FORO<r<2 (E'(r)>0), THE
FUNCTION 15 INCREASING, AND
FOR 2 < r, THE FUNCTION IS
DECREASING (E'(r) < 0).
50, WE FIND E(r) IS AT ITS
MAXIMUM POINT P WHEN r = 2.

NOW WE KNOW THAT THE \E
GRAPH OF E(r) LOOKS LIKE (r)
THIS. THIS GRAPH TELLS US P
THAT THE BUBBLES BEHAVE M~ N
DIFFERENTLY ON THE TWO ! =

SIDES OF MAXIMUM P.

m_ 2 n \
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A BUBBLE THAT HAS THE RADIUS
AND ENERGY OF POINT M
SHOULD REDUCE ITS RADIUS
UNTIL IT 1S SMALLER THAN m TO
MAKE ITS ENERGY E(r) SMALLER.
THE BUBBLE WILL CONTINUE
TO BECOME SMALLER UNTIL
IT FINALLY DISAPPEARS.

E(r)

m 2

<«— The bubble
becomes smaller

ON THE OTHER HAND, A BUBBLE
THAT HAS THE RADIUS AND
ENERGY OF POINT N SHOULD
INCREASE ITS RADIUS TO MAKE
ITS ENERGY E(r) SMALLER. THE
BUBBLE WILL CONTINUE TO
GROW LARGER AND TO RISE
UP INSIDE THE BEER.

2 n
The bubble —
becomes larger

HEH-HEH...FUTOSHI.

N..NORIKO!
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DON'T BRING
UP GRAPHS AND %
THEOREMS IN FRONT
OF ME!!

<

YEOW! YOU BEHAVE
TOTALLY DIFFERENTLY

L

SHUT UP!
SAKE! BRING
ME SAKE!

OUTSIDE OF THE
OFFICE!

I

- —

SHE SEEMS TO
HAVE REACHED
HER MAXIMUM.

Oy
¥
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USING THE MEAN VALUE THEOREM

We saw before that the derivative is the coefficient of x in the approximate
linear function that imitates function f(x) in the vicinity of x = a.
That is,

f(x) = f’(a)(x - a) + f(a) (when x is very close to a)

But the linear function only “pretends to be” or “imitates” f(x), and for b,
which is near a, we generally have

o f(b)=f(a)(b-a)+f(a)

So, this is not exactly an equation.

FOR THOSE WHO CANNOT STAND FOR THIS, WE
HAVE THE FOLLOWING THEOREM.

THEOREM 2-3: THE MEAN VALUE THEOREM

For a, b (a < b), and ¢, which satisfy a < ¢ < b, there exists a
number c that satisfies

f(b)=f(c)(b-a)+ f(a)

In other words, we can make expression @ hold with an equal sign not
with f'(a) but with f'(c), where c is a value existing somewhere between a
and b."

* That is, there must be a value for x between a and b (which we’ll call c) that has a tangent line
matching the slope of a line connecting points A and B.
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Let’s draw a line through point A = (a, f(a)) and point B = (b, f(b)) to form
line segment AB.

y=Jix)

We know the slope is simply Ay / Ax:

® Slope of AB = M

b-a

Now, move line AB parallel to its initial state as shown in the figure.

The line eventually comes to a point beyond which it separates from the
graph. Denote this point by (c, f(c)).

At this moment, the line is a tangent line, and its slope is f'(c).

Since the line has been moved parallel to the initial state, this slope has
not been changed from slope 8.

THEREFORE, WE KNOW

o)-S(a)_ .
e I

MULTIPLY BOTH SIDES BY THE
DENOMINATOR AND TRANSPOSE
TO GET £(b)=f'(c)(b-a)+ f(a)

J
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USING THE QUOTIENT RULE OF DIFFERENTIATION

x
Let’s find the formula for the derivative of h(x) = %
x
1
First, we find the derivative of function p(x)=——, which is the
reciprocal of f(x). S(x)
If we know this, we’ll be able to apply the product rule to h(x).

Using simple algebra, we see that f(x) p(x) = 1 always holds.
1= f(x)p(x)={f'(a)(x-a)+ f(a)}{p'(a)(x-a)+p(a)}

Since these two are equal, their derivatives must be equal as well.

0= p(x) /() + P (x) f (x)

Thus, we have p’(x)= —%.
Since p(a)= m, substituting this for p(a) in the numerator gives
oy =S (@)
p(a)=——+"
f(a)
For h(x)= .5;23 in general, we consider h(x)= g(x)xﬁ =g(x)p(x)
and use the product rule and the above formula.
’ ’ ’ 1 f,(x)
hi(x)=g(x)p(x)+g p(x)=g -g(x 2
(x)=9g'(x)p(x)+9g(x)p'(x) ()f(x) ()f(x)

Therefore, we obtain the following formula.

FORMULA 2-6: THE QUOTIENT RULE OF DIFFERENTIATION
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CALCULATING DERIVATIVES OF COMPOSITE FUNCTIONS

Let’s obtain the formula for the derivative of h(x) = g(f(x)).
Near x = a,

S(x)-Sf(a)=f(a)(x-a)
And neary = b,
9(y)-9g(b)=g'(b)(y-b)

We now substitute b = f(a) and y = f(x) in the last expression.
Near x = a,

9(f(x))-9(f(a)=g'(f(a))(f(x)- S (a))

Replace f(x) — f(a) in the right side with the right side of the first
expression.

a(f(x)-g(f(a))=g'(f(a))f'(a)(x-a)

Since g(f(x)) = h(x), the coefficient of (x — a) in this expression gives us
h'(a) = g'(fla)) f'(a).

We thus obtain the following formula.

FORMULA 2-7: THE DERIVATIVES OF COMPOSITE FUNCTIONS
R'(a)=g'(f (%)) S (x)

CALCULATING DERIVATIVES OF INVERSE FUNCTIONS

Let’s use the above formula to find the formula for the derivative of x = g(y),
the inverse function of y = f(x).

Since x = g( f(x)) for any x, differentiating both sides of this expression
gives 1 = g'(f(x) f'(x).

Thus, 1 = g'(y).f'(x), and we obtain the following formula.

FORMULA 2-8: THE DERIVATIVES OF INVERSE FUNCTIONS

CALCULATING DERIVATIVES 75



FORMULAS OF DIFFERENTIATION

FORMULA KEY POINT
Constant L The multiplicative
multipli- {af (x)} =aof (x) constant can be fac-
cation tored out.
x" (Power) (x" )’ e The exponent becomes
h the coefficient, reduc-
ing the degree by 1.
Sum ’ , , The derivative of a
{f(x) * g(x)} = (x) *9 (x) sum is the sum of the
derivatives.
Product The sum of the prod-

ucts with each func-
tion differentiated in
turn.

Quotient {g(x)}’ g'(x)f(x)-g(x) f(x)

The denominator is
squared. The numera-
tor is the difference
between the products
with only one function
differentiated.

Composite ’
functions {g (f (x ))}

The product of the
derivative of the outer
and that of the inner.

Inverse , 1
functions g'(y)= 7 (%)

The derivative of an
inverse function is
the reciprocal of the
original.

EXERCISES

—_

Calculate the extrema of f(x) = x° - 12x.

Find the derivative f'(x) of f(x) = (1 - x)s.

> W N

1

For natural number n, find the derivative f'(x) of f(x) = —.
X

Calculate the maximum value of g(x) = xz(l - x]3 in the interval 0 <x < 1.
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LET'S INTEGRATE A FUNCTION!




READ THE ARTICLE

HEY, DID YOU

IN TODAY'S
NEWSPAPER?

* THE ASAGAKE TIMES

PERSON GOES TO

THIS ONE. THIS
MY COLLEGE!

