Version 7.0 For Use With Excel 2000-2007

Premium Solver Platform
User Guide

?@ﬂ\ = L i Examples.xisx - Microsoft Excel - =X
i =
) Home Insert Page Layout Formulas Data Review View Add-Ins @ - '7
j‘ % AutoSum - @ Logical ~ f& . e ~=)Name a Range ~ ‘\/b 3
X ﬁy Recently Used ~ ;A Text v @ * S22 Use in Formula ~
Function ., S5 : S Name : Formula | Calculation
Wizard ﬁ:@ Financial E‘j Date & Time ~]~ Manager B Create from Selection Auditing ~ -
Function Library [Named Cells
| Portfolio_Variance v (2 f= | =QUADPRODUCT(Allocations,B8:F8,Stock_Covariances) ¥
A B C D E F (H | E
1 Portfolio Optimization - Markowitz Method
2 |This Solver model uses the QUADPRODUCT function at cell 114 to compute the portfolio variance.
3 |It can be solved for the minimumn varance using either the GRG nonlinear solver or the Quadratic Solver.
5 Stock 1 Stock 2 Stock 3 Stock4 Stock b Total
6 |Portfolio % | 20.00% 2000% 20.00% 20.00% 20.00%)] 100.00%
7 |Expected Return 7.00% 8.00% 950% 650% 14.00%
8 |Lsmear GF Tems &7 &7 & & & =
3
10 |Variance/Covariance Matrix
11 Stock 1 Stock 2 Stock 3 Stock 4 Stock 5
12 Stock 1 2.50% 0.10% 0.25% -0.50% 0.25%
13 Stock 2 0.10% 2.00% -0.10% 1.20% -0.85%
14 Stock 3 0.25% -0.10% 2.00% 0.65% 0.75%||Variance | D.BU%I-
15 Stock 4 -0.50% 1.20% 0.65% 2.00% 0.50%||Std. Dev. 7.75%
16 Stock 5 0.26% -0.85% 0.75% 0.50% 2.00%] |Return | 9.00%
17
M 4 b M| EXAMPLE1 . EXAMPLE2 | EXAMPLE3 %] £ I i
[Reaay| [EEIEIETNOE====—CF

FRONTLINE

SOIVEIS

Version 7.0

For Use With Excel 2000-2007

Premium Solver Platform

User Guide

Bl Solver Parameters ¥7.0

Set Cell: I Portfalio_‘ariance 5,5

B Changing Yariable Cells:

Equal To: ¢ Max (& Min 'l.fal_ueof:l Clase |

Model | Cptions |

Allocations 5
Subject to the Constraints: Standard LPICuadratic ;I
PartFolio_Return == 0,095 standard GRG Monlinear
Total_Portfalio = 1 Standard LPiuadratic

Standard Evaolutionary
Standard Inkerval Global
iStandard SOCP Barrier
KMITRO Solver
Large-5Scale GRG Solver
Large-5Scale LP Solver

Solver Model E |

Crriginal |Transfurmed I Diagnosis I Opkions I

QF Convex Mariables

Functions ManZeroes &l

Al E [3 [15
smooth |5 [3 [15 Check Far

0 gradients
Quadratic |5 |1 |5 € structure
Linear II:I |2 I 0) Convexity

Integers

Solve \With &) psI Interpreter € Excel Interpreter

Bounds I 10
I u]

™ Aokomnatic
Sparsity % |1E“:'

Help |
Total Cells I 43

Large-Scale SQP Salver
MOSEE, Solver Engine
OpkQuest Solver
#PRESS Solver Engine

| BN

Copyright

Software copyright 1991-2006 by Frontline Systems, Inc.
Portions copyright 1989 by Optimal Methods, Inc. ; portions copyright 2002 by Masakazu Muramatsu.
User Guide copyright 2006 by Frontline Systems, Inc.

Neither the Software nor this User Guide may be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without the express written consent of Frontline Systems, Inc., except as
permitted by the Software License agreement on the following pages.

Trademarks

Premium Solver, Premium Solver Platform, Risk Solver Engine, and Solver Platform SDK
are trademarks of Frontline Systems, Inc.

Windows and Excel are trademarks of Microsoft Corporation.

Lotus and 1-2-3 are trademarks of IBM Corporation.

KNITRO is a trademark of Ziena Optimization, Inc.

MOSEK is a trademark of MOSEK ApS.

OptQuest is a trademark of OptTek Systems, Inc.

XpressM” is a trademark of Dash Optimization, Inc.

How to Order

Contact Frontline Systems, Inc., P.O. Box 4288, Incline Village, NV 89450.
Tel (775) 831-0300 Fax (775) 831-0314 Toll-Free (888) 831-0333
Email info@solver.com Web http://www.solver.com

SOFTWARE LICENSE AND LIMITED WARRANTY

This is an agreement between Frontline Systems, Inc. (“Frontline”) and the person or organization acquiring alicense
(“Licensee”) to use the computer program products described in this User Guide (the “ Software”), in exchange for
Licensee"s payment to Frontline. Licensee may designate the individual(s) who will use the Software from time to time,
in accordance with the terms of this agreement. Unless replaced by a separate written agreement signed by an officer of
Frontline, this agreement, including the Software License, Limited Warranty, and U.S. Government Restricted Rights
sections below, shall govern Licensee"s use of the Software; by accepting delivery of the Software or allowing Use of the
Software, Licensee accepts all terms and conditions of this agreement, and agrees that this agreement supersedes the
terms and conditions of any purchase order issued in connection with the license purchase.

“Use” of the Software means the use of any of its functions to define, analyze, solve (optimize, simulate, etc.) and/or
obtain results for a single user-defined model. Use with multiple models at the same time, whether on one computer or
multiple computers, requires either a Flexible Use License or multiple Standalone Licenses. Use occurs only during the
time that the computer”s processor is executing the Software; it does not include time when the Software is |oaded into
memory without being executed. The minimum time period for Use on any one computer shall be ten (10) minutes, but
may be longer depending on the Software function used and the size and complexity of the model.

STANDALONE LICENSE

If Licensee pays for a Standalone License, Frontline grants to Licensee the right to Use the Software on one computer
(the“PC”) at atime, and will provide Licensee with alicense code enabling such Use. The Software may be stored on
one or more computers, servers or storage devices, but it may be Used only on the PC. Use of the Software may depend
upon unigque components of the PC, such as its hard disk ID or MAC address; in the event these components fail,
Frontline will provide Licensee with a new license code, enabling Use with replacement components, at no charge. A
Standalone License may be transferred to a different PC while the first PC remains in operation only if (i) Licensee
requests a new license code from Frontline, (ii) Licensee certifies in writing that the Software will no longer be Used on
the first PC, and (iii) Licensee pays a license transfer fee, unless such fee is waived by Frontline.

FLEXIBLE USE LICENSE

If Licensee pays for a Flexible Use License, Frontline grants to Licensee the right to Use the Software as described in this
paragraph, and will provide Licensee with License Server software and a license code enabling such Use. For purposes
of this agreement, a“Network” isagroup of computers interconnected by any networking technology that supports the
TCP/IP protocol or the IPX/SPX protocol. The Software may be (i) stored on one or more computers, servers or storage
devices on the Network, (ii) accessed by and copied into the memory of other computers on the Network, and (iii) Used
on any of the computers on the Network, provided that only one Use occurs at any one time. Licensee must install and
run the License Server software on one of the computers on the Network (the “LS"); other computers will temporarily
obtain the right to Use the Software from the License Server. Operation of the License Server may depend upon unique
components of the LS, such as its hard disk ID or MAC address; in the event these components fail, Frontline will
provide Licensee with a new license code, enabling operation of the License Server with replacement components, at no
charge. The License Server software may be transferred to a different LS while the first LS remains in operation only if
(i) Licensee requests a new license code from Frontline, (ii) Licensee certifies in writing that the License Server will no
longer be run on the first LS, and (iii) Licensee pays a license transfer fee, unless such fee is waived by Frontline.

ADDITIONAL TERMS

This agreement does not grant to Licensee the right to make copies of the Software or otherwise enable use of the
Software in any manner other than as described above, by any persons or on any computers except as described above, or
by any entity other than Licensee. Licensee agreesthat it will not rent or lease the Software, nor “share” use of the
Software with anyone else, nor make the Software available over the Internet, a company or institutional intranet, or any
similar networking technology, except as explicitly provided above in the case of a Flexible Use License. Licensee agrees
that it will not attempt to alter or circumvent license control features of the Software or the License Server, nor reverse
compile or reverse engineer the Software or the License Server. This agreement may be assigned to any entity that
succeeds by operation of law to Licensee or that purchases all or substantially all of Licensee"s assets (the “ Successor™),
provided that Frontline is notified of the transfer, and that Successor agrees to all terms and conditions of this agreement.

COPYRIGHT WARNING

The Software is protected by United States copyright laws and international copyright treaty provisions. It is unlawful for
any person or entity to copy or use the Software, except as permitted by the license explicitly granted by Frontline. For
the LP/Quadratic Solver only: Source code is available, as part of an open source project, for portions of this software;
please contact Frontline for information if you want to obtain this copyrighted source code. The law provides for both
civil and criminal penalties for copyright infringement.

LIMITED WARRANTY

Frontline Systems, Inc. (“Frontline”) warrants that the CD-ROM, diskette or other media on which the Software is
distributed and the accompanying User Guide (collectively, the “Goods”), but not the digital or printed content recorded
thereon, is free from defects in materials and workmanship under normal use and service for a period of ninety (90) days
after purchase, and any implied warranties on the Goods are also limited to ninety (90) days. SOME STATES DO NOT
ALLOW LIMITATIONS ON THE DURATION OF AN IMPLIED WARRANTY, SO THE ABOVE LIMITATION
MAY NOT APPLY TO YOU. Frontline"s entire liability and your exclusive remedy under this warranty shall be, at
Frontline's option, either (i) return of the purchase price or (ii) replacement of the Goods that do not meet Frontline"s
limited warranty. You may return any defective Goods under warranty to Frontline or to your authorized dealer, either of
which will serve as a service and repair facility.

If you purchase an Annual Support Contract from Frontline, then Frontline warrants, during the contract term, that the
Software will perform substantially as described in the User Guide, when it is properly used as described in the User
Guide. Frontline"s entire liability and your exclusive remedy under this warranty shall be to make reasonable commercial
effortsto correct any “bugs’ (failures to perform as so described) reported by you, and to timely provide such corrections
in the Software to you. If you do not purchase an Annual Support Contract from Frontline, or if you allow your Annual
Support Contract to expire, then THE SOFTWARE IS PROVIDED “AS IS’ WITHOUT WARRANTY OF ANY KIND.

Whether or not you purchase an Annual Support Contract from Frontline, you understand and agree that any results
obtained through your use of the Software are entirely dependent on your design and implementation of an optimization
or simulation model, for which you are entirely responsible, even if you seek advice on modeling from Frontline. You
understand and agree that THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE
AS USED WITH YOUR OPTIMIZATION OR SIMULATION MODEL IS ASSUMED BY YOU.

EXCEPT AS PROVIDED ABOVE, FRONTLINE DISCLAIMS, AND WITHOUT EXCEPTION ITS SUPPLIERS
DISCLAIM ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE. THIS WARRANTY GIVES YOU SPECIFIC
RIGHTS, AND YOU MAY HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

IN NO EVENT SHALL FRONTLINE OR ITS SUPPLIERS HAVE ANY LIABILITY FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING
WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THE SOFTWARE OR THE EXERCISE OF ANY RIGHTS
GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU. In states that allow the
limitation but not the exclusion of such liahility, Frontline"s and its Suppliers” liability to you for damages of any kind is
limited to the price of one copy of the Goods and one Standalone License to use the Software.

U.S. GOVERNMENT RESTRICTED RIGHTS

The Software and Media are provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the Government
is subject to restrictions as set forth in subdivision (b)(3)(ii) of The Rights in Technical Data and Computer Software
clause at 252.227-7013. Contractor/manufacturer is Frontline Systems, Inc., P.O. Box 4288, Incline Village, NV 89450.

THANK YOU FOR YOUR INTEREST IN FRONTLINE SYSTEMS PRODUCTS

Contents

Introduction 13
Using the Premium SolVer PIatfOrm...........ccooiiiiiiiiiiiccsce e 13
What"S NEW iNVEISION 7.0ttt 13

Solving Large Scale, Multi-Worksheet Models...........ccccoveiiiineniiineee 14
Speeding Up Analysis, Solving and RepPOrtingc.ccoeovvereiineneieneseine e 14
Solving New Simulation Optimization Problemscccoceveiieiiinineiee 15
Reporting Multiple Solutions from Optimizationccoceevireriineneineeee 15
Function-Based Models and Interactive Optimization...........c.ccocevvvenernienenccniennen, 15
Object-Oriented API for Solver-Based AppliCations...........coccovereiineneinenccsien 16
Simplified Installation and USE...........ccoeiiiiiiiiiiienee e 16
An Overview of Frontling"s SoIver ProdUCES............cooeiieiciiicse e 16
The Standard EXCel SOIVETcocoviiiiiiicce e 16
The Premium SOIVEToooiiiiiiei e 17
The Premium SolVer PIAtfOrmccooiiiiiiiiieee e 18
RISK SOIVEN ENQINE ...ttt 20
The Solver PIatform SDK ...t 21
Field-Installable SOIVEr ENQINEScoiiiiiiiieee e 22
A Brief Tour 0f NEW FEAIUIEScviiieiieietre e 24
Model Analysis: The Polymorphic Spreadsheet Interpreterccooeevvivecrenennnn 24
Multistart Methods for Global Optimizationc.ccoceeviriininii 26
The EVOIULIONArY SOIVETc.ociiiiiiiiiiiec e 27
The Interval GIobal SOIVETcc.ciiiiiii 28
The SOCP BarTIEr SOIVETc.oiviiiiiiiiiieiite et 28
Second Order Cone CONSIIAINTS..........oieiiierieirieree e 29
AIAITFErent CONSLIAINTSc.viviieiiiiieee e 29
Simulation OPLIMIZALIONcoviiiiiii e 30
NEW TYPES OF REPOIS ...ttt 30
User Interface IMProVEMENTS.coiiiiiiiiiireee e 32
SPEEd IMPIOVEMENTS. ... cviitiietiite ettt et 33
Programmability IMProVEMENTS. ..ot 34
HOW 10 USE ThiS GUITE. ... vttt ettt 35
Using Online Help and the World Wide WEeD............ccooiiiiiniiieseeese e 36
Solver-Related Seminars and BOOKS ..ot s 37
Academic References for the Premium SOIVEr ... 39

Installation and Licensing 41

WAL YOU NEEA ...ttt ettt bbbttt b ettt 41
Working with Earlier SOIVEr VErsions.cccoeoeiiirnininesenscse s 41
INSLAlliNG the SOFIWAIE ... e 42
UNinStalling the SOTIWAIE.........coiiiiiiii et 45
Activating and Deactivating the SOFtWArE...........coeiiiiinee e 46
EXCEI 2007 ...ttt bbb 46
EXcel 2003 and Earlierccooiiiiiiiiirieese e 47
Setting STArtuP OPLIONSo.viviiieiieiieet ettt 47

SHOW SPIASN SCIEEN ... et 48

LOAA V7 VBA MACIOS.......ooiiiieiie ettt ettt e et e e sttt e e s st e e s sebaae e s sabeeessnaneeens 48

LiCENSING The SOTIWAIE........eiiieiieeiert bbb 49
INSEAlliNG SOIVEr ENGINESc.viiiitiiieiiite ettt 50
Solver Models and Optimization 53
L1 goTo [0 Tod 1T] o FO RSSO URPTPRPRPRRS 53
Elements Of SOIVEr MOTEIScociiiiiic e 53
Decision Variables and Parametersccccoereireneineneese e 53

The ODbjJeCtiVe FUNCLIONcviiiiiiiriccisie e 54

(000 0TS {1 | PSSRSO 54
Solutions: Feasible, “Good” and Optimalccoeoireriineniineeeee s 55

MOTre ADOUL CONSEFAINTS.c.vitiieeiietiiteeetint ettt 57
Functions of the VariabIes ..o 59
CONVEX FUNCHIONS ...ttt e 60

LINAN FUNCHIONS ...ttt sttt sttt st nbesneeneas 61

(O UE: Vo v U ol U o] 0SSR 62
Nonlinear and SMOOth FUNCLIONS.cciiiiiiiiiiecee e 63
Discontinuous and Non-Smooth FUNCLIONSccoeiiercineneieeee e 64
Derivatives, Gradients, Jacobians, and HeSSIansccocevvveneieneneineneise e, 65
Optimization Problems and Solution Methodsccoeoiiiriiiiniiie e, 67
Linear Programmingccoooereiieneeie ettt st 67
QuAadratiCc Programming.........coucireeeireriiinieieiesteseeiesee et 68
Quadratically Constrained Programming...........ccoceoeirereinenisieneneeseseeseseeesee s 69

Second Order Cone ProgramiMingcocccueeeeerereeeneneeesesesesieseeesee s nes 69
NoNlingar OPtIMIZALIONc.coeiiiiieieeie e 70

Global OPHIMIZALIONc.viviiiiiiieee e 71
NON-SMOOth OPtIMIZALION.........ciiiiiiie e 73

INTEQET PrOGIramMINGc.viviiieiiteieeiete ettt sttt s r et b e sr et sn e ebe e 75
The Branch & Bound Method ... 75

CUL GENETALION. ... vttt bbbttt 76

The Allifferant CONSIIAINT..........coiiiiiie e 76
SimuIation OPLIMIZALIONcovoiieiiiie e 77
UNCErtain Variables ..ot 77
UNCEItAIN FUNCLIONS. ..ottt et 78
Statistics for Uncertain FUNCLIONScocoiiiiiiiee e 78

Using Simulation Results in Optimization............cocoovviiiiiieinncs e 78

Speed and Vectorized EVAIUALION ..o 78
Building Solver Models 81
L1 (oo [0 Tod £ T o SRRSO 81
From Algebra to SPreadShEetSooiiiiiiirieer e 81
Setting Up @ MOGEL........ciiiiiiiie e 81

A Sample Linear Programming Model............ccocooeiiniiniiieee e, 82
Decision Variables and CONSIFAINEScoeiieriiiriinireesee e 85
Variables and Multiple SEIECtiONSccviriiiiner e 85

UsINg the RANGE SEIECIONciiiieici et 87

Using the VariableS BULTON..........ccoiiiiiiii e 87
Constraint Left and Right Hand Sidescoovoiviriinincneeeeee 88

More Readable MOTEIS.oiiiiiiec e 91
Layout and FOrMATTING.cccoereiierieiie e e 92

USING DEfiNEd NAMES......c.eiiiieiiiiiece ettt 93

Models Defined Across Multiple WOrKSheets ..o 94

Multiple Models and Multiple WOrKShEetscooviiereiiiineneneeese e 95

Defining Your Model With PSI FUNCLIONS...........coiiiiiiiiiiiieces e 96

Function-Based Style fOr MOGEIScccoriiiiiniiiiec e 97

PSI Functions and Interactive Dialogs.........cooveireniinineeseseee e 98

Using the Insert FUNCLION Dial0gccoiiiiiiiiiinieeeee e 98

PSI Functions and Multiple MOdEIScoviriiiinicee e 99
Analyzing and Solving Models 101
INEFOTUCTION ...ttt bbbttt 101
Using the Solver Model Dialog...........coviiieiiiieiieeseee e 101
Original Tab: Analyzing MOdel StrUCTUIE..........c.ccoiiiiiiiiiiree e 103
USING MOl STALISTICSc.vivieeiiciiieeicei s 104

Using the Check Model BULLON...........cciiiiiiiiiiineccsc s 105
Analyzing Model CONVEXILYc.cciiiiiiiiiiiieie e 105
Diagnosis Tab: Analyzing Model EXCEPLIONSccoeiiiireiiieicieere e 106
The StrUCLUIE REPOIT ..ottt 106
Transformed Tab: Transforming a Non-Smooth Model ... 107
Effects of Model Transformation.............ccoeiviiiiniinee s 108

Using Automatic Model Transformationccccoeveininininnincseecees 108

Options Tab: Selecting MOAel FEALUIESciviiiiiiiireice e 110
Use Interactive OptimizZationcoociiiiiiiiiiireeees s 110

USE PST FUNCHIONS.....coeitiieiiitiiecicree st 110

SEArtUP OPLIONS GROUPDcvevitiriiiitiieicsie st 111

Select Solver Engines Based on Model TYPEc.oovveirineiiineseese e 111

Model Analysis WHeN SOIVING.........ccuiiiiiiiiiieeee e 112
Using the Solve With OPtioN ..o 113

Using the Check FOr OPLIONS.ccoeiviiiiiiiieeeneese s 113

Solve With Options and the Evolutionary SOIVEr ... 115

Options Tab: Using Advanced OPLIONSccccviireiiieniiieneese e 115
More on the Polymorphic Spreadsheet INterpreter.........ooveneinineis e 119
The Microsoft Excel ReCAlCUIAONcooeiiiiiiiiiicee e 119

The Polymorphic Spreadsheet INTErPreter ... 121
Building Large-Scale Models 125
INEFOTUCTION ...ttt ettt 125
Designing Large SOIVEr MOUEIS...........cooiiiiiiiiei e 125
Spreadsheet Modeling HiNtS........coooiiiiiiiieeeee e 126
Optimization Modeling HiNtSccoiiiiiiiiee e 127

Using Multiple Worksheets and Data SOUICES..........coevreririrenininieneeiseecseeeees 127

Quick Steps Towards Better PErfOrMANCEcoooirveiiiieiieneee e 128
Improving the Formulation of Your Model...........cccooiiiiiiiiiee s 129
Techniques Using Linear and Quadratic FUNCIONSccooeveievivnineeieresesee e 130
Techniques Using Linear Functions and Binary Integer Variables......................... 131

Using Piecewise-Linear FUNCLIONS.cooiiiiriiniieineeeseeese s 133
Organizing Your Model for Fast SOIULION ..o 134
Fast Problem SELUDcviiiiirecec s 134

USING AITAY FOIMUIAS.eveitiiiiciiiieieert e 136

Using the Add-in FUNCHIONScooiiiiiiiieesee s 137
Simulation Optimization with Risk Solver Engine 143
Monte Carlo Simulation and OptimiZationccecvereiiinie e 143
Defining a Simulation Optimization Model ... 144

Using PSI Functions for SIMUIAtion ... 144

PSI Functions in Objectives and COoNnStraints............ccooeveiereneiineneicsenee e, 145

Solving a Simulation Optimization Model..............cooeiiiiiiii e, 145
Solver ENgines and OPtioNS..........couiereiienieiinineisieneese e 145

A Project Selection EXamPIle ..o 145
Diagnosing Solver Results 149
If You Aren't Getting the SOIUtioN Y OU EXPECE..........ccoviiriiiiiiciccneece e 149
DUring the SOIULION PrOCESS.c.ciirieiiiirieieiirteeeii sttt 150
Choosing to Continue, StOP OF RESTAITcceoiiiiiiiireicreee e 150

When the SOIVEr FINISNESc.oiiiiiiiie e 151
Standard SOIVEr RESUIL IMESSAJESccveveririeiiririeieterieeeie et 151

Interval Global Solver Result MESSAgESccvviieiriiiiirieesee e 162
Problems with Poorly Scaled MOGEISccooeiiiiiiiiiic e 163
Dealing With POOI SCaIINGcueveiiiiiieiieieisees e 163
Historical Note on Scaling and Linearity TESScovvrereinienencreee e, 163

The Tolerance Option and Integer CONSIFAINEScoveiiereiiienee e 164
Limitations on Smooth Nonlinear Optimization ..o 164
GRG Solver Stopping ConditioNS..........ccoereiiireiierese e 165

GRG Solver with Multistart Methods...........ccoooiieiiiiiiis e 166

GRG Solver and Integer CONSLIAINTSccoeieireiiirieiee st 166
Limitations on Global OptimIiZationccciiiiiiiiiies e 167
Rounding and Possible Loss Of SOIULIONS............ccoeiiiirciinineeeee e, 167

Interval Global Solver Stopping ConditioNnS..........cccovreiririineneeeee 168

Interval Global Solver and Integer CONSLraiNtS.coovevreririnenciseeseeee 169
Limitations on Non-Smooth OptimiZation...........ccccereiiiiiiinicee e 169
Effect on the GRG and SImplex SOIVES ..o, 170
Evolutionary Solver Stopping Conditionscccceoviereinineiieneceee e, 170
Solver Options 173
Setting Options ProgrammatiCallycoooiiriiiiniiee e 173
ODbjJECt-OrENTE AP .. .ottt 173

The Standard Microsoft EXCel SOIVETcocoiiiiiiiiie e 174
COMMON SOIVER OPLIONS......viiiiiitiitiieieste ettt nee s 175
Max Time and ITEratioNS.coerviiiiiiiiee e 175
PIECISION ...ttt bbbt b ettt b e et b 176
Tolerance and CONVEIGENCEoviuiriiiiiirieieiesie ettt 177

ASSUME LINEAr MOGEL.......cviiiiiiiiiiiiice e 177

ASSUME NON-NEGALIVE ..o 178

Use AULOMALIC SCAIINGc.eiveieiiieeesie e 178

Show Iteration RESUILS........coviiiiiiiic e 178

BYPasS SOIVEN REPOIS........cviiiiiiiiieieire e 179

LP SImplex SOIVEN OPLIONS.coiiiiiieiieiee ittt st sbe s 179
PIVOL TOIBIANCE. ...ttt bbb 180

Reduced COSt TOIBIANCEeveierierieiirie ettt 180
LP/QUAdratiC SOIVEr OPLIONScviviiieiiiterieeeie ettt sttt sb e e sbe s 180
Primal Tolerance and Dual TOIEIanCecooevieieiieneie e 181

DO PIESOIVE ...ttt bbb 181
Derivatives for the Quadratic SOIVENcccviveieiiiie e 182

SOCP Barrier SOIVEr OPLIONScoiiiiiiiiirieiee e 182
GAP TOIEIANCE ...ttt ettt e b e et e 183

SEEP SIZE FACTON ...ttt ettt 183
Feasibility TOIErANCEccooi i 183

SEAICN DIIBCLION ...ttt ettt e e e et e e et e e st e e setteeessereeeesenreessareneanas 184

(0T T o [TSR 184

GRG NONIINEAr SOIVEr OPLIONSc.vcviviieiiitiricieie ettt 184
CONVEIGEINCE ...ttt et r bbb 185
Recognize Linear Variables. ... 186
Derivatives and Other Nonlinear OPtionS.........c.cccvereirineineneseeseeeses 186

MUIEISEArt SEArCH OPLIONSc.viiiitiieiieer e 188
MUIEISTAIT SEAICN.eeiiiitiece e 188
TOPOGraPhiC SEAICNc.iiiiiciiii e 189
Require Bounds 0N Variables ..ot 189
POPUIALION SIZE ...t 190
RANAOM SRccuiiiiiitiiece e 190

Interval Global SOIVEr OPLIONScviiiiiiiiiee s 190
AACCUFACY ...ttt bbbt b et r e r ettt nn e nrens 191
RESOIULION ...t 191
Max Time W/O IMPIOVEMENTcoiviriiiitiiieiite ettt 191
ADsolute VS. RelAtiVe STOPcoviiiiiiiiic e 192
ASSUME SEALIONAIY ...vcveieieeieet ettt 192
Method OPLIONS GrOUPc.veueiviieiiitirietisie ettt st sr et eb e sr e ebe e sbe e 192

Evolutionary SOIVET OPLIONS.......ccuiiiiiieieere et 194
CONVEIGEINCE ...ttt sr bbbt nnean e 195
POPUIALION SIZE ...t 195
MULBEION RALEveiviiciectcee ettt 195
RENAOM SOccviiiiitiiec bbb 196
Require Bounds 0N Variables ..ot 196
LOCAE SEAICH ... 196

Limits Tah OPLIONSoveeiiiieiieistee bbb 199
MaX SUDPIODIEMS ... 199
Max Feasible SOIULIONS.ccooriiiiiiie e 200
TOIEIANCE ...ttt bbb et bbbttt be e 200
Max Time wWithout IMProVEMENT ..o 200
Solve Without Integer CONSLraINTS..........covirerieireriee e 200

INtEQEr TaD OPLIONSeiiiiiitiieeiett ettt bbb 201
MaX SUDPIODIEMS ... 201
MaX INtEGET SOIULIONS.eveiiitirieiicie et e 202
INEEYRT TOIEIANCE ..ottt bbb 202
INtEgEr CULOTT... .ot 203
Solve Without Integer CONSLraINTS.........covirerieireiese e 203
Use Dual Simplex for SUBProblems..........cccoviiiiiiii 204
Preprocessing and Probing ... 204
CUL GENETALION.......ietiee ettt bbb bbbt 206

LP/Quadratic Solver Integer Tah OptionS.........ccoeiiiiiriiieeeee e 208
MaX SUDPIODIEMS ... 208
Max Feasible (Integer) SOIULIONS.........ccoiiiiiiieiiec e 208
INEEYET TOIEIANCE ..ottt bbb 209
INtEgEr CULOTT.....oiieiie e 209
MEXIMUM CUL PASSES.....cvevetiiteiieieste ettt sttt sttt e sbe e ebenrenea 210
Solve Without Integer CONSLraINTS.........coviririririiese e 210
USE SErong BranChingccccoeiiiiiiiieseee s 211
CULS & HEUFISTICS. ...ttt bbb 211

THe ProbIem Tah ... 213

Loading, Saving and Merging Solver MOdels...........ccocoreiiniiiniec e 214
Saved MOodel FOMMALS ..o e 214
Using Multiple Solver MOdelS..........cociiiiiiiiieee s 215

Transferring Models Between SpreadsSheets.........coovvveiieneieneneinenee e 215

Merging SOIVEr MOGEIScoiiiiiiieirie e 216

Solver Reports 219
INEFOTUCTION. ...ttt bbb bbb e ne s 219
SElECTING the REPOITS ...ttt e 221
THe SCalING REPOIT ...t 224
AN EXAMPIE MOGEL ... 226
THE ANSWET REPOIT ...ttt bbbttt sb et sb bt e 227
The SenSItIVIEY REPOIT ..o 228

Interpreting DUl VAlUES...........cooiiiiiiiiiicee e 229
Interpreting Range INfOrmationc.cccveiiiniiiinic e 230
THE LIMItS REPOITcviiiiiiteieeeste et b et e 231
The FeasiDility REPOIT ..o 231
THe LIiNEArity REPOIT.c.viiiiiiiteiieist et bbb 232
The POPUIALION REPOIT......c.oiiiiiiiieiite e 234
The SOIULIONS REPOITcueieiieiiie et 235
Integer Programming Problems ... 235
Global Optimization Problems ... 235
Non-Smooth Optimization Problems...........cccveiiiineiiiceeeee e, 236
Solutions for Systems of INEQUAlItIES.........ccoeiiiiriiiiic e 237
Solutions for Systems of EQUALIONSccooeiiiiriiiiiisenese e 238
Using the Object-Oriented API 241
Controlling the SOIVEr"S OPEIationcociriiiiiiieie e 241
Why Use the Object-Oriented API? ... 241
Adding a Reference in the VBA EditOrccccoiieiiiniiniineesee e 243
Premium Solver Platform Object Model............cociiiiiiiii e 243
Using the VBA ODBJECE BIOWSETc.ccerieiiiierieiisieniee ettt 244
Programming the OBJect MOEL............ccoviiiiii e 245
Example VBA Code Using the Object Modelccccooeiiiiniiininiieceee, 245
Evaluators Called During the SOIUtION ProCESScoververervrierieeie e 246
Refinery.xlIs: Multiple Blocks of Variables and FUNCLIONScccoeveiiivininennn, 247
CuttingStock.xls: Multiple Problems and Dynamically Generated Variables 247
Object-Oriented AP STIUCTUEoviiiiiecreere e 251
PrIMArY ODJECES ...t 251
SECONAArY ODJECESveieiiieiicic e 252
PEIMArY OBJECES ...ttt 253
Problem OBJECE.....cviiiee e 253
SOIVEN ODJECE ...ttt ettt sb e 255
ENQGING ODJECT ...t 256
EVAIUALOT ODJECT......cuiitiieiiiie e 257
MOEI ODJECT ...t 258
Variable ODJECL. ..o 259
FUNCEION ODJECT ...ttt 261
SECONAANY ODJECESeviieitieee e bbb 263
MOdEIPAramM ODJECL........coviiiiriiiciirieee e 264
ENGINEParam ODJECL........ccooiiiiierieiie et 265
ENGINELimIt ODJECEc.oiiiiiieee e 265
ENGINESTAt ODJECT......eiuiieiiiieiieese e 266
OPLHS ODJECL ...ttt ettt s b e et nnes 266
SEALISLICS ODJECT ... cviitiieiiiteieece ettt 267
DOUDIEMALITIX ODJECE......cviiiiirieieiirieere e 268

DependMatrixX ODJECEcviiiiiiiriiecriee et 269

Using Traditional VBA Functions 271

Index

Controlling the SOIVEr"S OPEIationcouiiieiiirieiii e 271
Running Predefined Solver MOdels ..o 271
USiNg the Macro RECOTAEcucuiiviiiiriiieiiieeiese e 271
Using Microsoft EXCel HEIPcoooiiiiiiiicec s 272
Referencing Functions in Visual BasiC..........c.ccoeiririininiinccceees 272
Checking Function Return ValUesccooviriiiiniiniiccese e 272
Standard, Model and Premium Macro FUNCEIONScccceviineiinencecsec e 272

Standard VBA FUNCHIONSooviiiiieiiieieeste ettt sne s 273
SOIVEFAT (FOIM L) ..t 273
SOIVEFAT (FOIM 2) ...ttt 274
SOIVErChange (FOMM 1) .o.eciiiieiiie e 274
SOIVErChange (FOMMM 2)cuiiiiiiieicee e 274
SOIVErDEIEte (FOMM L) ..t 275
SOIVErDEIEtE (FOM 2) ... 275
SOIVEIFINISN ... 276
SOIVErFINISNDIAIOF 277
SOIVEIGEL ...ttt 277
SOIVEILOBA ...ttt 280
SOIVEIOK ...ttt bbbt 280
SOIVEIOKDIAIOF ... vttt 281
SOIVEIOPLIONS ...t bbbt 282
SOIVEIRESELceetie ettt bbb 283
SOIVEISAVE ...ttt bbb b 283
SOIVEISOIVE. ...t 284

SoIver Model VBA FUNCHIONS. ..ottt sne e 286
SOIVEIMOUEL ... 287
SOIVErMOUEICNECK ... e 289
SOIVEIMOUEIGEL......c.eeiccit e 289
SOIVEIDEPENUENTS ...ttt bbb 291
SOIVEIFOIMUIBSecvtiei bbb 291

Premium VBA FUNCLIONSc.oiiiieieiiteree e 291
SOIVEIEVGEL. ...ttt bbb b 291
SOIVETEVOPLIONS ...ttt bbbt 292
SOIVEIGRGGEL.......euiiieeeirte bbbt 294
SOIVErGRGOPIIONS ...ttt bbb 295
SOIVEITGGEL. ...ttt bbb 296
SOIVEITGOPLIONS ..ottt bbb 297
SOIVEIINEGEL. ...t bbb 298
SOIVEITNEOPLIONS......ceeiieieirte bbb 300
SOIVEILIMGEL ..ottt 302
SOIVEILIMOPLIONS.cviiiitirteiete bbb 302
SOIVEILPGEL ...ttt bbb 303
SOIVEILPOPLIONS ..ottt bbbt 304
SOIVEIOKGEL ...ttt bbb bbb 305
SOIVEISIZEGEL ...ttt 306

Introduction

Using the Premium Solver Platform

Thank you for using the Premium Solver or the Premium Solver Platform Version
7.0, Frontline Systems" newest and most powerful Solver products for Microsoft
Excel. Both are fully compatible upgrades for the Solver bundled with Microsoft
Excel, which was developed by Frontline Systems for Microsoft. This Guide covers
al the features of the Premium Solver Platform and the five “ Solver engines’
bundled with it: the standard LP/Quadratic Solver, standard SOCP Barrier Solver,
standard GRG Nonlinear Solver, standard Interval Global Solver, and standard
Evolutionary Solver. The Premium Solver, Frontling"s basic upgrade to the Excel
Solver, includes a subset of the Premium Solver Platform features and three of the
five Solver engines, as described later in this Introduction.

Before reading this User Guide, you may find it helpful to read the Solver-related
topics in the online Help supplied with Microsoft Excel. These topics document the
standard Solver"s features and take you through the basic steps of using the Solver.
We recommend that you try out the standard Solver on at least one problem of your
own, or on one or more of the examples in the SOLVSAMP.XLS workbook which
comes with Microsoft Excel.

This Guide goes well beyond the basics covered in the Microsoft Excel Help system.
The Premium Solver Platform can solve far larger versions of the problems handled
by the standard Excel Solver, and new kinds of problems using conic and global
optimization, non-smooth functions, and new types of constraints. And the Premium
Solver Platform can analyze and interpret your model in ways not possible with
Microsoft Excel alone. This Guide will help you set up and solve much larger Solver
problems, design your models for the fastest solutions, and understand the results of
analyzing and solving your model — solutions, messages, and reports.

What's New in Version 7.0

The Premium Solver Platform V7.0 is a major new release, designed to analyze and
solve much larger models, faster than ever before, and —when used in conjunction
with Frontline"s new Risk Solver Engine —to help you find “best” solutions for
problems involving uncertainty using simulation optimization. Version 7.0 is
designed to work with Microsoft Excel 2000, Excel XP, Excel 2003, and Excel 2007;
it takes full advantage of the new power of Excel 2007, the most extensive upgrade
of Excel to be released in many years.

Solver User Guide

Introduction 13

Solving Large Scale, Multi-Worksheet Models

Models Defined Across Multiple Worksheets

When used with any modern version of Excel (Excel 2000, XP, 2003 or 2007), the
Premium Solver Platform V7.0 supports Solver models spread across multiple
worksheets in a workbook. It is no longer necessary to keep all of your decision
variables and constraint left hand sides on the active worksheet. Yet you can still
define a different Solver model (if desired) on each worksheet —and each of these
models can include variables and constraints on any sheet in the workbook! You can
still use the Load Model and Save Model buttons to create as many sets of model
specifications as you like.

Worksheets of 16K Columns and 1 Million Rows

When used with Excel 2007, the Premium Solver Platform V7.0 supports worksheets
with up to 16,384 columns and 1,048,576 rows — far beyond the limits of 256
columns and 65,536 rows in previous versions of Excel. This makes it much easier
to lay out your models on a worksheet, without having to split up large tables of
information. Many other limits, such as the maximum length of labels and formulas,
are also greatly increased in Excel 2007.

Reports with an Unlimited Number of Rows

With previous versions of the Premium Solver Platform, you could easily define and
solve models with more than 65,536 variables and/or constraints, but certain reports
for those models were limited to the 65,536 rows on a single worksheet. In Excel
2007, this limit is increased to 1 million rows. But the Premium Solver Platform
V7.0 will create reports of any size —even in Excel 2000, XP and 2003 — it will
“wrap” the data across additional columns if the row limit is reached.

Speeding Up Analysis, Solving and Reporting

Many of the built-in Solvers and field-installable Solver Engines in Version 7.0
feature improvements in the speed of solution. But the Premium Solver Platform
V7.0 concentrates on speeding up “end-to-end solution time,” which includes setup
time, report preparation and report generation time.

Faster Model Analysis

When you first click the Solve button with default options, or when you click the
Check Model button in the Solver Model dialog, the Premium Solver Platform"s
Polymorphic Spreadsheet Interpreter (PSl) “parses’ and analyzes your model.
Parsing is faster for most models in Version 7.0, especially for models spread across
multiple worksheets. Even if all of your decision variables and constraints are on one
worksheet, if that sheet has many references to data on other sheets, you should see a
significant speedup in Version 7.0.

Faster Report Generation

When an optimal solution is found, the Solver does some work to prepare for report
generation, which can take some time for alarge model, even if you don"t select any
reports in the Solver Results dialog (unless you"ve checked the box “Bypass Solver
Reports’). And when you do select reports, more time is required to generate the
report results. In Version 7.0, both the preparation for reports and the generation of
selected reports are much faster, with speedups of 5 to 10 times for report generation.

14

Introduction

Solver User Guide

Solving New Simulation Optimization Problems

Y ou can solve “simulation optimization” problems with the combination of the
Premium Solver Platform V7.0 and Risk Solver Engine. By itself, Risk Solver
Engine gives you lightning-fast, Interactive Simulation in Microsoft Excel — new
simulation results each time you change the spreadsheet, up to 100 times faster than
using Excel alone.

With Risk Solver Engine V7.0, your models can include random variables whose
values are uncertain, defined by probability distributions. You can use the cells
containing these random variables in any formula in your model. Risk Solver Engine
will perform a Monte Carlo simulation with thousands of trials, where a different
value is sampled for each random variable on each trial, and your model is
recalculated with these values.

Statistics across all the trials are accumulated for any formula cell you designate.

You can access these statistics in regular Excel formulas. And in the Premium Solver
Platform V7.0, you can use these formulas in the objective and constraints of your
optimization model. When you click Solve, the Premium Solver Platform performs a
Monte Carlo simulation through Risk Solver Engine on each Trial Solution of the
optimization. Doing this is usually an order of magnitude faster than in competitive
products for “simulation optimization.”

Reporting Multiple Solutions from Optimization

For global optimization, non-smooth optimization, and mixed-integer programming
problems, the solution process used by most Solver engines finds several candidate
solutions — for example, locally optimal solutions in searching for a globally optimal
solution, or feasible integer solutions with good objective values (“incumbents’) for
an integer programming problem. In the Premium Solver Platform V7.0, the full
range of built-in and plug-in Solver engines support the new Solutions Report, which
lists objective and decision variable values for each of these candidate solutions (the
best solution is,,plugged in* to the decision variable cellsin your model, as usual).
And using the new Object-Oriented API described below, you can easily access any
of these alternative solutions in your VBA macro program code.

Function-Based Models and Interactive
Optimization

Also new in the Premium Solver Platform V7.0 are optimization models defined via
functions on the worksheet, and Interactive Optimization that re-solves each time you
change a number on the spreadsheet.

In Version 7.0, you can define your optimization model using the same interactive
dialogs and VBA macros as the Excel Solver and previous versions of the Premium
Solver Platform. But Version 7.0 also supports a new style of model definition,
using PSI functions on the worksheet. These functions are compatible with the
family of PSI functions used by Risk Solver Engine.

You can move easily between the interactive dialogs and PSI functions when creating
your model. You can define variables and constraints by entering PSI function calls
in worksheet cells, and you'll find that these variables and constraints appear in the
Solver Parameters dialog the next time you display it. You can also define variables
and constraints in the Solver Parameters dialog, and cause PSI function calls to
appear automatically in cells on the worksheet. PSI functions also offer a new
alternative format for the Load Model and Save Model commands.

Solver User Guide

Introduction 15

Interactive Optimization

The Premium Solver Platform V7.0 also supports Interactive Optimization: If you
enable this feature, the Solver will re-optimize your model each time you change a
number on the spreadsheet. For small to medium size models, this is not only a
convenience — it can be areal decision aid: You'll find that insights about your
model, and decisions you can make, start to flow intuitively, when you can quickly
see the impact of changing a parameter on the optimal solution.

Object-Oriented API for Solver-Based Applications

The Premium Solver Platform V7.0 includes support for the “traditional” VBA
functions used to programmatically control the Solver, such as SolverOK and
SolverSolve. But it also provides a new, high level, object-oriented API
(Application Programming Interface) for optimization that complements the Risk
Solver Engine object-oriented API, and closely resembles the object-oriented API of
the Solver Platform SDK V7.0, Frontline"s highly regarded Software Devel opment
Kit for creating optimization and simulation models in a programming language.

The new object-oriented API is more powerful and much more convenient for
programming the Solver than the “traditional” VBA functions. For example, instead
of writing VBA code using the Excel object model to retrieve decision variable and
constraint values from cells on the worksheet, or obtain sensitivity information from
cells on a report worksheet, you can simply reference an API object and property to
retrieve each of these values in an array in your program. The object-oriented API
can be used from VBA in Excel, or from VB.NET or C# using Visual Studio.

Simplified Installation and Use

The Premium Solver Platform V7.0 is redesigned from the ground up internally. It
uses a single program file Solver32.xIl that provides the Solver Parameters, Solver
Model and Solver Options dialogs, all reports, PSI functions, the object-oriented
API, the PSI Interpreter and model analysis, and all five bundled Solver Engines.
Solver32.xll is a COM add-in, an XLL add-in, and a COM server. In Version 7.0,
the add-in file Solver.xla is optional — it is needed only if you wish to use the
“traditional” VBA functions to program the Solver.

Thanks to this new architecture, the Premium Solver Platform V7.0 can be installed
and used even if the standard Excel Solver was not included when you ran Setup for
Microsoft Office and Excel. You can also install and use the Premium Solver
Platform V7.0 at the same time as the standard Excel Solver, or an earlier version of
the Premium Solver Platform or Premium Solver.

An Overview of Frontline’s Solver Products

The Standard Excel Solver

The standard Solver comes bundled with Microsoft Excel. It includes basic Solver
engines for smooth nonlinear optimization problems using the GRG (Generalized
Reduced Gradient) method, linear programming problems using the Simplex method,
and integer programming problems using the Branch & Bound method. It is limited
to problems of up to 200 decision variables and, for nonlinear problems, 100
constraints in addition to bounds on the variables. It provides three types of reports:

16

Introduction

Solver User Guide

the Answer Report, Sensitivity Report, and Limits Report. The standard Solver can
be controlled by user programs written in Visual Basic Application Edition, through
a set of VBA functions such as SolverOK and SolverSolve.

The Premium Solver

The Premium Solver is Frontline"s basic upgrade to the Solver that comes with
Microsoft Excel. It includes all of our latest speed and accuracy improvements to the
standard Excel Solver, new diagnostic reports and ease-of-use features, and our new
Evolutionary Solver, based on genetic algorithms, which complements the “classical”
linear and nonlinear algorithms found in the standard Excel Solver.

Spreadsheet models you've developed for use with the standard Excel Solver can be
used immediately with the Premium Solver, which will typically solve them faster
and/or more accurately than before. And VBA programs you've written to control
the standard Solver will work as-is with the Premium Solver.

Once the Premium Solver is installed, you can solve non-smooth optimization
problems (NSPs, with the Evolutionary Solver) or smooth nonlinear optimization
problems (NLPs, with the GRG Solver) of up to 400 variables and 200 constraints in
addition to bounds on the variables, and linear programming problems (LPs, with the
Simplex Solver) of up to 2,000 variables and 1,000 constraints — 10 times the size of
the Excel Solver. The Premium Solver also enhances the GRG Solver with multistart
methods for global optimization, described below.

The Evolutionary Solver helps you find “good” solutions to Excel models made up of
any standard or user-written (numeric) functions — even those with IF, CHOOSE,
LOOKUP and similar functions that cause difficulty for the GRG Solver. Where the
GRG Solver can find only a locally optimal solution, the Evolutionary Solver is much
more likely to find a globally optimal (or near-optimal) solution.

User interface improvements include a more flexible way to specify decision
variables (Changing Cells) that may be scattered across your worksheet; greater
control over the solution of integer problems, and tolerances used by the linear
Simplex and nonlinear GRG solution methods; more informative progress reporting
on the Excel status bar; and faster ways to move among the Solver dialogs.

Improvements to the Solver reports include a new Population Report for the
Evolutionary Solver, and new Linearity and Feasibility Reports for the GRG and
Simplex Solvers, as well as the ability to create outlined reports, organizing the
variables and constraints into the blocks you entered in the Solver Parameters dialog.

Solution speed in the Premium Solver is improved for all types of problems,
especially for problems with all linear and integer constraints. The Premium Solver
also supports fast problem setup, a subset of the problem analysis capabilities of the
Premium Solver Platform, for linear and integer programming models built with the
SUM, SUMPRODUCT and MMULT functions and the new DOTPRODUCT
function. Problem setup can be 5 to 50 times faster for models in this form. If you
expect that your models will grow in size (and most users find that they do), we
recommend that you design your models using these functions — or use the Premium
Solver Platform, which offers much greater flexibility in problem setup and analysis.

The Premium Solver also supports a new type of constraint for integer variables,
called the alldifferent constraint. The alldifferent constraint specifies that at the
solution, each integer variable in the group must have a value that is different from all
the others. Hence, the variables in the group form an ordering, or permutation, of
integers. The alldifferent constraint can be used to easily model problems involving
orderings or assortments, such as the well-known Traveling Salesman Problem.

Solver User Guide

Introduction 17

In Version 7.0, the Premium Solver supports worksheets with up to 16,384 columns
and 1,048,576 rows in Excel 2007, simulation optimization with Risk Solver Engine,
function-based models and Interactive Optimization, and the new object-oriented
API. But the Premium Solver requires that all decision variables and constraint left
hand sides be on the active worksheet; only the Premium Solver Platform allows you
to create models spread across multiple worksheets in a workbook, with variables and
constraint left hand sides on any worksheet in the workbook.

The Premium Solver for Education

The Premium Solver for Education is a special version of the Premium Solver that is
designed exclusively for university use, typically in undergraduate or graduate (MS
or MBA) courses in engineering or business administration. It includes the
functionality and user interface improvements of the Premium Solver, such as the
Evolutionary Solver, the Linearity, Feasibility and Population Reports, and report
outlining, but none of the speed or capacity improvements. It is limited to 200
decision variables and (for nonlinear and non-smooth problems) 100 constraints in
addition to bounds on the variables, and its speed is about the same as the standard
Excel Solver. Itis licensed only through academic textbook publishers who are
serving the university market, and it is now included in a wide range of courses and
textbooks that introduce students to operations research, management science, and
the concepts of optimization.

The Premium Solver Platform

The Premium Solver Platform is Frontline"s “flagship” product for Microsoft Excel,
and the base product for optimizing all types of large-scale models. It includes all of
the features of the Premium Solver, improvements to each of three bundled Solver
engines — the Evolutionary Solver, nonlinear GRG Solver, and especially the linear
Simplex Solver —and two additional Solver engines: the Interval Global Solver,
which solves global optimization problems, and the SOCP Barrier Solver, which
solves linear, quadratic, quadratically constrained, and new second order cone
programming (SOCP) problems. And it solves models with decision variables and
constraints on any worksheet in a workbook.

The Premium Solver Platform has two other fundamental, powerful capabilities
beyond the Premium Solver: It includes a new Polymorphic Spreadsheet Interpreter
(PSI technology) capable of analyzing Microsoft Excel formulas and models, where
the Premium Solver relies on Microsoft Excel for this purpose. And it supports
multiple, field-installable Solver engines that leverage the PSI technology to solve
much larger and more challenging optimization problems. Customers have used this
capability to solve problems with as many 2.4 million decision variables in Excel.

Model Analysis: The Polymorphic Spreadsheet Interpreter

The Premium Solver Platform includes a new Polymorphic Spreadsheet Interpreter
for Excel formulas, developed by Frontline Systems. The Interpreter does much
more than simply recalculate values for Excel formulas — it can interpret the formulas
in many other ways that are advantageous for the Solver, as further described in the
next section, “A Brief Tour of New Features.” For example:

The Interpreter can diagnose your model as a linear programming, quadratic or
conic, smooth nonlinear, or non-smooth optimization model, and automatically
select Solver engines suitable for your model. It can even pinpoint formulas that
make your model nonlinear or non-smooth.

18

Introduction

Solver User Guide

The Interpreter can compute derivatives (the gradients of problem functions)
directly, using the methods of automatic differentiation. This is much faster and
more accurate than the method of formula recalculation and “finite differencing”
used by the Excel Solver and Premium Solver, and it greatly improves
performance of all of the field-installable Solver engines.

The Interpreter can efficiently compute second derivatives (the Hessians of
problem functions) that are required by the new SOCP Barrier Solver and
MOSEK Solver, and used by the KNITRO Solver for best performance.

The Interpreter can evaluate Excel formulas in your model over intervals, in
addition to single numeric values. This capability is used by the new Interval
Global Solver to find globally optimal solutions to optimization problems.

Solver Engines in the Premium Solver Platform

The LP/Quadratic Solver, which replaces the Excel Solver”slinear Simplex method
in the Premium Solver Platform, handles both linear programming (LP) and quadratic
programming (QP) problems with up to 8,000 decision variables and constraints —
four times the size of the Premium Solver, and 40 times the size of the Excel Solver.
It uses state-of-the-art large-scale, sparse primal and dual Simplex, presolve, and
quadratic optimization methods, for world-class LP/QP performance. Quadratic
programming problems have a quadratic objective function and all linear constraints;
they are often used to find “efficient portfolios’ of securities using the Markowitz or
Sharpe methods.

For problems involving integer variables, the LP/Quadratic Solver employs state-of-
the-art Branch, Cut and Bound methods that include sophisticated branch node and
variable selection, preprocessing and probing, cut generation with 12 types of cuts,
and two types of heuristics. These strategies often drastically speed up the solution
of integer problems, often by factors of 1000 or more over the standard Excel Solver.
Tests on user models suggest that the LP/Quadratic Solver in the Premium Solver
Platform Version 7.0 is five to ten times faster than in Version 6.0.

The nonlinear GRG Solver in the Premium Solver Platform is augmented with
“multistart” or “clustering” methods for global optimization. For some smooth
nonlinear problems, multistart methods will converge in probability to the globally
optimal solution. For other problems, they often yield very good solutions in an
acceptable amount of time —and of course, they are far easier to use than a manual
exploratory process. The GRG Solver handles smooth nonlinear (NLP) problems of
up to 500 decision variables and 250 constraints, plus bounds on the variables.

The Evolutionary Solver in the Premium Solver Platform is actually a hybrid of
genetic and evolutionary algorithms and classical optimization methods. This new
hybrid Evolutionary Solver can be applied to extremely challenging problems, with
both non-smooth or discontinuous functions, and hundreds of conventional
constraints. It handles non-smooth (NSP) problems of up to 500 decision variables
and 250 constraints, plus bounds on the variables.

The Interval Global Solver in the Premium Solver Platform uses state-of-the-art
interval methods to find the globally optimal solution to a nonlinear optimization
problem, all real solutions to a system of nonlinear equations, or an “inner solution”
to a system of nonlinear inequalities, as further described in the next section, “A
Brief Tour of New Features.” It handles smooth nonlinear (NLP) problems of up to
500 decision variables and 250 constraints, plus bounds on the variables.

The SOCP Barrier Solver in the Premium Solver Platform uses an interior point
method to solve linear (LP), quadratic (QP), quadratically constrained (QCP), and

Solver User Guide

Introduction 19

second order cone programming (SOCP) problems with up to 2,000 variables and
8,000 constraints. Many problems in quantitative finance are easier to formulate with
quadratic constraints; unlike most quadratic solvers that handle only a quadratic
objective, the SOCP Barrier Solver handles both quadratic objectives and quadratic
constraints. Most significant, the SOCP Barrier Solver is designed for second order
cone programming (SOCP) — the natural generalization of linear and quadratic
programming. Many problems in quantitative finance and engineering design are
best formulated as SOCP problems.

Finally, when used with Risk Solver Engine V7.0, the Premium Solver Platform
solves simulation optimization problems, where the objective and constraints depend
on both decision variables and random variables, defined by probability distributions
— at speeds far beyond that offered by competitive software products for Excel.

Risk Solver Engine

Frontling"s Risk Solver Engine implements a new approach to Monte Carlo simula-
tion that lets you play ,what if* with uncertain values as easily as you do with
ordinary numbers. Each time you change a number on the spreadsheet, a simulation
with thousands of trials is performed — often in no more time than a single spread-
sheet recalculation —and a full range of simulation results and statistics may be
displayed on the spreadsheet. By writing macros in Excel VBA, you can fully
control Risk Solver Engine and create custom risk analysis applications.

The Magic of Interactive Simulation

With Risk Solver Engine, risk analysis for uncertain models becomes as easy as
asking ,what if*. Suddenly, you find that insights about the model, and decisions
you can make, start to flow intuitively. In the words of Dr. Sam Savage, a noted
authority on Monte Carlo simulation, “Risk Solver Engine does for uncertainty what
the spreadsheet did for numbers.”

Powered by PSI Technology

Risk Solver Engine uses Frontline"s Polymorphic Spreadsheet Interpreter technology
to achieve breakthrough simulation speeds — up to 100 times faster than normal
Excel-based Monte Carlo simulation — thus making Interactive Simulation practical
every time you change a number on the spreadsheet

Support for Probability Management Concepts

Risk Solver Engine supports the practice of Probability Management and Coherent
Modeling in large organizations. In addition to Interactive Simulation on every
spreadsheet recalculation, Risk Solver Engine directly supports Stochastic Libraries,
both on the Excel spreadsheet and in Excel VBA. Certification Authorities such as
the “Chief Probability Officer” proposed by Dr. Sam Savage can approve such
libraries for use in Risk Solver Engine.

Certified Distributions, created by experts — perhaps like you — and provided to end
users in the form of numeric tables called SIPs (Stochastic Information Packets) and
SLURPs (Stochastic Library Units, Relationships Preserved), can make simulation
models far easier to create, analyze and compare.

Excel Functions for Monte Carlo Models

Risk Solver Engine allows you to define certain cells as random variables, whose
values are drawn from your choice of more than 40 PSI Distribution functions — from

20

Introduction

Solver User Guide

PsiBernoulli() to PsiWeibull(). You can also draw values from predefined Certified
Distributions, by simply referring to these distributions in PsiSip() and PsiSlurp()
functions. You can easily shift, truncate and correlate probability distributions with
PSI Property functions such as PsiShift(), PsiTruncate() and PsiCorrMatrix().

A special feature of Risk Solver Engine is its ability to display simulation trials and
summary statistics, instantly each time the spreadsheet changes. You simply create
formulas that compute functions of your random variables, then refer to these
computed results in other formulas with PsiMean(), PsiVariance(), PsiPercentile(),
PsiCVaR(), and similar functions. PsiFrequency() instantly gives you a frequency
distribution across simulation trials, that can be analyzed or charted in Excel.

VBA Obijects/Properties for Monte Carlo Models

You can easily write VBA (Visual Basic Application Edition) macros in Excel that
control Risk Solver Engine. Define a Problem and instantiate it from the spreadsheet
with two lines of code, then access the uncertain elements of your model via Variable
and Function objects. Perform simulations, access trials and summary statistics, and
present them the way you want to your end user.

Risk Solver Engine"s VBA object model closely resembles the new object-oriented
API in the Premium Solver Platform V7.0, and the object-oriented API of Frontling"s
Solver Platform SDK — which includes a compatible toolkit for Monte Carlo
simulation. This makes it easier to move a simulation application from Excel to a
custom program written in C/C++, Visual Basic, VB.NET, Java or MATLAB.

The Solver Platform SDK

The Solver Platform SDK is Frontline"s “flagship” product for software developers
building optimization and simulation applications in a programming language, and
the base product for solving all types of large-scale models in this form. The Solver
Platform SDK is the successor to Frontling"s Solver DLL Platform (offering 100%
upward compatibility for existing users) that goes far beyond other “callable library”
optimization products. It offers:

A high-level, objected-oriented application programming interface (API), for
languages like C++, C#, Java, Visual Basic and VB.NET, that allows you to

implement your model in terms of objects such as a Problem, Model, Solver,
Variable, and Function.

A conventional procedural API that provides access to all the power of the
Solver Platform SDK from non-object-oriented languages like C and Fortran.

Full support for Java and Matlab — Matlab users have access to both the object-
oriented API and the procedural API in the Solver Platform SDK.

Deep support for Microsoft .NET and Visual Studio .NET 2003/2005, with
“wizards’ that help you create aworking application in less than a minute, and
full support for “IntelliSense” and “Balloon Help” that shows you available AP
options as you type, or even as your mouse hovers over a line of program code.

Deep support for Microsoft COM, Visual Basic 6, and Visual C++ 6, including
wizards for these language systems.

Bundled LP/Quadratic, SOCP Barrier, GRG Nonlinear, and Evolutionary
Solvers, plus a new Solver for Monte Carlo simulation problems, and support for
seven field-installable large-scale Solver Engines.

Solver User Guide

Introduction 21

Flexible licensing policies and software that enable you to easily develop and
deploy your application, for desktop, Intranet/Web server, or Web service use,
using the Solver Platform SDK and field-installable Solver Engines.

To learn more about the Solver Platform SDK, please visit www.solver.com or
contact Frontline Systems at (775) 831-0300 or info@solver.com.

Field-Installable Solver Engines

The Premium Solver Platform and the Solver Platform SDK both support multiple,
field-installable Solver engines, in addition to their “bundled” Solver engines. Such
Solver engines are licensed as separate products, and they provide additional power
and capacity to solve problems much larger and/or more difficult than the problems
handled by the bundled Solver engines. Unlike most other optimization software, a
license for one of Frontline"s Solver engines enables you to use that Solver in Excel,
Matlab, Java, C/C++, C#, Visual Basic, VB.NET, and other languages, using either
or both the Premium Solver Platform or the Solver Platform SDK.

Field-installable Solver engines are seamlessly integrated into the Premium Solver
Platform —to use one, you simply select the Solver engine by name in the dropdown
list that appears in the Solver Parameters dialog. They produce reports as Excel
worksheets, like the bundled Solver engines; they recognize common Solver options
and provide their own Options dialogs; and they can be controlled by VBA code in
your custom applications. The Solver engines are also seamlessly integrated into the
Solver Platform SDK — to use one, you simply add it to the collection of available
Solver Engines, and select it with a single line of code when you want to solve a
problem. Trial licenses for these Solver engines are available, allowing you to eval-
uate how well they perform on a challenging Solver model that you“ve developed.

The Large-Scale LP/QP Solver

Frontline"s Large-Scale LP/QP Solver is designed to solve linear and quadratic
programming problems much larger than the 8,000 variable limit imposed by the
built-in LP/Quadratic Solver. It uses scaled-up, state-of-the-art primal and dual
Simplex, presolve, quadratic, and Branch, Cut and Bound methods to solve
challenging, large scale LP/QP models. It is offered in two versions: A Standard
version, handling problems of up to 32,000 variables and 32,000 constraints; and an
Extended version, with no limits on problem size except time and memory, that
customers have used to solve LP problems with millions of decision variables.

The Large-Scale GRG Solver

Frontline"s Large-Scale GRG Solver is designed to solve smooth nonlinear problems
much larger than the 500 variable limit imposed by the built-in nonlinear GRG
Solver. It uses sparse matrix storage methods, advanced methods for selecting a
basis and dealing with degeneracy, methods for finding a feasible solution quickly,
and other algorithmic methods adapted for larger problems. It is offered in two
versions, one capable of solving problems of up to 4,000 variables and 4,000
constraints, the other capable of handling large problems of up to 12,000 variables
and 12,000 constraints.

The Large-Scale SQP Solver

Frontline"s Large-Scale SQP Solver is our most versatile large-scale Solver engine,
since it handles every type of optimization problem. It is capable of solving very
large linear programming, quadratic programming, and smooth nonlinear

22

Introduction

Solver User Guide

optimization problems, with no limits on problem size except time and memory. In
Version 7.0 its algorithmic methods are greatly enhanced, and it integrates a version
of Frontline"s Evolutionary Solver that uses the SQP method for local searches,
making it possible to solve large non-smooth optimization problems. It is especially
effective on nonlinear or non-smooth problems with many linear constraints or linear
occurrences of variables, since it exploits information about the model supplied by
the Interpreter in the Premium Solver Platform. The Large-Scale SQP Solver uses a
Sequential Quadratic Programming method.

The KNITRO Solver

Frontline"s KNITRO Solver —developed in close cooperation with Ziena Optimi-
zation — offers breakthrough performance in solving large scale smooth nonlinear
optimization problems, with no limits on problem size except time and memory. The
KNITRO Solver is the leading implementation of new state-of-the-art interior point
methods for non-convex problems, the result of intense research in large-scale
nonlinear optimization in recent years. In Version 7.0, the KNITRO Solver also
includes active set (SLQP) methods, enabling it to perform exceptionally well on
both tightly and loosely constrained large scale nonlinear optimization problems.

The MOSEK Solver

Frontline"s MOSEK Solver —developed in close cooperation with MOSEK ApS —is
a large-scale “upgrade” for the new SOCP Barrier Solver that solves LP, QP, QCP,
and SOCP problems of virtually unlimited size. The MOSEK code has been used to
solve SOCP problems of over 100,000 variables, and much larger linear program-
ming (LP) problems, where it is competitive with the very best Solver engines. The
Extended version of the MOSEK Solver Engine also solves large scale convex
smooth nonlinear optimization problems. It has no limits on problem size except
time and memory.

The XPRESS Solver

Frontline"s XPRESS Solver Engine — developed in close cooperation with Dash
Optimization — brings the lightning-fast performance, and virtually unlimited
problem solving capacity of the Xpress* mixed-integer linear optimizer to Excel
spreadsheet users. Many professionals regard Xpress™" as the world"s best general-
purpose mixed-integer optimizer. The Extended version of the XPRESS Solver
Engine also solves quadratic programming (QP) problems. Version 7.0 of this
Solver Engine offers twenty to fifty times the already-impressive performance of its
inaugural Version 4.0. The XPRESS Solver Engine offers more than 60 Solver
Options. It has no limits on problem size except time and memory.

The OptQuest Solver

Frontline"s OptQuest Solver — developed in close cooperation with OptTek Systems,
Inc. —is designed to work with all types of Excel models. Your Excel model can
contain any standard or user-written (numeric) functions —even discontinuous
functions such as IF, CHOOSE, LOOKUP, and COUNT and non-smooth functions
such as ABS, MIN, and ROUND that cause difficulty for the classical nonlinear
Solvers. Also, the OptQuest Solver may find a globally optimal (or near-optimal)
solution to a problem with multiple locally optimal solutions (though it cannot give
any assurance of finding the globally optimal solution). The OptQuest Solver uses
advanced methods including tabu search and scatter search, as described in the
Solver Engine User Guide. It supports up to 5,000 variables and 1,000 constraints.

Solver User Guide

Introduction 23

To learn more about field-installable Solver Engines, please visit www.solver.com
or contact Frontline Systems at (775) 831-0300 or info@solver.com.

Other New Solver Engines

Frontline is constantly working to enhance both the five bundled Solver engines in
the Premium Solver Platform, and the seven field-installable Solver engines briefly
described above. And Frontline is constantly working on new Solver engines, to
solve new types and sizes of optimization models, including models that call for
»good" or optimal decisionsin the presence of uncertainty.

Be sure to stay in contact with Frontline Systems, via phone, email, or the World
Wide Web (at www.solver.com) to get the latest news about the availability of new
field-installable Solver engines, and other upgrades for the Premium Solver Platform.

A Brief Tour of New Features

The Premium Solver Platform provides a wide range of new features for Solver
users, including the ability to solve entirely new kinds of problems — such as new
convex and conic optimization problems in Version 6, and new simulation
optimization problems in Version 7. This section provides a tour of these new
features, with brief explanations of what they mean for your ability to create models
and find optimal solutions.

Model Analysis: The Polymorphic Spreadsheet
Interpreter

The Excel Solver and Premium Solver rely on Microsoft Excel itself to read and
analyze (“parse”) the formulas you enter in spreadsheet cells, and calculate values for
(“interpret”) these formulas whenever the Solver changes values of input cells.

The Premium Solver Platform retains the ability to use Microsoft Excel for
evaluation of spreadsheet formulas, but it also includes a new Polymorphic
Spreadsheet Interpreter (PSI technology) for Excel formulas, developed by Frontline
Systems. The term “polymorphic” has much the same meaning asit doesin
programming languages such as C++ and Java, but for Microsoft Excel formulas.
The Interpreter does much more than simply recalculate values for Excel formulas —
it can interpret the formulas in many other ways that are advantageous for the Solver.

The Interpreter can handle nearly any Microsoft Excel formula syntax, including
array formulas, and almost all of the Excel built-in functions, including the financial,
statistical, and engineering functions in the Analysis Toolkit. For rarely used syntax
forms, a few functions such as INDEX and OFFSET, and some user-defined func-
tions written in VBA or other languages, the Premium Solver Platform can still use
Microsoft Excel instead of its own Interpreter for Excel formulas.

Automatic Model Diagnosis

The Polymorphic Spreadsheet Interpreter can diagnose your model by evaluating
your Excel formulas with an ,,overloaded” type for each cell, operator and function.
It determines which input cells are decision variables, and which are constant in the
model; then it evaluates each arithmetic operation or function in your model to
determine how the formula depends on each decision variable: Whether it is
independent (i.e. constant), linear, quadratic, smooth nonlinear, or non-smooth as a
function of that variable.

24

Introduction

Solver User Guide

This enables the Interpreter to diagnose your model as a linear programming,
quadratic programming, conic programming, smooth nonlinear, or non-smooth
optimization model. Further, you can tell the Interpreter that your goal or intent was
to create (say) a linear model, and the Interpreter will pinpoint the specific cells
containing formulas that create a nonlinear relationship in your model. Similarly, if
you intended to create a smooth nonlinear model, the Interpreter will pinpoint cells
containing non-smooth operations or functions of each decision variable.

The Interpreter can also help diagnose problems of poor scaling in your model: It can
evaluate your formulas while keeping track of the magnitude of each intermediate
result, and pinpoint the formulas that are likely to yield a loss of accuracy due to poor
scaling, that cannot be handled via automatic rescaling in the Solver engines.

Automatic Tests for Convexity

Once your model goes beyond linear programming to include quadratic or nonlinear
functions, it may remain ,easy" or it may become very difficult to solve. If your
model is convex, it can be solved quickly and reliably to a globally optimal solution,
even if it grows very large. But if your model is non-convex, you'll find that Solvers
(of all types) can find only a locally optimal solution, and may even have trouble
finding a feasible solution —and the time taken to find a solution may be so long that
it limits the size of model you can solve. But most users have found it difficult or
impossible to determine whether their nonlinear model is convex.

The Premium Solver Platform Version 7.0 includes a unique, automatic test for
convexity of your model and its objective and constraints in Excel, based on
pioneering work by Frontline Systems developers. The convexity test is not always
conclusive, because a conclusive test would take time exponential in the number of
variables. But in many cases, with the Premium Solver Platform you can determine
whether your model is convex, and identify specific functions that make your model
non-convex, by pressing a button.

Automatic Transformation of Non-Smooth Models

As described in the chapter “ Solver Models and Optimization,” using even one non-
smooth function (such as IF, MIN, MAX, ABS, AND, OR, or NOT, with arguments
that depend on the decision variables) in a model that is otherwise linear (using
functions such as SUM and SUMPRODUCT) changes the model from a linear
programming (LP) problem to a non-smooth optimization (NSP) problem.

Thanks to the Evolutionary Solver in the Premium Solver Platform, you can still
solve such models. But the consequences of such non-smooth functions for the
Solver are considerable: Where an LP can be solved very quickly and reliably up to
very large size, and the solution is basically guaranteed to be optimal, an NSP takes
far more time to solve, requires inherently less reliable methods, and there are no
guarantees as to whether the solution is truly optimal.

In Version 7.0, the Premium Solver Platform can automatically transform your
model, replacing IF, MIN, MAX, ABS, AND, OR, and NOT functions and <= and
>= operators with additional variables and linear constraints that achieve the same
effect, for optimization purposes, as these functions. If all non-smooth functions in
your model can be transformed, the result will be a linear mixed-integer (LP/MIP)
model that can be solved by a variety of Solver engines, from the standard
LP/Quadratic Solver to the XPRESS Solver — giving you a better chance of finding
an optimal solution with certainty, in a reasonable amount of time.

Solver User Guide

Introduction 25

Automatic Differentiation

Most Solvers make heavy use of derivatives or gradients of the problem functions
(the objective and constraints) with respect to the decision variables. Linear
programming algorithms require that derivatives be evaluated once, to obtain the LP
coefficient matrix. Nonlinear optimization algorithms typically require that
derivatives be evaluated many times, once at each major iteration or trial point.
Hence, derivative evaluation is key to both the speed and accuracy of such
optimization algorithms.

The Excel Solver and Premium Solver estimate derivative values by the method of
finite differencing: They use Microsoft Excel itself to recalculate values for the
objective and constraints at the “current point” (i.e. values of the decision variables),
and at nearby points with small changes (“perturbations”) in each decision variable.
This process, while often adequate, is relatively slow and inaccurate — it takes many
recalculations and may lose significant digits as it performs many division operations.

The Premium Solver Platform"s Polymorphic Spreadsheet Interpreter can compute
derivatives directly, by evaluating your Excel formulas with an overloaded ,,gradient”
type for each cell, operator and function, using the methods of automatic differentia-
tion. Analytic formulas for the derivatives are applied to each arithmetic operator
and elementary function, and the chain rule is applied to compute derivatives for
composite functions. Hence, derivative values can be obtained many times faster,
and without any loss of accuracy beyond the actual function values themselves.

The Interpreter goes further to support the new SOCP Barrier Solver, MOSEK
Solver, and KNITRO Solver in Version 7.0: It computes the Hessian (matrix of
second order derivatives) of each problem function using the methods of automatic
differentiation. The method of finite differencing is far too slow and inaccurate for
this purpose — the Polymorphic Spreadsheet Interpreter makes such new methods and
Solver engines practical in Microsoft Excel.

Interval Arithmetic

To support the Platform™s Interval Global Solver, the Polymorphic Spreadsheet
Interpreter can also evaluate Excel formulas with an overloaded ,interval® type for
each cell, operator and function. An interval such as [1, 2] represents all of the
possible numeric values between 1 and 2. Addition, subtraction, and other arithmetic
operations and functions can be defined over intervals — for example, [1, 2] + [3, 4] =
[4, 6] in interval arithmetic. The Interpreter can compute interval values for all of
Excel"s arithmetic operators and most built-in smooth functions. It provides even
more powerful facilities, including automatic differentiation over intervals, to Solver
engines that use interval methods. See below for a brief description of the Interval
Global Solver included in the Premium Solver Platform.

Multistart Methods for Global Optimization

As explained in the chapter “ Solver Models and Optimization,” the nonlinear GRG
Solver —like virtually all “classical” nonlinear optimizers —will find only a locally
optimal solution to a non-convex problem. Imagine a graph of the objective function
with “hills” and “valleys.” The GRG Solver will typically find the peak of a hill near
the starting point you specified (if maximizing), but it may not find an even higher
peak on another hill that is far from your starting point. In some problems this is
sufficient, but in other cases you may want to find a globally optimal solution.

With multistart methods in the Premium Solver and Premium Solver Platform, the
nonlinear GRG Solver can be automatically run many times from judiciously chosen

26

Introduction

Solver User Guide

starting points, and the best solution found (the “highest peak” if maximizing) will be
returned as the optimal solution. An algorithm called “multi-level single linkage”
randomly samples starting points, collects them into “clusters’ that are likely to lead
to the same locally optimal solution, and runs the GRG Solver from a representative
point in each cluster. This process continues until a Bayesian statistical test estimates
that all locally optimal solutions have likely been found. Then the best of these
solutions isreturned as the ,probable globally optimal* solution.

The Evolutionary Solver

The standard Excel Solver is able to find solutions for “classical” optimization
models, including linear programming and integer programming problems, and
problems with smooth nonlinear objectives and constraints. But the Excel formula
language includes many operations and functions, such as IF, CHOOSE and
LOOKUP, that don"t satisfy the requirements for linear or smooth nonlinear
problems. The standard Excel Solver cannot handle models that employ such
functions in the calculation of their objectives or constraints. But the Evolutionary
Solver included in the Premium Solver and Premium Solver Platform can handle
models whose calculation uses any type of (numeric) operations and functions.

The Evolutionary Solver provides an alternative to multistart methods to seek a
globally optimal solution to a non-convex problem, even if all the problem functions
are smooth. Rather than search in the neighborhood of a single starting point, it
maintains a population of candidate solutions “ scattered around the landscape,” and
(based in part on random choices) it will attempt to improve each one.

The Evolutionary Solver appears in the dropdown list of Solver engines in the Solver
Parameters dialog. To use it, you simply select the Evolutionary Solver from the list.
That"sit! You don"t have to change your model, or your selections of variables,
constraints or objective. You can switch Solver engines at any time. You can even
apply the Evolutionary Solver to models created with the standard Excel Solver, with
no extra work on your part to set up the optimization problem.

The Evolutionary Solver is based on the principles of “genetic agorithms” and
“evolutionary algorithms.” In tests on awide variety of Excel models, it outperforms
competitive products whose main (or only) feature is a genetic algorithm, by finding
better solutions in significantly less time. And the Evolutionary Solver doesn"t
require that you learn new terminology or choose from a variety of complicated
“solving methods.” You just select the Evolutionary Solver engine and click Solve.

A Solver based on genetic or evolutionary algorithms is not a panacea, however.
Unlike the Simplex and GRG Solvers which are deterministic optimization methods,
the Evolutionary Solver is a nondeterministic method: Because it is based partly on
random choices of trial solutions, by default it will often find a different “best
solution” each time you runit, even if you haven"t changed the model at all. And
unlike the Simplex and GRG Solvers, the Evolutionary Solver has no way of
knowing for certain that a given solution is optimal — even “locally optimal.”
Similarly, the Evolutionary Solver has no way of knowing for certain whether it
should stop, or continue searching for a better solution. With the Premium Solver
and Premium Solver Platform, however, you are not limited to a genetic algorithm —
you can apply the most appropriate Solver engine to each problem you encounter.

Hybrid Evolutionary Solver Methods

The Evolutionary Solver in the Premium Solver Platform is actually a hybrid of
genetic and evolutionary algorithms and classical optimization methods, including
gradient-free ,direct search" methods, classical gradient-based quasi-Newton

Solver User Guide

Introduction 27

methods, and even the Simplex method for linear subsets of the constraints. The
classical methods sometimes yield rapid “local improvement” of atrial solution, and
they also help to “solve for” sets of constraints. The Evolutionary Solver also
includes new “filtered local search” methods that greatly improve performance on
smooth global optimization problems; and new “integer heuristic” methods from the
local search literature that improve performance on problems with integer variables.

Working with the Polymorphic Spreadsheet Interpreter, the Evolutionary Solver can
automatically apply genetic algorithm methods to the non-smooth parts of a problem,
and apply classical methods to the smooth nonlinear and linear parts of the problem.
The Evolutionary Solver is often able to solve problems with hundreds of constraints,
which are typically beyond the capabilities of genetic and evolutionary algorithms
working alone.

The Interval Global Solver

The Interval Global Solver is a new kind of Solver engine built-in to the Premium
Solver Platform. It uses interval methods to find the globally optimal solution to a
nonlinear optimization problem, all real solutions to a system of nonlinear equations,
or an “inner solution” to a system of nonlinear inequalities.

The Interval Global Solver uses deterministic methods to search for the global
optimum, whereas the Evolutionary Solver and the multistart methods described
above use nondeterministic methods, which involve an element of random chance.
Given time, the Interval Global Solver will find a proven global optimum, and it will
find all real solutions to a system of nonlinear equations (subject to a few caveats
when using its advanced methods, as described in the chapter “Diagnosing Solver
Results’). In contrast, the Evolutionary Solver and the multistart methods described
above often find good solutions, but cannot find “provably optimal” solutions.

Interval methods for global optimization are the subject of considerable research
currently. Frontline believes its Interval Global Solver is the first commercially
supported optimizer to use these methods. We"ve pioneered several of the methods
used in this Solver, such as linear enclosures, which have yielded order-of-magnitude
speed improvements compared to earlier interval algorithms.

Now, you'll have an easy-to-use way to apply these groundbreaking methods to your
own problems. Y ou don“t have to do anything special to use these methods — just
define your model in the usual way, select “Interval Globa Solver” from the
dropdown list of Solver engines, and click the Solve button. Note: The Interval
Global Solver is not available in the Solver Platform SDK, because it would require
that you write code in some language to calculate your model using interval methods.

The SOCP Barrier Solver

The Premium Solver Platform Version 7.0 includes a new, fifth built-in Solver
engine, the Standard SOCP Barrier Solver. This Solver finds optimal solutions for
second-order cone programming (SOCP) problems, which are a superset of linear
programming (LP), quadratic programming (QP), and quadratically constrained
programming (QCP) problems, with up to 2,000 decision variables. It supports the
new second order cone (SOC) constraints in the Premium Solver Platform (see
below). To use the SOCP Barrier Solver, you simply select it from the dropdown list
of Solver engines, and click Solve — no changes to your model are necessary.

The term “Barrier” comes from the optimization algorithms used by this Solver
engine. Where the LP/Quadratic Solver uses the Simplex method, augmented for

28

Introduction

Solver User Guide

quadratic objectives, the SOCP Barrier Solver uses a Barrier method, also called an
Interior Point method. Where the Simplex method"s trial solutions are always at
~corners' on the surface of the feasible region, the Barrier method"s trial solutions are
always in the interior of the feasible region, until the final steps where the optimal
solution is reached. Where the number of Simplex iterations typically grows with the
number of constraints, the number of Barrier iterations is independent of the number
of constraints, and is usually between 10 and 50 (but the time taken per iteration
grows with problem size).

Second Order Cone Constraints

The Premium Solver Platform Version 7.0 supports a new type of constraint, called a
second-order cone (SOC) constraint. An SOC constraint is created like any other
constraint, by clicking the Add button to display the Add Constraint dialog, selecting
a range of decision variable cells for the Cell Reference or left hand side, and
selecting soc or src (rotated second order cone) from the Relation dropdown list.
This specifies that the vector formed by the n decision variables must lie in the
second order cone (also called the Lorentz cone or “ice cream” cone) of dimension n.

A linear programming problem plus one or more SOC constraints defines a second
order cone programming (SOCP) problem. All “ordinary” non-negative decision
variables also belong to a cone, called the non-negative orthant —hence a linear
programming (LP) problem is a special case of a conic programming problem, where
the only cone constraint is non-negativity. Second order cone programming is the
natural generalization of linear programming: It includes all quadratic program-
ming (QP) and quadratically constrained programming (QCP) problems, and many
other problems in quantitative finance and engineering design. SOCP problems are
always convex, and they can be solved quickly and reliably to very large size.

Since the Polymorphic Spreadsheet Interpreter in the Premium Solver Platform
supports second order cone constraints, SOCP problems can be solved by either
special-purpose, high-performance Solvers (the SOCP Barrier Solver and MOSEK
Solver), or by general-purpose nonlinear Solvers such as the standard GRG Solver,
the Large-Scale GRG and SQP Solvers, and the KNITRO Solver engine.

Alldifferent Constraints

In the standard Excel Solver, you can specify that certain decision variables must
have integer values at any feasible or optimal solution. (As a special case, binary or
0-1 integer variables are often used to represent yes/no decisions in an optimization
model.) In previous versions of the Premium Solver, solution times of problems
involving integer variables were often greatly improved, but the types of problem
conditions you could model with integer variables remained the same.

At times, you“ll encounter a problem where you want to specify that a set of integer
variables (typically representing an ordering of choices) must all be different at the
solution. An example is the Traveling Salesman Problem (TSP), where a salesman
must choose the order of cities to visit so as to minimize travel time, and each city
must be visited exactly once. This condition is difficult to model using conventional
constraints and integer variables.

In the Premium Solver and Premium Solver Platform, you can specify directly that a
set of variables must be “alldifferent.” Such variables will then have integer values
from 1 to N (the number of variables), all of them different at the solution. All of the
bundled Solver engines support this new type of constraint: The Branch & Bound
method used by the Simplex LP (or LP/Quadratic), SOCP Barrier, nonlinear GRG,

Solver User Guide

Introduction 29

and Interval Global Solvers is extended to handle alldifferent constraints as a native
type, and the Evolutionary Solver implements these constraints using mutation and
crossover operators for permutations. Field-installable Solver engines also support
the alldifferent constraint, implementing it in different ways. This allows you to
model your problem in a high-level way, and try a variety of Solver engines to see
which one yields the best performance on your problem.

Simulation Optimization

The Premium Solver Platform and Risk Solver Engine create a powerful combination
for solving simulation optimization problems — Frontline"sfirst step in along-term
plan to empower you to build and solve large-scale models that yield good or optimal
decisions in the presence of uncertainty.

Simulation optimization problems include both decision variables and random

variables whose values are uncertain, defined by probability distributions. The
objective and constraints can depend on both the decision variables and on risk
measures and other statistics computed from functions of the random variables.

For example, if your model describes uncertain market demand for your products,
and computes sales, inventory levels and Net Profit, you can solve a problem that
seeks to maximize the expected value of Net Profit subject to constraints on
maximum (say, 90" percentile) or minimum (10" percentile) inventory levels.

When you click Solve, the Premium Solver Platform performs a Monte Carlo
simulation through Risk Solver Engine on each iteration of the optimization. Each
Monte Carlo simulation involves thousands of trials, where a different value is
sampled for each random variable on each trial. Doing this is usually an order of
magnitude faster than in competitive products for “simulation optimization.”

New Types of Reports

Where the standard Excel Solver offers three types of reports —the Answer Report,
Sensitivity Report, and Limits Report — the Premium Solver offers six types of
reports: The Answer, Sensitivity, and Limits Reports, and the new Linearity Report,
Feasibility Report, and Population Report. And the Premium Solver Platform offers
ten types of reports: The first six just listed, and the Solutions Report, Scaling
Report, Structure Report, and Transformation Report. You can also select automatic
outlining for the first six reports, which will organize the variables and constraints
into outlined groups corresponding to the blocks you entered in the Solver
Parameters dialog. You can identify each block of variables and constraints with
descriptive comments. This can make it much easier to find the information you need
in the reports, for models with hundreds or thousands of variables and constraints.

Linearity, Feasibility, and Population Reports

When the Solver saysthat “The linearity conditions required by this Solver engine
are not satisfied,” you can produce a Linearity Report that shows you whether the
objective and each constraint is a linear or nonlinear function of the variables, and
also whether each variable occurs linearly or nonlinearly in the problem. With this
information, you can locate and, if desired, eliminate nonlinear formulas in your
model, thereby gaining the extra speed and accuracy available with a Solver designed
for linear problems. (An even better solution — the Structure Report, produced by the
Premium Solver Platform — is described below.)

30

Introduction

Solver User Guide

When you receive the message that “ Solver could not find a feasible solution,” this
often means that you"ve made a mistake entering some constraint, such asusing a >=
relation when you meant <=. But it can be difficult to pinpoint the source of the
error, especially if you have hundreds or thousands of constraints to examine. With
the Premium Solver products, you can produce a Feasibility Report and let the Solver
do the work. It will automatically re-solve the problem with subsets of the original
constraints, until it isolates a subset of constraints (called an “Irreducibly Infeasible
System” or 11S) which isinfeasible, but which becomes feasible if any one of the
constraints is removed. By examining just the constraints in the Feasibility Report,
you can usually pinpoint the problem with your model very quickly.

When the Evolutionary Solver stops with a*“best solution,” you have the option of
producing a standard Answer Report and/or a new Population Report. Where the
Answer Report gives you detailed information about the single “best solution”
returned by the Solver, the Population Report gives you summary information about
the entire population of candidate solutions at the end of the solution process. The
Population Report can give you insight into the performance of the Evolutionary
Solver as well as the characteristics of your model, and help you decide whether
additional runs of the Evolutionary Solver are likely to yield even better solutions.

Solutions, Scaling, Structure, and Transformation Reports

The Solutions Report —greatly expanded in Version 7.0 — gives you objective
function and decision variable values for a number of alternative solutions found
during the optimization process. For mixed-integer problems, the report shows each
»incumbent" or feasible integer solution found by the Branch & Bound method. For
global optimization problems solved with the GRG, LSGRG, LSSQP, and KNITRO
Solver engines, the report shows each locally optimal solution found by the Multistart
method. For the Evolutionary and OptQuest Solvers, the report shows members of
the final population of solutions.

The Solutions Report has a special meaning for the Interval Global Solver. Itis
available for problems with no objective function to be maximized or minimized, and
with all equality constraints (a system of equations) or all inequality constraints (a
system of inequalities). For a system of nonlinear equations, the Answer Report
shows only a single solution, but the Solutions Report shows you all real solutions.
For a system of inequalities, the Answer Report again shows you only a single
feasible point, but the Solutions Report shows you an “inner solution” —a region or
set of points where all of the constraints are satisfied.

