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Installing

Download R from the CRAN website: http://cran.r-project.org/

http://cran.r-project.org/
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Installing

Install a suitable editor

. . . e.g. RStudio

http://rstudio.org/
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Installing

Packages can be installed from within R or Rstudio:

. . . or via the command line

install.packages("deSolve", dependencies = TRUE)
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Installing

Several packages deal with differential equations

I deSolve: main integration package

I rootSolve: steady-state solver

I bvpSolve: boundary value problem solvers

I deTestSet: ODE and DAE test set + additional solvers

I ReacTran: partial differential equations

I simecol: interactive environment for implementing models

All packages have at least one author in common → consistent interface.

More, see CRAN Task View: Differential Equations

http://cran.r-project.org/web/views/DifferentialEquations.html
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Getting help

Getting help

> library(deSolve)

> ?deSolve

I opens the main help page containing
I a short explanation
I a link to the main manual (vignette)

“Solving Initial Value Differential Equations in R”
I links to additional manuals, papers and online resources
I references
I a first example

I all our packages have such a ?<packagename> help file.
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Getting help

> library(deSolve)
> example(deSolve)
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Introductory example

Let’s begin . . .

Model specification
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Introductory example

Logistic growth

Differential equation

dN

dt
= r · N ·

(
1− N

K

)

Analytical solution

Nt =
KN0ert

K + N0 (ert − 1)

R implementation

> logistic <- function(t, r, K, N0) {
+ K * N0 * exp(r * t) / (K + N0 * (exp(r * t) - 1))
+ }
> plot(0:100, logistic(t = 0:100, r = 0.1, K = 10, N0 = 0.1))
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Introductory example

Numerical simulation in R

Why numerical solutions?

I Not all systems have an analytical solution,

I Numerical solutions allow discrete forcings, events, ...

Why R?

I If standard tool for statistics, why Prog$$$ for dynamic simulations?

I The community and the packages → useR!2014
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Introductory example

Numerical solution of the logistic equation

library(deSolve)

model <- function (time, y, parms) {

with(as.list(c(y, parms)), {

dN <- r * N * (1 - N / K)

list(dN)

})

}

y      <- c(N = 0.1)

parms <- c(r = 0.1, K = 10)

times <- seq(0, 100, 1)

out <- ode(y, times, model, parms)

plot(out)

Numerical methods provided by the

deSolve package

http://desolve.r-forge.r-project.org

Differential equation

„similar to formula on paper"
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Introductory example

Inspecting output

I Print to screen
> head(out, n = 4)

time N
[1,] 0 0.1000000
[2,] 1 0.1104022
[3,] 2 0.1218708
[4,] 3 0.1345160

I Summary
> summary(out)

N
Min. 0.100000
1st Qu. 1.096000
Median 5.999000
Mean 5.396000
3rd Qu. 9.481000
Max. 9.955000
N 101.000000
sd 3.902511

I Plotting
> plot(out, main = "logistic growth", lwd = 2)
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Introductory example

> diagnostics(out)
--------------------
lsoda return code
--------------------

return code (idid) = 2
Integration was successful.

--------------------
INTEGER values
--------------------

1 The return code : 2
2 The number of steps taken for the problem so far: 105
3 The number of function evaluations for the problem so far: 211
5 The method order last used (successfully): 5
6 The order of the method to be attempted on the next step: 5
7 If return flag =-4,-5: the largest component in error vector 0
8 The length of the real work array actually required: 36
9 The length of the integer work array actually required: 21
14 The number of Jacobian evaluations and LU decompositions so far: 0
15 The method indicator for the last succesful step,

1=adams (nonstiff), 2= bdf (stiff): 1
16 The current method indicator to be attempted on the next step,

1=adams (nonstiff), 2= bdf (stiff): 1

--------------------
RSTATE values
--------------------

1 The step size in t last used (successfully): 1
2 The step size to be attempted on the next step: 1
3 The current value of the independent variable which the solver has reached: 100.8645
4 Tolerance scale factor > 1.0 computed when requesting too much accuracy: 0
5 The value of t at the time of the last method switch, if any: 0
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Coupled equations

Coupled ODEs: the rigidODE problem

Problem

I Euler equations of a rigid body without external forces.

I Three dependent variables (y1, y2, y3), the coordinates of the
rotation vector,

I I1, I2, I3 are the principal moments of inertia.

[3] E. Hairer, S. P. Norsett, and G Wanner. Solving Ordinary Differential Equations I: Nonstiff
Problems. Second Revised Edition. Springer-Verlag, Heidelberg, 2009
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Coupled equations

Coupled ODEs: the rigidODE equations

Differential equation

y ′1 = (I2 − I3)/I1 · y2y3

y ′2 = (I3 − I1)/I2 · y1y3

y ′3 = (I1 − I2)/I3 · y1y2

Parameters

I1 = 0.5, I2 = 2, I3 = 3

Initial conditions

y1(0) = 1, y2(0) = 0, y3(0) = 0.9
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Coupled equations

Coupled ODEs: the rigidODE problem

R implementation

> library(deSolve)
> rigidode <- function(t, y, parms) {
+ dy1 <- -2 * y[2] * y[3]
+ dy2 <- 1.25 * y[1] * y[3]
+ dy3 <- -0.5 * y[1] * y[2]
+ list(c(dy1, dy2, dy3))
+ }
> yini <- c(y1 = 1, y2 = 0, y3 = 0.9)
> times <- seq(from = 0, to = 20, by = 0.01)
> out <- ode (times = times, y = yini, func = rigidode, parms = NULL)

> head (out, n = 3)

time y1 y2 y3
[1,] 0.00 1.0000000 0.00000000 0.9000000
[2,] 0.01 0.9998988 0.01124925 0.8999719
[3,] 0.02 0.9995951 0.02249553 0.8998875
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Coupled equations

Coupled ODEs: plotting the rigidODE problem

> plot(out)
> library(scatterplot3d)
> par(mar = c(0, 0, 0, 0))
> scatterplot3d(out[,-1])
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Coupled equations

Exercise

The Rössler equations

y ′1 = −y2 − y3

y ′2 = y1 + a · y2

y ′3 = b + y3 · (y1 − c)

Initial Conditions

y1 = 1, y2 = 1, y3 = 1

Parameters

a = 0.2, b = 0.2, c = 5

Tasks

I Solve the ODEs on the interval [0, 100]

I Produce a 3-D phase-plane plot

I Use file examples/rigidODE.R.txt as a template

[13] O.E. Rössler. An equation for continous chaos. Physics Letters A, 57 (5):397-398, 1976.

examples/rigidODE.R.txt
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Solvers ...

Solver overview, stiffness, accuracy
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Overview

Integration methods: package deSolve [22]

Euler

Runge−Kutta Linear Multistep

Explicit RK Adams Implicit RK BDF

non−stiff problems stiff problems
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Overview

Solver overview: package deSolve

Solver Notes st
iff

y’
=
f(
t,y
)

M
y’
=
f(
t,y
)

F
(y
’,t
,y
)=
0

R
oo
ts

E
ve
nt
s

La
gs
 (
D
D
E
)

N
es
tin
g

lsoda/lsodar automatic method 

selection
auto x x x x

lsode bdf, adams, … user defined x x x x

lsodes sparse Jacobian yes x x x x

vode bdf, adams, … user defined x x x

zvode complex numbers user defined x x x

daspk DAE solver yes x x x x x

radau DAE; implicit RK yes x x x x x

rk, rk4, euler euler, ode23, ode45, … 

rkMethod
no x x x

iteration returns state at t+dt no x x x

 - ode, ode.band, ode.1D, ode.2D, ode.3D: top level functions (wrappers)

 - red: functionality added by us

adapted
from [20]
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Overview

Options of solver functions

Top level function

> ode(y, times, func, parms,
+ method = c("lsoda", "lsode", "lsodes", "lsodar", "vode", "daspk",
+ "euler", "rk4", "ode23", "ode45", "radau",
+ "bdf", "bdf_d", "adams", "impAdams", "impAdams_d",
+ "iteration"), ...)