THE TOKYO
METROPOLITAN
GOVERNMENT
HAS BUDGETED
GLOBAL WARMING
COUNTERMEASURES \ |
USING THE STUDENT'S \
FINDINGS. THIS 15

OUR UNIVERSITY
IS STRONG IN
SCIENCE.
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CARBON DIOXIDE
(€O 15 SUSPECTED
TO BE THE CAUSE OF
GLOBAL WARMING.

IF HEAT RADIATION
CANNOT ESCAPE
THE ATMOSPHERE,
THE EARTH GETS
TOO WARM, CAUSING
ABNORMAL WEATHER.

[+

»© IT IS CALLED A
GREENHOUSE GAS. IT
HAS THE EFFECT OF

===/ KEEPING THE EARTH WARM

BY PREVENTING HEAT

: RADIATION FROM ESCAPING

EARTH'S ATMOSPHERE.

THE STUDENT
ANALYZED HOW THE
WIND AFFECTS THE

TEMPERATURE.

HE PROPOSED
RESTRICTING THE
CONSTRUCTION OF
LARGE BUILDINGS

IN THE PATH OF

THE WIND.

HE SEEMS TO HOPE
THAT IF THE WIND
BLOWS OVER THE
COAST OR RIVERS
UNHINDERED, THE

INCREASE IN GROUND
TEMPERATURE
WOULD SLOW

IT'5 TOUGH TO
REDUCE €O,
EMISSIONS

IN TODAY'S

BUT EVERYBODY
SHOULD TRY TO
REDUCE THEM.

STUDYING GLOBAL WARMING
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.........

OH[ NO,
DIFFERENTIATION?

HOW DO YOU FIND
OUT IF THE AMOUNT
OF €O, IN THE AIR 15
INCREASING IN THE
FIRST PLACE?

INTEGRATION
ALLOWS US TO FIND
THE TOTAL AMOUNT
OF CO, IN THE AIR.

NO, IT'S INTEGRATION
THIS TIME. BUT IT'S
ALSO A FUNCTION!

IF WE KNOW THE
TOTAL AMOUNT
OF CO, IN THE AIR,
WE CAN ESTIMATE
THESE THINGS.

BUT FINDING THE
1. CO,'S EFFECT ON GLOBAL TOTAL AMOUNT OF
WARMING CO, 1S A DIFFICULT

2. THE AMOUNT OF €O, IN THE PROBLEM.
AIR PRODUCED BY HUMAN
FACTORS, LIKE CARS AND
INDUSTRY

HUH.
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1IF THE CO,
CONCENTRATION IN
THE AIR WERE UNIFORM
EVERYWHERE, WE COULD
CALCULATE THE TOTAL
AMOUNT OF CO,: THE
CO, CONCENTRATION
MULTIPLIED BY THE TOTAL
VOLUME OF AIR.

BUT THE CO,
CONCENTRATION
DIFFERS FROM PLACE
TO PLACE, AND ITS
CHANGE 15 SMOOTH
AND CONTINUOUS.

LET'S THINK ABOUT
THE TOTAL AMOUNT
CHANGE OF

CONCENTRATION
LIKE THIS.

HOW WE CALCULATE
FOR THE CONTINUOUS

UH...CAN YOU
A SIMPLER

THINK OF

OKAY. LET'S USE
THIS, FUTOSHI'S
TREASURED
SHOCHU*!

]

THIS 1S FOR
NORIKO’S TRAINING.
IT'S YOUR FAULT
YOU KEEP IT IN THE
OFFICE.

NO! IT'S “THOUSAND
YEARS OF SLEER” A
VERY RARE, FAMOUS
SHOCHU FROM
SANDA-CHO.

MAYBE THAT'S
WHY HE 15
ALWAYS NAPPING.

STUDYING GLOBAL WARMING
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ILLUSTRATING THE FUNDAMENTAL THEOREM OF CALCULUS

HEIGHT: 9 cM
BASE AREA: 20 CM?

WE WILL POUR HOT
WATER INTO THIS
GLASS OF SHOCHU.

NATURALLY, WHEN WE
ADD THE HOT WATER,
THE LOWER PART IS
STRONG AND THE
UPPER PART IS LESS
CONCENTRATED.

ALSO, THE
CONCENTRATION
CHANGES SMOOTHLY,
LITTLE BY LITTLE,
FROM TOP TO
BOTTOM.

Xem

NOW LET'S EXPRESS THE
DENSITY OF SHOCHU AT
x CENTIMETERS FROM
THE BOTTOM USING THE
FUNCTION p(x) IN G/CM°.
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Density
pX)

SUPPOSE p(x) 1S
EXPRESSED AS

NOW NORIKO, WHAT
IS THE AMOUNT OF

ALCOHOL IN GRAMS I CAN'T
CONTAINED IN THIS FIGURE IT
SHOCHU WITH HOT OUT THAT

WATER? QUICKLY.

IF THE DENSITY 1S
0.1 G/CcM?, AS SHOWN IN
THIS GRAPH, WE NEED TO

AS CALCULATING
THE AREA OF THE
SHADED PART OF
THE GRAPH?

p) CALCULATE THE DENSITY
BUT IF THE TIMES THE HEIGHT
DENSITY 15 TIMES THE BASE AREA:
CONSTANT, IT'S 0.1 X q X 20 = 18 GRAMS,
EASY. THE TOTAL WHICH 15 THE AMOUNT OF
AMOUNT OF ALCOHOL.
ALCOHOL EQUALS 0.1 5
THE DENSITY ;
MULTIPLIED BY THE : >
VOLUME OF THE 9 x
CONTAINER.
YOU ARE RIGHT! BUT
ISN'T IT THE SAME P TO GET THE VOLUME,

0.1

WE MUST ALSO
MULTIPLY HEIGHT x
BY THE BASE AREA,
20 cM?

o D\
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STEP 2—WHEN THE DENSITY CHANGES STEPWISE

Density

NOW, LET'S IMAGINE

A GLASS OF SHOCHU AS pix)
WHERE THE DENSITY REPRESENTED
CHANGES STEPWISE, BY THIS GRAPH,

FOR EXAMPLE.

0.3 ¢—

WHY DON'T YOU
CALCULATE IT,
NORIKO?

WELL, SEPARATING
Gl’giﬁeﬁﬁgHB{zgg XEEA 0.3x2x20+0.2x4x20+0.1 x3x20
IS 20 CM?...
Alcohol for Alcohol for Alcohol for
the portion of | | the portion of | | the portion of
0<x<2 2<x<6 6<x<9

=(03%x2+02x4+0.1x3)x20=34

W)
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THE ANSWER
IS 34 GRAMS,
ISN'T IT?

THAT'S
RIGHT.

NOW, WHAT DO
YOU DO WHEN
plx) CHANGES
CONTINUOUSLY?

Density
pK)

WHAT A
BOTHER!!

ACTUALLY, IT'S
NOT A BOTHER AT
ALL. LOOK!

I SEE. WE CAN START
BY IMITATING THE
FUNCTION WITH A

STEPWISE FUNCTION
AND CALCULATE
USING THE SAME

METHOD WE DID IN

STEP 2.

ILLUSTRATING THE FUNDAMENTAL THEOREM OF CALCULUS 85



CALCULATING

Tﬁ?ﬂ:&%g'g};‘@ The density is constant between AJ ESH%?,OV%%%IG

Xoo sy, o AND %,/ Xoand x, and is plx,). STEPWISE FUNCTION
The density is constant between @Nia#i_nﬁgp_mgur‘”
%, and x, and is p(x,). EXACT AMOUNT OF
The density is constant between ALCOHOL.

x, and x; and is p(x,).