In the Premium Solver Platform, a new choice —the Scaling Report —appears in the
Solver Results dialog whenever solving yields an error message or an outcome that
might be due to a poorly scaled model — such as“ Solver converged to the current
solution” or “The linearity conditions required by this Solver engine are not
satisfied.” When you select this report, the Polymorphic Spreadsheet Interpreter
evaluates all Excel formulas in your model while keeping track of the magnitudes or
scales of intermediate results, and reports cases that may lead to a loss of accuracy.

Using the Premium Solver Platform”s new Solver Model dialog, which controls the
Polymorphic Spreadsheet Interpreter, you can diagnose and transform your model
before you solve it, produce the Structure Report to pinpoint problems in your model,
and produce the Transformation Report to show how certain problematic functions
were automatically replaced with “better” functions.

For the Structure Report, you simply select the type of model you meant to create —
linear, quadratic, smooth nonlinear, or non-smooth —and ask the Solver to report any
exceptions to this desired model type. The Structure Report is both more useful and

Solver User Guide

Introduction 31

more reliable than the Linearity Report, because it evaluates your model symbolically
rather than numerically (so it cannot be “fooled” by poorly scaled models), and it can
pinpoint not just overall constraints and variables, but individual cell formulas where
the dependence of constraints on variables is nonlinear (if your assumed model is an
LP) or non-smooth (if your assumed model is an NLP). These cell formulas are
reported as “exceptions’ in the Structure Report, with hyperlinks to the actual cells
containing the formulas in question. In Version 7.0, the Structure Report also tells
you whether your objective and each constraint are convex or non-convex functions,
when you ask the Interpreter to check the model for convexity.

The Transformation Report in Version 7.0 can be produced when you ask the
Interpreter to automatically transform your model to replace non-smooth functions
such as IF, MIN, MAX, ABS, AND, OR, or NOT with additional variables and
linear constraints that have the same effect as the replaced functions. This report lists
the new variables and constraints that are added to your model by the transformation
process. See the chapter “Analyzing and Solving Models’ for more details.

User Interface Improvements

User interface improvements in the Premium Solver products are designed to give
you more information, help you move more quickly through the Solver dialogs, and
accomplish what you want in fewer steps.

Have you ever wondered whether your model was truly linear or smooth nonlinear,
or (if it wasn"t) exactly which formulas caused the model to be nonlinear or non-
smooth? Or —having learned about how the large-scale Solver engines exploit
sparsity in a model — have you wondered just how sparse your model actually is, or
whether it could be solved faster — for example, by the Large-Scale SQP Solver — by
exploiting linear constraints or linearly occurring variables wherever possible? The
new Solver Model dialog in the Premium Solver Platform gives you answers to all
these questions.

Have you ever wondered about the size of the problem youve defined, and whether
it"s getting close to the size limits supported by a given Solver engine? Inthe
Premium Solver products, you can examine the number of variables, constraints,
variable bounds and integer variables in your problem and the corresponding size
limits at any time, by displaying the Problem tab in the Solver Options dialog
available for each Solver engine.

Have you ever had trouble remembering the purpose of a block of constraints in your
model? In the Premium Solver products, you can add descriptive comments to each
block, which will appear in each of the Solver"s reports.

Have you ever wondered how long the Solver will take, for a larger model, when
“Setting Up Problem...” appears on the status bar, or when the Solver is building a
Limits Report? Thanks to improved progress reporting in the Premium Solver
products, you"ll know: An estimated “% Done” appears on the status bar in each of
these situations.

Have you ever wanted to see more of the constraints at one time in the Constraints
List box in the Solver Parameters dialog? In Version 7.0, simply use your mouse to
resize this dialog like any other window — as shown in the example on the next page.

32 Introduction Solver User Guide

Bl Solver Parameters V7.0 [x|

Set Cell: ITu:utaI_u:u:ust
Equal Ta: (& Max & Min & Value OF; I Close |

B Changing Yariable Cells:
Products_made,Factory_to_customer, Fackol
Subject to the Constrainks: IStandard LP/Quadratic ;I

Model | Options |

Ei sy el G : add | Variables

Total_to_warehouse == ‘Warehouse_capacity
Total_to_warehousel = Total_from_warehousel Change | Reset Al
Total_to_warehouse? = Total_from_warehousez
Total_to_warehouse3 = Total_from_warehouse3 Delete |
Tatal_to_warehoused = Takal_fram_warehoused =

Help

4
Have you ever found yourself selecting the Tools Solver... menu choice again and
again, as you solve variants of the same problem? In the Premium Solver products, a

check box in the Solver Results dialog lets you return to the Solver Parameters dialog
directly, where you can change settings and click the Solve button immediately.

If you solve an integer problem and find that there is no feasible solution, the Solver
Results dialog provides an option to immediately solve the “relaxation,” temporarily
ignoring the integer constraints. And if thereis still no feasible solution, you“ll have
the option to create a Feasibility Report, to find out why.

Have you ever found it difficult to enter all of your variables (Changing Cells) via a
multiple selection in the single edit box provided by the standard Solver? The
Premium Solver products provide a Variables button which allows you to switch
between a single edit box and a multi-line display, similar to the Constraints list box,
for entering and modifying an unlimited number of variable selections.

Finally, the Premium Solver products provide access to algorithmic methods and
tolerances used in each of the bundled Solver engines. By simply clicking on check
boxes and radio buttons, or entering values in edit boxes in the Solver Options
dialogs, you can control key tolerances in the Simplex method, stopping conditions
for the nonlinear GRG Solver, the number of subproblems and integer solutions to
be explored by the Branch & Bound method, the population size, mutation rate, and
other options for the Evolutionary Solver, the interval methods and tolerances used
by the new Interval Global Solver, and interior point methods and tolerances used by
the SOCP Barrier Solver.

Speed Improvements

The Premium Solver offers a range of speed and accuracy improvements over the
standard Excel Solver. The Premium Solver Platform realizes a whole new level of
speed and accuracy, compared to the Premium Solver and earlier versions of the
Platform, thanks to model analysis and automatic differentiation performed by the
new Polymorphic Spreadsheet Interpreter.

Premium Solver

For large Excel models, the time spent “ Setting Up Problem...” can be significant —
often more than the time spent on “Trial Solutions’ for LP problems. The Premium
Solver supports fast problem setup for linear programming models, which can yield
answers up to 100 times faster than in the standard Excel Solver, for models that use
arestricted set of Excel functions and conform to “fast problem setup format.”

Solver User Guide

Introduction 33

The Standard Simplex LP Solver is about three times faster than the standard Excel
Solver, and also uses less memory. On specific models, the Premium Solver is even
faster, thanks to new “steepest edge pricing” methods. The nonlinear GRG Solver in
the Premium Solver supports a new option, “Recognize Linear Variables,” that can
speed up the solution process by as much as 50%, depending on how many variables
occur linearly in the problem (which is, of course, nonlinear overall). And the
Evolutionary Solver is often many times faster on problems with linear or smooth
nonlinear constraints.

For linear mixed integer (LP/MIP) models, the Premium Solver Version 7.0 uses a
wide range of methods that often make it hundreds of times faster than the standard
Excel Solver. These include pseudocost branching, a new Dual Simplex method with
bound-swapping (for all problems with integer variables), new Preprocessing and
Probing options (for problems with 0-1 integer variables), and new cut generation
methods that automatically add new constraints to the problem, “cutting off” parts of
the LP feasible region without eliminating any potential integer feasible solutions.

Premium Solver Platform

In the Premium Solver Platform, fast problem setup is still available for LP and QP
models in restricted format, but the Polymorphic Spreadsheet Interpreter can speed
up problem setup for virtually all models, regardless of the Excel formulas and
functions they use.

The Polymorphic Spreadsheet Interpreter also greatly speeds up the solution process.
Although solution times vary from model to model, on a comparative test of actual
user LP models, the Premium Solver Platform was two to five times faster than the
Premium Solver on average. And with the Interpreter*s automatic differentiation
facilities, on a comparative test of actual user NLP models, the Premium Solver
Platform was seven times faster than the Premium Solver on average!

On LP/MIP models, speedups are even more dramatic, thanks to powerful branching
and cut generation methods in the Premium Solver Platform®s LP/Quadratic Solver.
Although solution times vary greatly, a ten-fold speedup over the Premium Solver,
and hundreds of times faster than the standard Excel Solver, would not be unusual.

Even more dramatic is the effect of the SOCP Barrier Solver in the Premium Solver
Platform Version 7.0 on problems with quadratic constraints that formerly required
the GRG Nonlinear Solver, and on problems with second order cone constraints that
could only be expressed with nonlinear analytic formulas previously: The SOCP
Barrier Solver solves these nonlinear problems nearly as fast as linear problems of
equivalent size!

Programmability Improvements

The Premium Solver and Premium Solver Platform are fully programmable from
Excel"s Visua Basic Application Edition. This means that you can build an
application using the GRG Nonlinear Solver, Simplex LP (or LP/Quadratic) Solver,
Evolutionary Solver, Interval Global Solver, SOCP Barrier Solver, or a field-
installable Solver engine, hide the Premium Solver user interface, and present your
own customized user interface for your end users. To get started, you can turn on
Excel"s Macro Recorder, build your Solver model interactively, and let the Solver
generate a working Visual Basic program for you, which reproduces your interactive
steps whenever it is run, and which includes direct calls to the VBA functions that
control the Solver. A complete summary of the VBA functions supported by both the
standard Excel Solver and the Premium Solver products is included in this Guide.

34

Introduction

Solver User Guide

The Premium Solver products also provide programmatic access to new features such
as the Variables list, the Solver Model dialog, the seven new types of reports, report
outlining, and new options in the Solver Options dialogs for all Solver engines.

Since the programmatic interface is upward compatible with the standard Excel
Solver, you can use your existing VBA code, and extend it as much as you wish to
utilize the new Premium Solver features.

Programmability in greatly expanded in Version 7.0 of the Premium Solver and
Premium Solver Platform, with a new object-oriented AP1 (Application Program-
ming Interface) that allows you to work with high-level objects such as a Problem,
Solver, Engine, Model, and blocks of Variables and Functions. The object-oriented
API is compatible with the Risk Solver Engine object-oriented API, and closely
resembles the object-oriented API of the Solver Platform SDK V7.0.

How to Use This Guide

“Installation” takes you through the simple steps required to install the Premium
Solver product you have licensed, to work with your copy of Microsoft Excel. In
Version 7.0, installation and licensing is easier and more flexible than ever: You can
install the Premium Solver products without first installing the standard Excel Solver,
share a Flexible Use license over a network, and add new license codes in Excel
while the Solver is running, without re-running the Setup program.

“Solver Models and Optimization” — revised for Version 7.0 to cover simulation
optimization — reviews the basic framework of the optimization problems that can be
handled by the Solver, from linear programming problems to the non-smooth
optimization problems handled by the Evolutionary Solver, and the use of new cone
constraints and alldifferent constraints. It describes how a model is made up of
variables, constraints and an objective, and it covers the major types of optimization
problems that you can solve — including convex and non-convex problems —and the
tradeoffs involved.

“Building Solver Models’ —significantly revised for Version 7.0 —is an introduction
to the art of building optimization models in Microsoft Excel, translating from
algebraic notation to spreadsheet formulas and Solver Parameters dialog choices. It
covers multiple selections for decision variables, use of the new Variables button, the
possible forms of constraint left- and right-hand sides, use of the soc and src drop-
downs for cone constraints, and use of the dif dropdown for alldifferent constraints.
It also provides hints on how to build more readable, better-documented models,
such as layout and formatting and use of defined names. It describes models with
variables and constraints spread across multiple worksheets, and the use of new PSI
functions to specify models in Version 7.0.

“Analyzing and Solving Models’ — revised for Version 7.0 — describes how to use
the new Solver Model dialog to analyze your model for linear, quadratic, smooth
nonlinear, and non-smooth constraints and decision variables, automatically select
“valid,” “good” or “best” Solver engines, automatically transform your model to
replace non-smooth functions with additional variables and linear constraints,
automatically find nonlinear or non-smooth formulas that are “exceptions’ to your
desired model type, and control the operation of the Polymorphic Spreadsheet
Interpreter when your model is solved.

“Building Large-Scale Models’ provides a number of valuable hints when building
large-scale spreadsheet models and using external data sources. It describes
modeling techniques such as ratio constraints, fixed-charge constraints, either-or
constraints, constraints for IF functions, piecewise linear constraints, and more. And

Solver User Guide

Introduction 35

it shows how you can use array formulas and functions such as MMULT, and the
SUM, SUMPRODUCT and special add-in functions to define your objective and
constraint formulas in fast problem setup format.

“Simulation Optimization with Risk Solver Engine” —new in Version 7.0 — explains
how you can define and solve problems involving both decision variables (factors
that you can control) and uncertain variables (factors you cannot control that affect
your objective and constraints). The potent combination of the Premium Solver
Platform and its array of Solver engines with Risk Solver Engine for high-speed
Monte Carlo simulation gives you unprecedented power to solve these problems.

“Diagnosing Solver Results’ helps you determine what iswrong if you don"t get the
solution you expect from the Solver, or if you encounter a message other than
“Solver found asolution.” It outlines the most common problems that users have,
based on our technical support experience with the Solver. This chapter covers in
some detail the strengths and limitations of the GRG Solver for smooth nonlinear
problems, the multistart methods and the new Interval Global Solver for smooth
global optimization problems, the Evolutionary Solver for non-smooth problems, and
Simplex versus interior point methods for linear, quadratic, and conic optimization
problems. It aso provides hints on “what to do next” when you have a solution.

“Solver Options’ documents in depth the advanced options and tolerances used by
each of the bundled Solver engines — including the new SOCP Barrier Solver —which
can be set using new multi-tabbed Solver Options dialogs. The effect of each option
and situations where you would likely choose it are described.

“Solver Reports’ describes the contents of reports that may be chosen from the
Solver Results dialog. It shows you how to interpret the numbers in the reports, and
how to use the Sensitivity Report to predict changes in the optimal solution in
response to certain kinds of changes in your input data. This chapter also provides a
detailed look at the new Population Report, Linearity Report and Feasibility Report
in the Premium Solver, and the new Solutions Report, Scaling Report, Structure
Report, and Transformation Report in the Premium Solver Platform Version 7.0.

“Using the Object-Oriented API” —new in Version 7.0 —describes how you can use
the new, high-level object model exposed by the Premium Solver Platform to more
easily control the Solver, obtain solution values and dual values, and even create
applications where the solution of one problem is used to choose and create new
decision variables for another problem. The Premium Solver Platform"s new object-
oriented API is compatible with the object-oriented APIs of Risk Solver Engine,
Frontline"s new tool for high-speed Monte Carlo simulation, and Solver Platform
SDK, Frontline"s new and very popular tool for creating optimization and simulation
applications in a programming language.

“Using Traditional VBA Functions” describes how you can control the Solver using
the “traditional” VBA functions, upward compatible from the standard Excel Solver,
in Visual Basic Application Edition, use the Macro Recorder to create macros
corresponding to your interactive choices, look up the Solver functions in the Object
Browser, and create “turn-key” applications using the Solver.

Using Online Help and the World Wide Web

The enhanced Help system included with your Premium Solver product gives you
online access to much of the information in this Guide. To access this information,
just click on the Help button in any of the Solver dialogs. To access Help for the
standard Solver included with Microsoft Excel when a Premium Solver product is

36

Introduction

Solver User Guide

installed, select Help from the main Excel menu bar. You can type “solver” in the
Index, or look under “Performing What-If Analysis on Worksheet Data’ and
“Analyzing Multiple-Variable Problems” in the Contents.

When you click the Help button in the Solver dialogs, a dialog like the one shown
below appears, that gives you easy access to examples installed with your Premium
Solver product, examples on Frontline"s website, and our online tutorial.

Click the Continue button to return to the Solver dialog. Click the Help button in this
dialog to access online reference information for the Premium Solver Platform.

Premium Solver Platform for Excel [x|

Your license enables use of the Premium Solver Platform For 5 more
davs,

WELCOME! We're here to help vou install, learn about and evaluate the
Premium Solver Platform, and deal with any licensing problems, Please
contact us For sales or tech support at the telephone or email below,

IF wou're just starting with the Premium Solver Platform, we suggest yvou
click the Examples, Online Examples, or Tutorial Online buttons below,

Frontline Swstems, Inc. Email info@salver.com
Incline village, Mewvada, US Tel +1 (775) 8§31-0300 x2
Bury 5t Edmunds, Suffolk, UK Tel +44 {01284) 745021

Continue Enter License Code Help .

Examples Cnline Examples Tutorial Onling

If you're just getting started with the Premium Solver Platform, we highly recom-
mend that you click the “ Examples’ button, which will open the Examples.xls
workbook that is installed with the other Solver files. This workbook contains seven
worksheets with examples illustrating many new Premium Solver Platform features,
including conic optimization and automatic transformation of a model with IF
functions into an equivalent model with integer variables and linear constraints.

Clicking the Online Examples button will open a Web browser to our main
Solutions page on www.solver.com, where you can download a series of additional
example workbooks in Finance, Investment, Production, Distribution, Purchasing,
and Scheduling. Clicking the Tutorial Online button will open a Web browser to
the start of our highly regarded online tutorial about optimization.

You'll find awealth of other useful information about the standard Solver and the
Premium Solver products at Frontline Systems* Web site, www.solver.com. Since
Solver.com is frequently updated, you"ll want to check it periodically for the latest
news about the Solver.

If you have questions, check the Index in this Guide or in the online Help system.
You can also submit questions via the Contact Us page on Solver.com, or send email
to info@solver.com.

Solver-Related Seminars and Books

Although this Guide will provide many valuable hints for making effective use of the
Solver, it does not attempt to teach you how to formulate Solver models or apply
linear and quadratic programming, smooth nonlinear and non-smooth optimization,
or integer programming techniques. To make the most of the Solver, we strongly

Solver User Guide

Introduction 37

recommend that you consult one of the books cited below, or discuss your problem
with someone in your firm or at your local university with a background in operations
research and/or management science. There is a vast literature on problems of
various types and for various industries and business situations that have been solved
successfully with the methods available in the Solver. Don"t reinvent the wheel —
find out how others have solved problems similar to yours!

You may also want to attend a public seminar on spreadsheet optimization and other
advanced techniques in Excel. Because of the popularity of the Excel Solver,
seminars taught by highly regarded instructors are offered in a variety of U.S. cities
and other parts of the world. For the latest information on these seminars, visit
www.solver.com or contact us at info@solver.com.

The Art of Modeling with Spreadsheets: Management Science, Spreadsheet
Engineering, and Modeling Craft by Stephen G. Powell and Kenneth R. Baker,
published by John Wiley & Sons, ISBN 0-471-20937-6. This new textbook is a
valuable aid for anyone using the Premium Solver or Premium Solver Platform,
especially for users building large-scale models. Unlike any other current textbook,
this book teaches you “best practices’ in modeling and spreadsheet engineering, as
well as techniques of linear and nonlinear optimization, Monte Carlo simulation, and
data analysis using Excel. The Premium Solver for Education is included on CD-
ROM with this book, but this version is much less powerful than the commercial
Premium Solver or Premium Solver Platform.

VBA for Modelers - Developing Decision Support Systems Using Microsoft Excel
by S. Christian Albright, published by Duxbury Press, ISBN 0-534-38012-3. This
unique book will prove invaluable to anyone seeking to use VBA (Visual Basic
Application Edition) to programmatically control Microsoft Excel and build custom
applications. It includes a basic introduction to VBA and the Excel object model,
and 16 example applications developed in depth with VBA source code, many of
them calling the Solver“s VBA functions. The applications include blending, product
mix, production scheduling and similar models, plus capital budgeting, stock trading,
option pricing and portfolio optimization.

Spreadsheet Modeling and Decision Analysis: A Practical Introduction to
Management Science, 5™ Edition by Cliff T. Ragsdale, published by South-Western
College Publishing, ISBN 0-324-31256-3. This book, a favorite in new MBA
courses on management science and decision analysis, features an in-depth tutorial
treatment of optimization modeling, including linear and integer programming,
nonlinear optimization, and evolutionary algorithms using Frontline"s Evol utionary
Solver (as well as other management science topics such as forecasting, regression
analysis and simulation). This textbook also includes the Premium Solver for
Education on CD-ROM.

Practical Management Science, 3" Edition by Wayne Winston and S. Christian
Albright, published by Duxbury Press, ISBN 0-534-46512-9. This textbook, also
widely used in new MBA courses on management science, provides an extensive
introduction covering linear and integer programming, nonlinear optimization, and
genetic and evolutionary algorithms using Frontline"s Evolutionary Solver, as well as
other management science topics. This book is slightly more challenging than Cliff
Ragsdal€"s book, but includes an extensive set of spreadsheet models and awhole
chapter on the Evolutionary Solver. It also includes the Premium Solver for
Education on CD-ROM.

Introduction to Mathematical Programming, 4™ Edition by Wayne Winston and
Munirpallam Venkataramanan, published by Duxbury Press, ISBN 0-534-35964-7.
This book focuses entirely on optimization, at a more technical level than the
textbooks described above — including topics in linear algebra, the Simplex method,

38

Introduction

Solver User Guide

goal programming, integer programming and the Branch & Bound method, and the
differential calculus topics underlying nonlinear optimization. It also includes the
Premium Solver for Education on CD-ROM.

Managerial Spreadsheet Modeling and Analysis by Richard Hesse, published by
Richard D. Irwin, ISBN 0-256-21530-8. This“good, but hard to find” book teaches
you how to formulate a model from a complex business situation, using a four-step
process: Picture and paraphrase, verbal model, algebraic model and spreadsheet
model. It covers types of models ranging from simple goalseeking and unconstrained
problems to linear, nonlinear and integer programming problems. And it includes
over 100 Microsoft Excel spreadsheets, covering a wide range of deterministic and
stochastic models.

Model Building in Mathematical Programming, 4™ Edition by H.P. Williams,
published by John Wiley, ISBN 0-471-99788-9. Though it doesn"t cover spreadsheet
optimization, this book is still valuable for its explanation of model-building
approaches, especially if you are building large-scale optimization models. It
provides an in-depth treatment of modeling for linear and integer programming
problems. It mentions nonlinear models only briefly, but it offers a unique treatment
of large-scale model structure and decomposition methods. It also includes a
complete discussion of 24 models drawn from various industries.

Academic References for the Premium Solver

The following academic journal articles, written by the developers of the Excel
Solver, Premium Solver and Premium Solver Platform, describe many of the
algorithms and technical methods used in these products. The first article describes
the design of the original Excel Solver. You can download PDF versions of the first
three articles at http://www.solver.com/academic.htm:

D. Fylstra, L. Lasdon, J. Watson and A. Waren. Design and Use of the Microsoft
Excel Solver. INFORMS Interfaces 28:5 (Sept-Oct 1998), pp. 29-55.

I. Nenov and D. Fylstra. Interval Methods for Accelerated Global Search in the
Microsoft Excel Solver. Reliable Computing 9 (2003): pp. 143-159.

D. Fylstra, “Introducing Convex and Conic Optimization for the Quantitative Finance
Professional,” Wilmott Magazine (March 2005), pp. 18-22.

For a technical description of the nonlinear GRG solver included with the standard
Microsoft Excel Solver and the Premium Solver, please consult the following:

L.S. Lasdon, A. Waren, A. Jain and M. Ratner. Design and Testing of a Generalized
Reduced Gradient Code for Nonlinear Programming. ACM Transactions on
Mathematical Software 4:1 (1978), pp. 34-50.

L.S. Lasdon and S. Smith. Solving Sparse Nonlinear Programs Using GRG.
INFORMS Journal on Computing 4:1 (1992), pp. 2-15.

Solver User Guide Introduction 39

40 Introduction Solver User Guide

Installation and Licensing

What You Need

In order to install the Premium Solver Platform V7.0, you must have first installed
Microsoft Excel 2000, Excel XP, Excel 2003, or Excel 2007 on Microsoft Windows
XP or Windows Server 2003 (standard or x64 versions) or Windows Vista. It is no
longer necessary to have the standard Excel Solver installed.

The Premium Solver and Premium Solver Platform will run on the same hardware
and system software configuration that you“ve used to run Microsoft Excel. If you
try to solve very large models, however, performance may depend on the amount of
main memory (RAM) in your system. Large models with many integer constraints
can take substantially more time to solve, and require more memory than models
without such constraints. Use of the Polymorphic Spreadsheet Interpreter in the
Premium Solver Platform may also require considerable memory. Steps you can take
to improve performance are outlined in the chapter “Building Large-Scale Models.”

Working with Earlier Solver Versions

You can install the Premium Solver Platform V7.0 “adongside” the standard Excel
Solver, or an earlier version of the Premium Solver Platform or Premium Solver, and
use both at the same time interactively. You use the Premium Solver Platform V7.0
via menu choice Tools Premium Solver, and the other version via Tools Solver. In
Excel 2007, you'll see Premium Solver and Solver on the Add-Ins tab.

By default, the PSPSetup program for Version 7.0 will install the Solver files to the
folder C:\Program Files\Frontline Systems\Premium Solver Platform and its
subfolders. The standard Excel Solver is installed within the Microsoft Office folder,
for example C:\Program Files\Microsoft Office\Officel1\Library\Solver. Earlier
versions of the Premium Solver Platform and Premium Solver were also installed into
this folder, backing up and replacing the standard Excel Solver.

If your application uses VBA macros such as SolverOK and SolverSolve to
control the Solver, and you have both the Premium Solver Platform V7.0 and
an earlier Solver installed at the same time, you“ll need to specify whether your
VBA code (which contains a reference to the Solver.xla add-in) should control
the Platform V7.0 or the earlier Solver version. To do this, you simply check or
uncheck the box Load V7 VBA Macros in the Solver Model dialog Options tab
in the Platform V7.0 to ensure that the V7.0 Solver.xla is loaded.

Solver User Guide

Installation and Licensing 41

In Excel 2007, the standard Excel Solver uses an add-in file Solver.xlam —saved in
Excel“s new file format, and named differently from previous versions. So you can
use the standard Solver"s VBA functions such as SolverSolve in amodule with a
reference to Solver.xlam, and also use the Platform V7.0 ,traditiona” VBA functions
in a module with a reference to Solver.xla. But a better option is to use the Platform
V7.0"s new object-oriented API, as described later in this User Guide.

Note: The Premium Solver Platform Version 7.0 works only with field-installable
Solver engines Version 7.0. If the Platform V7.0 finds older versions of the Solver
enginesin its startup directory, you'll receive an error message “ Solver Engineis
incompatible with Premium Solver Platform.” If you receive this message, please
contact Frontline Systems at (775) 831-0300 or info@solver.com for an upgrade
under your Annual Support Contract.

Installing the Software

Installing the Premium Solver Platform or Premium Solver is a straightforward
process. A graphical program PSPSetup.exe, which contains all of the Solver files
in compressed form, will guide you through the steps involved.

To begin the installation, insert the Frontline Systems CD or other media into your
CD or disk drive. On most CD drives, the Setup program will start automatically.
Frontline Systems CDs have a master program that displays a menu, allowing you to
choose among several Setup programs. If nothing happens when you insert the CD,
choose Run... from the Start menu. In the dialog box, type a drive letter such as d:
if required, followed by PSPSetup.exe for either the Premium Solver or Premium
Solver Platform. Then press ENTER or click OK.

If you downloaded PSPSetup.exe, depending on your Windows security settings, you
might be prompted with a message “ The publisher could not be verified. Areyou
sureyou want to run this software?” You may safely click Run in response to this
message.

After a brief pause, a dialog box like the one shown below should appear:

Frontline Systems Premium Solver Platform ¥7.0 E

Welcome to Frontline Systems'
Premium Solver Platform ¥7.0!

This program also installs the Premium Solver W7.0.

This product upgrades the standard Microsoft Excel Solver with
awide range of new capakilties. vou can salve linear and
guadratic programming problems, nonlinear optimization and
global optimization problems, non-smooth problems (using any
Excel functions). and new ordering and permutation problems.

With field-installable Sobkser engines far the Premium Salver
Flatform. wou can sokve challenging optimization problems of
eveny type, up to hundreds of thousands of wariables.

Cancel |

PressENTER or click OK to proceed. Next, you'll choose the installation option
you want from a dialog box like the one on the next page.

42 Installation and Licensing Solver User Guide

Frontline Systems Premium Solver Platform ¥7.0 |

Select a Menu Choice and click Ok

Itztall the Premiun ¢ =/ Premiunm S olver
Uninstall the Premium Salver ¢ Premium Solver Platfarm
E it this Inzstallation Program

To uze this product, vou must have included the Salver when
you installed Microsoft Excel. Menu choice Tool: Solver should
dizplay the Salver Parameters dialog.

If the standard Solver iz not installed, click Cancel to end thiz
inztallation, and mn the Excel or Office Setup program to install
the standard Solver first; then re-run this installation progran.

(] I Cancel

Make sure that the “Install” choice is highlighted, and press ENTER or click OK.
You will then be prompted for a password for this installation, which Frontline
Systems will provide to you. Enter it carefully into the dialog box, and click OK.

Frontline Systems Premium Solver Platfor_. B

Please Enter Installation Password

f

Check yaur email, or contact Frontline Systems by
phione [775-831-0300), fax [775-831-0314) ar email
[infot@zolver.com) to get the installation passward for
a free evaluation. Copy/paste or type it inta the box
above, and click QK. If you don't have the pazsword
right niow, click the Cancel button to awoid ower
wariting the current verzion of the Salver,

aK I Cancel

Once the password is accepted, the PSPSetup program will check whether the 15-day
trial license has been used previously on this PC.

Frontline Systems Premium Solver Platform ¥7.0 [x|

The password was accepted! The next step may
take sewveral seconds - please be patient. Click QK
to proceed, or Cancel to exit this Setup program.

Cancel |

If the PSPSetup program Version 7.0 has been run previously on this computer, or if
some other licensing problem was detected, you may see a dialog like the one below.
If you have a problem, please contact Frontline Systems at (775) 831-0300 or

info@solver.com and provide the numeric code shown in parentheses in the message.

Solver User Guide Installation and Licensing 43

Frontline Systems Premium Solver Platfor._. E

It appears [3] that thiz Setup program has been run
before on thiz PC. Vou can proceed with inzstallation
of the Salver filez, but the autamatically inztalled Trial
Licenze Code may be expired or unuzable,

Contact Frantiine Spstems by phone [775-831-0300),
faw [F72-831-0314] or email [info@zolver. cam) for
aszistance. You can enter a License Code when you
start Excel, select Tools Premium Solver, then Help.

Cancel |

The Setup program then displays a dialog box like the one shown below, where you
can select or confirm the folder to which files will be copied (normally C:\Program
Files\Frontline Systems\Premium Solver Platform). We recommend that you simply
click OK.

Fronthne Systems Premium 5olver Platform.... m

Enter the path or navigate to the directon) where you
wold like to install or remove the Premium Solver
Flatform fles. We recommend that you accept the
default path by clicking OF.

1 Platform)

= o
(== Program Files
[=> Frortling Systems
Premivm er Platform

I c j
Corcel_|

Next, the Setup program looks for a license file Solver.lic that may already exist on
your system — normally the environment variable LSERVRC contains the path to this
license file. If the license file is found, Setup will add a Version 7.0 license code to
this file. If the license file is not found, Setup will install a Solver.lic file containing
the Version 7.0 license code, in the installation folder that was just selected. A dialog
appears explaining the action to be taken; you may proceed or cancel at this point.

Frontline Systems Premium 5olver Platform ¥7.0 [x|

The Soher license file was found at the path:
C:AProgram FilesiMicrozoft Office\OFFICET14LibranhSOLYERAS olver. ic

A 15-day Trial License code for the Premium Saolver Platiorm
will be added to this file. Ifyou dontwantto do this, click

Cancel, then click Exit Setup.
Cancel |

44 Installation and Licensing Solver User Guide

If you click OK, the Solver files will be copied to the installation folder, and the
license file will be created or updated. If you click Cancel and then click Exit Setup
to confirm, the Setup program will exit without copying any files.

A progress dialog appears as the Setup program copies the Premium Solver Platform
files. When this is complete, a dialog like the one below appears to notify you that
the program file Solver32.x11 will be registered as a COM add-in (which takes a few
seconds on some systems).

Frontline Systems Premium Solver Platform ¥7.0 [x|

Allfiles copied. The Fremium Sohser Flatfarm will
nowe be registered. The next step may take several
seconds - please be patient. Click OK to proceed.

When the installation is complete, you'll see a dialog box like the one below.

Frontline Systems Premium Solver Platform ¥7.0 |

The installation was successfull

To use the Premium Solver Platform, start
Excel and select Tools Premium Solver.

Use the Solver Engine dropdown listto select the
standard LP/Quadratic Sokver, the new SOCP
Barrier Sabkser for LP/QF. QCP, and conic problems,
the GRG Soker for nonlinear problems, the Intersal
Global Sobser tar global optimization problems, the
Evolutionary Sobver for non-smoaoth problems, ora
field-installable Salver engine.

“'ou can access Premium Sohver Platform Helpin
the Solver Parameters or Salver Results dialog by
clicking the Help buttan or pressing the F1 key.

Be sure to read any special messages in the final dialog box(es) — they may give you
important hints about new developments since this User Guide was updated. Then
press ENTER or click OK. The Premium Solver Platform V7.0 is now installed.
Simply run Microsoft Excel and choose Tools Premium Solver..., or in Excel 2007
select Premium Solver from the Add-Ins tab, to display the new Solver Parameters
dialog. Initially, the Solver engine dropdown list will contain the names of the five
built-in Version 7.0 Solver engines. If you install additional Solver engines V7.0,
they will also appear in this dropdown list.

Uninstalling the Software

To uninstall or remove any of the Premium Solver products, simply run the PSPSetup
program (or the EngineSetup program for field-installable Solver Engines) and select
the Uninstall choice from the menu in the second dialog box. You can uninstall
Solver engines (with either evaluation or full licenses) without affecting the Premium
Solver Platform.

Solver User Guide Installation and Licensing 45

You can also uninstall the Premium Solver Platform or any of the Solver engines by
choosing Settings Control Panel from the Start menu (or just Control Panel in
Windows XP), and double-clicking the Add/Remove Programs applet. In the list
box below “Currently installed programs’ or “The following software can be
automeatically removed by Windows...,” scroll down if necessary until you reach
lines beginning with “Frontline,” select the Premium Solver Platform or the specific
Solver engine that you want to remove, and click the Add/Remove... button. Click
OK in the confirming dialog box to uninstall the software.

Activating and Deactivating the Software

As explained in the Introduction, the Premium Solver Platform V7.0 uses a different
architecture and interface to Excel than previous versions. Its main program file
Solver32.xll is a COM add-in, an XLL add-in, and a COM server. In Version 7.0,
the add-in file Solver.xla is optional — it is needed only if you wish to use the
“traditional” VBA functions to program the Solver —and if the box Load V7 VBA
Macros in the Solver Model dialog Options tab is checked, Solver32.x1l will load the
V7.0 Solver.xla automatically, as described in the next section.

You can activate and deactivate the Premium Solver Platform V7.0, but the
procedure is different from previous Solver versions, and the dialogs are slightly
different in Excel 2007 and Excel 2000-2003.

Excel 2007

In Excel 2007, you can manage all types of add-ins from one dialog, reached by
clicking the upper left corner button, choosing Excel Options, then choosing Add-ins
in the pane on the left, as shown below.

Excel Opbons 7 | x|

Periomaloe ~
) Vitw and manage Office add-ins

Save Mame

Advnced frontiine Systems Rok Solv

Frontiine 1 PSI Optimization
Premeam Solyver Addin

v
"
_ Add-n Actve Apphaation Add-nd

Prsher

Customization

Trunt Center
Location

Retoutin
Descnption

Manage m S0 [

« | i

You can manage add-ins by selecting the type of add-in from the dropdown list at the
bottom of this dialog. For example, if you select COM Add-ins from the dropdown
list and click the Go button, the dialog shown on the next page appears.

46 Installation and Licensing Solver User Guide

COM Add-Ins

Add-Ins available: (o] 4

Cancel

i

Remove

=l

Location: :\Program Files\Frontling Svstems\Premium Salver Pl

Load Behavior: Load at Skartup

If you uncheck the box next to “Premium Solver Add-In" and click OK, you will
deactivate the Premium Solver Platform V7.0 COM add-in, which will remove
Premium Solver from the Add-Ins tab, and also remove the PSI functions for
optimization from the Excel 2007 Function Wizard.

Excel 2003 and Earlier

In earlier versions of Excel, COM add-ins and other add-ins are managed in separate
dialogs, and the COM Add-In dialog is available only if you display a toolbar which
is hidden by default. To display this toolbar:

1. Onthe View menu, point to Toolbars, and then click Customize.
2. Click the Commands tab.

3. Under Categories, click Tools.

4

Under Commands, click COM Add-Ins and drag your selection to the
toolbar at the top of the Excel window.

Once you have done this, you can click COM Add-Ins on the toolbar to see a list of
the available add-ins in the COM Add-Ins dialog box, as shown above.

If you uncheck the box next to “ Premium Solver Add-In" and click OK, you will
deactivate the Premium Solver Platform V7.0 COM add-in, which will remove
Premium Solver from the Tools menu, and also remove the PSI functions for
optimization from the Insert Function dialog.

Setting Startup Options

By default, when the Premium Solver Platform V7.0 COM add-in Solver32.xll is first
activated — either when you start Excel or when you activate the add-in as described
above — it displays a“ splash screen” to let you know that it is available, and it
ensures that the Version 7.0 Solver.xla is also loaded. If it finds an older version of
Solver.xla already loaded, it will unload this version and load the V7.0 Solver.xla.
You can change these behaviors by setting options in the Solver Model dialog, as
described in this section.

Solver.xla is the add-in that defines the “traditional” VBA functions, such as
SolverOK and SolverSolve, used to programmatically control the Solver. When the
V7.0 version of Solver.xla is loaded, your VBA program calls to the traditional
Solver functions will work with the Premium Solver Platform V7.0.

Solver User Guide

Installation and Licensing 47

In the standard Excel Solver and in earlier versions of the Premium Solver and
Premium Solver Platform, Solver.xla provides both the interactive dialogs and the
“traditional” VBA functions. Hence, if you want to use the Premium Solver Platform
V7.0 and an earlier Solver version at the same time, you must ensure that the earlier
version of Solver.xla is loaded, and that the V7.0 Solver.xla is not loaded
automatically by Solver32.xll.

To do this, select Tools Premium Solver and, in the Solver Parameters dialog, click
the Model button. This will display the Solver Model dialog. Click the Options tab
in this dialog, which will display a dialog pane like the one below.

Solver Model [x|

Original I Transformed I Diagnosis | Qptions |

Advanced
[Req Smooth Check Model

- Use Interactive Optimization

[usepsI Functions
- East Setup

- 3tartup Check Far
¥ show Splash Screen [T sparse ™ Gradients
v Load w7 ¥BA Marros [Active only % Structurs

) Convexity
) Automatic

Help |

@ all 0 Yalid T cood O Bes

r3Select Solver Engines Based on Model Tyvpe
t—‘

The Startup options group in this dialog pane is summarized here. The options“Use
Interactive Optimization” and “Use PS| Functions’ are described in the chapter
“Building Solver Models.” In the Premium Solver, an abbreviated dialog consisting
of just these options and the Startup options is displayed. All of the options on this
pane are documented in the chapter “Analyzing Solver Models.”

Show Splash Screen

If this box is checked, a“ splash screen” is briefly shown when the Premium Solver
Platform COM add-in is first activated — typically when you first start Excel. If this
box is unchecked, no splash screen is shown.

Load V7 VBA Macros

If this box is checked, the Premium Solver Platform V7.0 COM add-in will load the
V7.0 Solver.xla automatically; any earlier version of Solver.xla will be unloaded.
This ensures that your VBA program calls to functions like SolverOK and
SolverSolve will be executed by the Premium Solver Platform V7.0.

If this box is unchecked, the Premium Solver Platform V7.0 COM add-in will not
load the V7.0 Solver.xla automatically. You must manually ensure that the version
of Solver.xla that you want (V7.0, V6., standard Excel Solver, etc.) is loaded, using
the File Open or Tools Add-Ins menu commands.

To use the standard Excel Solver or an earlier version of the Premium Solver or
Premium Solver Platform at the same time as the Premium Solver Platform V7.0,
ensure that the earlier version of Solver.xla is loaded. Use Tools Solver to access the
Solver Parameters dialog of the earlier version, and Tools Premium Solver to access

48

Installation and Licensing

Solver User Guide

the V7.0 Solver Parameters dialog. The “traditional” VBA functions will work with
the earlier version; the new object-oriented API always works with Version 7.0.

Note: Earlier versions of the Premium Solver Platform installed an add-in function
module DotPrd32.xll that defined functions DOTPRODUCT, QUADPRODUCT
and QUADTERM. This module is not required in Version 7.0; the main program
file Solver32.xll automatically defines these functions.

Licensing the Software

A license is a grant of rights, from Frontline Systems to you, to use our software in
specified ways. Information about a license is encoded in a license code. Several
types of licenses are available for both the Premium Solver Platform and field-
installable Solver engines.

Frontline offers two basic types of licenses for development of your model and
application: Standalone Licenses and Flexible Use (often called “ Concurrent”)
Licenses. A Standalone License enables use on a single PC; a Flexible Use License
enables shared use among several PCs on a network. The “Software License and
Limited Warranty” section in the front of this User Guide describes the details of
these licenses. Other types of licenses are available for runtime use: See the
discussion on www.solver.com, then contact Frontline Systems for advice on license
types best suited for your situation.

You can evaluate the Premium Solver Platform free of charge for a limited period —
typically 15 days — using a special trial license code that is copied to your PC by the
PSPSetup program. To obtain license codes that enable use of the Premium Solver
Platform for longer periods of time or on a permanent basis, please contact Frontline
Systems at (775) 831-0300 or info@solver.com.

If your trial or time-limited license code is within one week of its expiration date, or
if some other licensing problem was detected, you'll see adialog box like the one
below when you first select Tools Premium Solver... You can display this dialog at
any time by clicking the Help button in the main Solver Parameters dialog.

Premium Solver Platform for Excel [x|

Your license enables use of the Premium Solver Plakform Y7.0 for 7
more days.

WELCOME! We're here to help vou install, learn about and evaluate the
Premium Solver Platform, and deal with any licensing problems. Please
conktact us for sales or kech support at the telephone or email below,

IF vou're just starting with the Premium Sokver PlatFarm, we sugagest vou
click the Examples, Cnline examples, or Tutorial Online buttons below,

Frontline Swstems, Inc, Email info@solver,com
Indline village, Mevada, LIS Tel +1 (775) §31-0300 x2

Continue Enter License Code Help

Examples Cnline Examples Tutorial Online

Click the Continue button to return to the Solver Parameters dialog; you will be able
to create or edit a Solver model using the Add, Change and Delete buttons, but if
your trial license is expired, you'll receive alicensing error message if you click the

Solver User Guide

Installation and Licensing 49

Solve button or the Check Model button in the Solver Model dialog. Click the Help
button to display online Help information for the Premium Solver Platform.

Click the Enter License Code button to display the dialog shown below.

Enter License Code [x|

Lock Code: Or4el120

Use this dialog to enter a license code For a trial, permanent
or other license, For either the Premium Solver Platform or a
Salver engine, Please give us the Lock Code displayved above
by phone or email. \We'l reply with a license code, also by
phone or email, We recommend that wou select the whole
license code string, Ctrl-C to copy, then dick in the edit box
below and Ckrl-Y to Paste. Then click the OF button,

Frontline Systems, Inc, Email info@salver.com
Incline vilage, Nevada, 1S Tel +1 {775) §31-0300 =2
[a]4 Cancel Help

As instructed in this dialog, contact Frontline Systems at (775) 831-0300 or send
email to info@solver.com. Give us the Lock Code displayed in this dialog. When
you receive a license code (most often by email) from Frontline Systems, select the
entire code, copy and paste it into the edit box as shown, and click OK. That"sall
there is to it! Your new license code should be activated immediately.

If you are unable to add the license code using the Enter License Code dialog box,
you can use NotePad or WordPad to edit the file Solver.lic (it is a plain ASCII text
file), and append the license code to the end of the file.

If you're just getting started with the Premium Solver Platform, the initial Help
dialog is a great place to start. We highly recommend that you click the Examples
button, which will open the Examples.xls workbook that is installed with the other
Solver files. You can also click the Online Examples button or the Tutorial Online
button, which will open a Web browser to additional examples or our tutorial on
www.solver.com.

Installing Solver Engines

Toinstall additiona Solver engines, you'll follow steps similar to those outlined
above for the Premium Solver Platform, but youll be running the program
EngineSetup.exe. When you select the “Install” choice from the menu, you'll be
prompted for an installation password, which will be different from the one used for
the PSPSetup program.

You can evaluate any or all of the field-installable Solver engines free of charge for a
limited period — typically 15 days — using a special trial license code that is copied to
your PC by the EngineSetup program. (This 15-day period runs independently from
any evaluation period for the Premium Solver Platform.) To obtain license codes
that enable use of a specific Solver engine for longer periods of time or on a perma-
nent basis, please contact Frontline Systems at (775) 831-0300 or info@solver.com.

After you press ENTER or click OK in the final EngineSetup dialog box, your Solver
engine is installed and ready to use. Simply run Microsoft Excel and choose Tools
Premium Solver... to display the Solver Parameters dialog. Then open the Solver

50

Installation and Licensing

Solver User Guide

engine dropdown list — the hame of your new Solver engine should appear in the list.
Click the Options button to display a Solver Options dialog for your new Solver
engine. If you click the Help button in this Solver Options dialog, you'll gain access
to Solver engine-specific Help — including information on the status of your license,
if you are evaluating the Solver engine.

You can enter a new license code for a Solver engine just as described above for the
Premium Solver Platform: Starting in the Solver engine Options dialog, click the
Help button (this will display the license status and/or time remaining for the Solver
engine trial license), then click the button Enter License Code. You can also enter a
license code by clicking the Help button directly in the Solver Parameters dialog; the
Help dialog will display the license status and/or time remaining for the Premium
Solver Platform and its bundled Solver Engines rather than the field-installable
Solver engines, but you can still use the Enter License Code button in this dialog to
enter a license code for any Solver engine.

Solver User Guide

Installation and Licensing 51

52 Installation and Licensing Solver User Guide

Solver Models and Optimization

Introduction

This chapter explains the principles behind spreadsheet Solvers, including the types
of problems you can solve, types of constraints (regular, integer, conic, alldifferent)
you can specify, the nature of linear, quadratic and nonlinear functions, convex and
non-convex functions, smooth and non-smooth functions, and the algorithms and

methods used by the Premium Solver Platform and field-installable Solver engines.

If you are just starting out with the Solver, you may find it helpful to read the first
section below, “Elements of Solver Models,” and then proceed to the next chapter,
“Building Solver Models,” for a hands-on example. If you have been using the
Solver for awhile, and you“d like a more in-depth review of the mathematical
relationships found in Solver models, and the optimization methods and algorithms
used by the Solver, read the later, more advanced sections of this chapter. We
recommend that even experienced users read the new sections on convex and conic
optimization and on simulation optimization in this chapter.

Elements of Solver Models

The basic purpose of the Solver is to find a solution — that is, values for the variables
or Changing Cells in your model — that satisfies the constraints and that maximizes or
minimizes the objective or Set Cell value (if thereisone). Let's examine this
framework more closely.

The model you create for use with the Solver is no different from any other
spreadsheet model. It consists of input values; formulas that calculate values based
on the input values or on other formulas; and other elements such as formatting. You
can practice “what if” with a Solver model just as easily as with any other spread-
sheet model. This familiar concept can be very useful when you wish to present your
results to managers or clients, who are usually “spreadsheet literate” even if they are
unfamiliar with Solvers or optimization.

Decision Variables and Parameters

Some of the input values may be fixed numbers, which you cannot change in the
course of finding a solution — for example, prevailing interest rates or supplier's
prices. We'll call these values parameters of the model. Often you will have several
“cases,” “scenarios,” or variations of the same problem to solve, and the parameter

Solver User Guide

Solver Models and Optimization 53

values will change in each problem variation. Such parameter values may be
conveniently captured using the Excel Scenario Manager. But the parameter values
will be fixed numbers for any given run of the Solver — unless you“re modeling the
parameters as uncertain values, as discussed below under “ Simulation Optimization.”

Other input values may be quantities that are variable, or under your control in the
course of finding a solution. We"ll refer to these as the variables, decision variables,
or Changing Cells. The Solver will find optimal values for these variables or cells.
Often, some of the same cell values you use to play “what if” are the ones for which
you'll want the Solver to find solution values. These cells are listed in the By
Changing Variable Cells edit box of the Solver Parameters dialog.

The Objective Function

The quantity you want to maximize or minimize is called the objective function or
Set Cell. This cell is listed in the Set Cell edit box of the Solver Parameters dialog.
For example, this could be a calculated value for projected profits (to be maximized),
or costs, risk, or error values (to be minimized).

You may have a Solver model that has nothing to maximize or minimize, in which
case the Set Cell edit box will be blank. In this situation the Solver will simply find a
solution that satisfies the constraints. Typically this will be only one of (infinitely)
many such solutions, located close to the starting values of the decision variables.

The Excel Solver also permits you to enter a specific value that you want the
objective function or Set Cell to achieve. This feature was included for compatibility
with the Goal Seek... command in Excel, which allows you to seek a specific value
for a cell by adjusting the value of one other cell on which it depends. In fact,
entering a specific value for the Solver"s Set Cell is exactly the same as leaving the
Set Cell blank and entering an equality constraint for the Set Cell in the Constraint
List Box.

There is rarely a good reason to use the Set Cell Value of edit box in the Solver
Parameters dialog. If your problem requires only a single Set Cell value and a single
variable or Changing Cell with no constraints, you can just use the Goal Seek...
command. If you have nothing to maximize or minimize, we recommend that you
leave the Set Cell blank and enter all of your constraints in the Constraint List Box.

Constraints

Constraints are relations such as A1 >= 0. A constraint is satisfied if the condition it
specifies is true within a small tolerance. This is a little different from a logical
formula such as =A1>=0 evaluating to TRUE or FALSE which you might enter in a
cell. In this example, if Al were -0.0000001, the logical formula would evaluate to
FALSE, but with the default Solver Precision setting, the constraint would be
satisfied. Because of the numerical methods used to find solutions to Solver models
and the finite precision of computer arithmetic, it would be unrealistic to require that
constraints like Al >= 0 be satisfied exactly — such solutions would rarely be found.

In the Excel Solver, constraints are specified by giving a cell reference such as Al or
A1:A5 (the “left hand side”), arelation (<=, = or >=), and an expression for the
“right hand side.” Although Excel allows you to enter any numeric expression on the
right hand side, for reasons that will be explained in the chapter “Building Large-
Scale Models,” we strongly encourage you to use only constants, or references to
cells that contain constant values on the right hand side. (A constant value to the
Solver is any value that does not depend on any of the decision variables.)

54 Solver Models and Optimization Solver User Guide

A constraint such as A1:A5 <= 10 is shorthand for Al <= 10, A2 <= 10, A3 <= 10,
A4 <= 10, A5 <=10. A constraint such as A1:A5 <= B1:B5 is shorthand for Al <=
B1, A2 <= B2, A3 <= B3, A4 <= B4, A5 <= B5.

Another type of constraint is of the form A1:A5 = integer, where A1:A5 are decision
variables. This specifies that the solution values for Al through A5 must be integers
or whole numbers, such as -1, 0 or 2, to within a small tolerance. This form of
constraint, and related forms such as A1:A5 = binary and A1:A5 = alldifferent, are
explored in the next section.

A new type of constraint supported by the Premium Solver Platform is of the form
A1:A5 = conic, where A1:A5 are decision variables. This is called a second order
cone constraint and is further described in the next section.

Solutions: Feasible, “Good” and Optimal

A solution (set of values for the decision variables) for which all of the constraints in
the Solver model are satisfied is called a feasible solution. In some problems, a
feasible solution is already known; in others, finding a feasible solution may be the
hardest part of the problem.

An optimal solution is a feasible solution where the objective function reaches its
maximum (or minimum) value — for example, the most profit or the least cost. A
globally optimal solution is one where there are no other feasible solutions with
better objective function values. A locally optimal solution is one where there are no
other feasible solutions “in the vicinity” with better objective function values — you
can picture thisas a point at the top of a“peak” or at the bottom of a“valley” which
may be formed by the objective function and/or the constraints.

The Solver is designed to find feasible and optimal solutions. In the best case, it will
find the globally optimal solution — but this is not always possible. In other cases, it
will find a locally optimal solution, and in still others, it will stop after a certain
amount of time with the best solution it has found so far. But like many users, you
may decide that it"s most important to find a good solution — one that is better than
the solution, or set of choices, you are using now.

The kind of solution the Solver can find depends on the nature of the mathematical
relationships between the variables and the objective function and constraints (and
the solution algorithm used). As explained below, if your model is smooth convex,
you can expect to find a globally optimal solution; if it is smooth but non-convex,
you will usually be able to find a locally optimal solution; if it is non-smooth, you
may have to settle for a“good” solution that may or may not be optimal.

Below, we summarize the capabilities of the five Solver engines bundled with the
Premium Solver Platform: the LP/Quadratic Solver, SOCP Barrier Solver, nonlinear
GRG Solver, Interval Global Solver, and Evolutionary Solver. (The Premium Solver
includes the Linear Simplex Solver —a subset of the LP/Quadratic Solver, the
nonlinear GRG Solver, and the Evolutionary Solver.) Later sections of this chapter
provide an overview of the optimization methods and algorithms employed by each
of these Solver engines.

Linear Simplex and LP/Quadratic Solver

The linear Simplex Solver finds optimal solutions to problems where the objective
and constraints are all linear functions of the variables. (The term linear function is
explained below, but you can imagine its graph as a straight line.) Since all linear
functions are convex, the Solver normally can find the globally optimal solution, if
one exists. Because a linear function (a straight line) can always be increased or

Solver User Guide

Solver Models and Optimization 55

decreased without limit, the optimal solution is always determined by the constraints;
there isno natural “peak” or “valley” for the objective function itself.

In the Premium Solver Platform, the linear Simplex Solver is extended to the
LP/Quadratic Solver. This Solver handles problems where the constraints are all
linear, and the objective may be linear or quadratic (explained further below). If the
quadratic objective function is convex (if minimizing, or concave if maximizing) the
Solver will normally find a globally optimal solution. If the objective is non-convex
(further explained below), the Solver will find only a locally optimal solution.

SOCP Barrier Solver

The SOCP Barrier Solver in the Premium Solver Platform finds optimal solutions to
problems where the objective and constraints are all linear or convex quadratic
functions of the variables. (This is in contrast to the LP/Quadratic Solver, which
permits only the objective function to be quadratic.) It also finds optimal solutions to
problems with a linear objective, linear constraints, and second order cone (SOC)
constraints; this is called a second order cone programming (SOCP) problem, as
explained further below. Since all linear functions and SOC constraints are convex,
the SOCP Barrier Solver normally finds a globally optimal solution, if one exists.

Nonlinear GRG Solver

The nonlinear GRG Solver finds optimal solutions to problems where the objective
and constraints are all smooth (convex or non-convex) functions of the variables.
(The term smooth function is explained below, but you can imagine a graph —
whether straight or curved — that contains no “breaks.”) For non-convex problems,
the Solver normally can find a locally optimal solution, if one exists — but this may or
may not be the globally optimal solution. A nonlinear objective function can have a
natural “peak” or “valley,” but in most problems the optimal solution is partly or
wholly determined by the constraints. The nonlinear GRG Solver can be used on
problems with all-linear functions, but it is much less effective and efficient than the
LP/Quadratic Solver or the SOCP Barrier Solver on such problems.

If you use multistart methods for global optimization with the nonlinear GRG Solver,
you will have a better chance (but not a guarantee) of finding the globally optimal
solution. The idea behind multistart methods is to automatically start the Solver from
a variety of starting points, to find the best of the locally optimal solutions — ideally
the globally optimal solution. These methods are more fully described (and
contrasted with other methods for global search) below under “Global Optimization”
and in the chapter “ Solver Options.”

Interval Global Solver

The Interval Global Solver finds globally optimal solutions to problems where the
objective and constraints are all smooth (convex or non-convex) functions of the
variables. Unlike the Evolutionary Solver or the GRG Solver with multistart
methods, the Interval Global Solver is normally able to determine for certain that the
solution is globally optimal. The tradeoff is that the Interval Global Solver usually
takes much more time to solve a given problem than the GRG Solver, and this time
rises steeply as the number of variables and constraints in the problem increases.
Hence, the Interval Global Solver is practically able to solve only smaller problems,
compared to the GRG Solver.

56

Solver Models and Optimization Solver User Guide

Evolutionary Solver

The Evolutionary Solver usually finds good solutions to problems where the
objective and constraints include non-smooth functions of the variables — in other
words, where there are no restrictions on the formulas that are used to compute the
objective and constraints. For this class of problems, the Solver will return the best
feasible solution (if any) that it can find in the time allowed.

The Evolutionary Solver can be used on problems with all-smooth functions that may
have multiple locally optimal solutions, in order to seek a globally optimal solution,
or simply a better solution than the one found by the nonlinear GRG Solver aloneg;
however, the Interval Global Solver or the combination of multistart methods and the
GRG Solver are likely to do as well or better than the Evolutionary Solver on such
problems. It can be used on problems with smooth convex functions, but it is usually
less effective and efficient than the nonlinear GRG Solver on such problems.
Similarly, it can be used on problems with all-linear functions, but there is little point
in doing so when the Simplex, LP/Quadratic, or SOCP Barrier Solver is available.

More About Constraints

This section explains in greater depth the role of certain types of constraints,
including bounds on the decision variables, equality and inequality constraints,
second order cone constraints, and different forms of integer constraints.

Bounds on the Variables

Constraints of the form Al >= -5 or Al <= 10 (for example), where Al is a decision
variable, are called bounds on the variables and are treated specially by the Solver.
These constraints affect only one variable, whereas general constraints have an
indirect effect on several variables that have been used in a formula such as A1+A2.
Each of the Solver engines takes advantage of this fact to handle bounds on the
variables more efficiently than general constraints.

The most common type of bound on a variable is a lower bound of zero (Al >=0),
which makes the variable non-negative. Many variables represent physical quantities
of some sort, which cannot be negative. As a convenience, the Solver Options dialog
offers a check box “Assume Non-Negative,” which automatically places a lower
bound of zero on every variable which has not been given an explicit lower bound via
a constraint in the Constraints list box.

Regardless of the Solver engine chosen, bounds on the variables always help speed
up the solution process, because they limit the range of values that the Solver must
explore. In many problems, you will be aware of realistic lower and upper bounds on
the variables, but they won"t be of any help to the Solver unless you include themin
the Constraints list box! Bounds on the variables are especially important to the
performance of the Evolutionary Solver, the Interval Global Solver, and multistart
methods for global optimization, as discussed below under “Global Optimization”
and in the chapter “ Solver Options.” They are also very important if you want the
Solver to automatically transform your model, replacing non-smooth functions (such
as IF) with additional variables and linear constraints, as explained in the chapter
“Analyzing and Solving Models.”

Equations and Inequalities

Constraints such as Al = 0 are called equality constraints or equations; constraints
such as Al <= 0 are called inequality constraints or simply inequalities. An equality

Solver User Guide

Solver Models and Optimization 57

is much more restrictive than an inequality. For example, if Al contains the formula
=C1+C2, where C1 and C2 are decision variables, then Al <= 0 restricts the possible
solutions to a half plane, whereas Al = 0 restricts the solutions to a line where all
possible values of Cland C2 must sumto 0 (C1 = -C2 within a small tolerance, as
explained above). Since there is only a tiny chance that two randomly chosen values
for C1 and C2 will satisfy C1+C2 = 0, solution methods that rely on random choices,
such as genetic algorithms, may have a hard time finding any feasible solutions to
problems with equality constraints. To satisfy equality constraints, the Solver
generally must exploit properties of the constraint formula — such as linearity or
smoothness, discussed below — to solve for one variable in terms of another.

A linear equality constraint (like C1+C2 = 0 above) maintains the convexity of the
overall problem, but a nonlinear equality constraint is non-convex, and makes the
overall problem non-convex. Interior point methods may have difficulty solving
problems with nonlinear equality constraints, since they restrict the ability of the
Solver to follow the “central path” inside the feasible region.

A problem with only equality constraints (and no objective) is sometimes called a
system of equations. The Solver can be used to find solutions to systems of both
linear and nonlinear equations. If there are several different solutions (sets of values
for the decision variables) that satisfy the equations, most Solver engines will find
just one solution that is“close” to the starting values of the variables; but the Interval
Global Solver in the Premium Solver Platform can be used to find all real solutions
to a system of smooth nonlinear equations —a capability that was once felt to be
beyond the limits of any known algorithm.

Second Order Cone Constraints

The Premium Solver Platform supports constraints of the form A1:A5 = conic. This
is called a second order cone (SOC) constraint; it specifies that the vector formed by
the decision variables A1:A5 must lie within the second-order cone (also called the
Lorentz cone, or “ice cream cone”) of dimension 5 —a convex set that looks like the
figure below in three dimensions.

Algebraically, a second-order cone constraint specifies that, given a value for one
variable, the L2-norm of the vector formed by the remaining variables must not
exceed this value: In linear algebra notation, a; > || a:as||». In Excel, this could be
written as Al >= SQRT(SUMSQ(A2:A5)). You can also use a variant called a
“rotated second order cone” constraint, as explained in the chapter “Building Solver
Models.” A problem with alinear objective and linear or SOC constraints is called a
second order cone programming (SOCP) problem; it is always a convex
optimization problem.

Decision variables that are constrained to be non-negative also belong to a cone,
called the non-negative orthant. A problem with all linear functions —a linear
programming problem —is a special case of an SOCP problem, where the only cone
constraint is non-negativity.

A convex quadratic objective or constraint can be transformed into an equivalent
second order cone constraint. Hence, a problem with a quadratic objective —a

58 Solver Models and Optimization Solver User Guide

quadratic programming or QP problem — or a problem with quadratic constraints —
called a QCP problem —is also a special case of an SOCP problem. The SOCP
Barrier Solver and the MOSEK Solver will automatically transform quadratics into
SOC form internally; you can simply define your quadratic objective and/or con-
straints using ordinary Excel formulas and <= or >= relations, and use these Solver
engines to obtain fast, reliable, globally optimal solutions to your problem.

Integer, Binary and Alldifferent Constraints

As explained in the last section, integer constraints are of the form A1:A5 = integer,
where A1:A5 are decision variables. This specifies that the solution values for Al
through A5 must be integers or whole numbers, such as -1, 0 or 2, to within a small
tolerance. A common special case that can be entered directly in the Constraint List
Box is Al = binary, which is equivalent to specifying Al = integer, A1 >= 0 and Al
<= 1. This implies that A1 must be either 0 or 1 at the solution; hence Al can be
used to represent a“yes/no” decision. Integer constraints have many important
applications, but the presence of even one such constraint in a Solver model makes
the problem an integer programming problem (discussed below), which may be much
more difficult to solve than a similar problem without the integer constraint.

The Premium Solver and Premium Solver Platform support a new type of integer
constraint, called the “alldifferent” constraint. Such a constraint is of the form (for
example) ALl:A5 = alldifferent, where AL:A5 is a group of two or more decision
variables, and it specifies that these variables must be integers in the range 1 to N (N
=5 in this example), with each variable different from all the others at the solution.
Hence, A1:A5 will contain a permutation of integers, such as 1,2,3,4,5 or 1,3,5,2,4.
The alldifferent constraint can be used to model problems involving ordering of
choices, such as the Traveling Salesman Problem.

Functions of the Variables

Since there are large differences in the time it takes to find a solution and the kinds of
solutions — globally optimal, locally optimal, or simply “good” — that you can expect
for different types of problems, it pays to understand the differences between linear,
quadratic, smooth nonlinear, and non-smooth functions, and especially convex and
non-convex functions. To begin, let"s clarify what it means to say that the spread-
sheet cells you select for the objective and constraints are “functions of the decision
variables.”

The objective function in a Solver problem is a cell calculating a value that depends
on the decision variable cells; the job of the Solver is to find some combination of
values for the decision variables that maximizes or minimizes this cell*s value.
During the optimization process, only the decision variable cells are changed; all
other “input” cells are held constant. If you analyze the chain of formulas that
calculates the objective function value, you will find that parts of those formulas
(those which refer to non-decision variable cells) are unchanging in value and could
be replaced by a numeric constant for the purposes of the optimization.

If you have constant values on the right hand sides of constraints, then the same
observation applies to the left hand sides of constraints: Parts of the constraint
formulas (those which refer to non-decision variable cells) are unchanging in value,
and only the parts that are dependent on the decision variables “count” during the
optimization.

When you consider whether your objective and constraints are linear, quadratic,
smooth nonlinear, or non-smooth, or convex or non-convex functions of the

Solver User Guide

Solver Models and Optimization 59

variables, always bear in mind that only the parts of formulas that are dependent on
the decision variables “count.” Below, we explain that linear functions are most
desirable, and non-smooth and non-convex functions are least desirable in a Solver
model (if you want the fastest and most reliable solutions). A formula such as
=IF(C1>=10,D1,2*D1) is non-smooth if C1 depends on the decision variables; but if
C1 doesn’'t depend on the variables, then only D1 or 2*D1 — not both — can be
selected during the solution process. Hence if D1 is a linear function of the variables,
then the IF expression is also a linear function of the variables.

Y ou may also find that a function that is “bad” (non-smooth or non-convex) over its
full domain (any possible values for the decision variables) may be “good” (smooth
and/or convex) over the domain of interest to you, determined by other constraints
including bounds on the variables. For example, if C1 depends on the variables, then
=IF(C1>=10,D1,2*D1) is non-smooth over its full domain, but smooth — in fact
linear —if C1 is constrained to be 10 or more. =SIN(C1) is non-convex over its full
domain, but is convex from —pi to 0, or from pi to 2*pi.

Convex Functions

The key property of functions of the variables that makes a problem “easy” or “hard”
to solve is convexity. If all constraints in a problem are convex functions of the
variables, and if the objective is convex if minimizing, or concave if maximizing,
then you can be confident of finding a globally optimal solution (or determining that
there is no feasible solution), even if the problem is very large — thousands to
hundreds of thousands of variables and constraints.

In contrast, if any of the constraints are non-convex, or if the objective is either non-
convex, concave if minimizing, or convex if maximizing, then the problem is far
more difficult: You cannot be certain of finding a feasible solution even if one exists;
you must either “settle for” alocally optimal solution, or else be prepared for very
long solution times and rather severe limits on the size of problems you can solve to
global optimality (a few hundred to perhaps one thousand variables and constraints),
even on the fastest computers. So it pays to understand convexity!

Geometrically, a function is convex if, at any two points x and y, the line drawn from
x to y (called the chord from x to y) lies on or above the function —as shown in the
diagram below, for a function of one variable. A function is concave if the chord
from x to y lies on or below the function. This property extends to any number of
z<dimensions' or variables, where x = (X4, X, ..., Xp) and y =(y1, Y2, ..., Yn)-

J®),/

X ¥

Algebraically, a function f is convex if, for any points x and y, and any t between 0
and 1, f(tx + (1-t)y) <= tf(x) + (1-t)f(y). A function fis concave if —f is convex, i.e.
if f(tx + (L-t)y) >=tf(x) + (1-t)f(y). A linear function —described below — is both
convex and concave: The chord from x to y lies on the line, and f(tx + (1-t)y) =
tf(x) + (1-0)f(y). Aswe'll see, aproblem with all linear functions is the simplest
example of a convex optimization problem that can be solved efficiently and reliably
to very large size.

A non-convex function “curves up and down.” A familiar exampleisthe sine
function (SIN(C1) in Excel), which is pictured on the next page.

60 Solver Models and Optimization Solver User Guide

-1

The feasible region of an optimization problem is formed by the intersections of the
constraints. The intersection of several convex constraints is always a convex region,
but even one non-convex function can make the whole region non-convex —and
hence make the optimization problem far more difficult to solve.

Linear Functions

In many common cases, the objective and/or constraints are linear functions of the
variables. This means that the function can be written as a sum of terms, where each
term consists of one decision variable multiplied by a (positive or negative) constant.
Algebraically, we can write:

ax,+ax, +..+ax,

where the as, which are called the coefficients, stand for constant values and the xs
stand for the decision variables. A common example is =SUM(C1:C5), where C1:C5
are decision variables and the as are all 1. Note that a linear function does not have
to be written in exactly the form shown above on the spreadsheet. For example, if
cells C1 and C2 are decision variables, B1 = C1+C2, and B2 = A1*B1 where Al is
constant in the problem, then B2 is a linear function (=A1*C1+ A1*C2).

Geometrically, a linear function is always a straight line, in n-dimensional space
where n is the number of decision variables. Below is a perspective plot of 2x, +1x..
As noted above, a linear function is always convex.

10 4
5 L
7 2
-10 0
2

o 2

Remember that the as need only be constant in the optimization problem, i.e. not
dependent on any of the decision variables. For example, suppose that the function is
=B1/B2*C1 + (D1*2+E1)*C2, where only C1 and C2 are decision variables, and the
other cells contain constants (or formulas that don“t depend on the variables). This
would still be a linear function, where a, = B1/B2 and a, = (D1*2+E1) are the
coefficients, and x, = C1 and x, = C2 are the variables.

Note that the SUMPRODUCT and DOTPRODUCT functions compute exactly the
algebraic expression shown above. If we were to place the formula =B1/B2 in cell

Solver User Guide

Solver Models and Optimization 61

Al, and the formula =(D1*2+EL1) in cell A2, then we could write the example
function above as:

=SUMPRODUCT(A1:A2,C1:C2)

This is simple and clear, and is also useful for fast problem setup as described in the
chapter “Building Large-Scale Models.” If the decision variable cells that should
participate in the expression are not all contiguous on the spreadsheet, the
DOTPRODUCT function can be used instead of SUMPRODUCT.

As explained below in the section “Derivatives, Gradients, Jacobians and Hessians,”
each coefficient a, in the linear expression a.x, + a,x, + ... + ax, is the first partial
derivative of the expression with respect to variable x. These partial derivatives are
always constant in a linear function —and all higher-order derivatives are zero.

A nonlinear function (explained further below), as its name implies, is any function
of the decision variables which is not linear, i.e. which cannot be written in the
algebraic form shown above — and its partial derivatives are not constant. Examples
would be = 1/C1, =LOG(C1), =C1”2 or =C1*C2 where both C1 and C2 are decision
variables. If the objective function or any of the constraints are nonlinear functions
of the variables, then the problem cannot be solved with an LP Solver.

Testing for a Linear Model

What if you have already created a complex spreadsheet model without using
functions like SUMPRODUCT, and you aren“t sure whether your objective function
and constraints are linear or nonlinear functions of the variables? If you have the
Premium Solver Platform, you can easily find out by pressing the Check Model
button in the Solver Model dialog, as explained in the chapter “ Analyzing and
Solving Models.” Moreover, you can easily obtain a report showing exactly which
cells contain formulas that are nonlinear.

If you have the Premium Solver, you can try solving the model with the standard
Simplex LP Solver. If the problem contains nonlinear functions of the variables, you
will (in virtually all cases) receive the message “ The linearity conditions required by
this Solver engine are not satisfied” in the Solver Results dialog. Y ou can then ask
the Solver to produce a Linearity Report, which shows whether the objective and
each of the constraints is a linear or nonlinear function of the variables. This report
also shows which variables occur linearly, and which occur nonlinearly in your
model — another way of summarizing the same information. You should next look
closely at the objective or constraint formulas that the Linearity Report indicates are
nonlinear, and decide whether (or not) the formula can be written in linear form.

Quadratic Functions

The last two examples of nonlinear functions above, =C172 or =C1*C2, are simple
instances of quadratic functions of the variables. A more complex example is:

=2*C1"2+3*C2"2+4*C1*C2+5*C1

A quadratic function is a sum of terms, where each term is a (positive or negative)
constant (again called a coefficient) multiplied by a single variable or the product of
two variables. In linear algebra notation, we can write x"Qx + cx where x is a vector
of n decision variables, Q is an n x n matrix of coefficients, and c is an n vector of
linear coefficients. The QUADPRODUCT function computes values of exactly this
form. If we put the constant 5 in A1, 0in B1, 2in A2, 4in B2, 0in A3 and 3 in B3,
then we could write the above example as:

=QUADPRODUCT(C1:C2,A1:B1,A2:B3)

62 Solver Models and Optimization Solver User Guide

Common uses for quadratic functions are to compute the mean squared error in a
curve-fitting application, or the variance or standard deviation of security returns in a
portfolio optimization application.

As explained below in the section “Derivatives, Gradients, Jacobians and Hessians,”
the coefficients that multiply single variables in a quadratic function are the first
partial derivatives of the function with respect to those variables; the coefficients that
multiply the products of two variables are the second partial derivatives of the
function, with respect to those two variables. In a quadratic function, these first and
second order derivatives are always constant, and higher order derivatives are zero.
The matrix Q of second partial derivatives is called the Hessian of the function.

Convex, Concave and Non-Convex Quadratics

A quadratic function of at least two variables may be convex, concave, or non-
convex. The matrix Q in the general form x'Qx has a closely related algebraic
property of definiteness. If the Q matrix is positive definite, the function is convex; if
the Q matrix is negative definite, the function is concave. You can picture the graph
of these functions as having a“round bowl” shape with a single bottom (or top). If
the Q matrix is semi-definite, the function has a bowl shape with a“trough” where
many points may have the same objective value, but it is still convex or concave. If
the Q matrix is indefinite, the function is non-convex: It hasa“saddle’ shape, but its
true minimum or maximum is not found in the “interior” of the function but on its
boundaries with the constraints, where there may be many locally optimal points.
Below is a plot of an example non-convex quadratic x;% + 2x,X, — % (X,* — 1):

A problem with convex quadratic functions is easily solved to global optimality up to
very large size, but a problem with non-convex quadratic functions is a difficult
global optimization problem that, in general, will require solution time that grows
exponentially with the number of variables. The way that the Solver handles such
functions is explained further below under “Quadratic Programming.”

Nonlinear and Smooth Functions

A nonlinear function is any function of the variables that is not linear, i.e. which
cannot be written in the algebraic form:

ax, +ax +..+ax,

Examples, as before, are =1/C1, =LOG(C1), and =C1”2, where C1 is a decision
variable. All of these are called continuous functions, because their graphs are
curved but contain no “breaks.” =IF(C1>10,D1,2*D1) isalso a nonlinear function,
butitis“worse” (from the Solver"s viewpoint) because it is discontinuous: Its graph
contains a “break” at C1=10 where the function value jumps from D1 to 2*D1. At

Solver User Guide

Solver Models and Optimization 63

this break, the rate of change (i.e. the derivative) of the function is undefined. As
explained below in the section “ Derivatives, Gradients, Jacobians and Hessians,”
most Solver algorithms rely on derivatives to seek improved solutions, so they may
have trouble with a Solver model containing functions such as =IF(C1>10,D1,2*D1).
The Interval Global Solver does not accept discontinuous functions at all.

If the graph of the function”s derivative also contains no breaks, then the original
function is called a smooth function. If it does contain breaks, then the original
function is non-smooth. Every discontinuous function is also non-smooth. An
example of a continuous function that is non-smooth is =ABS(C1) —its graph is an
unbroken “V” shape, but the graph of its derivative contains a break, jumping from —
1to +1 at C1=0. Many nonlinear Solver algorithms rely on second order derivatives
of at least the objective function to make faster progress, and to test whether the
optimal solution has been found; they may have trouble with functions such as
=ABS(C1). The Interval Global Solver does not accept any non-smooth functions.

As explained below in the section “Derivatives, Gradients, Jacobians and Hessians,”
general nonlinear functions have first, second, and sometimes higher order
derivatives that change depending on the point (i.e. values of the decision variables)
at which the function is evaluated.

Convex, Concave and Non-Convex Smooth Functions

A general nonlinear function of even one variable may be convex, concave or non-
convex. A function can be convex but non-smooth: =ABS(C1) with its V shape is
an example. A function can also be smooth but non-convex: = SIN(C1) is an
example. But the “best” nonlinear functions, from the Solver“s point of view, are
both smooth and convex (concave for the objective if you are maximizing).

If a smooth function"s second derivative is always nonnegative, it is a convex
function; if its second derivative is always nonpositive, it is a concave function. This
property extends to any number of ,dimensions® or variables, where the second
derivative becomes the Hessian and “nonnegative’ becomes “positive semidefinite.”

Discontinuous and Non-Smooth Functions

Microsoft Excel provides a very rich formula language, including many functions
that are discontinuous or non-smooth. As noted above, discontinuous functions cause
considerable difficulty, and non-smooth functions cause some difficulty for most
nonlinear Solvers; such functions are not accepted by the Interval Global Solver.
Some models can only be expressed with the aid of these functions; in other cases,
you have a degree of choice in how you model the real-world problem, and which
functions you use. Even when you have a“full arsenal” of Solver engines available,
as you do with the Premium Solver products, you"ll get better results if you try to use
the most “ Solver-friendly” functionsin your model.

By far the most common discontinuous function in Excel is the IF function where the
conditional test depends on the decision variables, as in the example
=IF(C1>10,D1,2*D1). Here is a short list of common discontinuous Excel functions:

IF, CHOOSE

LOOKUP, HLOOKUP, VLOOKUP
COUNT

INT, ROUND

CEILING, FLOOR

64

Solver Models and Optimization Solver User Guide

Here is a short list of common non-smooth Excel functions:

ABS
MIN, MAX

Formulas involving relations such as <=, = and >= (on the worksheet, not in the
Constraints list box) and logical functions such as AND, OR and NOT are
discontinuous at their points of transition from FALSE to TRUE values. Functions
such as SUMIF and the database functions are discontinuous if the criterion or
conditional argument depends on the decision variables.

If you arent sure about a particular function, try graphing it (by hand or in Microsoft
Excel) over the expected range of the variables; this will usually reveal whether the
function is discontinuous or non-smooth. If you have the Premium Solver Platform,
just create a model using the function, and use the Solver Model dialog to automatic-
ally diagnose the model type.

The Premium Solver Platform Version 7.0 can automatically transform a model
that uses IF, AND, OR, NOT, ABS, MIN and MAX, and relations <, <=, >= and > to
an equivalent model where these functions and relations are replaced by additional
binary integer and continuous variables and additional constraints, that have the same
effect — for the purpose of optimization — as the replaced functions. This powerful
facility may be able to transform your non-smooth model into a smooth or even linear
model with integer variables. A real-life example is shown in the EXAMPLES
worksheet of the Examples.xls workbook, installed with the Solver files, which you
can easily open from the Solver Parameters dialog by clicking Help, then clicking
Examples. For more information, see the chapter “Analyzing and Solving Models.”

Derivatives, Gradients, Jacobians, and Hessians

To find feasible and optimal solutions, most optimization algorithms rely heavily on
derivatives of the problem functions (the objective and constraints) with respect to
the decision variables. First derivatives indicate the direction in which the function is
increasing or decreasing, while second derivatives provide curvature information.

The partial derivatives of a function f (x1,X,,...,X,) with respect to each variable are
denoted 0f/0x,, df/0x,, ..., 0f/ox,. They give the rate of change of the function in each
dimension. For a linear function a,x, + axx, + ... + ax,, the partial derivatives are the
coefficients: df/ox, = aj, 0f/0x, = a,, and so on.

To recap the comments about derivatives made in the sections above:

Linear functions have constant first derivatives — the coefficients a, —and all
higher order derivatives (second, third, etc.) are zero.

Quadratic functions have constant first and second derivatives, and all higher
order (third, etc.) derivatives are zero.

Smooth nonlinear functions have first and second derivatives that are defined,
but not constant — they change with the point at which the function is evaluated.

Non-smooth functions have second derivatives that are undefined at some points;
discontinuous functions have first derivatives that are undefined at some points.

The gradient of a function f (X3,X,...,X,) is the vector of its partial derivatives:
[of/oxy, Of/dXs, ..., OF0X,]

This vector points in the direction (in n-dimensional space) along which the function
increases most rapidly. Since a Solver model consists of an objective and constraints,

Solver User Guide

Solver Models and Optimization 65

all of which are functions of the variables xy,x,,...,X,, it is often useful to collect these
gradients into a matrix, where each row is the gradient vector for one function:

afllaxl, afllaXZ, veey afl/aXn
aleaxl, aleaXZ, veey aleaxn

Ofn/0Xy, Ofy/0X, ..., Ofy/OX,

This matrix is called the Jacobian matrix. In a linear programming problem, this is
the LP coefficient matrix, and all of its elements (the as) are constant.

The second partial derivatives of a function f (x;,x,,...,X;) with respect to each pair of
variables x; and x; are denoted %/ 0xi0x;. There are n? second partial derivatives,
and they can be collected into an n x n matrix:

0%10%,0%,, 0%I9%,0%, ..., O°FIOX,0%,
0%10%,0%;, 0%10%,0%, ..., 0°F1O%0%,

*10%,0%,, 0%I0%,0%p, ..., O°FIOX0%,

This matrix is called the Hessian matrix. It provides second order (curvature)
information for a single problem function, such as the objective. The Hessian of a
linear function would have all zero elements; the Hessian of a quadratic function has
all constant elements; and the Hessian of a general nonlinear function may change
depending on the point (values of the decision variables) where it is evaluated.

When reading the next section, “ Optimization Problems and Solution Methods,” bear
in mind that the different classes of Solver problems, and the computing time
required to solve these problems, is directly related to the nature of the derivatives
(constant, changing, or undefined) of their problem functions, as outlined above.

For example, because the first derivatives of linear functions are constant, they need
be computed only once —and second derivatives (which are zero) need not be
computed at all. For quadratic functions, the first and second derivatives can be
computed only once, whereas for general nonlinear functions, these derivatives may
have to be computed many times.

A major difference between the Premium Solver Platform and the Premium Solver
and Excel Solver is the method used to compute derivatives. As described in the
chapter “Analyzing and Solving Models,” the Polymorphic Spreadsheet Interpreter in
the Premium Solver Platform can supply fast, accurate derivatives to Solver engines
via a process called automatic differentiation.

What if your optimization problem requires the use of non-smooth or discontinuous
functions? With the Premium Solver Platform, you have several choices. First, for
common non-smooth functions such as ABS, MAX and MIN, and even for some IF
functions, the nonlinear GRG, Large-Scale GRG and Large-Scale SQP Solvers often
yield acceptable results, though you may need to use multistart methods to improve
the chances of finding the optimal solution. Second, you can use the Evolutionary
Solver (which does not require any derivative values) to find a“good” solution,
though you'll have to give up guarantees of finding an optimal solution, and it"s
likely to take considerably more computing time to find a solution. Third, you can
use the automatic transformation feature to replace many of these functions with
additional variables and linear constraints; if all discontinuous or non-smooth
functions in the model are automatically replaced, the problem should be solvable
with the nonlinear Solvers, or even with the linear Solvers in some cases. Fourth,
you can manually reformulate your model with binary integer variables and
associated constraints. You can then use the nonlinear GRG Solver, or even the
linear Simplex or LP/Quadratic Solver, in combination with the Branch & Bound

66 Solver Models and Optimization Solver User Guide

method, to find the true optimal solution to your problem. These ideas are explored
further in the chapter “Building Large-Scale Models.”

Optimization Problems and Solution Methods

A model in which the objective function and all of the constraints (other than integer
constraints) are linear functions of the decision variables is called a linear
programming (LP) problem. (Theterm “programming” dates from the 1940s and the
discipline of “planning and programming” where these solution methods were first
used; it has nothing to do with computer programming.) As noted earlier, a linear
programming problem is always convex.

If the problem includes integer constraints, it is called an integer linear programming
problem. A linear programming problem with some “regular” (continuous) decision
variables, and some variables that are constrained to integer values, is called a mixed-
integer programming (MIP) problem. Integer constraints are non-convex, and they
make the problem far more difficult to solve; see below for details.

A quadratic programming (QP) problem is a generalization of a linear programming
problem. Its objective is a convex quadratic function of the decision variables, and
all of its constraints must be linear functions of the variables. A problem with linear
and convex quadratic constraints, and a linear or convex quadratic objective, is
called a quadratically constrained (QCP) problem.

A model in which the objective function and all of the constraints (other than integer
constraints) are smooth nonlinear functions of the decision variables is called a
nonlinear programming (NLP) or nonlinear optimization problem. If the problem
includes integer constraints, it is called an integer nonlinear programming problem.
A model in which the objective or any of the constraints are non-smooth functions of
the variables is called a non-smooth optimization (NSP) problem.

Linear Programming

Linear programming (LP) problems are intrinsically easier to solve than nonlinear
(NLP) problems. First, they are convex, where a general nonlinear problem is often
non-convex. Second, since all constraints are linear, the globally optimal solution
always lies at an “extreme point” or “corner point” where two or more constraints
intersect. (In some problems there may be multiple solutions with the same objective
value, all lying on a line between two corner points.) This means that an LP Solver
needs to consider many fewer points than an NLP Solver, and it is always possible to
determine (subject to the limitations of finite precision computer arithmetic) that an
LP problem (i) has no feasible solution, (ii) has an unbounded objective, or (iii) has a
globally optimal solution.

Problem Size and Numerical Stability

Because of their structural simplicity, the main limitations on the size of LP problems
that can be solved are time, memory, and the possibility of numerical “instabilities’
which are the cumulative result of the small errors intrinsic to finite precision
computer arithmetic. The larger the model, the more likely it is that numerical
instabilities will be encountered in solving it.

Most large LP models are sparse in nature: While they may include thousands of
decision variables and constraints, the typical constraint will depend upon only a few
of the variables. This means that the Jacobian matrix of partial derivatives of the

Solver User Guide

Solver Models and Optimization 67

problem functions, described earlier, will have many elements that are zero. Such
sparsity can be exploited to save memory and gain speed in solving the problem.

The Simplex Method

LP problems are most often solved via the Simplex method. The standard Microsoft
Excel Solver uses a straightforward implementation of the Simplex method to solve
LP problems, when the Assume Linear Model box is checked in the Solver Options
dialog. The Premium Solver uses an improved implementation of the Simplex
method with bounds on the variables, the dual Simplex method, and steepest-edge
pricing, when the Simplex LP Solver is chosen from the Solver engine dropdown list
in the Solver Parameters dialog. The Premium Solver Platform uses a far more
sophisticated implementation of the Simplex method which exploits sparsity in the
LP model and uses techniques such as presolving, matrix factorization using the LU
decomposition , a fast and stable LU update, and dynamic Markowitz refactorization.

The Large-Scale LP/QP Solver engine for the Premium Solver Platform uses an even
more powerful implementation of the Simplex method, with performance rivaling the
best LP solvers available. It has been tested on LP problems with over two million
variables and constraints.

The Large-Scale SQP Solver engine for the Premium Solver Platform includes a
powerful linear programming Solver that uses “active set” methods (closely related to
the Simplex method). It is practical for problems up to 100,000 variables and
constraints. This same Solver engine also handles large-scale QP and NLP problems
very efficiently.

The XPRESS Solver engine is Frontline"s fastest and most powerful Solver for linear
programming and especially mixed-integer linear programming problems. Its ultra-
sophisticated primal and dual Simplex and Barrier methods, combined with state-of-
the-art Branch and Cut methods for integer problems, yield solutions in record time.

Quadratic Programming

Quadratic programming problems are more complex than LP problems, but simpler
than general NLP problems. They have only one feasible region with “flat faces’ on
its surface (due to their linear constraints), but the optimal solution may be found
anywhere within the region or on its surface. Since a QP problem is a special case of
an NLP problem, it can be solved with the standard nonlinear GRG Solver, but this
may take considerably more time than solving an LP of the same size. The Premium
Solver Platform"s LP/Quadratic Solver solves QP problems very efficiently, using a
variant of the Simplex method to determine the feasible region, and special methods
based on the properties of quadratic functions to find the optimal solution.

Most quadratic programming algorithms are specialized to handle only positive
definite (or negative definite) quadratics. The LP/Quadratic Solver, however, can
also handle semi-definite quadratics; it will find one of the equivalent (globally)
optimal solutions —which one depends on the starting values of the decision
variables. When applied to an indefinite quadratic objective function, the
LP/Quadratic Solver provides only the guarantees of a general nonlinear Solver: It
will converge to a locally optimal solution (either a saddle point in the interior, or a
locally optimal solution on the constraint surface).

The Large-Scale LP/QP Solver, Large-Scale GRG Solver, Large-Scale SQP Solver,
KNITRO Solver, and XPRESS Solver engines can all be used to efficiently solve
large QP problems.