Workhorse function: the individual solver
> lsoda(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
+ jacfunc = NULL, jactype = "fullint", rootfunc = NULL,
+ verbose = FALSE, nroot = 0, tcrit = NULL,
+ hmin = 0, hmax = NULL, hini = 0, ynames = TRUE,
+ maxordn = 12, maxords = 5, bandup = NULL, banddown = NULL,
+ maxsteps = 5000, dllname = NULL, initfunc = dllname,
+ initpar = parms, rpar = NULL, ipar = NULL, nout = 0,
+ outnames = NULL, forcings = NULL, initforc = NULL,
+ fcontrol = NULL, events = NULL, lags = NULL,...)
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Overview

Arghhh, which solver and which options???

Problem type?

I ODE: use ode,

I DDE: use dede,

I DAE: daspk or radau,

I PDE: ode.1D, ode.2D, ode.3D,

. . . others for specific purposes, e.g. root finding, difference equations (euler,

iteration) or just to have a comprehensive solver suite (rk4, ode45).

Stiffness

I default solver lsoda selects method automatically,

I adams or bdf may speed up a little bit if degree of stiffness is known,

I vode or radau may help in difficult situations.
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Stiffness

Solvers for stiff systems

Stiffness

I Difficult to give a precise definition.

≈ system where some components change more rapidly than others.

Sometimes difficult to solve:

I solution can be numerically unstable,

I may require very small time steps (slow!),

I deSolve contains solvers that are suitable for stiff systems,

But: “stiff solvers” slightly less efficient for “well behaving” systems.

I Good news: lsoda selects automatically between stiff solver (bdf)
and nonstiff method (adams).
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Stiffness

Van der Pol equation

Oscillating behavior of electrical circuits containing tubes [24].

2nd order ODE

y ′′ − µ(1− y 2)y ′ + y = 0

. . . must be transformed into two 1st order equations

y ′1 = y2

y ′2 = µ · (1− y1
2) · y2 − y1

I Initial values for state variables at t = 0: y1(t=0)
= 2, y2(t=0)

= 0

I One parameter: µ = large → stiff system; µ = small → non-stiff.
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Stiffness

Model implementation

> library(deSolve)
> vdpol <- function (t, y, mu) {
+ list(c(
+ y[2],
+ mu * (1 - y[1]^2) * y[2] - y[1]
+ ))
+ }

> yini <- c(y1 = 2, y2 = 0)

> stiff <- ode(y = yini, func = vdpol, times = 0:3000, parms = 1000)
> nonstiff <- ode(y = yini, func = vdpol, times = seq(0, 30, 0.01), parms = 1)

> head(stiff, n = 5)

time y1 y2
[1,] 0 2.000000 0.0000000000
[2,] 1 1.999333 -0.0006670373
[3,] 2 1.998666 -0.0006674088
[4,] 3 1.997998 -0.0006677807
[5,] 4 1.997330 -0.0006681535
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Stiffness

Interactive exercise

I The following link opens in a web browser. It requires a recent
version of Firefox or Chrome, ideally in full-screen mode. Use Cursor
keys for slide transition:

I Left cursor guides you through the full presentation.

I Mouse and mouse wheel for full-screen panning and zoom.

I Pos1 brings you back to the first slide.

I examples/vanderpol.svg

I The following opens the code as text file for life demonstrations in R
I examples/vanderpol.R.txt

examples/vanderpol.svg
examples/vanderpol.R.txt
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Stiffness

Plotting

Stiff solution

> plot(stiff, type = "l", which = "y1",
+ lwd = 2, ylab = "y",
+ main = "IVP ODE, stiff")

Nonstiff solution
> plot(nonstiff, type = "l", which = "y1",
+ lwd = 2, ylab = "y",
+ main = "IVP ODE, nonstiff")



Default solver, lsoda:
> system.time(
+ stiff <- ode(yini, 0:3000, vdpol, parms = 1000)
+ )

user system elapsed
0.08 0.00 0.08

> system.time(
+ nonstiff <- ode(yini, seq(0, 30, by = 0.01), vdpol, parms = 1)
+ )

user system elapsed
0.08 0.00 0.08

Implicit solver, bdf:

> system.time(
+ stiff <- ode(yini, 0:3000, vdpol, parms = 1000, method = "bdf")
+ )

user system elapsed
0.06 0.00 0.07

> system.time(
+ nonstiff <- ode(yini, seq(0, 30, by = 0.01), vdpol, parms = 1, method = "bdf")
+ )

user system elapsed
0.05 0.00 0.04

⇒ Now use other solvers, e.g. adams, ode45, radau.
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Stiffness

Results

Timing results; your computer may be faster:

solver non-stiff stiff
ode23 0.37 271.19
lsoda 0.26 0.23
adams 0.13 616.13
bdf 0.15 0.22
radau 0.53 0.72

Comparison of solvers for a stiff and a non-stiff parametrisation of the
van der Pol equation (time in seconds, mean values of ten simulations on
my old AMD X2 3000 CPU).
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Stiffness

Accuracy and stability

I Options atol and rtol specify accuracy,

I Stability can be influenced by specifying hmax and maxsteps.
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Stiffness

Accuracy and stability - ctd

atol (default 10−6) defines absolute threshold,

I select appropriate value, depending of the size of your
state variables,

I may be between ≈ 10−300 (or even zero) and ≈ 10300.

rtol (default 10−6) defines relative threshold,

I It makes no sense to specify values < 10−15 because
of the limited numerical resolution of double precision
arithmetics (≈ 16 digits).

hmax is automatically set to the largest difference in times, to
avoid that the simulation possibly ignores short-term
events. Sometimes, it may be set to a smaller value to
improve robustness of a simulation.

hmin should normally not be changed.

Example: Setting rtol and atol: examples/PCmod_atol_0.R.txt

examples/PCmod_atol_0.R.txt
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Overview

Plotting, scenario comparison, observations
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Overview

Plotting and printing

Methods for plotting and extracting data in deSolve

I subset extracts specific variables that meet certain constraints.

I plot, hist create one plot per variable, in a number of panels

I image for plotting 1-D, 2-D models

I plot.1D and matplot.1D for plotting 1-D outputs

I ?plot.deSolve opens the main help file

rootSolve has similar functions

I subset extracts specific variables that meet certain constraints.

I plot for 1-D model outputs, image for plotting 2-D, 3-D model
outputs

I ?plot.steady1D opens the main help file
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Examples

The Lorenz equations

I chaotic dynamic system of ordinary differential equations

I three variables, X , Y and Z represent idealized behavior of the
earth’s atmosphere.