IN THIS WAY, WE IMITATE
p(x) WITH A STEPWISE

FUNCTION.
RIGHT. THE SHADED
THAT'S THIS AREA OF THE
CALCULATION, STEPWISE FUNCTION
ISN'T IT? 15 THE SUM OF -EHELEE
EXPRESSIONS (B
P(x,)x (%, —x,)x20 WITHOUT MULTIPLYING
_ BY 20 CM?%, THE
P(x,)x(x, = x,)x20 BASE AREA).
P(x,)x(x; —x,)x20
p(x;)x(x, —x;)x20
p(x,)x (x5 —x,)%x20
+P(x5)x(xe x5)><20

Approximate
amount of alcohol

— p(x)
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THEN, IF WE MAKE THIS
DIVISION INFINITELY FINE,
WE WILL GET THE EXACT

AMOUNT OF ALCOHOL,
WON'T WE?

WELL, THAT'S
TRUE, BUT IT'S
NOT REALISTIC.

YOU'D HAVE TO ADD UP
AN INFINITE NUMBER OF
INFINITELY FINE PORTIONS.

LOOK AT THIS
EXPRESSION. DOES
IT REMIND YOU OF
SOMETHING?

AH!

IT LOOKS LIKE AN
IMITATING LINEAR
FUNCTION!
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STEP 4—REVIEW OF THE IMITATING LINEAR FUNCTION

When the derivative of f(x) is given by f’(x), we had f(x) = f'(a) (x — a) + f(a)
near x = d.

Transposing f(a), we get

® f(x)-f(a)=~f'(a)(x-a)
or (Difference in f) ~ (Derivative of f) x (Difference in x)
If we assume that the interval between two consecutive values of x,, x;,
Xy, X3, ..., Xg iS small enough, x, is close to x,, x, is close to x;, and so on.
Now, let’s introduce a new function, g(x), whose derivative is p(x). This
means q’(x) = p(x).
Using ® for this g(x), we get

(Difference in q) ~ (Derivative of q) x (Difference in x)
q(x,;)—-q(x,)=p(x,)(x —x,)
q(xz)_q(x1) :p(xl)(XZ _xl)

The sum of the right sides of these expressions is the same as the sum
of the left sides.

Some terms in the expressions for the sum cancel each other out.

q (X< a(%) = p(xo) (% — %)
q%zp(xl)(xz—xl)
q%:p(xﬁ(xs—xz)
‘I(}})_\QN:P(’%)(M - X;)
a0 gl = (%) (%5 - x,) 50 WE NEED TO FIND
+q(xs)—q = p(x;)(xs — x35) FUNCTION q(x) THAT
SATISFIES q'(x) = p(x).
Q(XG)—Q(XO): The sum

Substituting x; = 9 and x, = 0, we get

The approximate amount of alcohol = the sum x 20
{a(xs)-a(x,)}>x20

{a(9)-aq(0)}x20
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STEP 5—APPROXIMATION — EXACT VALUE

WE HAVE JUST
OBTAINED THE
FOLLOWING
RELATIONSHIP OF
EXPRESSIONS
SHOWN IN THE
DIAGRAM.

The approximate amount of alcohol
(+ 20) given by the stepwise function: e q(g) - q(O)

P(xo) (%, —x,)+ p(x,) (%, — %) +... ~ | (Constant)

(1

The exact amount
of alcohol (+ 20)

BUT IF WE INCREASE

THE NUMBER OF
POINTS x,, x1, X5, X3,
AND SO ON, UNTIL IT
BECOMES INFINITE,

WE CAN SAY THAT
RELATIONSHIP ©
CHANGES FROM
“APPROXIMATION"
TO “EQUALITY.”

BUT, SINCE THE SUM

OF THE EXPRESSIONS The sum of p(x;)(x,, - x;) | _
HAVE BEEN IMITATING for an infinite number of x, | — 9 (9) -4 (0)
THE CONSTANT VALUE ‘
9) - q(0),
q(9) - q(0) Q P

The exact amount
of alcohol (+ 20)

WE GET THE
RELATIONSHIP
SHOWN HERE."

|

* WE WILL OBTAIN THIS RELATIONSHIP
MORE RIGOROUSLY ON PAGE 94.
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STEP 6—p(x) IS THE DERIVATIVE OF q(x)

T

=p(x)

NOW NORIKO,

THE NEXT
EXPRESSION WE In other words, p(x) is the derivative of q(x).
WILL LOOK AT q(x) is called the antiderivative of p(x).
IS THIS.

50, THIS q(x) 15
THE FUNCTION
WE WANTED.

The amount of alcohol

={q(9)-q(0)}x20

el

= 36 grams
THE AMOUNT OF 50, WE SINCE THE SUM
ALCOHOL IN A GLASS HAVE A VERY OF INFINITE
OF SHOCHU WITH HOT wlele] STRONG TERMS WE HAVE
WATER IS GENERALLY -\ DRINK HERE. BEEN DOING

24.3 GRAMS.
REQUIRES A LOT

OF TIME TO WRITE
DOWN, I WILL
SHOW YOU ITS

SYMBOL.
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USING THE FUNDAMENTAL THEOREM OF CALCULUS

P(’lo)('ln - L)+ P(ﬁl)(lz' L)+ -

THE ABOVE
EXPRESSION

Z DAz

A= 'Zo, Ill ... ZS

CAN BE WRITTEN
IN THIS WAY.

BUT, WHAT 1S A?

+ P(Zs)('lt‘15)

A (DELTA) 1S A GREEK
LETTER. THE SYMBOL 15
USED TO EXPRESS THE
AMOUNT OF CHANGE.

(xl - xo)

THIS Ax EXPRESSES THE
DISTANCE TO THE NEXT
POINT. IN OTHER WORDS,

IT 15, FOR EXAMPLE,

WHAT ABOUT >?

DELTA

OR (x, — x;).
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NOW NORIKO,

WHAT DOES
USING T (5IGMA) LIKE SO, Y  p(x)Ax
2 1 X=Xg X yeees X

X=X\ Xy reeu X _ MEAN?

EXPRESSES THE OPERATION
“SUM UP FROM x, =0
TO x5 = 9/

IT MEANS TO SUM UP
(THE VALUE OF p AT x) TIMES
(THE DISTANCE FROM x TO
THE NEXT POINT).

YES, IT MEANS
THE EQUATION WE
SAW BEFORE AT
THE BOTTOM OF
PAGE 8&4.

E5, I DO

THE NEXT ONE IS THE ROUND? YES 1D

SYMBOL TO SIMPLIFY
THIS EQUATION

FURTHER.

SINCE THE EQUATION 1S
THE SUM FOR A FINITE
NUMBER OF STEPS,
WE MAKE THE SYMBOL
ROUND WHEN WE HAVE
AN INFINITE NUMBER OF
STEPS.
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I EXPAND I TO
MAKE [, AND

REPLACE A
WITH d.

)

BOY! \“

EXPRESSION © MEANS THE
SUM WHEN THE INTERVAL IS
MADE INFINITELY SMALL, AND
IT EXPRESSES THE AREA
BETWEEN THE GRAPH ON THE
LEFT AND THE X-AXIS.

© | pdx

THIS 1S CALLED A
DEFINITE INTEGRAL.

IF WE KNOW p(x) [, p(x)ax=q(b)-q(a)

IS THE DERIVATIVE WE HAVE CALCULATED THE
OF q(x), SUM EXTREMELY EASILY IN
THIS WAY, HAVEN'T WE?

DEFINITE
INTEGRAL,
YOU ARE
WONDERFUL!

SUMMARY

N PW- Jip()ax= ¥ p(x)ax=q(b)-q(a)

We must find q(x) that satisfies q'(x) = p(x)a.

>

>

(‘1 b a b

THIS 1S THE FUNDAMENTAL THEOREM OF CALCULUS!
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A STRICT EXPLANATION OF STEP 5

In the explanation given before (page 89), we used, as
the basic expression, q(x,)-q(x,)=p(x,)(x, - x,). a
“crude” expression which roughly imitates the exact
expression. For those who think this is a sloppy expla-
nation, we will explain more carefully here. Using the
mean value theorem, we can reproduce the same
result.