68 Solver Models and Optimization Solver User Guide

Quadratically Constrained Programming

A problem with linear and convex quadratic constraints, and a linear or convex
quadratic objective, is called a quadratically constrained (QCP) problem. Such a
problem is more general than a QP or LP problem, but less general than a convex
nonlinear problem. The Simplex-based methods used in the Premium Solver
Platform”s LP/Quadratic Solver, the Large-Scale LP/QP Solver, and the XPRESS
Solver Engine handle only quadratic objectives, not quadratic constraints. But QCP
problems — since they are convex —can be solved efficiently to global optimality
with Barrier methods, also called Interior Point methods.

The Premium Solver Platform"s new SOCP Barrier Solver uses a Barrier method to
solve LP, QP, and QCP problems. The MOSEK Solver Engine uses an even more
powerful Barrier method to solve very large scale LP, QP, and QCP problems, as
well as smooth convex nonlinear problems. Both of these Solvers form a logarithmic
“barrier function” of the constraints, combine this with the objective, and take a step
towards a better point on each major iteration. Unlike the Simplex method, which
moves from one corner point to another on the boundary of the feasible region, a
Barrier method follows a path — called the central path — that lies strictly within the
feasible region.

A Barrier method relies heavily on second derivative information, specifically the
Hessian of the Lagrangian (combination of the constraints and objective) to
determine its search direction on each major iteration. The ability of the Poly-
morphic Spreadsheet Interpreter in the Premium Solver Platform to efficiently
compute this second derivative information is key to the performance of this method.

Second Order Cone Programming

Second order cone programming (SOCP) problems are a further generalization of
LP, QP, and QCP problems. An SOCP has a linear objective and one or more linear
or second order cone (SOC) constraints. As explained earlier, a second order cone
constraint such as“A1:A5 = conic” specifiesthat the vector formed by the decision
variables A1:A5 must lie within the second-order cone (also called the Lorentz cone)
of dimension 5. Algebraically, the constraint specifies that a; > || &:as||,. SOCPs
are always convex; the Premium Solver Platform"s new SOCP Barrier Solver and the
MOSEK Solver Engine are both designed to solve SOCP problems, efficiently to
global optimality.

Any convex quadratic constraint can be converted into an SOC constraint, with
several steps of linear algebra. A convex quadratic objective x'Qx + cx can be
handled by introducing a new variable t, making the objective minimize t, adding a
constraint X Qx + cx <= t, and converting this constraint to SOC form. The SOCP
Barrier Solver and the MOSEK Solver Engine both make these transformations
automatically; in effect they solve all LP, QP, QCP and SOCP problems in the same
way. Second order cone programming can be viewed as the natural generalization
of linear programming, and is bound to become more popular in the future.

You can also solve an SOCP with the GRG Nonlinear Solver or the Large-Scale
GRG, Large-Scale SQP, or KNITRO Solver engines. Although these Solvers do not
recognize SOC constraints directly, the Premium Solver Platform will compute
values and derivatives for SOC constraints, based on their algebraic form shown
above. Hence, these general nonlinear Solvers handle SOC constraints like other
general nonlinear constraints. Using these Solvers, you can find optimal solutions for
problems containing a mix of linear, general nonlinear, and SOC constraints —
bearing in mind that such problems may be non-convex.

Solver User Guide

Solver Models and Optimization 69

Nonlinear Optimization

As outlined above, nonlinear programming (NLP) problems are intrinsically more
difficult to solve than LP, QP, QCP or SOCP problems. They may be convex or
non-convex, and since their second derivatives are not constant, an NLP Solver must
compute or approximate the Hessians of the problem functions many times during the
course of the optimization. Since a non-convex NLP may have multiple feasible
regions and multiple locally optimal points within such regions, there is no simple or
fast way to determine with certainty that the problem is infeasible, that the objective
function is unbounded, or that an optimal solution isthe “global optimum” across all
feasible regions. But some NLP problems are convex, and many problems include
linear or convex quadratic constraints in addition to general nonlinear constraints.
Frontline"s field-installable nonlinear Solver engines are each designed to take
advantage of NLP problem structure in different ways, to improve performance.

If you use the GRG Nonlinear Solver —the only choice for NLPs in the standard
Excel Solver and the Premium Solver — bear in mind that it applies the same method
to all problems, even those that are really LPs or QPs. If you don"t select another
Solver engine from the dropdown list box in the Solver Parameters dialog (or, in the
standard Microsoft Excel Solver, if you don“t check the Assume Linear Model box in
the Solver Options dialog), this Solver will be used —and it may have difficulty with
LP or QP problems that could have been solved easily with one of the other Solvers.
The Premium Solver Platform can automatically determine the type of problem, and
select only the “good” or “best” Solver engine(s) for that problem.

The GRG Method

The standard Excel Solver, Premium Solver and Premium Solver Platform include a
standard nonlinear GRG Solver, which uses the Generalized Reduced Gradient
method as implemented in Lasdon and Waren"s GRG2 code. The GRG method can
be viewed as a nonlinear extension of the Simplex method, which selects a basis,
determines a search direction, and performs a line search on each major iteration —
solving systems of nonlinear equations at each step to maintain feasibility. This
method and specific implementation have been proven in use over many years as one
of the most robust and reliable approaches to solving difficult NLP problems.

As with the Simplex method, the GRG method in the standard Excel Solver uses a
“dense” problem representation, and its memory and solution time increases with the
number of variables times the number of constraints. It is also subject to problems of
numerical instability, which may be even more severe than for LP and QP problems.
The Large-Scale GRG Solver engine for the Premium Solver Platform uses sparse
storage methods and better numerical methods for nonlinear models, such as matrix
condition testing and degeneracy handling, to solve much larger NLP problems.

The SQP Method

The Large-Scale SQP Solver engine uses a Sequential Quadratic Programming (SQP)
method to solve nonlinear optimization problems. This method forms and solves a
QP subproblem, with a quadratic merit function and linearized constraints, on each
major iteration. Because it includes a highly efficient QP solver, a powerful linear
programming solver using “active set” methods, and sparsity-exploiting matrix
factorization, updating and refactorization methods, the Large-Scale SQP Solver
engine is very fast in solving all types of LP, QP and NLP problems. However, the
SQP method typically follows a path of infeasible trial points until it finds the
solution that is both feasible and optimal. Hence, if you stop the Solver before it

70 Solver Models and Optimization Solver User Guide

reports an optimal solution, the GRG method is far more likely than the SQP method
to return afeasible solution asits “best point so far.”

Interior Point and SLQP Methods

The KNITRO Solver engine uses a Barrier or Interior Point method, specialized for
non-convex problems, to solve general nonlinear optimization problems. As with
the SOCP Barrier and MOSEK Solvers, this method forms a logarithmic “barrier
function” of the constraints, combines this with the objective, and takes a step
towards a better point on each major iteration. (The actual process of taking a step
and the path followed are more complex, because KNITRO assumes that the problem
may be non-convex.) The KNITRO Solver uses the Polymorphic Spreadsheet
Interpreter in the Premium Solver Platform to efficiently compute second derivative
information, but it also has options to work with only first derivative information.

The KNITRO Solver engine also includes a new, high performance Sequential
Linear-Quadratic (SLQP) method, which is an “active set” method similar to the SQP
method. On highly constrained problems, notably those with equality constraints,
this method typically outperforms the Interior Point method. On loosely constrained
or unconstrained problems, the Interior Point method can greatly outperform SQP
and GRG methods, solving problems much larger than either of these methods.
Benchmark studies in the academic literature have demonstrated exceptionally good
performance for the KNITRO Solver, on a wide range of test problems.

The GRG, SQP and Interior Point methods are all subject to the intrinsic limitations
cited above for nonlinear optimization problems: For smooth convex nonlinear
problems, they will (subject to the limitations of finite precision computer arithmetic)
find the globally optimal solution; but for non-convex problems, they can only
guarantee a locally optimal solution. To have a reasonable chance — let alone a
guarantee — that you"ll find the globally optimal solution to a non-convex problem,
you must use special methods for global optimization.

Global Optimization

The Premium Solver Platform includes powerful tools to help you find the globally
optimal solution for a smooth nonlinear non-convex problem. These tools include
multistart methods, which can be used with the nonlinear GRG Solver, the Large-
Scale GRG Solver, the Large-Scale SQP Solver, and the KNITRO Solver; a new
Interval Global Solver that offers, for the first time, powerful interval methods for
global optimization in a commercial software product; and the OptQuest and
Evolutionary Solvers, for global solutions of smooth and non-smooth problems.

The Multistart Method

The basic idea of the multistart method is to automatically run a nonlinear Solver
from different starting points, reaching different locally optimal solutions, then select
the best of these as the proposed globally optimal solution. Both clustering and
topographic search multistart methods are included in the Premium Solver Platform.

The multistart method operates by generating candidate starting points for the
nonlinear Solver (with randomly selected values between the bounds you specify for
the variables). These points are then grouped into “clusters’ — through a method
called multi-level single linkage — that are likely to lead to the same locally optimal
solution, if used as starting points for the Solver. The nonlinear Solver is then run
repeatedly, once from (a representative starting point in) each cluster. The process
continues with successively smaller clusters that are increasingly likely to capture

Solver User Guide

Solver Models and Optimization 71

each possible locally optimal solution. A Bayesian test is used to determine whether
the process should continue or stop.

For many smooth nonlinear problems, the multistart method has a limited guarantee
that it will “converge in probability” to a globally optimal solution. This means that
as the number of runs of the nonlinear Solver increases, the probability that the
globally optimal solution has been found also increases towards 100%. (To attain
convergence for constrained problems, an exact penalty function is used in the
process of “clustering” the starting points.) For most nonlinear problems, this
method will at least yield very good solutions. As discussed below, the multistart
method, like the Evolutionary Solver, is a nondeterministic method, which by default
may yield different solutions on different runs. (To obtain the same solution on each
run, you can set a Random Seed option for either of these solution algorithms, as
discussed in the chapter “ Solver Options.”)

As discussed below, in recent versions of the Premium Solver Platform, the
Evolutionary Solver has been enhanced with “filtered local search” methods that
offer many of the benefits of multistart methods — making the Evolutionary Solver
even more effective for global optimization problems.

The multistart method can be used on smooth nonlinear problems that also contain
integer variables and/or “aldifferent” constraints. But this can take a great deal of
solution time, since the multistart method is used for each subproblem generated by
the Branch & Bound method for integer problems, and it can also impact the Solver"s
ability to find feasible integer solutions, as described in the chapter “ Diagnosing
Solver Results.” If you have many integer variables, or aldifferent constraints, try
the Evolutionary Solver as an alternative to the multistart method.

The Interval Branch & Bound Method

In contrast to the multistart methods and the Evolutionary Solver*s methods, which
are nondeterministic methods for global optimization that offer no firm guarantees of
finding the globally optimal solution, the new Interval Global Solver in the Premium
Solver Platform uses a deterministic method: An Interval Branch & Bound
algorithm that will find the globally optimal solution — given enough time, and
subject to some limitations related to roundoff error, as discussed in the chapter
“Diagnosing Solver Results.”

The Interval Branch & Bound algorithm processes alist of “boxes’ that consist of
bounded intervals for each decision variable, starting with a single box determined by
the bounds that you specify. On each iteration, it seeks lower and upper bounds for
the objective and the constraints in a given box that will allow it to discard all or a
portion of the box (narrowing the intervals for some of the variables), by proving that
the box can contain no feasible solutions, or that it can contain no objective function
values better than a known best bound on the globally optimal objective. Boxes that
cannot be discarded are subdivided into smaller boxes, and the process is repeated.
Eventually, the boxes that remain each enclose a locally optimal solution, and the
best of these is chosen as the globally optimal solution.

Several methods are used to obtain good bounds on the values of the objective and
constraints within a box or region. Classic interval methods rely on the ability of the
Polymorphic Spreadsheet Interpreter in the Premium Solver Platform to evaluate
Excel functions over intervals and interval gradients. Local constraint propagation
methods (also known as hull consistency methods) are used to narrow intervals at
each stage of evaluation of the problem functions. Second-order methods rely on the
Interpreter”s ability to compute interval Hessians of Excel functions, and use a
variant of the Interval Newton method to rapidly minimize function values within a

72 Solver Models and Optimization Solver User Guide

region. Innovative linear enclosure methods — implemented for the first time in the
Interval Global Solver —bound each problem function with a linear approximation
that can be used in a Simplex method-based test for feasibility and local optimality.

The Interval Global Solver also has a unique ability to find all real solutions for a
system of nonlinear equations — which can be listed in the new Solutions Report. It
can also find an “inner solution” for a system of nonlinear inequalities — a region or
“box” (bounds on the variables) within which all points satisfy the inequalities.
These capabilities are summarized in the chapter “Solver Reports.”

Non-Smooth Optimization

The most difficult type of optimization problem to solve is a non-smooth problem
(NSP). Such a problem may not only have multiple feasible regions and multiple
locally optimal points within each region — because some of the functions are non-
smooth or even discontinuous, derivative or gradient information generally cannot be
used to determine the direction in which the function is increasing (or decreasing). In
other words, the situation at one possible solution gives very little information about
where to look for a better solution.

In all but the simplest problems, it is impractical to exhaustively enumerate all of the
possible solutions and pick the best one, even on a fast computer. Hence, most
methods rely on some sort of controlled random search, or sampling of possible
solutions — combined with deterministic (non-random) methods for exploring the
search space. The Evolutionary Solver, based on genetic algorithms, relies fairly
heavily on controlled random search, whereas the OptQuest Solver Engine, based on
tabu search and scatter search, relies more heavily on deterministic search methods.

A drawback of these methodsisthat a solution is*“better” only in comparison to
other, presently known solutions; both the Evolutionary and OptQuest Solvers
normally have no way to test whether a solution is optimal. This also means that
these methods must use heuristic rules to decide when to stop, or else stop after a
length of time, or number of iterations or candidate solutions, that you specify.

Genetic and Evolutionary Algorithms

A non-smooth optimization problem can be attacked — though not often solved to
optimality — using a genetic or evolutionary algorithm. (In a genetic algorithm the
problem is encoded in a series of bit strings that are manipulated by the algorithm; in
an “evolutionary algorithm,” the decision variables and problem functions are used
directly. Most commercial Solver products are based on evolutionary algorithms.)

An evolutionary algorithm for optimization is different from “classical” optimization
methods in several ways. First, it relies in part on random sampling. This makes it a
nondeterministic method, which may yield different solutions on different runs. (To
obtain the same solution on each run, you can set a Random Seed option for the
Evolutionary Solver, as discussed in the chapter “Solver Options.”)

Second, where most classical optimization methods maintain a single best solution
found so far, an evolutionary algorithm maintains a population of candidate
solutions. Only one (or afew, with equivalent objectives) of theseis “best,” but the
other members of the population are “sample points’ in other regions of the search
space, where a better solution may later be found. The use of a population of
solutions helps the evolutionary algorithm avoid becoming “trapped” at alocal
optimum, when an even better optimum may be found outside the vicinity of the
current solution.

Solver User Guide

Solver Models and Optimization 73

Third — inspired by the role of mutation of an organism“s DNA in natural evolution —
an evolutionary algorithm periodically makes random changes or mutations in one or
more members of the current population, yielding a new candidate solution (which
may be better or worse than existing population members). There are many possible
ways to perform a“mutation,” and the Evolutionary Solver actually employs five
different mutation strategies. The result of a mutation may be an infeasible solution,
and the Evolutionary Solver attemptsto “repair” such a solution to make it feasible;
this is sometimes, but not always, successful.

Fourth —inspired by the role of sexual reproduction in the evolution of living things —
an evolutionary algorithm attempts to combine elements of existing solutions in order
to create a new solution, with some of the features of each “parent.” The elements
(e.g. decision variable values) of existing solutions are combined in a crossover
operation, inspired by the crossover of DNA strands that occurs in reproduction of
biological organisms. As with mutation, there are many possible ways to perform a
“crossover” operation —some much better than others —and the Evolutionary Solver
actually employs multiple variations of four different crossover strategies.

Fifth —inspired by the role of natural selection in evolution —an evolutionary
algorithm performs a selection process in which the “most fit” members of the
population survive, and the “least fit” members are eliminated. In a constrained
optimization problem, the notion of “fitness” depends partly on whether a solution is
feasible (i.e. whether it satisfies all of the constraints), and partly on its objective
function value. The selection process is the step that guides the evolutionary
algorithm towards ever-better solutions.

Hybrid Evolutionary and Other Algorithms

You might imagine that better results could be obtained by combining the strategies
used by an evolutionary algorithm with the “classical” optimization methods used by
the nonlinear GRG and linear Simplex Solvers. In the Premium Solver and Premium
Solver Platform, Frontline Systems has done just that.

The Evolutionary Solver operates as described above, but it also employs classical
methods in two situations: First, when the evolutionary algorithm generates a new
best point, a local search is conducted to try to improve that point. This step can use
a“random local search” method, a gradient-free, deterministic direct search method,
a gradient-based quasi-Newton method, or a“linearized local gradient” method.
Second, when the evolutionary algorithm generates an infeasible point, the Solver
can use “repair methods’, a quasi-Newton method, or even a specialized Simplex
method (for subsets of the constraints that are linear) to transform the infeasible point
into a feasible one.

In the Premium Solver Platform, the Evolutionary Solver takes maximum advantage
of the diagnostic information available from the Polymorphic Spreadsheet Inter-
preter: It automatically applies genetic algorithm methods to non-smooth variable
occurrences (where classical methods cannot be used) and classical methods to
smooth and linear variable occurrences. In the local search phase, it can either fix
non-smooth variables, or allow them to vary. And it can automatically select the
most appropriate local search method, based on linearity and smoothness of the
problem functions.

The Evolutionary Solver uses a“distance filter” and a“merit filter” to determine
whether to carry out a local search when the genetic algorithm methods find an
improved starting point. The “distance filter” playsarole similar to “clustering” in
the multistart methods described earlier; both filters contribute to the excellent
performance of the Evolutionary Solver on global optimization problems.

74 Solver Models and Optimization Solver User Guide

The“Achilles' heel” of most evolutionary algorithmsis their handling of constraints
—they are typically unable to handle more than a few inequalities, or any equality
constraints at all. In contrast, the hybrid Evolutionary Solver in the Premium Solver
and Premium Solver Platform has been able to find good solutions to non-smooth
problems with many — even hundreds — of constraints.

Tabu Search and Scatter Search

The OptQuest Solver Engine for the Premium Solver Platform is based on the
principles of tabu search and scatter search. These methods have strong analogies
with —and actually predate — genetic algorithm methods, but they rely less heavily on
random choice. They work with a population of solutions, which are modified and
combined in different ways, then subjected to a selection process. Scatter search
methods can sample the space of possible solutions, avoid becoming “trapped” in
regions close to local optima, and adaptively diversify or intensify the search. Tabu
search uses memory of past search steps to avoid repeated steps and improve future
searches. Use of the OptQuest Solver is described in more depth in Frontline's
Solver Engine User Guide.

Integer Programming

When a Solver model includes integer constraints (for example A1:A10 = integer,
A1:Al10 = binary, or A1:A10 = alldifferent), it is called an integer programming
problem. Integer constraints effectively make a model non-convex, and finding the
optimal solution to an integer programming problem is equivalent to solving a global
optimization problem. Such problems may require far more computing time than the
same problem without the integer constraints.

The standard Microsoft Excel Solver uses a basic Branch & Bound method, in
conjunction with the linear Simplex or nonlinear GRG Solver, to find optimal
solutions to problems involving general integer or binary integer variables. The
Premium Solver and Premium Solver Platform use a much more sophisticated
Branch & Bound method that is extended to handle alldifferent constraints, and that
often greatly speeds up the solution process for problems with integer variables. The
Premium Solver Platform"s LP/Quadratic Solver uses improved pseudocost-based
branch and variable selection, reduced cost fixing, primal heuristics, cut generation,
Dual Simplex and preprocessing and probing methods to greatly speed up the
solution of integer linear programming problems.

The Evolutionary Solver handles integer constraints, in the same form as the other
Solver engines (including alldifferent constraints), but it does not make use of the
Branch & Bound method; instead, it generates many trial points and uses “constraint
repair” methods to satisfy the integer constraints. (The constraint repair methods
include classical methods, genetic algorithm methods, and integer heuristics from the
local search literature.) The Evolutionary Solver can often find good solutions to
problems with integer constraints, but where the Branch & Bound algorithm can
guarantee that a solution is optimal or is within a given percentage of the optimal
solution, the Evolutionary Solver cannot offer such guarantees.

The Branch & Bound Method

The Branch & Bound method begins by finding the optimal solution to the “relax-
ation” of the integer problem, ignoring the integer constraints. If it happensthat in
this solution, the decision variables with integer constraints already have integer

Solver User Guide

Solver Models and Optimization 75

values, then no further work is required. If one or more integer variables have non-
integral solutions, the Branch & Bound method chooses one such variable and
“branches,” creating two new subproblems where the value of that variable is more
tightly constrained. For example, if integer variable Al has the value 3.45 at the
solution, then one subproblem will have the additional constraint A1 <= 3 and the
other subproblem will add the constraint A1 >= 4. These subproblems are solved
and the process is repeated, “branching” as needed on each of the integer decision
variables, until a solution is found where all of the integer variables have integer
values (to within a small tolerance).

Hence, the Branch & Bound method may solve many subproblems, each one a
“regular” Solver problem. The number of subproblems may grow exponentially.
The “bounding” part of the Branch & Bound method is designed to eliminate sets of
subproblems that do not need to be explored because the resulting solutions cannot
be better than the solutions already obtained.

Cut Generation

The Premium Solver Platform"s L P/Quadratic Solver, the Large-Scale LP/QP Solver,
Large-Scale SQP Solver, MOSEK Solver, and the XPRESS Solver Engine all make
use of “cut generation” methods to improve performance on integer linear program-
ming problems. Cut generation derives from so-called “cutting plane” methods that
were among the earliest methods applied to integer programming problems, but they
combine the advantages of these methods with the Branch & Bound method to yield
a highly effective approach, often referred to asa“Branch & Cut” algorithm.

A cut is an automatically generated linear constraint for the problem, in addition to
the constraints that you specify. This constraint is constructed so that it “cuts off”
some portion of the feasible region of an LP subproblem, without eliminating any
possible integer solutions. Many cuts may be added to a given LP subproblem, and
there are many different methods for generating cuts. For example, Gomory cuts are
generated by examining the reduced costs at an LP solution, while knapsack cuts,
also known as lifted cover inequalities, are generated from constraints involving
subsets of the 0-1 integer variables. Cuts add to the work that the LP solver must
perform on each subproblem (and hence they do not always improve solution time),
but on many problems, cut generation enables the overall Branch & Cut algorithm to
more quickly discover integer solutions, and eliminate branches that cannot lead to
better solutions than the best one already known.

The Alldifferent Constraint

In the Premium Solver and Premium Solver Platform, a constraint such as AL:A5 =
alldifferent specifies that the variables A1:A5 must be integers in the range 1 to 5,
with each variable different from all the others at the solution. Hence, AL:A5 will
contain a permutation of the integers from 1 to 5, such as 1,2,3,4,5 or 1,3,5,2,4.

To solve problems involving alldifferent constraints, the Premium Solver products
employ an extended Branch & Bound method that handles these constraints as a
native type. Whenever variables in an “aldifferent group” have non-integral solution
values, or integral values that are not all different, the Branch & Bound method
chooses one such variable and “branches,” creating two new subproblems where the
value of that variable is more tightly constrained.

The nonlinear GRG Solver bundled with the Premium Solver and Premium Solver
Platform, and the Large-Scale GRG Solver, Large-Scale SQP Solver, KNITRO

76

Solver Models and Optimization Solver User Guide

Solver, and MOSEK Solver engines use this extended Branch & Bound method to
solve problems with integer and alldifferent constraints.

The Large-Scale LP/QP Solver and the XPRESS Solver use their own Branch & Cut
methods. They transform alldifferent constraints into equivalent sets of binary
integer variables and additional linear constraints, then apply their preprocessing,
probing and cut generation methods to these variables and constraints.

The Evolutionary Solver uses methods from the genetic algorithm literature to handle
alldifferent constraints as permutations, including several mutation operators that
preserve the “alldifferent property,” and several crossover operators that generate a
“child” permutation from “parents’ that are also permutations.

Since Solver engines use quite different methods to handle the alldifferent constraint,
you'll want to try a variety of Solver engines to see which one performs best on your

model. This is especially true if your model uses smooth nonlinear or — even better —
linear functions aside from the alldifferent constraint.

Simulation Optimization

With the Premium Solver Platform and Risk Solver Engine, you can define and solve
simulation optimization problems that seek good or optimal decisions, where the
parameters of the problem are not fixed numbers, but are uncertain values.

To introduce simulation optimization, we must first explain how you can use Risk
Solver Engine to build a model that incorporates uncertainty, and use Monte Carlo
simulation to analyze the effects of that uncertainty.

Spreadsheets have traditionally allowed you to change numbers, asking ,what if*
questions, and instantly see the results. But many real-world problems involve so
much uncertainty, about so many different factors, that it is impractical to explore all
the possibilities, even with the aid of a spreadsheet. Risk analysis, using Monte Carlo
simulation, offers an automated way to explore the possibilities, and get a much
better idea of the range of possible outcomes.

Uncertain Variables

In any problem, there are factors or inputs that you, as a decision-maker, can control
— for example, the price you set for a product. There are other factors or inputs that
you cannot control — for example, customer demand, competitor actions, interest
rates, etc. Inaquantitative model, it"s useful to distinguish between these two kinds
of factors: You can use decision variables to represent inputs over which you have
direct control, and uncertain variables (called random variables in mathematics) to
represent inputs beyond your control.

The values of uncertain variables can be drawn from a probability distribution. For
example, you might expect that future short-term interest rates will fall between 3%
and 6%, with all possibilities equally likely within thisrange. Y ou“d model this with
a function call such as =PsiUniform(.03, .06) which specifies a uniform distribution
over uncertain values. Or you might expect that customer demand for shirt sizes will
be clustered around “average” sizes, and use a function call such as =PsiNormal(15,
2) which specifies a Normal distribution with mean 15 and standard deviation 2.

Risk Solver Engine provides more than 40 PSI Distribution functions — from
PsiBernoulli() to PsiWeibull(). You can also draw values from predefined Certified
Distributions, by simply referring to these distributions in PsiSip() and PsiSlurp()
functions. You can easily shift, truncate and correlate probability distributions with

Solver User Guide

Solver Models and Optimization 77

PSI Property functions such as PsiShift(), PsiTruncate() and PsiCorrMatrix(). For
more information on PSI Distribution functions and Certified Distributions, please
see the Risk Solver Engine User Guide.

Uncertain Functions

You will also have outputs or results of interest —such as Net Profit — that you can
compute, using formulas that depend on the factors influencing the problem —
possibly both decision variables and uncertain variables. We"ll use the term
uncertain functions for quantities whose calculation depends on uncertain variables
(in mathematics these are called functions of random variables).

On request, Risk Solver Engine will perform a Monte Carlo simulation, which
involves some number (say 1000, that you specify) of Monte Carlo trials. On each
trial, sample values are drawn randomly for the uncertain variables, and the uncertain
functions are calculated from their formulas using these input values, yielding sample
values for the uncertain functions. In effect, a Monte Carlo simulation performs a
~what-if* analysis for 1000 or more sample values, and accumulates the results.

Statistics for Uncertain Functions

While you can access the results of individual trials, you will usually be interested in
summary statistics for all the values taken by the uncertain functions. For example,
you might want to know the mean, minimum and maximum Net Profit over all the
trials. You can access these summary statistics by calling functions such as
PsiMean(), PsiMin(), and PsiMax() and passing the cell address for Net Profit.

Risk Solver Engine provides 20 PSI Statistics functions — from PsiAbsDev() to
PsiVariance(), including functions to obtain percentiles, frequency bins, and
“quantile” measures such as Vaue at Risk. You'll find complete descriptions of the
PSI Statistics functions in the Risk Solver Engine User Guide.

Using Simulation Results in Optimization

Once you have cell formulas using PSI Statistics functions like the ones just
mentioned, you can use these cells as your objective (Set Cell) or as the left hand
sides of constraints. For example, if you have a worksheet that defines uncertain
market demand for your products, and computes sales, inventory levels and Net
Profit, you could define and solve an optimization problem that seeks to maximize
Net Profit subject to constraints on maximum (say, 90" percentile) or minimum (10"
percentile) inventory levels. This is an example simulation optimization problem.

To solve such a problem, the Premium Solver Platform runs a Solver engine that
performs a search, where it will generate a series of Trial Solutions — supplying new
values for all of the decision variables. On each Solver iteration or Trial Solution,
Risk Solver Engine performs a Monte Carlo simulation consisting of 1000 or more
trials, and accumulates statistics across all these trials. On each Trial Solution, the
objective and constraint values seen by the Solver are computed from summary
statistics of the Monte Carlo trials.

Speed and Vectorized Evaluation

When performed with traditional tools in Excel, simulation optimization is very slow,
because the problem might require hundreds or even thousands of Trial Solutions,
and each Trial Solution requires a new simulation and 1000 or more Monte Carlo

78

Solver Models and Optimization Solver User Guide

trials, performed by spreadsheet recalculations. But the combination of the Premium
Solver Platform and Risk Solver Engine is up to 100 times faster than this approach.

Risk Solver Engine uses a special version of the Polymorphic Spreadsheet Interpreter
—the same PSI Technology used to enhance speed and accuracy in the Premium
Solver Platform. Where the PSI Interpreter employs special methods to evaluate
your spreadsheet formulas to compute gradients needed by Solver engines, in Risk
Solver Engine it employs special “vectorized” evaluation methods to compute results
for Monte Carlo trials.

Beyond the computing time required for a Monte Carlo simulation on each Trial
Solution, a simulation optimization problem is often a difficult nonlinear or non-
smooth optimization problem in its own right. But the Premium Solver Platform
includes Solver engines to handle such problems — from the standard GRG Nonlinear
and Evolutionary Solvers to a variety of plug-in, large-scale Solver engines.

Thanks to advanced technology, you can use the combination of the Premium Solver
Platform and Risk Solver Engine to find optimal solutions to simulation optimization
problems, in a reasonable amount of time, that are far larger and more challenging
than you could solve with traditional tools in Excel. And if you need even more
speed, you have two more alternatives: (i) Move your model to Frontline"s Solver
Platform SDK, where your problem functions can be evaluated at the speed of
compiled code, or (ii) wait for future versions of the Premium Solver Platform and
Risk Solver Engine, where deeper integration will yield even greater speed in Excel.

Solver User Guide

Solver Models and Optimization 79

80 Solver Models and Optimization Solver User Guide

Building Solver Models

Introduction

This chapter takes you step by step through the process of setting up and solving a
simple linear programming model in Excel, using the Premium Solver products. It
then describes in depth the features of the Solver Parameters dialog that you can use
to define the essential elements of your Solver model: decision variables, constraints,
and the objective function.

Our step-by-step example isa“quick and dirty” setup that can be used to solve the
example problem, but is not well documented or easy to maintain. Microsoft Excel
has many features that can help you organize and display the structure of your model,
through tools such as defined names, formatting and outlining. As models become
larger, the problems of managing data for constraints, coefficients, and so on become
more significant, and a properly organized spreadsheet model can help manage this
complexity. Hence, the last section in this chapter provides hints for designing a
model that is understandable, maintainable and scalable.

From Algebra to

Spreadsheets

Optimization problems are often described in algebraic terms. In this section, we'll
show how you can translate from the algebraic statement of a problem to a spread-
sheet model that the Solver can optimize.

Setting Up a Model

To set up an optimization model as a Microsoft Excel spreadsheet, you will follow
these essential steps:

1. Reserve a cell to hold the value of each decision variable.

2. Pick a cell to represent the objective function, and enter a formula
that calculates the objective function value in this cell.

3. Pick other cells and use them to enter the formulas that calculate
the left hand sides of the constraints.

4. The constraint right hand sides can be entered as numbers in other
cells, or entered directly in the Solvers Add Constraint dialog box.

Solver User Guide

Building Solver Models 81

Within this overall structure, you have a great deal of flexibility in how you lay out
and format the cells that represent variables and constraints, and which formulas and
built-in functions you use. For example, the formulas needed for a linear program-
ming problem can always be specified with the SUMPRODUCT function, or with the
DOTPRODUCT add-in function included with the Premium Solver products. If the
model is easily expressed in vector-matrix algebraic notation, you may want to use
defined names for the vectors and built-in functions such as MMULT to compute the
constraint left hand sides.

A Sample Linear Programming Model

Consider the following LP problem, a variation on the “Product Mix” worksheet in
the SOLVSAMP.XLS workbook included with Microsoft Excel. Our factory is
building three products: TV sets, stereos and speakers. Each product is assembled
from parts in inventory, and there are five types of parts: chassis, picture tubes,
speaker cones, power supplies and electronics units. Our goal is to produce the mix
of products that will maximize profits, given the inventory of parts on hand.

The Algebraic Form

This problem can be described in algebraic form as follows. The decision variables
are the number of products of each type to build: x, for TV sets, x, for stereos and x,
for speakers. There is a fixed profit per unit for each product, so the objective
function (the quantity we want to maximize) is:

Maximize 75X, + 50 x, + 35 x, (Profit)

Building each product requires a certain number of parts of each type. For example,
TV sets and stereos each require one chassis, but speakers don't use one. The
number of parts used depends on the mix of products built (the left hand side of each
constraint), and we have a limited number of parts of each type on hand (the corres-
ponding constraint right hand side):

Subjectto 1x,+1Xx,+0Xx,<=400 (Chassis)
1x,+0x,+0x,<=200 (Picture tubes)
2% +2X% +1x,<=800 (Speaker cones)
1x,+1x,+0x,<=400 (Power supplies)
2% +1x +1x,<=600 (Electronics)

Since the number of products built must be nonnegative, we also have the constraints
Xy %o X5 >= 0.

The Spreadsheet Formulas

The fastest (though not necessarily the best) way to lay out this problem on the
spreadsheet is to pick (for example) cell Al for x,, cell A2 for x, and cell A3 for x..
Then the objective might be entered in cell A4 as the formula:

=75*A1+50*A2+35*A3

We"d go on to enter aformulain (say) cell B1 for the first constraint left hand side
(Chassis), such as =1*A1+1*A2+0*A3, or perhaps the equivalent =A1+A2.
Similarly, we"d use cell B2 for the formula =A1 (Picture tubes), B3 for the formula
=2*A1+2*A2+A3 (Speaker cones), B4 for the formula =A1+A2 (Power supplies),
and B5 for the formula =2*A1+A2+A3 (Electronics).

We now have a simple spreadsheet model, with which we can practice “what if.” For
any values we enter for the decision variables in cells A1, A2 and A3, the objective
(Total Profit) and the corresponding values of the constraint left hand sides (the

82

Building Solver Models

Solver User Guide

numbers of parts used) will be calculated. Note that this simple example is not in the
form required for the Premium Solver"s fast problem setup; in a later section of this
chapter, you'll see how this model can be formulated using the SUMPRODUCT
function, which is both easier to read and appropriate for fast problem setup.

The Solver Dialogs

To prepare the model for optimization, we will use the Solver Parameters dialog to
point out to the Solver (i) the cells that we"ve reserved for the decision variables, (ii)
the cell that calculates the value of the objective function, and (iii) the cells that
calculate the congtraint left hand sides. We'll also enter values for the constraint
right hand sides, and non-negativity constraints on the variables.

The simplest way to proceed is to select cell A4 (the objective function), then choose
the Premium Solver... command from the Tools menu. The Solver Parameters dialog
will appear, with the current cell (A4, the correct one) suggested as the entry in the
Set Cell box. The default choice of Max is also correct for this problem. To select
the decision variables or Changing Cells, click in the Changing Cells edit box and
type A1:A3, or use the mouse to select cells Al to A3 on the spreadsheet. At this
point your spreadsheet and Solver Parameters dialog should look like this:

@Micmso[t Excel - Book1.xls - |I:I|l|
IEJ File Edit Wiew Insert Format Tools Data Window Help - & X
TSl ¢ [¢ [o0 | E [F [6
KN i 2 =
2 1 1
3 1 5
ll 'IEDI 2
1 §
4

Il Solver Parameters ¥7.0 E

Equal To: @& Max (O Min O Value OF: | Close |

By Changing Wariable Cells:

|$""\$15$F\$3 Model | Options |
IStandard GR.G Monlinear ;I

Subject to the Constraints:

) [N Ny Y [P Y PP PN PN PP

add | Variables |
Change | Reset Al | (i
Delete | Help |
A -
M 4 » H\Sheetl (Sheet2 { Sheet3 / <] | _'”J
[| . O

The next step is to enter the constraints, including the non-negativity constraint on the
decision variables. To enter the non-negativity constraint, click on the Add button to
bring up the Add Constraints dialog. The input focus is on the Cell Reference edit
box, so you can either type A1:A3 or use the mouse to select cells Al to A3 on the
spreadsheet. Next, click on the Constraint (right hand side) edit box and enter 0
there. Finally, click on the down arrow next to Relation to display a list of relation
symbols, and select >= from the list. Your Add Constraint dialog box should look
like the one on the next page.

Solver User Guide

Building Solver Models 83

T S ~ |

Cell Reference:
[$a51:5853 [[===] [0 4
Camment: <=
| e
Ok I Cancel E:It.l Add | Help |
dif
sac
st

To accept the non-negativity constraint and continue with entry of another constraint,
click the Add button. The Add Constraint dialog box will reappear with the edit
fields blank. With the input focus on Cell Reference, click on cell B1, the first
constraint left hand side. Then click on the Constraint edit box, and enter 400 there.
The default relation <= is correct for this constraint, so you are now ready to click the
Add button to accept this constraint.

Continue with entry of the remaining four constraints in a similar manner. When you
have entered the Cell Reference (B5) and Constraint value (600) for the last
constraint, click the OK button instead of the Add button. The Solver Parameters
dialog will reappear, and the constraints you have entered should appear in the
Constraints list box, as shown below:

Il Solver Parameters ¥7.0 [x|

Set Cell: |$.¢\$4 =5 Salve |
Equal Tor % Max 0 Min O value OF:I Close |

By Changing Yariable Cells:

= Madel Options

[$ag1:5a43 S | |
Subject ko the Constraints: IStandard GRG Manlinear LI
$A%1:4A33 >= 0 ,

4641 <= 400 Add ‘ariables |
$B42 <= 200

B3 <= 800 Change | Reset all |
$B44 <= 400

+B45 <= 600 | |

Delete Help

.

Selecting the Solver Engine

In the standard Microsoft Excel Solver, your choices for the Solver engine to
optimize this model are the nonlinear GRG Solver (the default choice) or the linear
Simplex Solver. Since this is a linear programming problem, it can be solved more
efficiently with the Simplex Solver. To use this Solver engine, you“d click on the
Options button to bring up the Solver options dialog, and click on the “ Assume
Linear Model” check box, then click OK.

In the Premium Solver products, selecting the Solver engine is easier: There is a
dropdown list of Solver engines available in the main Solver Parameters dialog. The
default choice is the standard GRG Solver (which, while slower, is fully capable of
solving linear as well as well as nonlinear problems). To choose the standard
Simplex LP or LP/Quadratic Solver, click on the down arrow symbol to display the
list of Solver engines, and click on the Solver engine of your choice.

84

Building Solver Models

Solver User Guide

Solving the Problem

To find the optimal solution for this LP model, click on the Solve button. After an
instant or two, the solution values (Al = 200, A2 = 200, A3 = 0) should appear in the
cells for the decision variables, and the Solver Results dialog should appear, as
shown below.

Solver Results |

Solver Found a solution. Al constraints and optimality
conditions are satisfied. Reports
&) Answer
* K eep Solver Solution Sensitivity
) Restore Original Yalues Limits
[Return ko Solver Parameters Dialog [T outline Reparts
Cancel Save SCenaria. .. Help

Here you have several choices: You can select one or more reports to be produced
from the Reports list box (and check the Outline Reports box, if you“d like the
reports outlined); you can save the solution values as a named scenario, for display
later with the Excel Scenario Manager; and you can either discard the solution values
(restoring the original cell values) or save the solution values in the decision variable
cells. The reports are described in more detail in the chapter “ Solver Reports’ later
in this Guide. For now, click on OK to save the optimal solution in the decision
variable cells. You'll then return to worksheet Ready mode, unless you checked the
box “Return to Solver Parameters Dialog,” in which case the Solver Parameters
dialog would reappear, ready to solve another problem.

Congratulations — Y ou"ve set up and solved a simple but complete Solver problem!
The next sections will go into much greater depth on the choices available to you in
the Solver Parameters dialog.

Decision Variables and Constraints

You have a great deal of flexibility in how you specify the decision variables and the
constraints in the Solver dialogs. In the previous section, we used the simplest forms:
the decision variables were all adjacent cells in one column, and the constraint right
hand sides were constants. In this section, we'll cover more general forms of
specifying both variables and constraints.

Variables and Multiple Selections

In the standard Excel Solver, the Solver Parameters dialog provides just one
Changing Cells edit box to specify all of the decision variables in a model. This edit
box accepts only cell selections, which may be typed in as cell coordinates (or as
defined names equivalent to cell coordinates), or entered by clicking with the mouse
on the desired cells in the spreadsheet. However, you can use this box to enter the
most general form of cell selection permitted by Microsoft Excel, called a multiple
selection. A multiple selection consists of one of more individual selections,
separated by commas (when English is chosen in the Regional Settings —you may be
using different settings). Each individual selection may be a single cell, a column or
row of cells, or a rectangular set of (contiguous or adjacent) cells. An example of a
multiple selection from the “Maximizing Income” sheet in the SOLVSAMP.XLS
workbook included with Microsoft Excel is shown on the next page.

Solver User Guide

Building Solver Models 85

<H Solvsamp [_ (O] x|
A B C D E F G H Ij
1 |Example 4: Working Capital Management.
| 2 |Determine how ta invest excess cash in 1-manth, 3-manth and B-manth CDs so a3 to
J |maximize interest income while meeting company cash requirements [plus zafety margin).
I
| 5 | yiate Famm Franvhare L05 o1 anveaths
| b | P £0s 1.0% 1 1.2.2.4.5and6 lnferest
7| S 0 4.0% 3 1and4 £ ammedt
R 5.0% 5 1 Tora/ [37700]
o
| 10 | Momth Month 7| Month 7 | Month 7 | Month & | Month 5 | Month £ End
| 11 | At Lz $400,000 $205,000 $216,000 | $237.000 $158.400 $109.400 | $125.400
| 12 | Mot £8P 100,000 100,000 110,000 100,000 100,000 120,000
| 13 | dmferest 2,300
| 14 | 7-me £55
15 | Fome £22-
E Fme L5
| 17 | Lash ddsex: X
18 | End Easre $205.000
| 19
| 20| 290000
21
M [T [W[\ Quick Tour £ Product Mix / Shipping Routes £ Staff Scheduling 3 Ma| 1|

The decision variables in this problem are the amounts to invest in 1-month CDs, 3-
month CDs and 6-month CDs. We have opportunities to invest in 1-month CDs
every month, but 3-month CDs are available only in Month 1 and Month 4, and 6-
month CDs are available only in Month 1. To enter all of these cells as decision
variables, we need a multiple selection: It must consist of at least three individual
selections, separated by commas. Note that although all of the cells to be selected
“touch” each other, they cannot be selected as one rectangular area. We could select
these cells in several different ways: For example, as (B14:G14,B15:B16,E15) or as
(B14:B16,C14:G14,E15). If you display the Solver Parameters dialog for this
example, you will see that the Changing Cells edit box uses another selection,
(B14:G14,B15,E15,B16). All of these selections are equivalent as far as the Solver
is concerned. (Note: The parentheses are not needed when entering a multiple
selection in the Changing Cells edit box, but they would be needed when entering a
multiple selection as an argument in a function such as DOTPRODUCT.)

In general, the areas of a multiple selection must be rectangular, but they need not
“touch” each other asthey did in the example above. You should avoid entering
overlapping areas in a multiple selection: For example, Excel will allow you to enter
the above selection as (B14:B16,C14:G14,E14:E15), but the duplication of variable
cells will slow down the Solver during problem setup and reporting, and may yield
results different from the ones you expected.

There are several ways to enter a multiple selection in a formula or a dialog box: (i)
You can simply type the cell coordinates, entering each rectangular area in the form
FromCell : ToCell, separating the areas by commas (or other language-specific
separators); (ii) you can select each area by clicking with the mouse, typing a comma
between each mouse selection; or (iii) you can make the entire multiple selection with
the mouse by pressing the CTRL key as you make the first selection, and holding it
down until you have selected all of the rectangular areas.

If you enter the individual selections by clicking with the mouse, you“ll notice that
the cell reference is entered in “absolute” coordinates, such as B14:G14.
Further, you"ll find that regardless of whether you include the dollar signs when you
type in the cell coordinates, the cell reference is treated as absolute, and it appears
with the dollar signs the next time you display the dialog. “Relative’ cell references
have significance when you copy a formula from one cell to another, but in the
Solver dialogs all cell references are absolute.

86

Building Solver Models

Solver User Guide

Using the Range Selector

The Premium Solver Platform has a convenience feature for selecting cells with the
mouse, called the Range Selector. With the Range Selector, you can temporarily
“hide” the dialog box where the cell selection will be entered, so that you can more
easily see and move about on the worksheet itself. This is most useful for the Set
Cell and Changing Cells edit boxes in the Solver Parameters dialog, since that dialog
can cover large portions of the viewable worksheet area; but the Range Selector is
available in all of the cell selection edit boxes in the standard Solver and the
Premium Solver products.

You activate the Range Selector by clicking the small rectangular button at the right
edge of the cell selection edit box, as shown, for example, in the Solver Parameters
dialog just before “ Selecting the Solver Engine.” This causes the dialog to be hidden
and acell cursor (“thick cross’) to appear. The text form of the currently selected
range is shown just below and to the right of the cell cursor, as illustrated below:

B [¢ |

o= =

4 16
5

You can now select whatever cell range you want by clicking and dragging with the
mouse. When you release the mouse button, the original dialog will reappear, with
the cell selection in the appropriate edit box.

Using the Variables Button

If your decision variable cells are scattered across your worksheet (or workbook),
selecting all of them in a single multiple selection can become difficult and tedious.
In most cases you can avoid this problem by organizing your model so that the
decision variable cells occupy a small number of contiguous blocks —as outlined in
“More Readable Models’ later in this chapter. But if thisisinconvenient, the
Premium Solver products allow you to switch to a more flexible method of specifying
decision variables, using the Variables button.

In the “Maximizing Income” example shown on the previous page, the standard
display of the Solver Parameters dialog box looks like the one below:

Bl Solver Parameters ¥7.0 [x|

Equal Tor % Max 0 Min O value OF:I Close |

By Changing Yariable Cells: |

= Madel Options |
[$B514:5G5 14, 56515, 3E515, 58516
Subject ko the Constraints: IStandard R.G Monlinear LI
E14:5G514 =10 -
E15:4E$16 ==0 fdd | Wariables |
B15:H15 == 100000
$E415 ==0 Change | Reset all |

Delete | Help |

.

Solver User Guide Building Solver Models 87

If you click on the Variables button, the dialog box changes to show the variable
selections in a list box, as shown below. The Variables button is now labeled
Constraints, and clicking on it returns you to the original display.

Bl Solver Parameters ¥7.0 [x|

Set Cell: |H8 @ Salve |
Equal Tor % Max 0 Min O value OF:I Close |

By Changing Yariable Cells:
E14:5G514,$6515, 56415, 6516

Madel | Options |

IStandard GRG Monlinear LI

fAdd
Change | Reset all |
Delete | Help |

4

You can now use the Add, Change and Delete buttons to add, modify or remove
variable cells, just as you would for constraints. Each row in the Variable Cells list
box can contain a multiple selection; however, we recommend that you use a simple
selection for clarity, since there is no limit on the number of rows in the list box. If
you click on the Add button for example, a dialog box like the one below appears:

Add Variable Cells [x|

Cell Reference:
| S
Comment:

|
=]

One factor to bear in mind about use of the Variables button is that a Solver model
where you have used more than one row in the Variable Cells list box cannot be
moved to a computer where the standard Excel Solver is being used, even if the total
number of variables is less than the standard Solverslimit of 200. (The same thing
is true for models that depend on other extensions in the Premium Solver products.)
But as your Solver models become larger and more complex, you will probably find
that the alternate display of the Variable Cells list box will become more useful.

Cancel add Help |

Constraint Left and Right Hand Sides

In specifying the constraints for the sample LP model earlier in this chapter, we
entered the constraint left hand sides as single cell references, and the right hand
sides as constants in the Add Constraint dialog. But the Solver permits more general
forms for both the left and right hand sides of constraints.

The constraint left hand side, entered in the Cell Reference edit box, may be any
individual selection, such as a column, row, or rectangular area of cells. Multiple
selections are not permitted here. In the example shown earlier, we could have
placed the constants 400, 200, 800, 400, 600 in cells C1:C5, then entered all five
constraint left hand sides at once as B1:B5, and the five right hand sides as C1:C5.

88

Building Solver Models

Solver User Guide

Overlapping and Conflicting Constraints

You should be careful about entering equivalent or overlapping cell references in the
left hand sides of different rows of constraints in the Constraints list box. The only
situation where this makes sense is when one constraint uses the >= relation to
specify a lower bound, and the other uses the <= relation to specify an upper bound.
(Of course, the lower bound must be less than the upper bound, or else there will be
no feasible solution to the problem.) If you place multiple lower or upper bounds on
the same cells, the Premium Solver products will use the “tighter” bounds. For
example, if you enter constraints such as AL:A5 <= 10 and A3:C3 <=5, you've
specified both A3 <= 10 and A3 <=5, so the Solver will use A3 <=5.

A pair of constraints such as A1:A5 <= 10 and A1:A5 >= 10 has the same effect as
AL:A5 =10, but is considerably less efficient and may cause problems for some of
the Solver"s advanced solution strategies. Hence, you should always use the form
with the = relation in the constraint.

If you specify both a <= or >= constraint and a binary integer or alldifferent
constraint for the same group of variable cells, the Premium Solver products will
display an error message when you try to solve the problem, unless the bounds you
specify agree with the binary integer or alldifferent constraint. For example, A1:A5
>= 3 and either AL:A5 = binary or AL:A5 = alldifferent will cause the Solver to
display an error message. (The values of variablesin an “aldifferent group” must
vary from 1 to N, where N is the number of variables; of course, you can always use
formulas in other cells to shift this range of values to another range.) As a conven-
ience, you can specify a <= or >= constraint for a binary integer variable that further
restricts it to be either O or 1, without getting an error message. “Fixing” variablesin
this way can be useful when experimenting with an integer programming model.

Constraint Right Hand Sides
The constraint right hand side may be any of the following:
1. Anumeric constant such as 1.
A cell reference such as C1.
An (individual) selection such as C1:C5.

2
3
4. An arbitrary formula such as C1+1 or C2/D2.
5

“integer”, “binary” or “aldifferent”

6. “conic” (Premium Solver Platform only)

Option 5 isfor integer constraints only and is discussed below under “Using I nteger
Constraints.” Option 6 is available only in the Premium Solver Platform, and is
discussed below under “Using Conic Constraints.” If you use option 3 —a selection
of more than one cell —the number of cells selected must match the number of cells
you selected for the constraint left hand side. (The two selections need not have the
same shape: For example, the left hand side could be a column and the right hand
side a row.) You may also use rectangular areas of cells. In any case, when you use
this form you are specifying several constraints at once, and the constraint left hand
sides correspond element-by-element to the right hand sides. As we noted in the
example shown earlier, you can enter the right hand side values 400, 200, 800, 400
and 600 into cells C1 to C5, and enter a single constraint such as B1:B5 <= C1:C5.
You can see examples of this form in nearly all of the sample worksheets included
with the Solver, as well as throughout this Guide. It is by far the most useful form.

Solver User Guide

Building Solver Models 89

If the constraint right hand side is a cell reference, cell selection or formula, the
Solver needs to know whether the contents of those cells, or the value of the formula
is constant in the problem, or variable (i.e. dependent on the values of the decision
variables). If the right hand side depends on any of the decision variables, the Solver
transforms a constraint such as“LHS >= RHS’ into “LHS - RHS >= 0" internally.
All Solver engines work internally with constant bounds on the constraint functions.

Implicit Non-Negativity Constraints

Many Solver problems —and perhaps most LP problems — have “non-negativity”
constraints, or lower bounds of zero on the decision variables. To save you the
trouble of entering these constraints explicitly in the Constraints list box, both the
standard Solver and the Premium Solver products provide an Assume Non-Negative
check box in the Solver Options dialog. When this box is checked, all variables that
do not have explicit lower bounds in the Constraint list box are automatically given
lower bounds of zero. You can enter constraints such as Al >=2 or Al >= -3 for
certain variables, overriding the implicit lower bound, and use the Assume Non-
Negative box to give all other variables zero lower bounds.

Efficiency of Constraint Forms

The Solver recognizes the case where the constraint left hand side is a decision
variable, or a set of decision variables. As long as the corresponding right hand sides
are constant (i.e. not dependent on any of the variables), these constraints are
specially treated as bounds on the variables. The most common instance of a bound
on a variable is a non-negativity constraint such as A1 >= 0, but any sort of constant
bounds are handled efficiently by all of the Solver engines.

There is no difference in terms of efficiency between a constraint entered (for
example) as A1 <= 100 or as A1 <= B1 where B1 contains 100; the Solver
recognizes that B1 is equivalent to a constant. The form Al <= B1 is usually better
from the standpoint of maintainability of your Solver model.

On the other hand, a constraint right hand side that is a formula — even a simple one
like 2+2 —will incrementally increase the solution time for the model. The Solver
treats any such formula as a RHS potentially dependent on the variables, and it
internally creates a constraint “LHS - RHS >= 0" —even if the formula really was a
constant bound on a variable. It is better to place whatever formula you need into a
cell, and reference that cell as the constraint right hand side: Because the formula has
already been analyzed by Microsoft Excel when it was entered in the cell, the Solver
can determine whether it is dependent on the variables.

Using Integer and Alldifferent Constraints

Integer constraints can only be applied to cells that are decision variables; hence the
cells selected on the left hand side of the constraint must be a subset (or all) of the
cells in the Changing Cells edit box, or the Variable Cell list box. Integer constraints
specify that the selected variable cells must have solution values that are integers or
whole numbers, such as -1, 0 or 2, to within a small tolerance. Variable cells that
have binary integer constraints must be either 0 or 1 at the optimal solution. Variable
cells subject to an alldifferent constraint must have values from 1 to N, where N is
the number of cells specified on the constraint left hand side, and each cell must have
a value different from all the others.

You specify an integer, binary or aldifferent constraint by selecting the “int”, “bin”
or “dif” choice from the Relation dropdown list in the Add/Change Constraint dialog.

90

Building Solver Models

Solver User Guide

The Solver displays such constraints in the Constraint list box in the form “A1:A5 =
integer,” “A1:A5 = binary” or “A1:A5 = aldifferent”.

Be surethat you select “int”, “bin” or “dif” from the Relation dropdown list. If you
select = from the dropdown list and type the word “integer,” “binary” or
“aldifferent” on the right hand side, the Solver will not recognize this as an integer
constraint, and clicking on Solve will probably result in the error message “ Solver
encountered an error value in atarget or constraint cell”.

Using Conic Constraints

Conic constraints are a new feature of the Premium Solver Platform, discussed in the
previous chapter “ Solver Models and Optimization.” They can only be applied to
cells that are decision variables; hence the cells selected on the left hand side of the
constraint must be a subset (or all) of the cells in the Changing Cells edit box, or the
Variable Cell list box. To add a conic constraint, you select either the “soc” (second
order cone) or “src” (rotated second order cone) choice from the relation dropdown
list, as shown below.

Add Constraint [x|

Cell Reference:

[4a31:9a85 [[soc =] | B

Commenk: o=
(o] 4 I Cancel

This constraint specifies that the vector formed by n decision variables must belong
to the second order cone of dimension n. An*“soc” constraint is equivalent to the
formula A1 >= SQRT(SUMSQ(A2:A5)) —in linear algebra, a, > || a:as ||, — or if Al
is non-negative, A1"2 >= SUMSQ(A2:A5). An*“src” constraint is equivalent to the
formula 2*A1*A2 >= SUMSQ(A3:A5) —in linear algebra 2a;a, > | a:as | 5.

More Readable Models

This section focuses on features of the Solver and Microsoft Excel you can use to
build more readable, maintainable, scalable models. The approach outlined above in
“From Algebrato Spreadsheets’ isthe “quick and dirty” way to trandate from a
model in algebraic form to an equivalent spreadsheet model, ready for optimization.
However, that approach will soon prove to be short-sighted when you wish to change
the data (for example unit profits or parts on hand), expand the model to include
more products or parts, or show the model to someone unfamiliar with the problem or
uncomfortable with algebraic notation.

For a better approach to laying out this model, consider the EXAMPLE1 worksheet
in the Examples.xIs workbook, shown on the next page, which is copied to the
installation folder (typically C:\Program Files\Frontline Systems\Premium Solver
Platform\Examples) during installation.

Solver User Guide

Building Solver Models 91

<H Examples [_ (O] x| I
A B C D E F G =
1 |Example 1: Product mix problem. I
| 2 [*our company manufactures TWs, stereos and speakers, using a comman parts
| 3 |inventary of power supplies, speaker canes, ete. Parts are in limited supply and pou
| 4 |must determine the most profitable mix of products to build. Thiz version of the
5 |model is built with only e cell coordinates and SUMPRODUICT in formolas.
5
—
=N TV e St Samader
ER N o Seires | 100 100 100
|10 | FarAiame _dwaatwy A diead
| 11 | S 450 200 1 1 0
| 12 | Fiatons Frdnn 250 100, 1 a 1]
| 153 | Smasber S 200 500 2 2 1
| 14 | Frassesr Segnntd 450 200 1 1 0
15 | Sz B0 400 2 1 1
| 16 | Frankits
|17 By Fiodiact 375 350 $35
18 TolaLlS‘IB l]l]l]!
19
M4 r [H\ EXAMPLEL { ExaMPLEZ £ Exami] « | p

You are encouraged to open this worksheet in Microsoft Excel and examine its
formulas, row, column and cell formatting, and use of labels. If you are not familiar
with Excel"s “Format Cells’ tabbed dialog box, thisis a good opportunity to see how
it works. Just select one or more cells in EXAMPLEL, choose Format Cells and the
appropriate tab to see how the fonts, patterns and borders have been set.

Layout and Formatting

EXAMPLEL shows one way (not the only way!) to set up an LP model in a more
readable and maintainable fashion. To enhance readability, borders and labels have
been used to draw attention to the decision variables at D9 to F9, the constraint left
hand side formulas at C11 to C15, and the right hand sides at B11 to B15. Your
client or management won"t miss the objective function calculation at B17 to F18.

EXAMPLEL is also much easier to maintain and expand than a model constructed
with “hardwired” formulas as outlined in the previous chapter. The parts required for
each product and the unit profit per product built (i.e. the coefficients of this model)
are laid out in cells on the spreadsheet. To add products, you can simply insert new
columns in the range of columns D through F; the constraint formulas will “expand”
automatically. To add more parts, you can insert new rows between rows 11 and 15,
then copy any one of the existing formulas in column C into the new rows.

The SUMPRODUCT function is used in EXAMPLEL to calculate the value of the
objective function and the constraint left hand sides. In each instance you could have
used DOTPRODUCT instead. DOTPRODUCT would be preferred in sparse
models, since it permits multiple selections of cells for both of its arguments.

If you choose Premium Solver... from the Tools menu, the Solver Parameters dialog
for EXAMPLE1 will appear, as shown on the next page.

92 Building Solver Models Solver User Guide

Il Solver Parameters ¥7.0 [x|

Set Cell: | $D§18 55 Salve

Equal To: % Max & Min (O Value OF:I Close

By Changing Yariable Cells:

il

= Madel Options
| 4D49:4F$9] | |
Subject ko the Constraints: IStandard LP/couadratic LI
FCEL11:$CH15 <= $B%11:46415 -
0434743 w= 0 add | | varisbles |
Change | Reset all |
Celete | Help

W

4

This dialog illustrates a simple case of the definition of blocks of constraints at one
time. There are five constraints of the form C11 <= B11, C12 <= B12, etc., but they
can be entered al at once in the Constraints list box. If you haven't previoudly tried
this, click the Delete button to remove the first line in the Constraints list box, then
re-enter it with the following steps:

1. Click on Add... to bring up the Add Constraints dialog.

2. With the Cell Reference field ready for input, use the mouse to select
all five cells C11 through C15.

3. Click on the Constraint field (the default <= relation is OK) and use the
mouse to select all five cells B11 through B15.

4. Click on OK to add this block of information.

Using Defined Names

On the worksheet and in the Solver Parameters dialog in EXAMPLEL1, the decision
variables and the constraint left-hand and right-hand sides were referred to by their
cell coordinates. For example, the number of TV sets is at D9, and the number of
products built as a whole is D9:F9. You can make your spreadsheets more readable
and more flexible by using defined names instead of such cell coordinates.

A defined name is created by selecting the Insert Name Define... menu command and
entering the name and the range of cells it should refer to. For example, you could
define the name Products to refer to D9:F9, and then type “Products’ into the
Changing Cells field, or the Cell Reference field of the Add Constraint dialog.

The Insert Name Create... menu command in Excel provides a shortcut way to define
a group of names at once. For example, in EXAMPLE you could select the range
Al1l to B15, choose Insert Name Create... and click OK to create the names Chassis
for B11, Picture_Tube for B12, Speaker_Cone for B13, Power_Supply for B14 and
Electronics for B15.

But you may find it more useful to define names for blocks of cells — for example,
“Inventory” for cells B11:B15, and “Parts Used” for cells C11:C15. Asyou add
defined names, the Solver recognizes them, and uses them in preference to cell
coordinates in the Set Cell, By Changing Cells, and Constraints boxes. After
defining “Total_Profit” for cell D18 and “Products’, “Inventory” and “Parts Used”
in EXAMPLEZ1, you can select Tools Premium Solver... and display a much more
readable Product Mix optimization model, as shown on the next page.

Solver User Guide

Building Solver Models 93

Il Solver Parameters ¥7.0 [x|

Set Cell: I Tokal_Profit s Salve

Equal To: % Max & Min (O Value OF:I Close

By Changing Yariable Cells: |

il

= Madel Opti |
IProducts 5.5 e pHons
Subject ko the Constraints: IStandard LPfuadratic LI
Parts_lsed <= Inventary)
Products ==10 Add | Yariables |
Change | Reset all |
Delete | Help

W

4

If you take the time to organize and lay out your model in “block form,” use defined
names for both individual cells and groups of cells, and make effective use of cell
borders, colors and other formatting, you“ll find that it"s easier to maintain your
model, and to communicate your results to coworkers, clients and management.

Models Defined Across Multiple Worksheets

The Premium Solver requires that cells containing decision variables and constraint
left hand sides are on the active worksheet. But the Premium Solver Platform allows
you to define decision variables and constraint left hand sides on any worksheet of a
workbook. For example, we can split the EXAMPLEL model illustrated in the
previous section into two parts:

Microsoft Excel - Examplel.xls [_ 2] x|
Eﬂ File Edit Y¥iew Inzet Fommat Tools Data Window Help - & X
DEERSI&SRIV RIS B - o[l COMAddns.. 2
02 - Fe =SUMPRODUCTD1:F11 5052:5F 59
A1 B | c HICEM £ [F [G | A

1 |Example 1: Product mix problem. ™

2 |¥our company manufactures T%'s, stereos and speakers, using a common parts

3 |inventory of power supplies, speaker cones, etc. Parts are in limited supply and vou

4 |rnust determine the most profitable mix of products to build. See our Tutanal Online

5 |for shep-by-step instructions on formulating thiz linear programming rmodel.

4]

7

o] T ear Shaan Soaatar L

9 Meaminr for St | 100 100 100

10 Frofis

11 Sy Frackast £75 $50 $35

Total [[$16 I]I]I]l_

13 hd
W 4 » MW\ Examplel / Irventory / | 4] | _"|JJ
Ready I [[I Jmuml I 1 2

Worksheet Examplel contains the decision variables, and the coefficients and
SUMPRODUCT formula for the objective. Worksheet Inventory contains the
constraint left hand sides (formulas), coefficients and right hand sides.

94 Building Solver Models Solver User Guide

Microsoft Excel - Examplel.xls Hix=lE
IE‘_I] File Edit View Inseit Format Tools Data Window Help - & X
DEEHRA SRV R B o |l COMAddns.. ~
c2 hd fe =SUMPRODUCT(DZ2:F2 Example1130$3: 5F 55
AT 5 MM o [£ r o &
1 | Sartame deasdwe Aa bhesd
i 45E|| 20 1 1 i J
3 | Anire oy 240 100 1 0 0
4| Sreaber £ ann 500 2 2 1
o | P Sund 450 200 1 1 0
B | Stcdvinr R0 400 2 1 1
7 -
M 4 » M\ Examplel) Inventory / |1 | _’IJJ
Ready [N (] I

Note that the constraint formula refers to the variables as Example1!$D9:$F9.
Starting from worksheet Examplel, we can display the Solver Parameters dialog,
click Add or Change, then simply point and click to select the constraint left and right
hand sides on worksheet Inventory, as shown below.

Change Constraint E |

Cell Reference:

IInventurv!C2:C6 @ I::=;| IInventDrv!B2:BE~ @

Carmrent:

|
o] I Cancel | Add | Help |

The resulting Solver Parameters dialog looks like this:

Bl 5olver Parameters Y70 E

Set Cell: [$D§12 5%
Equal To: % Max 0 Mo € Yalue CF: I Close |

By Chanaging Yariable Cells:

= Model Opki
[so3m:9res 3 odel | |_opten:_|
Subject o the Constraints: IStandard LP/Cyuadr atic LI
$049:4F$9 ==10)
Inventory $CE2 046 <= Inventory 1$B%2 56846 Add | Variables |
Change | Reset all |
Delete | Help |

4

Multiple Models and Multiple Worksheets

You could define another, different Solver model on worksheet Inventory, and this
model could refer to variable and constraint cells on worksheets Examplel and
Inventory. The Premium Solver Platform keeps track of all the models.

Solver User Guide

Building Solver Models 95

By default, there is one model per worksheet, and the variable, constraint and
objective cell selections for this model are saved “behind the scenes.” The model
displayed in the Solver Parameters dialog is the one for the worksheet that is active
when you select Tools Premium Solver. But you can create additional named models
if you use PSI functions for optimization, as explained in the next section.

Defining Your Model with PSI Functions

The Premium Solver Platform V7.0 introduces new PSI worksheet functions for
specifying the elements of your optimization model. PSI functions provide an
optional, alternative style for defining variables, constraints and the objective. They
are especially useful if you're creating a simulation optimization model, where you
use PSI functions to specify the probability distributions of uncertain variables (such
as PsiNormal()), and summary statistics for uncertain functions (such as PsiMean()).

The PSI worksheet functions are implemented by the main Solver program file
Solver32.x1l, and they are always listed in Excel"s Function Wizard. But they are
recognized and used to define a Solver model only if you check the box for the
option Use PSI Functions on the Options tab in the Solver Model dialog:

Solver Model [x|

Original I Transformed I Diagnosis | Qptions |

r Use Inkeractive Opkimization Advanced '
[Use PSI Functions] Req Smoath Check Model |
_ ~ [East Sety
Startup - P Check For
[¥! Show Splash Screen [T sparse O Gradients
v Load w7 ¥BA Marros [Active only % Structurs

) Convexity
) Automatic

Help |

r3Select Solver Engines Based on Model Tyvpe
®al Cwalid Ccood O ﬁest—‘

When this box is checked, the Solver Parameters dialog appears with a new edit box
and range selector to the right of the Set Cell edit box, as shown below.

Bl Solver Parameters ¥70 H
Set Cell: |D18 @ I Solve |
Equal Tar (8 Max Mo 0 Value OF; I Close |

B Changing Yariable Cells:
= Options
[$0g9:4r —I

Subject ko the Constrainks: IStandard LP/Cuuadratic LI
C11:$C415 <= B11:$6415)
$DE2EFED m= add | Yariables |
Change | Reset al |
Delete | Help |
&

96 Building Solver Models Solver User Guide

In this new edit box, you can type or select a cell address (for example H12) where
a formula (for example =PsiObj (D18, “Max")) will be automatically written.
This is an example of the new function-based style for defining models.

If you click the Add or Change button when the Use PSI Functions option is
selected, the Add or Change Constraint dialog will appear with one new edit box and
range selector, as shown below.

Change Constraint E |

Cell Reference:

[$C11:4C415 [[<= =] [sB$11:48815 =)
PsI Cell: Comment:

| I
ol I Cancel | add | Help |

In the new edit box, you can type or select a cell address (for example H11) where
a formula (for example =PsiCon(C11:C15, "<="", B11:B15)) will be
written. Similarly, you could change the second constraint in the list box so that in
cell $H3$10 a formula such as =PsiCon(D9:F9, "*>="", *'0"") appears.

PSI functions can be used for decision variables in much the same way as for
constraints. If you click the Variables button and then click the Add or Change
button, the Add or Change Variable dialog will appear:

Change ¥ariable Cells E |

Cell Reference:
| $Dg9:4F 0]
Pal Cell: Comment:

| I
QK I Cancel | add | Help |

In the new edit box, you can type or select a cell address (for example $H3$9) where a
formula (for example =PsiVar(D9:$F3$9)) will be automatically written.

Function-Based Style for Models

Use of the PSI functionsillustrated above is entirely optional. If you don"t check the
box Use PSI Functions in the Solver Model dialog Options tab, the edit boxes for
PSI functions won"t appear in the dialogs, and any PSI functions for optimization on
the worksheet will be ignored.

PSI functions provide a way for you to see your cell selections for variables,
constraints, and the objective on the worksheet, without displaying the Solver
Parameters dialog. For example, after creating PSI functions as described in the
previous section, if you select Tools Options, click the View tab, and check the
~Formulas box" in the Window options group, the PSI function formulas will be
visible in cells H9:H12 on the worksheet, as shown on the next page. The last
argument in each function call is the comment (currently empty) associated with this
variable or function block.

Solver User Guide

Building Solver Models 97

H
9 |=PsiVar(D9:3F$9, ")
10 =PsiCon(D9:5F$9, ">=", "0", ")
11 =PsiCon(C11:8C$15, "<=", B11:B15. ")
12 |=PsiObj($D%$18, "Max".0, ")

As noted earlier, PSI functions are especially useful if you're creating a simulation
optimization model, where you use PSI functions to specify the probability
distributions of uncertain variables (such as PsiNormal()), and summary statistics for
uncertain functions (such as PsiMean()).

PSI Functions and Interactive Dialogs

You can move easily between the interactive dialogs and PSI functions when creating
your model. (This is in marked contrast to other Excel add-ins for simulation and
optimization that support both functions on the worksheet and interactive dialogs, but
do not synchronize the two.)

When you add or change a block of variables, constraints, or the objective through
the Solver Parameters dialogs and specify cells for PSI functions, the Solver writes
the PSI function calls into these cells automatically.

When you type a formula using a function such as PsiVar, PsiCon or PsiObj
directly into a worksheet cell in Excel worksheet Ready mode, the next time you
display the Solver Parameters dialog, the new function will be recognized and the
variables, constraints, or objective specified will also appear in the dialog.

Using the Insert Function Dialog

If you select menu choice Insert Function... in Excel 2000-2003, or the Function
Wizard on the Formulas tab in Excel 2007, you“ll see that the new PSI functions are
listed. They are grouped into their own category PSI Optimization, as shown below.

Insert Function HE |

Seatch for a function:

Tvpe a brief description of what wou want ta do and then &0 |
click Go

Or select a categaory: [PSI Optimization j

Select a function:

PsiCon(LHS, Relation, RHS, Comment, Model Name)
PsiCon adds one ar more constraints ko the optimization modal

Help on khis Funckion QK I Cancel

98

Building Solver Models

Solver User Guide

If you are using Risk Solver Engine, you"ll see three other categories of PSI functions
in this dialog: PSI Distributions, PSI Property Functions, and PSI Statistics.

The role of the Model Name argument of each PSI function is explained below under
“PSI Functions and Multiple Models.” The Comment is a character string comment.
Below is a summary of all of the PSI functions for optimization:

PsiVar (Range, Comment, Model Name) — Adds one or more decision variables to
the model. The Range argument should be a contiguous range of decision variable
cells.

PsiCon (LHS, Relation, RHS, Comment, Model Name) — Adds one or more
constraints to the model. The LHS argument should be a contiguous range of
constraint left hand side cells (containing formulas). The Relation argument may be
any of the strings “<=", “=", “>=" “int”, “bin”, “dif”, “soc” or “src” (same asthe
relation dropdown in the Add/Change Constraint dialog). The RHS argument may
be a number, a character string that contains a valid Excel formula, or a contiguous
range of cells. In the last case, the number of cells in the LHS and RHS cell ranges
must match.

PsiObj (Target Cell, Sense, Value Of, Comment, Model Name) — Adds the
objective to the model. The Target Cell argument should be the address of a single
cell. The Sense argument may be “Max”, “Min” or “VaueOf” (case doesn"t matter
here). The Value Of argument corresponds to the Value Of edit box in the Solver
Parameters dialog. As explained in the Premium Solver Platform User Guide, we
recommend that you use only “Max” or “Min”.

PsiEngine (Engine Name, Model Name) — Specifies the Solver engine that should
be used to solve the model. The Engine Name argument should be a string such as
“Standard LP/Quadratic” that matches one of the namesin the Engine dropdown list
of the Solver Parameters dialog.

PsiModel (Option Name, Value, Model Name) — Specifies a value for an option
that appears in the Solver Model dialog. The Option Name should be a character
string that matches one of the argument names of the SolverModel VBA function; the
Value should be valid for that argument.

PsiOption (Option Name, Value, Model Name) — Specifies a value for an option
that appears in the Solver Options dialog. The Option Name should be a character
string that matches an argument name of one of the SolverXXXOptions VBA
functions; the Value should be valid for that argument.

PSI Functions and Multiple Models

As mentioned above, the Premium Solver Platform V7.0 supports multiple Solver
models in the same workbook, or even on the same worksheet. The Platform
maintains a“current Solver model” for each worksheet, and the variable, constraint
and objective cell selections, Solver engine selection, and option settings for this
model are saved “behind the scenes.”

If you use PSI functions to define variable, constraint and objective cell selections,
these selections are assumed to belong to the model on the same worksheet that
contains the formulas with PSI function calls, unless you include an explicit model
name argument in your PSI function calls.

The model name can be the same as a worksheet name in the workbook — in this case,
the PSI function is treated as belonging to the model on the given worksheet —or it
may be a different name. If a different name is used, all of the PSI function calls that

Solver User Guide

Building Solver Models 99

include this model name as an argument are treated as one model. You can access
this model via the Load Model button in the Solver Options dialog, which will
replace the current worksheet model with the new set of variable, constraint and
objective cell selections, Solver engine selection, and option settings.

For more information on the Load Model and Save Model buttons, see “Loading,
Saving and Merging Solver Models’ in the chapter “ Solver Options.”

100 Building Solver Models Solver User Guide

Analyzing and Solving Models

Introduction

This chapter explains how to use the Solver Model dialog, which is unique to the
Premium Solver Platform, to analyze and transform your model, and control the
solution process. The Solver Model dialog is the user interface to features of the new
Polymorphic Spreadsheet Interpreter in the Premium Solver Platform, described
briefly in the “Introduction.”

Note: If you are using the Premium Solver, the Solver Model dialog contains only

the options Use Interactive Optimization, Use PSI Functions, Show Splash Screen,

and Load V7 VBA Macros, described in the section “Options Tab: Selecting Model
Features.” Other featuresin this chapter are not available in the Premium Solver.

The first sections of this chapter explain how to use the Solver Model dialog to
diagnose your model“stype (LP, QP, NLP, etc.), sparsity, and convexity; identify
“problem formulas’ that make your model non-linear, non-smooth or non-convex;
automatically transform your model to replace uses of certain non-smooth functions
with smooth and even linear counterparts; and set options for use of the Interpreter
when you solve your model. The last section describes in greater depth how the
Interpreter works, in comparison to the Microsoft Excel formula recalculator, and
how certain Solver engines take advantage of the Interpreter"s greater capabilities.

Using the Solver Model Dialog

You use the Solver Model dialog to analyze and optionally transform your model, but
not to solve it. Through this dialog, you can run the Polymorphic Spreadsheet
Interpreter on your model, without running any Solver engines. You can also set
options to determine whether and how the Interpreter will be used when you do solve
your model, by clicking the Solve button in the Solver Parameters dialog.

We can illustrate this process with the EXAMPLES worksheet, a simple Inventory
Planning model included in the Examples.xls workbook, installed with the Solver
files, shown on the next page. You can easily open this workbook from the Solver
Parameters dialog by clicking Help, then clicking Examples.

EXAMPLEDS was originally designed to be a linear programming model with a few
integer variables — but to properly minimize holding costs, the objective at cell B19
had to depend on 114, J14 and K14, which are sums of IF functions at 111:K14 in the
“Help function box.” If you attempt to solve this model with the L P/Quadratic

Solver User Guide

Analyzing and Solving Models 101

Solver, you'll receive the message “The linearity conditions required by this Solver
engine are not satisfied.” What can we do to improve this situation?

g Examgles xls _ |5 x|
| - C D E F () H | J K =1
11 tory P1 ing Model: Automatic Transiormation of IF Functions ™
2 The ewertoy plarang model was osgnally desigred fol inear programmeng. but Lo Zroperly minkveze
3 Pholdeg conts the objective o cell B19 had 1o deperd on 114, J14 20d K14, whach e sums of
4 JIF lunctions # 111 K14 r Bw "Help fncion bad® Using ths LPQuadatc Sobver ysedds the raeut
5 "The knoxiy conditions . aie not asifhied " The IF kechons have luined an ofwimee srple nex
f jrevedinteger model nio dficul 3 non-amooth model. What can we do to dnd 2n optmat soludon?
' d
g
9 | A= aroakicr 1) = prodiect & & = prodinc? J Mo Rancton
10 X1 0 Y1] Z1 0 X Y z
11 X2 0 Y2 0 22 0 Penod 1 0 1] 0
12 93 0 Y3 0 23 0 Period2| 0 o 4(._4
Period 3 0 0 0
“Sum |0 g K
¢ = mvantovy frvoaiet ' ¥ 5
0) 50 rd 0
-20 I'v2 -50 2 -100
{ yecaves| -2200 |
)| 20 With the Premun Solver Piatfom, you have saverd chooed You can
1 | Constands e Toods Solver | solect Evolutionaey Sobver, 2d chch Solve
22 0 ye 1] Girven erough See. the Solver wil unasly find & miremeam oot of 2400
| 23 0 v 20 Bl pou can uibe ths Model dalog 1o diagnote v lransfors e nodel
24 -20 3= 50 automatically ko one that is aaoer 1o wive Use Tools Solver . and
25 0 >= 50 chch Modul Sebsct Structure and chek Check Model The Modsl =
26 -50 = 0 INLP sath 3 vanables and 13 lunchions; 12 of the funchiors we Sneae, bot
7 -50 3w 20 onw [the cbmctive] & norbosar. Now dick on e Transfommod b, ad
28 | 0 I- 1] chok Check Model agan The Tiwntomed probiem e LP Convex
pa) 0 >= 100 with 27 vamabies and 67 funciices « the e vanabies and lunctions werm |
30 100 1 e 1[le created mhamaly ty the Solver. Check the bax Solve Tranzltaimed
kL 0 <= 150 |Problem . and chck Close. Seinct the LP/Muadistic Solver and chox,
2 0 = 150 Solve The taraiomed model 1 now soived 10 optmably as an LP/MIP
3 i] - 150 model. agam yelding the obwctive 2400
34 =
o o v wl\ Examerel JExamoiE2 [Examie: [Exanpied) Examm) « | | QI

Pictured below isthe Solver Parameters dialog for thismodel. Notice that we've
used the mouse to resize this dialog so you can see all of the variable cells and all of
the rows in the Constraints list box.

Il Solver Parameters ¥7.0 [x|

Sef Cell: [$B419
Equal To: 7 Max & Min (0 Yalue OF: ID Close |

By Changing Yariable Cells:
[$6510:$B512 $0510:40412,$F510:4F

Model | Options |

Subject ko the Constraints: IStandard LPyQuadrakic j
$B510:3B$12 <= 500 :
$E410:46412 = integer Add | Yariables |
B22:4B$30 »= D22:D30
B31:4B433 <= $D§31:40433 Change | Reset Al |

D10:40412 «= 500

$0%10:40%12 = inkeqger Delet | Hel |
SFEI0:4FE1Z <=500 == i
$FF10:3FE12 = inkeger

P

Clicking the Model button in this dialog will display the Solver Model dialog with
diagnostic information for the current model, as shown on the next page. Clicking
the Solve button will run the currently selected Solver engine on the current model,
using the current settings in the Solver engine's Options dialog, and the current
settings for the Polymorphic Spreadsheet Interpreter in the Solver Model dialog.

102 Analyzing and Solving Models Solver User Guide

Solver Model [x|

Criginal | Transformed I Diagnosis I Options I

Unknawn Wariables Functions MonZeroes
al |9 |13 I Check Model |
Smookh I I I Check For

" Gradients
Cuadratic I I I 0 Struchure
Linear I I I 0 Convexity

% Automatic
Bounds I 1a Sparsity % I

Help |
Integers I 9 Total Cells I

Solve With & pSIInterpreter 0 Excel Inkerpreter

The Original tab of the Solver Model dialog displays statistics about the model, as
you originally defined it, on the current Excel worksheet. The Transformed tab
displays the same statistics for the “transformed” model, where the Interpreter has
replaced certain non-smooth functions (if any) with new variables and constraints.
The Diagnosis tab is used to set options for analyzing your model and reporting
exceptions. The Options tab is used to set Interpreter options that affect the process
of analyzing, transforming, and solving your model.

Original Tab: Analyzing Model Structure

Initially, the Solver Model dialog shows only the numbers of variables, functions
(including the objective and constraints), bounds on variables, and integer variables
in this model. We can get more information by selecting the Check For Structure
option, and clicking the Check Model button — yielding the dialog shown below.
(See “Using the Check Model Button” below for a complete discussion of the anal -
ysis performed for the Check For Gradients, Structure, and Convexity options.)

T N ~ |

Original | Transformed I Diagnosis I Options I

l
MLP Yariahles Functions MonZeroes Ll

Al E 13 E3 Check Model |

Smooth I 9 I 13 I Check For

™ Gradients
Quadratic IU ID I @ Structure
Linear IEI I 1z I € Convexity

36
1]
27
) Automatic
Bounds |13 Sparsity % |3U-??
Help |
I a Total Cells I 52

Solve With %) Sl Interpreter {7 Excel Interpreter

Inteqgers

The upper left corner of the Solver Model dialog displays NLP, the Interpreter”s
diagnosis of the type of model on the EXAMPLES worksheet. Recall that this model
was originally intended to be an LP (linear programming) model. But the IF func-
tions at 111:K14 are not linear functions. (They are actually non-smooth — but by
default, Interpreter treats IF functions as smooth nonlinear and computes gradients at

Solver User Guide

Analyzing and Solving Models 103

each Tria Solution for them; see “Using Analyzer Advanced Options’ below.) In
the section “ Analyzing Model Exceptions’ below, we'll use the Interpreter to
pinpoint these IF functions —which could be hard to find in a large Solver model.
But first we'll review the displayed statistics, options and buttons in this dialog.

Using Model Statistics

The columns of the Solver Model dialog contain counts of the Variables, Functions,
and NonZeroes in your model. The rows labeled All, Smooth, Quadratic, and
Linear will display — respectively — (i) the total number of variables, functions, and
nonzeroes (dependencies) in the model; (ii) the number of smooth variables,
functions, and dependencies, (iii) the number of quadratic variables, functions, and
dependencies, and (iv) the number of linear variables, functions, and dependencies in
the model. The Bounds box displays the total number of bounds on variables, and
the Integers box shows the total number of integer, binary, and alldifferent variables
in your model. The Sparsity % and Total Cells boxes help measure the total size and
sparsity of your model, as further discussed below.

Types of Functions and Variables

For an explanation of linear, quadratic, and smooth functions, please consult the
section “Functions of the Variables’ in the chapter “ Solver Models and Optimiza-
tion.” All functions includes both non-smooth and smooth functions; smooth
functions includes all smooth nonlinear, quadratic and linear functions. However,
quadratic functions and linear functions include only functions of those types. This
means that the number of smooth functions shown is always at least the sum of the
number of quadratic functions and linear functions.

A decision variableisa“linear variable’ if, everywhere that it occursin formulas of
your model, the expression where it occurs (taken alone) would be a linear function.
A variableis counted as a“quadratic variable” if, everywhere that it occursin
formulas of your model, the expression where it occurs (taken alone) would be a
quadratic function. A variableis counted as a*“smooth variable” if, everywhere that
it occurs, the expression (taken alone) would be a smooth nonlinear, quadratic or
linear function. For example, if your model had only an objective defined by the
formula, =3*A1 + A2"2 + INT(A3), variable A1 would be counted as a linear
variable, since the expression 3*Al taken alone is a linear function; variable A2
would be counted as a quadratic variable; both A1 and A2 would be counted as
smooth variables; and variable A3 would appear only in the count of all variables.

Types of Dependencies and NonZeroes

A “nonzero” is counted each time that a given function is found to depend on agiven
variable. For example, if cell B1 is the objective function, it contains =A1+A2-B2,
cell B2 contains =A2*A3, and cells A1:A3 are all variables, this function would
contribute 3 nonzeroes to the total count. (Note that a variable, such as A2 in this
example, is counted only once per function, even if it is referenced more than once in
the function"s cell formulas.) Since B1 depends on cells A1:A3, the corresponding
partial derivatives (elements of the Jacobian matrix, as discussed in the chapter
“Solver Models and Optimization) will be nonzero.

The Total Cells box contains a count of al of the cellsin your model (the ,top-level”
cells for the objective and constraints, and all cells that they reference). The Sparsity
% box contains the results of calculating [All NonZeroes] / ([All Variables] * [All
Functions]), expressed as a percentage. Model sparsity was mentioned briefly in the
chapters “Introduction” and “ Solver Models and Optimization,” but here we can

104 Analyzing and Solving Models Solver User Guide

describe it more precisely: A dense model will have a high Sparsity % and a sparse
model will have a low Sparsity % figure. The EXAMPLES model has a sparsity of
30.77% -- an intermediate figure.

As mentioned in the earlier chapters, large optimization models tend to be sparse in
nature. Often, a linear programming (LP) model of over 10,000 variables will have a
Sparsity % figure of aslittle as 2% or 3%. Frontline"s Large-Scale LP/QP, Large-
Scale GRG, Large-Scale SQP, KNITRO and XPRESS Solvers are designed to
exploit sparsity in a model to save memory and solution time, and improve accuracy.

Using the Check Model Button

The three radio buttons in the “Check For” option group determine how much
analysis the Interpreter will carry out for your model when you click the Check
Model button, and when you click the Solve button in the main Solver Parameters
dialog. Clicking this button on the Original tab analyzes the original model; clicking
this button on the Transformed tab analyzes the transformed model.

Selecting Gradients causes the Interpreter to scan all of the formulas in your
model, to determine whether it can compute values and gradients for all of these
formulas. If you've used Excel features that the Interpreter does not support —
such as circular references, some references to other workbooks, and some user-
defined functions — an error message dialog will appear.

Selecting Structure causes the Interpreter to perform the same analysis as
Gradients (which may yield an error message), then analyze the structure
(dependencies) in your model, fill in the model statistics described above, and
classify your model as an LP, QP, QCP, SOCP, NLP, or NSP. (See the chapter
“Solver Models and Optimization” for an explanation of these abbreviations.)

Selecting Convexity causes the Interpreter to perform the same analysis as
Structure, then seek to determine whether each function in your model is convex
or non-convex over the feasible region, as described below. The overall result is
displayed in the upper left corner of the Solver Model dialog.

The Check Model button always counts all of the formula cells in your mode, and
displays this total in the Total Cells box in the Solver Model dialog. If you select
Structure or Convexity, the Sparsity % box is also filled, as described above.

