Conjugate functions

Christos Kountzakis

March 2023

Let us coinsider a vector space E and E^{\prime} is its algebraic dual. The evaluation map is the bilinear function

$$
<E, E^{\prime}>\rightarrow R,<x, x^{\prime}>=x^{\prime}(x)
$$

and $f: E \rightarrow R$. The conjugate f^{\prime} of f is defined in the following way:

$$
f^{\prime}\left(x^{\prime}\right)=\sup \left\{x^{\prime}(x)-f(x), x \in E\right\}
$$

either on some subset B of E, which is lineally bounded and lineally closed. If f is convex, then $-f$ is concave. Then f^{\prime} is concave. If f is strictly convex, then f^{\prime} is strictly concave. In this case, $-f^{\prime}$ is a strictly convex function. f may takes infinity values, but it is finite valued for some pure subset of E and especially on B.