We first find q(x) that satisfies Y
q'x) = px).

We place points x, (= a), x;, X,,
X3, ..., X, (= b) on the x-axis.

We then find point x,, that
exists between x, and x, and satis- [ T R I P
fies q(x,)—q(x,)=q (x5, ) (%, = %,). Koy | Xip | Xpg§ Xgg b - X!

The existence of such a point ’ ’ : : ' A 4
is guaranteed by the mean value
theorem. Similarly, we find x,, 0
between x; and x, and get

q(xz)_q(x1) :q,(xu)(xz _xl)

Areas of
these steps

Repeating this operation, we get

»
q(x,)-q(x,)= q'(x0) (% = %) =P (%01 ) (%, =~ X,) E
q(x,)-q(x,)= q'(x5) (%, = %)  =p(x,)(x —x) E
q(x;)-q(x,)= q' (%55 ) (%5 = %,) =P (%55 ) (%5 — ;) cr:
o
+ q(xn ) - q (xn—l ) = q,(xn—ln )(xn - xn—l ) = p(xn—ln ) (xn - xn—l )
q(xn)—q(xo) <— Always equal — Approximate area
l l Infinitely fine sections

q(b)-q(a) «—— Equal ——> Exactarea

This corresponds to the diagram in step 5.
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USING INTEGRAL FORMULAS

FORMULA 3-1: THE INTEGRAL FORMULAS
b c c
o L f(x)dx+fb J(x)dx = J.af(x)dx

The intervals of definite integrals of the same function can be
joined.

) f:{f(x)+g(x)}dx:J.:f(x)dx+.|.:g(x)dx

A definite integral of a sum can be divided into the sum of defi-
nite integrals.

© [‘af(x)dx=af f(x)dx

The multiplicative constant within a definite integral can be
moved outside the integral.

Expressions @ through ©® can be understood intuitively if we draw their
figures.

o
+ =
a b c a b c a b c
(2]
Area for g Jx) + gx)
| =
Area for f 7
a b a b a b
© af(x)
Area is
S 7 multiplied
by a.

USING THE FUNDAMENTAL THEOREM OF CALCULUS 95



WHEW! WE

FUTOSHI, HELP
YOURSELF TO

THIS WAS MY
SHOCHU IN THE
FIRST PLACE.

ARE ALL DONE.

SOME SHOCHU.

THAT EXPLANATION
WAS A LITTLE
INTENSE, BUT YOU

UNDERSTOOD [T,
DIDN'T YOU?

EVEN I CAN
FEEL IT!
UH OH...

I'VE JUST REMEMBERED
A TASK FOR YOU.
WILL YOU GO TO THE
REFERENCE ROOM?

w’\_ja
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REFERENCE
ROOM

NORIKO, I REMEMBER THAT
ABOUT A YEAR AGO, A GROUP
OF RESEARCHERS AT SANDA
ENGINEERING COLLEGE
ALSO ANALYZED WIND
CHARACTERISTICS AND USED
THEIR RESULTS TO DESIGN
BUILDINGS. WILL YOU FIND OUT
HOW THEIR RESEARCH HAS
PROGRESSED SINCE THEN?

WHY DO THEY
KEEP BRUSHING
ME OFF!?

KAKERU SEKI...
THIS 1S AN ARTICLE
MR. SEKI WROTE.

/ WHAT 15 1T

ABOUT?
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BURNHAM...
THEY'RE ONE OF THE
SPONSORS OF THE
ASAGAKE TIMES.

OF ALL THE
COMPANIES IN JAPAN,
MR. SEKI WROTE AN
ARTICLE ACCUSING
OUR BIGGEST
ADVERTISER.

THAT MUST BE WHY HE
WAS TRANSFERRED TO
THIS BRANCH OFFICE.
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HAVE YOU FOUND

NO, WELL...AH...
THEY PROPOSED
INTERESTING IDEAS, 1\

SUCH AS CONSTRUCTING
A BUILDING THAT
HARNESSES THE WIND TO
REDUCE THE HEAT-ISLAND
EFFECT—HOW URBAN
AREAS RETAIN MORE HEAT
THAN RURAL AREAS.

50, WHAT KIND OF
ARCHITECTURE ARE
THEY USING?

I DON'T...KNOW.

AH, I..I WILL
IMMEDIATELY CALL
THEM TO ASK ABOUT IT.
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FORGET ABOUT CALLING!!

YOU WRITE ARTICLES USING GO SEE
YOUR FEET! THEM FOR AN
INTERVIEW!!

AND AS PUNISHMENT, YES, SIR!
FIND OUT IF THEIR I'M ON MY WAY.
THEORY CAN BE

WRITTEN USING
EQUATIONS!!

17

L

1|
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APPLYING THE FUNDAMENTAL THEOREM

.50 YOU'RE
TALKING ABOUT
SUPPLY AND
DEMAND, RIGHT?

EXACTLY! IN
ECONOMICS, THE
INTERSECTION OF
THE SUPFLY AND

DEMAND CURVES 1S
SAID TO...

DETERMINE THE
PRICE AND QUANTITY
AT WHICH COMPANIES
PRODUCE AND
SELL GOODS.

SURE, I GET
THE BASIC
IDEA.

BUT THIS
DOESN'T JUST
MEAN THAT
TRADE 1S MADE
AT THE POINT
OF THEIR
INTERSECTION.

IN TRUTH, SOCIETY
IS BEST SERVED
IF TRADE MATCHES
THESE IDEAL
CONDITIONS.

THAT'S GREAT!

I s

YES, WE

CAN EASILY
UNDERSTAND
WHY THIS IS

TRUE USING THE

FUNDAMENTAL
THEOREM OF

CALCULUS.
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SUPPLY CURVE

FIRST, LET'S CONSIDER HOW COMPANIES MAXIMIZE
PROFIT IN A PERFECTLY COMPETITIVE MARKET. WE'LL
TRY TO DERIVE A SUPFPLY CURVE FIRST.

The profit P(x) when x units of a commodity are produced is given by the fol-
lowing function:

A

(Profit) = (Price) x (Production Quantity) — (Cost) = px - C(x)

where C(x) is the cost of production.

Let’s assume the x value that maximizes the profit P(x) is the quantity of
production s.

A company wants to maximize its profits. Recall that to find a function’s
extrema, we take the derivative and set it to zero. This means that the com-
pany’s maximum profit occurs when

P'(s)=p-C'(s)=0

p (Price)
\ p=C'(s) THE FUNCTION p = C’(s) OBTAINED
ABOVE IS CALLED THE SUPFLY
p CURVE!
1 A
(2]
(1)
o s (Optimum production
s

1 volume by companies)

Price p, corresponds to point A on the function, which leads us to opti-
mum production volume s,.

102 CHAPTER 3 LET'S INTEGRATE A FUNCTION!



The rectangle bounded by these four points (p,, A, s,, and the origin)
equals the price multiplied by the production quantity. This should be the
companies’ gross profits, before subtracting their costs of production. But
look, the area @ of this graph corresponds to the companies’ production
costs, and we can obtain it using an integral.

J-sl C’(s)ds = C(Sl)—C(O) = C(Sl) = Costs

[

We used To simplify,
the Fundamental we assume
Theorem here. C(0) =0.

This means we can easily find the companies’ net profit, which is repre-
sented by area @ in the graph, or the area of the rectangle minus area ©.

DEMAND CURVE

Next, let’s consider the maximum benefit for consumers.
When consumers purchase x units of a commodity, the benefit B(x) for
them is given by the equation:

B(x) = Total Value of Consumption — (Price x Quantity) = u(x) — px

where u(x) is a function describing the value of the commodity for all
consumers.

Consumers will purchase the most of this commodity when B(x) is
maximized.

If we set the consumption value to t when the derivative of B(x) = 0, we
get the following equation:”

THE FUNCTION p = u’(t) OBTAINED HERE IS
CALLED THE DEMAND CURVE.