Analyzing Model Convexity

An innovation in the Premium Solver Platform, not available in other modeling
systems, is automatic testing of problem functions for convexity. As mentioned
briefly in the Introduction, this test may yield conclusive results (that the problem is
either convex or non-convex) or inconclusive results (meaning that the test was not
able to prove convexity, nor was it able to prove non-convexity.) A convexity test
that always yielded conclusive results would take time that grew exponentially with
the number of variables, and hence would be impractical for even modest-size
models. The methods used in the Premium Solver Platform are designed to yield
useful results in many, but not all cases, while taking a“reasonable” amount of time.
The methods used to analyze model convexity are further described later in this
chapter, in the section “More on the Polymorphic Spreadsheet Interpreter.”

As explained in the Introduction, an optimization model is convex only if all of its
functions are convex (if the objective is being maximized rather than minimized, then
this function must be concave rather than convex). The overall convexity result for
the model is displayed in the upper left corner of the Solver Model dialog following

Solver User Guide

Analyzing and Solving Models 105

the result of structure diagnosis (LP, QP, QCP, etc.) as“Convex,” “NonCvx,” or
blank if the convexity test is inconclusive. You can also obtain a report of the
convexity test results for each problem function, as explained below.

Diagnosis Tab: Analyzing Model Exceptions

In EXAMPLEDS, we intended to create a linear programming (LP) model, but when
we clicked the Check Model button, the Interpreter reported that the model is
nonlinear (NLP). Ina model that we intended to be smooth nonlinear, which we
hoped to solve using (say) the Large-Scale GRG or KNITRO Solver, the Interpreter
might report that the model is non-smooth (NSP). How do we find and correct the
problem in a large Solver model? The Solver Model dialog can tell you which cell
formulas contributed to a diagnosis of a model type different from what you intended.

The Structure Report

To find out why EXAMPLES was diagnosed as NLP rather than LP, click the
Diagnosis tab in the Solver Model dialog, which will display the options shown
below.

Solver Model [x|
Close |

Original I Transformed | Diagnosis IOptions I

Desired Model

& Linear
™ Quadratic

& Conic
™ Nonlinear
% Monsmooth

7] Show Exceptions ko Desired Model

Check For
™ Gradients
0 Skructure
) Convexity
) Automatic

Help |

The Desired Model option group and the Show Exceptions to Desired Model
check box are used together to help you find formulas that are “exceptions’ to the
type of model that you intended to create. Simply click the desired type of model —
Linear, Quadratic, Conic, Nonlinear or Nonsmooth — check the box to Show
Exceptions, and click the Check Model button again. This will re-run the analysis,
and create a report worksheet that is inserted in the workbook, just to the left of the
model worksheet. If you do this for EXAMPLES and select Linear in the Desired
Model group, a report like the one shown on the next page will be inserted into your
workbook.

106

Analyzing and Solving Models Solver User Guide

E‘E Examples_xls !Elm
Al B C D E F G H | =

| 1 |Microsoft Excel 11.0 Structure Report ™
| 2 |Worksheet: [Examples.xIs]EXAMPLES

3 |Report Created: 07/30/2006 12:00:00 PM
I Model Type: NLP Assumption: LP

5
& |
| 7 [Statistics

g Variables Functions Dependents
EXgE] 13 3
| 10| Smaoth g 13 3B
| 11| Linear 0 12 27

12 T
ETarget Cell (hin) Exception 1 Exception 2
14 Cell Name Variahle Formula Variahle
| 15| $B§19 Objective: FB§10 EXAMPLESISES1S $EH11

16 M
< v n[{ EXAMPLE4 Y Structure Report 1 { EXAMPLES { E]|« | | |l

This report shows that the objective function at cell B19 is an exception to your
assumption of a linear model — it is a nonlinear function. Further, it depends
nonlinearly on variables B10 and B11 (and possibly others). This dependence was
first found at cell B19 on worksheet EXAMPLES. If your objective formula had
referred to a chain of other cell formulas, the report would show you the specific cell
where a nonlinear operation or function was first found. EXAMPLES5!B19 in the
report is a hyperlink —you can click on it to jump to the specific cell in question. Ina
large model, these links will help you quickly identify the “problem” formulas.

To save space, a maximum of three exceptions of each type is shown in the report for
each problem function. After modifying any formulas that were shown as exceptions
in the report, you should create a new report to identify any further exceptions to
your assumed model type — until the model type changes to the type you expected.

If you've selected Check For Convexity instead of Structure when you click the
Check Model button (with “Show Exceptions to Desired Model” checked), the
Structure Report will additionally list all functions that are diagnosed as non-convex
or whose convexity could not be determined. For example, if you select Desired
Model Quadratic and Check For Convexity, the report will list any problem functions
that are (i) not quadratic or linear, and any that are (ii) quadratic but are not convex.

Transformed Tab: Transforming a Non-Smooth Model

As described in the chapter “ Solver Models and Optimization,” the presence of the
non-smooth function IF in EXAMPLE5 makes the model much harder to solve.

With the Evolutionary Solver in the Premium Solver Platform, you can still solve
such models. But where an LP can be solved very quickly and reliably up to very
large size, and the solution is basically guaranteed to be optimal, a non-smooth model
may take far more time to solve, and there are no guarantees as to whether the
solution is truly optimal.

In EXAMPLES, the IF functions are not essential to correctly model the real-world
problem: you could use binary integer variables and linear constraints to achieve the
same effect (a“fixed-charge constraint”). Techniques for doing this are described
under “Improving the Formulation of Your Model” in the chapter “Building Large-
Scale Models.” Modelerswith training in operations research or management
science often use these techniques when first formulating their models.

However, if you don"t have time to learn these techniques, you may resort to the
familiar functions IF, MIN, MAX, ABS, AND, OR, and NOT to model your real-

Solver User Guide

Analyzing and Solving Models 107

world problem. To improve your results, the Premium Solver Platform can
automatically apply techniques analogous to those described above, to transform the
model from your formulation to a different formulation that is easier to optimize.

To ensure that the transformed problem is well-scaled, it is important to enter
upper and lower bounds for all decision variables in the Constraints list box.
These bounds are used to compute well-scaled values for so-called “Big M”
constants that are used in the constraints added during the transformation.

Effects of Model Transformation

If your model includes non-smooth functions such as IF, MIN, MAX, ABS, AND,
OR, and NOT, but is otherwise linear, the result of the Platform"s automatic
transformation will be a linear mixed-integer (LP/MIP) model, with more variables
and constraints. This transformed model may be solved by a variety of Solver
engines, from the built-in LP/Quadratic and SOCP Barrier Solvers to the Large-Scale
LP/QP, SQP and XPRESS Solvers. The result may be a much faster solution that is
guaranteed to be optimal.

The automatic transformation processis not “magic:” You will still pay a price in
solution time for the use of non-smooth functions, because the transformed model
will be larger (more variables and constraints) and will include integer variables. As
described in the chapter “ Solver Models and Optimization” of the Premium Solver
Platform User Guide, the presence of integer variables in a model makes it much
harder to solve.

However, the automatic transformation from a problem with non-smooth functions to
a problem with integer variables means that the ,arsenal" of Solver engines available
to optimize the problem is much larger. Many years of effort by Solver developers to
improve the technology of solving LP/MIP models can now be applied to your model
if it includes IF, MIN, MAX, ABS, AND, OR, and NOT functions.

The automatic transformation process uses general-purpose methods to replace IF,
MIN, MAX, ABS, AND, OR, and NOT functions, and relational operators such as <,
<=, >= and > with new binary integer and continuous variables, and new constraints.
There are till good uses for the techniques described under “Improving the Formula-
tion of Your Model,” because these techniques can yield a“tighter” formulation that
solves in less time than the automatically transformed version of your model.

If the arguments you supply to IF, MIN, MAX, ABS, AND, OR, and NOT functions
are linear functions of the variables, then the new constraints added to the problem
will be linear functions; if the arguments you supply are not linear, the transformation
process will still work, but the resulting model won"t be linear. If you also use other
non-smooth functions (for example, CHOOSE, LOOKUP, or the Excel database
functions, with arguments that depend on the variables) in your model, the result will
still be a non-smooth model, and you will still need the Evolutionary Solver or the
OptQuest Solver to find a solution.

Using Automatic Model Transformation

As noted earlier, the Original tab displays statistics about the model as you originally
defined it on the current Excel worksheet. The Transformed tab displays the same
statistics for the “transformed” model, where the Interpreter has replaced certain non-
smooth functions (if any) with new variables and constraints. You can easily see the
effects of automatic model transformation: Just click on the Transformed tab, verify
that Check For Structure (or Convexity) is selected, and click the Check Model

108 Analyzing and Solving Models Solver User Guide

button. If you do this for the EXAMPLES model, the Solver Model dialog below
will be displayed.

Solver Model |

Original | Transformed IDiagnnsis | options |

u
LP Convex Wariables Functions MonZeroes Ll

Al [27 [67 [150 . theck Model |
Smooth I 27 I 67 I 150 Check For

™ Gradients
Quadratic IU ID |D @ Structure
Linear |2? IE,,'.-‘ I 150 ™ Convexity

) Automatic
Bounds Sparsity % | 5.29

I 54
Help |
Integers I 15 Total Cells I 52

[T Solve Transformed Problerm [~ Show Transformations

The transformed model has 18 additional variables, 9 of which are new integer
variables, and 54 additional constraints —but it is now a linear integer (LP/MIP)
model. It"s aso more sparse than before (8.29% versus 30.77%) — the LP/Quadratic
Solver and other sparsity-exploiting Solvers will be able to take advantage of this.

If you“re interested in the details of the additional variables and constraints, check the
“Show Transformations’ box and click the Check Model button again. This will add
a Transformation Report like the one shown (in part) below to your workbook.

E‘E Examples.xls [_ (3] x|
A B C D E F <
Microsoft Excel 11.0 Transformation Report
Worksheet: [Examples.xIs]EXAMPLES
Report Created: 07/30/2006 12:00:00 PM
Number of Artificial Variables: 18
Number of Original Variables: 9
Number of Artificial Constraints: 54
Number of Original Constraints: 12

“ariahles

Crigin Type Created

EXAMPLESIBIFTT = or »= Binary

ExAMPLESISIFTT IF Continuous

EXAMPLESIBIFTZ = or »= Binary

ExAMPLESISIFZ IF Continuous

EXAMPLESIBIFTS = or = Binary

EXAMPLESIRIRTT IF Continuous

EXAMPLESIEN$11 = or == Binary
17| EXAMPLESIEJS11 IF Continuous -
M 4+ W[Transformation Report 1 /€] <] | iy

JEFY) PRI G PG R Y
I N R s e e e L e

To solve the transformed model, simply check the box “ Solve Transformed Problem”
shown above on the Transformed tab. Then click the Close button to return to the
main Solver Parameters dialog, and click the Solve button. The currently selected
Solver engine will be used to solve the transformed problem. (To solve the original
problem, return to the Solver Model dialog, click the Transformed tab, and uncheck
the “Solve Transformed Problem” box.) If you do thisfor the EXAMPLES model,
the Solver Results dialog will appear with the message “ Solver found a solution. All
congtraints and optimality conditions are satisfied.” Since this is now an LP/MIP
model and the Integer Tolerance is set to zero, the solution is globally optimal.

Solver User Guide

Analyzing and Solving Models 109

Options Tab: Selecting Model Features

The Options tab of the Solver Model dialog provides a number of options to control
the behavior of the Solver and the Polymorphic Spreadsheet Interpreter. The
Advanced group of options on thistab is described in alater section, “Options Tab:
Using Advanced Options.” The other options are described here.

Solver Model [x|

Original I Transfarmed I Diagnosis | Qptions |

Advanced
[Req Smooth Check Model

(N Use Inkeractive Optimization

L :

[T Use Pl Functions
r Fast Setup

[3tartup Check Far
¥ Show Splash Screen [sparse O Gradients
'l Load W7 YBA Macros [T Active Only [0 Skructure

) Convexity
) Automatic

Help |

—Select Solver Engines Based on Maodel Tvpe
@al COwvald OGood O ﬁest—‘

Use Interactive Optimization

This check box activates the Interactive Optimization feature of the Premium Solver
Platform. If the box is checked, and you return to Excel worksheet Ready mode, then
each time you change a number on the worksheet, the model will be optimized
immediately — just as if you had selected Tools Premium Solver, clicked the Solve
button, and clicked OK in the Solver Results dialog.

For small to medium size models, this is not only a convenience — it can be a real
decision aid: You'll find that insights about your model, and decisions you can
make, start to flow intuitively, when you can quickly see the impact of changing a
parameter on the optimal solution.

For this feature to be useful, you should change a“parameter of the model” —a
number in some cell that is used in the objective or a constraint, but is not itself a
decision variable. As soon as you change this number (depending on the time needed
to solve the problem), you"ll see new valuesin the decision variable cells, and new
calculated values for the objective and constraints.

Use PSI Functions

This check box determines whether PSI functions for optimization —described in the
chapter “Building Solver Models’ under “Using PSI Functions’ — are used to define
your optimization model. The PSI functions for optimization, such as PsiVar(),
PsiCon() and PsiObj(), are always listed in Excel"s Function Wizard. But they are
recognized and used to define a Solver model only if you check this box.

PSI functions provide an optional, alternative style for defining the variables,
constraints and objective that make up your model. They are especially useful if
you're creating a simulation optimization model, where you use PSI functionsto
specify the probability distributions of uncertain variables (such as PsiNormal()),
and summary statistics for uncertain functions (such as PsiMean()).

110 Analyzing and Solving Models Solver User Guide

When this box is not checked (the default setting), the edit boxes for PSI functions
illustrated in the chapter “Building Solver Models” won"t appear in the dialogs, and
any PSI functions for optimization on the worksheet will be ignored. If this box is
checked, the Solver will scan for PSI functions on the worksheet each time you use
Tools Premium Solver, and any new or changed PSI functions will be reflected in the
objective, variables and constraints shown in the Solver Parameters dialog.

Startup Options Group

The options in the Startup group were summarized in the chapter “Installation” and
are also documented here. These two option settings are saved in the Registry (under
HKEY_CURRENT_USER\Software\Frontline Systems\PremiumSolverPlatform\7.0)
and are effective for all Excel sessions and workbooks; all other options are saved in
the current workbook.

Show Splash Screen

If this box is checked, a*“splash screen” is briefly shown when the Premium Solver
Platform COM add-in is first activated — typically when you first start Excel. If this
box is unchecked, no splash screen is shown.

Load V7 VBA Macros

If this box is checked, the Premium Solver Platform V7.0 COM add-in will load the
V7.0 Solver.xla automatically; any earlier version of Solver.xla will be unloaded.
This ensures that your VBA code calls to functions like SolverOK and SolverSolve
will work with the Premium Solver Platform V7.0.

If this box is unchecked, the Premium Solver Platform V7.0 COM add-in will not
load the V7.0 Solver.xla automatically. You must manually ensure that the version
of Solver.xla that you want (V7.0, V6.x, standard Excel Solver, etc.) is loaded, using
the File Open or Tools Add-Ins menu commands. See“Setting Startup Options” in
the chapter “Installation” for more information.

Select Solver Engines Based on Model Type

If you have many Solver engines installed for the Premium Solver Platform, and if
you'‘re solving awide range of models of different types, it may be not be immedi-
ately apparent which Solver engine is best for a given model. The Polymorphic
Spreadsheet Interpreter can help, by diagnosing your model and then automatically
select a subset of the Solver engines most appropriate for solving it. The selection is
controlled by the option group.

When you use the Check Model button, the selection in the group Select Solver
Engines Based on Model Type determines which Solver engines will appear in the
Solver engine dropdown list in the main Solver Parameters dialog. Choosing All
specifies that all available Solver engines should appear in the dropdown list,
regardless of the model type.

Choosing Valid specifies that only Solver engines that are able to handle the current
model type should appear. For example, if the model type is smooth nonlinear or
NLP, the LP/Quadratic Solver will not appear, but the nonlinear GRG Solver,
Interval Global Solver, and Evolutionary Solver will appear, since they are valid (but
not necessarily good or best) for this model type.

Choosing Good specifies that only Solver engines that were specifically designed for
this model type will appear. For example, if the model type is smooth nonlinear or

Solver User Guide

Analyzing and Solving Models 111

NLP, only the nonlinear GRG Solver and Interval Global Solver will appear; the
Evolutionary Solver, while valid for smooth nonlinear models, is really designed for
non-smooth models.

Choosing Best specifies that only Solver engines that are considered “best of breed”
for this model type will appear. This is a very demanding criterion: If you have only
the Solver engines built-in to the Platform, and you choose Best for an NLP model,
you'll receive awarning message, asking you for another choice. This is because
certain field-installable Solver engines are considered “best” for these problems,
whereas the built-in Solver engines are treated as simply “good” — so the Solver
engine dropdown list would be empty!

Note that your selection in this option group will affect the Solver engine dropdown
list only if you have clicked the Check Model button, with Check For set to Structure
or Convexity, since the last time you used Tools Premium Solver... to display the
Solver Parameters dialog. The Solver assumes that you may have edited formula
cells and changed the model type between the time you close the dialog and reopen it
later, so you must click the Check Model button again to redisplay model statistics
and make the “ Select Solver Engines Based on Model Type” option effective.

Model Analysis When Solving

You can choose whether the Polymorphic Spreadsheet Interpreter or the standard
Excel interpreter (recalculator) is used when solving a problem. If the PSI Interpreter
is used, you can choose how much model analysis it performs before the actual
solution process starts.

The Polymorphic Spreadsheet Interpreter offers many advantages when solving a
problem: Besides computing values for your spreadsheet formulas, it can compute
accurate gradients —which are needed by most Solver engines — at high speed, and it
can tell the Solver engine which functions in your model are linear, quadratic, smooth
nonlinear, or non-smooth — several Solver engines use this information to realize
greater speed or solution accuracy.

But for some models, the gain in speed and/or accuracy isn“t worth the extratime
spent by the PSI Interpreter in model analysis — you are better off using the Excel
interpreter. And there are a few Excel functions and formula syntax that are not
supported by the PSI Interpreter, but can be used with the Excel interpreter.

1. The Solve With option in the Solver Model dialog Original tab determines
whether the PSI Interpreter or the Excel Interpreter is used when you click
Solve in the main Solver Parameters dialog.

2. If the Solve With option is set to PSI Interpreter, the Check For option
group selection determines how much model analysisis done “up front”
when you click Solve.

3. The Advanced options group, on the Options tab, controls the use of certain
advanced features of the PSI Interpreter when you click the Solve button or
the Check Model button.

112 Analyzing and Solving Models Solver User Guide

Solver Model [x|

Criginal | Transformed I Diagnosis I Options I

Unknown Wariables Functions MonZeroes
al |9 |13 I Check Model |
Smookh I I I Check For

" Gradients
Cuadratic I I I 0 Struchure
Linear I I I 0 Convexity

% Automatic

Bounds I 1a Sparsity % I
Help |
EN [

Integers Total Cells

Solve With & pSIInterpreter 0 Excel Inkerpreter

Using the Solve With Option

When the Solve With option is set to PSI Interpreter, the Polymorphic Spread-
sheet Interpreter is used when solving. The choice in the Check For option group
determines how much model analysisis done “up front” when you click Solve, before
the Solver engine starts searching for an optimal solution. If your model includes any
formula syntax or Excel features not supported by the PSI Interpreter, an error
message dialog will appear when you click the Solve button.

When the Solve With option is set to Excel Interpreter, the Polymorphic Spread-
sheet Interpreter is not used when solving — instead, the Excel interpreter
(recalculator) is used to compute all problem functions, and derivatives are estimated
via finite differences. Note that the Interval Global Solver, SOCP Barrier Solver, and
MOSEK Solver Engine cannot be used if Solve With is set to Excel Interpreter, or if
the Check For option is set to Gradients.

You“ll need to choose Solve With = Excel Interpreter if you receive an error
message about unrecognized functions or formula syntax when you click the Solve
button, or if the model type shown in the upper left corner of the Solver Model dialog
appears as “Unknown” after you click Check Model. Most often, this means that
your model uses special formula syntax, Excel functions, or user-defined VBA
functions not supported by the PSI Interpreter.

If you have Risk Solver Engine, and Interactive Simulation is“on” at the time you
click Solve, the Premium Solver Platform uses Solve With = Excel Interpreter for the
optimization process — regardless of the Solve With setting in this dialog — and Solve
With = PSI Interpreter for the Monte Carlo simulation process performed on each
Trial Solution of the optimization. The simulation process, which typically accounts
for most of the time, is up to 100 times faster than if Excel were used for each trial.

Using the Check For Options

The Check For options group determines how much model analysis is done when you
click Check Model in the Solver Model dialog, or click Solve in the main Solver
Parameters dialog. The options Gradients, Structure, and Convexity take progres-
sively more time “up front” and yield progressively more information about the
model for you on Check Model, or for the Solver engine on Solve. The Automatic
setting — often your best choice — allows the Solver engine to choose the option
(Gradients, Structure, and Convexity) to be used when solving.

Solver User Guide

Analyzing and Solving Models 113

As noted above, the Interval Global Solver, SOCP Barrier Solver, and MOSEK
Solver Engine will operate only if the Solve With option is set to PSI Interpreter, and
the Check For option is set to Structure, Convexity, or Automatic. All other Solver
engines can operate with any option setting, but they solve most efficiently with
specific settings.

Please see the last section of this chapter for background information on the
Polymorphic Spreadsheet Interpreter, the Excel interpreter, and the meaning of
“finite differencing,” “automatic differentiation,” and “ dependents analysis’ in the
following paragraphs.

Check For = Gradients

Choosing Gradients specifies that the PSI Interpreter should “parse” cell formulas on
each Solve step, prior to running the selected Solver engine. When this is done, and
the Solver engine requests function values and derivatives, they will be computed by
the Interpreter; fast, accurate derivatives will be obtained via automatic
differentiation. However, no structure or dependencies analysis will be available to
the Solver engine.

Check For = Structure

Choosing Structure specifies that the PSI Interpreter should “parse” cell formulas and
perform a structure analysis on each Solve step, prior to running the selected Solver
engine. When this is done, and the Solver engine requests function values and
derivatives, they will be computed by the Interpreter; fast, accurate derivatives will
be obtained via automatic differentiation. Further, structure or dependencies analysis
information will be available, if the Solver engine requests it.

Check For = Convexity

Choosing Convexity specifies that the PSI Interpreter should “parse” cell formulas,
perform a structure analysis, and perform a convexity analysis on each Solve step,
prior to running the selected Solver engine. No Solver engine currently requires this
option, but it is built into the Premium Solver Platform for future use.

Check For = Automatic

Choosing Automatic — the default — specifies that either the Gradients or the
Structure option will be chosen automatically, based on the type of model and the
currently selected Solver engine's ability to use the information.

As you may notice when using the Check Model button to diagnose your model,
these steps can take some time for larger models —and they can also require
significant amounts of memory. Structure analysis takes significantly more time and
memory than Gradients analysis. The resources spent on this analysis are often
repaid many times over when the Solver engine runs, but this depends on the Solver
engine, and also, to some degree, on the model.

For example, the LP/Quadratic Solver and the Large-Scale LP/QP Solver both use
Gradients when Solve With = Automatic, but they don"t use Structure, since the
model is expected to be an LP, and a Structure analysis would simply show that all
variables, functions and dependents were linear. But the Large-Scale SQP Solver
and KNITRO Solver both use Structure when Solve With = Automatic, since they are
designed to take advantage of linear dependents in a model that is nonlinear overall.

If you choose Structure for the LP/Quadratic Solver, the Structure analysis will be
performed, but the LP/Quadratic Solver will make little or no use of this analysis, and

114 Analyzing and Solving Models Solver User Guide

your overall solution time will probably be greater than if you chose Gradients or
Automatic. If you choose Gradients for the Large-Scale SQP Solver, the engine will
still solve the problem, but it will not be able to take advantage of Structure analysis.
For most models, this will mean that the Solver engine will take more time than if
you had chosen Structure; but in some cases — for example, models composed of all
nonlinear functions — there would be little payoff from Structure analysis informa-
tion, and the Solver engine might take the same or less total time.

In two situations, a Structure analysis is always performed when you click Solve,
even if you've selected the Gradients option in the Solve With group:

1. When you check the Sparse box in the Advanced option group (described
below). A Structure analysis is required for the Interpreter to operate in its
own “ Sparse mode.”

2. When the Interval Global Solver is selected in the Solver engine dropdown
list. This Solver engine doesn"t accept any non-smooth functions, and it
uses Structure analysis to check for them.

Solve With Options and the Evolutionary Solver

The hybrid Evolutionary Solver in the Premium Solver Platform is designed to solve
non-smooth problems, where derivatives of some of the problem functions may not
be defined at certain points. But the Evolutionary Solver can also use classical
methods, such as gradient search, where derivatives are required. Specifically, if you
choose Gradient Local or Automatic Choice as the Local Search option, the Solver
will attempt to compute derivatives for your problem functions. In this case, the
Solve With option will determine how the gradients are computed.

When Solve With = Excel Interpreter, the PSI Interpreter is not used, and gradients
are computed via finite differencing; the Solver will stop only if a simple recalcula-
tion yields an error. (The gradient values for non-smooth functions may not be valid
at certain points; this may cause the gradient search to be slower or less effective.)

When Check For = Gradients, automatic differentiation is used, but diagnostic
information is not produced, which means that the Evolutionary Solver cannot
distinguish between non-smooth and smooth or linear variables and constraints. This
choice is not recommended for use with the Evolutionary Solver.

When Check For = Structure or Automatic, automatic differentiation is used, and
diagnostic information is produced and will be used by the Evolutionary Solver to
distinguish non-smooth and smooth or linear variables and constraints. This choice
often yields the best performance, provided the Solver does not stop because a
gradient is undefined for a non-smooth function. If you ensure that the Advanced
group option Require Smooth is unchecked, the Solver will compute approximate
gradients for ABS, IF, MAX, MIN and SIGN when operating in this mode.

Options Tab: Using Advanced Options

The Advanced group of check boxes, on the Options tab, controls advanced features
of the Polymorphic Spreadsheet Interpreter during the Solve step. Except for the
Require Smooth box, these options primarily affect the Interpreters speed and
memory usage on large models. The default values (all unchecked) are appropriate
for most problems, but you may wish to experiment with these options to find the
settings that yield the best performance on your models.

Solver User Guide

Analyzing and Solving Models 115

Solver Model [x|

Original I Transfarmed I Diagnosis | Dptions |

Advanced
[Req Smooth Check Model

(N Use Inkeractive Optimization

:

[T Use Pl Functions
r Fast Setup

rStartup Check Far
¥ Show Splash Screen [sparse {7 Gradients
'l Load W7 YBA Macros [T Active Only [0 Skructure
) Convexity
—Select Solver Engines Based on Maodel Tvpe ™ Aukomatic
@al COwvald OGood O ﬁest—‘

Help |

Require Smooth

This option affects whether and how the PSI Interpreter diagnoses model types and
computes derivatives for a small set of commonly used Excel functions — currently
ABS, IF, MAX, MIN and SIGN. Asexplained in the section “Functions of the
Variables’ in the chapter “ Solver Models and Optimization,” these functions are non-
smooth, which means their derivatives are undefined at certain points: For ABS and
SIGN at zero, for IF at the transitions between TRUE and FALSE in its first
argument, for MAX and MIN at the transitions when one argument becomes larger or
smaller than the others. But it is possible to compute derivatives of these functions at
all points other than the transition points, and the Interpreter will do this automatic-
ally, unless the Req (Require) Smooth box is checked. Moreover, when diagnosing
the type (LP, QP, QCP, SOCP, NLP or NSP) of a model, the PSI Interpreter will
treat these functions as smooth nonlinear unless the Require Smooth box is checked.

If you are using the Solver Model dialog to diagnose your model type and optionally
find “ problem functions,” and you want to locate occurrences of ABS, IF, MAX,
MIN or SIGN in your model, be sure to check the Require Smooth box before you
click the Check Model button.

If Require Smooth is unchecked when you solve your model, the PSI Interpreter will
evaluate derivatives of IF functions (for example) by computing a value — TRUE or
FALSE — for the first argument, then computing derivatives of the second argument
on TRUE, or the third argument on FALSE, using automatic differentiation. The
result is very similar to that obtained when derivatives are estimated via finite
differencing — the method used in the Excel Solver and Premium Solver. In most
cases, these “directional derivatives’ will enable a nonlinear optimization method to
make progress towards a feasible or optimal solution. But the Solver will likely have
trouble if the transition between TRUE and FALSE occurs near the optimal solution
or the boundary of a constraint.

For the Evolutionary Solver, leaving Require Smooth unchecked will allow the
gradient-based local search (if used) to proceed even if ABS, IF, MAX, MIN or
SIGN functions are encountered. However, the option to Fix Nonsmooth Variables
in the Evolutionary Solver will not fix variables that occur in these functions, because
they won"t be diagnosed as non-smooth.

If Require Smooth is checked, then variables occurring in these functions will be
diagnosed as non-smooth. This in turn means that the first time the Solver engine
requests derivatives of a function whose formulas use ABS, IF, MAX, MIN or SIGN,
the Solver will stop with an Interpreter error message. If other non-smooth functions

116 Analyzing and Solving Models Solver User Guide

—such as CHOOSE and LOOKUP —are used in your model, automatic differentia-
tion will always cause the Solver to stop with an error message, unless you check the
Sparse box, as described below.

Fast Setup

In the Premium Solver Platform, use of the Polymorphic Spreadsheet Interpreter
supersedes, for most models, the use of “Fast Problem Setup” as implemented in the
Premium Solver and older versions of the Premium Solver Platform. Fast Problem
Setup is essentially a simple and fast way to parse and interpret models that use a
restricted set of Excel functions and formulas (such as SUM and SUMPRODUCT)
for linear and quadratic models only, and obtain LP and QP coefficients for the
Solver engines. The PSI Interpreter in the Premium Solver Platform can handle
almost all Excel formulas and functions, so there is little reason to restrict models to
“Fast Problem Setup form” today.

However, Fast Problem Setup still has some uses: Existing models in proper form
for Fast Problem Setup may experience faster total solution times if you choose Solve
With = Excel Interpreter, and for very large LP models (100,000 variables or more),
Fast Problem Setup may be preferred, since the memory required for the Polymor-
phic Spreadsheet Interpreter may be greater than available RAM and may cause
swapping to disk, which can be very slow. But, if you have a mix of models, some in
Fast Problem Setup form and others not in that form, it would be inconvenient to
switch frequently between Solve With = PSI Interpreter and Excel Interpreter.

If you check the Fast Setup box, old-style “Fast Problem Setup” will be tried first;
if this fails (because the model is not in the required form), the Interpreter will be
used instead. This option will have an effect only when you run a linear Solver
engine, such as the LP/Quadratic Solver or the Large-Scale LP/QP Solver; it will not
affect nonlinear models. It will take some extra time to examine the model using old-
style Fast Problem Setup, but this process stops as soon as the first problem function
not in the required form is encountered, so the time penalty is usually not very great.
If you have selected Solve With = Excel Interpreter, old-style Fast Problem Setup
will remain available, regardless of whether this Fast Setup box is checked.

Sparse

When the Sparse box is checked, the PSI Interpreter operates internally in “ Sparse
mode,” when it is unchecked (the default), the Interpreter operatesin “Dense mode.”
This option affects only the PSI Interpreter, not the Solver engines — the latter are
typically designed either for dense problems, like the GRG Nonlinear Solver, or for
large, sparse problems, like the Large-Scale SQP Solver. Sparse mode also enables a
Solver engine to request that non-smooth variable occurrences should be ignored
when computing derivatives via automatic differentiation.

The Polymorphic Spreadsheet Interpreter can use significant amounts of memory
(RAM), especially when diagnosing a model and computing derivatives via
automatic differentiation. Memory usage grows with model size, and is greatest
when the Solver is running (and using significant amounts of memory itself) and
requesting derivatives. If your model is large enough, the memory required may
exceed available RAM and cause Windows to beginning swapping to disk — with a
severe impact on solution time.

When it operatesin “ Sparse mode,” the PSI Interpreter uses sparse data structures,
including “packed” gradient vectors and Hessian matrices, and index lists for the
occurrences of variables in problem functions. Extra time is required to perform a

Solver User Guide

Analyzing and Solving Models 117

Structure analysis (which is required to take advantage of sparsity) and to create the
sparse data structures.

For a large, sparse model, Sparse mode can save a significant amount of memory —
and if this prevents swapping to disk, it will also save significant time. But if the
model is very dense, Sparse mode can actually take more time and memory than
Dense mode. Hence, you should check the Sparse box only for models where the
Sparsity % figure in the Solver Model dialog is quite low.

If you have a very large, sparse linear or quadratic model, you should experiment to
see whether the Sparse box yields the best performance. Bear in mind that checking
the Sparse box will cause a Structure analysis to be performed before running the
Solver engine. It"s possible that the Structure analysis will require more time up-
front than Sparse mode saves during the solution process.

For the KNITRO Solver, Sparse mode has a huge impact on performance. This
Solver operates most effectively when it can obtain second derivatives (Hessians)
from the Interpreter using automatic differentiation. But this process can consume
large amounts of time and memory when the Interpreter is in Dense mode. If a large
nonlinear model is sparse —as is usually the case — or if it includes many linear
occurrences of variables (which contribute nothing to the Hessian of the function in
which they occur), second derivative information can be computed far more
efficiently in Sparse mode.

A Solver engine can request that, if Check For = Automatic, the Interpreter will run
in Sparse mode regardless of the setting of the Sparse check box. The KNITRO
Solver makes this request, since the Sparse box is unchecked by default, and Sparse
mode is so critical to its performance. You can still force the Interpreter to run in its
own Dense mode by setting Check For = Structure (or another choice different from
Automatic) and leaving the Sparse box unchecked. But we recommend that you run
most Solver engines with the default settings (Check For = Automatic), which will
yield the best performance in the majority of cases.

For the Evolutionary Solver, Sparse mode can also have an important impact.
Typical models for the Evolutionary Solver —which is limited to 500 decision
variables — are not large enough to require this option for memory-saving purposes.
But when the PSI Interpreter operates in Sparse mode, the Evolutionary Solver can —
and will —ask the Interpreter to ignore non-smooth variables in automatic
differentiation. The effect of thisisto “fix” the non-smooth variables, making their
partial derivatives zero, and to allow the Solver to proceed with automatic
differentiation of any non-smooth function.

So, if the Evolutionary Solver stopswith the message “ Solver encountered an
error computing derivatives,” you should check the Advanced options group
Sparse box in the Solver Model dialog, and click Solve again.

Active Only

When the Active Only box is checked, the PSI Interpreter will evaluate cells only on
the active (frontmost) worksheet in the active workbook. Cells on other worksheets
in the active workbook, or on sheets in other workbooks, that are referenced in
formulas making up the Solver model will be treated as constant in the problem.

When the Active Only box is unchecked (the default), the Interpreter will evaluate all
cells, on all worksheets, referenced in formulas involved in the Solver model. If the
model references cells on sheets in other workbooks, these workbooks will be opened
if available; otherwise the external cell“s “last known value” (as stored in the active
workbook) is used and treated as constant in the model.

118

Analyzing and Solving Models Solver User Guide

This box should be checked only if you have a large model that is spread across
multiple worksheets, and you want all cells on worksheets other than the active sheet
to be treated as constant in the problem. Note that, if these cells actually contain
formulas that depend on the decision variables, this fact will be ignored and you will
be solving a problem where these cells are effectively held constant at their last
known values. If you have a large number of such cells on other worksheets, and
especially if they contain formulas that do not depend on the decision variables,
checking this box will save time in the Interpreter.

More on the Polymorphic Spreadsheet Interpreter

The Polymorphic Spreadsheet Interpreter in the Premium Solver Platform
fundamentally changes the way the Solver operates, and it affects — often
dramatically — the performance of both the built-in and field-installable Solver
engines. This optional section will give you more insight into how the Interpreter
works, in comparison to the Microsoft Excel formula recalculator, and how certain
Solver engines take advantage of the Interpreters considerably greater capabilities.
To appreciate this section, you may need to review “Functions of the Variables’ in
the chapter “Solver Models and Optimization.”

The Microsoft Excel Recalculator

Microsoft Excel includes an “Interpreter” of its own for Excel formulas, that is
usually referred to as the formula recalculator. The recalculator is used to compute
up-to-date values for formulas in your model whenever you enter or edit information
in spreadsheet cells (when Excel isin “ Automatic Calculation mode”) or when you
pressthe F9 (Calc Now) key. Asthe standard “Interpreter” from Microsoft, it
computes values for every kind of formula syntax or function that is legal in
Microsoft Excel. It is controlled by options on the Calculation tab in the Tools
Options dialog in Excel.

While it is invoked automatically when you work interactively with your spreadsheet,
the Microsoft Excel recalculator can also be invoked programmatically, by VBA
code or by an add-in such as the Solver. Indeed, the Solver traditionally worked by
writing new values into cells for decision variables, asking Excel to recalculate the
model, then reading the computed values of cells for the objective and constraints.

Although it is fast and accurate, the Microsoft Excel recalculator has a specific and
limited purpose: To calculate function values in formula cells, given new values for
other cells. It does not perform other tasks such as computing function derivatives,
or analyzing formulas for linear or nonlinear dependents.

Finite Differencing

Since the Microsoft Excel recalculator computes only function values, but most
Solver engines require both function values and function derivatives, the Excel
Solver, Premium Solver, and previous versions of the Premium Solver Platform have
traditionally used the Excel recalculator to compute approximations of partial
derivatives, using the method of finite differencing. This method is based on the
definition of the partial derivative of a function f with respect to a variable x;:

flox=1lim f(x+e)—f(x)
-0

Solver User Guide

Analyzing and Solving Models 119

where X represents the vector of decision variables [X; X, ... X,] and g; is a unit
vector (with 1 in the jth position and 0 elsewhere). While the definition applies only
in the limit when goes to zero, an approximation of the partial derivative can be
computed by choosing a very small value such as 10® for . So the Solver uses the
following steps:

1. Set the cells for the decision variables to x = [Xy X5 ... X,].

2. Ask Excel to recalculate the model, thereby computing f (x).

3. Set the cell for the jth variable to the “ perturbed” value x; +

4. Ask Excel to recalculate the model, thereby computing f (x + ¢;).
5. Compute the difference of f (x + e;) and f (x), divided by

These steps compute a partial derivative with respect to one variable. To compute
the function gradient — the partial derivatives with respect to all of the variables —
steps 3 through 5 above must be performed n times if there are n decision variables.

Most Solver algorithms require the gradient of the objective and the gradients of all
the constraints. That is, they require the Jacobian matrix of partial derivatives,
where each matrix row is the gradient of one function (see “Derivatives, Gradients,
Jacobians, and Hessians” in the chapter “ Solver Models and Optimization”):

0f1/0xq, 0f1/0%,, ..., Of1/OX,
0fpl0xq, 0f2/0%, ..., Of,/0X,

Of/0%y, Ofyl0%, ..., Of/OX,

This is not quite as expensive in computing time as it looks, because when the Solver
asks Excel to recalculate the model at steps 2 and 4 above, Excel will calculate
values for all of the problem functions at once. So the Solver can obtain approximate
values for all partial derivatives by performing steps 1 —2 once, and steps 3—-5n
times (once for each variable). In other words, the Solver obtains values for all of the
partial derivatives in one column of the Jacobian matrix each time it asks Excel to
recalculate the model at step 4.

For more than a decade, the Excel Solver and Premium Solver have used the finite
differencing method to successfully solve optimization problems. But the method
does have several drawbacks:

It is relatively slow, since the model must be recalculated n + 1 times (and when
solving a nonlinear problem, this must be done at each Trial Solution).

It is relatively inaccurate, since the subtraction and division typically result in a
loss of significance — in the worst case half of the significant digits are lost.

If the Solver algorithm needs the gradient of only one function at each Trial
Solution (perhaps because the constraints are all linear, with constant gradients),
this takes as much time as it would to compute gradients of all the functions.

Each time it recalculates, Excel will compute values for all formula cells in the
spreadsheet that depend on the perturbed decision variable cells — even cells that
do not participate in the objective and constraints.

Computing second order partial derivatives (the Hessian matrix, as described in
the chapter “ Solver Models and Optimization™) is hot practical — this would
require n” worksheet recalculations (a million for a 1,000-variable problem!) at
each Trial Solution, and would yield derivative values of very low accuracy.

120

Analyzing and Solving Models Solver User Guide

The slowness of finite differencing directly impacts solution time — especially for
nonlinear problems, where finite differencing is performed many times. Since the
Solver uses derivative values to determine the direction in which to search, the loss of
accuracy in derivatives can lead to less-than-ideal search directions. While most
Solver algorithms can “correct course” asthey proceed, by computing a new search
direction at each Trial Solution, less accurate derivatives will often mean that more
major iterations will be needed to make the “ course corrections,” and they may lead
to less accurate final solutions.

Because many Solver models in Excel are really just part of a larger spreadsheet
model that has many formulas calculating values of interest for other purposes, but
not participating in the optimization problem, often the greatest drawback of using
the Excel recalculator is the fact that it always computes values for every formula cell
that depends on the perturbed decision variable cells.

To achieve greater speed, accuracy, and control of the computation of derivative
values, and to make it possible to evaluate the Solver model in other ways — for
example, to determine linear and nonlinear dependents, and to evaluate models over
intervals instead of single-point values — Frontline Systems developed its own
Interpreter for Microsoft Excel.

The Polymorphic Spreadsheet Interpreter

The Polymorphic Spreadsheet Interpreter in the Premium Solver Platform reads cell
formulas, in the form that you write them such as =A1*SUM(B1:B5)/EXP(-C1), and
translates them into a compact intermediate code that can be processed efficiently
each time that function values or derivatives are needed. It also builds a symbol table
of names and cell references, used to look up current cell values and identify
occurrences of decision variables.

The Interpreter acts in response to requests from Solver engines for function values
and derivatives — or in response to your requests for a Gradients, Structure, or Con-
vexity analysis, when you click the Check Model button. It scans the intermediate
code for one or more problem functions (objective and constraints), and computes
numeric values, using the current values of the decision variables (set by the Solver
engine) and constants, arithmetic operators, and the like in the intermediate code.

The Microsoft Excel recalculator and the PSI Interpreter are both designed to be very
efficient. But where Excel reads and translates every cell formula that you create in a
spreadsheet, the Interpreter translates only the cell formulas that are involved in
calculating your objective and constraints (as you've defined them in the Solver
Parameters dialog). And where Excel always computes values for every formula cell
in the spreadsheet that depends on the changed decision variable cells, the Interpreter
computes values for only the functions that the Solver engine actually needs.

Because of this, on a spreadsheet where there are many cell formulas that aren"t
directly involved in the optimization model, the Interpreter is usually faster than the
Excel recalculator when computing function values. But the Interpreter”s greatest
benefit by far lies in computing function derivatives.

Automatic Differentiation

When the PSI Interpreter computes partial derivatives for your objective and
constraints, it uses a very different approach than the finite differencing method
outlined earlier, called automatic differentiation in the technical literature. In
essence, the PSI Interpreter computes derivatives at the same time that it computes
values for functions, using algebraic relationships such as:

Solver User Guide

Analyzing and Solving Models 121

Sums: 9[f(x) + g(x)]/ox = of(x)/ox + ag(x)/ox

Products: o[f(x) * g(x)]/ox = of(x)/ax * g(X) + dg(x)/ox * f(X)
Exponents: 0x"/dx = n* x"*

Trig functions: dsin(x)/ox = cos(x), dcos(x)/dx = -sin(x), etc.

The PSI Interpreter implements both “forward mode” and “reverse mode” automatic
differentiation (further described in the technical literature), for both first partial
derivatives (the Jacobian matrix) and second partial derivatives (the Hessian matrix).
These partial derivatives are computed to the same accuracy as the function values
themselves — hence, Solver engines can sometimes find the optimal solution with
fewer Trial Solutions than required when finite differencing is used. And because of
the way derivatives are computed, the time required is dramatically less than the time
required for finite differencing — especially for “reverse mode” automatic differentia-
tion (which is used for all expressions except array formulas).

Thanks primarily to automatic differentiation, on a sample of small and medium-size
actual user models, total solution times (which include much more than the time spent
computing derivatives) for the Premium Solver Platform were on average twice as
fast for linear problems and seven times faster for nonlinear problems. Since the
speed advantage of automatic differentiation grows with the number of variables in
the problem, larger models may experience even greater speed gains (provided that
they are run on PCs with sufficient RAM for the Interpreter).

Interval Arithmetic and Interval Differentiation

As described in the “Introduction,” the PSI Interpreter can also evaluate Excel
formulas over intervals rather than single numeric values. An interval such as [1, 2]
represents all of the possible numeric values between 1 and 2. Addition, subtraction,
and other arithmetic operations and functions can be defined over intervals — for
example, [1, 2] + [3, 4] = [4, 6] in interval arithmetic. The Interpreter can compute
interval values for all of Excel"s arithmetic operators and most built-in smooth
functions. At present, the interval values are not displayed in spreadsheet cells, but
the Interpreter computes function values and first and second partial derivatives over
intervals, for use by the new Interval Global Solver in the Premium Solver Platform.

The ability to evaluate Solver models over intervals is a fundamental new capability
in the Premium Solver Platform that is not yet available in other, far more expensive
modeling systems and Solvers. Interval analysis makes it possible for the Interval
Global Solver to overcome the limitations of classical methods for nonlinear
optimization and equation-solving, and find the true global optimum of a constrained
problem, or find all real solutions of a system of nonlinear equations — a capability
described under the heading “What is Not Possible” in one classic optimization
textbook. With the Premium Solver Platform, this capability is not only possible, but
is readily available and very easy to use.

Model Diagnosis and Structure Analysis

The PSI Interpreter is also responsible for diagnosing your model as linear (LP),
quadratic (QP), quadratically constrained (QCP), second order cone (SOCP), smooth
nonlinear (NLP) or non-smooth (NSP) and providing statistics on linear, quadratic
and smooth variables, functions and nonzeroes that you see when you click the Check
Model button in the Solver Model dialog. And it provides model type, sparsity and
“Structure analysis’ information to Solver engines during the solution process, when
you select the Check For = Structure option.

122 Analyzing and Solving Models Solver User Guide

The way the PSI Interpreter does this is very similar to the way it computes
derivatives via automatic differentiation. The Interpreter computes symbolic
“values’ for the dependence of functions on decision variables for every cell formula
in your model, using algebraic relationships such as:

Sums: The sum of two linear functions is a linear function

Products: The product of a constant (independent) function and a linear function
is a linear function; the product of two linear functions is a quadratic function

The PSI Interpreter is also responsible for the Scaling Report, described later in this
Guide in the chapter “Solver Reports.” It computes symbolic “values’ for every cell
formula in your model, based on the magnitudes of the values of decision variables,
and algebraic relationships that capture the effect of addition, multiplication, and
similar operations on the magnitudes of function results. This is another unique
capability of the Premium Solver Platform.

Convexity Analysis

Finally, the PSI Interpreter is responsible for the new, automatic test for convex
models and functions in the Premium Solver Platform. As mentioned earlier, this test
may Yield conclusive or inconclusive results; a convexity test that always yielded
conclusive results would take time that grew exponentially with the number of
variables, and hence would be impractical for even modest-size models. The
methods used in the Premium Solver Platform are designed to yield useful results in
many, but not all cases, while taking a“reasonable” amount of time. 1n the worst
case, the test involves computing the interval Hessians of all of the problem functions
and performing interval vector-matrix operations on each of these Hessians.

A linear function is always convex (and concave), and its Hessian matrix is always
zero. Hence the convexity test takes no extra time for linear functions beyond the
analysis done for the Check For Structure option.

A quadratic function has a constant Hessian matrix, which means that the interval
Hessian is the same as the real Hessian, and the convexity test will yield a conclusive
result, based on the positive (or negative) definiteness of the Hessian matrix. (A
positive definite or semidefinite Hessian means that the quadratic function is convex;
a negative definite or semidefinite Hessian means that the function is concave.)

For general smooth nonlinear functions, the convexity test first computes an “outer
approximation” of the feasible region, which can be pictured as abox (bounds on the
decision variables) that encloses the actual feasible region determined by the
intersections of the constraints. (The Interpreter starts with the variable bounds that
you specify, then uses constraint propagation methods to “shrink” this box.)

The convexity test then quickly computes a result based on the sign of the interval
Hessian over this box. For some — but not all — functions, this is sufficient to
determine the convexity of the function. If this test is not sufficient, the full interval
Hessian is computed, and several numerical methods are applied to test whether this
interval matrix is positive (or negative) definite.

The convexity test is yet another capability of the Premium Solver Platform that is
not available in other, far more expensive modeling systems and Solvers.
Excel Built-in Functions

Microsoft Excel has over 320 built-in functions, including the financial, statistical,
and engineering functions that are part of the Excel Analysis ToolPak. The Inter-

Solver User Guide

Analyzing and Solving Models 123

preter supports almost all of these functions. Functions that are recognized but not
supported include:

CALL HYPERLINK

CELL OFFSET
GETPIVOTDATA REGISTER.ID
INDIRECT SQLREQUEST

INFO CUBExxx (Excel 2007)

The most commonly used of these functions — OFFSET and perhaps INDIRECT —
are not supported because they can reference arbitrary cell “addresses,” and the
Interpreter is designed to process only the formula cells that participate in calculation
of your objective and constraints, not the full spreadsheet “grid.”

Since the Interpreter computes values for your problem functions without using the
Microsoft Excel recalculator, how confident can you be that the values computed this
way will match the values that would have been computed by Excel? While
discrepancies are always possible, one reason for confidence is that Frontline
Systems actually developed, under contract to Microsoft, implementations of most of
the Excel built-in functions for use in the Internet Explorer “spreadsheet component”
that is included with Microsoft Office 2000, XP, 2003 and 2007 (file msowcf.dll in
the Microsoft Office program directory). Frontline"simplementation of these
functions was tested against the same functions in Microsoft Excel, in an extensive
quality assurance process during the development of Office 2000. Because of this,
Frontline Systems was uniquely qualified to develop a full-scale Interpreter for
Microsoft Excel and its extensive library of built-in functions.

When a Solver engine displays a final solution with the Solver Results dialog box, or
an intermediate solution with the Show Trial Solution dialog box, the current values
of the decision variables are placed in cells on the spreadsheet, and at this point the
Microsoft Excel recalculator is used to compute values for the objective and
constraints — even when the Interpreter has been used internally during the solution
process. So you can be 100% confident that the values you see won't change when
you save and later reopen your workbook!

124

Analyzing and Solving Models Solver User Guide

Building Large-Scale Models

Introduction

It"s amaxim that a successful Solver model will grow in size over time. When the
initial results from an optimization model demonstrate ways to achieve significant
cost savings, improved schedules, higher quality or increased profits, management is
naturally interested in applying these methods to bigger problems. This might
involve extending the model to include more plants, warehouses, assembly lines, or
personnel; to bring in other divisions or geographic regions; or to cover more time
periods, more detailed process steps, or more specific parts or products. The result is
an increase in the number of decision variables, constraints, and cells in your model.

When your model grows in size, it becomes more challenging to design and maintain,
and also more challenging to solve. Good modeling practices —touched upon in the
chapter “Building Solver Models’ —become far more important, so your model
remains comprehensible to other Excel users, auditable for errors, and easy to
modify. Issues such as your model type (LP, QP, QCP, SOCP, NLP or NSP),
sparsity, and scaling also become far more important, since they strongly influence
the time it takes to solve your model, and the reliability of the solutions you obtain.

This chapter can only briefly survey good modeling practices — entire books have
been devoted to this subject (we will recommend some). It focuses on steps you can
take to obtain faster and more reliable solutions for large models using the Premium
Solver and Premium Solver Platform, including:

Steps towards better performance that are easy to apply in most situations

Steps you can take — with more design and modeling effort — to improve the
formulation of your model, by replacing non-smooth or nonlinear constraints
with linear (or integer linear) constraints

Steps you can take to enable the Premium Solver (and in some cases, the
Premium Solver Platform) to analyze your model more efficiently

Designing Large Solver Models

A large Solver model in Microsoft Excel is both a large spreadsheet workbook and a
large optimization model. If you plan to build such amodel, you"ll be well advised
to learn about good spreadsheet modeling practices, and about good optimization
modeling techniques.

Solver User Guide

Building Large-Scale Models 125

We highly recommend the textbook The Art of Modeling with Spreadsheets:
Management Science, Spreadsheet Engineering, and Modeling Craft by Stephen G.
Powell and Kenneth R. Baker, published by John Wiley & Sons, listed at the end of
the chapter “Introduction.” Unlike other management science textbooks, this book
teaches you “best practices’ in modeling and spreadsheet engineering, as well as
techniques of linear and nonlinear optimization using Excel.

Other books on good spreadsheet design are hard to find, but through resources like
the Amazon.com Marketplace, you may be able to locate a copy of John Nevison's
book Microsoft Excel Spreadsheet Design (Prentice-Hall, 1990), or his earlier works
1-2-3 Spreadsheet Design (1989) or The Elements of Spreadsheet Style (1987), both
of which are still useful in designing modern spreadsheets. A relatively new (2003)
book, Excel Best Practices for Business by Loren Abdulezer, includes chapters on
spreadsheet construction techniques, “makeovers’ of spreadsheets devel oped by
others, and spreadsheet auditing.

Training courses in Microsoft Excel often cover at least some elements of good
spreadsheet design. They are offered in many venues, from universities and
community colleges to public seminars, in-house corporate training, and classes
sponsored by computer dealers. Check the course outline or syllabus to see if it
features spreadsheet design and good modeling practices, and other topics most
relevant to you.

A readily available book on optimization modeling techniquesis H. Paul William"s
Model Building in Mathematical Programming, 4th Edition (John Wiley, 1999),
listed at the end of the chapter “Introduction.” Focusing on modeling for linear and
integer programming problems, it includes a treatment of large-scale model structure
and decomposition methods that is hard to find elsewhere.

Spreadsheet Modeling Hints

Below is a brief set of suggestions for planning, designing and constructing large
Solver models:

Start with a Plan. Plunging in and entering numbers and formulas immediately will
quickly lead to problems when constructing a large spreadsheet. Write down your
objectives and sketch out a design before you begin working on the real spreadsheet.

Build a Prototype. Plan in advance to build a prototype, throw it away, and then
build the real spreadsheet model. What you learn from building and solving the
prototype will probably save you time in the long run.

Create a Table of Contents. In the upper left corner of your first worksheet,
include comments that point readers to the major areas or sections of the spreadsheet.

Separate Data and Formulas. Avoid using constants in formulas, unless they are
intrinsic to the mathematical definition of the function you are using. Instead, place
constants in cells, and refer to those cells in formulas. Create separate areas on the
spreadsheet for input data and for calculations, and identify these with distinct colors,
borders or shading.

Document Assumptions, Parameters and Methods. As John Nevison suggested,
seek to “surface and label every assumption” in your model. Uselabelsor cell
comments to document key formulas and complex calculations.

Use defined names. Use Excel"s Insert Name Define and Insert Name Create
commands to assign meaningful names to individual cells and cell ranges. This will
help make your formulas clearer and more flexible.

126

Building Large-Scale Models Solver User Guide

Use and Separate Two-Dimensional Tables. Many elements of your model will
lend themselves to a row-column table representation. Create separate table areas,
with distinct colors, borders and shading. Collect non-table data (such as individual
parameters) into a separate area.

Use Excel Tools to View and Audit Your Spreadsheet. Use the View Zoom
command to get a high-level view of your spreadsheet”s structure. Usethe View tab
in the Tools Options dialog to display formulas instead of values, and scan them for
consistency. Learn to use the Auditing Toolbar (Tools Auditing...) to trace
precedents and dependents of your formulas.

Use a Spreadsheet Auditing Tool. Several auditing tools are available, including
SpACE from the UK Customs and Excise Audit unit, OAK from Operis Ltd. in the
UK, and the Spreadsheet Detective from Southern Cross Software in Australia.

Optimization Modeling Hints

Identify Your Model“sIndex Sets. Your decision variables, constraints, and many
intermediate calculations will fall into groups that are indexed by elements such as
products (A, B, ...), regions (North, South, ...), time periods (January, February, ...)
and similar factors. ldentify and write down these index sets and their members.
Then organize the columns and rows of your table areas using these index sets. Use
the top row and left column of each table area for index set member names as labels.

Identify Your Decision Variables. Once youve identified the quantities that will
be decision variables, and how they are indexed (for example, units made by product
A, B,... or shipments by region North, South,...), it"susually easier to determine the
constraints and their indexing.

Determinethe Data You"ll Need. In building large optimization models, you will
frequently spend a good part of your time figuring out what data you need, how you
will get it (and keep it up to date), and how you'll have to summarize or transform it
for the purposes of the model. This may involve getting help from your IT depart-
ment or from other groups that create or maintain the data.

Define Balance Constraints. It iseasy to overlook “balance” or “continuity”
constraints that arise from the physical or logical structure of your model. For
example, in a multi-period inventory model, the ending inventory at time t must equal
the beginning inventory at time t+1. At each node of a network model (such as a
warehouse), the beginning item quantity plus incoming deliveries minus outgoing
shipments must equal the ending item quantity (“what goesin must come out”).

Learn to Use Binary Integer Variables. Many relationships that you might find
difficult to model at all, and many where you might otherwise use IF, CHOOSE or
other non-smooth or discontinuous functions, can be effectively modeled with binary
integer variables. The section below “Improving the Formulation of Y our Model”
describes many situations where you can use such variables to organize your model.

Using Multiple Worksheets and Data Sources

Large Solver models and their data are often organized into multiple worksheets of a
single workbook. Some large models reference data found in other workbooks.
Given the large number of data elements, the sources from which you are getting the
data, and the procedures you use to keep the data up to date, multiple worksheets are
often necessary or at least useful for organizing your data.

Solver User Guide

Building Large-Scale Models 127

The Premium Solver requires that cells containing decision variables and constraint
left hand sides are on the active worksheet. But the Premium Solver Platform allows
you to define decision variables and constraint left hand sides on any worksheet of a
workbook. For this and many other reasons, you are well advised to upgrade to the
Premium Solver Platform if your model grows in size. With either product, the
formulas in your objective and constraint cells can refer to cells on other worksheets,
and those cells on other worksheets can contain formulas that depend, directly or
indirectly, on decision variable cells. For more information, see “Models Defined
Across Multiple Worksheets' in the chapter “Building Solver Models.”

Several commentators on good spreadsheet modeling practice feel that models
defined on a single worksheet are easier to understand and maintain. In Excel 2007,
a single worksheet can have up to 16,384 columns and 1,048,576 rows. So you may
want to keep the core of your Solver model —the formulas (i) that are used to
compute your objective and constraints and (ii) that depend on the decision variables
—on a single worksheet. If you find that you can better structure your model by
placing decision variables and constraints on different worksheets, it"s highly
recommended that you adopt a consistent scheme for choosing blocks of variable and
constraint (and other formula) cells, and referencing these cells across worksheets.

Some of the data you need may be available in relational databases, OLAP databases
or data warehouses. Microsoft Excel provides rich facilities, such as external data
ranges and PivotTables, to bring such data into an Excel worksheet. The raw data,
even if partially summarized from database records or transactional data, often needs
to be further transformed and summarized on your worksheet(s). This is usually easy
to do with Excel formulas. But for clarity in your model, we recommend that you use
separate worksheet areas, with distinct colors, borders or shading, for formulas that
simply massage the data and do not participate in the solution process (i.e. do not
depend on the variables). The Solver can determine which formulas depend on the
variables, but you or your colleagues may find it difficult to do so if the formulas are
intermixed.

Quick Steps Towards Better Performance

The rest of this chapter focuses on steps you can take to obtain faster and more
reliable solutions for large models from the Premium Solver and Premium Solver
Platform. This section describes steps that are easy to apply in most situations.

For users of the Premium Solver, the best recommendation we can make to improve
performance is to upgrade to the Premium Solver Platform. This is more than just a
“sales pitch” —every step you take costs something, either in terms of money or your
effort. For most professionals, the cost of upgrading will be repaid if it saves just a
few hours of time. And you can find out at no cost whether the upgrade will be
worthwhile — just download the Premium Solver Platform Setup program, request a
free 15-day evaluation license, and try solving your model with the actual software.

For users of the Premium Solver Platform, we highly recommend that you try solving
your model with our field-installable Solver Engines — especially the Large-Scale
SQP Solver, KNITRO Solver, MOSEK Solver Engine, and XPRESS Solver Engine.
While the difference in cost may be greater, the same rationale applies: If you can
solve your model more quickly or more reliably by upgrading the software, this is
almost always cheaper (and yields results sooner) than spending many hours or days
of valuable professional time.

128 Building Large-Scale Models Solver User Guide

Ensure that You Have Enough Memory

If the Solver seems unusually slow, check whether the hard disk activity LED
(present on most PCs) is flickering during the solution process. If it is, memory
demands may be causing Windows to swap data between main memory and disk,
which greatly slows down the Solver. If you're investing money and, especialy,
hours of your time to develop an optimization model, consider that RAM is very
cheap, and relatively easy to install. We recommend at least 512MB RAM if you are
working with large Solver models — 1 GB or more is certainly desirable.

Analyze Your Model for Scaling Problems

Poorly scaled calculations are a frequent cause of long solution times and unreliable
solution results, for both linear and nonlinear problems. For a further discussion, see
“Problems with Poorly Scaled Models’ in the chapter “ Diagnosing Solver Results.”
In the Premium Solver Platform, use the Scaling Report to automatically diagnose
scaling problems, as described in the chapter “ Solver Reports.”

Add Constraints to Your Model

Frequently, you can improve solution time by adding constraints to your model which
may not be essential in defining the problem, but which do further constrain the
search space that the Solver must explore. It"s true that the Solver must do more
work to handle the additional constraints, but this extra work usually has an excellent
payoff if the constraints are “binding” (i.e. satisfied with equality) at some point
during the solution process.

The greatest payoff often comes from additional constraints that are simple bounds
on the decision variables. Thisisbecause (i) it*s usually easier for you to determine
realistic lower and upper bounds on the variables than to formulate new general
constraints, (ii) it"s easy to enter bounds on the variables in the Constraints list box,
and (iii) each of the Solver engines is able to handle bounds on the variables more
efficiently than general constraints.

Users often omit upper bounds on their decision variables, and sometimes omit lower
bounds as well. A first step towards improving performance is to enter the tightest
bounds on the variables that you can, without eliminating possible good solutions.

Since bounds on the variables are especially important for the performance of the
Evolutionary Solver and for multistart methods for global optimization used with the
nonlinear Solver engines, the Options dialogs for these Solver engines include a
check box “Require Bounds on Variables,” which is checked by default. When this
box is checked, the Solver will stop with an error message if some variables do not
have lower or upper bounds at the time you click Solve. If you are using the Interval
Global Solver or the OptQuest Solver, bounds on all variables are required —the
Solver will always stop with an error message if bounds on the variables are missing.

Improving the Formulation of Your Model

The type of problem you are trying to solve, and the solution method or Solver
engine that must be used, has a major impact on solution time:

Linear programming problems can be solved most quickly.
Quadratic programming problems take somewhat more time.

Nonlinear optimization problems take considerably more time.

Solver User Guide Building Large-Scale Models 129

Non-smooth problems take by far the greatest amount of time.

This section discusses techniques you can use to replace nonlinear functions, and
even non-smooth functions, with equivalent (or nearly equivalent) linear or quadratic
functions, or with linear functions and binary integer variables. As explained in the
chapter “Solver Models and Optimization,” a problem with integer variables can take
much longer to solve than a problem without such variables. However, an integer
linear problem formulated using the techniques described in this section may still
take significantly less time to solve than the equivalent nonlinear or non-smooth
problem. Moreover, if your problem is integer linear, you can find a guaranteed
optimal solution, or a solution that is guaranteed to be within at least x% of optimal,
whereas with a nonlinear or non-smooth problem you will have no such guarantees.
As a rough guide, non-smooth models with more than 1,000 variables may be
difficult or impossible to solve in a reasonable amount of time — but equivalent
models formulated with linear functions and binary integer variables can often be
solved efficiently with the LP/Quadratic Solver. And with the Large-Scale LP/QP
Solver Engine or the XPRESS Solver Engine, you can often solve linear integer
problems of 10,000, 100,000 or more variables in a reasonable amount of time.

A caveat: If you currently have a model with many nonlinear or non-smooth func-
tions, and you decide to implement some of these techniques to speed up solution of
your model, bear in mind that you can use the LP/Quadratic Solver, Large-Scale
LP/QP Solver, or XPRESS Solver only for models where all of the problem
functions are linear (except for the objective function, which may be quadratic). If
you create a model with a mix of nonlinear or non-smooth functions and linear
functions using binary integer variables, it may still take a long time to solve.

Techniques Using Linear and Quadratic Functions

Below are three common situations where you might at first expect that a nonlinear
function is required to express the desired relationship — but with a simple transform-
ation or approximation, you can use a linear or quadratic function instead.

Ratio Constraints

You may want to express a relationship that seems to require dividing one or more
variables by other variables. Suppose that you have a portfolio of 1-month, 3-month
and 6-month CDs, with the amounts of each CD in cells C1, D1 and E1, and you
wish to limit the average maturity to 3 months. You might write a constraint such as:

(1*C1 + 3*D1 + 6*E1) / (C1 + D1+ E1) <= 3

This constraint left hand side is a nonlinear function of the variables, so you would
have to use the GRG Solver to find a solution. However, the same constraint can be
rewritten (multiplying both sides by the denominator, then collecting terms) as:

(1*C1 + 3*D1 + 6*E1l) <= 3*(Cl+ D1 +E1), i.e. -2*C1+3*E1l <=0

This constraint is a linear function of the variables, so you would be able to use the
much faster Simplex or LP/Quadratic Solver to find a solution. (This transformation
above relies on the fact that C1 + D1 + E1 >=0.)

Mini-Max and Maxi-Min

You may want to minimize the maximum of a group of cells such as C1:C5 (or
maximize the minimum of a group of cells). It is tempting to use an objective
function such as MAX(C1:C5)— but as explained in the chapter “ Solver Models and
Optimization,” MAX (and MIN) are non-smooth functions, so you“d need to use at

130 Building Large-Scale Models Solver User Guide

least the GRG Solver, and perhaps the Evolutionary Solver to find a solution.
Instead, you can introduce another variable D1, make D1 the objective to be
minimized, and add the constraint:

CL:C5<=D1

The effect of this constraint is to make D1 equal to the maximum of C1:C5 at the
optimal solution. And if the rest of your model is linear, you can use the much faster
Simplex or LP/Quadratic Solver to find a solution.

Quadratic Approximations

If you cannot represent the entire problem using linear functions of the variables, try
to formulate it as a quadratic (QP) or quadratically constrained (QCP) problem, with
a quadratic objective and/or constraints. You may be able to use a local, quadratic
approximation to a smooth nonlinear function f near a point a:

f) f(a)+f(Q)x-a)+%f (@)x-a)>

where f “(a) denotes the first derivative, and f ~"(a) denotes the second derivative of
the function f at the point a. Several Solver engines offer excellent performance on
QP problems, and the SOCP Barrier Solver and the MOSEK Solver Engine offer
good to excellent performance on QCP problems.

Even if you cannot eliminate nonlinear functions from your problem altogether, you
can improve solution time by making an effort to ensure that as many variables as
possible occur linearly in the objective and all of the constraints. You can select the
“Recognize Linear Variables’ check box in the GRG Solver Options dialog to save
time during the solution process. And the Large-Scale GRG Solver and Large-Scale
SQP Solver engines also recognize both linearly occurring variables and linear
constraints automatically, for still faster solutions. The Large-Scale SQP Solver is
particularly effective when used with the Premium Solver Platform, because it uses
the Interpreters Structure analysis to break down each function into linear and
nonlinear terms, which it handles as efficiently as possible.

You can use the Solver Model dialog in the Premium Solver Platform to easily
determine the number of linear variables, functions, and occurrences of variables in
functions, as described in the chapter “ Analyzing and Solving Models.”

Techniques Using Linear Functions and Binary
Integer Variables

Below are three common situations where you might at first expect that a non-smooth
function such as IF is required to express the desired relationship — but you can
instead use a binary integer variable and one or two linear functions to define an
equivalent relationship. The techniques described here are similar to those used
when the Premium Solver Platform automatically transforms your model (see the
chapter “Analyzing and Solving Models"), but you can apply these techniques
yourself to handle situations where the automatic transformation is not available.

Fixed-Charge Constraints

You may have a quantity x in your model that must “jump” from zero to some (fixed
or variable) non-zero value, under certain conditions. For example, a machine on a
production line may have a fixed setup time or cost if it is used at all, plus a time or
cost per unit produced. You can avoid creating a non-smooth function for x by
introducing a binary integer variable y (whichis 1if x isused and O if it isn"t), and

Solver User Guide

Building Large-Scale Models 131

adding a constraint x <= My, where M is a constant that is larger than any possible
value for x.

For example, suppose you have a machine that has a setup time of 10 minutes, but
once set up will process a widget every 30 seconds. Let cell C1 hold the number of
widgets you are producing on this machine, and use cell E1 for a binary integer
variable y that is 1 if you produce any widgets on this machine. Then the total
production time can be computed as =0.5*C1+10*E1. Assuming that C1 can be at
most 10,000, let M1 = 10000 and add a constraint:

Cl <= M1*E1 (or C1 — M1*E1 <=0)

If variable C1 is nonnegative (C1 >= 0) and variable E1 is binary integer (E1 =
binary), then C1 is forced to be 0 whenever E1 is 0, or equivalently E1 is forced to be
1 whenever C1 is greater than 0. Since the production time calculation and the
constraint are both linear functions, you can solve the problem with the Simplex (or
LP/Quadratic) Solver and the Branch & Bound method. This is called a fixed-charge
constraint.

Either-Or Constraints

Constraints in an optimization problem are implicitly connected by the logical
operator AND —all of them must be satisfied. Sometimes, however, your model may
call for either one constraint (say f(x) <= F) or another constraint (say g(x) <= G) to
be satisfied. You might consider using the OR function in Excel, but as noted in the
chapter “ Solver Models and Optimization,” this function is non-smooth. Instead, you
can introduce a binary integer variable y and a constant M, where M is greater than
any possible value for f(x) or g(x), and add the constraints f(x) — F <= My and g(x) —
G <= M(1-y). Now, when y=0, g(x) is unrestricted and f(x) <= F; but when y=1, f(x)
is unrestricted and g(x) <= G.

For example, imagine you want to allocate your purchases among several suppliers in
different geographic regions, each of whom has imposed certain conditions on their
price bids. Suppose that one supplier”s bid requires that you either purchase at least
400 units from their Chicago warehouse or else purchase at least 600 units from their
Phoenix warehouse, in order to obtain their most favorable pricing. Let cell C1 hold
the number of units you would purchase from Chicago, and cell D1 hold the number
of units you would purchase from Phoenix. Assume that cell M1 contains 10,000
which is more than the maximum number of units you intend to purchase. You can
model the supplier"s either-or requirement with a binary integer variable in cell E1
and the following constraints:

400 — C1 <= M1*E1
600 — D1 <= M1*(1-E1)

Notice that we have reversed the sense of the constraint left hand sides to reflect the
“at least” (>=) requirement. If E1=0, then C1 (units purchased from Chicago) must
be at least 400, and the second constraint has no effect. If E1=1, then D1 (units

purchased from Phoenix) must be at least 600, and the first constraint has no effect.

IF Functions

In the chapter “Solver Models and Optimization,” we used =IF(C1>10,D1,2*D1),
where C1 depends on the decision variables, as an example of a non-smooth
function: Itsvalue“jumps’ from D1 to 2*D1 at C1=10. If you use this IF function
directly in your model, you'll either have to try the Transformation tab in the Solver
Model dialog, or else solve the model with the Evolutionary Solver. Instead, you can
avoid the IF function and solve the problem with the nonlinear GRG Solver —or even

132 Building Large-Scale Models Solver User Guide

the linear Simplex Solver — by introducing a binary integer variable (say E1) that is 1
if the conditional argument of the IF is TRUE, and 0 otherwise. Add the constraints:

C1-10 <= M1*E1
10 — C1 <= M1*(1-E1)

When E1 is 0, the first constraint forces C1 <= 10, and the second constraint has no
effect. When E1 is 1, the first constraint has no effect, and the second constraint
forces C1 >=10. (If C1=10 exactly, this formulation allows either E1=0 or E1=1,
whichever one yields the better objective.) The value of the IF function can then be
calculated as D1*E1 + 2*D1*(1-E1), which simplifies to D1*(2-E1) in this example.
If D1 is constant in the problem, this is a linear function; if D1 depends linearly on
the variables, it is a quadratic; otherwise, it is a smooth nonlinear function. Inall
cases, the non-smooth behavior has been eliminated.

Depending on how you use the result of the IF function in the rest of your model, you
may be able to take this strategy further. Suppose, for example, that if f(x) >= F then
you want to impose the constraint g(x) <= G; if f(x) < F then you don"t need this
constraint. You can then use a binary variable y (cell E1 in the example above), and
impose constraints like the pair above plus an additional constraint on g(x):

f(x) - F <= My
F —f(x) <= M(1-y)
9(x) =G <=M(1-y)

If yis 0, f(x) <= F is enforced, and the second and third constraints have no effect. If
yis 1, f(x) >= F and g(x) <= G are enforced, and the first constraint has no effect. If
f(x) and g(x) are linear functions of the variables, the constraints involving y remain
linear, and the problem can be solved with Branch & Bound and the Simplex Solver.

Using Piecewise-Linear Functions

Many problems involve “stepped” price schedules or quantity discounts, where you
might at first expect that a non-smooth function such as CHOOSE or LOOKUP is
required to express the relationship. You might be surprised to learn that you can
instead use linear functions and binary integer variables to express the relationship.

For example, you might be purchasing parts from a vendor who offers discounts at
various quantity levels. The graph below represents such a discount schedule, with
three prices and three “breakpoints.” Y ou have a decision variable x representing the
quantity to order.

Solver User Guide

Building Large-Scale Models 133

The three prices (slopes of the line segments) are c,, ¢, and ¢,. V, represents a fixed
initial cost; V, and V, are also constant in the problem and can be computed from:

Vz = V1 + Cl*Bl - CZ*BI
V3 = Vz + Cz*Bz - Ca*Bz

In the model, the variable x is replaced by three variables x,, x, and x., representing
the quantity ordered or shipped at each possible price. Also included are three 0-1 or
binary integer variables y,, y, and y.. Since you want to minimize costs, the objective
and constraints are:

Minimize V.*y, + V,*y, + VY, + C*X, + C*X, + C*X,
Subjectto x, B*y, X, B*y, x. By,

If the cost curve is concave as shown above, this is sufficient; but if the function is
non-concave (it may vary up and down), additional “fill constraints” are needed:

Vi +Y. +ys 1
X By,
X2 Bz*ya

This approach is called a “piecewise-linear” function. It can be used in place of a
CHOOSE or LOOKUP function, and it results in a linear integer model instead of a
difficult-to-solve non-smooth model. Piecewise-linear functions can also be used to
approximate a smooth nonlinear function, by using line segments with slopes
matching the gradient of the nonlinear function at various intermediate points.

Organizing Your Model for Fast Solution

This section describes ways you can organize your model so that the Premium Solver
and Premium Solver Platform can analyze it more efficiently. Most of this section is
devoted to an in-depth discussion of “fast problem setup” for linear and quadratic
models (possibly with integer variables); it is not applicable to nonlinear and non-
smooth models. Because the Polymorphic Spreadsheet Interpreter in the Premium
Solver Platform has largely superseded this form of fast problem setup, this section is
relevant primarily for (i) the Premium Solver, where the Interpreter is not available
and (ii) very large LP models (100,000 variables or more), where memory required
for the Interpreter may be greater than available RAM and cause swapping to disk.

Fast Problem Setup

In the Premium Solver, if your model is linear or quadratic, you may find that the
Solver spends most of its time with “ Setting Up Problem...” on the Excel status bar,
then speeds through the “Trial Solutions’ very quickly. The setup timeisrequired to
extract the LP coefficients of the problem functions by recalculating the worksheet.
(As described in more depth in the last section of the chapter “Analyzing and Solving
Models,” the LP coefficients are the first partial derivatives of the problem functions
with respect to the variables, and they are obtained by the method of finite
differencing, which requires n + 1 recalculations if there are n decision variables.)

Much of this setup time can be avoided if you write the formulas for the objective
function and all of the constraint left hand sides using the functions recognized for
fast problem setup: SUM, SUMPRODUCT, DOTPRODUCT, QUADPRODUCT
and MMULT. This may require some work on your part to revise a model you have
already constructed, but you"ll be rewarded with a 5- to 100-fold speed improvement

134 Building Large-Scale Models Solver User Guide

in setup time, compared to the time taken by the Premium Solver when finite
differencing is used.

You can always express a linear or quadratic programming problem using these
functions for the objective and all of the constraints, although you may need to
introduce new sets of cells to hold the calculated coefficients so that these cells can
be referenced by one of the fast problem setup functions. For more information on
linear and quadratic functions, see the sections on “Linear Functions’ and “Quadratic
Functions” in the chapter “ Solver Models and Optimization.” In the Support section
of Frontline Systems* Website at www.solver.com, you can find an example of the
process of converting an existing LP model into fast problem setup form.

The Polymorphic Spreadsheet Interpreter in the Premium Solver Platform uses the
techniques of automatic differentiation to obtain the LP coefficients faster and more
accurately than they can be obtained via finite differencing. Because the Interpreter
handles almost every kind of Excel formula and built-in function, you don"t have to
do the work of designing your model — or revising an existing model —to use only the
small set of functions recognized for fast problem setup.

Fast problem setup is still available in the Premium Solver Platform as a specialized
method of extracting the constant Jacobian matrix (the LP coefficients) of a linear or
quadratic problem, and the constant Hessian matrix (the QP coefficients) of a
quadratic objective function — but it is used only if you check the Fast Setup box or
choose Solve With = Excel Interpreter in the Solver Model dialog. If your LP or QP
model is very large, defining it in fast problem setup format may still save time
compared to use of the Polymorphic Spreadsheet Interpreter — but the advantage is
not nearly as great as the 5- to 100-fold speed improvement mentioned above.

The following subsections describe the functions supported for fast problem setup,
and the form of the function arguments that you must use to ensure that they are
recognized for fast setup purposes.

The SUM Function

The simplest case of a function recognized for fast problem setup is a formula such as
=SUM(C1:C10) where C1 through C10 are decision variables. An example of the
use of SUM to define constraints can be found in the “ Shipping Routes’ sheet in the
SOLVSAMP.XLS workbook included with Microsoft Excel. Note that a SUM of
decision variables is a linear function where all of the coefficients are 1. To be
recognized in fast problem setup, your formula must consist only of =SUM(cells)
(with no constants) where every cell referenced is a decision variable. You may use
absolute or relative references or defined names in the arguments to SUM.

The SUMPRODUCT Function

The SUMPRODUCT function is documented in Microsoft Excel online Help. It
returns the sum of the products of corresponding elements in its two arguments,
which is exactly the form of a linear function:

ax, +ax, +..+ax,

SUMPRODUCT requires that its two arguments refer to the same number of cells in
the same orientation (either a row, a column or a rectangular area of cells). Only
single selections, not multiple selections, are permitted in the arguments. If
SUMPRODUCT is used in an array formula (see below), it will return the same value
in every resulting array element, which is usually not the result you want. (The
DOTPRODUCT function, described below, has more flexible arguments and is far
more useful in array formulas.) To be recognized in fast problem setup, your formula

Solver User Guide

Building Large-Scale Models 135

must consist only of =SUMPRODUCT (cell range, cell range) where one of the cell
ranges consists entirely of decision variables, and the other cell range consists
entirely of cells that are constant in the Solver problem. You may list the arguments
in either order, using absolute or relative references or defined names.

Other Functions for Fast Problem Setup

Use of the MMULT function isillustrated below under “Using Array Formulas.” To
be recognized in fast problem setup, your formula must follow the same rules as for
SUMPRODUCT: It must consist only of =MMULT ((cell range, cell range) where
one cell range specifies the decision variables, and the other cell range specifies the
corresponding coefficients.

The DOTPRODUCT and QUADPRODUCT functions are described in their own
sections below. To be recognized in fast problem setup, your usage of these two
functions must follow the same rules as for SUMPRODUCT.

To qualify as a quadratic programming (QP) problem —which can be solved
efficiently by the LP/Quadratic Solver engine — only the objective function (not any
of the constraints) may use QUADPRODUCT, or any other quadratic form.

Using Array Formulas

Optimization models in algebraic form can often be expressed more compactly using
indexing and summation notation. For example, the five constraints in EXAMPLE1
could be written as:

3

a; X, i=1,...,.5
=1
The SUMPRODUCT function corresponds to the summation expression above for
one constraint. The entire set of five constraint formulas could be defined with the
array form of the DOTPRODUCT function (described in detail later in this section).
In EXAMPLEL, you would select cells C11 to C15 and “array-enter” the following
formula:

{=DOTPRODUCT(D9:F9,D11:F15)}

The braces above are not typed, but they appear when you “array-enter” the formula
by pressing CTRL-SHIFT-ENTER instead of just ENTER. If you arent familiar
with array formulas in Microsoft Excel, you can read about them in Excel“s online
Help. They are one of the most useful features of Microsoft Excel.

If your LP model is“dense” and regular in form rather than “sparse,” you may wish
to consider use of Microsoft Excel"s matrix built-in functions, such as MMULT
which (when array-entered into a group of cells) yields the matrix product of its two
operands. For example, the five constraints in EXAMPLE1 could be written in
vector-matrix form as:

Ax<=b

where A is the matrix of coefficients, x is the vector of decision variables and b is the
vector of constraint right hand sides. In the Microsoft Excel formula language, the
left hand side of this expression could be written as:

{=MMULT(_A TRANSPOSE(_X))}

(The TRANSPOSE function is needed only to “match up” the orientation of the
matrix _A with the row vector _X.) In worksheet EXAMPLEL1, if you insert defined

136

Building Large-Scale Models Solver User Guide

names _A for the coefficients D11:F15 and _X for the variables D9:F9, then select
cells C11:C15 and array-enter the above formula, it will compute the values of all
five constraints.

The Polymorphic Spreadsheet Interpreter in the Premium Solver Platform recognizes
most kinds of array formulas supported by Microsoft Excel. But (for rather technical
reasons) the use of array formulas actually involves a speed disadvantage in the
Premium Solver Platform when the coefficients are extracted via automatic
differentiation.

If you're using the Premium Solver Platform, we recommend that you use array
formulas where they make sense, and focus on making your model simple and easy to
maintain. Inalarge model, you'll probably find that you want or need to use
multiple tabular areas for the formulas that define your constraints, and it may be
inconvenient or impractical to define entire constraint left hand sides with functions
like MMULT and TRANSPOSE.

Using the Add-in Functions

The Premium Solver and Premium Solver Platform define three new Excel functions:
DOTPRODUCT, QUADPRODUCT and QUADTERM. These functions behave
just like Excel built-in functions: You can use them in formulas in any spreadsheet
(not only in Solver models). When you use the Insert Function... menu option, these
functions will appear in the “ Select a Function” or “Paste Function” list (classified as
Math & Trig functions), and you'll be prompted with named edit fields for their
arguments.

In addition, DOTPRODUCT and QUADPRODUCT are recognized for purposes of
fast problem setup as described earlier in this chapter. They are also recognized by
the Interpreter in the Premium Solver Platform. QUADTERM is used to define a
term of a quadratic function; it isn"t recognized for fast problem setup, but it is
recognized by the Interpreter in the Premium Solver Platform.

Using DOTPRODUCT

DOTPRODUCT is a generalized version of the built-in function SUMPRODUCT,
and it is very useful for defining the objective function and constraints of linear
programming problems. DOTPRODUCT is also recognized for fast problem setup
as described above, provided that you follow the rules outlined earlier: Your formula
must consist only of =DOTPRODUCT (cell reference, cell reference) where all of the
cells in one of the cell references are decision variables, and all of the cells in the
other cell reference are constant in the Solver problem. Each cell reference must be
either an individual selection or a defined name, but the cell ranges specified by the
two arguments need not have the same “shape’ (row, column, or rectangular area).

For use in Excel and for purposes of fast problem setup, DOTPRODUCT will accept
defined names that specify multiple selections for either of its arguments. For
example, if you had designed a model like the “Maximizing Income” worksheet
pictured in the chapter “Building Solver Models,” where the decision variables
consisted of several rectangular cell selections, you could still calculate the objective
function for your model with one call to DOTPRODUCT. You would first select the
cells (B14:G14,B15,E15,B16), then choose Insert Name Define..., type a name such
as CertDepos, and click OK. Next, you might put the corresponding interest rate
figures (1%, 1%, 1%, 1%, 1% 1%, 4%, 4%, 9%) in cells 11 to 19. Then the formula:

=DOTPRODUCT (CertDepos,11:19)

Solver User Guide

Building Large-Scale Models 137

would calculate the objective function (total interest earned), and would be recog-
nized for purposes of fast problem setup.

You could skip the defined name step and use the multiple cell selection directly, as
in =DOTPRODUCT((B14:G14,B15,E15,B16),11:19). But this syntax is recognized
for purposes of fast problem setup only if the argument string is less than about 180
characters. The Polymorphic Spreadsheet Interpreter in the Premium Solver Plat-
form accepts only single selections such as 11:19, for both function arguments and
defined names — so you cannot define this objective function with a single call to
DOTPRODUCT. However, with the Interpreter you don"t need to — you can define
the objective as a sum of several DOTPRODUCT functions, or define it with + and *
operators as in the original “Maximizing Income” worksheet.

DOTPRODUCT always processes its arguments in column, row, area order —in an
individual selection it reads cells across columns, wrapping around to subsequent
rows, and in a multiple selection it reads the individual cell selections in the order in
which they are listed. For example, the formula:

=DOTPRODUCT(A1:C2,D1:D6)
will calculate as =A1*D1+B1*D2+C1*D3+A2*D4+B2*D5+C2*D6.

The Array Form of DOTPRODUCT

If SUMPRODUCT is used in an array formula, it returns a scalar (single number)
result, which is returned in every cell of the array. However, if DOTPRODUCT is
used (with the proper arguments) in an array formula, it returns an array result. You
can use this capability to calculate the left hand sides of several constraints with a
single array formula. In a sparse model where you“d like to use the built-in function
MMULT to compute the constraint values, but the variables and constraints aren“t
laid out in a single matrix, you can use the array form of DOTPRODUCT instead.

Further, when you use the array form of DOTPRODUCT, the Premium Solver
products will recognize this form and use it to process many constraints at once in
problem setup. (The array form is recognized for fast problem setup, and it"s also
recognized by the Polymorphic Spreadsheet Interpreter in the Premium Solver
Platform.) If you can't use the array form, even the simple form of DOTPRODUCT
will save time in problem setup.

DOTPRODUCT will return an array value when the number of cells in one of its
arguments is an even multiple of the number of cells in its other argument. As an
example, consider the calculation of parts used in the LP model EXAMPLEL. The
decision variables are in cells D9 to F9 (3 cells), and the coefficients of the constraint
left hand sides — the number of parts used for each product —are in cells D11 to F15
(15=3*5 cells). We want to calculate the left hand sides of the constraints in cells
C11 to C15. To do this, we would first select the group of five cells C11:C15 with
the mouse. Then we would type:

=DOTPRODUCT(D9:F9,D11:F15)

completing the entry with CTRL+SHIFT+ENTER instead of just ENTER. The
formula will display as {=DOTPRODUCT(D9:F9,D11:F15)} — the braces are added
by Microsoft Excel when the formula is array-entered. With the cell values shown in
EXAMPLEL prior to solution (e.g. 100 for each of the decision variables), this array
formula will calculate 200 in C11, 100 in C12, 500 in C13, 200 in C14 and 400 in
C15. Hence, it will compute the same set of values as the array expression shown
earlier: {=MMULT(_A, TRANSPOSE(_X))}.

Whether it is used in the simple form or the array form, DOTPRODUCT always
processes its arguments in column, row, area order. In the array form, when the cells

138 Building Large-Scale Models Solver User Guide

in the “shorter” argument have all been processed and cells remain to be processed in
the “longer” argument, DOTPRODUCT “wraps around” to the beginning of the
“shorter” argument. In the example above, cell C11 calculates the value
=D9*D11+E9*E11+F9*F11; cell C12 computes =D9*D12+E9*E12+F9*F12; and so
on. Keep this rule in mind when you use the array form of DOTPRODUCT, and
keep your spreadsheet layouts as simple as possible!

Using QUADPRODUCT

The QUADPRODUCT function can be used to define the objective for quadratic
programming problems in a single function call, as required for fast problem setup.