> chaos <- function(t, state, parameters) {

+ with(as.list(c(state)), {

+ dx <- -8/3 * x + y * z

+ dy <- -10 * (y - z)

+ dz <- -x * y + 28 * y - z

+ list(c(dx, dy, dz))

+ })

+ }

> yini <- c(x = 1, y = 1, z = 1)

> yini2 <- yini + c(1e-6, 0, 0)

> times <- seq(0, 30, 0.01)

> out <- ode(y = yini, times = times, func = chaos, parms = 0)

> out2 <- ode(y = yini2, times = times, func = chaos, parms = 0)
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Examples

Plotting multiple scenarios

I The default for plotting one or more objects is a line plot

I We can plot as many objects of class deSolve as we want

I By default different outputs get different colors and line types

> plot(out, out2, lwd = 2, lty = 1)



Intro Models Solv Plot Fit State Forcing DDE PDE DAE CPU End

Examples

Changing the panel arrangement

I Default: Automatic number of panels per page up to 3 x 3

I Use mfrow() or mfcol() to overrule

> plot(out, out2, lwd = 2, lty = 1, mfrow = c(1, 3))

I Important: upon returning the default mfrow is NOT restored.
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Examples

Plotting style

I We can change the style of the dataseries (col, lty, . . . )
I will be effective for all figures

I We can change individual figure settings (title, labels, . . . )
I vector input can be specified by a list; NULL will select the default

> plot(out, out2, col = c("blue", "orange"),

+ main = c("Xvalue", "Yvalue", "Zvalue"),

+ xlim = list(c(20, 30), c(25, 30), NULL), mfrow = c(1, 3))
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Examples

R’s default plot . . .
is used if we extract single colums from the deSolve object

> plot(out[,"x"], out[,"y"], pch = ".", main = "Lorenz butterfly",

+ xlab = "x", ylab = "y")
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Examples

Use deSolve’s subset . . .
. . . to select values that meet certain conditions

> XY <- subset(out, select = c("x", "y"), subset = y < 10 & x < 40)

> plot(XY, main = "Lorenz butterfly", xlab = "x", ylab = "y", pch = ".")
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Examples

Plotting multiple scenarios . . .
. . . is simple if number of outputs is known

> derivs <- function(t, y, parms)

+ with (as.list(parms), list(r * y * (1 - y/K)))

> times <- seq(from = 0, to = 30, by = 0.1)

> out <- ode(y = c(y = 2), times, derivs, parms = c(r = 1, K = 10))

> out2 <- ode(y = c(y = 12), times, derivs, parms = c(r = 1, K = 10))

> plot(out, out2, lwd = 2)
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Examples

Plotting multiple scenarios . . .
. . . with many or an unknown number of outputs in a list

> outlist <- list()

> plist <- cbind(r = runif(30, min = 0.1, max = 5),

+ K = runif(30, min = 8, max = 15))

> for (i in 1:nrow(plist))

+ outlist[[i]] <- ode(y = c(y = 2), times, derivs, parms = plist[i,])

> plot(out, outlist)
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Examples

Observed data

Arguments obs and obspar are used to add observed data

> obs2 <- data.frame(time = c(1, 5, 10, 20, 25),

+ y = c(12, 10, 8, 9, 10))

> plot(out, out2, obs = obs2,

+ obspar = list(col = "red", pch = 18, cex = 2))
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Examples

Observed data

A list of observed data is allowed

> obs2 <- data.frame(time = c(1,5,10,20,25), y = c(12,10,8,9,10))

> obs1 <- data.frame(time = c(1,5,10,20,25), y = c(1,6,8,9,10))

> plot(out, out2, col = c("blue", "red"), lwd = 2,

+ obs = list(obs1, obs2),

+ obspar = list(col = c("blue", "red"), pch = 18, cex = 2))
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Overview

Fitting models to data
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Overview

Fitting models

Given:

I a dynamic model

I data for one or more state variables

Wanted:

I a set of parameters that fits the data

Approach → package FME:

1. try an initial guess for the parameters

2. define cost function (e.g. least squares) with modCost()

3. fit the model with modFit

4. plot model and data
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Example: Fit a compartment model to data

Pharmacokinetic two compartment model

I a substance accumulated in the fat and eliminated by the liver

I two state variables, concentration in the fat CF and in the liver CL

I 3 parameters: transport (kFL, kLF ) and elimination (ke)

dCL

dt
= kFLCF − kLF CL − keCL

dCF

dt
= kLF CL − kFLCF

> library("FME")

> twocomp <- function (time, y, parms, ...) {

+ with(as.list(c(parms, y)), {

+ dCL <- kFL * CF - kLF * CL - ke * CL # concentration in liver

+ dCF <- kLF * CL - kFL * CF # concentration in fat

+ list(c(dCL, dCF))

+ })

+ }
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Example: Fit a compartment model to data

Data and initial guess

> dat <- data.frame(

+ time = seq(0, 28, 4),

+ CL = c(1.31, 0.61, 0.49, 0.41, 0.20, 0.12, 0.16, 0.21),

+ CF = c(1e-03, 0.041, 0.05, 0.039, 0.031, 0.025, 0.017, 0.012)

+ )

> parms <- c(ke = 0.2, kFL = 0.1, kLF = 0.05)

> times <- seq(0, 40, length=200)

> y0 <- c(CL = 1, CF = 0)

> out1 <- ode(y0, times, twocomp, parms)

> plot(out1, obs = dat)
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Example: Fit a compartment model to data

Define cost function (least squares):

> cost <- function(p) {

+ out <- ode(y0, times, twocomp, p)

+ modCost(out, dat, weight = "none") # try weight = "std" or "mean"

+ }

Note:

I naming of oservation and simulation data must be identical

I data may be given in cross table (wide) or data base format (long)

I different scaling and weighting options

I optional: sequential build-up of cost function
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Example: Fit a compartment model to data

Fit the model:

> parms <- c(ke = 0.2, kFL = 0.1, kLF = 0.05)

> fit <- modFit(f = cost, p = parms)

> summary(fit)

Parameters:

Estimate Std. Error t value Pr(>|t|)

ke 0.08546 0.01256 6.803 1.26e-05 ***

kFL 0.67293 4.66953 0.144 0.888

kLF 0.06970 0.49269 0.141 0.890

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.09723 on 13 degrees of freedom

Parameter correlation:

ke kFL kLF

ke 1.0000 0.4643 0.4554

kFL 0.4643 1.0000 0.9932

kLF 0.4554 0.9932 1.0000
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Example: Fit a compartment model to data

Compare output with data

> out1 <- ode(y0, times, twocomp, parms)

> out2 <- ode(y0, times, twocomp, coef(fit))

> plot(out1, out2, obs=dat, obspar=list(pch=16, col="red"))
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Example: Fit a compartment model to data

Fit parameters and initial values

> cost <- function(p, data, ...) {

+ yy <- p[c("CL", "CF")]

+ pp <- p[c("ke", "kFL", "kLF")]

+ out <- ode(yy, times, twocomp, pp)

+ modCost(out, data, ...)

+ }

Good start parameters can be very important:

> #parms <- c(CL = 1.2, CF = 0.0, ke = 0.2, kFL = 0.1, kLF = 0.05)

> parms <- c(CL = 1.2, CF = 0.001, ke = 0.2, kFL = 0.1, kLF = 0.05)

> fit <- modFit(f = cost, p = parms, data = dat, weight = "std",

+ lower = rep(0, 5), upper = c(2,2,1,1,1), method = "Marq")
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Example: Fit a compartment model to data

Fit parameters and initial values

> y0 <- coef(fit)[c("CL", "CF")]

> pp <- coef(fit)[c("ke", "kFL", "kLF")]

> out3 <- ode(y0, times, twocomp, pp)

> plot(out1, out2, out3, obs=dat, col=c("grey", "blue", "red"), lty = 1)
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Example: Fit a compartment model to data

> summary(fit)

Parameters:

Estimate Std. Error t value Pr(>|t|)

CL 1.2301394 0.0721467 17.051 2.94e-09 ***

CF 0.0006821 0.0033118 0.206 0.841

ke 0.1073348 0.0113231 9.479 1.26e-06 ***

kFL 0.1770370 0.0289392 6.118 7.55e-05 ***

kLF 0.0153857 0.0020289 7.583 1.08e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2032 on 11 degrees of freedom

Parameter correlation:

CL CF ke kFL kLF

CL 1.000000 0.003152 0.54175 -0.3837 -0.5494

CF 0.003152 1.000000 0.04449 -0.2229 -0.3529

ke 0.541751 0.044489 1.00000 -0.7083 -0.4287

kFL -0.383735 -0.222888 -0.70830 1.0000 0.8340

kLF -0.549433 -0.352886 -0.42874 0.8340 1.0000
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Steady-state

Solver overview, 1-D, 2-D, 3-D
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Solvers

Two packages for Steady-state solutions:

ReacTran: methods for numerical approximation of PDEs

I tran.1D(C, C.up, C.down, D, v, ...)