* Again, you can see we're looking for extrema (where B'(t) = 0), as consumers want to maxi-
mize their benefits.
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p (Price)

A

b,

5 » t (Optimum consumption)
t

So let’s consider the area of the rectangle labeled ©, above, which corre-
sponds to the price multiplied by the product consumption. In other words,
this is the total amount consumers pay for a product.

The total area of ® and ® can be obtained using integration.

J.: u'(t)dt =u(t,)-u(0)=u(t,) = Total value of consumption
N
To simplify,

we assume
u(0) = 0.

If you simply subtract the value of the rectangle ® from the integral
from O to t,, you can find the area of @, the benefit to consumers.

THE BENEFIT FOR THE
CONSUMERS © |5 THE TOTAL ) )
VALUE OF CONSUMPTION MINUS YES, THAT'S IT. NOW LET'S

o, > LOOK AT THE SUPPLY
THE AMOUNT THEY PAID ®, RIGHT AND DEMAND CURVES

COMBINED TOGETHER.
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p (Price)

WE CAN SAY THAT THE COMPANIES’ 4
PROFIT PLUS THE BENEFIT FOR
CONSUMERS EQUALS THE OVERALL

Supply curve

BENEFIT FOR SOCIETY, AS ILLUSTRATED Benefit
BY THE SHADED AREA ON THE RIGHT. P, ‘“—C"“S"m‘ffs E
ompanies’ E
profit '
/ § Demand curve
x » Quantity
BUT WHAT HAPPENS IF TRADE
DOES NOT HAPPEN AT THE PRICE
AND QUANTITY DETERMINED BY
THE INTERSECTION POINT E?
Loss of
THE OVERALL BENEFIT TO SOCIETY benefit to
IS REDUCED BY THE AMOUNT A .
CORRESPONDING TO THE EMPTY AREA society
IN THE FIGURE. P
y/ 4 i 5
G

A4

- I ALSO THINK
DO YOU GET IT? VELOCITY AND

FALLING BODIES
ARE GOOD
TOPICS TO WRITE
ABOUT.

YES, I WILL
REPORT MY

STORIES USING
CALCULUS, TOO.

I'M GOING TO
LOOK INTO THEM!
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THE CALCULUS NEWS-GAZETTE

Vol. 1

The Integral of Velocity
Proven to Be Distance!

The integral of velocity = difference in
position = distance traveled

If we understand this formula, it’s
said that we can correctly calculate the
distance traveled for objects whose veloc-
ity changes constantly. But is that true?
Our promising freshman reporter Noriko
Hikima closes in on the truth of this mat-
ter in her hard-hitting report.

\
®

Figure 1: This graph represents
Futoshi’s distance traveled over
time. He moves to point y,, y,, ys...
as time progresses to x;, x,, X;...

Sanda-Cho—Some readers will recall our
earlier example describing Futoshi walk-
ing on a moving walkway. Others have
likely deliberately blocked his sweaty
image from their minds. But you almost
certainly remember that the derivative of
the distance is the speed.

® y=F(x)
® ['v(x)dx=F(b)-F(a)

Equation @ expresses the position of
the monstrous, sweating Futoshi. In other
words, after x seconds he has lumbered a
total distance of y.

Integral of Velocity = Difference in Position

The derivative F’(x) of expression @
is the “instantaneous velocity” at x sec-
onds. If we rewrite F'(x) as v(x), using v for
velocity, the Fundamental Theorem of Cal-
culus can be used to obtain equation ®!
Look at the graph of v(x) in Figure 2-A—
Futoshi’s velocity over time. The shaded
part of the graph is equal to the integral—
equation @.

But also look at Figure 2-B, which
shows the distance Futoshi has traveled
over time. If we look at Figures 2-A and
2-B side by side, we see that the integral
of the velocity is equal to the difference in
position (or distance)! Notice how the two

Velocity

Distance

graphs match—
when Futoshi’s
velocity is posi-
tive, his dis-

y
Y A tance increases,
1 {Area) = (Difference) and vice versa.
y=Fx)
Yy oo /
U |
: L e
X x

Figure 2
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Free Fall from Tokyo Tower

How Many Seconds to the Ground?

It’s easy to take things for granted—
consider gravity. If you drop an object from
your hand, it naturally falls to the ground.
We can say that this is a motion that
changes every second—it is accelerating
due to the Earth’s gravitational pull. This
motion can be easily described using
calculus.

But let’s consider a bigger drop—all the
way from the top of Tokyo Tower—and find
out, “How many seconds does it take an
object to reach the ground?” Pay no atten-
tion to Futoshi’s remark, “Why don’t you go
to the top of Tokyo Tower with a stopwatch
and find out for yourself?”

The increase in velocity when an
object is in free fall is called gravitational
acceleration, or 9.8 m/s’. In other words,
this means that an object’s velocity
increases by 9.8 m/s every second. Why is
this the rate of acceleration? Well, let’s just
assume the scientists are right for today.

Expression @ gives the distance the
object falls in T seconds. Since the integral
of the velocity is the difference in position
(or the distance the object travels), equa-
tion @® can be derived. Look at Figure 3—
we've calculated the area by taking half of
the product of the x and y values—in this
case, %2 x 9.8t x t. And we know that the

T

©® F(T)-F(0)=]

[

v(x)dx = [ 9.8(x)dx

height of Tokyo Tower is 333 m. The square ® 4.9T°-4.9x0% =4.9T°
root of (333 / 4.9) equals about 8.2, so an 333
object takes about 8.2 seconds to reach 333=4.9T>=T= ’TQ = 8.2 seconds

the ground. (We've neglected air resistance
here for convenience.)

4.9t

Velocity v(x) = 9.8x Distance

Area of the velocity
9.8t x t x Y2 = 4.9¢t?

Distance
fallen

Time Time

Figure 3
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The Die Is Cast!!! F) F()

The Fundamental T P
Theorem of Calculus
Applies to Dice, Too

You probably remem- A AR
ber playing games with dice > >
as a child. Since ancient 123456 123456
times, these hexahedrons
have been rolled around the
world, not only in games, but

also for fortune telling and
gambling. Density function Distribution function

Figure 4: Density function Figure 5: Distribution function

Mathematically, you can
say that dice are the world’s S Flx)
smallest random-number 1
generator. Dice are wonder-
ful. Now we’ll cast them for
calculus! A die can show a 1,
2, 3, 4, 5, or 6—the probabil-
ity of any one number is 1 in
6. This can be shown with 123456 123456

a histogram (Figure 4), with 'ﬁ‘
their numbers on the x-axis . X
and the probability on the f(3) + f(4) + f(5) = F(5) - F(Z)
y-axis.

This can be expressed by
equation @, or f(x) = Probabil- Figure 6: Derivative of distribution function F(x)

ity of rolling x. This becomes = density function f(x)

equation ® when we try to

predict a single result—for right below 3, the probability of numbers
example, a roll of 4. less than 3 is 2/6.

® f(x)=Probability of rolling x © Ibf(x)dx ~F(b)-F(a)

8 f(4)= % = Probability of rolling 4 = Probability of rolling x where a <x<b

Now let’s take a look at Figure 5, which In the same way, we can find that the
describes a distribution function. First, probability of rolling a 6 or any number
start at 1 on the x-axis. Since no number smaller than 6 (that is, any number on the
less than 1 exists on a die, the probability die) is 1. After all, a die cannot stand on
in this region is 0. At x = 1, the graph jumps one of its corners. Now let’s look at the
to 1/6, because the probability of rolling a probability of rolling numbers greater than
number less than or equal to 1 is 1 in 6. You 2 and equal to or less than 5. The equation
can also see that the probability of rolling in Figure 6 explains this relationship.
a number equal to or greater than 1 and If we look at equation ©, we see that it
less than 2 is 1/6 as well. This should make describes what we know—*"A definite inte-
intuitive sense. At 2, the probability jumps gral of a differentiated function = The dif-
up to 2/6, which means the probability for ference in the original function.” This is
rolling a number equal to or less than 2 is nothing but the Fundamental Theorem of
2/6. Since this probability remains until Calculus! How wonderful dice are.