Recall from the section “Quadratic Functions’ in the chapter “Solver Models and
Optimization” that a quadratic function is a sum of terms, where each term is a
(positive or negative) constant (called a coefficient) multiplied by a single variable or
the product of two variables. This means that in order to represent the most general
quadratic function, we might have a coefficient for each instance of a single variable,
and a coefficient for each possible pair of two variables. The QUADPRODUCT
function is designed to supply coefficients for each single variable and each pair of
variables, in a manner similar to SUMPRODUCT and DOTPRODUCT.

You supply the arguments of QUADPRODUCT as shown below:
=QUADPRODUCT (variable cells, single coefficients, pair coefficients)

The first argument must consist entirely of decision variable cells. The second and
third arguments must consist entirely of cells whose values are constant in the
optimization problem; if these cells contain formulas, those formulas must not refer
to any of the decision variables. The second argument supplies the coefficients to be
multiplied by each single variable in the first argument, using an element-by-element
correspondence. The third argument supplies the coefficients to be multiplied by
each pair of variables drawn from the first argument. Hence, if there are n cells in
the first argument, there must be n? cells in the third argument. If the variables are
represented by Xq,X,,...,Xn, the single coefficients by a;,a,,...,a,, and the pair
coefficients by ¢4,C5,...,cy Where N = n2, QUADPRODUCT computes the function:

nn n
Cop Xi X a; X

i=1j=1 i1

The pairs are enumerated starting with the first cell paired with itself, then the first

cell paired with the second cell, and so on. For example, if the first argument

consisted of the cells A1:A3, there should be nine cells in the third argument, and the

values in those cells will be multiplied by the following pairs in order: A1*Al,

Al1*A2, A1*A3, A2*Al, A2*A2, A2*A3, A3*Al, A3*A2, and A3*A3. The value

returned by QUADPRODUCT is the sum of all of the coefficients multiplied by their

corresponding single variables or pairs of variables.

Multiple selections can be used for each argument of QUADPRODUCT, subject to
the same considerations outlined above for DOTPRODUCT: You can use the
general syntax for multiple selections in Microsoft Excel, but defined names are
needed for purposes of fast problem setup, and multiple selections are not accepted
by the Polymorphic Spreadsheet Interpreter. (For an easier way to define a quadratic
objective that is accepted by the Interpreter in the Premium Solver Platform, see the
discussion of the QUADTERM function below.)

A common application of quadratic programming isto find an “ efficient portfolio” of
securities — often called portfolio optimization. The worksheet EXAMPLE4 in the
Examples.xlIs workbook, which is copied to your installation folder when your

Solver User Guide

Building Large-Scale Models 139

Premium Solver product is installed, illustrates portfolio optimization using the
Markowitz method. This model, shown below, uses the QUADPRODUCT function
to compute the variance of a portfolio of five securities, and uses this quantity as the
objective to be minimized, subject to a constraint that gives a lower limit on the
portfolio return. Because the objective is a quadratic function, and the constraints
(including the lower bound on return) are all linear functions, this Solver model is a
quadratic programming (QP) problem which can be handled by the LP/Quadratic
Solver in the Premium Solver Platform.

E‘ﬁ Examples._xls A=

A B C D E F H =1
Portfolio Optimization - Markowitz Method I
This model finds the optimal allocation of fundz to stocks that minimizes the portfolio nisk, measured by

partfolio Variance [quadratic function] at cell 17 - computed via a custor GUADPRODUCT function,
If you see BMAME? in 117, uze Tools Add-Ins... and check the box nest to Frontline's Mathematical
Functionz. Thiz quadratic programming [OF] model can be zolved with the GRG Morlinear Solver, or

mare efficiently in the Premium Sobver Platiorm with the LP/Quadratic Solver or the SOCP Barrier Solver,

Stock 1 Stock 2 Stock3 Stock 4 Stock b Total
Portfolio % | 2003 2000% 2000% 2000% 20.00%|| 100.00%
Expected Return 7.00% g.00% 9.60% G.650% 14.00%
£ imear FF Temms i i i I i

-y
)

PR [Y
L r =

Wariance/Covariance Matnix
Stock 1 Stock 2 Stock 3 Stock 4 Stock 5
Stock 1 2.50% 010%: 1.00%: -0.50%: 1.00%%
Stock 2 0.10%: 4.00%: -0.10%: 1.20% -0.85%

_. INENEN
~1 GHGEGIES

Stock3 100% -010% 1.20% 065% 0.75%|[variance 1.25%]
18 Stock 4 -0.50% 1.20% 0.6E% 5.00% 1.00%:]|5td. Dev. 11.17%
19 Stock5 1.00% -085% 075% 1.00% 7.00%||Retwn [T 500
20 -
M 4+ W[EXAMPLEZ A EXAMPLES % EXAMPLE4 { EXAMPLE |4 | | iy

The formula using QUADPRODUCT at cell 117 reads as follows:
=QUADPRODUCT (Allocations,B11:F11,Stock_Covariances)

If you select Premium Solver... from the Tools menu, the Solver Parameters dialog
will appear with the entries shown below. (We"ve checked the “Assume Non-
Negative” box in the Solver Options dialog.)

Notice the use of defined namesin this model: “Allocations’ is defined as the cell
range B9:F9, and “ Stock_Covariances’ is defined as the rectangle B15:F19. Sincein
this problem the objective function consists only of the quadratic terms (pairs of
variables) with no linear terms (single variables), we supply a row of zeroes for the
second argument to QUADPRODUCT.

Bl Solver Parameters V7.0 [x|

Set Cell; IPu:urtFnIio_\n'ariance 5.5
Equal To: 7 Max & Min \u'al_ueof:l Close |

By Changing Yariable Cells;

— TModel | Options |
Allocations P

Subject to the Constraints: IStanu:IarcI LP/Quadratic ;I
Partfolio_Return == 0.095)
Taokal_Partfolio = 1 Aad | Yariables

|
Change | Resek All |
|

Delete | Help

4

140

Building Large-Scale Models Solver User Guide

Using QUADTERM

The QUADTERM function can be used to define a term of an overall quadratic
function. Its purpose is to make it easier for you to define a quadratic objective or
constraint of more than 256 decision variables. You are unlikely to need this
function in Excel 2007, which allows 16,384 columns per worksheet. But since
Microsoft Excel 2000-2003 allows a maximum of 256 columns, you cannot easily
define a“square matrix” of coefficients with more than 256 rows and columns.
Instead, you can break up the matrix into four, nine or more submatrices, each one up
to 256 rows and columns. You then use the QUADTERM function to compute the
contribution to the overall quadratic function from each submatrix. In your objective
function cell, you sum up the QUADTERM functions, plus a SUMPRODUCT or
DOTPRODUCT function if there is a linear term in the objective.

You supply the arguments of QUADTERM as shown below:
=QUADTERM(variablesl, variables2, pair coefficients)

The first and second arguments should each be a range of decision variable cells
(both arguments may define the same range, or they may define different ranges of
cells). The third argument defines coefficients that will be multiplied by each pair of
cells in the ranges variablesland variables2. If there are n cells in the first argument,
there must be n cells in the second argument, and n? cells in the third argument. If
the first argument is represented by X;,X»,...,X,, the second argument by y1,y»,...,yn, and
the coefficients by c,,C,,...,cy Where N = n2, QUADTERM computes the function:

n n

Cors X Y,
i=1j=1
As with QUADPRODUCT, the pairs are enumerated starting with the first cell in the
first argument paired with the first cell in the second argument, then the first cell in
the first argument paired with the second cell in the second argument, and so on. The
value returned by QUADTERM is the sum of all of the coefficients multiplied by
their corresponding pairs of variables.

As described earlier, the QUADTERM function can be used in any Microsoft Excel
worksheet, with or without the Solver. It is not recognized for purposes of fast
problem setup, but it is recognized by the Polymorphic Spreadsheet Interpreter in the
Premium Solver Platform. As an example, you might define the objective of a 512-
variable problem, with decision variables X1:X512, using four submatrices and a
formula =QUADTERM (X1:X256, X1:X256, A601:1V856) + QUADTERM
(X1:X256, X257:X512, A901:1V1156) + QUADTERM (X257:X512, X1:X256,
A1201:1V1456) + QUADTERM (X257:X512, X257:X512, A1501:1V1756).

Solver User Guide Building Large-Scale Models 141

142 Building Large-Scale Models Solver User Guide

Simulation Optimization with Risk
Solver Engine

Monte Carlo Simulation and Optimization

With the Premium Solver Platform and Risk Solver Engine, you can define and
solve simulation optimization problems, where the objective and constraints in your
model may depend on both your decision variables and on uncertain variables —
sometimes called ,random variables® or ,assumptions" — that represent uncertain
factors not under your control.

Risk Solver Engine is licensed separately from the Premium Solver Platform. Used
along, it enables you to create and run risk analysis models using Monte Carlo
simulation. You can try Risk Solver Engine free of charge with a 15-day trial
license: Just visit www.solver.com, login and download the RSESetup program.

A Risk Solver Engine model can include uncertain variable cells, whose values are
defined by probability distributions. You specify the distributions via function calls
such as =PsiNormal(10,1). Each time such a function is called, it returns a different
value —much like the Rand() function in Excel. You can use the cells containing
these random variables in any formula in your model.

On your command, or (if desired) each time you change a number on the worksheet,
Risk Solver Engine will perform a Monte Carlo simulation with thousands of trials.
On each tria, the random variable cells will have different values (a“sample” from
each variable"'s probability distribution), and all the formula cellsin your model will
be recalculated with these values.

Trials and summary statistics, such as the mean value and standard deviation across
all the trials, are accumulated for the formula cells you designate (sometimes called
Jforecasts’). You can access these statistics in regular Excel formulas. And in the
Premium Solver Platform, you can use these summary statistics in the objective and
constraints of your optimization model.

When you define a simulation optimization model and click Solve, the Premium
Solver Platform performs a Monte Carlo simulation through Risk Solver Engine on
each Trial Solution of the optimization. Doing this is usually an order of magnitude
faster than alternative products for simulation optimization. You can for example
maximize the expected (mean) value of Net Profit —which may be uncertain, i.e.
dependent on random variables — subject to constraints that may also depend on
random variables.

Solver User Guide

Simulation Optimization with Risk Solver Engine 143

Defining a Simulation Optimization Model

Creating a simulation optimization model using the Premium Solver Platform and
Risk Solver Engine is straightforward. You follow these steps:

1. Define decision variable cells (such as Al), using either the Solver
Parameters dialog or the PsiVar() function. These are factors that are under
your control —you (or the Solver) will decide what values they should have.

2. Define uncertain variable cells (such as A2), that contain formulas calling
the PSI Distribution functions supplied by Risk Solver Engine —for example
PsiUniform() and PsiNormal(). These are factors that are not under your
control.

3. Build your model, using cell formulas that may depend on the decision
variables, uncertain variables, or both.

4. Each cell (such as B1) containing a formula that depends on uncertain
variables (say =A1+2*A2) represents thousands of trial values, generated
during each Monte Carlo simulation by sampling different values for A2
and computing =A1+2*A2.

5. In other cells (such as C1), define the summary statistics you want, using
functions such as PsiMean(B1) or PsiStdDev(B1). You may use formulas to
compute further values based on these summary statistics.

6. Define your objective and constraints for optimization. These may be cell
formulas that depend only on the decision variables, depend on the uncertain
variables through PSI Statistics functions, or depend on both.

An objective or constraint can depend on a cell containing a PSI Statistic function
such as C1 above, but not directly on a cell such as B1 above. The cell containing a
PSI Statistic function has a single value; the cell B1 represents many different values.

Using PSI Functions for Simulation

With Risk Solver Engine, the uncertain variables you define may have values drawn
from your choice of more than 40 PSI Distribution functions — from PsiBernoulli()
to PsiWeibull().

You can also draw values from predefined Certified Distributions, by simply
referring to these distributions in PsiSip() and PsiSlurp() functions. You can easily
shift, truncate and correlate probability distributions using PSI Property functions
such as PsiShift(), PsiTruncate() and PsiCorrMatrix().

To define results that depend on the uncertainties in your model, you create ordinary
Excel formulas that compute functions of your uncertain variables. You can
optionally designate the cells containing computed results that you want to use (in
charts or summary statistics) with the function PsiOutput().

You obtain summary statistics across all simulation trials for such cells by referring
to them in formulas using PsiMean(), PsiVariance(), PsiPercentile(), PsiCVaR(),
and other PSI Statistics functions.

See the chapter “PS| Function Reference” in the Risk Solver Engine User Guide for a
complete list of PSI functions you can use. There are more than 70 functions in all.

144 Simulation Optimization with Risk Solver Engine Solver User Guide

PSI Functions in Objectives and Constraints

Once you have cell formulas using PSI Statistics functions like the ones just
mentioned, you can use these cells —or other formulas that depend on them —as your
objective (Set Cell) or as the left hand sides of constraints.

For example, if you have a worksheet that defines uncertain market demand for your
products, and computes sales, inventory levels and Net Profit, you could define and
solve an optimization problem that maximizes Net Profit, subject to constraints on
maximum (say, 90" percentile) or minimum (10" percentile) inventory levels.

Such problems are typically non-smooth optimization problems that may be very
difficult to solve. But the combination of the Premium Solver Platform and Risk
Solver Engine gives you unprecedented power and speed to tackle these problems.

Solving a Simulation Optimization Model

Solving a simulation optimization model using the Premium Solver Platform and
Risk Solver Engine is also straightforward. Follow these steps:

1. Activate Interactive Simulation | by clicking the light bulb
button on the Risk Solver Engine toolbar.

2. Select Tools Premium Solver to display the Solver Parameters dialog, and
click the Solve button.

In Version 7.0, when you solve a problem with Interactive Simulation active, the
Solve With option is effectively set to Excel Interpreter, regardless of the setting in
the Solver Model dialog. This means only that Excel is used to calculate the
objective and constraints for each Trial Solution of the optimization. But in order to
calculate the objective and constraints, a Monte Carlo simulation must be performed
—which accounts for most of the computation time — and this is done at high speed by
the PSI Interpreter in Risk Solver Engine.

Solver Engines and Options

A simulation optimization model is almost always nonlinear, and is usually non-
smooth, because your objective and/or constraints depend on PSI Statistics functions,
that in turn depend on PSI Distribution functions.

Hence you should use the Evolutionary Solver, or the GRG Nonlinear Solver with
the Multistart Search box checked, to solve a simulation optimization model. You
can also use plug-in Solver engines such as the OptQuest Solver, and the Large-Scale
GRG, Large-Scale SQP, and KNITRO Solvers with their Multistart Search options.

A Project Selection Example

An example problem where simulation optimization may be helpful is in capital
budgeting, where we must select among various project proposals seeking funding,
within a limited budget. Suppose that each project has a given probability of success
or failure, and a range of uncertain future cash flows if it is successful. What"s
known with certainty is the amount needed to fund each project this year. We have
$2.5 million worth of first-year project funding requests, but a budget of only $1.5
million —so we must select a subset of the projects. This is illustrated in the
ProjectSelect.xls workbook, shown on the next page.

Solver User Guide

Simulation Optimization with Risk Solver Engine 145

A B C D E G H =
1 Project Selection with a Budget Constraint []
2
] Project Cash Flow if [Chance of |Expected Initial Expected Decision to
| 3 | Number Successful Success Cash Flow |Investment | Cash - Invest Include
EN 1 $576,040 100% $576,040 $325,000 §251,040 1
| 5 | 2 $E54 527 0% $0 $450,000 -$450,000 1
| 6 | 3 $1.217.050 100% §1.217.0a0 $550,000 $667 050 1
| 7| 4 #6803 576 100% #6803 576 $300,000 $303 576 1
=R 5 $485 560 100% $485 560 $150,000 $335 560 1
ER 5] $a85,031 100% $a85,031 $250,000 $335,031 1
| 10 7 $355,765 0% $0 $150,000 -$150,000 1
|11 =] $514 673 100% $514 673 $325,000 $1859 673 1
12
13| Total Investment| 2,500,000
| 14 | Budget Constraint 1,500,000
15
[16 | Tatal Cash Flow 1,486 029 =
17 Expected Taotal CFI 2000 254!
-
W 4 v [\Sheetl {Sheet2 { Sheet3 [« | oy

The Simulation Model

To model the “Cash Flow if Successful,” where only a minimum, most likely, and
maximum cash flow are known, we"ve used the PsiTriangular() function. For
example, the formula in C4 is =PsiTriangular(400000,500000,900000).

To model the “Chance of Success,” we"ve used the function =PsiBinomial(1,.9) for
each project. On each trial, this distribution returns 1 with probability 90% and 0
with probability 10%. We multiply the “Cash Flow if Successful” and the “ Chance
of Success’ to obtain the “ Expected Cash Flow.”

Cell F16 computes the total cash flow as the SUMPRODUCT of the selected projects
with their (uncertain) individual cash flows multiplied by their chance of success.
This changes on each simulation trial, as you can see by pressing F9.

Cell F17 contains =PsiMean(F16): It computes the mean (i.e. average or expected)
value of the total expected cash flow. Click the light bulb on the Risk Solver Engine
toolbar to see this mean value for 1,000 trials, each time you press F9.

The Optimization Model

Cells H4:H11 are our decision variables, which should be 1 to fund the project or 0
to reject it. These will be binary integer variables.

Cell F13 computes our total investment as the SUMPRODUCT of the selected
projects with their (certain) initial costs. This will be constrained to be less than or
equal to our budget of $1.5 million at cell F14.

Cell F17 —the mean or expected value of the total cash flow — is our objective,
which we wish to maximize.

Setting the Random Seed

Before running the optimization, we"ll set a fixed random number seed for each
simulation. This means that the same random sample will be used by Risk Solver
Engine on each Trial Solution of the optimization process; hence, the Solver can
adjust the decision variables and observe different results for the problem functions
without the “noise” of constantly changing total values due only to the random
sample used in the simulation. To do this, click the tool icon on the Risk Solver
Engine toolbar, which displays the dialog on the next page.

146 Simulation Optimization with Risk Solver Engine Solver User Guide

PS1 Simulation Ophions |

1000

Murnber of Trials Per Simulation:

Murmber of Simulations to Run;

il

Random Seed: 12345
— Random Mumber Generator — Sampling Method —
" Park-Miler generator % Monte Carlo
& CMRG generatar £ Latin Hypercube
" WELL generakor " Sobal ROMC
{7 Mersenne Twister
¥l Use Correlations

— Random Mumber Streams

& Single Stream For all Uncertain Yariables

" Independent Stream For each Uncertain Yariable

% Use PsI Interpreter £ Use Excel Interpreter

Cancel

In the Random Seed edit box, type a number such as 12345, then click OK. Any
nonzero number can be used; each number will yield different simulation trials.

Using the Evolutionary Solver

Next, we set up the model so that the Solver Parameters dialog looks like this:

Bl Solver Parameters V7.0 [x|

Set Cell: [$F§17 @
Equal To: & Max Mo 'n.-'al_ueOF:I Close |

By Changing Vatiable Cells:

I S gLl i Madel | Opkions |
Subject to the Constraints: IStandard Evolutionary j
$FE13 <= §F14 ,
$HE4:$HEL1 = binary Add | variables |
Change | Reset All |
Delste | Help |

L

As described above, we want to maximize the mean or expected value of the total
cash flow at F17, subject to the constraint that the total initial investment at F13 is
less than or equal to our budget of $1.5 million at F14. The decision variables are
constrained to be binary integer — either 0 or 1.

When you click Solve, the Evolutionary Solver will find a solution like the one
shown on the next page — usually in few seconds — where we select projects 1, 2 and
3 for an expected value of total cash flow of about $1 million.

Solver User Guide Simulation Optimization with Risk Solver Engine 147

J ProjectSelect xls [_ O] x|
A B C D E G H =
1 Project Selection with a Budget Constraint []
2
] Project Cash Flow if [Chance of |Expected Initial Expected Decision to
| 3 | Number Successful Success Cash Flow | Investment | Cash - Invest Include
EN 1 $731,121 100% $731.121 $325,000 $406,121 1
| 5 | 2 §1,0588 968 100% §1,058968 $450,000 $605 968 1
| 6 | 3 $810,750 100% $810,750 $550,000 $260,750 1
| 7| 4 $4E2,177 0% 0 $300,000 -$300,000 1]
=R 5 $617,109 100% $617,109 $150,000 $467,109 a
ER 5 $451,513 100% $451,513 $260,000 $201513 a
| 10 7 $547 922 100% $547 922 $150,000 $357 922 a
|11 g $552 563 0% H0 $325,000 -$325,000 a
12
13| Total Investment| 1,325,000
| 14 | Budget Constraint 1,500,000
15
16 Tatal Cash Flow 1,275 839 o
17 Expected Tatal CFI 1,070 446!
-
W 4 » w\Sheet1 {Sheet2 / Sheet3 [<] | P

If you use the tool icon and the Simulation Options dialog to set the Random Seed
back to 0, and click F9 afew times, you'll see that the objective at F17 varies from
run to run (since a different random sample is drawn each time), and is often a little
less than the objective found during the optimization.

This illustrates the tradeoff of a fixed vs. variable random number seed —a fixed seed
enables the Solver to more rapidly find improved solutions, since it“s not dealing
with random “noise,” but the solution it finds is optimized for the set of 1,000 trials
determined by the initial seed, and may not be as good for a different set of 1,000
trials. But because the Solver is maximizing the mean value, the solution is usually
quite acceptable.

You can instead run the Solver with the seed set at 0, which means that a different
random sample is used on each simulation run. This makes it harder for the Solver to
find improved solutions, because the “random noise” makes it hard to compare
successive Trial Solutions. Usually, the Solver will require more time to find a good
solution, but this solution may be more “robust” on different sets of simulation trials.

Another option is to use a fixed seed and increase the number of trials in the
Simulation Options dialog — thanks to the speed of Risk Solver Engine, you can often
afford to run 2,000, 5,000, or more trials per simulation.

Version 7.0 focuses on the high-performance simulation optimization capability
provided by the combination of the Premium Solver Platform and Risk Solver
Engine. Future Frontline Systems products will go much further to support your
ability to solve problems that call for good or optimal decisions in situations
involving uncertainty, where you can quantify the decisions and the uncertainty in an
Excel model.

148 Simulation Optimization with Risk Solver Engine Solver User Guide

Diagnosing Solver Results

If You Aren’t Getting the Solution You Expect

This chapter will help you understand the results reported by the Solver and diagnose
problems with your Solver models. The most important step you can take to deal
with potential Solver problems is to start out with a clear idea of the type of
optimization model you are creating, how it relates to well-known problem types, and
whether yours is a linear, quadratic, smooth nonlinear or non-smooth optimization
problem —as discussed in previous chapters. If you then build your model in a well-
structured, readable and efficient form — as outlined at the beginning of the chapter
“Building Large-Scale Models’ — diagnosing problems should be relatively easy.

But at times you may be “surprised” by the results you get from the Solver.

If the Solver stops with a solution (set of values for the decision variables or
Changing Cells) that is different from what you expect, or what you believe is
correct, follow the suggestions below. You can usually narrow down the problem to
one of a few possibilities.

Check the Solver Result Message shown in the Solver Results dialog. Users
sometimes contact Frontline Systems about “wrong solutions’, but they
don"t know which Solver Result M essage they received — this is crucial to
diagnosing the problem. Read carefully the discussion of your Solver
Result Message in the following sections.

Consider carefully the possibility that the solution found by the Solver is
correct, and that your expectation is wrong. This may mean that what your
model actually says is different from what you intended.

In the Premium Solver Platform, many Solver Result Messages from the
Polymorphic Spreadsheet Interpreter refer to a specific problem at a
specific cell address in your worksheet. You may have to modify the
formulain thiscell to usethelnterpreter, or else you"ll haveto set the Solve
With option to Excel Interpreter in the Solver Model dialog.

Check the “ Show Iteration Results’ box in the Solver Options dialog and
re-solve. The Solver will pause with the message “ Solver paused, current
solution values displayed on worksheet.” Click Continueto seethe path
towards the solution taken by the Solver.

If you receive the message “ Solver could not find a feasible solution,” select
and examine the Feasibility Report to determine which subset of the
constraints is making the problem infeasible.

Solver User Guide

Diagnosing Solver Results 149

If you receive the message “ Thelinearity conditionsrequired by this Solver
engine arenot satisfied,” select and examine the Linearity Report to
determine which functions or variables in your model are not linear. Even
better —if you have the Premium Solver Platform — follow the steps in
“Diagnosis Tab: Analyzing M odel Exceptions’ in the chapter “ Analyzing
and Solving M odels’ to pinpoint the exact cell formulasthat aren“t linear.

Read the section in this chapter on “ Problemswith Poorly Scaled M odels.”
In the Premium Solver Platform, if you see the Scaling Report listed in the
Reports list box of the Solver Results dialog, select this report and examine
its contents for strong clues about poor scaling in your model.

Later sections of this chapter discuss characteristics and limitations of the
GRG Solver for smooth nonlinear problems, the Interval Global Solver for
global optimization of smooth nonlinear problems, and the Evolutionary
Solver for non-smooth problems. Read the section(s) most relevant for the
type of problem you are solving.

During the Solution Process

When you click the Solve button in the Solver Parameters dialog, the solution
process is started. When it completes, the Solver Results dialog appears, displaying a
Solver Result Message, and giving you the option to save or discard the results and
generate reports. If you are controlling the Solver via a VBA program, you will call
the Problem.Solver.Optimize method or the SolverSolve function, and examine the
integer result (OptimizeStatus value) that corresponds to a Solver Result Message.

You can interrupt the solution process at any time by pressing the ESC key. This will
display the Show Trial Solution dialog, pictured below. The Show Trial Solution
dialog also appears if you have checked the box Show Iteration Results in the Solver
Options dialog, or if the Solver reaches a limit on the solution process (such as
maximum time, iterations, subproblems, or integer or feasible solutions) that you
have set via the Solver Options dialog.

Choosing to Continue, Stop or Restart

At the time the Show Trial Solution dialog appears, your worksheet will contain the
current values of the decision variables, objection function and constraints. (If you
are using a VBA program to control the Solver, you can specify a function in your
code to be called in lieu of displaying this dialog.) In this dialog (or via your VBA
function) you can choose to continue, stop, or restart the solution process.

Show Tt Sowion ———————————_GE]|

The mairmum time limit was reached; continue
anyay’? i Continue
Stop |

Restart |

Save Scenario.., | Help |

If you choose to continue the solution process, the limit (if any) that was reached is
ignored, and the Solver continues to run. If you choose to stop the solution process,
the Solver “cleans up” and then displays the Solver Results dialog, or returns from
your VBA method or function call. If you choose to restart the solution process, the

150 Diagnosing Solver Results Solver User Guide

Solver will “re-initialize” in a manner specific to the Solver engine being used, then
continue to run. The LP/Quadratic Solver and the SOCP Barrier Solver treat the
restart option as equivalent to the continue option. The nonlinear GRG Solver re-
initializesits “curvature” information (approximate Hessian of the objective) and
convergence test, and continues from the current Trial Solution. The Evolutionary
Solver re-initializes its population of candidate solutions, replacing the worst half of
the population with newly sampled points for greater diversity, and continues the
solution process. The Interval Global Solver treats the restart option as equivalent to
the continue option. Field-installable Solver engines handle this option in manners
similar to those just described for linear, smooth nonlinear and non-smooth problems.

When the Solver Finishes

When the solution process completes, the Solver Results dialog appears, displaying a
Solver Result Message, as shown below. If you are controlling the Solver viaa VBA
program and you“ve called the Problem.Solver.Optimize method, the Solver object
OptimizeStatus property holds a result code that corresponds to a Solver Result
Message. If you've called the “traditional” SolverSolve function, this function will
return the integer result code. At this point, your worksheet contains the best solution
found — values for the decision variable cells, and calculated values for the objection
function and constraints.

Solver Found & solution. Al constraints and optimality

conditions are satisfied. Reports
Answer S
%) Keep Solver Solution Sensitivity —I
7 Restore Original Yalues Limits _I
- -
[return ko Saolver Parameters Dialog [T outline Reports
sl I Cancel | Save SCenario... | Help |

In this dialog (or by calling the Problem.Solver.Report method or the “traditional”
SolverFinish function), you can select one or more reports, choose one of the options
“Keep Solver Solution” or “Restore Original Values,” and optionally save the
decision variable values in a named scenario by clicking on the Save Scenario...
button. When you click OK, the reports will be produced. Clicking Cancel instead
will discard the solution and cancel generation of the reports. The reports are further
described in the chapter “ Solver Reports.”

After the reports (if any) are produced, the Solver will return to worksheet Ready
mode unless you've checked the box “Return to Solver Parameters Dialog.” When
you check the “Return to Solver Parameters Dialog” box, it remains checked (until
you change it) for the duration of your Excel session. To return to worksheet Ready
mode, you can click the Close button in the Solver Parameters dialog, uncheck this
box, or click Cancel in the Solver Results dialog.

Standard Solver Result Messages

The LP/Quadratic Solver, SOCP Barrier Solver, nonlinear GRG Solver, Interval
Global Solver, and Evolutionary Solver, and the Branch & Bound and multistart
methods bundled with the Premium Solver Platform return the integer result codes
and display the Solver Result Messages described in this section. Some of these

Solver User Guide

Diagnosing Solver Results 151

messages have a slightly different interpretation depending on which Solver engine
you are using; see the explanations of each message, particularly for return code 0,
“Solver found a solution.” Please note that the Branch & Bound and multistart
methods usually return result codes 14 through 17, documented later in this section.

Field-installable Solver engines are designed to return the same codes and display the
same messages as the built-in Solver engines whenever possible, but they can also
return custom result codes (starting with 1000) and display custom messages, as
described in their individual documentation. The Interval Global Solver can return
three of these custom result codes and messages, described at the end of this section.

-1. Alicensing problem was detected, or your trial license has expired.

0. Solver found a solution.

This message appears if a Premium Solver product cannot find its licensing
information, if the licensing information is invalid, or if you have a time-limited
evaluation license that has expired. Click the Help button for further information
about the licensing problem. Please call Frontline Systems at (775) 831-0300, or
send email to us at info@solver.com for further assistance.

All constraints and optimality conditions are satisfied.

This means that the Solver has found the optimal or “best” solution under the
circumstances. The exact meaning depends on whether you are solving a linear or
quadratic, smooth nonlinear, global optimization, or integer programming problem,
as outlined below. Solvers for non-smooth problems rarely if ever display this
message, because they have no way of testing the solution for true optimality.

If you are solving a linear programming problem or a convex quadratic programming
problem with the LP/Quadratic Solver, the Solver has found the globally optimal
solution: There is no other solution satisfying the constraints that has a better value
for the objective (Set Cell). It is possible that there are other solutions with the same
objective value, but all such solutions are linear combinations of the current decision
variable values.

If you are solving a linear (LP), convex quadratic (QP) or quadratically constrained
(QCP), or second order cone programming (SOCP) problem with the SOCP Barrier
Solver, the Solver has found the globally optimal solution: There is no other solution
satisfying the constraints that has a better value for the objective (Set Cell). It's
possible that there are other solutions with the same objective value, but all such
solutions are linear combinations of the current decision variable values.

If you are solving a smooth nonlinear optimization problem with no integer
constraints, the GRG Solver has found a locally optimal solution: There is no other
set of values for the decision variables close to the current values and satisfying the
constraints that yields a better value for the objective (Set Cell). In general, there
may be other sets of values for the variables, far away from the current values, which
yield better values for the objective and still satisfy the constraints.

If you are using the Interval Global Solver for global optimization of a smooth
nonlinear problem with no integer constraints, this means that the Solver has found
the globally optimal solution: There is no other solution satisfying the constraints
that has a better value for the objective. But this is subject to limitations due to the
finite precision of computer arithmetic — discussed below in “Limitations on Global
Optimization” —that can, in rare cases, cause the Solver to “miss’ afeasible solution
with an even better objective value.

If you are solving a mixed-integer programming problem (any problem with integer
constraints) using a Premium Solver product, this message means that the Branch &
Bound method has found a solution satisfying the constraints (including the integer

152 Diagnosing Solver Results

Solver User Guide

congtraints) with the “best possible” objective value (but see the next paragraph). If
the problem is linear or quadratic, the true integer optimal solution has been found.
If the problem is smooth nonlinear, the Branch & Bound process has found the best
of the locally optimal solutions found for subproblems by the nonlinear Solver.

In the standard Microsoft Excel Solver, this message also appears for mixed-integer
problems where the Solver stopped because the solution was within the range of the
true integer optimal solution allowed by the Tolerance value in the Solver Options
dialog (5% by default). In the Premium Solver products, when the Branch & Bound
process stops due to a nonzero Tolerance without “proving optimality,” the message
“Solver found an integer solution within tolerance. All constraints are satisfied”
(result code 14) is displayed to distinguish this condition (see below).

1. Solver has converged to the current solution. All constraints are satisfied.

This means that the Solver has found a series of “best” solutions that satisfy the
constraints, and that have very similar objective function values; however, no single
solution strictly satisfies the Solver"s test for optimality. The exact meaning depends
on whether you are solving a smooth nonlinear problem with the GRG Solver or the
Interval Global Solver, or a non-smooth problem with the Evolutionary Solver.

When the GRG Solver or the Interval Global Solver is being used, this message
means that the objective function value is changing very slowly as the Solver
progresses from point to point. More precisely, the Solver stops if the absolute value
of the relative (i.e. percentage) change in the objective function, in the last few
iterations, is less than the Convergence tolerance in the Solver Options dialog. A
poorly scaled model is more likely to trigger this stopping condition, even if the Use
Automatic Scaling box in the Solver Options dialog is checked. If you are sure that
your model is well scaled, you should consider why it is that the objective function is
changing so slowly. For more information, see the discussion of “GRG Solver
Stopping Conditions’ below.

When the Evolutionary Solver is being used, this message means that the “fitness” of
members of the current population of candidate solutions is changing very slowly.
More precisely, the Evolutionary Solver stops if 99% or more of the members of the
population have “fitness’ values whose relative (i.e. percentage) difference isless
than the Convergence tolerance in the Solver Options dialog. The “fitness’ values
incorporate both the objective function and a penalty for infeasibility, but since the
Solver has found some feasible solutions, this test is heavily weighted towards the
objective function values. If you believe that the Solver is stopping prematurely
when this test is satisfied, you can make the Convergence tolerance smaller, but you
may also want to increase the Mutation Rate and/or the Population Size, in order to
increase the diversity of the population of trial solutions. For more information, see
the discussion of “Evolutionary Solver Stopping Conditions’ below.

2. Solver cannot improve the current solution. All constraints are satisfied.

This means that the Solver has found solutions that satisfy the constraints, but it has
been unable to further improve the objective, even though the tests for optimality
(“Solver found a solution) and convergence (“ Solver converged to the current
solution”) have not yet been satisfied. The exact meaning depends on whether you
are solving a smooth nonlinear problem with the GRG Solver, a global optimization
problem with the Interval Global Solver, or a non-smooth problem with the
Evolutionary Solver.

When the GRG Solver is being used, this message occurs very rarely. It means that
the model is degenerate and the Solver is probably cycling. One possibility worth

Solver User Guide Diagnosing Solver Results 153

checking is that some of your constraints are redundant, and should be removed. For
more information, see the discussion of “GRG Solver Stopping Conditions” below.

When the Interval Global Solver is being used, this message is more common. It
means that the Solver has not found an “improved global solution” (afeasible
solution with an objective value better than the currently best known solution), in the
amount of time specified by the Max Time without Improvement option in the Solver
Options dialog. The reported solution is the best one found so far, but the search
space has not been fully explored. For more information, see the discussion of
“Interval Global Solver Stopping Conditions’ below. If you receive this message,
and you are willing to spend more solution time to have a better chance of “proving”
global optimality, increase the value of the Max Time without Improvement option.

When the Evolutionary Solver is being used, this message is much more common. It
means that the Solver has been unable to find a new, better member of the population
whose “fitness” represents a relative (percentage) improvement over the current best
member"s fithess of more than the Tolerance value on the Limit Options dialog tab,
in the amount of time specified by the Max Time without Improvement option in the
same dialog. Since the Evolutionary Solver has no way of testing for optimality, it
will normally stop with either “ Solver converged to the current solution” or “ Solver
cannot improve the current solution” if you let it run for long enough. If you believe
that this message is appearing prematurely, you can either make the Tolerance value
smaller (or even zero), or increase the amount of time allowed by the Max Time
without Improvement option. For more information, see the discussion of “Evolu-
tionary Solver Stopping Conditions’ below.

3. Stop chosen when the maximum iteration limit was reached.

This message appears when (i) the Solver has completed the maximum number of
iterations, or trial solutions, allowed in the Iterations box in the Solver Options dialog
and (ii) you clicked on the Stop button when the Solver displayed the Show Trial
Solution dialog. You may increase the value in the Iterations box, or click on the
Continue button instead of the Stop button in the Show Trial Solution dialog. But you
should also consider whether re-scaling your model or adding constraints might
reduce the total number of iterations required.

If you are solving a mixed-integer programming problem (any problem with integer
constraints), this message is relatively unlikely to appear. The Evolutionary Solver
uses the Max Subproblems and Max Feasible Solutions options on the Limit Options
dialog tab, and the Branch & Bound method (employed by the other Solver engines
on problems with integer constraints) uses the Max Subproblems and Max Integer
Solutions options on the Integer Options dialog tab, to control the overall solution
process. The count of iterations against which the Iteration limit is compared is reset
on each new subproblem, so this limit usually is not reached.

4. The Set Cell values do not converge.

This message appears when the Solver is able to increase (if you are trying to
Maximize) or decrease (for Minimize) without limit the value calculated by the
objective or Set Cell, while still satisfying the constraints. Remember that, if you've
selected Minimize, the Set Cell may take on negative values without limit unless this
is prevented by the constraints or bounds on the variables. Check the Assume Non-
Negative box in the Solver Options dialog to impose >= 0 bounds on all variables.

If the objective is a linear function of the decision variables, it can always be
increased or decreased without limit (picture it as a straight line), so the Solver will
seek the extreme value that still satisfies the constraints. If the objective is a nonlinear
function of the variables, it may have a*natural” maximum or minimum (for

154 Diagnosing Solver Results Solver User Guide

example, =A1*A1 has a minimum at zero), or no such limit (for example, =LOG(A1)
increases without limit).

If you receive this message, you may have forgotten a constraint, or failed to
anticipate values for the variables that allow the objective to increase or decrease
without limit. The final values for the variable cells, the constraint left hand sides and
the objective should provide a strong clue about what happened.

The Evolutionary Solver never displays this message, because it has no way of
systematically increasing (or decreasing) the objective function, which may be non-
smooth. If you have forgotten a constraint, the Evolutionary Solver may find
solutions with very large (or small) values for the objective — thereby making you
aware of the omission — but this is not guaranteed.

5. Solver could not find a feasible solution.

This message appears when the Solver could not find any combination of values for
the decision variables that allows all of the constraints to be satisfied simultaneously.
If you are using the LP/Quadratic Solver or the SOCP Barrier Solver, and the model
is well scaled, the Solver has determined for certain that there is no feasible solution.

If you are using the nonlinear GRG Solver, the GRG method (which always starts
from the initial values of the variables) was unable to find a feasible solution; but
there could be a feasible solution far away from these initial values, which the Solver
might find if you run it with different initial values for the variables.

If you are using the Interval Global Solver, this message means that the Solver could
find no feasible solutions after a systematic exploration of the search space. The
Interval Global Solver isdesigned to “prove feasibility” aswell as global optimality,
but this is subject to limitations due to the finite precision of computer arithmetic —
discussed below in “Limitations on Global Optimization” —that can, in rare cases,
cause the Solver to “miss’ afeasible solution.

If you are using the Evolutionary Solver, the evolutionary algorithm was unable to
find a feasible solution; it might succeed in finding one if you run it with different
initial values for the variables and/or increase the Precision value in the Solver
Options dialog (which reduces the infeasibility penalty, thereby allowing the
evolutionary algorithm to explore more “nearly feasible” points).

In any case, you should first look for conflicting constraints, i.e. conditions that
cannot be satisfied simultaneously. Most often this is due to choosing the wrong
relation (e.g. <= instead of >=) on an otherwise appropriate constraint. The easiest
way to do this is to select the Feasibility Report, shown in the Reports list box when
this message appears, and click OK. (This report can take time for the LP/Quadratic
Solver or SOCP Barrier Solver, more time for the GRG Solver, and much more time
for the Interval Global Solver; it is not available for the Evolutionary Solver.) For an
example of using the Feasibility Report to diagnose an infeasible solution, see “The
Feasibility Report” in the chapter “ Solver Reports.”

6. Solver stopped at user’s request.

This message appears only if you press ESC to display the Show Trial Solution
dialog, and then click on the Stop button. If you are controlling the Solver from a
VBA program, remember that the user may press ESC while your VBA program is
running. You can write VBA code to disable the ESC key, or — better — define a
VBA function that the Solver will call instead of displaying the Show Trial Solution
dialog (an Evaluator in the object-oriented API, or a ShowRef function argument in
the “traditional” SolverSolve function.). Be sure to test for this OptimizeStatus or
integer result (6) in your VBA code, and take action appropriate for your application.

Solver User Guide

Diagnosing Solver Results 155

7. The linearity conditions required by this Solver engine are not satisfied.

In the standard Excel Solver, this message is worded “The conditions for Assume
Linear Model are not satisfied,” and it can appear only when the Assume Linear
Model box in the Solver Options dialog is checked. In the Premium Solver, this
message appears if you've selected the linear Simplex Solver engine, but the Solver"s
numeric tests to ensure that the objective and constraints are indeed linear functions
of the decision variables were not satisfied.

In the Premium Solver Platform, this message appears if you've selected the
LP/Quadratic Solver and the Solver"s tests determine that the constraints are not
linear functions of the variables or the objective is not a linear or convex quadratic
function of the variables; or if you've selected the SOCP Barrier Solver and the
Solver"s tests determine that the constraints or the objective are not linear or convex
quadratic functions of the variables. To understand exactly what is meant by a linear
or quadratic function, read the section “Functions of the Variables’ in the chapter
“Solver Models and Optimization.”

Field-installable Solver engines can also display this message. |f you“ve selected the
Large-Scale LP/QP Solver or the XPRESS Solver Engine, this message appears if the
constraints are not linear functions of the variables or the objective is not a linear or
convex quadratic function of the variables. If you've selected the MOSEK Solver
Engine (Standard Edition), this message appears if the constraints or the objective are
not linear or convex quadratic functions of the variables.

If you receive this message, examine the formulas for the objective and constraints
for nonlinear or non-smooth functions or operators applied to the decision variables.
If you have the Premium Solver Platform, simply follow the stepsin “Analyzing
Model Exceptions’ in the chapter “Analyzing and Solving Models’ to pinpoint the
exact cell formulas that arent linear. 1f you have the Premium Solver, select and
examine the Linearity Report to determine which functions or variables in your
model are not linear; see “The Linearity Report” in the chapter “ Solver Reports.”

8. The problem is too large for Solver to handle.

This message — or the more specific message Too many adjustable cells, Too many
constraints, or Too many integer adjustable cells — appears when the Solver
determines that your model is too large for the Solver engine that is selected (in the
Solver engine dropdown list) at the time you click Solve. You'll have to select — or
possibly install —another Solver engine appropriate for your problem, or else reduce
the number of variables, constraints, or integer variables in order to proceed.

You can check the size (the number of variables, constraints, bounds, and integers) of
the problem you have defined, and compare it to the size limits of the Solver engine
you are using, by displaying the Problem tab in the Solver Options dialog for that
Solver engine. The problem size is also displayed in the Solver Model dialog.

9. Solver encountered an error value in a target or constraint cell.

This message appears when the Solver recalculates your worksheet using a new set of
values for the decision variables (Changing Cells), and discovers an error value such
as #VALUE!, #NUM!, #DIV/0! or #NAME? in the cell calculating the objective (Set
Cell) or one of the constraints. Inspecting the worksheet for error values like these
will usually indicate the source of the problem. If you“ve entered formulas for the
right hand sides of certain constraints, the error might have occurred in one of these
formulas rather than in a cell on the worksheet. For this and other reasons, it"s better
to use only constants and cell references on the right hand sides of constraints.

156 Diagnosing Solver Results Solver User Guide

If you see #VALUE!, #N/A or #NAME?, look for names or cell references to rows or
columns that you have deleted. If you see #NUM! or #DIV/0!, look for unanticipated
values of the decision variables which lead to arguments outside the domains of your
functions — such as a negative value supplied to SQRT. You can often add constraints
to avoid such domain errors; if you have trouble with a constraint such as A1 >= 0,
try a constraint such as A1 >= 0.0001 instead.

In the Premium Solver Platform, when the Polymorphic Spreadsheet Interpreter is
used (Solve With = PSI Interpreter), a more specific message usually appears instead
of “Solver encountered an error value in a (nonspecific) target or constraint cell.” At
aminimum, the message will say “Excel error value returned at cell address,” where
address (e.g. Sheet1!$A3$1) tells you exactly where the error was encountered. Other
messages may tell you more about the error. The general form of the message is:

Error condition at cell address. Edit your formulas, or use Excel Interpreter in
the Solver Model dialog. Error condition is one of the following:

Floating point overflow Invalid token

Runtime stack overflow Decision variable with formula

Runtime stack empty Decision variable defined more than once
String overflow Missing Diagnostic/Memory evaluation
Division by zero Unknown function

Unfeasible argument Unsupported Excel function

Type mismatch Excel error value returned

Invalid operation Non-smooth special function

See also result code 21, “ Solver encountered an error computing derivatives,” and
result code 12, with messages that can appear when the Interpreter first analyzes the
formulas in your model (when you click the Check Model or Solve button).

“Floating point overflow” indicates that the computed value is too large to represent
with computer arithmetic; “ String overflow” indicates that a string istoo long to be
stored inacell. “Division by zero” would yield #DIV/0! on the worksheet, and
“Unfeasible argument” means that an argument is outside the domain of a function,
such as =SQRT (A1) where Al is negative.

“Unknown function” appears for functions whose names are not recognized by the
Interpreter, such as user-written functionsin VBA. “Unsupported Excel function”
appears for the few functions that the Interpreter recognizes but does not support (see
the list in the section “More on the Polymorphic Spreadsheet Interpreter” in the
chapter “Analyzing and Solving Models’). “Non-smooth special function” appears if
your model uses functions ABS, IF, MAX, MIN or SIGN, and the Require Smooth
box is checked in the Solver Model dialog (see “ Analyzing and Solving Models™).

The Evolutionary Solver and the field-installable OptQuest Solver rarely, if ever,
display this message — since they maintain a population of candidate solutions and
can generate more candidates without relying on derivatives, they can simply discard
trial solutions that result in error values in the objective or the constraints. If you
have a model that frequently yields error values for trial solutions generated by the
Solver, and you are unable to correct or avoid these error values by altering your
formulas or by imposing additional constraints, you can still use the Evolutionary
Solver or OptQuest Solver to find (or make progress towards) a“good” solution.

10. Stop chosen when the maximum time limit was reached.

This message appears when (i) the Solver has run for the maximum time (number of
seconds) allowed in the Max Time box in the Solver Options dialog and (ii) you
clicked on the Stop button when the Solver displayed the Show Trial Solution dialog.
You may increase the value in the Max Time box or click on the Continue button

Solver User Guide

Diagnosing Solver Results 157

instead of the Stop button in the Show Trial Solution dialog. But you should also
consider whether re-scaling your model or adding constraints might reduce the total
solution time required.

11. There is not enough memory available to solve the problem.

This message appears when the Solver could not allocate the memory it needs to
solve the problem. However, since Microsoft Windows supports a “virtual memory”
much larger than your available RAM by swapping data to your hard disk, before you
see this message you are likely to notice that solution times have greatly slowed
down, and the hard disk activity light in your PC is flickering during the solution
process, or even when “Analyzing Solver Model,” “ Diagnosing Problem Function”
or “ Setting Up Problem” appears on the Excel status bar.

The Polymorphic Spreadsheet Interpreter in the Premium Solver Platform can use a
considerable amount of memory, when you solve a problem by clicking the Solve
button, and when you click the Check Model button in the Solver Model dialog. You
can progressively reduce the memory used by the Interpreter by taking the following
actions in order, using the Solver Model dialog:

1. Check the Sparse box in the Advanced options group.
2. Set the Check For option to Gradients.
3. Set the Solve With option to Excel Interpreter.

When Solve With = Excel Interpreter, the PSI Interpreter is not used and does not
use any memory; any further problems are due to memory demands of the Solver
engines, Microsoft Excel and Windows. You can save some memory by closing any
Windows applications other than Excel, closing programs that run in the System
Tray, and closing any Excel workbooks not needed to solve the problem.

12. Error condition at cell address. Edit your formulas, or use Excel Interpreter in the

Solver Model dialog.

This message appears when the Polymorphic Spreadsheet Interpreter first analyzes
the formulas in your model after you click the Solve button or the Check Model
button in the Solver Model dialog. Address is the worksheet address of the cell (in
Sheet1!A1 form) where the error was encountered, and Error condition is one of
the following:

OLE error Missing (

Invalid token Missing)

Unexpected end of formula Wrong number of parameters
Invalid array Type mismatch

Invalid number

Invalid fraction

Invalid exponent

Too many digits

Real constant out of range
Integer constant out of range
Invalid expression
Undefined identifier

Range failure

Code segment overflow
Expression too long
Symbol table full
Circular reference
External name
Multi-area not supported
Non-smooth function
Unknown function

Loss of significance

Many of these messages will never appear as long as you entered your formulas in
the normal way through Microsoft Excel, because Excel “validates’ your formulas
and displays its own error messages as soon as you complete formula entry. Some of
the messages you may encounter are described in the following paragraphs.

158 Diagnosing Solver Results

Solver User Guide

Undefined identifier appearsif you"ve used a name or identifier (instead of a cell
reference such as Al) in a formula, and that name was not defined using the Insert
Name Define... or Insert Name Create... menu commandsin Excel. If you've used
“labelsin formulas’ and checked the box “Accept labelsin formulas” on the Calcula-
tion tab of the Tools Options... dialog in Excel, this message will appear. The
Interpreter does not support this use of labels in formulas — youll have to define
these labels with the Insert Name Define... or Insert Name Create... commands, or
else set Solve With = Excel Interpreter to avoid using the PSI Interpreter.

Circular reference appears if Excel has already warned you about a circular
reference in your formulas, and it can also appear if you've used array formulas in a
“potentially circular” way. (For example, if cells A1:A2 contain {=1+B1:B4} and
cellsB3:B4 contain {=1+A1:A4}, Excel doesn"t consider thisacircular reference,
but the PSI Interpreter does.) If you must use circular references in your model,
you'll have to set Solve With = Excel Interpreter to avoid using the PSI Interpreter.

External name appears if your formulas use references to cells in other workbooks
(not just other worksheets), and the Interpreter is unable to open those workbooks.
You should ensure that the external workbooks are in the same folder as the Solver
workbook, or for better performance, move or copy the worksheets you need into the
workbook containing the Solver model.

Multi-area not supported or Missing) appears if your formulas or defined names
use multiple selections such as (A1:A5,C1:H1). While the Interpreter does accept
argument lists consisting of single selections, such as =SUM(A1:A5,C1:H1), it does
not accept multiple selections for defined names, or for single arguments such as
=SUMSQ((AL1:A5,C1:H1), (B1:B5,C2:H2)). If you must use such multiple
selections, you'll have to set Solve With = Excel Interpreter.

Note: Result code 12 was formerly associated with the message “ Another Excel
instance isusing SOLVER32.DLL. Try again later,” which does not occur in the
modern versions of Excel and Windows supported by the Premium Solver and
Premium Solver Platform.

13. Error in model. Please verify that all cells and constraints are valid.

This message means that the internal “model” (information about the variable cells,
Set Cell, constraints, Solver options, etc.) isnot in avalid form. An “empty” or
incomplete Solver model, perhaps one with no objective in the Set Cell edit box and
no constraints other than bounds on the variables in the Constraints list box, can
cause this message to appear. You might also receive this message if you are using
the wrong version of either Solver.xla or Solver32.dll, or if you"ve modified the
values of certain hidden defined names used by the Solver, either interactively or in a
VBA program. To guard against this possibility, you should avoid using any
defined names beginning with “ solver” in your own application.

14. Solver found an integer solution within tolerance. All constraints are satisfied.

If you are solving a mixed-integer programming problem (any problem with integer
constraints) using one of the Premium Solver products, with a non-zero value for the
integer Tolerance setting on the Integer tab of the Solver Options dialog, the Branch
& Bound method has found a solution satisfying the constraints (including the integer
constraints) where the relative difference of this solution"s objective value from the
true optimal objective value does not exceed the integer Tolerance setting. (For
more information, see “Options for Mixed-Integer Problems’ in the chapter “ Solver
Options.”) Thismay actually be the true integer optimal solution; however, the
Branch & Bound method did not take the extra time to search all possible remaining
subproblems to “prove optimality” for this solution. If al subproblems were

Solver User Guide

Diagnosing Solver Results 159

explored (which can happen even with a non-zero Tolerance in some cases), the
Premium Solver products will produce the message “ Solver found a solution. All
constraints are satisfied” (result code 0, shown earlier in this section).

15. Stop chosen when the maximum number of feasible [integer] solutions was reached.

If you are using the Evolutionary Solver, this message appears when (i) the Solver
has found the maximum number of feasible solutions (values for the variables that
satisfy all constraints) allowed by the Max Feasible Sols box on the Limits tab of the
Solver Options dialog and (ii) you clicked on the Stop button when the Solver
displayed the Show Trial Solution dialog. You may increase the value in the Max
Feasible Sols box, or click on the Continue button instead of the Stop button in the
Show Trial Solution dialog to continue the solution process.

If you are using one of the other Solver engines on a problem with integer con-
straints, this message appears when (i) the Solver has found the maximum number of
integer solutions (values for the variables that satisfy all constraints, including the
integer constraints) allowed by the Max Integer Sols box on the Integer tab of the
Solver Options dialog and (ii) you clicked on the Stop button when the Solver
displayed the Show Trial Solution dialog. You may increase the value in the Max
Integer Sols box, or click on the Continue button instead of the Stop button in the
Show Trial Solution dialog. But you should also consider whether the problem is
formulated correctly, and whether you can add constraints to “tighten” the formula-
tion. If you are using the LP/Quadratic Solver in the Premium Solver Platform, try
activating more Cuts and Heuristics on the Integer tab of the Solver Options dialog.

16. Stop chosen when the max number of feasible [integer] subproblems was reached.

If you are using the Evolutionary Solver, this message appears when (i) the Solver
has explored the maximum number of subproblems allowed in the Max Subproblems
box on the Limits tab of the Solver Options dialog and (ii) you clicked on the Stop
button when the Solver displayed the Show Trial Solution dialog. You may increase
the value in the Max Subproblems box, or click on the Continue button instead of the
Stop button in the Show Trial Solution dialog to continue the solution process.

If you are using one of the other Solver engines on a problem with integer con-
straints, this message appears when (i) the Solver has explored the maximum number
of integer subproblems (each oneisa“regular” Solver problem with additional
bounds on the variables) allowed in the Max Subproblems box on the Integer tab of
the Solver Options dialog and (ii) you clicked on the Stop button when the Solver
displayed the Show Trial Solution dialog. You may increase the value in the Max
Subproblems box, or click on the Continue button instead of the Stop button in the
Show Trial Solution dialog. But you should also consider whether the problem is
formulated correctly, and whether you can add constraints to “tighten” the formula-
tion. If you are using the LP/Quadratic Solver in the Premium Solver Platform, try
activating more Cuts and Heuristics on the Integer tab of the Solver Options dialog.

17. Solver converged in probability to a global solution.

If you are using the multistart methods for global optimization, with either the
nonlinear GRG Solver or a field-installable nonlinear Solver engine (by checking the
Global Optimization options in the appropriate Solver Options dialog), this message
appears when the multistart method"s Bayesian test has determined that all of the
locally optimal solutions have probably been found; the solution displayed on the
worksheet is the best of these locally optimal solutions, and is probably the globally
optimal solution to the problem.

The Bayesian test initially assumes that the number of locally optimal solutions to be
found isequaly likely tobe 1, 2, 3, ... etc. up to infinity, and that the relative sizes of

160

Diagnosing Solver Results Solver User Guide

the regions containing each locally optimal solution follow a uniform distribution.
After each run of the nonlinear GRG Solver or field-installable Solver engine, an
updated estimate of the most probable total number of locally optimal solutions is
computed, based on the number of subproblems solved and the number of locally
optimal solutions found so far. When the number of locally optimal solutions
actually found so far is within one unit of the most probable total number of locally
optimal solutions, the multistart method stops and displays this message.

18. All variables must have both upper and lower bounds.

If you are using the Interval Global Solver or the OptQuest Solver, this message
appears if you have not defined lower and upper bounds on all of the decision
variables in the problem. If you are using the Evolutionary Solver or the multistart
methods for global optimization, and you have checked the box “Require Bounds on
Variables’ in the Solver Options dialog (it is checked by default), this message will
also appear. You should add the missing bounds and try again. Upper bounds must
be entered in the Constraints list box. Lower bounds of zero can be applied to all
variables by checking the “ Assume Non-Negative” box in the Solver Options dialog;
non-zero lower bounds must be entered in the Constraints list box. You must define
bounds on all variables in order to use the Interval Global Solver or the OptQuest
Solver. For the Evolutionary Solver or the multistart methods, such bounds are not
absolutely required (you can uncheck the box “Require Bounds on Variables'), but
they are a practical necessity if you want the Solver to find good solutions in a
reasonable amount of time.

19. Variable bounds conflict in binary or alldifferent constraint.

This message appears if you have both a binary or alldifferent constraint on a
decision variable and a <= or >= constraint on the same variable (that is inconsistent
with the binary or alldifferent specification), or if the same decision variable appears
in more than one alldifferent constraint. Binary integer variables always have a lower
bound of 0 and an upper bound of 1; variables in an alldifferent group always have a
lower bound of 1 and an upper bound of N, where N is the number of variables in the
group. You should check that the binary or alldifferent constraint is correct, and
ensure that alldifferent constraints apply to non-overlapping groups of variables. If a
<= or >= constraint causes the conflict, remove it and try to solve again.

20. Lower and upper bounds on variables allow no feasible solution.

This message appears if you“ve defined lower and upper bounds on a decision
variable, where the lower bound is greater than the upper bound. This (obviously)
means there can be no feasible solution, but most Solver engines will detect this
condition before even starting the solution process, and display this message instead
of “Solver could not find afeasible solution” to help you more quickly identify the
source of the problem. If you have defined your bounds and other constraints in
uniform blocks, the lower and upper bounds on a given range of cells will appear
consecutively in the Constraints list box (where they are sorted), making it easy to
spot the inconsistent bounds.

21. Solver encountered an error computing derivatives. Consult Help on Derivatives, or use
Excel Interpreter in the Solver Model dialog.

This message appears when the Polymorphic Spreadsheet Interpreter in the Premium
Solver Platform is being used (Solve With = PSI Interpreter), and the Interpreter
encounters an error when computing derivatives via automatic differentiation. (For
more information, see “More on the Polymorphic Spreadsheet Interpreter” in the
chapter “Analyzing and Solving Models.”) The most common cause of this message
is a non-smooth function in your objective or constraints, for which the derivative is

Solver User Guide

Diagnosing Solver Results 161

undefined. But in general, automatic differentiation is somewhat more strict than
finite differencing: As a simple example, =SQRT(AL) evaluated at A1=0 will yield
this error message when the Solver is using automatic differentiation (since the deri-
vative of the SQRT function is algebraically undefined at zero), but it won"t yield an
error when Solve With = Excel Interpreter and the Solver is using finite differencing.

If you receive this message, follow the stepsin “Analyzing Model Exceptions’ in the
chapter “Analyzing and Solving Models’ to pinpoint the exact cell formulas that are
non-smooth. If you cannot modify your formulas to eliminate the non-smooth
functions, your options are to (i) use a Solver engine, such as the Evolutionary Solver
or the OptQuest Solver, that doesn"t require derivatives, or (ii) set Solve With =
Excel Interpreter and solve the problem using finite differencing.

Interval Global Solver Result Messages

The Interval Global Solver can return many of the standard result codes and Solver
Result Messages described above, but it can also return one of three custom result
codes and messages, as described below.

1000. Interval Solver requires PSI Interpreter and strictly smooth functions.

This message appears if you select the Interval Global Solver engine and click Solve,
and the Solve With option is set to Excel Interpreter or the Check For option is set to
Gradients, or if your model contains any non-smooth functions. The Interval Global
Solver considers the ,,specia” functions ABS, IF, MAX, MIN or SIGN non-smooth,
whether or not the Require Smooth box is checked in the Solver Model dialog. If
you receive this message, follow the stepsin “Analyzing Model Exceptions’ in the
chapter “Analyzing and Solving Models’ to pinpoint the exact cell formulas that are
non-smooth; you must modify these formulas to use the Interval Global Solver.

1001. Function cannot be evaluated for given real or interval arguments.

This message may appear (instead of “Solver encountered an error vaue...”) if the
Interval Global Solver encounters an arithmetic operation or function that it cannot
evaluate for the current values of the decision variables. Recall that the Interval
Global Solver evaluates Excel formulas over intervals such as [1, 2] as well as real
numbers. In the course of seeking a solution, the Solver may have to evaluate a
formula that (for example) involves division by an interval containing zero, or the
square root of an interval containing negative values, which yield errors. If you
receive this message, try adding constraints, or adjusting the right hand sides of
existing constraints to eliminate the problem. For example, if you have trouble with a
constraint such as A1 >= 0, try a constraint such as A1 >= 0.0001 instead.

1002. Solution found, but not proven globally optimal.

This message indicates that the Interval Global Solver has systematically explored
the solution space and has found a solution that is very probably the global optimum,
but it has not been able to “prove global optimality.” Most often, this means that
there is more than a tiny difference between this solution”s objective value and the
best bound on the global optimum"s objective value that the Solver has been able to
find. For more information, see the discussion of “Interval Globa Solver Stopping
Conditions’ in the section “Limitations on Globa Optimization.”

162 Diagnosing Solver Results Solver User Guide

Problems with Poorly Scaled Models

A poorly scaled model is one that computes values of the objective, constraints, or
intermediate results that differ by several orders of magnitude. A classic example is a
financial model that computes a dollar amount in millions or billions and a return or
risk measure in fractions of a percent. Because of the finite precision of computer
arithmetic, when these values of very different magnitudes (or others derived from
them) are added, subtracted, or compared — in the user*s model or in the Solver"s
own calculations — the result will be accurate to only a few significant digits. After
many such steps, the Solver may detect or suffer from “numerical instability.”

The effects of poor scaling in a large, complex optimization model can be among the
most difficult problems to identify and resolve. It can cause Solver engines to return
messages such as “ Solver could not find afeasible solution,” “ Solver could not
improve the current solution,” or even “The linearity conditions required by this
Solver engine are not satisfied,” with results that are suboptimal or otherwise very
different from your expectations. The effects may not be apparent to you, given the
initial values of the variables, but when the Solver explores Trial Solutions with very
large or small values for the variables, the effects will be greatly magnified.

Dealing with Poor Scaling

Most Solver engines include a Use Automatic Scaling box in their Solver Options
dialogs. When this box is checked, the Solver rescales the values of the objective
and constraint functions internally in order to minimize the effects of poor scaling.
But this can only help with the Solver*s own calculations — it cannot help with poorly
scaled results that arise in the middle of your Excel formulas.

The best way to avoid scaling problemsisto carefully choose the “units’ implicitly

used in your model so that all computed results are within a few orders of magnitude
of each other. For example, if you express dollar amounts in units of (say) millions,
the actual numbers computed on your worksheet may range from perhaps 1 to 1,000.

If you have the Premium Solver Platform, and you're experiencing results that may
be due to poor scaling, you can check your model for scaling problems that arise in
the middle of your Excel formulas by selecting the Scaling Report when it appears in
the Solver Results dialog, and examining the results of this report, as described in the
chapter “Solver Reports.” |f you have the Premium Solver, you'll have to go through
each of your formulas and play “what-if” manually to identify such problems.

Historical Note on Scaling and Linearity Tests

Poor scaling is an ever-present issue for the Solver, and for almost any kind of
mathematical software. Successive versions of the Solver have used increasingly
sophisticated methods to deal with poor scaling, culminating in the Premium Solver
Platform”stools for analyzing your model for scaling problems.

The Use Automatic Scaling option has been available in the standard Microsoft
Excel Solver since Excel 5.0, but in Excel 5.0 and 7.0, this option was effective only
for nonlinear problems solved with the GRG Solver. Because of this, the Solver"s
linearity test (used when the “ Assume Linear Model” box was checked) could be
“fooled” by an all-linear, but poorly scaled model — yielding the error message “The
conditions for Assume Linear Model are not satisfied.”

In Excel 97, 2000, XP, 2003, and Excel 2007 and the Premium Solver products, the
Use Automatic Scaling option is effective for all types of models, and the Solver also

Solver User Guide

Diagnosing Solver Results 163

uses a more robust test for linearity. Since no automatic scaling method will work in
all situations, it is still good practice to ensure that the model on your worksheet is
well scaled — even if you do take advantage of the Use Automatic Scaling option.

The Tolerance Option and Integer Constraints

Users who solve problems with integer constraints using the standard Excel Solver
occasionally report that “ Solver claimsit found an optimal solution, but | manually
found an even better solution.” What happensin such cases is that the Solver stops
with the message “ Solver found a solution” because it found a solution within the
range of the true integer optimal solution allowed by the Tolerance option in the
Solver Options dialog. In similar cases, the Premium Solver products display a
message “ Solver found an integer solution within tolerance,” to avoid confusion.

When you solve a mixed-integer programming problem (any problem with integer
constraints) using the Simplex, LP/Quadratic, SOCP Barrier, GRG or Interval Global
Solver, all of which employ the Branch & Bound method, the solution process is
governed by the integer Tolerance option on the Solver Options or Integer Options
dialog tab. Since the default setting of the Tolerance option is 0.05, the Solver stops
when it has found a solution satisfying the integer constraints whose objective is
within 5% of the true integer optimal solution. Therefore, you may know of or be
able to discover an integer solution that is better than the one found by the Solver.

The reason that the default setting of the integer Tolerance option is 0.05 is that the
solution process for integer problems —which can take a great deal of time in any
case — often finds a near-optimal solution (sometimes the optimal solution) relatively
quickly, and then spends far more time exhaustively checking other possibilities to
find (or verify that it has found) the very best integer solution. The integer Tolerance
default setting is a compromise value that often saves a great deal of time, and still
ensures that a solution found by the Solver is within 5% of the true optimal solution.

To ensure that the Solver finds the true integer optimal solution — possibly at the
expense of far more solution time — set the integer Tolerance option to zero. In the
Premium Solver products, look for the Tolerance edit box on the Integer tab of the
Solver Options dialog.

Limitations on Smooth Nonlinear Optimization

As discussed in the chapter “ Solver Models and Optimization,” nonlinear problems
are intrinsically more difficult to solve than linear problems, and there are fewer
guarantees about what the Solver can do. If your smooth nonlinear problem is
convex, the Solver will normally find the globally optimal solution (subject to issues
of poor scaling and the finite precision of computer arithmetic). But if your problem
is non-convex, the Solver will normally find only a locally optimal solution, close to
the starting values of the decision variables, when you click Solve.

As discussed in the chapter “ Analyzing and Solving Models,” in the Premium Solver
Platform you can easily check whether your model is convex or non-convex, by
clicking the Model button, selecting Check For Convexity, and clicking the Check
Model button. The result of the convexity test may be conclusive (the Solver has
proven that the model is convex or hon-convex) or inconclusive (the Solver was
unable to prove either condition). If the test is inconclusive, you are best advised to
assume that your model is non-convex, unless you can prove through your own
mathematical analysis that it is convex.

164 Diagnosing Solver Results Solver User Guide

When dealing with a non-convex problem, it is a good idea to run the Solver starting
from several different sets of initial values for the decision variables. Since the Solver
follows a path from the starting values (guided by the direction and curvature of the
objective function and constraints) to the final solution values, it will normally stop at
a peak or valley closest to the starting values you supply. By starting from more than
one point — ideally chosen based on your own knowledge of the problem —you can
increase the chances that you have found the best possible “optimal solution.” In the
Premium Solver Platform, you can check the Global Optimization options in the
Solver Options dialog for the nonlinear GRG Solver, and use the multistart method
to automatically run the Solver from multiple starting points.

Note that, when the GRG Nonlinear Solver is selected in the dropdown list in the
Solver Parameters dialog, the Generalized Reduced Gradient algorithm is used to
solve the problem —even if it is actually a linear model that could be solved by the
(faster and more reliable) Simplex or Barrier method. The GRG method will usually
find the optimal solution to a linear problem, but occasionally you will receive a
Solver Result Message indicating some uncertainty about the status of the solution —
especially if the model is poorly scaled, as discussed above. So you should always
ensure that you have selected the right Solver engine for your problem.

GRG Solver Stopping Conditions

It is helpful to understand what the nonlinear GRG Solver can and cannot do, and
what each of the possible Solver Result Messages means for this Solver engine. At
best, the GRG Solver alone —like virtually all “classical” nonlinear optimization
algorithms — can find a locally optimal solution to a reasonably well-scaled, non-
convex model. At times, the Solver will stop before finding a locally optimal
solution, when it is making very slow progress (the objective function is changing
very little from one trial solution to another) or for other reasons.

Locally Versus Globally Optimal Solutions

When the first message (“ Solver found a solution”) appears, it means that the GRG
Solver has found a locally optimal solution — there is no other set of values for the
decision variables close to the current values that yields a better value for the
objective function. Figuratively, this means that the Solver has found a*“peak” (if
maximizing) or “valley” (if minimizing) — but if the model is non-convex, there may
be other taller peaks or deeper valleys far away from the current solution. Mathe-
matically, this message means that the Karush - Kuhn - Tucker (KKT) conditions for
local optimality have been satisfied (to within a certain tolerance, related to the
Precision setting in the Solver Options dialog).

When Solver has Converged to the Current Solution

When the GRG Solver"s second stopping condition is satisfied (before the KKT
conditions are satisfied), the second message (“ Solver has converged to the current
solution”) appears. This means that the objective function value is changing very
slowly for the last few iterations or trial solutions. More precisely, the GRG Solver
stops if the absolute value of the relative change in the objective function is less than
the value in the Convergence box in the Solver Options dialog for the last 5
iterations. While the default value of 1E-4 (0.0001) is suitable for most problems, it
may be too large for some models, causing the GRG Solver to stop prematurely when
this test is satisfied, instead of continuing for more iterations until the KKT
conditions are satisfied.

Solver User Guide

Diagnosing Solver Results 165

A poorly scaled model is more likely to trigger this stopping condition, even if the
Use Automatic Scaling box in the Solver Options dialog is checked. So it pays to
design your model to be reasonably well scaled in the first place: The typical values
of the objective and constraints should not differ from each other, or from the
decision variable values, by more than three or four orders of magnitude.

If you are getting this message when you are seeking a locally optimal solution, you
can change the setting in the Convergence edit box to a smaller value such as 1E-5 or
1E-6; but you should also consider why it is that the objective function is changing so
slowly. Perhaps you can add constraints or use different starting values for the
variables, so that the Solver does not get “trapped” in aregion of slow improvement.

When Solver Cannot Improve the Current Solution

The third stopping condition, which yields the message “ Solver cannot improve the
current solution,” occurs only rarely. It meansthat the model is degenerate and the
Solver is probably cycling. The issues involved are beyond the level of this User
Guide, as well as most of the books recommended in the Introduction. One
possibility worth checking is that some of your constraints are redundant, and should
be removed. If this suggestion doesn"t help and you cannot reformulate the problem,
try using the Interval Global Solver or the Evolutionary Solver. To go further with
the GRG Solver, you may need specialized consulting assistance.

GRG Solver with Multistart Methods

The multistart methods for global optimization included in the Premium Solver
Platform can overcome some of the limitations of the GRG Solver alone, but they are
not a panacea. The multistart methods will automatically run the GRG Solver (or a
field-installable nonlinear Solver engine) from a number of starting points and will
display the best of several locally optimal solutions found, as the probable globally
optimal solution. Because the starting points are selected at random and then
“clustered” together, they will provide a reasonable degree of “coverage” of the
space enclosed by the bounds on the variables. The tighter the variable bounds you
specify and the longer the Solver runs, the better the coverage.

However, the performance of the multistart methods is generally limited by the
performance of the GRG Solver on the subproblems. If the GRG Solver stops
prematurely due to slow convergence, or fails to find a feasible point on a given run,
the multistart method can improve upon this only by finding another starting point
from which the GRG Solver can find a feasible solution, or a better locally optimal
solution, by following a different path into the same region.

If the GRG Solver reaches the same locally optimal solution on many different runs
initiated by the multistart method, this will tend to decrease the Bayesian estimate of
the number of locally optimal solutions in the problem, causing the multistart method
to stop relatively quickly. In many cases this indicates that the globally optimal
solution has been found — but you should always inspect and think about the solution,
and consider whether you should run the GRG Solver manually from starting points
selected based on your knowledge of the problem.

GRG Solver and Integer Constraints

Like the multistart methods, the performance of the Branch & Bound method on
nonlinear problems with integer constraints is limited by the performance of the GRG
Solver on the subproblems. If the GRG Solver stops prematurely due to slow
convergence, or fails to find a feasible point on a given run, this may prevent the

166 Diagnosing Solver Results Solver User Guide

Branch & Bound method from finding the true integer optimal solution. In most
cases, the combination of the Branch & Bound method and the GRG Solver will at
least yield a relatively good integer solution. However, if you are unable to find a
sufficiently good solution with this combination of methods, consider using one of
the field-installable nonlinear Solver engines for the Premium Solver Platform.

Limitations on Global Optimization

With the Premium Solver Platform, you have several choices available for solving
global optimization problems: You can use the nonlinear GRG Solver (or a field-
installable nonlinear Solver engine) with multistart methods; you can use the Interval
Global Solver; or you can use the Evolutionary Solver or OptQuest Solver to seek
global solutions to smooth nonlinear problems, though they are designed primarily
for non-smooth problems. Overall, the Premium Solver Platform is very likely the
world"s best platform for global optimization.

Which choice should you use? Perhaps the best answer is “try them all, and use the
one that performs best on your model.” But you may favor the new Interval Global
Solver if it"simportant to you to find the true global optimum — not just a “better”
local optimum, or a“good” solution that"s better than what you“re using now. For
example, if you're seeking the minimum energy configuration of atomsin a molecule,
you'll want the true global optimum because in nature, the molecule will bein that
configuration most of the time. The Interval Global Solver may take longer to run,
but it has a better chance than other methods of finding the true global optimum, and
it isthe only Solver engine that can “prove” that it has found the global optimum.

This section describes the characteristics and limitations of global optimization with
the Interval Global Solver. For more information on the multistart methods, see
“GRG Solver with Multistart Methods’ in the previous section, “Limitations on
Smooth Nonlinear Optimization.” For more information on the Evolutionary Solver,
see the following section, “Limitations on Non-Smooth Optimization.”

Rounding and Possible Loss of Solutions

The Interval Global Solver uses deterministic methods to search for the global
optimum, whereas the Evolutionary Solver and the multistart methods for global
optimization use nondeterministic methods, which involve an element of random
chance. Given time, the Interval Global Solver will find a*“proven” global optimum,
and it will find all real solutions to a system of nonlinear equations (subject to the
limitations described here). The Evolutionary Solver and multistart methods have no
way to “prove’ that the global optimum has been found.

But in rare cases, when its advanced options are used, the Interval Global Solver can
“lose track of” potential solutions that might prove to be the global optimum, fail to
find afeasible solution, or “lose” real solutions of a system of nonlinear equations,
because of roundoff errors that can arise from the use of finite precision computer
arithmetic. This is more likely to occur for solution(s) found at or very close to the
boundaries of constraints.

The Interval Global Solver uses the Polymorphic Spreadsheet Interpreter”s interval
arithmetic methods, which use “directed rounding” of floating point arithmetic
operations at the machine level, to eliminate the possibility of roundoff error. If you
use only the “Classic Interval” option in the Methods option group of the Solver
Options dialog, you can be confident that the Interval Global Solver will (eventually,
given enough time) find a“proven” global optimum. But in its advanced methods,

Solver User Guide

Diagnosing Solver Results 167

the Interval Global Solver uses both interval arithmetic and ordinary real arithmetic,
for the sake of performance; it avoids using directed rounding for all arithmetic
operations, even those involving ordinary real numbers (which would have to be
enclosed in narrow intervals), and it seeks to avoid spending a great deal of time
processing large numbers of very small “boxes’ to rigorously verify that they don"t
contain possible solutions.

The ideal of finding globally optimal solutions with rigorous guarantees is no doubt
achievable for problems of low dimension (with a small number of variables). But it
has been shown that the simplest possible global optimization problem —a quadratic
programming problem in the general case (where the objective is non-convex, and
there may be many locally optimal points at constraint boundaries) — is NP-hard,
meaning that the solution time is very likely to grow exponentially with the number
of decision variables.

The Interval Global Solver trades off rigorous guarantees of finding the globally
optimal solution in favor of fast solution times on realistic size problems. And its
methods, while not rigorous, are very effective at finding the true global optimum. In
fact, Frontline Systems has not yet seen or constructed an example problem where the
Interval Global Solver actually “loses’ a solution that turns out to be the global
optimum. As a practical matter, you are likely to receive a Solver Result Message
such as “ Solution found, but not proven globally optimal” or “Solver cannot improve
the current solution” in situations where, for various reasons, the Solver has not been
able to verify that it has found the true global optimum.

Interval Global Solver Stopping Conditions

It is helpful to understand what the Interval Global Solver can and cannot do, and
what each of the possible Solver Result Messages means for this Solver engine. At
best, the Interval Global Solver will find a“proven” globally optimal solutionto a
reasonably well-scaled smooth nonlinear optimization problem —in a reasonable
amount of time. But at times, the Solver will be unable to “prove” that the solutionis
globally optimal, unable to improve the current solution in a reasonable amount of
time, or unable to find afeasible solution. And the words “proven” and “prove” are
in quotes because they are subject to limitations due to roundoff error, as discussed
above under “Rounding and Possible Loss of Solutions.”

When Solver Cannot Find a Feasible Solution

When the Interval Global Solver reports that “ Solver could not find afeasible
solution,” and you have allowed the Solver to run without interruption until this
message appears, it is very likely — though not 100% certain — that no feasible
solution exists. The Interval Global Solver is designed to “prove feasibility” aswell
as global optimality, but this is subject to limitations due to roundoff error.

When Solver Cannot Improve the Current Solution

When the Interval Global Solver reports that “ Solver cannot improve the current
solution,” it means that the Solver has not found an “improved global solution” (a
feasible solution with an objective value better than the currently best known
solution), in the amount of time specified by the Max Time without Improvement
option in the Solver Options dialog. The reported solution is the best one found so
far, but the search space has not been fully explored. If you receive this message, and
you are willing to spend more solution time to have a better chance of “proving”
global optimality, increase the value of the Max Time without Improvement option.

168 Diagnosing Solver Results Solver User Guide

When Solver Cannot Prove Global Optimality

As described in “Global Optimization” in the chapter “ Solver Models and Optimiza-
tion,” the Interval Global Solver processes alist of “boxes’ that consist of bounded
intervals for each decision variable, progressively subdividing and “shrinking” them,
and improving a known bound on the globally optimal objective function value.
Eventually, the boxes that remain each enclose a locally optimal solution, and the
best of these is chosen as the globally optimal solution. The Interval Global Solver
returns “ Solver found a solution” (result code 0) when it determines that, in the box
enclosing the best solution, (i) the bounded intervals for each decision variable are
smaller than the Accuracy value in the Solver Options dialog, and (ii) the objective
value in this box differs from the best known bound on the globally optimal objective
by no more than the Accuracy value. When the Interval Solver finishes processing
the list of boxes, but the above two conditions are not met, it returns the message
“Solution found, but not proven globally optimal.”

Interval Global Solver and Integer Constraints

As with the nonlinear GRG Solver, the performance of the Branch & Bound method
on nonlinear global optimization problems with integer constraints is limited by the
performance of the Interval Global Solver on the subproblems. If the Interval Global
Solver should fail to find the globally optimal solution, or fail to find a feasible point
when one exists on a given run, this may prevent the Branch & Bound method from
finding the true integer optimal solution. Since a single global optimization run can
take a great deal of time, and the Branch & Bound process may require thousands of
such runs, the Interval Global Solver makes further tradeoffs in favor of fast solutions
rather than guarantees of finding the global optimum on each run, when it is solving a
problem with integer constraints. In most cases, however, the combination of the
Branch & Bound method and the Interval Global Solver will at least yield a relatively
good integer solution.

Limitations on Non-Smooth Optimization

Asdiscussed in the chapter “ Solver Models and Optimization,” non-smooth problems
—where the objective and/or constraints are computed with discontinuous or non-
smooth Excel functions — are the most difficult types of optimization problems to
solve. There are few, if any, guarantees about what the Solver (or any optimization
method) can do with these problems.

The most common discontinuous function in Excel is the IF function where the
conditional test is dependent on the decision variables. Other common discontinuous
functions are CHOOSE, the LOOKUP functions, and COUNT. Common non-smooth
functions in Excel are ABS, MIN and MAX, INT and ROUND, and CEILING and
FLOOR. Functions such as SUMIF and the database functions are discontinuous if
the criterion or conditional argument depends on the decision variables.

If your optimization problem contains discontinuous or non-smooth functions, your
simplest course of action is to use the Evolutionary Solver to find a“good” solution.
Y ou should read the section “Evolutionary Solver Stopping Conditions” below and
the discussion earlier in this chapter of specific Solver Result Messages, to ensure
that you understand what the various messages say about your model. You can try
using the nonlinear GRG Solver, or even the linear Simplex Solver, on problems of
this type, but you should be aware of the effects of non-smooth functions on these
Solver engines, which are summarized below.

Solver User Guide

Diagnosing Solver Results 169

You can use discontinuous functions such as IF and CHOOSE in calculations on the
worksheet that are not dependent on the decision variables, and are therefore
constant in the optimization problem. But any discontinuous functions that do depend
on the variables make the overall Solver model hon-smooth. Users sometimes fail to
realize that certain functions, such as ABS and ROUND, are non-smooth. For more
information on this subject, read the section “Non-Smooth Functions’ in the chapter
“Solver Models and Optimization.”

Effect on the GRG and Simplex Solvers

A smooth nonlinear solver, such as the GRG Solver, relies on derivative or gradient
information to guide it towards a feasible and optimal solution. Since it is unable to
compute the gradient of a function at points where the function is discontinuous, or to
compute curvature information at points where the function is non-smooth, it cannot
guarantee that any solution it finds to such a problem is truly optimal. In practice, the
GRG Solver can sometimes deal with discontinuous or non-smooth functions that are
“incidental” to the problem, but as a general statement, this Solver engine requires
smooth nonlinear functions for the objective and constraints.

If you are using the Premium Solver Platform with default settings, the Interpreter
will compute derivatives of the problem functions using automatic differentiation.
(For further information, see “More on the Polymorphic Spreadsheet Interpreter” in
the chapter “Analyzing and Solving Models.”) If you try to solve a problem with
non-smooth or discontinuous functions (other than the ,specia functions® ABS, IF,
MAX, MIN or SIGN) using the GRG Solver, you'll likely receive the message
“Solver encountered an error computing derivatives.” If you check the Require
Smooth box in the Solver Model dialog, you'll also receive this message for models
that use the ,special functions." Y ou can set the Solve With option to Excel Inter-
preter and solve your model — but only with the caveats noted above. The Premium
Solver always uses the Excel Interpreter, so these caveats apply whenever you try to
solve a non-smooth problem.

If you try to solve a problem with non-smooth or discontinuous functions with the
linear Simplex Solver (using Solve With = Excel Interpreter in the Premium Solver
Platform), it is possible — though very unlikely — that the linearity test performed by
the Solver will not detect the discontinuities and will proceed to try to solve the
problem. (This probably means that the functions are linear over the range consid-
ered by the linearity test — but there are no guarantees at all that the solution found is
optimal!)

Evolutionary Solver Stopping Conditions

It is helpful to understand what the Evolutionary Solver can and cannot do, and what
each of the possible Solver Result Messages means for this Solver engine. At best,
the Evolutionary Solver — like other genetic or evolutionary algorithms — will be able
to find a good solution to a reasonably well-scaled model. Because the Evolutionary
Solver does not rely on derivative or gradient information, it cannot determine
whether a given solution is optimal —so it never really knows when to stop. Instead,
the Evolutionary Solver stops and returns a solution either when certain heuristic
rules (discussed below) indicate that further progress is unlikely, or else when it
exceeds a limit on computing time or effort that you"ve set.

170 Diagnosing Solver Results Solver User Guide

“Good” Versus Optimal Solutions

The Evolutionary Solver makes almost no assumptions about the mathematical
properties (such as continuity, smoothness or convexity) of the objective and the
constraints. Because of this, it actually has no concept of an “ optimal solution,” or
any way to test whether a solution is optimal. The Evolutionary Solver knows only
that a solution is“better” in comparison to other solutions found earlier. It may
sometimes find the true optimal solution, on models with a limited number of
variables and constraints; on such models, the heuristic stopping rules discussed
below may cause the Solver to stop at an appropriate time and report this solution.
But the Evolutionary Solver will not be able to tell you that this solution is optimal.

When you use the Evolutionary Solver, you may find — like other users of genetic and
evolutionary algorithms — that you spend a lot of time running and re-running the
Solver, trying to find better solutions. This is an inescapable consequence of using a
Solver engine that makes few or no assumptions about the nature of the problem
functions. Y ou can never be sure whether you“ve found the best solution, or what the
payoff might be of running the evolutionary algorithm for a longer time. When the
Evolutionary Solver stops, you may very well find that, if you keep the resulting
solution and restart the Evolutionary Solver, it will find an even better solution. You
may also find that starting the GRG Solver from the point where the Evolutionary
Solver stops will yield a better (sometimes much better) solution.

When Solver has Converged to the Current Solution

This message means that the “fithess” of members of the current population of trial
solutions is changing very slowly. More precisely, the Evolutionary Solver stops if
99% or more of the members of the population have “fitness” values whose relative
(i.e. percentage) difference is less than the Convergence tolerance in the Solver
Options dialog. This condition may mean that the Solver has found a globally
optimal solution — if so, new members of the population (that replace other, less fit
members) will tend to “crowd around” this solution. However, it may also mean that
the population has lost diversity —a common problem in genetic and evolutionary
algorithms —and hence the evolutionary algorithm is unable to generate new and
better solutions through mutation or crossover of current population members. In
this latter case, it may help to interrupt the Solver with the ESC key and click the
Restart button (which replaces the worst half of the population with newly sampled
points), or to run the Evolutionary Solver again with a larger Population Size and/or
an increased Mutation Rate, which increases the chances of a diverse population.

When Solver Cannot Improve the Current Solution

This message means that the Solver has been unable to find a new, better member of
the population whose “fitness’ represents a relative (percentage) improvement over
the current best member“s fitness of more than the Tolerance value on the Limits tab
of the Solver Options dialog, in the amount of time specified by the Max Time
without Improvement option in the same dialog. Under this heuristic stopping rule,
the Evolutionary Solver will continue searching for better solutions as long as it is
making the degree of progress that you have indicated via the Tolerance value; if it is
unable to make that much progress in the time you“ve specified, the Solver will stop
and report the best solution found.

Evaluating a Solution Found by the Evolutionary Solver

Once you have a solution from the Evolutionary Solver, what can you do with it?
Here are some ideas:

Solver User Guide

Diagnosing Solver Results 171

1. Keep the resulting solution, restart the Evolutionary Solver from that solution,
and see if it is able to find an even better solution in a reasonable length of time.

2. Tighten the Convergence and Tolerance values, increase the Max Subproblems
and Max Feasible Sols values, and restart the Evolutionary Solver. This will
take more time, but will allow the Solver to explore more possibilities.

3. Increase the Population Size and/or the Mutation Rate, and restart the
Evolutionary Solver. This will also take more time, but will tend to increase the
diversity of the population and the portion of the search space that is explored.

4. Keep the resulting solution, switch to the GRG Solver and start it from that
solution, and see if it finds the same or a better solution. If the GRG Solver
displays the message “ Solver found a solution,” you may have found at least a
locally optimal point (but remember that this test depends on smoothness of the
problem functions).