I tran.2D, tran.3D

rootSolve: special solvers for roots

I steady for 0-D models

I steady.1D, steady.2D, steady.3D for 1-D, 2-D, 3-D models

[18] Soetaert, K. and Meysman, F. (2012) Reactive transport in aquatic ecosystems: Rapid model prototyping in the open source software
R Environmental Modelling and Software 32, 49–60

[21] Soetaert, K., Petzoldt, T. and Setzer, R. W. (2010 Solving Differential Equations in R The R Journal, 2010, 2, 5-15
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Solvers

Steady-state Solver overview: package rootSolve

Simple problems can be solved iteratively

Function Description

stode steady-state ODEs by Newton-Raphson method, full or
banded Jacobian

stodes steady-state ODEs by Newton-Raphson method, arbi-
trary sparse Jacobian

Others are solved by dynamically running to steady-state

I steady( ... method = "runsteady") for 0-D models

I steady.1D( ... method = "runsteady") for 1-D models

I no special solver for higher dimensions - but use ode.2D, ode.3D
from deSolve for sufficiently long time

(adapted from [21])
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Solvers

Options of solver functions

Top level function

> steady(y, time = NULL, func, parms, method = "stode", ...)

Workhorse function: the individual solver
> stode(y, time = 0, func, parms = NULL, rtol = 1e-06, atol = 1e-08,
+ ctol = 1e-08, jacfunc = NULL, jactype = "fullint", verbose = FALSE,
+ bandup = 1, banddown = 1, positive = FALSE, maxiter = 100,
+ ynames = TRUE, dllname = NULL, initfunc = dllname, initpar = parms,
+ rpar = NULL, ipar = NULL, nout = 0, outnames = NULL, forcings = NULL,
+ initforc = NULL, fcontrol = NULL, ...)

Notes

I positive = TRUE forces to find relevant solutions for quantitities
that can not be negative.

I ynames can be used to label the output – useful for plotting
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Examples

1-D problem: polluted estuary

Problem formulation
Ammonia and oxygen are described in an estuary. They react to form
nitrate. The concentrations are at steady state.

0 = ∂
∂x (D ∂NH3

∂x ) −v ∂NH3

∂x − rnit

0 = ∂
∂x (D ∂O2

∂x ) −v ∂O2

∂x − 2rnit + p · (O2s − O2)
rnit = r · NH3 · O2

O2+k

I parameters: k = 1, r = 0.1, p = 0.1,O2s = 300, v = 1000,D = 1e7

I The estuary is 100 km long.

I The boundary conditions are:

NH3(0) = 500,O2(0) = 50,NH3(1e5) = 10,O2(1e5) = 30
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Examples

Polluted estuary in R
define grid:
> require(ReacTran)
> N <- 1000
> Grid <- setup.grid.1D(N = N, L = 100000)

derivative function:
> Estuary <- function(t, y, parms) {
+ NH3 <- y[1:N]
+ O2 <- y[(N+1):(2*N)]
+ tranNH3<- tran.1D (C = NH3, D = 1e7, v = 1000,
+ C.up = 500, C.down = 10, dx = Grid)$dC
+ tranO2 <- tran.1D (C = O2 , D = 1e7, v = 1000,
+ C.up = 100, C.down = 250, dx = Grid)$dC
+
+ r_nit <- 0.1 * O2 / (O2 + 1) * NH3
+ dNH3 <- tranNH3 - r_nit
+ dO2 <- tranO2 - 2 * r_nit + 0.1 * (300 - O2)
+ list(c( dNH3, dO2 ), r_nit = r_nit)
+ }

numerical solution:
> print(system.time(
+ std <- steady.1D(y = runif(2 * N), parms = NULL, names=c("NH3", "O2"),
+ func = Estuary, dimens = N, positive = TRUE) ))

user system elapsed
0.10 0.00 0.09
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Examples

Plotting

> plot(std, which = c("NH3", "O2", "r_nit"), lwd = 2,
+ mfrow = c(1,3), grid = Grid$x.mid, xlab = "distance, m",
+ ylab = c("mmol m-3", "mmol m-3", "mmol m-3 d-1"))
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Examples

Plotting with Observations

> obs <- data.frame(x = seq(0, 9e4, by = 1e4),
+ O2 = c(100, 0, 0, 100, 150, 200, 250, 300, 300, 300))
> plot(std, which = c("NH3", "O2", "r_nit"), lwd = 2,
+ obs = obs, obspar = list(pch = 18, col = "red", cex = 2),
+ grid = Grid$x.mid, xlab = "distance, m",
+ ylab = c("mmol m-3", "mmol m-3", "mmol m-3 d-1"), mfrow=c(1,3))



Intro Models Solv Plot Fit State Forcing DDE PDE DAE CPU End

Examples

Steady-state of a 2-D PDE

Problem formulation
A relatively stiff PDE is the combustion problem, describing diffusion and
reaction in a 2-dimensional domain (from [6]). The steady-state problem
is:

0 = −∇ · (−K∇U) +
R

αδ
(1 + α− U) exp(δ(1− 1/U))

I The domain is rectangular ([0,1]*[0,1])

I K = 1, α = 1, δ = 20, R = 5,

I Downstream boundary is prescribed as a known value (1)

I Upstream boundary: zero-flux
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Examples

2-D combustion problem in R

grid and parameters:
> library(ReacTran)
> N <- 100
> Grid <- setup.grid.1D(0, 1, N = N)
> alfa <- 1; delta <- 20; R <- 5

derivative function:
> Combustion <- function(t, y, p) {
+ U <- matrix(nrow = N, ncol = N, data = y)
+
+ reac <- R /alfa/delta * (1+alfa-U) * exp(delta*(1-1/U))
+ tran <- tran.2D(C = U, D.x = 1, flux.x.up = 0, flux.y.up = 0, C.x.down = 1,
+ C.y.down = 1, dx = Grid, dy = Grid)
+ list (tran$dC+ reac)
+ }

solution (10000 equations):
> print(system.time(
+ std <- steady.2D(y = rep(1, N*N), parms = NULL, func = Combustion, nspec = 1,
+ dimens = c(N, N), lrw = 1e6, positive = TRUE)
+ ))

user system elapsed
1.52 0.00 1.52
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Examples

Plotting

> image(std, main = "Combustion", legend = TRUE)
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Examples

Steady-state of a 3-D PDE

Problem formulation
3-D problems are computationally heavy - only smaller problems can be
solved in R
Model of diffusion and simple reaction in a 3-dimensional domain.

0 = −∇ · (−D∇Y )− r ∗ Y

I The domain is rectangular ([0, 1] ∗ [0, 1] ∗ [0, 1])

I D = 1, r = 0.025,

I Initial condition: constant: U(x , y , 0) = 1.