- ——————— —— ——— ——— ——— ————J



ONLY 15 MINUTES
TO GET THERE!

I HAVE TO REPORT
ON THE SANDA-CHO

SUMMER FESTIVAL. I'M COMING,

MR. SEKI!
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REVIEW OF THE FUNDAMENTAL THEOREM OF CALCULUS
When the derivative of F(x) is _f(x), that is, if f(x) = F'(x)
[[ f(x)ax=F(b)-F(a)
This can also be written as

["F'(x)dx = F(b)-F(a)

a

These expressions mean the following.

(Differentiated function) dx
= Difference of the original function between b and a

It also means graphically that

Area surrounded by the differentiated function
and the x-axis, between x=aand x=b

Change in the original
function from a to b

y=f(x)=F(x)
y
y
y=F(x)
() ) Ee— .
a . |
a b
Fundamental \' Fl@ V-, /
Theorem § |
of Calculus _[bf(x)dx &= (.1 -
¢ Difference in the

original function
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FORMULA OF THE SUBSTITUTION RULE OF INTEGRATION

When a function of y is substituted for variable x as x = g(y), how do we
express

b
S=["f(x)ax
a definite integral with respect to x, as a definite integral with respect to y?

First, we express the definite integral in terms of a stepwise function
approximately as

S= 2 S (%) (% — %) (%o =a,x, =Db)

k=0,1,2,...,n-1
Transforming variable x as x = g(y), we set
Yo =Y Ypses Y, =B
so that
a=g(a),x,=9(y,),x,=9(Y,),....b =g(B)
Note here that using an approximate linear function of
X = % = 9(Ynn) = 9(Ye) = 9" (Yi) (Y ~ Yi)
Substituting these expressions in S, we get

S = 2 lf(xk)(x,ﬁl—xk): 2 f(g(yk))g/(yk)(yk-d_yk)

k=0,1,2,...,n— k=0,1,2,...,n-1

The last expression is an approximation of
B ’
["7(9(y))g'(y)ay

Therefore, by making the divisions infinitely small, we obtain the follow-
ing formula.

FORMULA 3-2: THE SUBSTITUTION RULE OF INTEGRATION

[7 5 (x)ax=[" 5(g(y)) g (y)dy

FORMULA OF THE SUBSTITUTION RULE OF INTEGRATION

m



EXAMPLE:
Calculate:

[[10(2x +1)" ax
(0]

We first substitute the variable so that y = 2x + 1, or x = g(y) = yT_l

If we then take the derivative of the function, we get g'(y) = % .

Since we now integrate with respect to y, the new interval of integra-
tion is obtained from O = g(1) and 1 = g(3) to be 1 - 3.

1 3 1 3
[, 10(2x+1)" ax = [ ‘10y4* S =[ 'By*dy =3° - 1° = 242

THE POWER RULE OF INTEGRATION

In the example above we remembered that 5y4 is the derivative of y5 to finish
the problem. Since we know that if F(x) = x", then F'(x) =f(x) = nx"* ", we
should be able to find a general rule for finding F(x) when f(x) = x".

We know that F(x) should have x™* Y in it, but what about that coef-
ficient? We don’t have a coefficient in our derivative, so we’ll need to start
with one. When we take the derivative, the coefficient will be (n + 1), so it
follows that 1/ (n + 1) will cancel it out. That means that the general rule for
finding the antiderivative F(x) of f(x) = x" is

n+l

F(x)= x x(Y) = xenet

* In other words, when x =0, y = 1, and when x = 1, y = 3. We then use that as the range of our
definite integral.
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EXERCISES
1. Calculate the definite integrals given below.
3
© [ 3x%ax
1

J-4x3+1

2

dx

2 x
(5] I:x+(1+x2)7dx+I:x—(1+x2)7dx

2. Answer the following questions.

A.  Write an expression of the definite integral which calculates the area
surrounded by the graph of y = f(x) = x* - 3x and the x-axis.

B. Calculate the area given by this expression.
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USING TRIGONOMETRIC FUNCTIONS

T
THOIEA o

WHEW! I MADE IT,
JUST IN TIME.

‘ i\\s |

I WANNA PUT
ON A YUKATA,

NORIKO, YOU'RE HERE.

N\ ’

IT WAS NICE OF YOU TO ZA&" Psl,liNOCNEElIIHQXi/-‘?
CALL AND LET ME KNOW REALLY GET AWAY

YOU MIGHT BE RUNNING
LATE. FROM YOU.

116 CHAPTER 4 LET'S LEARN INTEGRATION TECHNIQUES!



WHEN I WAS A clUB
REPORTER, THERE
WASN'T SUCH A
CONVENIENCE.

1 OFTEN HAD TO
USE A PAY PHONE
TO SEND IN MY
REPORT WHEN 1
WAS ON DEADLINE.

I READ MY REPORT
WORP BY WORD OVER
THE PHONE TO MY
ASSISTANT.

WE DON'T
HAVE TO
DO THAT

ANYMORE,

THANKS TO

RADIO WAVES.

ALL SORTS OF
OTHER WAVES OCCUR
IN NATURE, TOO.

YEAH!
OCEAN WAVES,
EARTHQUAKES,
SOUND WAVES...
AND LIGHT.
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THOSE WAVES CAN
BE DESCRIBED WITH
FUNCTIONS, FOR
EXAMPLE, WITH THE
COSINE OF THETA
(cos 0). DID YOU
KNOW THAT?

UH, I HAVE TO GO
BACK TO WORK.

NORIKO! INCIDENTALLY, IF YOU
CUT OUT A SLEEVE OF
A BLOUSE, THE CUT
END IS A GRAPH OF

cos 0.

TRIGONOMETRIC
FUNCTIONS ARE

VERY IMPORTANT
FOR FASHION!
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LOOK AT THE
IT 157 DANCERS. THIS IS A
: GOOD OPPORTUNITY.
WE CAN STUDY
THE APPLICATION
OF FUNCTIONS
TOGETHER WHILE
REPORTING

NORIKO, TAKE A
PICTURE OF THAT!
IT'S cos 0.

| you AND Your
FUNCTIONS!!!

THERE 15

A UNIT OF Cl |
| OH, SHOOT! I'M
MEASUREMENT gt RADIAN... TAKING NOTES
OUT OF HABIT.

CALLED A
RADIAN.

SHOCKED!

CONSIDER A CIRCLE
OF RADIUS 1 WITH
ITS CENTER AT (0, 0).
SUPPOSE THAT WE
START AT POINT A AND
TRAVEL TO POINT P ON
THE CIRCUMFERENCE
OF THE CIRCLE,
CORRESPONDING TO
THE ANGLE 6.

FOR A CIRCLE WITH
RADIUS =1, THE
LENGTH OF THE
ARC AP EQUALS
THE ANGLE 6 IN

RADIANS!

-
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FROM NOW ON,

BECAUSE THE TOTAL SZ %‘
WE WILL USE

CIRCUMFERENCE OF THIS
RADIANS AS THE
CIRCLE 15 21, WE KNOW THAT /] ) UNIT FOR ANY

Q0 DEGREES = ; RADIANS
AND 180 DEGREES =

n RADIANS, A RADIAN 1S
ABOUT EQUAL TO 57.2958
DEGREES.

AND WE CAN EXPRESS
x AS THE FUNCTION
cos 0 = x. THAT MEANS
WHEN A DANCER MOVES
BY 0 RADIANS, SHE IS AT
A HORIZONTAL POSITION
DETERMINED BY cos 6.
YOU BETTER
REMEMBER
THIS!