5. Select and examine the Population Report. If the Best VValues are similar from
run to run of the Evolutionary Solver, and if the Standard Deviations are small,
this may be reason for confidence that your solution is close to the global
optimum. Since optimization tends to drive the variable values to extremes, if
the solution is feasible and the Best Values are close to the Maximum or
Minimum Values listed in the Population Report, this may indicate that you have
found an optimal solution.

As you work with the Evolutionary Solver, you will appreciate its ability to find
“good” solutions to previously intractable optimization problems, but you will also
come to appreciate its limitations. The Evolutionary Solver allows you to spend less
time analyzing the mathematical properties of your model, and still obtain “good”
solutions — but as we suggested in the Introduction, it is not a panacea.

If your problem is large, or if the payoff from a true optimal solution is significant,
you may want to invest more effort to formulate a model that satisfies the require-
ments of a smooth nonlinear optimization problem, or even an integer linear problem.
The chapter “Building Large-Scale Models’ describes many techniques you can use
to replace non-smooth functions with smooth nonlinear or integer linear expressions.
With enough work, you may be able to obtain a significantly better solution with the
other Solver engines, and to know with some certainty whether or not you have found
the optimal solution.

172

Diagnosing Solver Results

Solver User Guide

Solver Options

This chapter describes the options available in the Solver Options dialog for the
standard Microsoft Excel Solver, and in the Solver Options dialogs for each of the
bundled Solver engines in the Premium Solver and Premium Solver Platform. It also
briefly describes how these options may be examined or set programmatically.

In the Premium Solver Platform, options may be examined or set interactively via the
Solver Options dialogs shown in this chapter, or programmatically using either the
new object-oriented API described below and in the chapter “Using the Object-
Oriented API,” or the traditional VBA functions described in the later chapter
“Using Traditional VBA Functions.”

In the Solver Platform SDK, options may be examined or set via its object-oriented
API, just like the Premium Solver Platform“s API, or viathe SDK procedural API.
The object-oriented API is described below; the SDK procedural API is described in
the SDK API Reference Guide. The string names of most options are the same for
both platforms, and are shown for each option below.

Bear in mind that the options that control numerical tolerances and solution strategies
are pre-set to the choices that are most appropriate for the majority of problems; you
should change these settings only when necessary, after carefully reading this
chapter. The options you will use most often are common to all the Solver products,
and control features like the display of iteration results, or the upper limits on
solution time or Solver iterations.

Setting Options Programmatically

In the Premium Solver Platform, you can examine or set Solver Engine options in
VBA using the object-oriented API described in this section. In the Solver Platform
SDK, you can examine or set Solver Engine options, in a variety of programming
languages, using the same object-oriented API. In both cases, all option values are of
type double, though for some options only integer values, or values 0 and 1 are used.

Object-Oriented API

In the object-oriented API, each Solver engine option or parameter is represented by
an EngineParam object instance. This object has properties Name, Value, Default
(the initial or default value), MinValue, and MaxValue (the minimum and maximum
allowed values). All the options or parameters for a Solver engine belong to a
collection, which is an EngineParamCollection object.

Solver User Guide

Solver Options 173

To access an option or parameter, you start with a reference to the Solver engine
object, say myEngine or myProb.Engine. The engine object"s Params property refers
to the EngineParamCollection object. As with all collections, you can access an
individual EngineParam in the collection by name or by index. For example, to refer
to the Max Time limit for the problem"s currently selected Solver engine, you'd write
myProb.Engine.Params("MaxTime").

Once you have a reference to the EngineParam object (as above), you can get or set
its properties using simple assignment statements. For example, you can set the Max
Time limit for the currently selected Solver engine to 1000 seconds by writing:

VBA: myProb.Engine.Params(*'MaxTime').Value = 1000

To get the current Max Time parameter value, put the property reference on the right
hand side of an assignment statement (declaring Dim maxTime As Double):

VBA: maxTime = myProb.Engine.Params(‘'MaxTime') .Value

In the Solver Platform SDK, the same kinds of assignment statements can be used,
with just slight differences due to the syntax of various programming languages:

VB6: myProb.Engine.Params(""MaxTime').Value = 1000

VB.NET: myProb.Engine.Params(**MaxTime') .Value = 1000

C++: myProb.Engine.Params(L"MaxTime™).Value = 1000;

C#: myProb.Engine.Params(*'MaxTime') .Value = 1000;

Matlab: myProb.Engine.Params(*MaxTime®).Value = 1000;

Java: myProb._Engine() .Params() . I'tem(*'"MaxTime') .Value(1000) ;

(Since Java currently lacks properties, the syntax used by the Solver Platform SDK is
somewhat different.) To get the current Max Time parameter value, put the property
reference on the right hand side of an assignment statement, for example in C#:

double maxTime = myProb.Engine_Params("'‘MaxTime'™) .Value;

You can access all of the options and parameters supported by a Solver engine by
indexing its EngineParamCollection. For example, myProb.Engine.Params(0) refers
to the first parameter in the collection. In all the object-oriented languages, you can
write a for-loop to index through all of the parameters like the following example in
VBA, VB6 or VB.NET:

For 1 = 0 to myProb.Engine.Params.Count - 1
MsgBox myProb._.Engine.Params(i).Name & " = " &
myProb_Engine.Params(i) .Value
Next i

In VBA, VB6, VB.NET, and C#, you can also iterate through a collection using a
“for each” loop:

Dim myParam as EngineParam

For Each myParam in myProb.Engine.Params
MsgBox myParam.Name & " = " & myParam.Value

Next

The Standard Microsoft Excel Solver

There is just one Solver Options dialog displayed by the standard Microsoft Excel
Solver, containing options for both the linear Simplex Solver and the nonlinear GRG
Solver engines. This dialog box is depicted on the next page, as it appears in Excel

174 Solver Options Solver User Guide

2000, XP, 2003 and 2007. All of the options in this dialog — with the exception of
the Assume Linear Model check box, discussed later in this chapter — are also present
in the options dialogs for the Premium Solver and Premium Solver Platform.

Solver Options

Max Time:
Ikerations:
Precision:

Talerance:

Convergence:

[aAssume Mon-Megative

stimates
@ Tangent
™ Quadratic

Im seconds

100

ID.EIEIEIEIDI
|5 %Y
ID.EIEII

[assume Linear Model

[Use sutomatic Scaling
[Show Treration Results

Cancel |
Load Model.., |
Save Model, ., |

Help |

i rDerivatives
& Forward
0 Central

earch
& Mewkon
e Conjugate

We will first discuss the options common to all Solver engines. We"ll include the
Assume Linear Model option, used only in the standard Excel Solver. Next, we'll
describe the options specific to the linear Simplex Solver, the LP/Quadratic Solver,
the SOCP Barrier Solver, the nonlinear GRG Solver (including the multistart
methods), the Interval Global Solver, and the Evolutionary Solver. Then we'll
discuss the options on the Limits and Integer tabs in the Solver Options dialogs, used
to control the Evolutionary Solver and advanced methods for integer programming
problems in each of the Solver engines. A special section will discuss the extensive
options for integer programming in the LP/Quadratic Solver. Finally, we'll discuss
loading, saving, and merging Solver models, including the new PSI function format.

Common Solver Options

Max Time and Iterations
VBA / SDK: Parameter Names "MaxTime", "lterations", integer value > 0

The value in the Max Time edit box determines the maximum time in seconds that
the Solver will run before it stops, including problem setup time and time to find the
optimal solution. For problems with integer constraints, this is the total time taken to
solve all subproblems explored by the Branch & Bound method. The default value is
100 seconds.

The value in the Iterations edit box determines the maximum number of iterations
(“pivots’ for the Simplex Solver, or mgjor iterations for the GRG Solver) that the
Solver may perform on one problem. A new “Trial Solution” is generated on each
iteration; the most recent Trial Solution is reported on the Excel status bar. For
problems with integer constraints, the Iterations setting determines the maximum
number of iterations for any one subproblem. The default value is 100 iterations.

Users of the Premium Solver and Premium Solver Platform will most likely want to
increase the Max Time and Iterations settings from their default values, in order to
solve larger problems. Bear in mind that if the maximum time or maximum number
of iterations is exceeded, the Solver will stop and display a dialog like the one shown
below: You will have the option to stop at that point or to continue the solution

Solver User Guide

Solver Options 175

process. If you click on the Continue button, the time or iteration limit is removed,
and you will not be prompted again.

Show Tt Sowion K]

The macimurm time limit was reached; continue
anyay’? i Continue
Stop |

Restart |

Save SCenario.., | Help |

There is really no downside to specifying quite a large value for the Max Time or
Iterations setting: If you ever get impatient, you can simply press the ESC key while
the Solver is running. If your model is large enough to take some time to recalculate
even once, you should hold down the ESC key for a second or two. After a momen-
tary delay, the dialog box shown below will appear, and you will have the option to
stop at that point or continue or restart the solution process.

Show Tt Sowion ———————————_GE]|

Siol d £ soluti lues displayed
wccl:l;esrhﬁ.zése , current solution values displayed on e
Stop |
Restart |
Save Scenario.., Help |
Precision

VBA / SDK: Parameter Name "Precision”, 0 < value < 1

The number entered here determines how closely the calculated values of the
constraint left hand sides must match the right hand sides in order for the constraint
to be satisfied. Recall from “Elements of Solver Models’ in the chapter “ Solver
Models and Optimization” that a constraint is satisfied if the relation it represents is
true within a small tolerance; the Precision value is that tolerance. With the default
setting of 1.0E-6 (0.000001), a calculated left hand side of -1.0E-7 would satisfy a
constraint such as Al >= 0.

Precision and Regular Constraints

Use caution in making this number much smaller, since the finite precision of
computer arithmetic virtually ensures that the values calculated by Microsoft Excel
and the Solver will differ from the expected or “true” values by a small amount. On
the other hand, setting the Precision to a much larger value would cause constraints to
be satisfied too easily. If your constraints are not being satisfied because the values
you are calculating are very large (say in millions or billions of dollars), consider
adjusting your formulas and input data to work in units of millions, or checking the
Use Automatic Scaling box instead of altering the Precision setting. Generally, this
setting should be kept in the range from 1.0E-6 (0.000001) to 1.0E-4 (0.0001).

Precision and Integer Constraints

Another use of Precision is determining whether an integer constraint, such as A1:A5
= integer, AL:A5 = binary or AL1:A5 = alldifferent, is satisfied. If the difference

176

Solver Options

Solver User Guide

between the decision variable"s value and the closest integer value is less than the
Precision setting, the variable value is treated as an integer.

Tolerance and Convergence
VBA / SDK: Parameter Names "IntTolerance", "Convergence”, 0 <= value <=1

The Tolerance option determines how close a “candidate” integer solution must be to
the true integer optimal solution before the Solver stops. In the Premium Solver and
Premium Solver Platform, this option appears on the Integer tab of the Solver
Options dialog; it is described more fully in a later section focusing on options for
integer programming problems.

The Convergence option controls the stopping conditions used by the GRG Solver
and the Evolutionary Solver that lead to the message “ Solver has converged to the
current solution.” In the Premium Solver and Premium Solver Platform, it appearsin
the Options dialogs for the Evolutionary Solver and the GRG Solver. It is described
more fully in later sections focusing on options for these Solver engines.

Assume Linear Model

VBA: Parameter Name "AssumeLinear"
SDK: Not applicable

In the standard Microsoft Excel Solver, the Assume Linear Model check box controls
the choice of the linear Simplex Solver or the nonlinear GRG Solver: When it is
checked, the Simplex Solver is used; otherwise the GRG Solver is used. The box is
labeled “Assume Linear Model” because the Solver initially assumes that your model
is made up entirely of linear functions for the objective and constraints. It solves the
problem using the Simplex Solver, but as it recalculates the worksheet, it performs
tests to verify that the objective and constraints are, in fact, behaving as linear
functions of the variables. If these tests are not satisfied to within a close tolerance,
the Solver stops (usually before starting any Trial Solutions, in modern versions of
Microsoft Excel and in the Premium Solver products) and displays the Solver Results
dialog with the message “The conditions for Assume Linear Model are not satisfied:”

Solver Results HE

The conditions for Assume Linear Model are not satisfied.
Reporks

-

Tlke }
) Restore Original Yalues ;I
[a]'4 I Cancel | Sawve Scenatio... | Help |

In the Premium Solver and Premium Solver Platform, the Solver engine to be used is
selected from a dropdown list in the main Solver Parameters dialog, and the Assume
Linear Model check box is not used. If you choose the Premium Solver“s LP Simplex
Solver, the Solver will test your objective and constraint functions for linearity as
described above, and will display the Solver Results dialog with the message “ The
linearity conditions required by this Solver engine are not satisfied.”

In the Premium Solver Platform, if you choose the LP/Quadratic Solver or the SOCP
Barrier Solver, the Solver will check whether your objective and constraint functions
are linear or convex quadratic, as supported by the Solver engine. If any functions
are general nonlinear, or if any constraint is quadratic for the LP/Quadratic Solver, it
will display the Solver Results dialog with the message “ The linearity conditions

Solver User Guide

Solver Options 177

required by this Solver engineare not satisfied.” (In this context, “linearity
conditions’ is meant to include the allowed convex quadratic functions).

Assume Non-Negative

VBA: Parameter Name "AssumeNonneg", value 1/True or 0/False
SDK: Use Variable object NonNegative method or SolverVarNonNegative function

When this box is checked, any decision variables that are not given explicit lower
bounds via >=, binary, or alldifferent constraints in the Constraints list box of the
Solver Parameters dialog will be given a lower bound of zero when the problem is
solved. This option has no effect for decision variables that do have explicit >=
constraints, even if those constraints allow the variables to assume negative values.

Use Automatic Scaling
VBA / SDK: Parameter Name "Scaling", value 1/True or O/False

When this box is checked, the Solver will attempt to scale the values of the objective
and constraint functions internally in order to minimize the effects of a poorly scaled
model. A poorly scaled model is one that computes values of the objective,
constraints, or intermediate results that differ by several orders of magnitude. Poorly
scaled models may cause difficulty for both linear and nonlinear solution algorithms,
due to the effects of finite precision computer arithmetic. For more information, see
“Problems with Poorly Scaled Models’ in the chapter “Diagnosing Solver Results,”
and “The Scaling Report” in the chapter “ Solver Reports.”

Note: In older versions of Microsoft Excel (prior to Excel 97), this option is effective
only for nonlinear optimization problems solved with the GRG Solver.

If your model is nonlinear and you check the Use Automatic Scaling box, make sure
that the initial values for the decision variables are “ reasonable,” i.e. of roughly the
same magnitudes that you expect for those variables at the optimal solution. The
effectiveness of the Automatic Scaling option depends on how well these starting
values reflect the values encountered during the solution process.

Show lIteration Results

VBA: Parameter Name "StepThru", value 1/True or O/False
SDK: Define an Evaluator for Eval_Type_Iteration

When this box is checked, a dialog like the one below will appear on every iteration
during the solution process:

Show ToatSobsion ————————————_EE]]

Solver paused, current solution values displayed on
worksheet, i Canbinue ¢
Stop |

Restart |

Save SCenatio. .. | Help |

This is the same dialog that appears when you press ESC at any time during the
solution process, but when the Show Iteration Results box is checked it appears
automatically on every iteration. When this dialog appears, the best values so far for
the decision variables appear on the worksheet, which is recalculated to show the

178

Solver Options

Solver User Guide

values of the objective function and the constraints. You may click the Continue
button to go on with the solution process, the Stop button to stop immediately, or the
Restart button to restart (and then continue) the solution process. You may also click
on the Save Scenario... button to save the current decision variable values in a named
scenario, which may be displayed later with the Microsoft Excel Scenario Manager.
For more information on this dialog and the effect of the Restart button, see the
section “During the Solution Process’ in the chapter “ Diagnosing Solver Results.”

Bypass Solver Reports

VBA: Parameter Name "BypassReports"”, value 1/True or O/False
SDK: Not Applicable

This check box isa*“Common Solver Option” in the Premium Solver products; it
appears in the Solver Options dialogs shown below for the Simplex or LP/Quadratic
Solver, SOCP Barrier Solver, GRG Nonlinear Solver, Interval Global Solver, and
Evolutionary Solver. You can use it to save time during the solution process if you
do not need the reports for the current solution run. The reports are selected from the
Solver Results dialog at the end of the solution process; unless this box is checked,
the Solver always performs extra computations to prepare for the possibility that you
will select one or more reports from the Solver Results dialog. When this box is
checked, the extra computations are skipped; the Reports list box will be grayed out
in the Solver Results dialog, and you won't be able to select any reports for this run.

Even though report generation in the Premium Solver and Premium Solver Platform
is very fast, the Bypass Solver Reports option can make a real difference in your total
solution time, especially when you are solving larger models. In the Premium Solver
Platform, it is also supported by many field-installable Solver engines that can solve
problems with hundreds of thousands of variables and constraints. It is not unusual
for the extra report-related computations to take as much time as the entire solution
process, especially if you have taken other steps (such as using the functions
recognized for fast problem setup) to ensure the best possible solution times.

LP Simplex Solver Options

In the Premium Solver, if the linear Simplex Solver is selected from the Solver
engine dropdown list, and the Options button is clicked, the Solver Options dialog
shown on the next page is displayed.

The General tab of this dialog contains all of the Common Solver Options discussed
earlier, plus the Pivot Tolerance and Reduced Cost Tolerance options, which are
used by the Simplex Solver.

Solver User Guide Solver Options 179

LP Simplex Solver Options H

General IInteger | Froblem |

Max Timne: 100 seconds Load Madel... |
Ikerations: IlDDD Save Model... |

Precision: ID.DDDDDDDI
Pirok Tal: ID.DDDDDI
Reduced Tal: ID.DDDDDI

[show Tteration Resulks
[T Use automatic Scaling
(| Assurne Mon-Megative

[Bvpass Solver Reports

Pivot Tolerance
VBA / SDK: Parameter Name "PivotTol", 0 <value < 1

The Simplex method looks for a non-zero matrix element to pivot upon in its basic
iteration. Any matrix element with absolute value less than this tolerance is treated as
zero for this purpose.

Reduced Cost Tolerance
VBA / SDK: Parameter Name "ReducedTol", 0 <value < 1

The Simplex method looks for a variable to enter the basis that has a negative
reduced cost. The candidates are only those variables that have reduced costs less
than the negative value of this tolerance.

Options for Mixed-Integer Problems

Clicking the Integer tab in the LP Simplex Solver Options dialog displays a set of
options for mixed-integer linear programming problems, as described in the major
section “Options for Mixed-Integer Problems” later in this chapter. These options
control the Branch and Bound method for mixed-integer problems, described in that
section.

LP/Quadratic Solver Options

In the Premium Solver Platform, if the LP/Quadratic Solver is selected from the
Solver engine dropdown list, and the Options button is clicked, the Solver Options
dialog shown on the next page is displayed.

180 Solver Options Solver User Guide

The General tab of this dialog contains all of the Common Solver Options discussed
earlier except the Precision edit box, plus the Primal Tolerance, Dual Tolerance, Do
Presolve, and Derivatives options, which are specific to the LP/Quadratic Solver.
The Bypass Solver Reports check box is worth noting here, since it can have a large
impact on solution time. Note that the default values for Primal Tolerance and Dual
Tolerance have been chosen very carefully; the LP/Quadratic Solver is designed to
solve the vast majority of LP problems “out of the box” with these default tolerances.

LP/Quadratic Solver Options |

General IInteger | Protiem |

Max Time: IlDDD Load Model... |
Iterations: IlDDD Save Model. .. |

Primal Talerance: ID.DDDDDDI
Dual Tolerance: ID.DDDDDDI

™ Showt Iteration Results Derivatives
¥ Forward

[Use Aukomatic Scaling

™ Central

- Assume Mon-Megative

r Bypass Solver Reports

¥ Lo Presolve

(04 | Cancel | Help |

Primal Tolerance and Dual Tolerance
VBA / SDK: Parameter Names "PrimalTolerance"”, "DualTolerance", 0 < value < 1

The Primal Tolerance is the maximum amount by which the primal constraints can be
violated and still be considered feasible. The Dual Tolerance is the maximum
amount by which the dual constraints can be violated and still be considered feasible.
The default values of 1.0E-7 for both tolerances are suitable for most problems.

Do Presolve
VBA / SDK: Parameter Name "Presolve", value 1/True or O/False

When this box is checked (which is the default setting), the LP/Quadratic Solver
performs a Presolve step before applying the Primal or Dual Simplex method.
Presolving often reduces the size of an LP problem by detecting singleton rows and
columns, removing fixed variables and redundant constraints, and tightening bounds.

Solver User Guide

Solver Options 181

Derivatives for the Quadratic Solver

When a quadratic programming (QP) problem — one with a quadratic objective and
all linear constraints — is solved with the LP/Quadratic Solver, the quadratic Solver
extension requires first or second partial derivatives of the objective function at
various points. In the Premium Solver Platform, these derivatives may be computed
via automatic differentiation or via finite differencing. For more information, see the
section “More on the Polymorphic Spreadsheet Interpreter” in the chapter
“Analyzing and Solving Models.”

When you are using the Interpreter (Solve With = PSI Interpreter in the Solver
Model dialog), automatic differentiation is used, exact derivative values are
computed, and the setting of the Derivatives choice is ignored. When Solve With =
Excel Interpreter, the method used for finite differencing is determined by the setting
of the Derivatives choice. Forward differencing uses the point from the previous
iteration — where the problem function values are already known — in conjunction
with the current point. Central differencing relies only on the current point, and
perturbs the decision variables in opposite directions from that point. For QP
problems, the Central differencing choice yields essentially exact (rather than approx-
imate) derivative values, which can improve solution accuracy and reduce the total
number of iterations; however the initial computation of derivatives may take up to
twice as long as with Forward differencing. (Bear in mind that automatic
differentiation is much faster than either Forward or Central differencing.)

Options for Mixed-Integer Problems

Clicking the Integer tab in the LP/Quadratic Solver Options dialog displays an
extensive set of options for mixed-integer linear programming problems, as described
in the section “LP/Quadratic Solver Integer Tab Options” later in this chapter. These
options control the Branch and Cut method for mixed-integer problems, described in
that section.

SOCP Barrier Solver Options

In the Premium Solver Platform, if the SOCP Barrier Solver is selected from the
Solver engine dropdown list, and the Options button is clicked, the Solver Options
dialog shown on the next page is displayed.

The General tab of this dialog contains all of the Common Solver Options discussed
earlier except the Precision edit box, plus the Gap Tolerance, Step Size Factor, and
Feasibility Tolerance options and the Search Direction option group, which are
specific to the SOCP Barrier Solver.

182 Solver Options Solver User Guide

SOCP Barrier Solver Options [x|

General ILimits | Problemn |

Mayx Time: 100 seconds
Load Model... |

Tterations: f 1000
Save Model.., |
Iu.uunnm

Gap Tolerance:

Step Size Factar: 0.99

Feasibility Tolerance: ID.DDDDDI

[Show Tteration Results
[Use automatic Scaling
[Assume Mon-Megative

- Bypass Solver Reports

Search Direction

" power Class Power Index |1

™ Power Class with Predictor-Corrector
™ Dual Scaling

¥ Dual Scaling with Predictor-Corrector

Qi I Cancel Help |

Gap Tolerance

VBA / SDK: Parameter Name "GapTolerance”, 0 < value < 1

The SOCP Barrier Solver uses a primal-dual method that computes new objective
values for the primal problem and the dual problem at each iteration. When the gap
or difference between these two objective values is less than the Gap Tolerance, the
SOCP Barrier Solver will stop and declare the current solution optimal.

Step Size Factor
VBA / SDK: Parameter Name "StepSizeFactor”, 0 < value < .99

This parameter is the relative size (between 0 and 1) of the step that the SOCP
Barrier Solver may take towards the constraint boundary at each iteration.

Feasibility Tolerance

VBA / SDK: Parameter Name "FeasibilityTolerance", 0 < value < 1

The SOCP Barrier Solver considers a solution feasible if the constraints are satisfied
to within this tolerance.

Solver User Guide

Solver Options 183

Search Direction

VBA / SDK: Parameter Name "SearchDirection", value 1-Power Class, 2-Power
Class with Predictor-Corrector, 3-Dual Scaling, 4- Dual Scaling with Predictor-
Corrector

The SOCP Barrier Solver offers four options for computing the search direction on
each iteration.

Power Class

This option uses the power class, which is a subclass of the commutative class of
search directions over symmetric cones with the property that the long-step barrier
algorithm using this class has polynomial complexity.

Power Class with Predictor-Corrector

This option uses the power class as described above, plus a predictor-corrector term.

Dual Scaling

This option uses HKM (Helmberg, Kojima and Monteiro) dual scaling, a Newton
direction found from the linearization of a symmetrized version of the optimality
conditions.

Dual Scaling with Predictor-Corrector

This option uses HKM dual scaling, plus a predictor-corrector term.

Power Index

VBA / SDK: Parameter Name "Powerlndex", integer value >=0

This parameter is used to select a specific search direction when the Search Direction
is computed via the Power Class or Power Class with Predictor-Corrector methods.

Options for Mixed-Integer Problems

Clicking the Integer tab in the SOCP Barrier Solver Options dialog displays a set of
options for mixed-integer linear programming problems, as described in the major
section “Options for Mixed-Integer Problems” later in this chapter. These options
control the Branch and Bound method for mixed-integer problems, described in that
section.

GRG Nonlinear Solver Options

In the Premium Solver and Premium Solver Platform, if the GRG Nonlinear Solver is
selected from the Solver engine dropdown list, and the Options button is clicked, the
Solver Options dialog shown on the next page is displayed.

The General tab of this dialog contains all of the Common Solver Options discussed
earlier, plus several options specific to the GRG Solver, which are described in this
section. The Global Optimization options group and the Population Size and

184

Solver Options

Solver User Guide

Random Seed edit boxes also appear in this dialog; these options are described in the
next section, “Multistart Search Options.”

The default choices for these options are suitable for the vast majority of problems;
although it generally won"t hurt to change these options, you should first consider
other alternatives such as improved scaling before attempting to fine-tune them. In
some scientific and engineering applications, alternative choices may improve the
solution process.

GRG Monlinear Solver Dptions H
General IInteger | Problem |

May Time: 100 seconds
Load Model. .. |

Tterations: f1000
Save Model... |
Precision: ID.DDDDDI

Conyergence: ID.DDDI
Population Size: IEI
Random Seed; I

[shaow Tteration Resulks Global Cptimization

™ Use automatic Scaling [Multistart Search

A Mon-Megati
] Assume Non-Negative ™ Topographic Search

Bypass Solver Reports
= L P v Require Bounds on Vars

(| Recognize Linear Yars

Estimates Derivatives Search
o Tangent O Forward o Mewskbon
€ Quadratic € Central 0 Conjugate

OK Cancel Help |

Convergence
VBA / SDK: Parameter Name "Convergence"”, 0 <= value <=1

As discussed in the chapter “ Diagnosing Solver Results,” the GRG Solver will stop
and display the message “ Solver has converged to the current solution” when the
objective function value is changing very slowly for the last few iterations or trial
solutions. More precisely, the GRG Solver stops if the absolute value of the relative
change in the objective function is less than the value in the Convergence edit box for
the last 5 iterations. While the default value of 1.0E-4 (0.0001) is suitable for most
problems, it may be too large for some models, causing the GRG Solver to stop
prematurely when this test is satisfied, instead of continuing for more Trial Solutions
until the optimality (KKT) conditions are satisfied.

If you are getting this message when you are seeking a locally optimal solution, you
can change the setting in the Convergence box to a smaller value such as 1.0E-5 or
1.0E-6; but you should also consider why it is that the objective function is changing
so slowly. Perhaps you can add constraints or use different starting values for the
variables, so that the Solver does not get “trapped” in aregion of slow improvement.

Solver User Guide

Solver Options 185

Recognize Linear Variables
VBA / SDK: Parameter Name "RecognizeLinear", value 1/True or O/False

This check box activates an “aggressive” strategy to speed the solution of nonlinear
problems that may be useful in the Premium Solver, and in the Premium Solver
Platform when the Polymorphic Spreadsheet Interpreter is not used (Solve With =
Excel Interpreter). Asexplained in the chapter “ Solver Models and Optimization,” a
Solver problem is nonlinear (and must be solved with the GRG Solver engine) if the
objective or any of the constraints is a nonlinear function of even one decision
variable. But in many such problems, some of the variables occur linearly in the
objective and all of the constraints. Hence the partial derivatives of the problem
functions with respect to these variables are constant, and need not be re-computed
on each iteration.

If you check the Recognize Linear Variables box, the GRG Solver will look for
variables whose partial derivatives are not changing over several iterations, and then
will assume that these variables occur linearly, hence that their partial derivatives
remain constant. At the solution, the partial derivatives are recomputed and
compared to the assumed constant values; if any of these values has changed, the
Solver will display the message “The linearity conditions required by this Solver
engine are not satisfied.” If you receive this message, you should uncheck the
Recognize Linear Variables box and re-solve the problem.

In the Premium Solver Platform, when the Interpreter is used (which is the default),
checking this box will not save any time, because partial derivatives are computed via
automatic differentiation rather than finite differencing. The field-installable Large-
Scale GRG Solver, Large-Scale SQP Solver, and KNITRO Solver engines are
designed to take advantage of information provided by the Interpreter, and will
exploit partial linearity in the problem functions much more effectively than the GRG
Solver with the Recognize Linear Variables option.

Derivatives and Other Nonlinear Options

The default values for the Estimates, Derivatives and Search options can be used for
most problems. |f you“d like to change these options to improve performance on
your model, this section will provide some general background on how they are used
by the GRG Solver. For more information, consult the academic papers on the GRG
method listed at the end of the Introduction.

On each major iteration, the GRG Solver requires values for the gradients of the
objective and constraints (i.e. the Jacobian matrix). The Derivatives option is
concerned with how these partial derivatives are computed.

The GRG (Generalized Reduced Gradient) solution algorithm proceeds by first
“reducing” the problem to an unconstrained optimization problem, by solving a set of
nonlinear equations for certain variables (the “basic” variables) in terms of others
(the “nonbasic” variables). Then a search direction (a vector in n-space, where n is
the number of nonbasic variables) is chosen along which an improvement in the
objective function will be sought. The Search option is concerned with how this
search direction is determined.

Once a search direction is chosen, a one-dimensional “line search” is carried out
along that direction, varying a step size in an effort to improve the reduced objective.
The initial estimates for values of the variables that are being varied have a signifi-
cant impact on the effectiveness of the search. The Estimates option is concerned
with how these estimates are obtained.

186

Solver Options

Solver User Guide

Estimates
VBA / SDK: Parameter Name "Estimates”, value 1-Tangent or 2-Quadratic

This option determines the approach used to obtain initial estimates of the basic
variable values at the outset of each one-dimensional search. The Tangent choice
uses linear extrapolation from the line tangent to the reduced objective function. The
Quadratic choice extrapolates the minimum (or maximum) of a quadratic fitted to the
function at its current point. If the current reduced objective is well modeled by a
quadratic, then the Quadratic option can save time by choosing a better initial point,
which requires fewer subsequent steps in each line search. If you have no special
information about the behavior of this function, the Tangent choice is“slower but
surer.” Note: the Quadratic choice here has no bearing on quadratic programming
problems.

Derivatives
VBA / SDK: Parameter Name "Derivatives", value 1-Forward or 2-Central

On each major iteration, the GRG Solver requires values for the gradients of the
objective and constraints (i.e. the Jacobian matrix). In the Premium Solver Platform,
these derivatives may be computed via automatic differentiation or via finite differ-
encing. Inthe Premium Solver, only finite differencing is available. For more
information, see the section “More on the Polymorphic Spreadsheet Interpreter” in
the chapter “Analyzing and Solving Models.”

In the Premium Solver Platform, when you are using the Interpreter (Solve With =
PSI Interpreter), automatic differentiation is used, highly accurate derivative values
are computed, and the Derivatives setting is ignored. In the Premium Solver, and in
the Premium Solver Platform when Solve With = Excel Interpreter, the method used
for finite differencing is determined by the Derivatives setting.

Forward differencing (the default choice) uses the point from the previous iteration —
where the problem function values are already known — in conjunction with the
current point. Central differencing relies only on the current point, and perturbs the
decision variables in opposite directions from that point. This requires up to twice as
much time on each iteration, but it may result in a better choice of search direction
when the derivatives are rapidly changing, and hence fewer total iterations. (Bear in
mind that automatic differentiation is much faster than either Forward or Central
differencing.)

Search
VBA / SDK: Parameter Name "SearchOption", value 1-Newton or 2-Conjugate

It would be expensive to determine a search direction using the pure form of
Newton"s method, by computing the Hessian matrix of second partial derivatives of
the problem functions. (In the Premium Solver, this would roughly square the
number of worksheet recalculations required to solve the problem.) Instead, a
direction is chosen through an estimation method. The default choice Newton uses a
quasi-Newton (or BFGS) method, which maintains an approximation to the Hessian
matrix; this requires more storage (an amount proportional to the square of the
number of currently binding constraints) but performs very well in practice. The
alternative choice Conjugate uses a conjugate gradient method, which does not
require storage for the Hessian matrix and still performs well in most cases. The
choice you make here is not crucial, since the GRG solver is capable of switching
automatically between the quasi-Newton and conjugate gradient methods depending
on the available storage.

Solver User Guide

Solver Options 187

Options for Mixed-Integer Problems

Clicking the Integer tab in the GRG Solver Options dialog displays a set of options
for mixed-integer linear programming problems, as described in the major section
“Options for Mixed-Integer Problems” later in this chapter. These options control
the Branch and Bound method for mixed-integer problems, described in that section.

Multistart Search Options

This section discusses the Global Optimization options group and the Population
Size and Random Seed edit boxes that appear in the Solver Options dialog for the
GRG Solver, as shown below:

GRG Nonlinear Solver Options H
General IInteger | Problerm |

Max Time: 100 seconds
Load Model. .. |

Save Model. .. |

Tterations: f1000

Precision: ID.DDDDDI
ID.DDDI
IEI

[Show Treration Results

Conyergence:
Population Size:

Random Seed;

Global Optimization

[Use automatic Scaling [Multistart Search

it Mon-Megati
] Assume Non-Negative ™ Topographic Search

Bypass Solver Reports
= w P v Require Bounds on Vars

(| Recognize Linear Yars

Estimates Derivatives Search

O Tangent O Forward i Mewskbon

€ Quadratic € Central 0 Conjugate
Cancel | Help |

These options control the multistart methods for global optimization, which will
automatically run the GRG Solver (or certain field-installable Solver engines) from a
number of starting points in order to seek the globally optimal solution. The
multistart methods are described under “ Global Optimization” in the chapter “ Solver
Models and Optimization,” and their behavior and stopping rules are further
described under “GRG Solver with Multistart Methods® in the chapter “Diagnosing
Solver Results.”

Multistart Search
VBA / SDK: Parameter Name "MultiStart", value 1/True or O/False

If this box is checked, the multistart methods are used to seek a globally optimal
solution. If this box is unchecked, the other options described in this section are
ignored. The multistart methods will generate candidate starting points for the GRG

188

Solver Options

Solver User Guide

Solver (with randomly selected values between the bounds you specify for the
variables), group theminto “clusters’ using a method called multi-level single
linkage, and then run the GRG Solver from a representative point in each cluster.
This process continues with successively smaller clusters that are increasingly likely
to capture each possible locally optimal solution.

Topographic Search
VBA / SDK: Parameter Name "TopoSearch", value 1/True or O/False

If this box (and the Multistart Search box) are checked, the multistart methods will
make use of a“topographic” search method. This method uses the objective value
computed for the randomly sampled starting points to determine a “topography” of
overall “hills” and “valleys’ in the search space, in an effort to find better clusters
and start the GRG Solver from an improved point (already in a“hill” or “valley”) in
each cluster. Determining the topography takes extra computing time, but on some
problems this is more than offset by reduced time taken by the GRG Solver on each
subproblem.

Require Bounds on Variables
VBA / SDK: Parameter Name "RequireBounds", value 1/True or O/False

This box is checked by default, but it comes into play only when the Multistart
Search box is checked. The multistart methods generate candidate starting points for
the GRG Solver by randomly sampling values between the bounds on the variables
that you specify. If you do not specify both upper and lower bounds on each of the
decision variables, the multistart methods can still be used, but because the random
sample must be drawn from an “infinite” range of values, thisis unlikely to effective-
ly cover the possible starting points (and therefore have a good chance of finding all
of the locally optimal solutions), unless the GRG Solver is run on a great many
subproblems, which will take a very long time.

The tighter the bounds on the variables that you can specify, the better the multistart
methods are likely to perform. (This is also true of the Evolutionary Solver.) Hence,
this option is checked by default, so that you will be automatically reminded to
include both upper and lower bounds on all of the variables whenever you select
Multistart Search. If both the Multistart Search and Require Bounds on Variables
boxes are checked, but you have not defined upper and lower bounds on all of the
variables, a Solver Results dialog like the one below will be displayed.

Solver Results HE

All variables rmust have bath upper and lower bounds.

Reports
P
" Restore Original values ;I
[Return to Solver Parameters Dialog [outline Reports

[0]4 I Cancel I Sawve Scenario. .. | Help I

When this message appears, you must either add constraints to the Constraints list
box (or check the Assume Non-Negative box, to add lower bounds on the variables),
or else uncheck the Require Bounds on Variables box, then click Solve again to
allow the Solver to proceed with the solution process.

Solver User Guide

Solver Options 189

Population Size
VBA / SDK: Parameter Name "PopulationSize", integer value > 0

The multistart methods generate a number of candidate starting points for the GRG
Solver equal to the value that you enter in this box. This set of starting points is
referred to as a “population,” because it plays arole somewhat similar to the
population of candidate solutions maintained by the Evolutionary Solver. The
minimum population size is 10 points; if you supply a value less than 10 in this box,
or leave it blank, the multistart methods use a population size of 10 times the number
of decision variables in the problem, but no more than 200.

Random Seed
VBA / SDK: Parameter Name "RandomSeed", integer value >0

The multistart methods use a process of random sampling to generate candidate
starting points for the GRG Solver. This process uses a random number generator
that is normally “seeded” using the value of the system clock — so the random number
sequence (and hence the generated candidate starting points) will be different each
time you click Solve. At times, however, you may wish to ensure that the same
candidate starting points are generated on several successive runs — for example, in
order to test different GRG Solver options on each search for a locally optimal
solution. To do this, enter an integer value into this box; this value will then be used
to “seed” the random number generator each time you click Solve.

Interval Global Solver Options

In the Premium Solver Platform, when the Interval Global Solver is selected from the
Solver engine dropdown list in the Solver Parameters dialog, and the Options button
is clicked, a Solver Options dialog like the one shown on the next page will be
displayed.

The General tab of this dialog contains all of the Common Solver Options discussed
earlier except the Precision edit box, plus several options specific to the Interval
Global Solver, which are described in this section.

The default choices for these options are suitable for most problems, but you should
experiment with the Method options group to see which methods are fastest on your
problem. By default, the Interval Global Solver uses only “first order” methods;
significant speed gains may be achieved via use of the Second Order and Linear
Enclosure methods.

190 Solver Options Solver User Guide

Interval Solver Oplions H

General IInteger | Problem I

Max Time: I 1000 Load Madel. .. |
Ikerations: I 1000 Save Madel, ., |
Accuracy I 0.001

Resolution: I 5

Max Time w/o |3E|—

Improvernent:

[show Iteration Results 7] Use Automatic Scaling
[T Assume Mon-negative ¥ abs vs. Relative Stop
[Bypass Solver Reports [T Assume Skationary

Method

& [Second order

. .
Classic Inkerval [e Test
) Linear Enclosure [P Phase I

Accuracy
VBA / SDK: Parameter Name "Accuracy”, 0 < value <1

This option plays a role conceptually similar to the Precision option in the other
Solver engines. It is used as a tolerance in the Interval Global Solver to determine
whether a“box” has been reduced in size to approximately a“point solution,”
whether the “distance” between two intervalsis sufficiently small, and —in
conjunction with the Resolution option below —whether a proposed solution to a
system of equations should be treated as distinct from all other known solutions.

Resolution
VBA / SDK: Parameter Name "Resolution”, 0 < value < 100

When the Interval Global Solver is seeking all real solutions of a system of nonlinear
equations, the Accuracy and Resolution values are used to distinguish one solution
from another. A proposed new solution —a“box” consisting of intervals enclosing
the decision variables — is compared to all other known solutions. It is considered the
same as an existing solution if either the absolute distance between intervals is less
than or equal to the Accuracy value or the relative distance between intervals (taking
into account their magnitudes) is less than or equal to the Resolution value, for all
decision variables. If it is not the same as any existing solution, the new point is
accepted as a distinct solution.

Max Time w/o Improvement
VBA / SDK: Parameter Name "MaxTimeNolmp", integer value >0

The value in this edit box (measured in seconds) is the maximum time that the
Interval Global Solver will spend in its search without finding an “improved global
solution” (afeasible solution with an objective value better than the currently best

Solver User Guide

Solver Options 191

known solution). If this time limit is exceeded, the Solver will stop and display the
Solver Results dialog with the message “ Solver cannot improve the current solution.”
For more information, see “Interval Global Solver Stopping Conditions” in the
chapter “Diagnosing Solver Results.”

Absolute vs. Relative Stop
VBA / SDK: Parameter Name "AbsRelStop", value 1/True or 0/False

This option affects the test used to decide whether the globally optimal solution has
been found. Asdescribed in “Globa Optimization” in the chapter “ Solver Models
and Optimization,” the Interval Global Solver uses an Interval Branch & Bound
method that isolates locally optimal solutions and also updates a known best bound
on the globally optimal objective function value. The Solver stops when it has found
a feasible solution whose objective function value is very close to this best known
bound. If the Abs vs. Relative box is checked (the default), the Solver compares the
absolute difference between the objective value and the best bound to the Accuracy
value. If this box is unchecked, the Solver compares the relative difference (dividing
by the objective's magnitude) to the Accuracy value.

Assume Stationary
VBA / SDK: Parameter Name "AssumeStationary", value 1/True or O/False

This option can be used to speed up the Interval Global Solver in situations where
you know that the globally optimal solution is a“ stationary point” and not a point
where a decision variable is equal to its lower or upper bound. The Solver can save a
significant amount of time if it does not have to check for possible solutions on the
“edges of boxes’” where a variable equals one of its bounds. If the Assume Stationary
box is checked, the Solver will skip such checks for possible solutions. Of course,
this means that if the true global optimum is at a point where a decision variable
equals a bound, the Solver will probably “miss’ this solution and return another point
that is not the true global optimum.

Method Options Group

The Method options group plays a critical role in determining the performance of the
Interval Global Solver. Asdescribed in“Global Optimization” in the chapter “ Solver
Models and Optimization,” the Interval Branch & Bound agorithm processes a list of
“boxes’ that consist of bounded intervals for each decision variable, starting with a
single box determined by the bounds that you specify. On each iteration, it seeks
lower and upper bounds for the objective and the constraints in a given box that will
allow it to discard all or a portion of the box (narrowing the intervals for some of the
variables), by proving that the box can contain no feasible solutions, or that it can
contain no objective function values better than a known best bound on the globally
optimal objective. Boxes that cannot be discarded are subdivided into smaller boxes,
and the process is repeated. Eventually, the boxes that remain each enclose a locally
optimal solution, and the best of these is chosen as the globally optimal solution.

To obtain good bounds on function values in a box, the Interval Global Solver uses a
first-order approximation to the problem functions, using interval values and interval
gradients computed by the Interpreter in the Premium Solver Platform. Two rather
different first-order approximations can be used: The “classic interval” or mean
value form and the linear enclosure form. With each form, different advanced
methods can be used, as discussed below. The*“classic interval” form is the defaullt,

192

Solver Options

Solver User Guide

but it pays to experiment with both forms to see which one performs best on your
model. In addition to these first-order approximations, the Solver always uses local
constraint propagation methods (also known as hull consistency methods) that narrow
intervals at each stage of evaluation of the problem functions.

Classic Interval vs. Linear Enclosure

VBA / SDK: Parameter Name "Method", value 1-Classic Interval or 2-Linear
Enclosure

The Classic Interval and Linear Enclosure options form a “radio button group,” so
that only one of these two options is selected. Classic Interval (the default) uses
methods described in the research literature for a number of years; Linear Enclosure
uses recently published methods that are implemented for the first time, to Frontline
Systems" knowledge, in the Interval Global Solver.

When Classic Interval is selected, the Solver uses the mean value form (based on
the interval gradient) as a first-order approximation of the problem functions. This
formis especialy useful in tests that enable the Solver to rapidly “shrink” a box.
With this form, second order methods can be used as described below, but these are
optional since they require evaluation of the interval Hessian.

When Linear Enclosure is selected, the Solver uses the linear enclosure form as a
first-order approximation of the problem functions. The linear enclosure doesn"t use
the interval gradient directly, but it computes similar information to completely
enclose the function within linearized boundaries. This form does not readily lend
itself to the classic interval second order methods, but because it completely encloses
the function, it can be used to enable the Solver to rapidly discard many boxes.

Second Order
VBA / SDK: Parameter Name "SecondOrder", value 1/True or O/False

When this box is checked (and Classic Interval is selected — otherwise it is grayed
out), the Interval Global Solver uses a variant of the Interval Newton method
(analogous to Newton"s method for real numbers, but operating over intervals),
employing the Krawczyk operator at its key step, to rapidly find an interval minimum
for the objective and shrink or discard the current box, or to rapidly determine
whether a solution to a system of equations exists in the current box. Use of the
Krawczyk operator requires the interval Hessian, which is computed by the
Interpreter via reverse automatic differentiation.

LP Test
VBA / SDK: Parameter Name "LPTest", value 1/True or O/False

When this box is checked (and Linear Enclosure is selected — otherwise it is grayed
out), the Solver internally creates a series of linear programming problems, using the
linear enclosures of the original problem"s constraints and the bounds on the current
box, and applies Phase | of the Simplex method to this problem. If the Simplex
method finds no feasible solutions, then the original problem"s constraints also have
no feasible solutions in the current box, and this box or region can be discarded in the
overall Interval Branch & Bound algorithm.

LP Phase Il
VBA / SDK: Parameter Name "LPPhasell", value 1/True or O/False

Solver User Guide

Solver Options 193

When this box is checked (and Linear Enclosure is selected — otherwise it is grayed
out), the Solver proceeds as just described for the LP Test option, but it also uses
Phase Il of the Simplex method to seek an improved bound on the objective function
in the current box. If this improved bound is feasible in the original problem, it is
used to update the known best bound on the globally optimal objective in the overall
Interval Branch & Bound algorithm.

Evolutionary Solver Options

In the Premium Solver and Premium Solver Platform, when the Evolutionary Solver
is selected from the Solver engine dropdown list, and the Options button is clicked,
the Solver Options dialog shown below is displayed.

This dialog contains all of the Common Solver Options discussed earlier (the
Convergence option has a special meaning for the Evolutionary Solver, as discussed
below), plus several options specific to the Evolutionary Solver.

E volutionary Solver Options E
Gereral | Limits | Prablem |

Mazx Time: 100 seconds
Load Model. ., |

Tterations: 1000
Save Model, .. |
Precision: IEI.IZIDDDDI

Conyergence; IEI.EIDDl

Population Size; IEI

Mukation Rate: IEII:I?"S—
Random Seed: I—

— Local Search

Show Iteration Result:
1 Show Iteration Results ™ Randomized Local

i Use Automatic Scaling & Deterministic Patkern

[T Assume Mon-Meqgative e Gradient Local

Bvpass Solver Reports
Feve " = automatic Choice

v Reguire Bound Yariabl
[l Reguire Bounds on Variables "] Fixx Monsmooth Yariables

OK Cantel el |

As with the other Solver engines, the Max Time option determines the maximum
amount of time the Evolutionary Solver will run before displaying a dialog box
asking whether the user wants to continue. The Iterations option rarely comes into
play, because the Evolutionary Solver always uses the Max Subproblems and Max
Feasible Solutions options on the Limits tab, whether or not the problem includes
integer constraints. (The count of iterations is reset on each new subproblem, so the
Iterations limit normally is not reached.) The Precision option plays the same role as
it does in the other Solver engines — governing how close a constraint value must be
to its bound to be considered satisfied, and how close to an exact integer value a
variable must be to satisfy an integer constraint. It also is used in computing the
“penalty” applied to infeasible solutions that are accepted into the population: A
smaller Precision value increases this penalty.

194

Solver Options

Solver User Guide

Convergence
VBA / SDK: Parameter Name "Convergence"”, 0 <= value <=1

Asdiscussed in the chapter “Diagnosing Solver Results,” the Evolutionary Solver
will stop and display the message “ Solver has converged to the current solution” if
nearly all members of the current population of solutions have very similar “fitness’
values. Since the population may include members representing infeasible solutions,
each “fitness’ value is a combination of an objective function value and a penalty for
infeasibility. Since the population is initialized with trial solutions that are largely
chosen at random, the comparison begins after the Solver has found a certain
minimum number of improved solutions that were generated by the evolutionary
process. The stopping condition is satisfied if 99% of the population members all
have fitness values that are within the Convergence tolerance of each other.

If you believe that the message “ Solver has converged to the current solution” is
appearing prematurely, you can make the Convergence tolerance smaller, but you
may also want to increase the Mutation Rate and/or the Population Size, in order to
increase the diversity of the population of trial solutions.

Population Size
VBA / SDK: Parameter Name "PopulationSize", integer value > 0

As described in the chapter “ Solver Models and Optimization,” the Evolutionary
Solver maintains a population of candidate solutions, rather than a“single best
solution” so far, throughout the solution process. This option sets the number of
candidate solutions in the population. The minimum population size is 10 members;
if you supply a value less than 10 for this option, or leave the edit box blank, the
Evolutionary Solver uses a population size of 10 times the number of decision
variables in the problem, but no more than 200.

The initial population consists of candidate solutions chosen largely at random, but it
always includes at least one instance of the starting values of the variables (adjusted
if necessary to satisfy the bounds on the variables), and it may include more than one
instance of the starting values, especially if the population is large and the initial
values represent a feasible solution.

A larger population size may allow for a more complete exploration of the “search
gpace” of possible solutions, especidly if the mutation rate is high enough to create
diversity in the population. However, experience with genetic and evolutionary
algorithms reported in the research literature suggests that a population need not be
very large to be effective — many successful applications have used a population of
70 to 100 members.

Mutation Rate
VBA / SDK: Parameter Name "MutationRate", 0 <= value <=1

The Mutation Rate is the probability that some member of the population will be
mutated to create a new trial solution (which becomes a candidate for inclusion in the
population, depending on its fitness) during each “generation” or subproblem
considered by the evolutionary algorithm. In the Evolutionary Solver, a subproblem
consists of a possible mutation step, a crossover step, an optional local search in the
vicinity of anewly discovered “best” solution, and a selection step where a relatively
“unfit” member of the population is eliminated.

Solver User Guide

Solver Options 195

There are many possible ways to mutate a member of the population, and the
Evolutionary Solver actually employs five different mutation strategies, including
“permutation-preserving” mutation strategies for variables that are members of an
“dldifferent” group. The Mutation Rate is effectively subdivided between these
strategies, so increasing or decreasing the Mutation Rate affects the probability that
each of the strategies will be used during a given “generation” or subproblem.

Random Seed
VBA / SDK: Parameter Name "RandomSeed", integer value >0

The Evolutionary Solver makes extensive use of random sampling, to generate trial
points for the population of candidate solutions, to choose strategies for mutation and
crossover on each “generation,” and for many other purposes. This process uses a
random number generator that is normally “seeded” using the value of the system
clock —so the random number sequence (and hence trial points and choices made by
the Evolutionary Solver) will be different each time you click Solve. Because of
these random choices, the Evolutionary Solver will normally find at least slightly
different (and sometimes very different) solutions on each run, even if you haven"t
changed your model at all. At times, however, you may wish to ensure that exactly
the same trial points are generated, and the same choices are made on several
successive runs. To do this, enter a positive integer value into this box; this value
will then be used to “seed” the random number generator each time you click Solve.

Require Bounds on Variables
VBA / SDK: Parameter Name "RequireBounds", value 1/True or O/False

If the check box “Require Bounds on Variables” is selected, and some of the decision
variables do not have upper or lower bounds specified in the Constraints list box (or
via the Assume Non-Negative option) at the time you click Solve, the Solver will
stop immediately with the message “All variables must have both upper and lower
bounds’ — asillustrated in the section “Multistart Search Options” earlier in this
chapter. If this option is not selected, the Solver will not require upper and lower
bounds on the variables, but will attempt to solve the problem without them. Note
that this box is checked by default.

Bounds on the variables are especially important to the performance of the
Evolutionary Solver. For example, the initial population of candidate solutions is
created, in part, by selecting values at random from the ranges determined by each
variable"s lower and upper bounds. Bounds on the variables are also used in the
mutation process —where a change is made to a variable value in some member of
the existing population —and in several other ways in the Evolutionary Solver. If you
do not specify lower and upper bounds for all of the variables in your problem, the
Evolutionary Solver can still proceed, but the almost-infinite range for these variables
may significantly slow down the solution process, and make it much harder to find
“good” solutions. Hence, it pays for you to determine realistic lower and upper
bounds for the variables, and enter them in the Constraints list box.

Local Search

VBA / SDK: Parameter Name "LocalSearch", value 1-Randomized Local Search, 2-
Deterministic Pattern Search, 3-Gradient Local Search, 4-Automatic Choice

This option determines the local search strategy employed by the Evolutionary
Solver. As noted under the Mutation rate option, a“generation” or subproblemin the

196

Solver Options

Solver User Guide

Evolutionary Solver consists of a possible mutation step, a crossover step, an

optional local search in the vicinity of a newly discovered “best” solution, and a
selection step where arelatively “unfit” member of the population is eliminated. You
have a choice of strategies for the local search step. In the Premium Solver Platform,
you can use Automatic Choice (the default), which selects an appropriate local search
strategy automatically based on characteristics of the problem functions.

Randomized Local Search

This local search strategy generates a small number of new trial points in the vicinity
of the just-discovered “best” solution, using a probability distribution for each
variable whose parameters are a function of the best and worst members of the
current population. (If the generated points do not satisfy all of the constraints, a
variety of strategies may be employed to transform them into feasible solutions.)
Improved points are accepted into the population.

Deterministic Pattern Search

Thislocal search strategy uses a“pattern search” method to seek improved pointsin
the vicinity of the just-discovered “best” solution. The pattern search method is
deterministic — it does not make use of random sampling or choices — but it also does
not rely on gradient information, so it is effective for non-smooth functions. It uses a
“dow progress’ test to decide when to halt the local search. Animproved point, if
found, is accepted into the population.

Gradient Local Search

This local search strategy makes the assumption that the objective function —even if
non-smooth — can be approximated locally by a quadratic model. It uses a classical
quasi-Newton method to seek improved points, starting from the just-discovered
“best” solution and moving in the direction of the gradient of the objective function.
It uses aclassical optimality test and a“slow progress’ test to decide when to halt the
local search. An improved point, if found, is accepted into the population.

Automatic Choice

This option allows the Solver to select the local search strategy automatically in the
Premium Solver Platform. In the Premium Solver, this option is equivalent to
Randomized Local Search; Deterministic Pattern Search or Gradient Local Search
must be selected manually. In the Premium Solver Platform, the Solver uses
diagnostic information from the Polymorphic Spreadsheet Interpreter to select a
linear Gradient Local Search strategy if the problem has a mix of non-smooth and
linear variables, or a nonlinear Gradient Local Search strategy if the objective
function has a mix of non-smooth and smooth nonlinear variables. It also makes
limited use of the Randomized Local Search strategy to increase diversity of the
points found by the local search step.

Fix Nonsmooth Variables
VBA / SDK: Parameter Name "FixNonSmooth", value 1/True or O/False

In the Premium Solver Platform, this option determines how non-smooth variable
occurrences in the problem will be handled during the local search step. In the
Premium Solver, this option is ignored. If this box is checked, the non-smooth
variables are fixed to their current values (determined by genetic algorithm methods)
when a nonlinear Local Gradient or linear Local Gradient search is performed; only

Solver User Guide

Solver Options 197

the smooth and linear variables are allowed to vary. If this box is unchecked, all of
the variables are allowed to vary.

Since gradients are undefined for non-smooth variables at certain points, fixing these
variables ensures that gradient values used in the local search process will be valid.
On the other hand, gradients are defined for non-smooth variables at most points, and
the search methods are often able to proceed in spite of some invalid gradient values,
so it often makes sense to vary all of the variables during the search. Hence, this box
is unchecked by default; you can experiment with its setting on your problem.

The behavior of the Fix Nonsmooth Variables option on a small group of special
functions — currently ABS, IF, MAX, MIN and SIGN —is affected by the setting of
the Require Smooth check box in the Solver Model dialog, as described in “Using
Analyzer Advanced Options’ in the chapter “ Analyzing and Solving Models.” When
the Require Smooth box is unchecked (the default), checking the Fix Nonsmooth
Variables box will not fix variables occurring in these special functions.

Filtered Local Search

In the Premium Solver Platform, the Solver appliestwo tests or “filters’ to determine
whether to perform a local search each time a new point generated by the genetic
algorithm methods is accepted into the population. The “merit filter” requires that
the objective value of the new point be better than a certain threshold if it is to be
used as a starting point for a local search; the threshold is based on the best objective
value found so far, but is adjusted dynamically as the Solver proceeds. The “distance
filter” requires that the new point"s distance from any known locally optimal point
(found on a previous local search) be greater than the distance traveled when that
locally optimal point was found.

Thanks to its genetic algorithm methods, improved local search methods, and the
distance and merit filters, the Evolutionary Solver in the Premium Solver Platform
performs exceedingly well on smooth global optimization problems, and on many
non-smooth problems as well.

Thelocal search methods range from relatively “cheap” to “expensive’ in terms of
the computing time expended in the local search step; they are listed roughly in order
of the computational effort they require. On some problems, the extra computational
effort will “pay off” in terms of improved solutions, but in other problems, you will
be better off using the “cheap” Randomized Local Search method, thereby spending
relatively more time on the “global search” carried out by the Evolutionary Solver"s
mutation and crossover operations.

In addition to the Local Search options, the Evolutionary Solver employs a set of
methods, corresponding to the four local search methods, to transform infeasible
solutions — generated through mutation and crossover — into feasible solutions in new
regions of the search space. These methods, which also vary from “cheap” to
“expensive,” are selected dynamically (and automatically) via a set of heuristics. For
problems in which a significant number of constraints are smooth nonlinear or even
linear, these methods can be highly effective. Dealing with constraints is
traditionally a weak point of genetic and evolutionary algorithms, but the hybrid
Evolutionary Solver in the Premium Solver products is unusually strong in its ability
to deal with a combination of constraints and non-smooth functions.

For the reasons described in “Using Analyzer Advanced Options’ in the chapter
“Analyzing and Solving Models,” if the Evolutionary Solver stops with the
message “ Solver encountered an error computing derivatives,” you should
check the Analyzer Sparse box in the Model dialog, and click Solve again.

198

Solver Options

Solver User Guide

Limits Tab Options

The Solver Options dialog for the Evolutionary Solver includes a Limits tab. When
you click this tab, the options shown below are displayed.

Evolutionary Solver Dptions H

General | Limits IPrahIeml

Max Subproblems: |5|3|3|3
Max Feasible Sols: |5|3|3|3

Tolerance: 0.05

May Time wo Improvement: ISD

" solve Without Integer Constraints

[5]4 Cancel Help |

Where the other Solver engines use the Branch & Bound method to solve problems
with integer constraints, subject to limits set in the Integer Options dialog tab, the
Evolutionary Solver handles integer constraints on its own, and is subject to the
limits set in this dialog tab. Unlike the other Solver engines, the Evolutionary Solver
always works on a series of subproblems, even if there are no integer constraints in
the model — so these options are always important for the Evolutionary Solver.

Max Subproblems
VBA / SDK: Parameter Name "MaxSubProblems", integer value > 0

The value in the Max Subproblems edit box places a limit on the number of
subproblems that may be explored by the evolutionary algorithm before the Solver
pauses and asks you whether to continue, stop or restart the solution process. In the
Evolutionary Solver, a subproblem consists of a possible mutation step, a crossover
step, an optional local search in the vicinity of anewly discovered “best” point, and a
selection step where arelatively “unfit” member of the population is eliminated.
During the solution process, the number of subproblems considered so far is shown
on the Excel status bar, along with the objective of the best feasible solution (if any)
found so far. If your model is moderately large or complex, you may need to
increase this limit from its default value; any value up to 2,147,483,647 may be used.

Solver User Guide

Solver Options 199

Max Feasible Solutions
VBA / SDK: Parameter Name "MaxlIntegerSols", integer value > 0

The value in the Max Feasible Sols edit box places a limit on the number of feasible
solutions found by the evolutionary algorithm before the Solver pauses and asks you
whether to continue, stop or restart the solution process. A feasible solution is any
solution that satisfies all of the constraints, including any integer constraints. As with
the Max Subproblems option, if your model is moderately large or complex, you may
need to increase this limit; any value up to 2,147,483,647 may be used.

Tolerance
VBA / SDK: Parameter Name "IntTolerance", 0 <= value <=1

This option works in conjunction with the Max Time without Improvement option to
limit the time the evolutionary algorithm spends without making any significant
progress. If therelative (i.e. percentage) improvement in the best solution"s “fitness”
is less than the Tolerance value for the number of seconds in the Max Time without
Improvement edit box, the Evolutionary Solver stops as described below. Since the
population may include members representing infeasible solutions, the “fitness”’
value is a combination of an objective function value and a penalty for infeasibility.

Max Time without Improvement
VBA / SDK: Parameter Name "MaxTimeNolmp", integer value > 0

This option works in conjunction with the Tolerance option to limit the time the
evolutionary algorithm spends without making any significant progress. If the
relative (i.e. percentage) improvement in the best solution”s “fitness” isless than the
Tolerance value for the number of seconds in the Max Time without Improvement
edit box, the Evolutionary Solver stops and displays the Solver Results dialog. The
message is “ Solver cannot improve the current solution,” unless the evolutionary
algorithm has discovered no feasible solutions at all, in which case the message is
“Solver could not find afeasible solution.” If you believe that this stopping
condition is being met prematurely, you can either make the Tolerance value smaller
(or even zero), or increase the number of seconds allowed by the Max Time without
Improvement option.

Solve Without Integer Constraints
VBA / SDK: Parameter Name "SolveWithout", value 1/True or 0/False

When you click the Solve button (in the Solver Parameters dialog) while this box is
checked, the Solver ignores integer constraints (including alldifferent constraints)
and solves the “relaxation” of the problem. It is often useful to solve the relaxation,
and it"s much more convenient to check this box than to delete the integer constraints
and add them back again later.

This option remains in effect until you uncheck the Solve Without Integer Constraints
box. Asdiscussed further under “The Integer Options Dialog Tab” below, when you
solve an integer programming problem (without this option) and the Solver finds no
feasible integer solution, you are offered the option of solving the relaxation on a
“one-time-only” basisin the Solver Results dialog.

200

Solver Options

Solver User Guide

Integer Tab Options

In the Premium Solver and Premium Solver Platform, the Solver Options dialogs for
all of the bundled Solver engines except the Evolutionary Solver include an Integer
tab. When you click this tab, options for mixed-integer programming problems are
displayed. This section describes Integer tab options for all Solver engines except the
LP/Quadratic Solver in the Premium Solver Platform; the LP/Quadratic Solver"s
Integer tab options are described in the following section.

LP Simplex Solver Options H

General | Integer IF‘raneml

Max Subprablems: |1c||:||:|
Max Feasible Sols: |1c||:||:|

Tolerance: 0.05

Integer Cutoff: I

[T solve Without Integer Constraints

[¥! Use Cual Simplex for Subproblems

Preprocessing and Probing

[Probing | Feasibility [Cptimality Fixing
[Bounds Improvement [Primal Heuristic

Gomory Cuks: Passes:

IZD |1
Knapsack Cuts: |2D Passes: |1

Ok | Cancel | Help |

This dialog collects all of the options that pertain to the solution of problems with
integer constraints. The controls below the “ Solve Without Integer Constraints’
check box appear only for the LP Simplex Solver in the Premium Solver.

Max Subproblems
VBA / SDK: Parameter Name "MaxSubProblems", integer value > 0

The value in the Max Subproblems edit box places a limit on the number of
subproblems that may be explored by the Branch & Bound algorithm before the
Solver pauses and asks you whether to continue or stop the solution process. (The
Branch & Bound method is briefly described in the chapter “ Solver Models and
Optimization.”) Each subproblemisa*“regular” Solver problem with additional
bounds on the variables.

Note: A “Restart” button also appears in the dialog box where the Solver asks you
whether you want to continue or stop the solution process; but this button is meaning-
ful only for the GRG Nonlinear Solver, and it affects only restarting of the current
subproblem. The Branch & Bound algorithm is never restarted, as this would simply
mean discarding the progress that has been made so far.

Solver User Guide Solver Options 201

In a problem with integer constraints, the Max Subproblems limit should be used in
preference to the Iterations limit in the Solver Options dialog; the Iterations limit
should be set high enough for each of the individual subproblems solved during the
Branch & Bound process. For problems with many integer constraints, you may
need to increase this limit from its default value; any integer value up to
2,147,483,647 may be used.

Max Integer Solutions
VBA / SDK: Parameter Name "MaxIntegerSols", integer value >0

The value in the Max Integer Solutions edit box places a limit on the number of
“candidate” integer solutions found by the Branch & Bound algorithm before the
Solver pauses and asks you whether to continue or stop the solution process. Each
candidate integer solution satisfies all of the constraints, including the integer
constraints; the Solver retains the integer solution with the best objective value so far,
called the “incumbent.”

It is entirely possible that, in the process of exploring various subproblems with
different bounds on the variables, the Branch & Bound algorithm may find the same
integer solution (set of values for the decision variables) more than once; the Max
Integer Solutions limit applies to the total number of integer solutions found, not the
number of “distinct” integer solutions. Y ou can set this limit to any integer value up
t0 2,147,483,647.

Integer Tolerance
VBA / SDK: Parameter Name "IntTolerance", 0 <= value <=1

When you solve an integer programming problem, it often happens that the Branch &
Bound method will find a good solution fairly quickly, but will require a great deal of
computing time to find (or verify that it has found) the optimal integer solution. The
Integer Tolerance setting may be used to tell the Solver to stop if the best solution it
has found so far is “close enough.”

The Branch & Bound process starts by finding the optimal solution without consider-
ing the integer constraints (this is called the relaxation of the integer programming
problem). The objective value of the relaxation forms the initial “best bound” on the
objective of the optimal integer solution, which can be no better than this. During the
optimization process, the Branch & Bound method finds “candidate” integer
solutions, and it keeps the best solution so far as the “incumbent.” By eliminating
alternatives as its proceeds, the B& B method also tightens the “best bound” on how
good the integer solution can be.

Each time the Solver finds a new incumbent —an improved all-integer solution — it
computes the maximum percentage difference between the objective of this solution
and the current best bound on the objective:

Objective of incumbent - Objective of best bound

Objective of best bound

If the absolute value of this maximum percentage difference is equal to or less than
the Integer Tolerance, the Solver will stop and report the current integer solution as
the optimal result. In the Premium Solver and Premium Solver Platform, the Solver
Result Message will be “Solver found an integer solution within tolerance.” If you
set the Integer Tolerance to zero, the Solver will continue searching until all

202 Solver Options Solver User Guide

alternatives have been explored and the optimal integer solution has been found. This
may take a great deal of computing time.

Integer Cutoff
VBA / SDK: Parameter Name "IntCutoff", -1E30 < value < +1E30

This option provides another way to save time in the solution of mixed-integer
programming problems. If you know the objective value of a feasible integer solution
to your problem — possibly from a previous run of the same or a very similar problem
—you can enter this objective value in the Integer Cutoff edit box. This allows the
Branch & Bound process to start with an “incumbent” objective value (as discussed
above under Integer Tolerance) and avoid the work of solving subproblems whose
objective can be no better than this value. If you enter a value here, you must be sure
that there is an integer solution with an objective value at least this good: A value
that is too large (for maximization problems) or too small (for minimization) may
cause the Solver to skip solving the subproblem that would yield the optimal integer
solution.

Solve Without Integer Constraints
VBA / SDK: Parameter Name "SolveWithout", value 1/True or 0/False

When you click the Solve button (in the Solver Parameters dialog) while this box is
checked, the Solver ignores integer constraints (including alldifferent constraints)
and solves the “relaxation” of the problem. It is often useful to solve the relaxation,
and it"s much more convenient to check this box than to delete the integer constraints
and add them back again later.

This option remains in effect until you uncheck the Solve Without Integer Constraints
box. When you solve an integer programming problem (without this option) and the
Solver finds no feasible integer solution, you are offered the option of solving the
relaxation on a*“one-time-only” basisin the Solver Results dialog, as shown below.

Solver could not find a Feasible solution,
Reports
{* geep Solver Solution
. » No reporks
Restare Original Yalues available,

7 Solve Without Inkeger Constraints
" Return ko Solver Parameters Dialog

oKk Cancel | Save SCenatia. .. | Help |

When chosen this way, the option is effective for only one solution attempt, when
you click OK. 1t is possible that the relaxation of the problem — ignoring the integer
constraints — is still infeasible; in this case, you will next see the Solver Results
dialog shown on the following page, which will allow you to produce a Feasibility
Report for the relaxation of the problem. Using the Feasibility Report, you can more
easily locate and correct the conflicting constraints that make the problem infeasible.

Solver User Guide Solver Options 203

Solver Results HE

Solver could not find a Feasible solution.
Reports
Feasibility .0
 Keep Solver Solution Feasibility-Bounds
' Restore Original Yalues ;I
[Return ko Solver Parameters Dialog [cutline Reports
(a4 I Cancel | Save SCenatio. .. | Help |

Use Dual Simplex for Subproblems
VBA / SDK: Parameter Name "UseDual", value 1-Primal or 2-Dual (i.e. checked)

This option appears only in the Premium Solver, when the LP Simplex Solver is
selected. When this box is checked — note that it is checked by default — the Solver
uses the Dual Simplex method, starting from an advanced basis, to solve the
subproblems generated by the Branch & Bound method. When it is cleared, the
Solver uses the Primal Simplex method to solve the subproblems. Use of this option
will often speed up the solution of problems with both general integer (e.g. AL:A5 =
integer) and binary integer (e.g. AL:A5 = binary) variables.

The subproblems of an integer programming problem are based on the relaxation of
the problem, but have additional or tighter bounds on the variables. The solution of
the relaxation (or of amore direct “parent” of the current subproblem) provides an
“advanced basis’ which can be used as a starting point for solving the current
subproblem, potentially in fewer iterations. This basis may not be primal feasible
due to the additional or tighter bounds on the variables, but it is always dual feasible.
Because of this, the Dual Simplex method is usually faster than the Primal Simplex
method when starting from an advanced basis.

The Dual Simplex method proceeds from a dual feasible solution to a dual optimal
(and hence primal feasible) solution by dealing with the additional or tighter bounds
on the variables. The Premium Solver employs an advanced “bound-swapping”
Dual Simplex method that becomes faster as the bounds become tighter and apply to
more variables.

Preprocessing and Probing

The Preprocessing and Probing option group appears only in the Premium Solver,
when the LP Simplex Solver is selected. Use of these options can dramatically
improve solution time on problems with many 0-1 or binary integer variables. Any
of them may be selected independently, but the best speed gains are often realized
when they are used in combination — particularly Probing / Feasibility, Bounds
Improvement and Optimality Fixing.

Probing / Feasibility
VBA / SDK: Parameter Name "ProbingFeasibility”, value 1/True or 0/False

The Probing strategy allows the Solver to derive values for certain binary integer
variables based on the settings of others, prior to actually solving the problem. When
the Branch & Bound method creates a subproblem with an additional (tighter) bound
on a binary integer variable, this causes the variable to be fixed at 0 or 1. In many
problems, this has implications for the values of other binary integer variables that

204

Solver Options

Solver User Guide

can be discovered through Probing. For example, your model may have a constraint
such as:

Xo + X + X + X, + X 1

where X, through x, are all binary integer variables. Whenever one of these variables
is fixed at 1, all of the others are forced to be 0; Probing allows the Solver to deter-
mine this before solving the problem. In some cases, the Feasibility tests performed
as part of Probing will determine that the subproblem is infeasible, so it is unneces-
sary to solveit at all. (Thisisaspecia case of a“clique” or “Special Ordered Set”
(SOS) constraint; the Solver recognizes these constraints in their most general form.)

In aproblemwith a“clique”’ of 5 binary integer variables, without Probing, the
Branch & Bound process might have to generate and solve as many as 2° = 32
subproblems, with different combinations of bounds on these variables. With
Probing, the number of subproblems is reduced from 32 to 5. As the number of
binary integer variables increases, this strategy can clearly improve solution time.

Bounds Improvement
VBA / SDK: Parameter Name "Boundsimprovement", value 1/True or O/False

The Bounds Improvement strategy allows the Solver to tighten the bounds on
variables that are not 0-1 or binary integer variables, based on the values that have
been derived for the binary variables, before the problem is solved. Tightening the
bounds usually reduces the effort required by the Simplex method (or other method)
to find the optimal solution, and in some cases it leads to an immediate determination
that the subproblem is infeasible and need not be solved.

Optimality Fixing
VBA / SDK: Parameter Name "OptimalityFixing", value 1/True or O/False

The Optimality Fixing strategy is another way to fix the values of binary integer
variables before the subproblem is solved, based on the signs of the coefficients of
these variables in the objective and the constraints. Optimality Fixing can lead to
further opportunities for Probing and Bounds Improvement, and vice versa. But
Optimality Fixing will yield incorrect results if you have bounds on variables,
such asA1:A5>=10and A1:A5 <= 10, which create “implied” equalities,
instead of explicit equalities such as AL:A5 = 10. Watch out for situations such as
Al:A5 >=10 and A3:D3 <= 10, which creates an implied equality constraint on A3.
Implied equalities of this sort are never a good practice, but they must be avoided in
order to use Optimality Fixing.

Primal Heuristic
VBA / SDK: Parameter Name "PrimalHeuristic", value 1/True or 0/False

When this box is checked, the Solver uses heuristic methods to attempt to discover an
integer feasible solution early in the Branch & Bound process. (A heuristic method
is one that has been found to succeed frequently in practice, but is not guaranteed to
succeed — in this case, to find an integer feasible solution.) The specific method used
in the LP Simplex Solver is derived from the “local search” literature, where it has
been found to be quite effective, especially on 0-1 integer programming problems.

If an integer feasible solution is found via the primal heuristic, it serves as an
“incumbent” that enables the Branch & Bound method to cut off the exploration of
other subproblems, because they cannot yield an integer solution better than the
known incumbent, and thereby save time overall. Of course, if an integer feasible

Solver User Guide

Solver Options 205

solution is not found, the time spent on the primal heuristic is wasted. Hence, you
should experiment with this option to see if it yields faster solutions on your problem.

You may wish to check this box, then watch the Excel status bar while your problem
is being solved, and note how long the Solver takes before “Branch” messages
appear, and whether an “Incumbent: xxx" appearsin these messages. If Branch
messages appear without an incumbent value after some delay, it is probably better to
uncheck this box, since the primal heuristic is not proving effective on the problem.

Variable Reordering and Pseudocost Branching

A Variable Reordering option was used in earlier versions of the Premium Solver
products to improve the order in which the Branch & Bound algorithm chose binary
integer variablesto “branch” upon. Itisignored in recent versions of the Premium
Solver, which uses a better strategy, known as “ pseudocost branching,” at all times.

Branching on an integer variable places tighter bounds on this variable in all sub-
problems derived from the current branch. In the case of a binary integer variable,
branching forces the variable to be 0 or 1 in the subproblems. Tighter bounds on
certain variables may have a large impact on the values that can be assumed by other
variables in the problem. ldeally, the Solver will branch on these variables first.

For example, you might have a binary integer variable that determines whether or not
a new plant will be built, and other variables that then determine whether certain
manufacturing lines will be started up. If the Solver branches upon the plant-building
variable first, forcing it to be 0 or 1, this will eliminate many other possibilities that
would otherwise have to be considered during the solution of each subproblem.

Pseudocost branching enables the Solver to automatically choose variables for
branching, once each integer variable has been branched upon at least once. But at
the beginning of the solution process, the order in which integer variables are chosen
for branching is guided overall by the order in which they appear in your Changing
Cells edit box (from left or right), or in the Variables list box (top to bottom, and left
to right). You may be able to improve performance by manually ordering the
variables in the Changing Cells box or Variables list, based on your knowledge of the
problem. In the example above, you would list the plant-building binary integer
variable first in the Changing Cells edit box, so it will be branched upon before any
other integer variable.

Cut Generation

The Cut Generation options (Gomory Cuts and Passes, and Knapsack Cuts and
Passes) are available for the LP Simplex Solver in the Premium Solver. A cut is an
automatically generated linear constraint for the problem, in addition to the
constraints that you specify. This constraint is constructed so that it “ cuts off” some
portion of the feasible region of an LP subproblem, without eliminating any possible
integer solutions. Cuts add to the work that the LP solver must perform on each
subproblem (and hence they do not always improve solution time), but on many
integer programming problems, cut generation enables the overall Branch & Bound
method to more quickly discover integer solutions, and eliminate subproblems that
cannot lead to better solutions than the best one already known.

The default values for the Cut Generation options represent a reasonably good
tradeoff for many models, but it may well be worthwhile to experiment with values in
these edit boxes to find the best settings for your problem.

206

Solver Options

Solver User Guide

Gomory Cuts
VBA / SDK: Parameter Name "MaxGomoryCuts", integer value > 0

The value in this edit box is the maximum number of Gomory cuts that the Solver
should generate for a given subproblem. When this maximum is reached, or if there
are no further cut opportunities, the Solver proceeds to solve the LP subproblem
(with the cuts) via the primal or dual Simplex method.

Gomory cuts are generated by examining the basis inverse at the optimal solution of a
previously solved LP relaxation of the problem. This basis inverse is sensitive to
rounding error due to the use of finite precision computer arithmetic. Hence, if you
use Gomory cuts, you should take extra care to ensure that your worksheet
model is well scaled, and check the Use Automatic Scaling box. If you see the
Scaling Report listed as an option in the Solver Results dialog, select it and examine
the report contents to help find scaling problems in your model, as described the
chapter “Solver Reports.” If you have trouble finding the integer optimal solution
with the default settings for Gomory cuts, you may want to enter 0 in this edit box, to
eliminate Gomory cuts as a possible source of problems due to rounding.

Gomory Passes
VBA / SDK: Parameter Name "GomoryPasses", integer value >0

The value in this edit box is the number of “passes’ the Solver should make over a
given subproblem, looking for Gomory cuts. When cuts are generated and added to
the model, the new model may present opportunities to generate further cuts. In fact,
it"s possible to solve an LP/MIP problem to optimality by generating Gomory cuts in
multiple passes, without any branching via Branch & Bound; however, experience
has shown that this is usually less efficient than using Branch & Bound. The default
value of 1 pass is best for many models, but you may find that increasing this value
improves solution time for your model.

Knapsack Cuts
VBA / SDK: Parameter Name "MaxKnapsackCuts", integer value >0

The value in this edit box is the maximum number of Knapsack cuts that the Solver
should generate for a given subproblem. When this maximum is reached, or if there
are no further cut opportunities, the Solver proceeds to solve the LP subproblem
(with the cuts) via the primal or dual Simplex method. Knapsack cuts, also known as
lifted cover inequalities, can be generated only for groups of binary integer variables,
whereas Gomory cuts can be generated for any integer variables. But when knapsack
cuts can be generated, they are often very effective in cutting off portions of the LP
feasible region, and improving the speed of the solution process.

Knapsack Passes
VBA / SDK: Parameter Name "KnapsackPasses", integer value >0

The value in this edit box is the number of “passes’ the Solver should make over a
given subproblem, looking for Knapsack cuts. As for Gomory cuts, when Knapsack
cuts are generated and added to the model, the new model may present opportunities
to generate further cuts; but time spent on additional passes could otherwise be spent
solving LP subproblems. The default value of 1 pass is best for many models, but
you may find that increasing this value improves solution time for your model.

Solver User Guide

Solver Options 207

LP/Quadratic Solver Integer Tab Options

This section describes the Integer tab options for the LP/Quadratic Solver in the
Premium Solver Platform, which features an extensive set of options to improve
performance on mixed-integer programming problems. When the LP/Quadratic
Solver is selected from the Solver engine dropdown list, the Options button is
clicked, and the Integer tab is clicked, the options shown below will be displayed.

LP#Quadratic Solver Options |

Max Feasible Sols: I S000

Tolerance: 0.0
Integer Cutoff: I
Maximurn Zuk Passes at Rook: I -1 in Tree: I 10

[Solve without Integer Constraints

[¥! Use Strong Branching

riCuks & Heuristics

[Lift and Corver [Gomary

[Rounding ¥ Probing

[T Knapsack [T ©dd Hole

[Mixed Integer Rounding [Cligue

71 Two Mixed Integer Rounding [Elowcover

[Reduce and Sglit [special Ordered Sets
[Local Search Heuristic [Rounding Heuristic

[o]'3 I Cancel | Help |

Max Subproblems
VBA / SDK: Parameter Name "MaxSubProblems", integer value > 0

The value in the Max Subproblems edit box places a limit on the number of
subproblems that may be explored by the Branch & Bound algorithm before the
Solver pauses and asks you whether to continue or stop the solution process. Each
subproblemisa“regular” Solver problem with additional bounds on the variables.

In a problem with integer constraints, this limit should be used in preference to the
Iterations limit in the Solver Options dialog; the Iterations limit should be set high
enough for each of the individual subproblems solved during the Branch & Bound
process. For problems with many integer constraints, you may need to increase this
limit from its default value; any integer value up to 2,147,483,647 may be used.

Max Feasible (Integer) Solutions

VBA / SDK: Parameter Name "MaxlIntegerSols", integer value >0

208

Solver Options

Solver User Guide

The value in the Max Feasible Sols edit box places a limit on the number of feasible
integer solutions found by the Branch & Bound algorithm before the Solver pauses
and asks you whether to continue or stop the solution process. Each feasible integer
solution satisfies all of the constraints, including the integer constraints; the Solver
retains the integer solution with the best objective value so far, called the
“incumbent.”

It is entirely possible that, in the process of exploring various subproblems with
different bounds on the variables, the Branch & Bound algorithm may find the same
feasible integer solution (set of values for the decision variables) more than once; the
Max Feasible Solutions limit applies to the total number of integer solutions found,
not the number of “distinct” integer solutions.

Integer Tolerance
VBA / SDK: Parameter Name "IntTolerance", 0 <= value <=1

When you solve an integer programming problem, it often happens that the Branch &
Bound method will find a good solution fairly quickly, but will require a great deal of
computing time to find (or verify that it has found) the optimal integer solution. The
Integer Tolerance setting may be used to tell the Solver to stop if the best solution it
has found so far is “close enough.”

The Branch & Bound process starts by finding the optimal solution without
considering the integer constraints (this is called the relaxation of the integer
programming problem). The objective value of the relaxation forms the initial “best
bound” on the objective of the optimal integer solution, which can be no better than
this. During the optimization process, the Branch & Bound method finds “candidate”
integer solutions, and it keeps the best solution so far as the “incumbent.” By
eliminating alternatives as its proceeds, the B& B method al so tightens the “ best
bound” on how good the integer solution can be.

Each time the Solver finds a new incumbent —an improved all-integer solution — it
computes the maximum percentage difference between the objective of this solution
and the current best bound on the objective:

Objective of incumbent - Objective of best bound

Objective of best bound

If the absolute value of this maximum percentage difference is equal to or less than
the Integer Tolerance, the Solver will stop and report the current integer solution as
the optimal result, with the message “ Solver found an integer solution within
tolerance.” If you set the Integer Tolerance to zero, the Solver will “prove optimal -
ity” by continuing to search until all alternatives have been explored and the optimal
integer solution has been found. This may take a great deal of computing time.

Integer Cutoff
VBA / SDK: Parameter Name "IntCutoff", -1E30 < value < +1E30

This option provides another way to save time in the solution of mixed-integer
programming problems. If you know the objective value of a feasible integer
solution to your problem — possibly from a previous run of the same or a very similar
problem —you can enter this objective value in the Integer Cutoff edit box. This
allows the Branch & Bound process to start with an “incumbent” objective value (as
discussed above under Integer Tolerance) and avoid the work of solving subproblems
whose objective can be no better than this value. If you enter a value here, you must

Solver User Guide

Solver Options 209

be sure that there is an integer solution with an objective value at least this good: A
value that is too large (for maximization problems) or too small (for minimization)
may cause the Solver to skip solving the subproblem that would yield the optimal
integer solution.

Maximum Cut Passes

VBA /SDK: Parameter Name "MaxRootCutPasses", integer value >= -1
Parameter Name "MaxTreeCutPasses", integer value >= -1

This option determines the maximum number of “passes’ carried out to generate
cuts, at the root node (immediately after the first LP relaxation is solved), and at
nodes deeper in the Branch & Bound tree; it is effective only if one or more of the
Cut Generation check box options (see below) are checked. When cuts are added to
a problem, the resulting problem may present further opportunities to generate cuts;
hence, cut generation “passes’ are performed until either no new cuts are found, or
the maximum number of passes is reached. A value of -1 inthe“at Root” edit box
means that the number of passes should be determined automatically. The default
value of 10 passes for nodes deeper in the tree is appropriate for many models, but
you may wish to try both smaller and larger values in this edit box.

Solve Without Integer Constraints
VBA / SDK: Parameter Name "SolveWithout", value 1/True or 0/False

When you click the Solve button in the Solver Parameters dialog while this box is
checked, the Solver ignores integer constraints (including alldifferent constraints)
and solves the “relaxation” of the problem. It is often useful to solve the relaxation,
and it"s much more convenient to check this box than to delete the integer constraints
and add them back again later.

This option remains in effect until you uncheck the Solve Without Integer Constraints
box. In the Premium Solver Platform, when you solve an integer programming
problem (without this option) and the Solver finds no feasible integer solution, you
are offered the option of solving the relaxation on a“ one-time-only” basisin the
Solver Results dialog, as shown below.

Solver Results HE

Solver could not find & Feasible solution,

Reports
% Keep Solver Solution
I . Mo reports
Restore Criginal Yalues available,
7 Solve without Integer Constraints
[Return o Solver Parameters Dialog
ok Cancel I Save SCEnatia... | Help I

When chosen this way, the option is effective for only one solution attempt, when
you click OK. It is possible that the relaxation of the problem — ignoring the integer
constraints — is still infeasible; in this case, you will next see the Solver Results
dialog on the next page, which will allow you to produce a Feasibility Report for the
relaxation of the problem. Using the Feasibility Report, you can more easily locate
and correct the conflicting constraints that make the problem infeasible.

210

Solver Options

Solver User Guide

Solver Results HEB

Sokver could not find a Feasible solution.

Reports

) Keep Solver Solution

) Restore Original Yalues

[Return to Solver Parameters Dizlog [T outline Reports
ik I Cancel | Save Scenario... | Help |

Use Strong Branching
VBA / SDK: Parameter Name "StrongBranching", value 1/True or O/False

When this box is checked, the Solver performs strong branching at the root node.
Strong Branching is a method used to estimate the impact of branching on each
integer variable on the objective function (its pseudocost), by performing a few
iterations of the Dual Simplex method. Such pseudocosts are used to guide the
choice of the next subproblem to explore, and the next integer variable to branch
upon, throughout the Branch and Bound process. Time spent in strong branching is
often repaid many times over in a reduction of the number of nodes that must be
explored to find the integer optimal solution.

Cuts & Heuristics

The LP/Quadratic Solver in the Premium Solver Platform supports a wide range of
cuts and heuristics. A cut is an automatically generated linear constraint for the
problem, in addition to the constraints that you specify. This constraint is
constructed so that it “cuts off” some portion of the feasible region of an LP
subproblem, without eliminating any possible integer solutions. A heuristic is a
strategy that often — but not always — will find a reasonably good “incumbent” or
feasible integer solution early in the search. Cuts and heuristics require more work
on each subproblem, but they can often lead more quickly to integer solutions and
greatly reduce the number of subproblems that must be explored.

Lift and Cover Cuts

VBA / SDK: Parameter Name "LiftAndCoverCuts", value 1/True or O/False

When this box is checked, Lift and Cover cuts may be generated. These cuts are
somewhat expensive to compute, but when they can be generated, they are often very
effective in cutting off portions of the LP feasible region, and improving the speed of
the solution process.