I Upstream and Downstream boundaries: = 1
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Examples

3-D problem in R
grid and parameters:
> library(ReacTran)
> n <- 20
> Grid <- setup.grid.1D(0, 1, N = n)

derivative function:
> diffusion3D <- function(t, Y, par) {
+
+ yy <- array(dim = c(n, n, n), data = Y) # vector to 3-D array
+ dY <- -0.025 * yy # consumption
+ BND <- matrix(nrow = n, ncol = n, 1) # boundary concentration
+
+ dY <- dY + tran.3D(C = yy,
+ C.x.up = BND, C.y.up = BND, C.z.up = BND,
+ C.x.down = BND, C.y.down = BND, C.z.down = BND,
+ D.x = 1, D.y = 1, D.z = 1,
+ dx = Grid, dy = Grid, dz = Grid)$dC
+ return(list(dY))
+ }

solution (10000 equations):
> print(system.time(
+ ST3 <- steady.3D(y = rep(1, n*n*n), func = diffusion3D, parms = NULL,
+ pos = TRUE, dimens = c(n, n, n), lrw = 2000000) ))

user system elapsed
2.01 0.01 2.03
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Examples

Plotting
a selection of 2-D projections, in the x-direction

> image(ST3, mfrow = c(2, 2), add.contour = TRUE, legend = TRUE,
+ dimselect = list(x = c(4, 8, 12, 16)))
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Under control: Forcing functions and events
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Discontinuities in dynamic models

Most solvers assume that dynamics is smooth
However, there can be several types of discontinuities:

I Non-smooth external variables

I Discontinuities in the derivatives

I Discontinuites in the values of the state variables

A solver does not have large problems with first two types of
discontinuities, but changing the values of state variables is much more
difficult.



Intro Models Solv Plot Fit State Forcing DDE PDE DAE CPU End

External Variables

External variables in dynamic models

. . . also called forcing functions

Why external variables?

I Some important phenomena are not explicitly included in a
differential equation model, but imposed as a time series. (e.g.
sunlight, important for plant growth is never “modeled”).

I Somehow, during the integration, the model needs to know the
value of the external variable at each time step!



Intro Models Solv Plot Fit State Forcing DDE PDE DAE CPU End

External Variables

External variables in dynamic models

Implementation in R

I R has an ingenious function that is especially suited for this task:
function approxfun

I It is used in two steps:
I First an interpolating function is constructed, that contains the data.

This is done before solving the differential equation.

afun <- approxfun(data)

I Within the derivative function, this interpolating function is called to
provide the interpolated value at the requested time point (t):

tvalue <- afun(t)

?forcings will open a help file
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External Variables

Example: Predator-Prey model with time-varying input

This example is from [16]

Create an artificial time-series
> times <- seq(0, 100, by = 0.1)
> signal <- as.data.frame(list(times = times, import = rep(0, length(times))))
> signal$import <- ifelse((trunc(signal$times) %% 2 == 0), 0, 1)

> signal[8:12,]

times import
8 0.7 0
9 0.8 0
10 0.9 0
11 1.0 1
12 1.1 1

Create the interpolating function, using approxfun

> input <- approxfun(signal, rule = 2)

> input(seq(from = 0.98, to = 1.01, by = 0.005))

[1] 0.80 0.85 0.90 0.95 1.00 1.00 1.00
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External Variables

A Predator-Prey model with time-varying input

Use interpolation function in ODE function

> SPCmod <- function(t, x, parms) {
+ with(as.list(c(parms, x)), {
+
+ import <- input(t)
+
+ dS <- import - b * S * P + g * C
+ dP <- c * S * P - d * C * P
+ dC <- e * P * C - f * C
+ res <- c(dS, dP, dC)
+ list(res, signal = import)
+ })
+ }

> parms <- c(b = 0.1, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0)
> xstart <- c(S = 1, P = 1, C = 1)
> out <- ode(y = xstart, times = times, func = SPCmod, parms)
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External Variables

Plotting model output

> plot(out)
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Events

Discontinuities in dynamic models: Events

What?

I An event is when the values of state variables change abruptly.

Events in Most Programming Environments

I When an event occurs, the simulation needs to be restarted.

I Use of loops etc. . . .

I Cumbersome, messy code

Events in R

I Events are part of a model; no restart necessary

I Separate dynamics inbetween events from events themselves

I Very neat and efficient!
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Events

Discontinuities in dynamic models, Events

Two different types of events in R

I Events occur at known times
I Simple changes can be specified in a data.frame with:

I name of state variable that is affected
I the time of the event
I the magnitude of the event
I event method (“replace”, “add”, “multiply”)

I More complex events can be specified in an event function that
returns the changed values of the state variables
function(t, y, parms, ...).

I Events occur when certain conditions are met
I Event is triggered by a root function
I Event is specified in an event function

?events will open a help file
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Events

A patient injects drugs in the blood

Problem Formulation

I Describe the concentration of the drug in the blood

I Drug injection occurs at known times → data.frame

Dynamics inbetween events

I The drug decays with rate b

I Initially the drug concentration = 0
> pharmaco <- function(t, blood, p) {
+ dblood <- - b * blood
+ list(dblood)
+ }

> b <- 0.6
> yini <- c(blood = 0)
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Events

A patient injects drugs in the blood

Specifying the event

I Daily doses, at same time of day

I Injection makes the concentration in the blood increase by 40 units.

I The drug injections are specified in a special event data.frame
> injectevents <- data.frame(var = "blood",
+ time = 0:20,
+ value = 40,
+ method = "add")

> head(injectevents)

var time value method
1 blood 0 40 add
2 blood 1 40 add
3 blood 2 40 add
4 blood 3 40 add
5 blood 4 40 add
6 blood 5 40 add



Intro Models Solv Plot Fit State Forcing DDE PDE DAE CPU End

Events

A patient injects drugs in the blood

Solve model

I Pass events to the solver in a list

I All solvers in deSolve can handle events

I Here we use the “implicit Adams” method

> times <- seq(from = 0, to = 10, by = 1/24)
> outDrug <- ode(func = pharmaco, times = times, y = yini,
+ parms = NULL, method = "impAdams",
+ events = list(data = injectevents))
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Events

plotting model output

> plot(outDrug)
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Events

An event triggered by a root: A Bouncing Ball

Problem formulation

I A ball is thrown vertically from the ground (y(0) = 0)

I Initial velocity (y’) = 10 m s−1; acceleration g = 9.8 m s−2

I When ball hits the ground, it bounces.