OH, THAT'S WHY YOU
STHAT" WHAT'S GOING
GHOUIE,E'QIHATS ON INSIDE HIS
’ HEAD?

IN THE SAME WAY,
THE DANCER'S
VERTICAL
POSITION CAN
BE EXPRESSED
AS THE FUNCTION
sin 6 =y.
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BEAUTIFUL!

b OF cos 6 CHANGES FROM 1, GRADUALLY
/////////////// I BACK TO 1 AGAIN!

. BEAUTIFULI? YES! AS 6 BECOMES LARGER, THE VALUE
e \ BECOMES SMALLER UNTIL IT'S 0, GOES ALL
////'/M\.\.\\\\\\\\\\\\\\\\ THE WAY DOWN TO -1, BACK TO 0, THEN

\

RIGHT. AND SINCE AWW! THE OLD
50, cos 0 TRIGONOMETRIC LADIES THINK YOU'RE ¢
VIBRATES FUNCTIONS EXPRESS TALKING ABOUT
BETWEEN WAVES, THEY CAN THEM, AND THEY'RE
1 AND -+, BE USED AS A TOOL BEAMING!
DOESN'T IT? FOR CLARIFYING

MANY THINGS IN
NATURE.

BEAUTIFUL!
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—

IT'S A PRETTY
BIG FESTIVAL,
ISN'T IT?

YES. BUT, WHY
DO YOU HAVE
DRUMSTICKS?

cos 07

STICK MULTIPLIED BY .-I-I~I.

VAGUELY.

BECAUSE IT'S A
FESTIVAL! 1 5BE..
DID YOU KNOW THAT
THE LENGTH OF
AHsHAvow %F A YES, IT'S RATHER THEN, LET'S
K DRUMSTICK EQUALS SURPRISING, BUT FIND THIS
THE LENGTH OF THE I REMEMBER IT ACCURATELY.
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THE SUN IS SHINING
STRAIGHT DOWN ON
STICK AB, WHICH 15
STANDING TILTED AT
ANGLE 6 FROM THE
GROUND.

IF WE ASSUME THE

RESULTING SHADOW

(THE ORTHOGONAL
PROJECTION) TO BE AC,
THE LENGTH OF SHADOW
AC EQUALS THE LENGTH
OF STICK AB MULTIPLIED

BY cos 6.
WE CAN THINK OF THE
y STICK IN TERMS OF THAT'S RIGHT!
A FUNCTION. COSINE
AND BY DEFINITION, EXPRESSES HOW
N B MUCH SHORTER
cosg = AC (shadow) THE SHADOW 15
AB (stick) THAN THE STICK
ITSELF!

v/ 50 THE SHADOW'S

LENGTH IS AB x cos 6. \-—‘\/—’/
RIGHT?

cos 0
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INCIDENTALLY, SINCE THE
X-AXIS COINCIDES WITH
THE Y-AXIS WHEN IT IS

ROTATED BY 90 DEGREES

(3 RADIANS), WE CAN
SAY sin 0 15 A FUNCTION
THAT OUTPUTS, DELAYED
BY 3, THE SAME VALUES

. T
sin (0 + 5]

Sin

/

IN OTHER WORDS,
sin(@ + EJ =cosf
2

(6+F)=CosQ

Cos(8+%)
=-51Q

US BACK OUR

\VY_EQ UH..WILL YOU GIVE

DRUMSTICKS?

0

=

=
L

"
LN p 5

™~

\f
s

T T y——

A A
£

NOW, WE ARE READY
FOR THE MAIN PART OF
THE SANDA SUMMER
FESTIVAL!!
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USING INTEGRALS WITH TRIGONOMETRIC FUNCTIONS

HERE ARE SPECIAL
SEATS FOR YOU. BE

CAREFUL NOT TO
FALL, REPORTERS,
AND TAKE GOOD
PICTURES.

NOW, WE ARE MR. SEKI,
GOING TO LOOK AT YOUR ACTIONS
cos 0 IN TERMS OF ARE TOTALLY

CALCULUS! DIFFERENT FROM

WHAT YOU SAY.

IN FACT, INTEGRALS ARE
EASIER TO OBTAIN THAN
DERIVATIVES.

IT'S EASIER TO
UNDERSTAND |IF
WE LOOK DOWN
AT THE CIRCLE OF
DANCERS FROM
WAY UP HERE.
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WHAT WE NEED TO DO 1S TO FIND OUT WHAT

+cos 0, , (6, -0, ;) BECOMES.

2. cos O x AO =cos 6, (6, — 6,) + cos 0; (0,—6,) + ...

N\

LOOKING AT THIS
PUTS ME IN A
FOG.

2 2 2

LOOK AT THIS
FIGURE. DOESN'T
THIS GIVE YOU A
GOO0D |IDEA? THIS
SHOWS THAT THE

INTERSECTING

A’

At angle 0,
with the y-axis

2

ANGLE OF THE
¥-AXIS WITH THE
TANGENT LINE PQ,

A

Length 0, - 0,

WHERE P IS THE
POINT MOVED FROM

0,

A,
2
6,-0
’ _190 4,
> X

Hl

(1, 0) BY ANGLE 6,
IS ALSO o.

)
1 “%r
P 0

The change in cos 0 is the length A’ A',.
That length is the orthogonal projection A A,.
Length A" A’,~arc A|/A, x cos 0, = (0, - 0)) x cos 0,

FUTOSHI! WHY DOES
HE GET TO EAT CHOW
MEIN WHILE 1 HAVE

TO LEARN ABOUT
INTEGRALS?
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LET'S USE THIS

TO INTEGRATE
FROM 0 TO o. / /\

a

> X

.............. A, (cos 6, sin 0 ) = (cos o, sin a)

A, (cos §, sin 6) = (1, 0)

Y. cos 6Af when 0 is changed from O to o

RIGHT! IF WE \;

cos 0, (0, - 6,) +cos 0, (0,-0) +...+cos6_, (0, -0 _) | | MAKE THESE
INFINITELY
~A A +A A, +..+A A =A A =sina SMALL...

Sinck—

J Z cosBdB-

WE FIND THAT

THE INTEGRAL

OF COSINE 1S
SINE.

sin0

THEN, TO PUT IT THE
OTHER WAY AROUND, THE
DERIVATIVE OF SINE 1S
COSINE?

YOU'RE
RIGHT!

NOW,
REMEMBER
THESE
FORMULAS.
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FORMULA 4-1: THE DIFFERENTIATION AND INTEGRATION OF TRIGONOMETRIC FUNCTIONS

a
Since © '[0 cosfdf = sina — sin 0, we know that sine must be cosine’s derivative.

2] (sinQ)/ =cosf

p ’
Now, substitute 0 + 5 for 0in @. We get {sin(e + E]} = cos(@ + E).
Using the equations from page 124, 2 2
we then know that

(3] (cose)’ =-sin6

We find that differentiating or integrating sine gives cosine and vice versa.

ALL RIGHT! LET'S
DO THE CALCULUS
DANCE SONG!!

CALC...
THAT'S A
STRANGE

CALCULUS DANCE SONG

TRIGONOMETRIC VERSION

JUMP AND
TURN TO
THE LEFT.

JUMP AGAIN
AND CLAP
YOUR HANDS
TWICE.

BOTH ARMS
TOWARD
UPPER RIGHT.
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CALC

g
yeutV
CZLC& Us A

THE DANCE SONG MAKES
BORING LOGIC EASIER!
CALC, CALCULUS. YAY!

CIRCLE OF SINE,
COSINE DOES
INTEGRATION! RAISE

BOTH ARMS TO FORM

A CIRCLE.

DIFFERENTIATION S
OF SINE IS
COSINE. FORM
AN 5 WITH BOTH
ARMS.

&

(sin 9)/ =cosf

)

DIFFERENTIATION
OR INTEGRATION
INTERCHANGES
SINE AND COSINE.
RAISE AND LOWER
YOUR ARMS.