Rounding Cuts

VBA / SDK: Parameter Name "RoundingCuts”, value 1/True or 0/False

When this box is checked, Rounding cuts may be generated. A Rounding cut is an
inequality in all integer variables formed by netting out any continuous variables,
dividing through by the greatest common denomimator (gcd) of the coefficients, and
rounding down the right hand side.

Knapsack Cuts
VBA / SDK: Parameter Name "KnapsackCuts", value 1/True or O/False

Solver User Guide

Solver Options 211

When this box is checked, Knapsack cuts may be generated. Like Lift and Cover
cuts, these cuts are somewhat expensive to compute, but when they can be generated,
they are often very effective in cutting off portions of the LP feasible region, and
improving the speed of the solution process.

Gomory Cuts

VBA / SDK: Parameter Name "GomoryCuts", value 1/True or O/False

When this box is checked, Gomory cuts may be generated. Gomory cuts are found
by examining the basis inverse at the optimal solution of a previously solved LP
relaxation of the problem. This basis inverse is sensitive to rounding error due to the
use of finite precision computer arithmetic. The LP/Quadratic Solver has very good
methods for minimizing the effects of such errors, but in rare cases, you may want to
reduce the Maximum Cut Passes value when using Gomory cuts, to minimize or
eliminate possible problems due to rounding.

Probing Cuts

VBA / SDK: Parameter Name "ProbingCuts", value 1/True or 0/False

When this box is checked, Probing cuts may be generated. This process is similar to
the Preprocessing and Probing methods used in the LP Simplex Solver. Probing
involves setting certain binary integer variables to 0 or 1 and deriving values for
other binary integer variables, or tightening bounds on the constraints.

Odd Hole Cuts

VBA / SDK: Parameter Name "OddHoleCuts", value 1/True or O/False

When this box is checked, Odd Hole cuts (also called odd cycle cuts) may be
generated, using a method due to Grotschel, Lovasz and Schrijver. These cuts apply
only to constraints that are sums of binary integer variables.

Mixed Integer Rounding Cuts

VBA / SDK: Parameter Name "MirCuts", value 1/True or O/False

When this box is checked, Mixed Integer Rounding cuts may be generated.

Two Mixed Integer Rounding Cuts
VBA / SDK: Parameter Name "TwoMirCuts", value 1/True or 0/False

When this box is checked, Two Mixed Integer Rounding cuts may be generated.

Clique Cuts

VBA / SDK: Parameter Name "CliqueCuts", value 1/True or O/False

When this box is checked, Clique cuts may be generated. Cuts for both row cliques
and start cliques are generated, using a method due to Hoffman and Padberg.
Flow Cover Cuts

VBA / SDK: Parameter Name "FlowCoverCuts", value 1/True or 0/False

When this box is checked, Flow Cover cuts may be generated.

212

Solver Options

Solver User Guide

Reduce and Split Cuts
VBA / SDK: Parameter Name "RedSplitCuts", value 1/True or O/False

When this box is checked, Reduce and Split cuts may be generated. These cuts are
variants of Gomory cuts.

Special Ordered Sets
VBA / SDK: Parameter Name "SOSCuts", value 1/True or 0/False

This strategy scans the model for constraints of the form x; + x, + ... + x, = 1 where
all of the variables x; are binary integer variables. Such constraints often arise in
practice, and are sometimes called “special ordered sets.” In any feasible solution,
exactly one of the variables x; must be 1, and all the others must be 0; hence only n
possible permutations of values for the variables (rather than 2") need be considered.

Local Search Heuristic

VBA / SDK: Parameter Name "LocalHeur", value 1/True or O/False

When this box is checked, a“local search” heuristic, similar to the Primal Heuristic
discussed above for the LP Simplex Solver, is used to seek possible integer solutions
(by adjusting the values of individual integer variables) in the “vicinity” of a known
integer solution.

Rounding Heuristic

VBA / SDK: Parameter Name "RoundingHeur", value 1/True or 0/False

When this box is checked, a“rounding” heuristic is used to seek possible integer
solutions (by adjusting the values of individual integer variables) in the “vicinity” of
a known integer solution.

The Problem Tab

In the Premium Solver and Premium Solver Platform, each Solver Options dialog
includes a Problem tab. Clicking on this tab displays statistics on the size of the
current problem and the corresponding Solver engine size limits, including the
number of decision variables, number of constraints, number of bounds on the
variables, and number of integer variables. These edit controls are “read-only” — the
current problem sizes are computed automatically, and the Solver engine size limits
are obtained automatically from both built-in and field-installable Solver engines.

When the LP/Quadratic Solver is selected from the Solver engine dropdown list, the
Options button is clicked, and the Problem tab is clicked, the options shown on the
next page will be displayed. The LP/Quadratic Solver supports linear and quadratic
programming problems of up to 8,000 variables, 8,000 constraints, and 2,000 integer
variables.

Solver User Guide

Solver Options 213

LP/Quadratic Solver Options |

General | Integer | Problem I

— Current Problem
Wariables Constraints Bounds Integers

o fo [0 0

r— Solver Engine Size Limits
‘ariables Constraints Biounds Inteqgers

000 G000 16000 2000

[o]4 | Cancel | Help |

Loading, Saving and Merging Solver Models

The Solver Options dialogs also include Load Model... and Save Model... buttons,
which allow you to save and restore the specifications (variable, constraint and
objective cell selections plus option settings) of a Solver model on the worksheet.
The model specifications are stored as formulas in cells, which include references to
the variable, constraint and objective cells and values for the Solver options.

The “current” Solver model defined for each worksheet is automatically saved
“behind the scenes’ in that worksheet. So it is not necessary to use this feature to
keep track of a single Solver model — the last set of specifications you defined will be
saved automatically when the workbook is saved, and restored when it is re-opened.
But the Load Model... and Save Model... buttons can be used to save more than one
Solver model on the same worksheet, and to merge two models into one.

Saved Model Formats

The model specifications can be stored as formulas in two formats: The Classic
format, which is upward compatible from the standard Excel Solver, uses certain
built-in Excel functions and array formulas to store the model; it is not intended for
user modification. The Psi Function format, introduced in Version 7.0, uses add-in
functions such as PsiVar(), PsiCon(), PsiObj() and PsiOption() to store the model; it
is described in “ Defining Your Model with PSI Functions” in the chapter “Building
Solver Models.” Sinceit isafully documented format, it may be used to “import”
models that are created manually or with other programs.

214

Solver Options

Solver User Guide

Competitive Products

A third alternative is available for users upgrading to the Premium Solver Platform
from certain competitive software products: If you click the Load Model button and
there"s no model for the Premium Solver Platform defined in the workbook, but there
is a model defined for a recognized competitive software product, the Solver will list
this model and allow you to select it for loading. When you click OK, the model is
loaded and converted — it becomes the “current” Solver model defined for the active
worksheet, for the Premium Solver Platform.

Model Names

When you use Psi functions to save a model, you can include an argument in each
Psi function call that gives a name such as“MyModel” to a set of model specifica-
tions. When you do this, the formula cells containing Psi functions need not be
contiguous on the spreadsheet; they are associated via the model name. When you
click the Load Model button, the Solver offers you a choice of available models:

Load Model [x|

Select Model Area: Models:

BT ISeIe-:I: a range -]
Ty Model
ok | CIEwaMPLEL
The “current” Solver model also has a name, which is the same as the worksheet

name. You can choose any of the named models, or you can choose Select a range
and load a set of (usually Classic format) specifications from a contiguous cell range.

Using Multiple Solver Models

It is possible —and often useful — to define more than one Solver model based on the
same worksheet formulas. An example of thisis provided in the “Portfolio of
Securities” worksheet in the SOLV SAMP.XLS workbook that isincluded with
Microsoft Excel. This worksheet defines a portfolio optimization model, where the
Solver must determine what percentage of available funds to invest in four different
stocks (A, B, C and D) and Treasury bills. The worksheet formulas calculate the
portfolio rate of return, and the portfolio risk as measured by the statistical variance
of returns. There are two possible approaches to solving this model: (1) Find the
maximum rate of return, subject to an upper limit on the portfolio“srisk, or (2) Find
the minimum risk (variance), subject to a lower limit on the portfolio“s return.

The “current” Solver problem on this worksheet is the one that maximizes return,
subject to a constraint on portfolio risk. But both Solver problems (“Maximize
Return” and “Minimize Risk”) have been set up and their specifications saved (in
Classic format) in the lower part of this worksheet, starting at row 21. If you click on
the Load Model... button in the Solver options dialog, select cells D21:D29, and click
OK, you'll load the specifications for the problem that minimizes risk subject to a
constraint on return.

Transferring Models Between Spreadsheets

Another application of Load Model... and Save Model... is to transfer Solver model
specifications from one worksheet to another. You can do this, not only between
Excel worksheets, but between worksheets created in Excel 2000, XP, 2003 or 2007

Solver User Guide

Solver Options 215

—or created with a Premium Solver product — and worksheets created in Lotus 1-2-3
97 or Millenium Edition —which features a Solver designed by Frontline Systems.

When you open a Lotus 1-2-3 worksheet in Excel, most or all of the formulas and
cell formats will be converted automatically — but information about the “default”
Solver model is not transferred or converted. With the Save Model... and Load
Model... functions, however, you can transfer the specifications of the Solver model
as formulas on the worksheet. You can do this in either direction, as outlined below.

From 1-2-3 to Excel

1. Starting from the Solver Options dialog, click the Save Model button
and save your Solver model specifications in a cell range.

2. Choose File Save As... and save the workbook with the Solver model
specifications in 1-2-3 Release 5 (WK4) format.

3. Open the saved WK4 file in Excel.

4. Choose Tools Premium Solver to display the Solver Parameters dialog.
Click the Options button to display the Solver Options dialog.

5. Click Load Model, and select the cell range containing the model
specifications.
From Excel to 1-2-3

1. First, choose File Save As... and save your Excel workbook in WK4
format. Thisstep givesa“hint” to the Excel Solver to use a model
specification format that can be read by both Excel and 1-2-3.

2. Starting from the Solver Options dialog, click the Save Model button to
save your Solver model specifications in a cell range.

3. Choose File Save to save the WK4 file with the Solver model
specifications.

4. Open the saved WK4 file in 1-2-3.

5. Choose Range Analyze Solver to display the Solver Parameters dialog.
Click the Options button to display the Solver Options dialog.

6. Click Load Model, and select the cell range containing the model
specifications.

Merging Solver Models

In the standard Microsoft Excel Solver and earlier versions of the Premium Solver
products, loading a model“s specifications through Load Mode!... causes any existing
specifications for the “current” Solver model to be erased. Y ou are prompted before
this happens with the alert box shown below.

Microsoft Excel [x|

@ HReset previous Solver cell selections?

Cancel |

216 Solver Options Solver User Guide

In recent versions of the Premium Solver products, you have another choice: You
can merge the model specifications being loaded with the current model
specifications. Where the specifications necessarily overlap —as in the selection of
the objective (and the “maximize” or “minimize” setting) and in the settings of Solver
options — the newly loaded specifications take precedence. But the variable cell
selections and the constraint left hand sides, relations and right hand sides being
loaded are merged into the current model. You are prompted to choose between
replacing the current model specifications and merging in the new specifications:

Do wou wank ko replace the current model, or merge the new
model with the current model?

Merge I Cancel | Help |

&eplace

Merging model specifications can be quite useful, for it allows you to build and test
smaller, simple Solver models and then combine them into a larger model. Suppose,
for example, that you wanted to create a planning model for a manufacturing firm
that would take into account both the mix of products being built and the routes along
which they were being shipped. You might create two models on one worksheet, one
based on the Product Mix example and the other based on the Shipping Routes
example in SOLVSAMP.XLS, and test them individually. Then you could combine
them with the Merge function, and test the production-distribution model as a whole.

Solver User Guide

Solver Options 217

218 Solver Options Solver User Guide

Solver Reports

Introduction

This chapter will help you use the information in the Solver Reports, which can be
produced when the Solver finds a solution — or when it fails to find a solution, and
instead reports that the linearity conditions are not satisfied, or that your model is
infeasible. We"ll explain how to interpret the valuesin the Answer, Sensitivity and
Limits Reports, available in the standard Excel Solver and the Premium Solver
products, and how to use the diagnostic Scaling, Linearity and Feasibility Reports
and the specialized Solutions and Population Reports, which are unique to the
Premium Solver Platform. To illustrate the reports, we'll use EXAMPLEL through
EXAMPLE4 in the workbook Examples.xls, which you can examine by clicking
Help, then the Examples button in the initial Help dialog. For the Solutions Report,
we"ll use other examples including a historically interesting nonlinear equation.

Structure and Transformation Reports

In addition to the eight types of reports described in this chapter, the Premium Solver
Platform offers two additional reports that are produced by the new Polymorphic
Spreadsheet Interpreter, and requested via the Solver Model dialog, as explained in
the chapter “Analyzing and Solving Models.”

The Structure Report, described and illustrated in “ Analyzing Model Exceptions,”
analyzes in depth the linear, quadratic, smooth nonlinear, and non-smooth variables
and functions in your model, and helps you find and fix “exceptional” formulasiif
you're having difficulty build a linear or quadratic programming model.

The Transformation Report, shown in “Transforming Y our Non-Smooth Model,”
documents how the Polymorphic Spreadsheet Interpreter can automatically transform
your model, replacing non-smooth functions such as IF, MIN, MAX, ABS, AND,
OR, and NOT with equivalent expressions using new variables and linear constraints.

Answer, Sensitivity and Limits Reports

The Answer, Sensitivity and Limits Reports are available when the Solver finds an
optimal solution for your model; they give you additional information about the
solution and its range of applicability. All three reports can be useful, but we
recommend that you focus on the Sensitivity Report. When properly interpreted, this
report will tell you a great deal about your model and its optimal solution, which you
could not easily determine by simply inspecting the final solution values on the
worksheet. Using the Sensitivity Report, you can determine what would happen if

Solver User Guide

Solver Reports 219

you changed your model in various ways and re-ran the Solver, without your having
to actually carry out these steps.

In Excel VBA, you can use the new object-oriented API to access the information in
the Answer and Sensitivity Reports via the properties InitialVValue, FinalValue,
DualValue, DualUpper, and DualLower of the Variable and Function objects. These
objects and properties can also be used in the Solver Platform SDK, outside of Excel.
See the chapter “Using the Object-Oriented API” for further information.

Scaling Report

The Scaling Report — available only in the Premium Solver Platform, since it uses the
Polymorphic Spreadsheet Interpreter — helps you find and fix poorly scaled formulas
in your model. It appears in the Reports list box of the Solver Results dialog when
you get a result — such as “ Solver could not find afeasible solution,” “ Solver could
not improve the current solution,” or “The linearity conditions required by this Solver
engine are not satisfied” — that generally indicate other conditions, but may be due to
a poorly scaled model. If you are puzzled by a result, and you see that the Scaling
Report is available, we highly recommend that you select it, click OK, and then
examine the report contents. This takes only a moment, and it may save you hours of
timeif it reveals ascaling problem. See“The Scaling Report” below for arealistic
example, using the EXAMPLE4 Portfolio Optimization model.

Linearity and Feasibility Reports

The Linearity and Feasibility Reports -- available in both the Premium Solver and the
Premium Solver Platform — help you diagnose problems in your models.

With the Linearity Report, you can pinpoint and, if desired, eliminate nonlinear
functions from your model, so that it can be solved with a faster and more reliable
linear Solver. Using the object-oriented API or the Solver Platform SDK, you can
access the information in the Linearity Report by calling the Model object
DependTest method. In the Premium Solver Platform, the Structure Report or the
Model object DependCheck method can provide even more information.

With the Feasibility Report, you can pinpoint the constraints that interact to make
your model infeasible, and correct them as needed. Using the object-oriented API or
the Solver Platform SDK, you can access the information in the Feasibility Report
via the BoundIndex, BoundStatus, Constraintindex and ConstraintStatus properties
of the OptlIS object, which is a member of each Variable and Function object.

Solutions Report

Where the Answer Report gives you detailed information about the single “best
solution” that appears on the worksheet when the Solver Results dialog is displayed,
the Solutions Report gives you objective function and decision variable values for a
number of alternative solutions, found during the optimization process. For mixed-
integer problems, the report shows each ,incumbent” or feasible integer solution
found by the Branch & Bound method. For global optimization problems solved
with the GRG, LSGRG, LSSQP, and KNITRO Solver engines, the report shows each
locally optimal solution found by the Multistart method. For the Evolutionary and
OptQuest Solvers, the report shows members of the final population of solutions.

Using the object-oriented API or the Solver Platform SDK (after calling the Solver
object Optimize method), you can access the information in the Solutions Report by
setting the Solver object Solutionindex property to a value between 1 and the
NumSolutions property value, then accessing the Value properties of the Variable
and Function objects.

220

Solver Reports

Solver User Guide

The Solutions Report has a special meaning for the Interval Global Solver. It is
available for problems with no objective function to be maximized or minimized, and
with all equality constraints (a system of equations) or all inequality constraints (a
system of inequalities). For a system of nonlinear equations, the Answer Report
shows only a single solution, but the Solutions Report shows you all real solutions.
For a system of inequalities, the Answer Report again shows you only a single
feasible point, but the Solutions Report shows you an “inner solution” —a region or
set of points where all of the constraints are satisfied.

Population Report

The Population Report is supported by the Evolutionary Solver; it gives you
summary statistical information about the entire population of candidate solutions
maintained by the Evolutionary Solver at the time the solution process was
terminated. It can give you further insight into the quality of solutions found by the
Evolutionary Solver.

All of the reports are Microsoft Excel worksheets, with grid lines and row and
column headings turned off. You can turn the grid lines and headings back on, if you
wish, by choosing Tools Options... and selecting the View tab in the resulting dialog.
In the Premium Solver products, you can request outlined reports, which are
worksheets where certain rows are grouped together in an outline structure that you
can expand or collapse as you wish. Because the reports are worksheets, you can
copy and edit the report information, perform calculations on the numbers in the
reports, or create graphs directly from the report data. This makes the Premium
Solver Platform"s reports considerably more useful than those produced by
standalone optimization software packages.

Selecting the Reports

When the Solver finds the solution to an optimization problem, or when the solution
process is terminated prematurely due to some error condition (or your own inter-
vention), the Solver Results dialog is displayed, as shown below.

Solver Results [x|

Solver Found a solution. Al constraints and optimality
conditions are satisfied.
Reports
Answer
% Keep Solver Solution Sensitivity
Lirnits
) Reskore Original Values
™! Return to Solver Parameters Dialog [T outline Reports
Cancel Sawe SCenario... Help

If the solution process was terminated prematurely, the Reports list box in the dialog
above will be replaced by the legend “No reports available.” If you checked the
Bypass Solver Reports box in the Solver Options dialog, the Reports list box will
appear with the choices that would otherwise have been available, but they will be
grayed out and you will unable to select them.

When the LP/Quadratic Solver, SOCP Barrier Solver, or GRG Nonlinear Solver
finds the solution to a mixed-integer programming problem, the Reports list box
includes only the Answer Report —the Sensitivity and Limits Reports are not

Solver User Guide

Solver Reports 221

meaningful in this situation. If (and only if) the Solver finds more than one integer
feasible solution or ,,incumbent", the list box also includes the Solutions Report:

Solver Results [x|

Solver Found a solution. Al constraints and optimality
conditions are satisfied.
Reports
Answer
% Keep Solver Solution Salutions
) Reskore Original Values
™! Return to Solver Parameters Dialog [T outline Reports
Cancel Sawe SCenario... Help

Similarly, when the GRG Nonlinear Solver or the Interval Global Solver finds the
solution to a global optimization problem, the Reports list box includes only the
Answer Report. If the GRG Solver, run with the ,Multistart Search" box checked,
finds more than one locally optimal solution, the Reports list box includes the
Solutions Report, as shown above. The Solutions Report also appears when the
Interval Global Solver solves a system of nonlinear equations or a system of

inequalities, without an objective function. Examples of these reports are shown in
the section “The Solutions Report.”

If you are using the Evolutionary Solver, when the solution process is terminated —
for any reason — you'll see a Solver Results dialog like the one below:

Solver Results [x|

Stop chosen when the maxinurn number of subproblems
was reached, all constraints are satisfied,
Reports
Answer
& Keep Solver Solution Populakion
Solutions
) Reskore Original Values
[Return to Solver Parameters Dialog [T outline Reports
Cancel Sawe SCenario... Help

Since the Evolutionary Solver always maintains a population of candidate solutions,
including a“best” solution found so far, it offers the Answer, Population and Solu-
tions Reports in all cases —even if it has not found a feasible solution. But since the
Evolutionary Solver has no strict test for optimality, linearity or even feasibility, the
Linearity, Feasibility, Limits and Sensitivity Reports are not available.

If you've selected the Simplex LP or LP/Quadratic Solver engine, but your model
contains nonlinear functions of the decision variables, the Solver will report the error
via the Solver Results dialog shown below:

Solver Results m

The linearity conditions required by this Solver engine are
nok satisfied,
Reports

Linearity

% Keep Solver Solution Scaling

" Restore Original Values

[Return to Solver Parameters Dialog [Cutline Reparts

Zancel Save Scenario, .. Help

222

Solver Reports

Solver User Guide

The only reports you can select in this situation are the Scaling Report (because a
poorly scaled model can give rise to this message — see above) and the Linearity
Report, which can help you locate the source of the problem with your model. An
example of the Linearity Report is shown later in this chapter.

If the Solver finds that your model is infeasible, it displays a Solver Results dialog
like the one shown below.

Solver Results [x|

Salver could not find & Feasible salution.
Reports
Feasibility
% Keep Solver Solution Feasibility-Bounds
Scali
) Reskore Original Values raing
[Return to Solver Parameters Dialog [T outline Reports
Cancel Sawe SCenario... Help |

Again the Scaling Report is available, because a poorly scaled model can give rise to
this message. In this case, you can select either version of the Feasibility Report (you
are allowed to select both, but the “Feasibility” report contains all of the information
in the “Feasibility-Bounds” version, and more). “Feasibility” performs acomplete
analysis of your model, including bounds on the variables, to find the smallest
possible subset of these constraints that is still infeasible. This can sometimes take a
great deal of computing time (if necessary, you can interrupt the analysis and
production of the report by pressing the ESC key). “Feasibility-Bounds’ performs a
similar analysis of the constraints, but does not attempt to eliminate bounds on the
variables, to save computing time.

Outlining and Comments in Reports

A useful way to control the information you see in reports is to check the box
“Outline Reports” in the Solver Results dialog, to produce the reports you“ve selected
in outlined format. Outlining groups the variables and constraints in the reports into
“blocks,” just asyou entered them in the Solver Parameters dialog; you can expand
or collapse the groups to see only the information you want.

Reportsin outlined format can display a descriptive comment on each “block” of
variables and constraints. Comments for constraint blocks are entered in the Add
Constraint and Change Constraint dialogs, displayed when you click the Add and
Change buttons in the Solver Parameters dialog. To add comments to blocks of
variables, click the Variables button to display the Variables list box, then click the
Add or Change buttons to display the Add Variable or Change Variable dialog.

Using the Solver Results Dialog

When the Reports list box is available, you can select one or more of the reports
shown. Simply click on the report names to select the reports you want, or press Alt-
R and then down-arrow from the keyboard. To select more than one report, hold
down the SHIFT or CTRL key while you click on the report names with the mouse.

Once the reports are selected, you can choose one of the options “Keep Solver
Solution” or “Restore Original Values,” and optionally save the decision variable
values in a named scenario by clicking on the Save Scenario... button. When you
click on OK, the reports will be produced. Clicking on Cancel instead will cancel
generation of the reports, and will discard the solution (restoring the original values).

Solver User Guide

Solver Reports 223

The reports are Microsoft Excel worksheets that are inserted in the current workbook,
just before the sheet containing the Solver model.

After the reports (if any) are produced, the Solver will return to worksheet Ready
mode unless you have checked the box “Return to Solver Parameters Dialog.” This
check box saves you the effort of selecting Tools Premium Solver... over and over, if
you are solving several variations of the same problem, or solving with different
option settings. When you check the “Return to Solver Parameters Dialog” box, it
remains checked (until you change it) for the duration of your Excel session. To
return to worksheet Ready mode, you can either click the Close button in the Solver
Parameters dialog, or uncheck this box in the Solver Results dialog.

The Scaling Report

The effects of poor scaling in a large, complex optimization model can be among the
most difficult problems to identify and resolve. It can cause Solver engines to return
a variety of messages, with results that are suboptimal or otherwise very different
from your expectations. Most Solver engines include an Automatic Scaling option to
deal with scaling problems, but this can only help with the Solver"sinternal
calculations — not with poor scaling that occurs in the middle of your Excel model.

For example, if one of your formulas adds or subtracts two quantities of very
different magnitudes, such as a dollar amount in millions or billions and a return or
risk measure in fractions of a percent, the result will be accurate to only a few
significant digits. The effect might not be apparent given the initial values of the
variables, but when the Solver explores Trial Solutions with very different values for
the variables, the effect will be magnified.

You can see an example of the effects of poor scaling if you open Examples.xls (in
the Solver Parameters dialog, just click the Help button, then the Examples button),
and select worksheet EXAMPLE4. Suppose that in this Portfolio Optimization
model, you decide to make a simple change: Instead of using percentages for the
stock alocations, you“d rather see the actual dollarsto be invested, in your $1 billion
institutional portfolio. So you change the constraint TotalPortfolio = 1 (or 100%) to
be TotalPortfolio = 1000000000. You change the cell formatting to display large
numbers instead of percentages, and you select the GRG Nonlinear Solver (for the
sake of this example, since it is more susceptible to scaling problems than the
LP/Quadratic Solver). When you click Solve, you“re surprised to find that the Solver
reports it cannot find a feasible solution, as shown on the next page.

The Trial Solution on the worksheet doesn't even allocate the entire $1 billion to
stocks. Since you“re familiar with the Solver options, you turn on the Use Automatic
Scaling box in the GRG Solver Options dialog and click Solve again, but you just get
adifferent infeasible result. What"s wrong with the Solver? (Past users of the
Premium Solver products have on occasions wrestled with problems just like this.)

224

Solver Reports

Solver User Guide

EE Examples.xls [_ (O] x|
A B [0 E F H

Portfolio Optimization - Markowitz Method

Thiz model findz the optimal allozation of funds to stocks that minimizes the portfolio risk, measured by

partfolio % ariance [a quadratic function] at cell 117 - computed via a custom QUADPRODULCT function.
If you see HHAME? in 117, uze Tools Add-Ins... and check the box next to Frontling's M athematical

Functiohs. This guadratic programming [BF) model can be solved with the GRG Monlinear Salver, or
mare efficiently in the Premium S olver Platform with the LP/Quadratic Solver or the SOCP B arier Solver,

[>]

Stock 1 Stock 2 Stock 3 Stock 4 Stock § Total
Portfolio % |5039I3519 R0361455 H1567866 G0156049 5368?091" 2 57E+08

E“_F Solver Results n

£

—
o

Solver could not find a Feasible solution, -
R t
v Reports

. Feasibility
% Keep Solver Solution Feasibility-Bounds
5 € Restore Original Yalues

RN R Y
LAk =

JE Y
| b=

¥ Return to Solver Parameters Dialog] Cutline Reports Variance | 8.26E+14

18 _ Std. Dev. 28746501

19 Ok I Cancel | Sawe Scenaria. .. | Help | IRetum 23971471
0 hd
M 4 v M[{ EXAMPLEZ { EXAMPLES % EXAMPLE4 ¢ EXAMPL]| 4 | | oy

Noticing that the Scaling Report is available in the Solver Results dialog, you select
this report and click OK. The Scaling Report is inserted into your workbook:

E"-‘J Examples.xls [_ [O] x| I

A B c D E F ':ﬂ
Microsoft Excel 11.0 Scaling Report

Worksheet: [Examples.xIs]EXAMPLE4

Report Created: 08/20/2006 12:00:00 PM

Number of scaling problems found: 7

Cells with scaling problems
Address

Portfolio_“ariance
Total Portfalio

oM el k=

=

-

W 4« » w]yScaling Report 1 { EXAMPLEA « | | Dl g

The report indicates that there are scaling problems with the formula at the cell with
defined name ,Portfolio_Variance" (EXAMPLE4!117). In a very large model, this
cell might be very hard to find by manual inspection. You can click on the under-
lined cell reference to jump to cell 117 on the EXAMPLE4 worksheet. You see that
the Variance is a very large number — 8.26E+14, or 826 trillion. The Scaling Report
has drawn your attention to a scaling issue in the formulas that calculate your model
outside of the Solver"s own calculations.

In seeking the optimal solution, the Solver is likely to try extreme values — large and
small —for the variables. This doesn"t cause problems when the largest valueis
100% or 1 and the smallest is 0, but it does cause problems when the largest value is
1 billion. At this point, calculation of the Portfolio Variance involves adding a very
small value and a very large one (the Stock 5 variance times 1 billion squared) which
leads to aloss of accuracy. Thisloss of accuracy leads directly to the Solver”s
problems finding a solution.

Solver User Guide Solver Reports 225

An Example Model

To illustrate the other reports provided by the Premium Solver Platform, we'll start
with the model on worksheet EXAMPLEL in the workbook Examples.xls.

Beomerss @A
A 5 | NENM E | r ool

A, B C E F [} "
1 |Example 1: Product mix problem. ™
2 |Your company manufactures TWs, stereos and speakers, using a common parts
3 |inventory of power supplies, speaker cones, etc. Parts are in limited supply and vou
A |must determine the most prafitable mix of products to build. See aur Tutarial Online
5 |for step-by-step instructions on formulating thiz linear programrming rodel.
4]
7
o] TV e Shaan Soastar
9 Hramder fr Fegiirr | 100 100 100
10 | Faddame dwaske Ao died
11 | EFeie 450 200 1 1 i
12 | Fintns Fuie 250 100 1 1] i
13 | Snazdar S a0n 500 2 2 1
14 | Ao Srgnnt 450 200 1 1 0
15 | Sfacinior GO0 400 2 1 1 b
16 Frendife-
17 By Fradtacd 375 $a0 435
Total [$16.000 I
19 A
M 4 b W\EXAMPLEL { EXAMPLEZ [EXAME |« |] Dllg

You can easily load this model by clicking the Help button, then the Examples button
in the Solver Parameters dialog

First, we'll solve thismodel inits original form, using the L P/Quadratic and GRG
Solvers, and produce Answer, Sensitivity and Limits Reports. In brief, the Answer
Report summarizes the original and final values of the decision variables and
constraints, with information about which constraints are “binding” at the solution.
The Sensitivity Report provides information about how the solution would change
for small changes in the constraints or the objective function. And the Limits Report
shows you the largest and smallest value each decision variable can assume and still
satisfy the constraints, while all other variables are held fixed at their solution values.

Next, we'll change the available inventory of Chassis at cell B11to -1. This is shown
in Examples.xlIs on the EXAMPLE?2 worksheet. When we attempt to solve, we
receive the message “ Solver could not find a feasible solution,” and we can produce
the report shown below in the section “The Feasibility Report.”

Next, we'll deliberately introduce a nonlinear function into the model, by editing the
formula at cell C11 to read =SUMPRODUCT(D11:F11,D9:F9)0.9. This is
shown in Examples.xls on the EXAMPLE3 worksheet. When we attempt to solve
this model with the Simplex LP or LP/Quadratic Solver, we'll receive the message
“Thelinearity conditions required by this Solver engine are not satisfied,” and we can
produce the report shown below in “The Linearity Report.”

Returning to the unmodified version of EXAMPLEL, we"ll solve the model using the
Evolutionary Solver, waiting until we receive the message “ Solver cannot improve
the current solution.” This alows us to produce the report shown below in “The
Population Report.”

In the Premium Solver Platform V7.0, the Solutions Report has been generalized to
report multiple solutions for integer programming problems, global optimization

226

Solver Reports

Solver User Guide

problems, and non-smooth optimization problems, solved by any of the built-in or
plug-in Solver engines. We"ll illustrate this useful report with additional examples.

The Solutions Report has a special meaning for the Interval Global Solver, because it
can find multiple solutions for systems of equations and systems of inequalities. To
illustrate this, we"ll return to EXAMPLEL and make the Set Cell blank, removing the
objective function from this model. What remains is a set of <= constraints —a
system of inequalities (and bounds on the variables). When we solve this model with
the LP/Quadratic and GRG Solvers, we find only a single feasible solution, which is
not very informative. But when we solve it with the Interval Global Solver, we get an
“inner solution” —an entire region of feasible solutions. To illustrate the Solutions
Report for a system of equations, we'll introduce a simple but historically interesting
nonlinear equation mentioned in the Introduction.

The Answer Report

The Answer Report, which is available whenever a solution has been found, provides
basic information about the decision variables and constraints in the model. It also
gives you a quick way to determine which constraints are “binding” or satisfied with
equality at the solution, and which constraints have slack. In Version 7.0, the Answer
Report includes the message that appeared in the Solver Results dialog, the name of
the Solver engine used to solve the problem, and statistics such as the time, iterations
and subproblems required to solve the problem. An example Answer Report for the
worksheet model EXAMPLE1L (when there are no upper bounds on the decision
variables) is shown on the next page.

First shown are the objective function (Set Cell) and decision variables (adjustable
cells), with their original value and final values. Next are the constraints, with their
final cell values; aformula representing the constraint; a“ status’ column showing
whether the constraint was binding or non-binding at the solution; and the slack value
—the difference between the final value and the lower or upper bound imposed by
that constraint.

A binding constraint, which is satisfied with equality, will always have a slack of
zero. (In the standard Microsoft Excel Solver, an exception to this occurs when the
right hand side of a constraint is itself a function of the decision variables. In the
Premium Solver products, this special case is handled differently, and the slack value
for a binding constraint will always be zero.)

This example shows the effect of automatic outlining of the Solver reports, which
you can select viathe “Outline Reports’ check box in the Solver Results dialog. The
outline groups correspond directly to the blocks of variables and constraints you
entered in the Solver Parameters dialog — one group per row in the Constraints or
Variables list box. Comments entered in the Add Constraint and Add Variable
dialogs for each block appear in the Answer Report; they are visible whether the
outline is expanded or collapsed.

Solver User Guide Solver Reports 227

51 Examples_xls !Elm
(1] 2] Al B [D E F G
Microsoft Excel 11.0 Answer Report

Worksheet: [Examples.xIs]EXAMPLE1

Report Created: 08/20/2006 12:00:00 PM

Result: Solver found a solution. All constraints and optimality conditions are satisfied.
Engine: Standard LP/Quadratic

Solution Time: 00 Seconds

Iterations: 3

Subproblems: 0

Incumbent Solutions: 0

[»]

Target Cell (hax)
Cell Name Original Value Final Value
D18 Total Profits: 16000 25000

Adjustable Cells

FEY PO 0 Y Y Y N Y _

Cell Name Original Value Final Value
$049:5F$9
$0%9 Mumber to Build-= T4 set 100 200
E9 Mumber to Build-= Stereo 100 200
: F9 Mumber to Build-> Speaker 100 0
=l L
| 23 |Constraints
|24 | Cell Name Cell Value Formula Status Slack
126 | $CHITCHI5<=$B$11:$B$15 Inventory Constraints
[- [26] $C%11 Chassis MNo. Used 400 $CH11<=5B%11 Mot Binding 50
- | 27| SCH12 Picture Tube Mo, Used 200 $CH12<=$BF12 Mot Binding 50
© 28| $CH3 Speaker Cone Mo. Used 800 $CHI3<=5§B513 Binding]
| 29] $CH14 Power Supply Mo, Used 400 $C514<=5B%14 Mot Binding a0
130 %C$15 Electronics Mo, Used 600 $CH15<=3B§15 Binding 0
=
132 | D%:F9>=0 Nen-Negativity Constraints
[- [33] 3$D%3 Number to Build-> TV set 200 $0%3==0 Mat Binding 200
| 34| E3 Mumberto Build-> Stereo 200 FE§I==0 Mot Binding 200
* |35 F2 Number to Build-> Speaker 0 §F$2==0 Binding 0
SRES
37 -
M« » W\ Answer Report 1 EXAMPLEL f ExaMPLEZ £ Exal]«] | |l

When creating a report, the Solver constructs the entries in the Name column by
searching for the first text cell to the left and the first text cell above each variable
(changing) cell and each constraint cell. If you lay out your Solver model in tabular
form, with text labels in the leftmost column and topmost row, these entries will be
most useful —as in the example above. Also note that the formatting for the Original
Value, Final Value and Cell Vaueis“inherited” from the formatting of the
corresponding cell in the Solver model.

The Sensitivity Report

The Sensitivity Report provides classical sensitivity analysis information for both
linear and nonlinear programming problems, including dual values (in both cases)
and range information (for linear problems only). The dual values for (nonbasic)
variables are called Reduced Costs in the case of linear programming problems, and
Reduced Gradients for nonlinear problems. The dual values for binding constraints
are called Shadow Prices for linear programming problems, and Lagrange Multipliers
for nonlinear problems.

Constraints which are simple upper and lower bounds on the variables, that you enter
in the Constraints list box of the Solver Parameters dialog, are handled specially (for
efficiency reasons) by both the linear and nonlinear Solver algorithms, and will not
appear in the Constraints section of the Sensitivity report. When an upper or lower

228

Solver Reports

Solver User Guide

bound on a variable is binding at the solution, a nonzero Reduced Cost or Reduced
Gradient for that variable will appear in the “ Adjustable Cells’ section of the report;
this is normally the same as a Lagrange Multiplier or Shadow Price for the upper or
lower bound.

Note: The formatting of cells in the Sensitivity can make a significant difference in
how the Reduced Gradient, Lagrange Multiplier, Reduced Cost and Shadow Prices
are displayed. Bear this in mind when designing your model and when reading the
report. Since the report is a worksheet, you can always change the cell formatting
with the Format menu.

An example of a Sensitivity Report generated for EXAMPLEL when the Solver
engine is the nonlinear GRG solver (and there are no upper bounds on the variables)
is shown below. Note that it includes only the solution values and the dual values:
Reduced Gradients for variables and Lagrange Multipliers for constraints. 1f you
solve a quadratic programming problem with the LP/Quadratic Solver, the report
will also appear in this format.

EB Examples. xls !EI I

1]z Al B C D E =]
Microsoft Excel 11.0 Sensitivity Report ™
Worksheet: [Examples.xIs]EXAMPLE1

Report Created: 08/20/2006 12:00:00 PM

Target Cell (Max)
Cell Name Final Value
50518 Total Profits: 25000

Adjustable Cells

1
2
13
4
|5 |
16 |
L7 |
8|
=N
|10 | Final Reduced
11 Cell Name Value Gradient
112 $D39:4F$9
< [13] $D%3 Mumberto Build-= T set 200 1]
< [14| E3 Numberto Build-> Stereo 200 1]
- [15| %F§3 Numberto Build-> Speaker 7.10543E-15 24
= e
17
| 18 |Constraints
119 | Final Lagrange
|20 Cell Name Value lMultiplier
121 $CHI1:$CH15<=B11:4B415
22| §CH11 Chassis Mo, Used 400 1]
| 23| $CH12 Picture Tube Mo, Used 200 1]
|24 | $CH13 Speaker Cone Mo, Used 800 13
= | 28] $C%14 Power Supply Mo, Used 400 o
- | 26| C15 Electronics Mo, Used £00 25
cllva
28 -
M4 » M| Sensitivity Report 1 EXAMPLEL | <] | I

Interpreting Dual Values

Dual values are the most basic form of sensitivity analysis information. The dual
value for avariable is nonzero only when the variable"s value is equal to its upper or
lower bound at the optimal solution. This is called a nonbasic variable, and its value
was driven to the bound during the optimization process. Moving the variable"s
value away from the bound will worsen the objective function"s value; conversely,
“loosening” the bound will improve the objective. The dual value measures the
increase in the objective function"s value per unit increase in the variable"svalue. In
the example Sensitivity Report above, the dual value for producing speakers is -2.5,
meaning that if we were to build one speaker (and therefore less of something else),
our total profit would decrease by $2.50.

Solver User Guide Solver Reports 229

The dual value for a constraint is nonzero only when the constraint is equal to its
bound. This is called a binding constraint, and its value was driven to the bound
during the optimization process. Moving the constraint left hand side"s value away
from the bound will worsen the objective function"s value; conversely, “loosening”
the bound will improve the objective. The dual value measures the increase in the
objective function"s value per unit increase in the constraint“s bound. In the example
on the previous page, increasing the number of electronics units from 600 to 601 will
allow the Solver to increase total profit by $25.

If you are not accustomed to analyzing sensitivity information for nonlinear
problems, you should bear in mind that the dual values are valid only at the single
point of the optimal solution — if there is any curvature involved, the dual values
begin to change (along with the constraint gradients) as soon as you move away from
the optimal solution. In the case of linear problems, the dual values remain constant
over the range of Allowable Increases and Decreases in the variables® objective
coefficients and the constraints" right hand sides, respectively.

Interpreting Range Information

In linear programming problems, unlike nonlinear problems, the dual values are
constant over a range of possible changes in the objective function coefficients and
the constraint right hand sides. The Sensitivity Report for linear programming
problems includes this range information.

A Sensitivity Report for EXAMPLEL when the Solver engine is the standard Simplex
or LP/Quadratic Solver (and there are no upper bounds on the decision variables) is
shown below. In addition to the dual values (Reduced Costs for variables, Shadow
Prices for constraints), this report provides information about the range over which
these values will remain valid.

'53 Examples. xls !Elm
[1]z] AlB c o] E F G H =
| 1 |Microsoft Excel 11.0 Sensitivity Report ™
| 2 |Worksheet: [Examples.xIs]EXAMPLE1
| 3 |Report Created: 08/20/2006 12:00:00 PM
4
ETarget Cell (Max)
| B | Cell Name Final Value
| 7 | SD§18 Total Profits: 25000
g
| 9 |Adjustable Cells
|10 | Final Reduced Objective Allowable Allowable
11 Cell Name Value Cost Coefficient Increase Decrease
112 D9:F9
| 13| $D§9 MWurnber to Build-> TV set 200 a 75 250000002 5.0000002
| 14| EY Murnber to Build-> Stereo 200 a 50 25.0000001 125000001
<[18] §F§3 Mumber to Build-> Speaker 0 -25 38 25 1E+30
= [ie)
|17 |
| 18 |Constraints
15| Final Shadow Constraint Allowable Allowable
|20 | Cell Name Value Price R.H. Side Increase Decrease
121] $CHI1:5CH15<=$B$11:$B$15
| 22| $CH11 Chassis No. Used 400 a 450 1E+30 50
© [23] §C$12 Picture Tube Mo, Used 200 0 250 1E+30 a0
|24 | $CHI3 Speaker Cone Mo. Used 800 13 800 100 100
» | 25| $CHI4 Power Supply Mo, Used 400 i 450 1E+30 50
- | 26| $CHIS Electronics Mo, Used 00 25 £00 £0 200
= [
] -
M 4 v W[\ Sensitivity Report 1 { EXAMPLEL £ EXAMPLEZ { EXAMPL | | | ol

For each decision variable, the report shows its coefficient in the objective function,
and the amount by which this coefficient could be increased or decreased without
changing the dual value. In the example below, we"d still build 200 TV sets even if

230 Solver Reports Solver User Guide

the profitability of TV sets decreased up to $5 per unit. Beyond that point, or if the
unit profit of speakers increased by more than $2.50, we"d start building speakers.

For each constraint, the report shows the constraint right hand side, and the amount
by which the RHS could be increased or decreased without changing the dual value.
In this example, we could use up to 50 more electronics units, which we'd use to
build more TV sets instead of stereos, increasing our profits by $25 per unit. Beyond
650 units, we would switch to building speakers at an incremental profit of $20 per
unit (a new dual value). A value of 1E+30 in these reports represents “infinity:” In
the example bel ow, we wouldn"t build any speakers regardless of how much the
profit per speaker were decreased.

The Limits Report

The Limits Report was designed by Microsoft to provide a specialized kind of
“sengitivity analysis’ information. It is created by re-running the Solver model with
each decision variable (or Changing Cell) in turn as the objective (both maximizing
and minimizing), and al other variables held fixed. Hence, it shows a*“lower limit”
for each variable, which is the smallest value that a variable can take while satisfying
the constraints and holding all of the other variables constant, and an “upper limit,”
which is the largest value the variable can take under these circumstances. An
example of the Limits Report for EXAMPLEZ1 is shown below.

E‘E Examples_xls !Em
[1]2] A =] C D E| F G Hl J =

| 1 [Microsoft Excel 11.0Limits Report =

| 2 |Worksheet: [Examples.xIs]EXAMPLE1

| 3 |Report Created: 08/20/2006 12:00:00 PM

4
15
| 6 | Target
7 Cell Value

8| sD§18 Total Profits: §25 000

o

1o

111 Adjustable Lower Target Upper Target

12 Cell Name Value Limit Result Limit Result

13| D9:F9

14| $D§3 Murnber to Build-» TV set 200 0 $10,000 200 $25000

| 15| E3 MNumber to Build-> Stereo 200 0 §15,000 200 %245 000

| 16| §F39 Murber ta Build-> Speaker 0 0 §25000 0 $25000
- |17 -
4 4 » w]\Limits Report 1 { EXAMPLEL { EXAMPLEZ { EXAMP[| « | | oy

The Feasibility Report

The purpose of the Feasibility Report is to help you isolate the source of infeasi-
bilitiesin your model. Most often, an infeasible result simply means that you“ve
made a mistake in formulating your model, such as specifying a <= relation when you
meant to use >=. However, if your model contains hundreds or thousands of
constraints, it can be quite challenging to locate an error of this type. By isolating the
infeasibility to a small subset of the constraints, the Feasibility Report can show you
where to look, and hence save you a good deal of time.

To produce the Feasibility Report, the Solver may test many different variations of
your model, each one with different combinations of your original constraints. This
process ultimately leads to a so-called “Irreducibly Infeasible System” (11S) of

Solver User Guide

Solver Reports 231

constraints and variable bounds which, taken together, make the problem infeasible,
but with the property that if any one of the constraints or bounds is removed from the
I1S, the problem becomes feasible.

In a model with many constraints that “interact” with each other in complex ways,
there may be many possible subsets of the constraints and bounds that constitute an
I1S. Often, some of these subsets have many fewer constraints than others. The
Solver attempts to find an 11S containing as few constraints as possible, trying first to
eliminate “formula” constraints and then to eliminate simple variable bounds — since
it is usually easier to understand the effects of variable bounds on the infeasibility of
the resulting I1S.

If we attempt to solve EXAMPLE2 in the Examples.xls workbook — which is
identical to EXAMPLEL except that cell B11 (the right hand side of the constraint
Cl11 <=B11) is set to -1 — we receive the message “ Solver could not find afeasible
solution.” At this point, we know only that the problem is somewhere in the set of
five constraints (C11:C15 <= B11:B15) and three bounds on the variables. To
pinpoint the problem, we select Feasibility from the Reports list box, producing a
report like the one shown below. The Feasibility Report narrows the full set of
constraints to the single constraint C11 <= B11 and bounds on variables D9 and E9.

EE Examples.xls =] I

Al B c D E F G ZI'
Microsoft Excel 11.0 Feasibility Report

1

2 |Worksheet: [Examples.xIs]EXAMPLEZ

3 |Report Created: 08/20/2006 12:00:00 P

4

g

6 |Constraints Which hake the Problem Infeasible

7 Cell Name Cell Value Formula Status Slack

g FCH1T Chassis Mo, Used 0 BCH11==5B%11 “iolated -1

9 $0%2 Mumber to Build-= TV set 0 $0%2==0 Binding a

10| $E¥S MNumberto Build-= Stereo 0 $EF9==0 Binding a

11 -
M« » W[\ EXAMPLEL Y Feasibility Report 1 { Exan | 4| | Iz

If your model is very large, computing the 11S may take a good deal of time. The
Solver displays an estimated “% Done” on the Excel status bar as it solves variations
of your model, and you can always interrupt the process by pressing ESC (in which
case no report appears). Instead of the full Feasibility Report, which analyzes both
the constraints and variable bounds in your model and attempts to eliminate as many
of them as possible, you can produce the “Feasibility-Bounds” version of the report,
which analyzes only the constraints while keeping the variable bounds in force. This
report may be sufficient to isolate the source of the infeasibility, but you must take
into account the bounds on all of the variables when reading it.

In some cases, of course, there may be no error in your model — it may correctly
describe the real-world situation, and the fact that it is infeasible will probably tell
you something important about the situation you are modeling. Even in such cases,
the Feasibility Report can help you focus on the aspects of the real-world situation
that contribute to the infeasibility, and what you can do about them.

The Linearity Report

The purpose of the Linearity Report is to help you pinpoint nonlinear formulas in
your model. The format of the Linearity Report is similar to that of the Answer

232 Solver Reports Solver User Guide

Report: It lists each decision variable and constraint on a separate row, with its cell
reference, a“name” as described in “The Answer Report,” the cells original and
final values, and a column containing “Yes’ (the objective or constraint is a linear
function, or the variable occurs linearly throughout the model) or “No” (the function
is nonlinear, or the variable occurs nonlinearly). Since you are normally interested in
the nonlinearities, any “No” entries appear in boldface.

If we attempt to solve EXAMPLES3 in the Examples.xls workbook — which is
identical to EXAMPLEL except that the formula at cell C11is edited to read
=SUMPRODUCT(D11:F11,D9:3F$9)"0.9, a nonlinear expression — we receive
the message “The linearity conditions required by this Solver engine are not
satisfied.” To pinpoint the problem, we select Linearity from the Reports list box,
producing a report like the one shown below.

Beomesss —————m=mA|
Al B c D E F o
| 1 |Microsoft Excel 11.0 Linearity Report ™
| 2 |Worksheet: [Examples.xIs|EXAMPLE3
| 3 |Report Created: 08/20,/2006 12:00:00 PM
4
| 5 |
| 5 |Target Cell (Max)
7 Cell Name Original Value Final WValue Linear Function
| 6 | D18 Total Profits: §16,000 F16,000 Yes
ER
| 10|
| 11 |Adjustable Cells
| 12 | Cell Name Original Value Final Value Occwis Linearly
| 13| $D%$3 Number to Build-> TV set 100 0 Ne
| 14| SE3 Number to Build-> Stereo 100 0 No
| 15| $F%9 Number to Build-> Speaker 100 0 Yes
| 16 |
| 17 |Constraints
| 18 | Cell Name Cell Value Formula Linear Function
| 19| $CH11 Chassis Mo Used 118 $C§11<=5B511 Ne
| 20| %CH12 Picture Tube Mo, Used 100 §CH122=5B512 Yes
1 21| $CH13 Speaker Cone Mo, Used 500 FCH13<=FBF13 Yes
| 22| $CH14 Power Supply Mo, Used 200 $CH14==3B%14 Yes e
| 23| S$C%15 Electronics Mo, Used 400 §CH15<=F§BF15 Yes
24 -
4« ») Linearity Report 1 { EXAMPLES [EXAMPLE4 /[«] | iy

Cells D9 and E9 are shown as occurring nonlinearly in the model, and the constraint
at cell C11 (the formula that was edited) is a nonlinear function of the variables.
Although the formula at C11 refers to all three variable cells D9:F9, the coefficient of
F9 in this formula (at cell F11) is 0 —hence cell F9 does not participate in this
function, and only cells D9 and E9 are shown as occurring nonlinearly in the model.

With this information, it is easy to pinpoint the formula at C11 as the source of the
nonlinearity. In real-world models, where a constraint such as C11 may depend on
many other cell formulas, your next step will be to locate the specific formulas that
are nonlinear, determine whether they are correct for your problem, and decide
whether they can be rewritten as linear functions, or whether there is an alternative,
linear formulation of your problem (see the chapter “Building Large-Scale Models
for ideas). In the Premium Solver Platform, you can use the Solver Model dialog to
produce a Structure Report that will pinpoint the exact cell formulas throughout your
model that are nonlinear.

Solver User Guide

Solver Reports 233

The Population Report

The Population Report gives you summary information about the entire population of
candidate solutions maintained by the Evolutionary Solver at the end of the solution
process. The Population Report can give you insight into the performance of the
Evolutionary Solver as well as the characteristics of your model, and help you decide
whether additional runs of the Evolutionary Solver are likely to yield even better
solutions.

For each variable and constraint, the Population Report shows the best value found
by the Evolutionary Solver, and the mean (average) value, standard deviation,
maximum value, and minimum value of that variable or constraint across the entire
population of candidate solutions at the end of the solution process. These values
will give you an idea of the diversity of solutions represented by the population.

If we run the Evolutionary Solver on EXAMPLEL with a Max Subproblems limit of

5000, and upper bounds of 200 on the variables, we find a solution of D9 = E9 = 200
and F9 = 0 (the same as the linear programming optimal solution). We can then stop
the solution process and produce a Population Report like the one below.

Eﬁ Examples xls !E

Al B c D E F G H =
Microsoft Excel 11.0 Population Report ™
Worksheet: [Examples.xIs]EXAMPLE1

Report Created: 08/20/2006 12:00:00 PM

Best Mean Standard Maximum Minimum

|1
| 2 |
| 3|
| 4|
EN
| 6 [Adjustable Cells
| 7 |
| & |
R
0

Cell Name Value Value Deviation Value Value

059 Mumber to Build-» T set 200 163 B9.48651079 1999990554 2338742391
| 10| 3E$F Mumber to Build->= Stereo 200 183 4926542407 200 B0.RA07AZ94
| 11| F3 Mumber to Build-> Speaker 0 1 2455891684 ¥ 383656412 0
12

13 |Canstraints
14 Best Mean Standard Maximum Minimum

115 Cell Name Value Value Deviation Value Value

| 16| $C%11 Chassis Mo, Used 400 346 113.2484242 399990909554 54.02816685

|17 | $CH12 Picture Tube Mo. Used 200 163 B9.48B51079 1999999554 23368742391

118 | C13 Speaker Cone Mo, Used 800 B93 2241970044 8000001795 1754399901

119 $CH14 Power Supply Mo. Used A00 346 113.2454242 3999999554 S4.02516685
| 20| §C§15 Electronics Mo. Used GO0 510 1791167681 B00.0001795 114.7992472

21 -
M 4 »]\ Population Report 1 { EXAMPLEL £ EXAMPLEZ 7 |4] | iy

You can see that the Best Values of the variables are far from the Mean Values
across the whole population, but they are equal to the Maximum Values for cells D9
and E9, and to the Minimum Value of cell F9. Since the solution is feasible, and
since the optimization process tends to drive variable values to extremes, this may
indicate that we have found a globally optimal solution (which is true in this case).
The Standard Deviations are relatively large, but this is not too surprising since
points in the population have not yet converged to the point where we would receive
“Solver has converged to the current solution.”

How you interpret the Population Report depends in part on your knowledge of the
problem, and past experience solving it with the Evolutionary Solver or with other
Solver engines. For example, if the Best Values are similar from run to run, and if
the Standard Deviations are small, this may be reason for confidence that your
solution is close to the global optimum. However, if the Best Values vary from run
to run, small Standard Deviations might indicate a lack of diversity in the population,
suggesting that you should increase the Mutation Rate and run the Solver again.

234

Solver Reports

Solver User Guide

The Solutions Report

Where the Answer Report gives you detailed information about the single “ best
solution” that appears on the worksheet when the Solver Results dialog is displayed,
the Solutions Report gives you objective function and decision variable values for a
number of alternative solutions, found during the optimization process.

Integer Programming Problems

For mixed-integer problems, the report shows each ,incumbent" or feasible integer
solution found by the Branch & Bound method during the solution process. Below is
an example of the Solutions Report for a problem called Alloc2.xls:

R - [
A B C D E F =

| 1 |Microsoft Excel 11.0 Solutions Report —_—
| 2 |Worksheet: [Alloc2. xls]Alloc2
| 3 |Report Created: 08/20/2006 12:00:00 PM
| 4 |Result: Solver found a solution. All constraints and optimality conditions are satisfied.
| 5 |Engine: Standard LP/Quadratic
| & |Mumber of Solutions: 3

7
| 8 |Solutions:
| 9 | _Cell _Sol1[0bj=23311.5) Sol 2 [Dhj=23311.5) Sol 3 [0bj = 23471.5)
| 10| _$B415 a 7]
| 11| C15 8] 8
| 12| D15 a] 8
| 13| E15 a]]
| 14 | $FH15 g g 8
| 15 | $B31E 4 5 5
| 16 | $C316 4 4 5
| 17 | $D%$16]] 2
| 18 | E16 1 3 5
| 19| F16 4 1 4
| 20| $B417 3 3 3
| 21| 4C17] 3 3
| 22 | $D3$17 3 3 3
| 23| E17 3 3 3
| 24 | F17] 3 0
| 25 | $B321 320 280 320 =
| 26 | $C321 220 320 320
| 27 | $D321 320 20 320
| 28 | $E321 320 320 320
| 29| F 240 320 320
| 30 | $B322 240 300 300
| 31| C22 240 240 300
| 32 | 3$Dg22 300 300 120
| 33| $E322 &0 180 300
| 34 | §Fga2 240 =] 240
| 35| $B323 255 255 250
| 36 | $C323 255 255 255
| 37 | $D%$23 255 255 255
| 38 | E23 255 255 255
| 39 | F23 255 215 0

40 -
W 4 » n[\Solutions Report 1 { Allocz / I+] | oy

This problem was solved by the LP/Quadratic Solver with the Integer Tolerance set
to 0.0 and all Cuts & Heuristics disabled. (On this problem, with Cuts & Heuristics
enabled, the Solver quickly finds the true integer optimal solution as the first incum-
bent; the Solutions Report is available only when multiple incumbents are found.) As
shown above, three incumbents were found.

Global Optimization Problems

For global optimization problems, the report shows each locally optimal solution
found by the Multistart method. On the next page is an example of the Solutions
Report for a simple two-variable global optimization problem Branin.xls, solved by
the GRG Nonlinear Solver with the Multistart Search option selected:

Solver User Guide

Solver Reports 235

'EI Branin_xls !EI n

Al B C D E =
Microsoft Excel 11.0 Solutions Report

Worksheet: [Branin.xlIs]Branin Model

Report Created: 08:20/2006 12:00:00 PM

Result: Solver converged in probability to a global selution.
Engine: Standard GRG Nonlinear

Number of Solutions: 2

Solutions:

Cell Sol 1(0bj = 0.397887) Sol 2 (Obj = 2.79118)

b4 3.141592647 -2 61950252

ki 2275000022 10
12 -
M 4 » W[y Solutions Report 14 Branink[«] | iy

Z 3wl |~ oo e | k] —

In this problem, the “Branin function” must be minimized for variablesx and y,
subject to bounds -5 <= x, y <= 10. There are three distinct locally optimal solutions
with objective values 2.7911 (worst), 0.5989 (better) and 0.3979 (best and globally
optimal). The Solver was started at the point x = -2.5, y = 10, which is close to the
worst of the three locally optimal solutions. The Multistart Search process runs the
Solver from representative starting points in ,clusters' of randomly selected points;
on this run, it first found a solution close to the worst locally optimal point, then
found a solution at the best and globally optimal point.

Non-Smooth Optimization Problems

For arbitrary non-smooth optimization problems, the report shows members of the
Solvers final population of solutions. Below is an example of the Solutions Report
for the global optimization problem Branin.xls, solved by the Evolutionary Solver.

Sooins: —— mEE]|

Al B C D =
1 |Microsoft Excel 11.0 Solutions Report I
2 |Worksheet: [Branin.xIs]Branin Model
3 |Report Created: 08/20/2006 12:00:00 PM
4 |Result: Stop chosen when the maximum number of fe
5 |Engine: Standard Evolutionary
& |[Number of Solutions: 10
7
8 |Solutions: L
9 Cell Sol 1 {Obj=0.397888) Sol 2 (Obj = 0.3978389)
10 S 3141934695 3.14186093
1 ki 2274314077 2275331156
12
13| Cell Sol9 {Obj=0.9931541}) Sol 10 {Obj = 3.64982)
14 S 3.075493644 2.319032803
15 ki 1.57035295 3431191465
16 -
M 4+ n[ySolutions Report 1 Br/[«] | oy

Again the Solver was started at the point x = -2.5, y = 10, close to the worst of the
three locally optimal solutions, and it was given a limit of only 200 subproblems.
Unlike the Solutions Report for gradient-based nonlinear optimizers like the GRG
Nonlinear Solver, the final population of solutions is not likely to include many
distinct locally optimal points. The best solutions in the Evolutionary Solver“s final
population are all in the neighborhood of the globally optimal solution, which is x =
3.14159, y = 2.2750. But since the Evolutionary Solver doesn"t require gradient

236 Solver Reports Solver User Guide

information or tests for local optimality, it is unlikely to find the globally optimal
solution with very high accuracy for a smooth nonlinear problem like Branin.xls.

Solutions for Systems of Inequalities

The Solutions Report has a special meaning for the Interval Global Solver. It is
available for problems with no objective function to be maximized or minimized, and
with all equality constraints (a system of equations) or all inequality constraints (a
system of inequalities). For a system of equations, the report is available only if the
number of variables and the number of constraints are equal.

If we make the Set Cell blank in EXAMPLE1, removing the objective function from
the model, what remains is a set of <= constraints — a system of inequalities (and
bounds on the variables). Asexplained in “Elements of Solver Models’ in the
chapter “Solver Models and Optimization,” when there is no objective, the Solver
will simply find a solution that satisfies the constraints.

If we solve EXAMPLE1with a blank Set Cell using the LP/Quadratic Solver, we get
a solution where all three variables D9, E9 and F9 are 0. This is certainly a feasible
solution, but it"s not very informative. If we solve the model with the GRG Solver,
we get a solution where all three variables are 100 (equal to the starting values of the
variables). Thistoo isafeasible solution, but it"s also not very informative. Can we
learn something more about the range of feasible solutions?

If we solve the model with the Interval Global Solver, we get a solution where all
three variables are 75. If we select the Solutions Report from the Solver Results
dialog and click OK, a report like the one below will appear.

EE Examples._xls !E[
A B C D E F G H =
Microsoft Excel 11.0 Solutions Report ™
Worksheet: [Examples.xIs]EXAMPLE1

Report Created: 7/5/2005 4:37:05 PM

Result: Solver found a solution. All constraints and optimality conditions are satisfied.
Engine: Standard Interval Glohal

Statistics:

INF salutions found

1001 iterations

1 10 37460 functions 0 gradients
|11 0 jacobians 0 inversions
|12
| 13 | Solutions:
| 14 | Cell From Value To Value
| 16 | FDES 0.000000 145999533
| 16 | FERS 0.000000 149999999 b
|17 | $FE9 0.000000 149.999599
1 -
M 4 » H\Solutions Report 1 ,{ EXAMPLEL J EXAMPLEZ 4|4 | | nw

1
| 2 |
EN
=
| 5
| B
| 7
| 8 |
EN

O

JrY Y —

e

The report tells us that the problem has an infinite number of solutions, and it gives
usan “inner solution” — a set of ranges or intervals for each decision variable, such
that all points within these ranges satisfy the system of inequalities. An inner
solution is always a“box” with adimension for each decision variable (in general,
the ranges for each variable may be different), and this box lies entirely within the
feasible region. It does not usually enclose all of the feasible points —which can
form an arbitrary multidimensional “shape”’ —and it is also not unique (there can be
many possible inner solutions). But it will give you a much better idea of the range
of feasible solutions than you can get from the Answer Report.

Solver User Guide

Solver Reports 237

Solutions for Systems of Equations

The Solutions Report for a system of equations can be considerably more valuable
than the Answer Report or the Solutions Report for a system of inequalities. It relies
on the unique ability of the Interval Global Solver to find all real solutions of a
system of nonlinear equations.

We can illustrate the Solutions Report for a system of equations with the simplest
case of a single equation —drawn from the 1983 textbook Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, by Jack E. Dennis and Robert
B. Schnabel. This classic (and still popular) textbook — a key learning resource for
the designers of the Microsoft Excel Solver at Frontline Systems in 1990 — describes
the capabilities and limitations of methods for nonlinear optimization and solution of
nonlinear equations, using an example in Section 2.1, titled “What Is Not Possible:”

“Consider the problem of finding the real roots of each of the following
nonlinear equations in one unknown:

f1(x) = x* = 12> +47x% — 60X,
fo(x) = x* — 12 +47x* — 60X + 24,
fa(x) = x* — 12x° +47x% —60x + 24.1.

It would be wonderful if we had a general-purpose computer routine that
would tell us: “The roots of f,(x) are x = 0, 3, 4, and 5; the real roots of f(x)
are x =1 and x = 0.888; f3(x) has no real roots.” It isunlikely that there will
ever be such a routine. In general, the questions of existence and unique-
ness ... are beyond the capabilities one can expect of algorithms that solve
nonlinear problems.”

Note that fi(x), f,(x) and f3(x) differ only in the constant term — 0, 24 and 24.1. Let"s
try to solve these equations (for zero roots) in Microsoft Excel. Starting with a blank
worksheet, enter 0 in cell Al for x, 0 in cell A2 for the constant term, and in cell A3
enter the equation as =A1"4 - 12*A1"3 + 47*A172 - 60*Al + A2. In the Solver
Parameters dialog, enter Alas the Changing Cell, and enter A3 as the Set Cell with
Value Of 0, or else leave the Set Cell blank and enter A3 = 0 in the Constraints list
box. Since the Interval Global Solver requires bounds on the variables, also add
constraints A1 <= 100 and Al >=-100. Using A2 = 0 initially, we are solving f;(x).

@Micmsoﬂ Ezcel - Book2
Il—ﬂ File Edit Yiew Insert Format Tools Data Window Help
DedREa gl ¥Rl 8o - o - |[l COMAddns...
- B =AM - T2TAINGD + ATTATYY - BOTAT + A2
B | ¢ | o | E | F | G [H
1 o] ™
2 o
0 =
4 ") sercel: [$ag3 @
% Equal To: ¢ Max ¢ Min (% Yalue OF: IU Close |
? By Changing Yariable Cells: -
? |R1 @ Model | Cptions |
=N Subject ta the Constraints: IStandard Inkerval Global LI
10 —
EER iii} :; _IIDDDD &dd | Yariables |
12
ERl Change | Reset &l | b
ﬂ Delete | Help |
15| 1
16 i
4 4 v M|\ Sheetl { SheetZ 4 Shest3 / | <] | O
L N

238

Solver Reports

Solver User Guide

If you select the Interval Global Solver, click Solve, and select the Solutions Report
in the Solver Results dialog, a report like the one below will appear.

Ef Book? [_ o] x]
Al B C D E F j

Microsoft Excel 11.0 Solutions Report

Worksheet: [Book2]Sheetl

Report Created: 08/20/2006 12:00:00 PM

Result: Solver found a solution. All constraints and optimality conditions

Engine: Standard Interval Global

Number of Solutions: 4

Solutions:

Cell Sol 1 (Obj=0) Sol2 (Obj=0) Sol3 (Obj= 0} Sol 4 (Obj = 0}

5A%1 5.000000001 4000000092
11 -
4« » v\ Solutions Report 1 ¢ Sheetl £ Sheet]|] | iy

= | 0| | ||| e | b | —

These are exactly the solutions x =0, 3, 4, and 5 listed for f;(x) in the textbook. If we
now set cell A2 = 24, click Solve, and select the Solutions Report in the Solver
Results dialog, a report like the one below appears, with the solutions for f,(x) = 0:

Eh Book2 == E

Al B C D E F €] j
Microsoft Excel 11.0 Solutions Report
Worksheet: [Book2]Sheetl
Report Created: 08202006 12:00:00 P
Result: Solver found a selution. All constraints and optimality conditions
Engine: Standard Interval Global
Number of Solutions: 2

Solutions:

Cell Sol 1(0bj=0) Sol 2 (Obj = 0}

451 0.888305779 1
11 v
M 4 » [} Solutions Report 2 { Sheetl f Sheet] « | | iy

S|l m| e —

Again, these are exactly the solutions x =1 and x = 0.888 listed in the textbook. If we
set A2 = 24.1 and click Solve, the Solver Results dialog appears with “ Solver could
not find a feasible solution.”

As this example illustrates, the Interval Global Solver is*“ a general-purpose
computer routing” that will tell us: “The roots of f;(x) are x =0, 3, 4, and 5; the real
roots of fy(x) are x =1 and x = 0.888; f3(x) hasno real roots.” And this capability is
not limited to polynomial functions — it is effective for all continuously differentiable
functions.

Dennis and Schnabel“s pessimistic prediction that “It is unlikely that there will ever
be such a routing” was probably correct for classical nonlinear optimization methods
that evaluate functions only over real numbers. But the ability of the Premium Solver
Platform to evaluate Excel formulas over intervals, combined with interval methods
for global optimization, has made such a routine not only possible, but easy to use.

Solver User Guide Solver Reports 239

240 Solver Reports Solver User Guide

Using the Object-Oriented API

Controlling the Solver’'s Operation

This chapter explains how to control the Solver using the new object-oriented API
(Application Programming Interface) supported by the Premium Solver and Premium
Solver Platform. This API is compatible with the object-oriented APIs offered by
Frontline"s Risk Solver Engine for Monte Carlo simulation, and Frontline"s Solver
Platform SDK, used to build custom applications of optimization and simulation
using C++, C#, VB.NET, Java, MATLAB and other languages.

Y ou can a'so control the Solver using “traditional” VBA functions, which are upward
compatible from the VBA functions supported by the standard Excel Solver. These
functions are described in the next chapter, “Using Traditional VBA Functions.”

Why Use the Object-Oriented API?

The new object-oriented API is more powerful and much more convenient for
programming the Solver than the “traditional” VBA functions.

With the “traditional” VBA functions:

You work with procedural functions that correspond to operations — such as
SolverOK and SolverSolve —you can perform interactively in the Solver
dialogs. To access the model and its variables and constraints, you must call the
SolverGet function and process the arrays of text and numbers that it returns.

To obtain solution values, you must use the Excel object model (usually the
Range object) to access the decision variable cells on the worksheet. You must
take care to access the correct cells for specific decision variables.

To obtain dual values and ranges, you must call the SolverFinish function to
insert a report worksheet into the workbook, then use the Excel object model to
access cells in the report. You must take extra care to access the correct report
cells containing dual values and ranges for specific variables and constraints.

With the new Object-Oriented API:

You work with objects that correspond to the Problem, Model, Solver, Engine,
Variables, and Functions. You can access sets of variables and constraints in
the current model directly with expressions such as myProb.VarDecision and
myProb.FcnConstraint.

Solver User Guide

Using the Object-Oriented APl 241

You can obtain solution values directly, with expressions such as
myProb.VarDecision.FinalValue(i). If you need the cell address for a set of
decision variable cells, you can write an expression myProb.VarDecision.Name.

You can access dual values and ranges for variables and constraints directly,
with expressions such as myProb.VarDecision.DualValue(i) or
myProb.FcnConstraint. DualValue(i).

Theresult is VBA code that"s easier to read, and easier to write in the first place.
Since the VBA Editor recognizes the object model exposed by the Premium Solver
Platform — just as it recognizes the object model exposed by Excel — you'll receive
IntelliSense prompts as you write code. For example, if you type a line Dim
myProb as New Problem, then start a new line with myProb., you'll be prompted
with the properties and methods available for Problems:

myFrohb.
EH Cazes -
EH! Engine
E& Engines
EH Evaluators
EH FcnCase
EH FcnConstraint
EH FenObjective w

If you select FenConstraint and then type a period, you'll be prompted with the
properties and methods available for Functions:

myProb.FonConstraint.,

e Duallower -
E& Duallpper

EH Dualvalue

EH Finalvalue

& FunctionType

=3 GetCorrelation

=B GetFreguency w

This makes it much easier to write correct code, without consulting the manual.
What"s more, you can use this object-oriented AP1 when programming Excel and the
Premium Solver Platform from new languages such as VB.NET and C#, working in
Visual Studio, and receive IntelliSense prompts in the syntax of these languages!

Of course, you can continue to use the “traditional” VBA functions to maintain
existing applications, and to write code that will run with earlier versions of the
Premium Solver Platform or with the standard Excel Solver (with appropriate
restrictions on functionality and problem size).

If you“re using new functionality in the Premium Solver Platform, in Version 7.0 and
beyond, the object-oriented API isyour best bet. If you're using Risk Solver
Engine, you'll find that it has an object-oriented API for simulation that closely
resembles, and is compatible with, the Premium Solver Platform"s object-oriented
API for optimization. And if you“re planning to move your application outside of
Excel in the future —so it will run as a standalone program — you'll find that
Frontline"s Solver Platform SDK offers an object-oriented API that closely
resembles the new APIs in the Premium Solver Platform and Risk Solver Engine.

242 Using the Object-Oriented API Solver User Guide

Adding a Reference in the VBA Editor

To use the new object-oriented API in VBA, you must first add a reference to the
type library for the Premium Solver Platform V7.0 COM server. To do this:

1.

2
3
4.
5

Press Alt-F11 to open the VBA Editor.

Select menu choice Tools References.

Scroll down until you find Premium Solver Platform V7.0.
Check the box next to this entry, and click OK to close the dialog.

Use File Save to save your workbook.

Note that this is a different reference from Solver, which is the reference you add in
order to use the “traditional” VBA functions.

Premium Solver Platform Object Model

The Premium Solver Platform makes available a hierarchy of objects for describing
optimization problems, as pictured below.

Problem \

— Model |

— ModelParam |

— Solver |
— OptlIS |
— Engine |
— EngineParam |
— EngineLimit |
— EngineStat |

— Variable |

1

Function |

—‘ Evaluator \

Solver User Guide

Using the Object-Oriented APl 243

The Problem object represents the whole problem, and the Model object represents
the internal structure of the model, which in the Premium Solver Platform is defined
by your formulas on the spreadsheet. The Solver object represents the optimization
process — you call its Optimize method to find an optimal solution. The Engine
object represents either a built-in or plug-in Solver engine. A Variable object
represents a range of one or more contiguous cells that contains decision variables,
while a Function object represents a range of cells that contains either constraint left
hand sides or the objective. Each Problem has a collection of Variable objects, and a
collection of Function objects. An Evaluator represents a function you write that the
Solver will call on each iteration (Trial Solution), or on each subproblem in a larger
problem.

The Model has a collection of ModelParam objects, each representing a single
option or parameter of the PSI Interpreter (appearing in the Solver Model dialog).
An Engine has a collection of EngineParam objects, each representing a single
option or parameter of a Solver engine (appearing in its Solver Options dialog). It
also has an EngineLimit object, holding problem size limits for this Solver engine,
and an EngineStat object, holding performance statistics for the last optimization
problem solved by this engine. An OptlIS object holds results of an infeasibility
analysis of the problem.

Using the VBA Object Browser

You can examine the Premium Solver Platform objects, properties and methods in
the VBA Object Browser. To do this, press Alt-F11 to open the VBA Editor, and
select menu choice View Object Browser. This displays a child window like the
one pictured below.

ISolver32
| =] 82
— Search Results
Likrary | Class | Member |
|Classes Members of Function'
| EngineParaanllec;l & DuallLower ;l
B EnginesStat =& DualUpper
B Erwironment & Dualvalue
=F Eval_Type e Finalvalue
21 Evaluatar & FunctionType
1 EvaluatorCaollection =% GetCarrelation
B EveniListener =% GetFregquency
=F File_Format ! Index
=7 Freguency_Type ! Initialvalue
DN == LowerBound
2@ Function_Type =& MakeCurrent
B FunctionCollection ;l & Mame ;"
Class Function j
Member of Solver32
Clazs Function represents a vectar of functions, all of the same type, inthe
Model. Function has a FunctionType and an optional Mame, & Function has
properties that are inputs' to the solution process, such as LowwerBound and ;I

244 Using the Object-Oriented API Solver User Guide

The dropdown list at the top left corner of the Object Browser initially displays <All
Libraries> — change this to select Solver32. In the object browser pictured, we've
highlighted the properties of the Function object

Programming the Object Model

You use the Premium Solver Platform object-oriented API by first creating an
instance of a Problem, and initializing it with the Solver model defined on a
worksheet in an open workbook. When you do this, a collection of Variable objects
and a collection of Function objects are created automatically. Each Variable object
corresponds to a cell range of decision variables that appears in the By Changing
Cells edit box or Variables list, and each Function object corresponds to a cell range
of constraints that appears in the Constraints list.

Once you have an initialized Problem object, you can do several things:

Set Solver and Engine parameters such as the maximum time or number of
iterations, the method used to compute gradients, and other options and
tolerances.

Perform an optimization, and check the final status of the solution process.

Get results of the optimization, by accessing properties of the Variable and
Function objects, and performance statistics, by accessing properties of the
EngineStat object.

Example VBA Code Using the Object Model

Below is an example of VBA code that could be linked to a command button on the
worksheet:

Private Sub CommandButtonl Click()
Dim prob As New Problem

prob.Engine = prob.Engines(''Standard LP/Quadratic')
prob.Engine_Params(*MaxTime™) = 600

prob.Solver _Optimize
MsgBox "'Status = " & prob.Solver._OptimizeStatus
MsgBox ""Obj = " & prob.FcnObjective._FinalValue(0)

For i = 0 To prob.Variables.Count - 1
For j = 0 To prob.Variables(i).Size - 1
MsgBox prob.Variables(i).FinalValue(j)
Next j
Next i

Set prob = Nothing
End Sub

The first line creates an instance of a Problem, which by default is associated with the
Solver model defined on the active worksheet. You could associate the Problem
object with a different worksheet by calling the prob . Init method.

The second line selects the Standard LP/Quadratic Solver engine, and the third line
sets the maximum solution time to 600 seconds. The string names of parameters
such as "MaxTime" are documented in the chapter “ Solver Options,” and are usually
the same as the names of the corresponding parameters passed via the “traditional”
VBA functions, such as SolverOptions, SolverModel and SolverGRGOptions.

Solver User Guide

Using the Object-Oriented APl 245

The next set of three lines performs the optimization, displays the Solver Result
status code (for example 0), and displays the final value of the objective.

The double for-loop in the next five lines steps through the Variable objects —each
one representing a range of contiguous cells —and displays the final value for each
variable cell in each range.

Evaluators Called During the Solution Process

You can write a VBA function that the Solver will call at certain points during the
solution process. In this “callback function,” you can access information about the
problem and solution so far, to monitor or report progress and decide whether to stop
or continue the solution process.

The object-oriented API defines an Evaluator object that is associated with your
“callback function” and specifies when the Premium Solver Platform should call it.
You can define Evaluators to be called on each iteration or Trial Solution, or on each
subproblem or each new solution (“incumbent”) when the solution process involves
multiple subproblems (global optimization problems, and problems with integer
variables).

The VBA function you write to serve as an Evaluator must be contained in a class
module —not a ,regular® VBA module —and it must be declared to have the With
Events property.

Here is an example of code for an Evaluator, in a class module named Class1:
Private WithEvents Evallterator As Solver32.Evaluator

Private Function Evallterator Evaluate _
(Byval Evaluator As Solver32.l1Evaluator) As _
Solver32_Engine_Action

MsgBox "lteration = " _
& Evaluator.Problem_Engine.Stat. Iterations _
& Chr(13) & Chr(10) & "Objective = " _

& Evaluator.Problem_FcnObjective.Value(0) _
& Chr(13) & Chr(10)

Eval lterator_Evaluate = Engine_Action_Continue
End Function

Public Sub MySolve()
Set Evallterator = New Evaluator
Dim prob As New Problem
prob_Evaluators(Eval_Type_ lteration) = Evallterator
prob.Solver_Optimize
Set Evallterator = Nothing
End Sub

Having created the class module Classl, in a,regular* VBA module you can create
an instance of Class1, and then call the MySolve method in Class1:

Private Sub CommandButtonl Click(Q)
Dim ¢ As New Classl
c.MySolve

End Sub

246

Using the Object-Oriented API Solver User Guide

Refinery.xls: Multiple Blocks of Variables and
Functions

A further example of programming the object-oriented API is shown in the model
Refinery.xls, which is installed in the Examples folder, normally at the path
C:\Program Files\Frontline Systems\Premium Solver Platform\Examples.

The Refinery.xls model, which is based on Problem 12.6 in the 3rd edition of Model
Building in Mathematical Programming by H.P. Williams (see the Recommended
Books on www.solver.com for details), has ten blocks of decision variables and
eleven blocks of constraints, plus bounds on certain variables.

The VBA code for this model illustrates some of the many ways you can use the
object-oriented API. For example, the following line displays the time that was
required to solve the problem:

MsgBox prob.Engine.Stat_Milliseconds & " msec"

The following code illustrates one way to display final solution values for each of the
ten blocks of decision variables in this problem:

For i = 0 To prob.Variables.Count - 1
prob.Variables(i).MakeCurrent
For j = 0 To prob.VarDecision.Size - 1
MsgBox prob.VarDecision_Name _

& "[" & JHL &) =" & _
prob.VarDecision.FinalvValue(j)
Next j
Next i

When executed, this code displays MessageBoxes such as:

Microsoft Excel m

Distilled_oil[1] = 15000

The line prob.Variables (i) .MakeCurrent associates the Problem property
VarDecision (a single block of decision variables) with each of the ten blocks of
variables in turn, allowing you to refer to solution values and dual values of this
block in more compact notation. A similar line of code can be used to make the
Problem property FcnConstraint represent one of the eleven blocks of constraints.
The .Name property of the block, which usually returns a string such as
“A1:A10", returns “Distilled_oil” in this case, since the Excel model has a
defined name for this block of cells.

CuttingStock.xls: Multiple Problems and
Dynamically Generated Variables

A more ambitious example of programming the object-oriented API is shown in the
model CuttingStock.xIs, which is installed in the Examples folder, normally at the
path C:\Program Files\Frontline Systems\Premium Solver Platform\Examples.

This application uses the object-oriented API to define and repeatedly solve two
optimization problems, passing information back and forth between the two
problems. One problem is instantiated from a worksheet with the prob.Init method as

Solver User Guide

Using the Object-Oriented APl 247

mentioned earlier; the other problem is created “from scratch,” with new dynamically
generated decision variables added each time the problem is solved.

Cutting Stock Problem

CuttingStock.xls solves a classical “cutting stock” problem, which arises for example
in lumber and paper mills. Imagine that you have a number of sheets of wood or rolls
of paper of a fixed width, waiting to be cut; you have customer orders for sheets or
rolls of various different widths. Your task is to cut the larger, fixed-width sheets or
rolls into different sizes in a way that minimizes the total stock used while meeting
customer demand.

You might for example cut a 100 inch sheet into two sheets of 45 inches (leaving 10
inches wasted), three sheets of 31 inches (leaving 7 inches wasted), one 45-inch sheet
and one 31-inch sheet (leaving 24 inches wasted), etc. Each of these is called a
pattern, and the main problem will have a decision variable representing the number
of copies of that patternto cut. In a,rea-life” application, the number of possible
patterns is exponentially large, yielding a model that"stoo large to solve.

Column Generation Method

We can instead use the technique of column generation (,columns" here refers to
variables in the main problem). We choose a small initial set of patterns to include in
the model, and solve the main problem (an LP). Since it is unlikely that we chose the
perfect set of patterns initially, we use the dual variable information from the main
problem to generate a new pattern. We generate this new pattern by solving a second
optimization problem, called a ,.knapsack" problem. A decision variable for the new
pattern is dynamically created and added to the main problem, which is solved again.
These two problems, the main problem and the knapsack problem, are solved in turn
until no more patterns can be generated that will reduce the total stock used.

Worksheets and VBA Code

In CuttingStock.xls, sheet Input contains the ,knapsack” problem, which is solved to
generate new patterns, and sheet Patterns contains the main problem. Our VBA code
executes a loop, alternately solving the main problem and the knapsack problem.
When the solution to the main problem can no longer be improved, we solve a final
problem where we add integer constraints on the variables, so the final solution
yields an exact count of the patterns that should be cut.

Open CuttingStock.xls and press Alt-F11 to view its VBA code in the VBA Editor.
The first block of code clears the Patterns sheet and sets up the initial patterns. This
code simply sets values and formulas into cells, using the Excel object model.

Dim nPat As Integer, i As Integer, _
nNumDemands As Integer

nPat = Range(''Demands') .Count

nNumDemands = nPat

Worksheets("'Patterns') .Activate

Range(""A1:$7$100"") .Clear

create initial patterns

For i = 1 To nPat

Cells(2 + i, 1) = Int(Range("RollISize'"™) .Value2 _
/ Range('Widths'™) .Cells(i).Value2)

Cells(2 + i, nPat + 1).Formula = "=sumproduct(" _
& Range(Cells(l, 1), Cells(l, nPat)).Address
& "," & Range(Cells(2 + i1, 1), _

Cells(2 + i, nPat)).Address & "™)"

248 Using the Object-Oriented API Solver User Guide

Cells(3 + nPat, i) = Range("RollSize™).value2 -

Cells(2 + i, i) * Range("Widths™).Cells(i).Value2
Next i

The code then enters the main loop in which we add a new pattern to the main
problem, and set up and solve that problem using the Premium Solver Platform"s
object model:

"generate patterns
Cells(2, 1).Formula = "=sum("
& Range(Cells(1, 1), Cells(1, nPat)).Address & ")
For 1 = 1 To nNumDemands
Cells(2 + i, nPat + 1).Formula = "=sumproduct(* _
& Range(Cells(l, 1), Cells(l, nPat)).Address _
& "," & Range(Cells(2 + 1, 1), Cells(2 + 1,
nPat)).Address & ")"

Next 1
Dim prob As New Problem

variables

prob.Variables.Clear

Dim vars As New Variable

vars.Init Range(Cells(1l, 1), Cells(l, nPat))
vars.NonNegative

prob.Variables.Add vars

Set vars = Nothing

" objective

prob.Functions.Clear

Dim objective As New Solver32._Function
objective.Init Range(Cells(2, 1), Cells(2, 1))
objective.FunctionType = Function_Type Objective
prob.Functions.Add objective

Set objective = Nothing

constraints
ReDim constraints(l To nNumDemands) As _
New Solver32_Function
For 1 = 1 To nNumDemands
constraints(i).Init Range(Cells(2 + i, nPat + 1),
Cells(2 + i, nPat + 1))
constraints(i) LowerBound(0) =
Range("'Demands') .CelIs(i) .Value2
prob.Functions.Add constraints(i)
Next i

prob.Solver.SolverType = Solver_Type_Minimize
prob.Engine = prob.Engines('Standard LP/Quadratic™)
prob.Solver.Optimize

Next, the code obtains the dual values from the solution to the main problem, via the
Premium Solver Platform object model, and stores these values as parameters of the
knapsack problem on the Input worksheet, via the Excel object model:

capture shadow prices
Worksheets(*'Input'™) _Activate
Dim j As Integer
1=1
For i = 1 To prob.Functions.Count
IT prob.Functions(i - 1).FunctionType = _

Function_Type_Constraint Then

Cells(2 + j, 5) =
prob._Functions(i - 1).DualVvalue(0)

Solver User Guide Using the Object-Oriented APl 249

j=3+1
End If
Next 1

The code then sets up and solves the knapsack problem, again using the Premium
Solver Platform object model:

Dim probl As New Problem

probl.Init Worksheets("Input'™)

probl.Engine = probl.Engines(''Standard LP/Quadratic')
probl.Engine.Params("'IntTolerance™).Value = 0
probl.Solver.Optimize

If the objective value of the knapsack problem is less than 1 (allowing for rounding
error) —meaning that there are no more patterns that will improve the solution —we
can exit the loop.