ODEs describe height of the ball above the ground (y)

Specified as 2nd order ODE

y ′′ = −g
y(0) = 0
y ′(0) = 10

Specified as 1st order ODE

y ′1 = y2

y ′2 = −g
y1(0) = 0
y2(0) = 10

[14] Shampine, L. F.; Gladwell, I. and Thompson, S. (2003) Solving ODEs with MATLAB. Cambridge University Press, 2003, 263
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Events

A Bouncing Ball

Dynamics inbetween events

> library(deSolve)

> ball <- function(t, y, parms) {
+ dy1 <- y[2]
+ dy2 <- -9.8
+
+ list(c(dy1, dy2))
+ }

> yini <- c(height = 0, velocity = 10)
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Events

The Ball Hits the Ground and Bounces

Root: the Ball hits the ground

I The ground is where height = 0

I Root function is 0 when y1 = 0
> rootfunc <- function(t, y, parms) return (y[1])

Event: the Ball bounces

I The velocity changes sign (-) and is reduced by 10%

I Event function returns changed values of both state variables
> eventfunc <- function(t, y, parms) {
+ y[1] <- 0
+ y[2] <- -0.9*y[2]
+ return(y)
+ }
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Events

An event triggered by a root: the bouncing ball

Solve model

I Inform solver that event is triggered by root (root = TRUE)

I Pass event function to solver

I Pass root function to solver

> times <- seq(from = 0, to = 20, by = 0.01)
> out <- ode(times = times, y = yini, func = ball,
+ parms = NULL, rootfun = rootfunc,
+ events = list(func = eventfunc, root = TRUE))

Get information about the root
> attributes(out)$troot

[1] 2.040816 3.877551 5.530612 7.018367 8.357347 9.562428 10.647001 11.623117
[9] 12.501621 13.292274 14.003862 14.644290 15.220675 15.739420 16.206290 16.626472
[17] 17.004635 17.344981 17.651291 17.926970 18.175080 18.398378 18.599345 18.780215
[25] 18.942998 19.089501 19.221353 19.340019 19.446818 19.542936 19.629441 19.707294
[33] 19.777362 19.840421 19.897174 19.948250 19.994217
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Events

An event triggered by a root: the bouncing ball

> plot(out, select = "height")
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Events

An event triggered by a root: the bouncing ball

Create Movie-like output

for (i in seq(1, 2001, 10)) {

plot(out, which = "height", type = "l", lwd = 1,

main = "", xlab = "Time", ylab = "Height"

)

points(t(out[i,1:2]), pch = 21, lwd = 1, col = 1, cex = 2,

bg = rainbow(30, v = 0.6)[20-abs(out[i,3])+1])

Sys.sleep(0.01)

}


bball.wmv
Media File (video/x-ms-wmv)
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Events

Exercise: Add events to a logistic equation

ODE: Logistic growth of a population

y ′ = r · y ·
(

1− y

K

)
r = 1,K = 10, y0 = 2

Events: Population harvested according to several strategies

1. No harvesting

2. Every 2 days the population’s density is reduced to 50%

3. When the population approaches 80% of its carrying capacity, its
density is halved.
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Events

Exercise: Add events to a logistic equation - ctd

Tasks:

I Run the model for 20 days

I Implement first strategy in a data.frame

I Second strategy requires root and event function

I Use file examples/logisticEvent.R.txt as a template

examples/logisticEvent.R.txt
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White blood cells

Delay Differential Equations

What?
Delay Differential Equations are similar to ODEs except that they involve
past values of variables and/or derivatives.

DDEs in R: R-package deSolve

I dede solves DDEs

I lagvalue provides lagged values of the state variables

I lagderiv provides lagged values of the derivatives
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White blood cells

Example: Chaotic Production of White Blood Cells

Mackey-Glass Equation:

I y : current density of white blood cells,

I yτ is the density τ time-units in the past,

I first term equation is production rate

I b is destruction rate

y ′ = ayτ
1

1+y c
τ
− by

yτ = y(t − τ)
yt = 0.5 for t ≤ 0

(1)

I For τ = 10 the output is periodic,

I For τ = 20 cell densities display a chaotic pattern

[9] Mackey, M. C. and Glass, L. (1977) Oscillation and chaos in physiological control systems. Science 197, 287–289
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White blood cells

Solution in R

> library(deSolve)
> retarded <- function(t, y, parms, tau) {
+ tlag <- t - tau
+ if (tlag <= 0)
+ ylag <- 0.5
+ else
+ ylag <- lagvalue(tlag)
+
+ dy <- 0.2 * ylag * 1/(1+ylag^10) - 0.1 * y
+ list(dy = dy, ylag = ylag)
+ }
> yinit <- 0.5
> times <- seq(from = 0, to = 300, by = 0.1)
> yout1 <- dede(y = yinit, times = times, func = retarded, parms = NULL, tau = 10)
> yout2 <- dede(y = yinit, times = times, func = retarded, parms = NULL, tau = 20)
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White blood cells

Solution in R
> plot(yout1, lwd = 2, main = "tau=10", ylab = "y", mfrow = c(2, 2), which = 1)
> plot(yout1[,-1], type = "l", lwd = 2, xlab = "y")
> plot(yout2, lwd = 2, main = "tau=20", ylab = "y", mfrow = NULL, which = 1)
> plot(yout2[,-1], type = "l", lwd = 2, xlab = "y")



Intro Models Solv Plot Fit State Forcing DDE PDE DAE CPU End

Lemming model

Exercise: the Lemming model

A nice variant of the logistic model is the DDE lemming model:

y ′ = r · y(1− y(t − τ)

K
) (2)

Use file examples/ddelemming.R.txt as a template to implement this
model

I initial condition y(t = 0) = 19.001

I parameter values r = 3.5, τ = 0.74, K = 19

I history y(t) = 19 for t < 0

I Generate output for t in [0, 40].

[15] Shampine, L. and Thompson, S. (2001) Solving DDEs in MATLAB. App. Numer. Math. 37, 441-458

examples/ddelemming.R.txt
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Diffusion, advection and reaction:
Partial differential equations (PDE) with ReacTran
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Partial Differential Equations

Many second-order PDEs can be written as advection-diffusion
problems:

∂C

∂t
= −v

∂C

∂x
+ D

∂2C

∂x2
+ f (t, x ,C )

. . . same for 2-D and 3-D

Example: wave equation in 1-D

∂2u

∂t2
= c2 ∂

2u

∂x2
(3)

can be written as:
du

dt
= v

∂v

∂t
= c2 ∂

2u

∂x2

(4)
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Three packages for solving PDEs in R

ReacTran: methods for numerical approximation of PDEs

I tran.1D(C, C.up, C.down, D, v, ...)

I tran.2D, tran.3D

deSolve: general-purpose solvers for time-varying cases

I ode.1D(y, times, func, parms, nspec, dimens, method, names, ...)

I ode.2D, ode.3D

rootSolve: special solvers for time-invariant cases

I steady.1D(y, time, func, parms, nspec, dimens, method, names, ...)

I steady.2D, steady.3D

[18, 22, 17]
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1-D PDEs

Numerical solution of the wave equation

library(ReacTran)

wave <- function (t, y, parms) {

u <- y[1:N]

v <- y[(N+1):(2*N)]

du <- v

dv <- tran.1D(C = u, C.up = 0, C.down = 0, D = 1, 

dx = xgrid)$dC

list(c(du, dv))

}

xgrid <- setup.grid.1D(-100, 100, dx.1 = 0.2)

x     <- xgrid$x.mid

N     <- xgrid$N

uini <- exp(-0.2*x^2)

vini <- rep(0, N)

yini <- c(uini, vini)

times <- seq (from = 0, to = 50, by = 1)

out <- ode.1D(yini, times, wave, parms, method = "adams", 

names = c("u", "v"), dimens = N)

image(out, grid = x)

Numerical method provided by the

deSolve package

http://desolve.r-forge.r-project.org

Methods from ReacTran
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1-D PDEs

Plotting 1-D PDEs: matplot.1D
> outtime <- seq(from = 0, to = 50, by = 10)
> matplot.1D(out, which = "u", subset = time %in% outtime, grid = x,
+ xlab = "x", ylab = "u", type = "l", lwd = 2, xlim = c(-50, 50), col="black")
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1-D PDEs

Plotting 1-D PDEs: image

> image(out, which = "u", grid = x)
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1-D PDEs

Plotting 1-D PDEs: persp plots
> image(out, which = "u", grid = x, method = "persp", border = NA,
+ col = "lightblue", box = FALSE, shade = 0.5, theta = 0, phi = 60)
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1-D PDEs

Exercise: the Brusselator

Problem formulation
The Brusselator is a model for an auto-catalytic chemical reaction
between two products, A and B, and producing also C and D in a
number of intermediary steps.