COSINE INTEGRAL
BECOMES SINE.
FORM A Cc WITH | |

BOTH ARMS,

J: cosfdf =sin x

J
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FUTOSH, LET'S NO, I CANT. I | |WE CAME HERE YEAH, WELL,

DANCE! HAVEN'T EATEN TO REPORT! YOU'RE THE ONE
EVEN HALF THE WEARING DANCING
FOOD AT THESE CLOTHES!

STANDS.

CUT IT OUT! YOU
TWO HAVEN'T EVEN
STARTED WORKING.

WE DON'T HAVE
MUCH TIME BEFORE

TOMORROW'S
MORNING PAPER!

YOU TWO ARE
ENJOYING THE

FESTIVAL TOO MUCH!
g A YOU ARE TOO...
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USING EXPONENTIAL AND LOGARITHMIC FUNCTIONS

OKAY.
SEND!

WHEW!
I SENT MY STORY.

PCs AND THE
INTERNET HAVE
REALLY CHANGED
REPORTERS'
WORK.

BY THE WAY...

THE INFORMATION
HANDLED BY COMPUTERS
IS EXPRESSED IN TERMS
1] OF TWO DIGITS: 0 AND 1, _
...\ ORSEQUENCES OF BITS. /. .

OH, I KNOW A
LITTLE B/T ABOUT
COMPUTERS.

NO REACTION?
OH, WELL.
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......
......

IF WE SUPPOSE f(x)
15 THE NUMBER OF
VALUES THAT CAN BE

THE BINARY SYSTEM ONE T 17 Y- EXPRESSED BY x BITS,
....... THEN f(x) = 2%, WHICH
BIT CAN REPRESENT TWO [ Q1§ |y H/-.-ooee vt 15 AN EXPONENTIAL
NUMBERS (0 AND 1); TWO AN FUNCTION
BITS CAN REPRESENT [\ ' ) [l ‘
FOUR (00, 01, 10, SEONE
AND 11); THREE BITS CAN \ el
REPRESENT EIGHT; AND SN0

.....
......

SINCE COMPUTERS YN TON. ... .°

HANDLE INFORMATIONIN Y /_ ¥V J QN ©- - -

n BITS CORRESPOND TO g
2" POS5IBLE NUMBERS. N EXFTJ%Z?I%LJAL
. . ‘ . : . ‘ . V/
EXPONENTIAL
FUNCTION? AN EXPONENTIAL e
FUNCTION CAN
EXPRESS AN
INCREASE LIKE

ECONOMIC
GROWTH.

IN THE 19505 IN

A PERSON WITH AN
JAPAN, WE HAD A HIGH ANNUAL INCOME OF
RATE OF ECONOMIC ¥5 MILLION ONE YEAR

GROWTH: ABOUT | EARNED ¥55 MILLION
10 PERCENT A YEAR. A\ THE NEXT YEAR.

HIS SALARY INCREASED
10 PERCENT, AND HE
COULD ENJOY 10 PERCENT
_ \ MORE COMMODITIES AND

SERVICES THAN IN THE
PREVIOUS YEAR.
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DON'T GET TOO

WE HAD SUCH GOOD EXCITED.

DAYS! I WOULD HAVE
BOUGHT A WHOLE
NEW WARDROBE
AND LOTS OF
OTHER THINGS!

SUPPOSE THE ECONOMIC
GROWTH 15 10 PERCENT,
AND THE PRESENT GROSS
DOMESTIC PRODUCT 15
Go. IN A FEW YEARS,

IT WILL CHANGE AS
FOLLOWS.

THEN, WHAT 1S THE
GROS5 DOMESTIC
PRODUCT AFTER
n YEARS IN
GENERAL?

G, =Gyx11
Gross domestic product after 1 year

G,=G, x 1.1 =G, x 1.1°

Gross domestic product after 2 years G, = Go x 1.1, OR 195
G,=G,x 1.1° TIMES G,. 5O THE GDP
S NEARLY DOUBLED IN

Gross domestic product after 3 years

JUST 7 YEARS.
G,=G,x 1.1
Gross domestic product after 4 years DOUBLED?
5 WOW! WHAT
Gs=Gg x 1.1 WOULD 1 BUY
Gross domestic product after 5 years IF MY SALARY

pouBLED?

50, A FUNCTION IN AN ECONOMY HAVING

A FORM LIKE AN ANNUAL GROWTH
Sfix) = apa” RATE OF o 15

IS CALLED AN EXPRESSED WITH THE

EXPONENTIAL EXPONENTIAL FUNCTION
FUNCTION. Jx) = a1 + o)".
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BITS ARE ALSO

1 JUST TOLD
YOU THAT BITS
ARE CODES FOR
EXPRESSING
INFORMATION.

-

AN EXPONENTIAL INVERSE
YES, 1 BIT FUNCTION. IF x BITS FUNCTION
IS FOR 2 CORRESPOND TO f(x)
PATTERNS, POSSIBLE NUMBERS,
Z BITS THEN f(x) = 2%, YOU
FOR 4 KNOW, THERE IS A
PATTERNS. FUNCTION CALLED AN

INVERSE FUNCTION,
WHICH TURNS WHAT
YOU CALLED PATTERNS,
BACK INTO BITS.

IT'S EASY—YOU JUST
NEED TO THINK THE
OTHER WAY AROUND.

Z PATTERNS W 1 BIT

50, WE CAN
REPRESENT
4 PATTERNS = 2 BITS 2" POSSIBLE
NUMBERS USING
8 PATTERNS = 3BITS ..o n BITS.

NOW, ASSUME g(y)
IS THE INVERSE
FUNCTION OF f(x),
WHICH TURNS y
PATTERNS BACK
INTO BITS. TRY IT.

WE GET g(2) = 1,
g4)=2,9(8) =3,
g(16) =4..

50, THE RELATIONSHIP
BETWEEN f AND g CAN BE
EXPRESSED AS g(f(X) = x

AND flg(y)) = y.

REMEMBER NOW
THAT THE INVERSE
FUNCTION OF AN
EXPONENTIAL
FUNCTION |5 CALLED
A LOGARITHMIC
FUNCTION AND 15
EXPRESSED WITH
THE SYMBOL log,

RIGHT, AND log,2 = 1,
log,4 = 2, log,8 = 3,

IN THE ABOVE
CASE, IT 15
EXPRESSED AS

d(y) =log,y.
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GENERALIZING EXPONENTIAL AND LOGARITHMIC FUNCTIONS

4 )\

ALTHOUGH EXPONENTIAL AND LOGARITHMIC
FUNCTIONS ARE CONVENIENT, OUR DEFINITION OF
THEM UP TO NOW ALLOWS ONLY NATURAL NUMBERS
FOR x IN f(x) = 2° AND THE POWERS OF Z FOR y
IN g(y) = log,y. WE DON'T HAVE A DEFINITION FOR
THE —8th POWER, THE 7/3rd POWER OR THE 2th
POWER, log,5, OR log,.

( I WILL TELL YOU HOW WE
N L DEFINE EXPONENTIAL AND

LOGARITHMIC FUNCTIONS IN
GENERAL, USING EXAMPLES.

HMM, WHAT DO
WE DO, THEN?

GLAD THAT YOU ASKED AM 1.
THE POWER OF CALCULUS WE USE
FOR THIS. YES.

FIRST, USING OUR EARLIER EXAMPLE, LET'S CHANGE THE ECONOMY'S
ANNUAL GROWTH RATE TO ITS INSTANTANEOUS GROWTH RATE.

Value after 1 year — Present value S(x+1)- f(x)
Annual growth rate = =
Present value S (x)

THIS 1S THE EXPRESSION
WE START WITH.
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NOW WE DEVELOP THIS INTO THE INSTANTANEOUS
GROWTH RATE, AS FOLLOWS.
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