A
k1−→ X1

B + X1
k2−→ X2 + C

2X1 + X2
k3−→ 3X1

X1
k4−→ D

where the ki are the reaction rates.

[7] Lefever, R., Nicolis, G. and Prigogine, I. (1967) On the occurrence of oscillations around the steady state in systems of chemical

reactions far from equilibrium Journal of Chemical Physics 47, 1045–1047
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1-D PDEs

Exercise: Implement the Brusselator in 1-D

∂X1

∂t = DX1

∂2X1

∂x2 + 1 + X 2
1 X2 − 4X1

∂X2

∂t = DX2

∂2X2

∂x2 + 3X1 − X 2
1 X2

Tasks

I The grid x extends from 0 to 1, and consists of 50 cells.

I Initial conditions:

X1(0) = 1 + sin(2 ∗ π ∗ x),X2(0) = 3

I Generate output for t = 0, 1, . . . 10.

I Use file implementing the wave equation as a template:
examples/wave.R.txt

examples/wave.R.txt
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2-D PDEs

2-D wave equation: Sine-Gordon

Problem formulation
The Sine-Gordon equation is a non-linear hyperbolic (wave-like) partial
differential equation involving the sine of the dependent variable.

∂2u

∂t2
= D

∂2u

∂x2
+ D

∂2u

∂y 2
− sin u (5)

Rewritten as two first order differential equations:

du
dt = v
∂v
∂t = D ∂2u

∂x2 + D ∂2u
∂y2 − sin u

(6)
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2-D PDEs

2-D Sine-Gordon in R

grid:
> Nx <- Ny <- 100
> xgrid <- setup.grid.1D(-7, 7, N = Nx); x <- xgrid$x.mid
> ygrid <- setup.grid.1D(-7, 7, N = Ny); y <- ygrid$x.mid

derivative function:
> sinegordon2D <- function(t, C, parms) {
+ u <- matrix(nrow = Nx, ncol = Ny, data = C[1 : (Nx*Ny)])
+ v <- matrix(nrow = Nx, ncol = Ny, data = C[(Nx*Ny+1) : (2*Nx*Ny)])
+ dv <- tran.2D (C = u, C.x.up = 0, C.x.down = 0, C.y.up = 0, C.y.down = 0,
+ D.x = 1, D.y = 1, dx = xgrid, dy = ygrid)$dC - sin(u)
+ list(c(v, dv))
+ }

initial conditions:
> peak <- function (x, y, x0, y0) return(exp(-( (x-x0)^2 + (y-y0)^2)))
> uini <- outer(x, y, FUN = function(x, y) peak(x, y, 2,2) + peak(x, y,-2,-2)
+ + peak(x, y,-2,2) + peak(x, y, 2,-2))
> vini <- rep(0, Nx*Ny)

solution:
> out <- ode.2D (y = c(uini,vini), times = 0:3, parms = 0, func = sinegordon2D,
+ names = c("u", "v"), dimens = c(Nx, Ny), method = "ode45")
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2-D PDEs

Plotting 2-D PDEs: image plots

> image(out, which = "u", grid = list(x, y), mfrow = c(2,2), ask = FALSE)
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2-D PDEs

Plotting 2-D PDEs: persp plots
> image(out, which = "u", grid = list(x, y), method = "persp", border = NA,
+ col = "lightblue", box = FALSE, shade = 0.5, theta = 0, phi = 60,
+ mfrow = c(2,2), ask = FALSE)
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2-D PDEs

Movie-like output of 2-D PDEs

out <- ode.2D (y = c(uini, vini), times = seq(0, 3, by = 0.1),

parms = NULL, func = sinegordon2D,

names=c("u", "v"), dimens = c(Nx, Ny),

method = "ode45")

image(out, which = "u", grid = list(x = x, y = y),

method = "persp", border = NA,

theta = 30, phi = 60, box = FALSE, ask = FALSE)



Intro Models Solv Plot Fit State Forcing DDE PDE DAE CPU End

2-D PDEs

Exercise: Implement the Brusselator in 2-D

∂X1

∂t = DX1

∂2X1

∂x2 + DX1

∂2X1

∂y2 + 1 + X 2
1 X2 − 4X1

∂X2

∂t = DX2

∂2X1

∂x2 + DX2

∂2X1

∂y2 + 3X1 − X 2
1 X2

Tasks

I The grids x and y extend from 0 to 1, and consist of 50 cells.

I Parameter settings: diffusion coefficient:

DX1 = 2; DX2 = 8 ∗ DX1

I Initial condition for X1, X2: random numbers inbetween 0 and 1.

I Generate output for t = 0, 1, . . . 8

I Use the file implementing the Sine-Gordon equation as a template:
examples/sinegordon.R.txt

examples/sinegordon.R.txt
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Differential-Algebraic Equations

Solver overview, examples
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Solvers

Two solvers for DAEs in R-package deSolve:

daspk

I a backward differentiation formula (BDF)

I DAEs of index 1 only

I Can solve DAEs in form My ′ = f (x , y) and F (x , y , y ′) = 0

radau

I an implicit Runge-Kutta formula (BDF)

I DAEs of index ≤ 3

I Can solve DAEs in form My ′ = f (x , y) only

. . . more in package deTestSet

I . . .

[1] Brenan, K. E., Campbell, S. L. and Petzold, L. R. (1996) Numerical Solution of Initial-Value Problems in Differential-Algebraic
Equations. SIAM Classics in Applied Mathematics.
[4] Hairer, E. and Wanner, G. (2010) Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Second Revised
Edition, Springer-Verlag.
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Solvers

Options of solver functions

daspk (y, times, func = NULL, parms, dy, res, mass, ...)

radau (y, times, func, parms, nind, mass, ...)

I func and mass: for My ′ = f (x , y)

I res: for F (x , y , y ′) = 0

I nind: number of variables of index 1, 2, and 3 ⇒ equations should
be sorted accordingly

I radau does not require specification of (consistent) initial
derivatives (dy)
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Examples

Implicit DAE: Robertson problem

Problem formulation
A classic problem to test stiff ODE/DAE solvers, given by Robertson
(1966), written as a DAE (of index 1):

y ′1 = −0.04y1 + 104y2y3

y ′2 = 0.04y1 − 104y2y3 − 3e7y 2
2

1 = y1 + y2 + y3

⇒ 0 = −y ′1 − 0.04y1 + 104y2y3

0 = −y ′2 + 0.04y1 − 104y2y3 − 3e7y 2
2

0 = −1 + y1 + y2 + y3

The third equation is to conserve the total concentration of y1, y2, y3

I initial conditions: y1 = 1, y2 = 0, y3 = 0.

I output for t = 10[0, 0.1, 0.2,...10]

I solve with daspk

[12] Robertson, H. H. (1966) The solution of a set of reaction rate equations. In Walsh, J. (ed.) Numerical Analysis: An Introduction,

Academic Press, 178-182
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Examples

Robertson DAE in R

residual function (4 mandatory arguments):
> RobertsonDAE <- function(t, y, dy, parms) {
+
+ res1 <- -dy[1] - 0.04*y[1] + 1e4*y[2]*y[3]
+ res2 <- -dy[2] + 0.04*y[1] - 1e4*y[2]*y[3] - 3e7* y[2]^2
+ res3 <- - 1 + y[1] + y[2] + y[3]
+
+ list(c(res1, res2, res3))
+ }

initial conditions (values, derivatives):
> yini <- c(y1 = 1.0, y2 = 0, y3 = 0)
> dyini <- rep(0, 3) # rough guess often good enough

solution:
> times <- 10^(seq(from = 0, to = 10, by = 0.1))
> out <- daspk(y = yini, dy = dyini, res = RobertsonDAE, parms = NULL,
+ times = times)
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Examples

Plotting

> plot(out, log = "x", col = "darkblue", lwd = 2, mfrow=c(1,3))
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Examples

The pendulum

Problem formulation, an index 3 DAE

Original equations:

x ′ = u
y ′ = v
u′ = −λx
v ′ = −λy − g
0 = x2 + y 2 − L2

⇒

M.y’ = f(x,y)∣∣∣∣∣∣∣∣∣∣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣∣∣
x ′

y ′

u′

v ′

λ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
u
v
−λx
−λy − g

x2 + y 2 − L2

∣∣∣∣∣∣∣∣∣∣
I initial conditions: x = 1, y = 0, u = 0, v = 1, λ = 1

I x and y variables of index 1, u, v of index 2, λ of index 3

I solve in [0,10]

[1, 4]
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Examples

Pendulum problem in R
derivative function:
> pendulum <- function (t, Y, parms) {
+ with (as.list(Y),
+ list(c(u,
+ v,
+ -lam * x,
+ -lam * y - 9.8,
+ x^2 + y^2 -1
+ ))
+ )
+ }

mass matrix and index vector:
> M <- diag(nrow = 5)
> M[5, 5] <- 0
> index <- c(2, 2, 1)

initial conditions:
> yini <- c(x = 1, y = 0, u = 0, v = 1, lam = 1)

solution :
> times <- seq(from = 0, to = 10, by = 0.01)
> out <- radau (y = yini, func = pendulum, parms = NULL,
+ times = times, mass = M, nind = index)
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Examples

Plotting
> plot(out, type = "l", lwd = 2)
> plot(out[, c("x", "y")], type = "l", lwd = 2)
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Matrix formulation of models

Speeding up: Matrices and compiled code
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Matrix formulation of models

Methods for speeding up

1. Use matrices,

2. Implement essential parts in compiled code (Fortran, C),

3. Implement the full method in compiled code.

Formulating a model with matrices and vectors can lead to a considerable
speed gain – and compact code – while retaining the full flexibility of R.
The use of compiled code saves even more CPU time at the cost of a
higher development effort.
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Matrix formulation of models

Use of matrices

A Lotka-Volterra model with 4 species

> model <- function(t, n, parms) {
+ with(as.list(c(n, parms)), {
+ dn1 <- r1 * n1 - a13 * n1 * n3
+ dn2 <- r2 * n2 - a24 * n2 * n4
+ dn3 <- a13 * n1 * n3 - r3 * n3
+ dn4 <- a24 * n2 * n4 - r4 * n4
+ return(list(c(dn1, dn2, dn3, dn4)))
+ })
+ }
> parms <- c(r1 = 0.1, r2 = 0.1, r3 = 0.1, r4 = 0.1, a13 = 0.2, a24 = 0.1)
> times = seq(from = 0, to = 500, by = 0.1)
> n0 = c(n1 = 1, n2 = 1, n3 = 2, n4 = 2)

> system.time(out <- ode(n0, times, model, parms))

user system elapsed
0.43 0.00 0.42

Source: examples/lv-plain-or-matrix.R.txt

examples/lv-plain-or-matrix.R.txt
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Matrix formulation of models

Use of matrices

A Lotka-Volterra model with 4 species

> model <- function(t, n, parms) {
+ with(parms, {
+ dn <- r * n + n * (A %*% n)
+ return(list(c(dn)))
+ })
+ }
> parms <- list(
+ r = c(r1 = 0.1, r2 = 0.1, r3 = -0.1, r4 = -0.1),
+ A = matrix(c(0.0, 0.0, -0.2, 0.0, # prey 1
+ 0.0, 0.0, 0.0, -0.1, # prey 2
+ 0.2, 0.0, 0.0, 0.0, # predator 1; eats prey 1
+ 0.0, 0.1, 0.0, 0.0), # predator 2; eats prey 2
+ nrow = 4, ncol = 4, byrow = TRUE)
+ )

> system.time(out <- ode(n0, times, model, parms))

user system elapsed
0.25 0.00 0.25

Source: examples/lv-plain-or-matrix.R.txt

examples/lv-plain-or-matrix.R.txt
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Matrix formulation of models

Results

I plot(out) will show the results.

I Note that the “plain” version has only 1 to 1 connections, but the
matrix model is already full connected (with most connections are
zero). The comparison is insofar unfair that the matrix version
(despite faster execution) is more powerful.

I Exercise: Create a fully connected model in the plain version for a
fair comparison.

I A parameter example (e.g. for weak coupling) can be found on:
http:

//tolstoy.newcastle.edu.au/R/e7/help/09/06/1230.html

http://tolstoy.newcastle.edu.au/R/e7/help/09/06/1230.html
http://tolstoy.newcastle.edu.au/R/e7/help/09/06/1230.html
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Compiled code

Using compiled code

All solvers of deSolve

I allow direct communication between solvers and a compiled model.

See vignette ("compiledCode")

Principle

I Implement core model (and only this) in C or Fortran,

I Use data handling, storage and plotting facilities of R.

examples/compiled_lorenz/compiledcode.svg

[16] Soetaert, K., Petzoldt, T. and Setzer, R. (2009) R-package deSolve, Writing Code in Compiled Languages.

examples/compiled_lorenz/compiledcode.svg
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Thank you!

More Info:
http://desolve.r-forge.r-project.org

http://desolve.r-forge.r-project.org


Intro Models Solv Plot Fit State Forcing DDE PDE DAE CPU End

Finally

Citation
A lot of effort went in creating this software; please cite it when using it.

I deSolve: [22], rootSolve [21], ReacTran [18],

I Some complex examples can be found in [20],

I A framework to fit differential equation models to data is FME [19],

I . . . and don’t forget the authors of the original algorithms [5, 10, 2]!

Acknowledgments

I None of this would be possible without the splendid work of the R
Core Team [11],

I This presentation was created with Sweave [8],
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Intro Models Solv Plot Fit State Forcing DDE PDE DAE CPU End

Finally

Bibliography I

[1] K E Brenan, S L Campbell, and L R Petzold.
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations.
SIAM Classics in Applied Mathematics, 1996.

[2] P N Brown, G D Byrne, and A C Hindmarsh.
Vode, a variable-coefficient ode solver.
SIAM Journal on Scientific and Statistical Computing, 10:1038–1051, 1989.

[3] E Hairer, S. P. Norsett, and G Wanner.
Solving Ordinary Differential Equations I: Nonstiff Problems. Second Revised Edition.
Springer-Verlag, Heidelberg, 2009.

[4] E Hairer and G Wanner.
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Second Revised Edition.
Springer-Verlag, Heidelberg, 2010.

[5] A. C. Hindmarsh.
ODEPACK, a systematized collection of ODE solvers.
In R. Stepleman, editor, Scientific Computing, Vol. 1 of IMACS Transactions on Scientific Computation, pages 55–64. IMACS /
North-Holland, Amsterdam, 1983.

[6] W. Hundsdorfer and J.G. Verwer.
Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics.
Springer-Verlag, Berlin, 2003.

[7] R. Lefever, G. Nicolis, and I. Prigogine.
On the occurrence of oscillations around the steady state in systems of chemical reactions far from equilibrium.
Journal of Chemical Physics, 47:1045–1047, 1967.

[8] Friedrich Leisch.
Dynamic generation of statistical reports using literate data analysis.
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