IT 1 - probl.FcnObjective.FinalValue(0) _
>= -0.00001 Then
Exit Do

End If

Otherwise, the code writes the new pattern to the Patterns (main problem) worksheet,
using the Excel object model:

Worksheets("'Patterns™) .Activate
Cells(nNumbDemands + 3, nPat + 1) = _
Range("'RolISize™) .Value2
" write out new pattern, and associated waste
For 1 = 1 To nNumDemands
Cells(2 + 1, nPat + 1) = _
probl._VarDecision.Finalvalue(i - 1)
Cells(nNumbDemands + 3, nPat + 1) = _
Cells(nNumbDemands + 3, nPat + 1).Value2 - _
probl._VarDecision.Finalvalue(i - 1) * _
Range("'widths™) .Cells(i).Value

Next 1

nPat = nPat + 1
Set probl = Nothing

When the Do ... Loop isexited, all patterns have been generated. Finally, the code
solves one more problem with integer constraints on the variables, to ensure that we
produce the exact count needed to meet customer demand:

Worksheets("'Patterns'™) .Activate
prob. Init Worksheets(*'Patterns™™)
prob.Functions.Clear
prob.Variables.Clear

variables
Dim finalvars As New Variable
Ffinalvars.Init Range(Cells(l, 1), Cells(l, nPat))
For i = 1 To nPat
Ffinalvars.IntegerType(i - 1) = Integer_Type_Integer
Next i
finalvars._NonNegative
prob.Variables_.Add finalvars

objective

Cells(3 + nNumbDemands, nPat + 1)_Formula = _
"=sumproduct(** & Range(Cells(1, 1), _
Cells(l, nPat)).Address & "," _

& Range(Cells(3 + nNumDemands, 1), _
Cells(3 + nNumDemands, nPat)).Address & "™)"

250

Using the Object-Oriented API Solver User Guide

Dim TotalWaste As New Solver32.Function
TotalWaste. Init Range(Cells(3 + nNumDemands, _

nPat + 1), Cells(3 + nNumDemands, nPat + 1))
TotalWaste.FunctionType = Function_Type Objective
prob.Functions.Add TotalWaste

constraints
ReDim constraints(l To nNumDemands) As _
New Solver32._Function
For 1 = 1 To nNumDemands
Cells(2 + i, nPat + 1).Formula = "=sumproduct(" _
& Range(Cells(l, 1), Cells(l, nPat)).Address _
& "," & Range(Cells(2 + 1, 1), Cells(2 + i, _
nPat)).Address & ")"
constraints(i).Init Range(Cells(2 + i, nPat + 1), _
Cells(2 + i, nPat + 1))
constraints(i).LowerBound(0) = _
Range(*'Demands'™) .Cells(i).Value2
prob.Functions.Add constraints(i)
Next i

prob.Engine = prob.Engines('Standard LP/Quadratic™)
prob.Engine.Params('IntTolerance™) .Value = 0
prob.Solver.Optimize

Set prob = Nothing

This example illustrates some of the power of the object-oriented API. Although you
could use the “traditional” VBA functions, described in the next chapter, to obtain
similar results, it would require quite a bit more code to do so, especially at the step
of obtaining the dual values from the solution of the main problem and using them to
solve the next knapsack problem.

If you wanted to move this application from Excel to a standalone program, you'd
find that nearly all the code in CuttingStock.xIs that references the Premium Solver
Platform object model could be re-used, with few or no changes, in building an
application for the Solver Platform SDK. Y ou"d have to rewrite the code that
references cells via the Excel object model to use arrays in a programming language
instead, but this would not be difficult.

Object-Oriented API Structure

This section summarizes the objects available in the Premium Solver Platform"s
object-oriented API. The API is designed for compatibility with the objects,
properties and methods of the Solver Platform SDK, Frontline"s “flagship” product
for software developers building applications in a programming language.

Primary Objects

The primary objects in the API represent elements of your optimization problem:
The entire Problem, the Model (implemented by Excel formulas on the worksheet),
a Solver for optimization and several Engines that can perform optimization; a set of
Variable objects, each one representing a contiguous range of decision variable cells
on the worksheet, and a set of Function objects, each one representing either the
objective (a single cell) or a contiguous range of constraint cells on the worksheet.

Solver User Guide

Using the Object-Oriented APl 251

Class o
Description

Name P

Problem Represents an entire Problem.

Solver Represents either simulation or optimization.

Engine Represents a Solver Engine that can perform either optimization or
(in the Solver Platform SDK or Risk Solver Engine) simulation.

Evaluator Represents user-wrltten' code to be_ called by an Engine when
various events occur during the solution of a Problem.

Model Defines how the user*s model can be evaluated.

Variable [Represents a vector of variables, all of the same type.

Function | Represents a vector of functions, all of the same type.

A Problem object has members that represent collections of Solvers, Engines,

Evaluators, Functions, and Variables. You can subscript the name of a collection to
access a specific object — for example one Engine or one Variable object —and you
can write for-loops that step through all of the objects in a collection. For example:

For i = 0 To myProb.Variables.Count - 1
MsgBox myProb.Variables(i) .Name
Next i

In VBA, you can also iterate through a collection using a “for each” loop:

Dim myVar As Variable

For Each myVar In myProb.Variables
MsgBox myVar.Name

Next

Since a Variable object represents a contiguous range of decision variable cells on
the worksheet, its properties (for example FinalValue) represent arrays of numbers.
Again you can subscript these properties in your VBA code. For example:

For i = 0 To prob.Variables.Count - 1
For j = 0 To prob.Variables(i).Size - 1
MsgBox prob.Variables(i).FinalValue(j)
Next j
Next i

Secondary Objects

The secondary objects in the API allow you to work with sets of numbers that are
associated with the Model, an Engine, a Variable or Function, or optimization results.
The ModelParam and EngineParam objects each represent one parameter for the
modeling system (PSI Interpreter) or a Solver Engine, respectively. The OptlIS and
Statistics objects group related properties for convenient access.

The DoubleMatrix and DependMatrix objects are quite powerful — they can be
created in your code with a Dim statement to hold a large, sparse matrix of numbers
or dependency information, respectively. A matrix object could be dimensioned as
(say) 1 million rows by 1 million columns, but would reserve memory only for its

252

Using the Object-Oriented API Solver User Guide

nonzero elements; you can use this object much like a two-dimensional array in
assignments statements in your code.

Class Name Description

ModelParam Represents a single Model (PSI Interpreter) parameter.

EngineParam | Represents a single Engine parameter.

EngineLimit | Represents the problem size limits for an Engine.

EngineStat Represents statistics from the last run of an Engine.

Represents an Irreducibly Infeasible Subset of the constraints

Optl1S . . L
P and variable bounds in an optimization problem.
- Represents statistics for variable and function values across a

Statistics - - .
population of final solutions.

DoubleMatrix Represents a matrix of double values, of dimension m (rows)
by n (columns).

DependMatrix Represents a matrix of integers of values drawn from the

Depend_Type enum.

Primary Objects

This section describes the primary objects available in the Premium Solver
Platform"s object-oriented API, and their properties and methods. As noted above,
these objects represent the main elements of your optimization problem.

Problem Object

The Problem object is created to represent an optimization problem, with a VBA
statement such as:

Dim prob As New Problem

Problem Methods

You can use the Init method to instantiate the Problem from a named model or
worksheet — this will create all of the Variable and Function objects for the problem
defined in that model or worksheet. (If you don"t use Init, the Problem is instantiated
from the active worksheet.) You can use the Load method to load a set of problem
specifications, or the Save method to save problem specifications on the worksheet.

Problem.Init Worksheet
Problem.Load RangeOrModel, Format
Problem._Save Range, Format

Worksheet is an Excel Worksheet object. Range is an Excel range object, and
RangeOrModel may be either an Excel Range object or a text string model name.
Format is one of the symbolic constants XLStd, XLPSI, or XLWB.

Solver User Guide

Using the Object-Oriented APl 253

Accessing Multiple Solutions

For global optimization and mixed-integer programming problems, most Solver
engines find multiple solutions. The best of these solutions is returned via the
FinalValue property of the Variable and Function objects associated with the
problem. But you can access any of the solutions from your VBA code. To do this,
set the Problem object Solutionindex property to an integer from 0 to the value of the
NumSolutions property — 1; then access the Value property of the Variable and
Function objects associated with the problem.

Problem Properties

Property Name Property Description

Type
Name string Name of worksheet defining problem.
ProblemType Problem_Type | Problem type (linear, nonlinear, etc.)
NumSolutions integer Number of solutions available.

Index of the currently selected solution (0

Solutionlnde i .
it x| Integer to NumSolutions —1).

Index of the current objective function;

Objectivelndex | i
i v X | integer currently always 0.

Solver Solver Current Solver —always for optimization.
Engine Engine Current Solver engine.

Model Model Current Model.

VarDecision Variable Current decision variable block.
FcnConstraint | Function Current constraint function block.
FcnObjective Function Current objective function block.

Collection Name | Object Type Description

Solvers Solver One item — Solver for optimization.
Engines Engine Solver engines — initially five items.
Evaluators Evaluator User-defined Evaluators — initially none.
Variables Variable Ranges of contiguous variable cells.
Functions Function Ranges of contiguous constraint/obj cells.

Problem_Type Constants

The Problem_Type enum has a set of symbolic constant values that reflect the type
of optimization model:

254

Using the Object-Oriented API Solver User Guide

Problem_Type NA
Problem_ Type OptLP
Problem_Type OptQP
Problem Type OptQCP
Problem Type OptSOCP
Problem Type OptNLP
Problem Type OptNSP

The value of the ProblemType property will be Problem_Type NA unless the Model
object DependCheck method is called. After this method is called, the ProblemType
property will reflect the diagnosis of the model: LP (linear program), QP (quadratic
program), QCP (quadratically constrained QP), SOCP (second order code program),
NLP (smooth nonlinear program), or NSP (non-smooth program).

Solver Object

The Solver object represents the optimization process — you call its method Optimize
to solve the problem, and access its property OptimizeStatus to check the final status
(e.g. optimal, infeasible, unbounded) of the optimization.

There is only one instance of the Solver object in a problem; this is created
automatically when you create a Problem, and is accessible via a reference such as
myProb.Solver. In contrast, there are several Engine objects, one for each built-in or
plug-in Solver engine installed for the Premium Solver Platform.

Solver Methods

The Optimize method runs the currently selected Solver engine to solve the problem
for the current Model, Variables and Functions. The I1SFind method may be called
if the OptimizeStatus property indicates that no feasible solution was found — it finds
an Irreducibly Infeasible Subset (11S) of the constraints (see “ The Feasibility Report”
in the chapter “ Solver Reports’ for more information about this analysis). The
Report method produces a Solver report, in the form of an Excel worksheet inserted
into the active workbook.

Solver .Optimize
Solver.11SFind
Solver _Report ReportName

ReportName is one of the following text strings: "Scaling"”, "Answer", "Sensitivity",
"Limits", "Feasibility", "Linearity", "Population”, "Solutions".

Solver User Guide

Using the Object-Oriented APl 255

Solver Properties

Property Name Property Type Description

Type of solution to find:
Solver_Type Maximize,

SolverType Solver_Type Solver_Type_Minimize, or
Solver_Type_FindFeas.
Problen Problem Pr_oblem associated with
this Solver.
. Index in the Solver
Ind .
naex Integer Collection; always 0.
NumSolutions integer Number of different

solutions available.

Index of the current
Solutionlindex integer solution; used to access
multiple solutions.

Status after optimization.
See status codes/messages

OptimizeStatus Optimize_Status in the chapter “Diagnosing
Solver Results.”
Retrieves the Irreducibly
OptlIs OptlIS Infeasible Subset found by

1ISFind.

Engine Object

An Engine object represents a single Solver engine, such as the LP/Quadratic Solver
or the GRG Nonlinear Solver.

A collection of Engine objects, one for each installed (built-in or plug-in) Solver
engine, is created automatically when you create a Problem, and is accessible via a
reference such as myProb.Engines. You can subscript the Engines collection, either
by an integer index or by a text string name, to access a specific Engine.

The Problem"s Engine property refers to the currently selected Solver engine, which
will be run when the Solver.Optimize method is called. To select a different Solver
engine, you can either assign a new reference to the Engine property, for example
myProb.Engine = myProb.Engines("Standard LP/Quadratic"), or you can call the
chosen Solver Engine object"s MakeCurrent method.

Engine Methods

The MakeCurrent method causes this Solver engine to become the currently
selected Engine; after calling this method, myProb.Engine will refer to this Solver
engine, and myProb.Solver.Optimize will run this Solver engine. The ParamReset
method resets all of the Solver engine parameters (EngineParam objects) in this
Engine"s Params collection to their default values.

256

Using the Object-Oriented API Solver User Guide

Engine.MakeCurrent

Engine.ParamReset

Engine Properties

Property Description
Property Name Type
Problem Problem Problem associated with this Engine.
ProblemType Problem_Type | Type of problem solved by this Engine.
Name string Name of this Solver engine.
Filename/path of this Engine"s dynamic
FileSpec string link library. For built-in Engines,
returns an empty string.
p EngineParam The collection of all parameters for this
arams . .
Collection Solver engine.
Limi EngineLimit Engine size limits; indexed by Problem
imit
array Type.
Index integer Index in the EngineCollection of
g this Engine object.
Stat EngineStat Engine statistics from the last Optlmlze
method call using this Solver engine.
Constant Name Description
LPQPName Name of the built-in LP/QP Solver engine.
LPName Name of the built-in LP Simplex Solver engine.
SOCPName Name of the built-in SOCP Barrier Solver engine.
GRGName Name of the built-in GRG Nonlinear Solver engine.
EVOName Name of the built-in Evolutionary Solver engine.
INTName Name of the built-in Interval Global Solver engine.

Evaluator Object

An Evaluator object represents a“ callback function” that you have writtenin VBA,
that the Solver will call at certain times during the optimization process. No
Evaluators are required, but you may find it useful to create one or more Evaluators
to monitor or report progress, especially if the optimization takes a long time.

See the earlier section “Evaluators Called During the Solution Process’ for an
example of VBA code that defines and uses an Evaluator.

Solver User Guide

Using the Object-Oriented API

Evaluator Methods

The Evaluate method isyour “callback function” —the method that the Solver will
call during the optimization process, at the times specified by the EvalType property.

Evaluator.Evaluate

Evaluator Properties

Property Name Property Type Description

Specifies when to call this
Evaluator: Eval_Type_lteration,

EvalType Eval_Type Eval_Type_Subproblem, or
Eval_Type_NewSolution.
Problem Problem Problem associated with this

Evaluator.

Any user data that you wish to
RefUser Variant make available to the Evaluator
when it is called.

Model Object

The Model object represents your model, as defined by formulas on an Excel
worksheet. There is one instance of the Model object in a problem; it is created
automatically when you create a Problem, and is accessible via a reference such as
myProb.Model.

Model Methods

The DependCheck method performs a dependency analysis of your model —much
like pressing the Check Model button in the Solver Model dialog. After this method
is called, access the Problem object ProblemType property and the Model object
AllGradDepend property for dependency information about the current model.

Model .DependCheck Transformed, CheckFor

Transformed is either False (check dependencies in the Original model), or True
(check dependenciesin the Transformed model); see “ Transforming a Non-Smooth
Model” in the chapter “ Analyzing and Solving Models’ for more information.
CheckFor is 1 to check for the ability to compute Gradients, 2 to check the model
Structure, or 3 to check the model“s (Structure and) Convexity.

Model Properties

Property Description
Property Name Type
Problem Problem Problem associated with this Model.

ModelParam The collection of all parameters for the PSI

Params . .
Collection Interpreter used when it analyzes the model.

258

Using the Object-Oriented API Solver User Guide

Index by Variable Type_ Decision to get

NumVariables i A .
Integer array the total number of decision variables.

Index by Function_Type_Constraint to get

NumFunctions i . .
Integer array the total number of constraint functions.

The dependency matrix — rows represent
AllGradDepend | DependMatrix | constraints, columns represent variables,
values are from the Depend_Type enum.

Depend_Type Constants

The Depend_Type enum has a set of symbolic constant values that reflect the nature
of the dependence between a specific function and decision variable in the
AllGradDepend matrix:

Depend_Type_None

Depend_Type_Linear

Depend_Type Quadratic

Depend_Type_Smooth

Depend_Type_ NonSmooth

If a function does not depend at all on a specific variable, the matrix entry for that
function (row) and variable (column) will be Depend_Type_None.

Variable Object

In the Premium Solver Platform, a Variable object represents a block of decision
variables. In Risk Solver Engine, a Variable object represents a block of uncertain
variables, and in the Solver Platform SDK, both decision variables and uncertain
variables can be used. Hence, in the object-oriented API each Variable object has a
VariableType property, with symbolic values drawn from the Variable_Type enum
(always Variable_Type_Decision in the Premium Solver Platform).

When you create a Problem, a collection of Variable objects — one for each block of
contiguous decision variable cells on the Excel worksheet — is created automatically,
and is accessible via a reference such as myProb.Variables. You can subscript the
Variables collection, either by an integer index or by a text string such as
“SAS1L:A10", to access a specific Variable object.

The Variable objects that are created automatically for a new Problem, based on the
Excel worksheet, have properties that are ,read only": Y ou can get, but you cannot
set the Name, Value, LowerBound, UpperBound, IntegerType, etc.

You can create a new Variable object (with a line of code such as Dim myVar as
New Variable), call myVar.Init to associate it with a cell range on the worksheet,
set the other properties of this Variable, then add this new Variable to the Variables
collection of the Problem (with code such as myProb.Variables.Add myVar). This
isillustrated in the section “ CuttingStock.xls: Multiple Problems and Dynamically
Generated Variables.” After you do this, the cell range for the new Variable will be
available in the Solver Parameters dialog Variable list box, and it will be saved as
part of the model when the workbook is saved. Immediately after you add the object
to the Variables collection, you'll find that its properties are now ,read only".

The Problem"s VVarDecision property initially refers to the first Variable object in the
collection (i.e. the first block of variables in the Variables list box in the Solver
Parameters dialog). To select a different Variable, you can either assign a new

Solver User Guide

Using the Object-Oriented APl 259

reference to the VarDecision property, for example myProb.VarDecision =
myProb.Variables("A1:A10"), or you can call the chosen Variable object"s
MakeCurrent method.

Variable Methods

The Init method causes this Variable object to be associated with a cell range on the
worksheet. The MakeCurrent method makes this Variable object the ,currently
selected" block of variables; after calling this method, myProb.VarDecision will refer
to this Variable object. The NonNegative method provides a quick way to specify
that all variables in the block are nonnegative (LowerBound of 0).

Variable.Init Range
Variable.MakeCurrent
Variable.NonNegative

Range is an Excel range object.

Variable Properties

Property Name | Property Type | Description

Problem Problem Problem associated with this Variable.

Type of the Variable — in the PSP, always

VariableT i . -
ariableType | Variable_Type Variable_Type_Decision.

Name of the Variable — in the PSP, either
Name string a cell range such as “A1:A10” or a
defined name appearing on the worksheet.

Number of elements in this Variable

Size i . .
Integer (vector of decision variables).
Index inteqer Index of this Variable object in the
g Variables Collection.
Position inteqer Starting position of this vector of
g variables in the Model flat address space.
Value double Current values of the vector of variables.
Statistics for this vector of variables; set
Statistics Statistics only when the Evolutionary Solver or the

OptQuest Solver is selected and the
Optimize method is called.

Lower bounds on the vector of variables.
LowerBound double Currently, lower bounds must be the same
for all variables in one Variable object.

Upper bounds on the vector of variables.
UpperBound double Currently, upper bounds must be the same
for all variables in one Variable object.

260 Using the Object-Oriented API Solver User Guide

Indicates whether this vector of variables

IntegerType .) :) :
gertyp Integer_Type is continuous, integer, or binary integer.

Index of the alldifferent group to which
Group Index integer the variables belong; O if these variables
are not part of any alldifferent group.

Indicates whether this vector of variables

ConeType
yp Cone_Type belongs to a cone, and the type of cone.

Index of the cone to which the variables

Conelndex integer belong; 0 if these variables do not belong
to any cone.

Initialvalue | double Initial values of the vector of variables.

Finalvalue double Final values_ c_Jf t_he vector of variables
(after an optimization).

DualValue double Dual values of the vector of variables

(after an optimization).

Lower bounds of the ranges of the
DualLower double objective coefficients for which the dual
values are valid (after an optimization).

Upper bounds of the ranges of the
DualUpper double objective coefficients for which the dual
values are valid (after an optimization).

Function Object

In the Premium Solver Platform, a Function object represents either a block of
constraints, or the objective function. In Risk Solver Engine, a Function object
represents a block of uncertain functions, and in the Solver Platform SDK, each of
these function types can be used. Hence, in the object-oriented API each Function
object has a FunctionType property, with symbolic values drawn from the
Function_Type enum (either Function_Type_Constraint or Function_Type_Objective
in the Premium Solver Platform).

When you create a Problem, a collection of Function objects — one for the objective
(Set Cell), and one for each block of contiguous constraint cells on the Excel
worksheet — is created automatically, and is accessible via a reference such as
myProb.Functions. You can subscript the Functions collection, either by an integer
index or by a text string such as “A1:A10", to access a specific Function object.

The Function objects that are created automatically for a new Problem, based on the
Excel worksheet, have propertiesthat are ,read only": Y ou can get, but you cannot
set the Name, Value, LowerBound, UpperBound, etc.

You can create a new Function object (with a line of code such as Dim myFunc as
New Solver32.Function), call myFunc.Init to associate it with a cell range on the
worksheet, set the other properties of this Function, then add this new Function to the
Functions collection of the Problem (with code such as myProb.Functions.Add
myFunc). After you do this, the cell range for the new Function will be available in

Solver User Guide

Using the Object-Oriented APl 261

the Solver Parameters dialog Constraint list box, and it will be saved as part of the
model when the workbook is saved. Immediately after you add the object to the
Functions collection, you'll find that its properties are now ,read only".

The Problem"s FcnObjective property refers to the objective (Set Cell) in the Solver
Parameters dialog, and its FcnConstraint property initially refers to the first
constraint Function object in the collection (i.e. the first block of constraints in the
Constraints list box in the Solver Parameters dialog). To select a different Function,
you can either assign a new reference to the FcnConstraint property, for example
myProb.FcnConstraint = myProb.Functions("A1:A10"), or you can call the
chosen Function object's MakeCurrent method.

Function Methods

The Init method causes this Function object to be associated with a cell range on the
worksheet. The MakeCurrent method makes this Function object the ,currently
selected” block of functions; after calling this method, myProb.FenConstraint will
refer to this Function object. The NonNegative method provides a quick way to
specify that all constraints in the block have a LowerBound of 0. The Relation
method lets you specify a relation — <=, =, or >= —and a right hand side value to be
applied to all elements of a block of constraints.

Function.Init Range
Function._MakeCurrent
Function.NonNegative
Function._Relation Rel, RHS

Range is an Excel range object. Rel is one of the symbolic constants Cons_Rel EQ
(=), Cons_Rel_GE (>=) or Cons_Rel_LE (<=). Currently RHS must be a single
numeric value, or an array in which all the numeric values are the same.

Function Properties

Property Name Property Type Description

Problem Problem Problem associated with this Function.

Type of the Function — in the PSP,
FunctionType Function_Type either Function_Type_Objective or
Function_Type_Constraint.

Name of the Function — in the PSP,
either a cell range such as
“SABLSA$10" or a defined name
appearing on the worksheet.

Name string

Number of elements in this Function
Size integer (vector of constraints); always 1 for the
objective function.

Index of this Function object in the

Index [i i
Integer Functions Collection.

262

Using the Object-Oriented API Solver User Guide

Position

integer

Starting position of this vector of func-
tions in the Model flat address space.

Value

double

Current values of the vector of
constraints, or of the objective.

Statistics

Statistics

Statistics for this vector of functions;
set only when the Evolutionary Solver
or the OptQuest Solver is selected and
the Optimize method is called.

LowerBound

double

Lower boundson the vector of
functions. Currently, you can set either
the LowerBound or the UpperBound,
but not both, and lower bounds must be
the same for all of the functions in one
Function object.

UpperBound

double

Upper boundson the vector of
functions. Currently, you can set either
the LowerBound or the UpperBound,
but not both, and upper bounds must
be the same for all of the functions in
one Function object.

Initialvalue

double

Initial values of the vector of functions.

Finalvalue

double

Final values of the vector of functions
(after an optimization).

DualValue

double

Dual values of the vector of functions
(after an optimization).

DualLower

double

Lower bounds of the ranges of the
right-hand sides for which the dual
values are valid (after an optimization).

DualUpper

double

Upper bounds of the ranges of the
right-hand sides for which the dual
values are valid (after an optimization).

Secondary Objects

This section describes the secondary objects available in the Premium Solver
Platform"s object-oriented API, and their properties and methods. As noted above,
these objects allow you to work with sets of numbers that are associated with the
Model, an Engine, a Variable or Function, or optimization results.

Solver User Guide

Using the Object-Oriented API

263

ModelParam Object

A ModelParam object represents a single parameter or option controlling the PSI
Interpreter when it analyzes your model, when you call the Model.DependCheck
method or the Solver.Optimize method. The Model object for a Problem has a
property Params which is a collection of ModelParam objects. As with other
collections, you can subscript the Params collection with an integer index or a string
name, for example myProb.Model.Params("ReqSmooth™) = 1.

ModelParam Properties

Property Name Property Type Description

Name string Name of the parameter.

Value double Current value of the parameter.
Default double Default value of the parameter.
MinvValue double Minimum value of the parameter.
MaxValue double Maximum value of the parameter.

ModelParam Names

The ModelParam names for current parameters of the PSI Interpreter match the
symbolic names of parameters of the “traditional” VBA function SolverModel, and
are summarized below:

“Solvewith™ 1 = Use PSI Interpreter, 2 = Use Excel Interpreter

“SolveTransformed™ 1 = Solve Transformed, 0 = Solve Original model

“CheckFor" 1 = Gradients, 2 = Structure, 3 = Convexity, 4 =
Automatic

"ShowTransformations™ | 1 - Cregte Transformation Report, 0 = Don't create

“"ShowExceptions™ 1 = Create Structure Report, 0 = Don't create

"DesiredModel" 1 = Linear, 2 = Quadratic, 3 = Conic, 4 = Smooth
Nonlinear, 5 = Non-smooth

"Engines™ 1= All, 2 = Valid, 3 = Good, 4 = Best

""ReqSmooth" 1 =Treat ABS, IF, MAX, MIN, SIGN as non-
smooth, 0 = Treat as smooth

“FastSetup” 1 = Use old-style Fast Problem Setup, 0 = Don't

“Sparse” 1 = PSI Interpreter runs in Sparse mode, 0 = Dense

"ActiveOnly" 1 = PSI Interpreter analyzes active worksheet only,
0 = analyzes referenced cells throughout workbook

The “SolveWith” and “SolveTransformed” parameters are effective when your code
calls the Solver.Optimize method. The” ShowTransformations’, “ ShowExceptions’,
“DesiredModel”, and “Engines’ parameters are effective when your code calls the
Model.DependCheck method. Other parameters affect any use of the PSI Interpreter.

264

Using the Object-Oriented API Solver User Guide

EngineParam Object

An EngineParam object represents a single parameter or option controlling the
behavior of a Solver engine. Each Engine object has a property Params which is a
collection of EngineParam objects. As with other collections, you can subscript the
Params collection with an integer index or a string name. For example, you can write
myProb.Model.Params(**"MaxTime"") = 600 to set the maximum solution time to
10 minutes (600 seconds).

EngineParam Properties

Property Name Property Type Description

Name string Name of the parameter.

Value double Current value of the parameter.
Default double Default value of the parameter.
MinValue double Minimum value of the parameter.
MaxValue double Maximum value of the parameter.

To find EngineParam names for the parameters of different Solver engines, consult
the “Solver Options’ chaptersin this Guide (for built-in Engines) and the Solver
Engines Guide (for plug-in Engines). The parameter names normally match the
symbolic names of parameters of the “traditional” Solver Option VBA functions.

EngineLimit Object

An EngineLimit object holds limits on the maximum size or complexity of problems
handled by a Solver engine. These limits are ,read only” —you can access them in
your VBA code, which can be useful if your code is written to work with a variety of
Solver engines. Each Engine object contains an EngineLimit object; the currently
selected Solver engine"s limits may be referenced as myProb.Engine.EngineLimit.

EngineLimit Properties

Property Name Property Type | Description
IterationLimit integer Maximum number of iterations.
VarDecisionLimit integer Maximum number of variables.

Maximum number of constraints,

FcnConstraintLimit | integer -
g apart from variable bounds.

Maximum number of explicit

VarBoundLimit integer .
9 bounds on variables.

Maximum number of integer

VarilntegerLimit i . . - .
9 Integer (including alldifferent) variables.

Solver User Guide Using the Object-Oriented APl 265

EngineStat Object

An EngineStat object holds performance statistics from the last time an Engine was
used to solve a problem, by calling the Solver.Optimize method. These statistics are
.read only," but you can read, analyze and report them in your VBA code.

EngineStat Properties

Property Name Property Type Description

Time taken to solve the problem, in

Milliseconds [
Integer thousands of a second.

Iterations integer Number of iterations performed.

Number of subproblems explored, in
Subproblems integer a global optimization problem or an
integer programming problem.

Number of locally optimal solutions
found in a global optimization
LocalSolutions integer problem, or number of improved
incumbents found in an integer
programming problem.

Number of function evaluations

FunctionEvals integer
performed.

Number of Jacobian (1st derivative)
JacobianEvals integer evaluations performed, if used by the
Solver engine.

Number of Hessian (2nd derivative)
HessianEvals integer evaluations performed, if used by the
Solver engine.

OptllS Object

An OptllS object holds information about an Irreducibly Infeasible Subset (11S) of
the constraints, which is found when you call the Solver.FindIIS method. You can
use myProb.Solver.OptlIS to access the OptllS information for a problem.

The Findl1S method may be called for a problem when the result of calling the
Optimize method is an ,infeasible" OptimizeStatus. An 11Sis asubset of the
constraints such that a problem consisting of just these constraints is still infeasible,
but if any one of the constraints in the 1S is dropped, the problem becomes feasible.
Examining the 11S may help you determine why a problem is infeasible.

266 Using the Object-Oriented API Solver User Guide

OptlIS Properties

Property Description
Property Name Type
NumBounds integer Number of variable bounds in the 1IS.
NumConstraints integer Number of constraints in the 1IS.
integer Array of indices of variables (in the
BoundIndex g Model"s flat address space) whose bounds
array : ;
are included in the 1IS.
IS Status Array of status values for variable bounds,
BoundStatus = corresponding to indices in the
array
BoundlIndex array.
inteaer Array of indices of constraints (in the
Constraintlindex g Model*s flat address space) that are
array . .
included in the 11S.
1S Status Array of status values for constraints,
ConstraintStatus - corresponding to indices in the
array X
Constraintindex array.

The 11S_Status values can be any of the symbolic names II1S_Status_LowerBound,
I1S_Status_UpperBound, or 11S_Status_Fixed.

Statistics Object

A Statistics object holds statistics for variable and function values across a popula-
tion of final solutions. Each Variable object and Function object contains one
Statistics object, holding values for that vector of variables or functions. The
Statistics properties are set after an optimization, but only when the Evolutionary
Solver or the OptQuest Solver is used.

Statistics Properties

Property Name Property Type Description

NumValues integer Number of values in Statistics arrays.
NumErrors integer 0 in the Premium Solver Platform.
Minimum double array Minimum value across the population.
Maximum double array Maximum value across the population.
Mean double array Mean value across the population.

Standard deviation across the

StdDev double array population

Solver User Guide Using the Object-Oriented APl 267

The Statistics object has additional properties, such as Mode, Variance, Skewness
and Kurtosis, that are used only for uncertain variables and functions, when solving
simulation problems with Risk Solver Engine or the Solver Platform SDK.

DoubleMatrix Object

A DoubleMatrix object is a flexible and powerful tool for working with large, sparse
matrices of numbers. It automatically allocates and manages memory only for the
nonzero elements of the matrix. So, if you create a matrix with one million rows and
one million columns, it will take very little memory initially. You can then assign
nonzero elements to the matrix by writing assignment statements, treating the
DoubleMatrix object much like an ordinary two-dimensional array.

DoubleMatrix Methods

The Create method creates a structure for a new matrix of the specified size, but
does not initialize any of its elements. The InitDense method creates a new matrix
whose storage is optimized for the situation where most elements are non-zero —i.e.
the matrix is dense. The InitSparse method creates a new matrix whose storage is
optimized for the situation where most elements are zero —i.e. the matrix is sparse.
In both cases, the matrix is initialized with values from the Elements array, taking
these elements in the ArrayOrder order (initially in “column mgjor” order). Method
Clear removes all non-zeros from the matrix, but preserves its size; method Destroy
removes all non-zeros and also sets the number of rows and columns to zero.

Methods NZBgn and NZEnd should be called, to save time, if you wish to assign a
large number of non-zeros to the matrix at one time, without accessing or using these
values until all of them have been assigned. First call NZBgn, then perform the
assignments, then call NZEnd. If you need to ,undo" the effect of NZBgn, call
NZCancel instead of NZEnd — in this case, all of the assignments since NZBgn was
called will have no effect.

DoubleMatrix.Create Rows, Columns

DoubleMatrix. InitDense Rows, Columns, Elements
DoubleMatrix. InitSparse Rows, Columns, Elements
DoubleMatrix.Clear

DoubleMatrix.Destroy

DoubleMatrix.NZBgn

DoubleMatrix.NZEnd

DoubleMatrix.NzZCancel

Rows is the number of rows, and Columns is the number of columns in the matrix.
Elements is a one-dimensional VBA array whose elements are assigned to the matrix.

DoubleMatrix Properties

Property Name Property Type | Description

IsEmpty Boolean Flag indicating the matrix is empty.

Flag indicating sparse or dense storage

IsSparse Boolean .
P of the matrix.

268

Using the Object-Oriented API Solver User Guide

Specifies whether rows or columns are the
major (first) dimension. The default array
order is Array_Order_ByCol; you may
ArrayOrder Array_Order instead specify Array_Order_ByRow.
Changing the ArrayOrder property
transposes the matrix.

Retrieves the major (first) dimension
MajorDim integer (rows or columns depending on the
ArrayOrder property setting).

Retrieves the minor (second) dimension
MinorDim integer (rows or columns depending on the
ArrayOrder property setting).

Retrieves the number of rows in the
Rows integer matrix. Does not depend on the
Array_Order.

Retrieves the number of columns in the
Columns integer matrix. Does not depend on the
Array_Order.

In a sparse matrix, the actual number of
NumE lements integer non-zero elements stored. In a dense
matrix, this equals (Rows*Columns).

The value of an element of the matrix —
value double may appear on either side of an
assignment statement.

A DoubleMatrix object has several other properties, not documented here, that are
primarily useful in cases where the data that will be used to initialize the matrix is
already organized in sparse column-major or row-major form. For more information,
consult the VBA Object Browser or the Solver Platform SDK documentation, or
contact Frontline Systems at info@solver.com.

DependMatrix Object

A DependMatrix object is used to hold information about dependencies of problem
functions (objective and constraints) on decision variables. In the matrix, rows
represent constraints or the objective, and columns represent variables.

The value of the Model object AllGradDepend property is a DependMatrix. This
matrix is initialized (only) when you call the Model object DependCheck method.
An element of the matrix at position (i, j) has a value from the Depend_Type enum,
that tells you whether constraint i depends in a linear, quadratic, smooth nonlinear, or
nonsmooth way on variable j, or does not depend on variable j at all.

Depend_Type Constants

The Depend_Type enum has a set of symbolic constant values that reflect the nature
of the dependence between a specific function and decision variable:

Depend_Type_None
Depend_Type_Linear

Solver User Guide

Using the Object-Oriented APl 269

Depend_Type Quadratic
Depend_Type_Smooth
Depend_Type NonSmooth

If a function does not depend at all on a specific variable, the matrix entry for that
function (row) and variable (column) will be Depend_Type_None.

DependMatrix Methods

A DependMatrix is created for you as the value of the Model object AllGradDepend
property; you can simply access its elements by subscripting, for example by writing
myProb.Model.AllGradDepend(i, j). Should you need to create such a matrix,
however, you can use the same methods documented above for a DoubleMatrix:
Create, InitDense, InitSparse, Clear, Destroy, NZBgn, NZEnd and NZCancel.

DependMatrix Properties

A DependMatrix has the same properties as a DoubleMatrix, as documented above:
IsEmpty, IsSparse, ArrayOrder, MajorDim, MinorDim, Rows, Columns,
NumElements and Value. Only the Value property is different: Where this property
is of type double for a DoubleMatrix, it is of type Depend_Type for a DependMatrix.

A DependMatrix object has several other properties, not documented here, that are
primarily useful in cases where the data that will be used to initialize the matrix is
already organized in sparse column-major or row-major form. For more information,
consult the VBA Object Browser or the Solver Platform SDK documentation, or
contact Frontline Systems at info@solver.com.

270

Using the Object-Oriented API Solver User Guide

mailto:info@solver.com

Using Traditional VBA Functions

Controlling the Solver’'s Operation

This chapter explains how to control the Solver using “traditional” VBA functions,
which are upward compatible from the VBA functions supported by the standard
Excel Solver. The Premium Solver and Premium Solver Platform also support a new
object-oriented API that is high-level, easy to use, and compatible with the object-
oriented API offered by Frontline"s Risk Solver Engine for Monte Carlo simulation,
and the Solver Platform SDK, used to build custom applications of optimization and
simulation using C++, C#, VB.NET, Java, MATLAB and other languages.

Using traditional VBA functions, you can display or completely hide the Solver
dialog boxes, create or modify the choices of objective (Set Cell), variables
(Changing Cells) and constraints, check whether an optimal solution was found, and
produce reports. You do this by calling a set of Solver-specific functions from a
macro program you write in Visual Basic Applications Edition (VBA). If you need
to work with solution values or report information in your VBA code, create and
solve multiple optimization problems, or ,port" your code to run as a standalone
application, you may find that the object-oriented API is a better choice.

Running Predefined Solver Models

Controlling the Solver can be as simple as adding one line to your macro program
code! Each worksheet in a workbook may have a Solver problem defined, which is
saved automatically with the workbook. You can create this Solver model interactive-
ly if you wish. If you distribute such a workbook, with a worksheet containing a
Solver model and a VBA module, you can simply add a reference to the Solver add-
in, activate the worksheet, and add one line to call the function SolverSolve in VBA.

Using the Macro Recorder

If you want to set up a Solver model “from scratch” programmatically, one easy way
to see how to use the traditional VBA functions is to turn on the Macro Recorder
(select Tools Macro Record New Macro...) and then set up a Solver model
interactively. Microsoft Excel will record a macro in VBA that calls the Solver
functions to mimic the actions you perform. You can then edit and customize this
macro, and incorporate it into your application.

Solver User Guide

Using Traditional VBA Functions 271

Using Microsoft Excel Help

Y ou can learn about the standard Solver functionsin Excel“s online Help. In Excel
2007, Excel 2003 and Excel XP, open the Visual Basic Editor (Alt-F11), select Help
- Microsoft Visual Basic Help, click on the Index tab, and type ,Solver" to display an
index list of function names. In Excel 2000, open Help and choose the Contents tab.
Open the section “Programming Information,” and within this section open
“Functions.” Thiswill display the Solver function names.

Referencing Functions in Visual Basic

To use the VBA functions, your Visual Basic module must include a reference to the
Solver add-in (Solver.xla). In Microsoft Excel, first select Tools Premium Solver...
to ensure that the Premium Solver or Premium Solver Platform add-in is open. Then
(after closing the Solver dialog) press Alt-F11 to open the Visual Basic Editor,
choose Tools References... and make sure that the box next to Solver is checked.
Note that this is different from a reference to the Premium Solver Platform V7.0
type library, which you add when you use the new object-oriented APl in VBA.

Checking Function Return Values

The Solver functions generally return integer values, which you should check in your
VBA code. The normal return value is 0, indicating that the function succeeded.
Other possible return values are given in the descriptions of the individual functions.
If the arguments you supply are invalid, an error condition can be raised, which you
would have to handle via an On Error VBA statement.

Of particular interest is the return value of the SolverSolve function, which describes
the result of the actual optimization step. The return value can range from -1 to 21 in
the Premium Solver products, with additional values starting at 1000 for the Premium
Solver Platform"s Interval Global Solver and field-installable Solver engines. These
integer values are summarized in the description of the SolverSolve function below,
but for a comprehensive discussion, see the chapter “Diagnhosing Solver Results,”
starting with the subsection “ Standard Solver Result Messages.”

One group of functions can return a variety of numeric, logical, string or array values,
depending on the arguments you supply. These functions (SolverGet, SolverOkGet,
etc.) may be used to “read” the settings of the current Solver model, on the active
sheet or any other worksheet whose name you supply.

Standard, Model and Premium Macro Functions

The following sections describe each of the VBA function calls supported by the
Premium Solver products. These functions are a compatible superset of the function
calls available in the standard Excel Solver.

The functions are listed alphabetically in three groups. The first group consists of
functions available in both the standard Excel Solver and the Premium Solver
products. The second group (Premium VBA Functions) consists of functions that are
available only in the Premium Solver products. The third group (Solver Model VBA
Functions) consists of functions that are available only in the Premium Solver
Platform. If you want to write VBA code that will work with both the standard
Solver and the Premium Solver products, you should limit yourself to functions in the
first group, and consult the notes on each function call to determine which arguments
are supported by the standard Solver.

272 Using Traditional VBA Functions Solver User Guide

Standard VBA Functions

The VBA functions in this section are available in both the standard Excel Solver and
the Premium Solver products. Some of these functions have extra arguments that are
supported only in the Premium Solver products, as noted in each function
description.

SolverAdd (Form 1)

Equivalent to choosing Solver... from the Tools menu and pressing the Add button in
the Solver Parameters dialog box. Adds a constraint to the current problem.

VBA Syntax
SolverAdd (CellRef:=, Relation:=, FormulaText:=, Comment:=, Report:=)

CellRef is a reference to a cell or a range of cells on the active worksheet and forms
the left hand side of the constraint.

Relation specifies the arithmetic relationship between the left and right hand sides,
or whether CellRef must have an integer value at the solution.

Relation Relationship
<=

>=

int (CellRef is an integer variable)

bin (CellRef is a binary integer variable)

dif (CellRef is an alldifferent group)

soc (CellRef belongs to a second order cone)

8 src (CellRef belongs to a rotated second order cone)

~NoO ok WN -

FormulaText is the right hand side of the constraint and will often be a single
number, but it may be a formula (as text) or a reference to a range of cells.

Comment is a string corresponding to the Comment field in the Add Constraint
dialog, only in the Premium Solver products.

Report is no longer used, but is included for compatibility with previous versions of
the Premium Solver products.

The standard Excel Solver supports only Relation values 1 to 5. If Relation is 4 to
8, FormulaText is ignored, and CellRef must be a subset of the Changing Cells.

If FormulaText is a reference to a range of cells, the number of cells in the range
must match the number of cells in CellRef, although the shape of the areas need not
be the same. For example, CellRef could be a row and FormulaText could refer to a
column, as long as the number of cells is the same.

Remarks

The SolverAdd, SolverChange and SolverDelete functions correspond to the Add,
Change, and Delete buttons in the Solver Parameters dialog box. You use these
functions to define constraints. For many macro applications, however, you may find
it more convenient to load the problem in a single step using the SolverLoad call.

Each constraint is uniquely identified by the combination of the cell reference on the
left and the relationship (<=, =, >=, int, bin, dif, soc or src) between its left and right
sides. This takes the place of selecting the constraint in the Solver Parameters dialog
box. You can manipulate constraints with SolverChange and SolverDelete.

Solver User Guide

Using Traditional VBA Functions 273

SolverAdd (Form 2)

Equivalent to choosing Solver... from the Tools menu, pressing the Variables button,
and then pressing the Add button in the Solver Parameters dialog box. Adds a set of
decision variable cells to the current problem. This form is supported only by the
Premium Solver products.

VBA Syntax
SolverAdd (CellRef:=, Comment:=, Report:=)

CellRef is a reference to a cell or a range of cells on the active worksheet and forms
a set of decision variables.

Comment is a string corresponding to the Comment field in the Add Variable Cells
dialog, only in the Premium Solver products.

Report is no longer used, but is included for compatibility with previous versions of
the Premium Solver products.

Remarks

The SolverAdd, SolverChange and SolverDelete functions correspond to the Add,
Change, and Delete buttons in the Solver Parameters dialog box. In this form, you
can use these functions to add or change sets of decision variables. For many macro
applications, however, you may find it more convenient to load the problem in a
single step using the SolverLoad function.

Note that SolverOk defines the first entry in the By Changing Variable Cells list box.
Use SolverAdd to define additional entries in the Variables Cells list box. Do not call
SolverOk with a different ByChange:= argument after you have defined more than
one set of variable cells.

SolverChange (Form 1)

Equivalent to choosing Solver... from the Tools menu and pressing the Change button
in the Solver Parameters dialog box. Changes the right hand side of an existing
constraint.

VBA Syntax

SolverChange (CellRef:=, Relation:=, FormulaText:=, Comment:=, Report:=)
For an explanation of the arguments and selection of constraints, see SolverAdd.
Remarks

If the combination of CellRef and Relation does not match any existing constraint,
the function returns the value 4 and no action is taken.

To change the CellRef or Relation of an existing constraint, use SolverDelete to
delete the old constraint, then use SolverAdd to add the constraint in the form you
want.

SolverChange (Form 2)

Equivalent to choosing Solver... from the Tools menu, pressing the Variables button,
and then pressing the Change button in the Solver Parameters dialog box. Changes a
set of decision variable cells. This form is supported only by the Premium Solver
products.

274 Using Traditional VBA Functions Solver User Guide

VBA Syntax
SolverChange (CellRef:=, Relation:=, Comment:=, Report:=)

CellRef is a reference to a cell or a range of cells on the active worksheet, currently
defined in the Variable Cells list box as a set of decision variable cells.

Relation is a reference to a different cell or range of cells on the active worksheet,
which will replace CellRef as a new set of variable cells.

Comment is a string corresponding to the Comment field in the Change Variable
Cells dialog, only in the Premium Solver products.

Report is no longer used, but is included for compatibility with previous versions of
the Premium Solver products.

Remarks

If CellRef does not match any existing set of variable cells, the function returns the
value 1 and no action is taken.

SolverDelete (Form 1)

Equivalent to choosing Solver... from the Tools menu and pressing the Delete button
in the Solver Parameters dialog box. Deletes an existing constraint.

VBA Syntax
SolverDelete (CellRef:=, Relation:=, FormulaText:=)

For an explanation of the arguments and selection of constraints, see SolverAdd.
The FormulaText argument is optional, but if present, it is used to confirm that the
correct constraint block is being deleted.

Remarks

If the combination of CellRef and Relation does not match any existing constraint,
the function returns the value 4 and no action is taken. If the constraint is found, it is
deleted, and the function returns the value 0.

SolverDelete (Form 2)

Equivalent to choosing Solver... from the Tools menu, pressing the Variables button,
and then pressing the Delete button in the Solver Parameters dialog box. Deletes an
existing set of variable cells. This form is supported only by the Premium Solver
products.

VBA Syntax
SolverDelete (CellRef:=)

CellRef is a reference to a cell or a range of cells on the active worksheet, currently
defined in the Variable Cells list box as decision variable cells.

Remarks

If CellRef does not match any existing set of variable cells, the function returns the
value 1 and no action is taken. If the variable cells are found, they are deleted, and
the function returns the value 0.

Solver User Guide

Using Traditional VBA Functions 275

SolverFinish

Equivalent to selecting options and clicking OK in the Solver Results dialog that
appears when the solution process is finished. The dialog box will not be displayed.

VBA Syntax
SolverFinish (KeepFinal:=, ReportArray:=, ReportDesc:=, OutlineReports:=)

The ReportDesc and OutlineReports arguments are available only in the Premium
Solver products.

KeepFinal is the number 1, 2 or 3 and specifies whether to keep or discard the final
solution. If KeepFinal is 1 or omitted, the final solution values are kept in the
variable cells. If KeepFinal is 2, the final solution values are discarded and the
former values of the variable cells are restored.

If KeepFinal is 3 —which can occur only if you are solving a problem with integer
constraints which has no feasible integer solution — Solver will immediately re-solve
the “relaxation” of the problem, temporarily ignoring the integer constraints. Inthis
case, SolverFinish will return when the solution process is complete, and its return
value will be one of the integer values ordinarily returned by SolverSolve.

ReportArray is an array argument specifying what reports should be produced. If
the Solver found a solution, it may have any of the following values:

If ReportArray is The Solver creates
Array(1) An Answer Report
Array(2) A Sensitivity Report
Array(3) A Limits Report
Array(4) A Solutions Report

Array(4) is used only for integer programming and global optimization problems. A
combination of these values produces multiple reports. For example, if ReportArray
= Array(1,2), the Solver will create an Answer Report and a Sensitivity Report.

If you are using the Interval Global Solver engine, you can produce an Answer
Report when SolverSolve returns 0, and a Solutions Report if you successfully solve
a system of inequalities or a square system of equations:

If ReportArray is The Solver creates
Array(1) An Answer Report
Array(2) A Solutions Report

If you are using the Evolutionary Solver engine, you can produce an Answer Report,
a Population Report or a Solutions Report unless SolverSolve returns 18, 19 or 20
(which means that the Solver returned an error before a population was formed):

If ReportArray is The Solver creates
Array(1) An Answer Report
Array(2) A Population Report
Array(3) A Solutions Report

If the Solver found that the linearity conditions for the selected Solver engine were
not satisfied (SolverSolve returns 7), you can produce a Linearity Report or a Scaling

Report:
If ReportArray is The Solver creates
Array(1) A Linearity Report
Array(2) A Scaling Report

276 Using Traditional VBA Functions Solver User Guide

If the Solver could not find a feasible solution (SolverSolve returns 5), you can
produce either version of the Feasibility Report, or a Scaling Report:

If ReportArray is The Solver creates
Array(1) A Feasibility Report
Array(2) A Feasibility-Bounds Report
Array(3) A Scaling Report

If you are using the Premium Solver Platform and a field-installable Solver engine, it
may produce some or all of the reports mentioned above and/or its own custom
reports. To determine what you should use for the ReportArray argument, solve a
problem interactively with this Solver engine, and examine the Reports list box in the
Solver Results dialog. Then use the ordinal position of the report you want:

If ReportArray is The Solver creates
Array(1) The first report listed
Array(2) The second report listed (and so on)

ReportDesc is an array of character strings that allows you to select reports by their
names, rather than their ordinal positions in the Reports list. For example, you can
select an Answer Report with Array (“Answer”), or both the Answer Report and the
Sensitivity Report with Array (“Answer”, “Sensitivity”). The possible strings are:

“Answer” Answer Report

“Sensitivity” Sensitivity Report

“Limits’ Limits Report

“Solutions’ Solutions Report

“Population” Population Report

“Linearity” Linearity Report

“Feasibility” Feasibility Report (full version)
“Feasibility-Bounds’ Feasibility Report (w/o bounds)
“Scaling” Scaling Report

The report names you can include in the array depend on the currently selected
Solver engine and the integer value returned by SolverSolve, as described above.

OutlineReports is a logical value corresponding to the Outline Reports check box.

If TRUE, any reports you select will be produced in outlined format, and comments
(if any) associated with each block of variables and constraints will be included in the
report; if it is FALSE, the reports will be produced in “regular” format.

SolverFinishDialog

Equivalent to selecting options in the Solver Results dialog that appears when the
solution process is finished. The dialog box will be displayed, and the user will be
able to change the options that you initially specify.

VBA Syntax

SolverFinishDialog (KeepFinal:=, ReportArray:=, ReportDesc:=,
OutlineReports:=)

For an explanation of the arguments of this function, see SolverFinish.

SolverGet

Returns information about the current Solver problem. The settings are specified in
the Solver Parameters and Solver Options dialog boxes, or with the other Solver

Solver User Guide

Using Traditional VBA Functions 277

functions described in this chapter. Values of the TypeNum:= argument from 1 to 18
are supported by the standard Excel Solver.

SolverGet is provided for compatibility with the standard Excel Solver and earlier
versions of the Premium Solver products. For programmatic control of new features
and options included in Version 5.0 or later of the Premium Solver products, see the
dialog-specific “ Get” functionsin the sections “ Solver Model VBA Functions’ and
“Premium VBA Functions.”

VBA Syntax
SolverGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified in the Solver Parameters dialog box.

TypeNum Returns

1 The reference in the Set Cell box, or the #N/A error value if
Solver has not been used on the active document

2 A number corresponding to the Equal To option
1 = Max
2 = Min
3 = Value Of
3 The value in the Value Of box
4 The reference in the Changing Cells box (in the Premium
Solvers, only the first entry in the Variables list box)
5 The number of entries in the Constraints list box
6 An array of the left hand sides of the constraints as text
7 An array of numbers corresponding to the relations
between the left and right hand sides of the constraints:
1 = <=
2 = =
3 = >=
4 = int
5 = bin
6 = dif
7 = soc
8 = src
8 An array of the right hand sides of the constraints as text

The following settings are specified in the Solver Options dialog box:

TypeNum Returns

9 The Max Time value (as a number in seconds)

10 The Iterations value (max number of iterations)

11 The Precision value (as a decimal number)

12 The integer Tolerance value (as a decimal number)

13 In the standard Solver: TRUE if the Assume Linear Model

check box is selected; FALSE otherwise. In the Premium
Solvers: TRUE if the linear Simplex or LP/Quadratic
Solver is selected; FALSE if any other Solver is selected

14 TRUE if the Show lteration Result check box is selected;
FALSE otherwise

278 Using Traditional VBA Functions Solver User Guide

15 TRUE if the Use Automatic Scaling check box is selected;
FALSE otherwise

16 A number corresponding to the type of Estimates:
1 = Tangent
2 = Quadratic
17 A number corresponding to the type of Derivatives:
1 = Forward
2 = Central
18 A number corresponding to the type of Search:
1 = Newton
2 = Conjugate

The following settings are supported by the Premium Solver products:

TypeNum Returns

19 The Convergence value (as a decimal number) in the nonlinear
GRG Solver

20 TRUE if the Assume Non-Negative check box is selected; FALSE
otherwise

21 The Integer Cutoff value (as a decimal number)

22 TRUE if the Bypass Solver Reports check box is selected;
FALSE otherwise

23 An array of the entries in the Variables list box as text

24 A number corresponding to the Solver engine dropdown list

for the currently selected Solver engine:

Nonlinear GRG Solver

Simplex or LP/Quadratic Solver

Evolutionary Solver

Interval Global Solver

SOCP Barrier Solver

In the Premium Solver Platform, other values may be returned
for field-installable Solver engines

abhwnNPF
o un

25 The Pivot Tolerance (as a decimal number) in the
Simplex, LP/Quadratic, and Large-Scale LP Solvers

26 The Reduced Cost Tolerance (as a decimal number) in the
Simplex, LP/Quadratic, and Large-Scale LP Solvers

27 The Coefficient Tolerance (as a decimal number) in the
Large-Scale LP Solver

28 The Solution Tolerance (as a decimal number) in the
Large-Scale LP Solver

29 TRUE if the Estimates option in the GRG Solver is set to
Tangent; FALSE if the Estimates option is set to Quadratic
30 A number corresponding to the type of Scaling in the
Large-Scale LP Solver:
1 = None
2 = Row Only
3 = Row & Col

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. 1f SheetName is omitted, it is assumed to be the active sheet.

Solver User Guide Using Traditional VBA Functions 279

SolverLoad

Equivalent to choosing Solver... from the Tools menu, choosing the Options button
from the Solver Parameters dialog box, and choosing the Load Model... button in the
Solver Options dialog box. Loads Solver model specifications that you have previ-
ously saved on the worksheet. The Format and ModelName arguments are support-
ed only in Version 7.0 or later of the Premium Solver products.

VBA Syntax
SolverLoad (LoadArea:=, Merge:=, Format:=, ModelName:=)

LoadArea is a reference to a range of cells from which you want to load a complete
model specification. In Solver versions prior to V7.0, LoadArea must be a reference
on the active worksheet; in Version 7.0 or later it can be on any worksheet.

Merge is a logical value corresponding to either the Merge button or the Replace
button in the dialog that appears after you select the LoadArea reference and click
OK. Ifitis TRUE, the variable cell selections and constraints from the LoadArea
are merged with the currently defined variables and constraints. If FALSE, the
current model specifications and options are erased (equivalent to a call to the
SolverReset function) before the new specifications are loaded.

Format corresponds to the Format dropdown list in the Load Model dialog: 1 for
“Classic” format and 2 for “PS| Function” format.

In“Classic” format, thefirst cell in LoadArea contains a formula for the Set Cell
edit box; the second cell contains a formula for the changing cells; subsequent cells
contain additional variable selections and constraints in the form of logical formulas.
The final cells optionally contain an array of Solver option values.

In“PSl Function” format, the cells contain calls to functions such as PsiVar(),
PsiCon(), PsiObj() and PsiOption(). For details on these functions, see “ Defining
Your Model with PSI Functions” in the chapter “Building Solver Models.”

ModelName is used only when Format = 2, it overrides the LoadArea argument
and specifies either the name of a worksheet containing the model to be loaded, or
the name of a model previously saved in PSI function format.

SolverOk

Equivalent to choosing Solver... from the Tools menu and specifying options in the
Solver Parameters dialog. Specifies basic Solver options. The dialog box will not be
displayed.

VBA Syntax

SolverOk (SetCell:=, MaxMinVal:=, Valueof:=, ByChange:=,
Engine:=, EngineDesc:=)

SetCell corresponds to the Set Cell box in the Solver Parameters dialog box (the
objective function in the optimization problem). SetCell must be a reference to a cell
on the active worksheet. If you enter a cell, you must enter a value for MaxMinVal.

MaxMinVal corresponds to the options Max, Min and Value Of in the Solver
Parameters dialog box. Use this option only if you entered a reference for SetCell.

MaxMinVal Option specified
1 Maximize
2 Minimize
3 Value Of

280

Using Traditional VBA Functions Solver User Guide

ValueOf is the number that becomes the target for the cell in the Set Cell box if
MaxMinVal is 3. ValueOf is ignored if the cell is being maximized or minimized.

ByChange indicates the changing cells (decision variables), as entered in the By
Changing Variable Cells edit box. ByChange must be a cell reference (usually a cell
range or multiple reference) on the active worksheet. In the Premium Solver
products, you can add more changing cell references using Form 2 of the SolverAdd
function.

Engine corresponds to the engine dropdown list in the Solver Parameters dialog. See
the EngineDesc argument for an alternative way of selecting the Solver “engine.”

Engine Solver engine specified
1 Nonlinear GRG Solver
2 Simplex or LP/Quadratic Solver
3 Evolutionary Solver
4 Interval Global Solver
5 SOCP Barrier Solver

In the Premium Solver Platform, other values for Engine may be specified to select
field-installable Solver engines. However, these values depend on the ordinal
position of the Solver engine in the dropdown list, which may change when
additional Solver engines are installed.

EngineDesc, which is supported only by the Premium Solver products, provides an
alternative way to select the Solver engine from the dropdown list in the Solver
Parameters dialog. EngineDesc allows you to select a Solver engine by name rather
than by ordinal position in the list:

EngineDesc
“Standard GRG Nonlinear”
“Standard Simplex LP”
“Standard LP/Quadratic”
“Standard Evolutionary”
“Standard Interval Global”
“Standard SOCP Barrier”
“KNITRO Solver”
“Large-Scale GRG Solver”
“Large-Scale LP Solver”
“Large-Scale SQP Solver”
“MOSEK Solver Engine”
“OptQuest Solver”
“XPRESS Solver Engine”

Solver engine specified
Nonlinear GRG Solver
Simplex LP Solver
LP/Quadratic Solver
Evolutionary Solver
Interval Global Solver
SOCP Barrier Solver
KNITRO Solver
Large-Scale GRG Solver
Large-Scale LP Solver
Large-Scale SQP Solver
MOSEK Solver Engine
OptQuest Solver
XPRESS Solver Engine

SolverOkDialog

Equivalent to choosing Solver... from the Tools menu and specifying options in the
Solver Parameters dialog. The Solver Parameters dialog box will be displayed, and
the user will be able to change the options you initially specify.

VBA Syntax

SolverOkDialog (SetCell:=, MaxMinVal:=, Valueof:=, ByChange:=,

Engine:=, EngineDesc:=)

For an explanation of the arguments of this function, see SolverOk.

Solver User Guide

Using Traditional VBA Functions 281

SolverOptions

Equivalent to choosing Solver... from the Tools menu, then choosing the Options
button in the Solver Parameters dialog box. Specifies Solver algorithmic options.
Arguments supported by the standard Excel Solver include MaxTime, Iterations,
Precision, AssumeLinear, StepThru, Estimates, Derivatives, SearchOption,
IntTolerance, Scaling, Convergence and AssumeNonNeg.

SolverOptions is provided for compatibility with the standard Excel Solver and early
versions of the Premium Solver products. For programmatic control of new features
and options included in the Premium Solver products, see the functions in the
sections “ Solver Model VBA Functions’ and “Premium VBA Functions.”

VBA Syntax

SolverOptions (MaxTime:=, Iterations:=, Precision:=, AssumeLinear:=,
StepThru:=, Estimates:=, Derivatives:=, SearchOption:=, IntTolerance:=,
Scaling:=, Convergence:=, AssumeNonNeg:=, IntCutoff:=, BypassReports:=,
PivotTol:=, ReducedTol:=, CoeffTol:=, SolutionTol:=, Crash:=, ScalingOption:=)

The arguments correspond to the options in the Solver Options dialog box. If an
argument is omitted, the Solver maintains the current setting for that option. If any of
the arguments are of the wrong type, the function returns the #N/A error value. If all
arguments are of the correct type, but an argument has an invalid value, the function
returns a positive integer corresponding to its position. A zero return value indicates
that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit
box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit
box.

Precision must be a number between zero and one, but not equal to zero or one. It
corresponds to the Precision edit box.

AssumeL.inear is a logical value corresponding to the Assume Linear Model check
box. This argument is included for compatibility with the standard Microsoft Excel
Solver. lItis ignored by the Premium Solver products, which use the Engine or
EngineDesc argument of SolverOk or SolverOkDialog instead.

StepThru is a logical value corresponding to the Show Iteration Results check box.
If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have
supplied SolverSolve with a valid VBA function argument, your function will be
called each time Solver pauses; otherwise the standard Show Trial Solution dialog
box will appear.

Estimates is the number 1 or 2 and corresponds to the Estimates option: 1 for
Tangent and 2 for Quadratic.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option: 1 for
Forward and 2 for Central.

SearchOption is the number 1 or 2 and corresponds to the Search option: 1 for
Newton and 2 for Conjugate.

IntTolerance is a number between zero and one, corresponding to the Tolerance edit
box. This argument applies only if integer constraints have been defined.

Scaling is a logical value corresponding to the Use Automatic Scaling check box. If
TRUE, then Solver rescales the objective and constraints internally to similar orders
of magnitude. If FALSE, Solver uses values directly from the worksheet. In early

282 Using Traditional VBA Functions Solver User Guide

Excel versions, this option affects the nonlinear GRG Solver only; in Excel 97, 2000,
XP, 2003 and 2007 and the Premium Solver products, this option affects all Solver
engines.

Convergence is a number between zero and one, but not equal to zero or one. It
corresponds to the Convergence box.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative check
box. If TRUE, Solver supplies a lower bound of zero for all variables without
explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

IntCutoff is a number corresponding to the Integer Cutoff edit box. This argument
applies only if integer constraints have been defined.

BypassReports is a logical value corresponding to the Bypass Solver Reports check
box. If TRUE, the Solver will skip preparing the information needed to create Solver
Reports. If FALSE, the Solver will prepare for the reports. For large models,
bypassing the Solver Reports can speed up the solution process considerably.

PivotTol is a number between zero and one, corresponding to the Pivot Tolerance
edit box for the Simplex LP Solver in the Premium Solver.

ReducedTol is a number between zero and one, corresponding to the Reduced Cost
Tolerance edit box for the Simplex LP Solver in the Premium Solver.

CoeffTol is no longer used, but is included for compatibility with previous versions
of the Premium Solver products.

SolutionTol is no longer used, but is included for compatibility with previous
versions of the Premium Solver products.

Crash is no longer used, but is included for compatibility with previous versions of
the Premium Solver products.

ScalingOption is no longer used, but is included for compatibility with previous
versions of the Premium Solver products.

SolverReset

Equivalent to choosing Solver... from the Tools menu and choosing the Reset All
button in the Solver Parameters dialog box. Erases all cell selections and constraints
from the Solver Parameters dialog box, and restores all the settings on the Solver
Options, Limit Options and Integer Options dialog tabs to their defaults. The
SolverReset function may be automatically performed when you call SolverLoad.

VBA Syntax
SolverReset

SolverSave

Equivalent to choosing Solver... from the Tools menu, choosing the Options button
from the Solver Parameters dialog box, and choosing the Save Model... button in the
Solver Options dialog box. Saves the model specifications on the worksheet. The
Format and ModelName arguments are supported only in Version 7.0 or later of the
Premium Solver products.

VBA Syntax

SolverSave (SaveArea:=, Format:=, ModelName:=)

Solver User Guide

Using Traditional VBA Functions 283

SaveArea is a reference to a range of cells or to the topmost cell in a column of cells
where you want to save the current model"s specifications. In Solver versions prior
to V7.0, SaveArea must be a reference on the active worksheet; in Version 7.0 or
later it can be on any worksheet

Format corresponds to the Format dropdown list in the Load Model dialog: 1 for
“Classic” format and 2 for “PS| Function” format.

In“Classic” format, thefirst cell in SaveArea contains a formula for the Set Cell edit
box; the second cell contains a formula for the changing cells; subsequent cells
contain additional variable selections and constraints in the form of logical formulas.
The final cells optionally contain an array of Solver option values.

In“PSI Function” format, the cells contain calls to functions such as PsiVar(),
PsiCon(), PsiObj() and PsiOption(). For details on these functions, see “ Defining
Your Model with PSI Functions” in the chapter “Building Solver Models.”

ModelName is used only when Format = 2, and specifies a text name for the model.
This name is saved as the last argument of each PSI Function call in the saved model
specifications.

Remarks

If you specify only one cell for SaveArea, the area is extended downwards for as
many cells as are required to hold the model specifications.

If you specify more than one cell and the area is too small for the problem, the model
specifications will not be saved, and the function will return the value 2.

SolverSolve

Equivalent to choosing Solver... from the Tools menu and choosing the Solve button
in the Solver Parameters dialog box. If successful, returns an integer value indicating
the condition that caused the Solver to stop, as described below.

VBA Syntax
SolverSolve (UserFinish:=, ShowRef:=)

UserFinish is a logical value specifying whether to show the standard Solver Results
dialog box.

If UserFinish is TRUE, SolverSolve returns its integer value without displaying
anything. Your VBA code should decide what action to take (for example, by
examining the return value or presenting its own dialog box); it must call
SolverFinish in any case to return the worksheet to its proper state.

If UserFinish is FALSE or omitted, Solver displays the standard Solver Results
dialog box, allowing the user to keep or discard the final solution values, and
optionally produce reports.

ShowRef is a VBA function to be called in place of displaying the Show Trial
Solution dialog box. It is used when you want to gain control whenever Solver finds
anew “Tria Solution” value, the user presses the ESC key, or alimit on the solution
process is exceeded. Here is an example of defining and using the argument
ShowRef:

Sub Test
answer = SolverSolve(True, "ShowTrial")

End Sub
Function ShowTrial (Reason As Integer)

284 Using Traditional VBA Functions Solver User Guide

Msgbox Reason
ShowTrial = 1
End Function

The argument Reason, which must be present, is an integer value from 1 to 5:

1. Function called (on every iteration) because the Show lteration Results
box in the Solver Options dialog was checked, or function called
because the user pressed ESC to interrupt the Solver.

2. Function called because the Max Time limit in the Solver Options
dialog was exceeded.

3. Function called because the Max Iterations limit in the Solver Options
dialog was exceeded.

4. Function called because the Max Subproblems limit on the Integer
Options or Limit Options dialog tab was exceeded (Premium Solver
products only).

5. Function called because the Max Integer Sols limit on the Integer
Options dialog tab or the Max Feasible Sols limit on the Limit Options
dialog tab was exceeded (Premium Solver products only).

The function must return 0 if the Solver should stop (same as the Stop button in the
Show Trial Solution dialog), 1 if it should continue running (same as the Continue
button), or 2 if it should restart the solution process (same as the Restart button).
Note: In the standard Excel Solver and the Premium Solver prior to V5.0, the
function should return FALSE instead of 0 to stop, or TRUE instead of 1 to continue
running; the restart alternative is not available.

Your VBA function can inspect the current solution values on the worksheet, or take
other actions such as saving or charting the intermediate values. However, it should
not alter the values in the variable cells, or alter the formulas in the objective and
constraint cells, as this could adversely affect the solution process.

In the Premium Solver Platform, if the PSI Interpreter is used, the worksheet is not
updated with new variable values until the end of the solution process; you cannot
use the traditional VBA functions to inspect variable values on each Trial Solution,
but you can use the object-oriented API to do this. See “Evaluators Called During
the Solution Process” in the chapter “Using the Object-Oriented API” for details.

Remarks

If a Solver problem has not been completely defined, SolverSolve returns the #N/A
error value. Otherwise the Solver engine is started, and the problem specifications
are passed to it. When the solution process is complete, SolverSolve returns an
integer value indicating the stopping condition. The standard Excel Solver returns
values from 0 to 13; the Premium Solver products return values from —1 to 21. When
the Interval Global Solver or field-installable Solver engines are used, the Premium
Solver Platform may return engine-specific values for custom stopping conditions,
starting at 1000.

Value Stopping Condition

-1 A licensing problem was detected, or your trial license
has expired.

0 Solver found a solution. All constraints and optimality
conditions are satisfied.

Solver User Guide

Using Traditional VBA Functions 285

10

11

12

13

14

15

16

17

18

19

20

21

1000

1001

1002

Solver has converged to the current solution. All constraints
are satisfied.

Solver cannot improve the current solution. All constraints are
satisfied.

Stop chosen when the maximum iteration limit was reached.
The Set Cell values do not converge.

Solver could not find a feasible solution.

Sol ver stopped at user’s request

The linearity conditions required by this Solver engine are
not satisfied.

The problem is too large for Solver to handle.

Solver encountered an error value in a target or constraint
cell.

Stop chosen when the maximum time limit was reached.
There is not enough memory available to solve the problem.
Error condition at cell address (Premium Solver Platform only).

Error in model. Please verify that all cells and constraints
are valid.

Solver found an integer solution within tolerance. All
constraints are satisfied.

Stop chosen when the maximum number of feasible [integer]
solutions was reached.

Stop chosen when the maximum number of feasible [integer]
subproblems was reached.

Solver converged in probability to a global solution.
All variables must have both upper and lower bounds.
Variable bounds conflict in binary or alldifferent constraint.
Lower and upper bounds on variables allow no feasible solution.

Solver encountered an error computing derivatives (Premium
Solver Platform only).

Interval Global Solver requires Solve With Automatic and strictly
smooth functions (Premium Solver Platform only).

Function cannot be evaluated for given real or interval
arguments (Premium Solver Platform only).

Solution found, but not proven globally optimal (Premium Solver
Platform only).

Solver Model VBA Functions

The VBA functions in this section are available only in the Premium Solver and
Premium Solver Platform. You can use these functions to programmatically use the
Polymorphic Spreadsheet Interpreter to check your model for Gradients, Structure
and Convexity, obtain model statistics, produce the Structure Report and

286 Using Traditional VBA Functions

Solver User Guide

Transformation Report, determine whether and how the Interpreter will be used when
you call SolverSolve, and control the Interpreter*s advanced options.

SolverModel

Equivalent to choosing Solver... from the Tools menu, choosing the Model button in
the Solver Parameters dialog, setting options in the Solver Model dialog, and clicking
Close. Specifies options for the Polymorphic Spreadsheet Interpreter.

VBA Syntax

SolverModel (Interpreter:=, CheckFor:=, SolveTransformed:=,
ShowTransformations:=, ShowExceptions:=, DesiredModel:=, Interactive:=,
UsePsiFunctions:=, Engines:=, ReqSmooth:=, FastSetup:=, Sparse:=,
ActiveOnly:=)

The arguments correspond to the options in the Solver Model dialog box. The Check
For option appears on all four tabs of this dialog; the Interpreter option appears on
the Original tab; the Solve Transformed Problem and Show Transformations options
appear on the Transformed tab; the Show Exceptions and Desired Model options
appear on the Diagnosis tab; and the remaining options appear on the Options tab. If
an argument is omitted, the Solver maintains the current setting for that option. If
any of the arguments are of the wrong type, the function returns the #N/A error value.
If all arguments are of the correct type, but an argument has an invalid value, the
function returns a positive integer corresponding to its position. A zero return value
indicates that all options were accepted.

Interpreter is a number corresponding to the option selected in the Solve With
option group on the Original tab:

Interpreter Action on SolverSolve
1 Use PSI Interpreter
2 Use Excel Interpreter

CheckFor is a number corresponding to the option selected in the Check For option
group:

CheckFor Option Selected
1 Gradients
2 Structure
3 Convexity
4 Automatic

SolveTransformed is a logical value corresponding to the Solve Transformed
Problem check box on the Transformed tab. If TRUE, the Solver solves the
Transformed problem when the SolverSolve function is called. If FALSE, the Solver
solves the Original problem when the SolverSolve function is called.

ShowTransformations is a logical value corresponding to the Show Transfor-
mations check box on the Transformed tab. If TRUE, the Solver produces a
Transformation Report when the SolverModelCheck function is called. If FALSE,
the report is not produced.

ShowExceptions is a logical value corresponding to the Show Exceptions to Desired
Model check box on the Options tab. If TRUE, the Solver produces a Structure
Report when the SolverModelCheck function is called. If FALSE, the report is not
produced.

DesiredModel is a number corresponding to the option selected in the Desired
Model option group:

Solver User Guide

Using Traditional VBA Functions 287

DesiredModel Desired Model Type

1 Linear

2 Quadratic
3 Conic

4 Nonlinear
5 Nonsmooth

Interactive is a logical value corresponding to the Use Interactive Optimization
check box on the Options tab. If TRUE, Interactive Optimization is enabled when
Excel is in worksheet Ready mode. If FALSE, Interactive Optimization is disabled.

UsePsiFunctions is a logical value corresponding to the Use PSI Functions check
box on the Options tab. If TRUE, the Solver recognizes PSI functions such as
PsiVar(), PsiCon(), PsiObj(), etc. that define the model. If FALSE, the Solver
ignores any PSI functions it finds on the worksheet.

Engines is a number corresponding to the option selected in the Select Solver
Engines Based on Model Type option group:

Engines Engines Shown in List
1 All
2 Valid
3 Good
4 Best

RegSmooth is a logical value corresponding to the Req Smooth check box in the
Advanced options group on the Options tab. If TRUE, the Solver treats the special
functions ABS, IF, MAX, MIN, and SIGN as non-smooth. If FALSE, the Solver
treats these functions as smooth nonlinear.

FastSetup is a logical value corresponding to the Fast Setup check box in the
Advanced options group on the Options tab. If TRUE, the Solver attempts to use
old-style Fast Problem Setup before using the Polymorphic Spreadsheet Interpreter.
If FALSE, the Solver uses the Interpreter directly. If the Interpreter option is set to
Excel Interpreter, this option is ignored and the Solver will always attempt to use old-
style Fast Problem Setup.

Sparse is a logical value corresponding to the Sparse check box in the Advanced
options group on the Options tab. If TRUE, the Polymorphic Spreadsheet Interpreter
will operate internally in its own Sparse mode. If FALSE, the Interpreter operates in
Dense mode.

ActiveOnly is a logical value corresponding to the Active Only check box in the
Advanced options group on the Options tab. If TRUE, the Polymorphic Spreadsheet
Interpreter will analyze objective and constraint function formulas only on the active
sheet. If FALSE, the Interpreter analyze all objective and constraint function
formulas in the workbook.

SolveWith is included for compatibility with the Premium Solver Platform V6.0 —
V6.5. In V7.0, it corresponds to the Interpreter and Check For options, as follows:

SolveWith Equivalent To
1 Interpreter = Excel
2 Interpreter = PSI, CheckFor = Gradients
3 Interpreter = PSI, CheckFor = Structure
4 Interpreter = PSI, CheckFor = Convexity
5 Interpreter = PSI, CheckFor = Automatic

288 Using Traditional VBA Functions Solver User Guide

SolverModelCheck

Equivalent to choosing Solver... from the Tools menu, choosing the Model button in
the Solver Parameters dialog box, and clicking the Check Model button in the Solver
Model dialog. The type of analysis performed is determined by the current setting of
the SolverModel CheckFor argument.

VBA Syntax
SolverModelCheck (Transformed:=)

Transformed is a logical value that corresponds to the tab (Original or Transformed)
active when the Check Model button is pressed. If TRUE, the Polymorphic Spread-
sheet Interpreter checks the Transformed model. If FALSE, the Interpreter checks
the Original model.

SolverModelGet

Returns Solver Model option settings for the current Solver problem on the specified
sheet. These settings are entered in the Solver Model dialog. The available settings
include the “read-only” edit boxes on the Origina and Transformed tabs of the
Solver Model dialog; these values are valid only after you call SolverModelCheck
(FALSE) and SolverModelCheck (TRUE) respectively. SolverModelGet(28) will
return the type of model (Original or Transformed) as determined by the most recent
call to SolverModelCheck.

VBA Syntax
SolverModelGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified in the Solver Model dialog box.

TypeNum Returns

1 The All Variables value on the Original tab

2 The Smooth Variables value on the Original tab

3 The Quadratic Variables value on the Original tab
4 The Linear Variables value on the Original tab

5 The Bounds value on the Original tab

6 The Integers value on the Original tab

7 The AlIl Functions value on the Original tab

8 The Smooth Functions value on the Original tab

9 The Quadratic Functions value on the Original tab
10 The Linear Functions value on the Original tab

11 The AIl NonZeroes value on the Original tab

12 The Smooth NonZeroes value on the Original tab

13 The Quadratic NonZeroes value on the Original tab
14 The Linear NonZeroes value on the Original tab

15 The Sparsity % value on the Original tab

Solver User Guide

Using Traditional VBA Functions 289

16 The Total Cells value on the Original tab

17 A number corresponding to the Check For option: 1 for
Gradients, 2 for Structure, or 3 for Convexity

18 TRUE if the Solve Transformed Problem check box is selected;
FALSE otherwise

19 TRUE if the Show Transformations check box is selected;
FALSE otherwise

20 A number corresponding to the Desired Model option:
1 for Linear, 2 for Quadratic, 3 for Conic, 4 for Nonlinear,
or 4 for Nonsmooth

21 A number corresponding to the V6 Solve With option: 1 for No
Action (Excel Interpreter), 2 for Gradients, 3 for Structure,
4 for Convexity, or 5 for Automatic

22 A number corresponding to the Engines option: 1 for All,
2 for Valid, 3 for Good, or 4 for Best

23 TRUE if the Req Smooth check box is selected; FALSE otherwise

24 TRUE if the Fast Setup check box is selected; FALSE otherwise

25 TRUE if the Sparse check box is selected; FALSE otherwise

26 TRUE if the Active Only check box is selected; FALSE
otherwise

27 TRUE if the Show Exceptions to Desired Model check box is
selected; FALSE otherwise

28 A string corresponding to the type of model: "LP", "QP",
"QCP'", "NLP"™, "NSP", or "Unknown'. 'LP', "QP', "QCP", or
"NLP" may be followed by a space and "Convex"™ or "NonCvx".

29 TRUE if the Interactive Optimization check box is selected;
FALSE otherwise

30 TRUE if the Use PSI Functions check box is selected; FALSE
otherwise

31 The All Variables value on the Transformed tab

32 The Smooth Variables value on the Transformed tab

33 The Quadratic Variables value on the Transformed tab

34 The Linear Variables value on the Transformed tab

35 The Bounds value on the Transformed tab

36 The Integers value on the Transformed tab

37 The All Functions value on the Transformed tab

38 The Smooth Functions value on the Transformed tab

39 The Quadratic Functions value on the Transformed tab

40 The Linear Functions value on the Transformed tab

41 The All NonZeroes value on the Transformed tab

42 The Smooth NonZeroes value on the Transformed tab

43 The Quadratic NonZeroes value on the Transformed tab

44 The Linear NonZeroes value on the Transformed tab

290 Using Traditional VBA Functions Solver User Guide

45 The Sparsity % value on the Transformed tab

46 The Total Cells value on the Transformed tab

SolverDependents

This function is included for backward compatibility only; use the SolverModel-
Check function in new applications. Equivalent to choosing Solver... from the Tools
menu, choosing the Model button in the Solver Parameters dialog box, selecting the
Structure option in the Check For option group, and clicking the Check Model button
in the Solver Model dialog.

VBA Syntax
SolverDependents

SolverFormulas

This function is included for backward compatibility only; use the SolverModel-
Check function in new applications. Equivalent to choosing Solver... from the Tools
menu, choosing the Model button in the Solver Parameters dialog box, selecting the
Gradients option in the Check For option group, and clicking the Check Model
button in the Solver Model dialog.

VBA Syntax
SolverFormulas

Premium VBA Functions

The VBA functions in this section were first introduced in Version 3.0 of the
Premium Solver products, and expanded in later versions. To control most of the
new features and options in the Premium Solver products, you“ll need to use these
functions — notably, the SolverEVOptions, SolverlGOptions, SolverLimOptions
and SolverIntOptions functions. (Or, in Version 7.0 and later, you can use the new
object-oriented API to control these features and options.) If you want to write VBA
code that can be used with both the standard Solver and the Premium Solver
products, you should use only functionsin the section “ Standard VBA Functions.”

SolverEVGet

Returns Evolutionary Solver option settings for the current Solver problem on the
specified sheet. These settings are entered in the Solver Options dialog when the
Evolutionary Solver is selected in the Solver Engine dropdown list.

VBA Syntax
SolverEVGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified in the Evolutionary Solver Options dialog box.

TypeNum Returns
1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

Solver User Guide

Using Traditional VBA Functions 291

3 The Precision value (as a decimal number)

4 The Convergence value (as a decimal number)

5 The Population Size value (as a decimal number)

6 The Mutation Rate value (as a decimal number)

7 TRUE if the Require Bounds on Variables check box is

selected; FALSE otherwise

8 TRUE if the Show Ilteration Result check box is selected;
FALSE otherwise

9 TRUE if the Use Automatic Scaling check box is selected;
FALSE otherwise

10 TRUE if the Assume Non-Negative check box is selected;
FALSE otherwise

11 TRUE if the Bypass Solver Reports check box is selected;
FALSE otherwise

12 The Random Seed value (as a decimal number)

13 A number corresponding to the Local Search option: 1 for

Randomized Local Search, 2 for Deterministic Pattern Search,
3 for Gradient Local Search, or 4 for Automatic Choice

14 TRUE if the Fix Nonsmooth Variables check box is selected;
FALSE otherwise

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverEVOptions

Equivalent to choosing Solver... from the Tools menu and then choosing the Options
button in the Solver Parameters dialog box when the Evolutionary Solver is selected
in the Solver Engine dropdown list. Specifies options for the Evolutionary Solver.

VBA Syntax

SolverEVOptions (MaxTime:=, Iterations:=, Precision:=, Convergence:=,
PopulationSize:=, MutationRate:=, RandomSeed:=, RequireBounds:=,
StepThru:=, Scaling:=, AssumeNonNeg:=, BypassReports:=, LocalSearch:=
FixNonSmooth:=)

The arguments correspond to the options in the Solver Options dialog box. If an
argument is omitted, the Solver maintains the current setting for that option. If any of
the arguments are of the wrong type, the function returns the #N/A error value. If all
arguments are of the correct type, but an argument has an invalid value, the function
returns a positive integer corresponding to its position. A zero return value indicates
that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit
box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit
box.

Precision must be a number between zero and one, but not equal to zero or one. It
corresponds to the Precision edit box.

292

Using Traditional VBA Functions Solver User Guide

Convergence is a number between zero and one, but not equal to zero or one. It
corresponds to the Convergence box.

PopulationSize must be an integer greater than or equal to zero. It corresponds to
the Population Size edit box.

MutationRate must be a number between zero and one, but not equal to zero or one.
It corresponds to the Mutation Rate edit box.

RandomSeed must be an integer greater than zero. It corresponds to the Random
Seed edit box.

RequireBounds is a logical value corresponding to the Require Bounds on Variables
check box. If TRUE, the Evolutionary Solver will return immediately from a call to
the SolverSolve function with a value of 18 if any of the variables do not have both
lower and upper bounds defined. If FALSE, the Evolutionary Solver will attempt to
solve the problem without bounds on all of the variables.

StepThru is a logical value corresponding to the Show Iteration Results check box.
If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have
supplied SolverSolve with a valid VBA function, your function will be called each
time Solver pauses; otherwise the standard Show Trial Solution dialog box will
appear.

Scaling is a logical value corresponding to the Use Automatic Scaling check box. If
TRUE, then Solver rescales the objective and constraints internally to similar orders
of magnitude. If FALSE, Solver uses values directly from the worksheet.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative check
box. If TRUE, Solver supplies a lower bound of zero for all variables without
explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports check
box. If TRUE, the Solver will skip preparing the information needed to create Solver
Reports. If FALSE, the Solver will prepare for the reports. For large models,
bypassing the Solver Reports can speed up the solution considerably.

LocalSearch is a number corresponding to the option button selected in the Local
Search option group:

LocalSearch Local Search Strategy
1 Randomized Local Search
2 Deterministic Pattern Search
3 Gradient Local Search
4 Automatic Choice

In the Premium Solver Platform V5.5 and later, a value of 4 selects the Automatic
Choice option; this allows the Solver to choose a local search method automatically —
Randomized Local Search, Gradient Local Search, or Linear Local Gradient Search,
depending on the characteristics of the problem.

FixNonSmooth is a logical value corresponding to the Fix Nonsmooth Variables
check box. If TRUE, the Solver will fix the non-smooth variables to their current
values during each local search, and allow only smooth and linear variables to be
varied. If FALSE, the Solver will allow all of the variables to be varied.

Solver User Guide Using Traditional VBA Functions 293

SolverGRGGet

Returns GRG Solver option settings for the current Solver problem on the specified
sheet. These settings are entered in the Solver Options dialog when the GRG Solver
is selected in the Solver Engine dropdown list.

VBA Syntax
SolverGRGGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified in the GRG Solver Options dialog box.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Precision value (as a decimal number)

4 The Convergence value (as a decimal number)

5 TRUE if the Show lteration Result check box is selected;

FALSE otherwise

6 TRUE if the Use Automatic Scaling check box is selected;
FALSE otherwise

7 TRUE if the Assume Non-Negative check box is selected;
FALSE otherwise

8 TRUE if the Bypass Solver Reports check box is selected;
FALSE otherwise

9 TRUE if the Recognize Linear Variables check box is selected;
FALSE otherwise

10 A number corresponding to the type of Estimates:
1 = Tangent
2 = Quadratic
11 A number corresponding to the type of Derivatives:
1 = Forward
2 = Central
12 A number corresponding to the type of Search:
1 = Newton
2 = Conjugate
13 The Population Size value (as a decimal number)
14 The Random Seed value (as a decimal number)
15 TRUE if the Multistart Search check box is selected; FALSE
otherwise
16 TRUE if the Topographic Search check box is selected; FALSE
otherwise
17 TRUE if Require Bounds on Variables check box is selected;

FALSE otherwise

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. If SheetName is omitted, it is assumed to be the active sheet.

294

Using Traditional VBA Functions Solver User Guide

SolverGRGOptions

Equivalent to choosing Solver... from the Tools menu and then choosing the Options
button in the Solver Parameters dialog box when the GRG Nonlinear Solver is
selected in the Solver Engines dropdown list. Specifies options for the GRG Solver.

VBA Syntax

SolverGRGOptions (MaxTime:=, Iterations:=, Precision:=, Convergence:=,
PopulationSize:=, RandomSeed:=, StepThru:=, Scaling:=, ,AssumeNonNeg:=,
BypassReports:=, RecognizeLinear:=, MultiStart:=, TopoSearch:=,
RequireBounds:=, Estimates:=, Derivatives:=, SearchOption:=)

The arguments correspond to the options in the Solver Options dialog box. If an
argument is omitted, the Solver maintains the current setting for that option. If any of
the arguments are of the wrong type, the function returns the #N/A error value. If all
arguments are of the correct type, but an argument has an invalid value, the function
returns a positive integer corresponding to its position. A zero return value indicates
that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit
box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit
box.

Precision must be a number between zero and one, but not equal to zero or one. It
corresponds to the Precision edit box.

Convergence is a number between zero and one, but not equal to zero or one. It
corresponds to the Convergence box.

PopulationSize must be an integer greater than or equal to zero. It corresponds to
the Population Size edit box.

RandomSeed must be an integer greater than zero. It corresponds to the Random
Seed edit box.

StepThru is a logical value corresponding to the Show Iteration Results check box.
If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have
supplied SolverSolve with a valid VBA function, your function will be called each
time Solver pauses; otherwise the standard Show Trial Solution dialog box will
appear.

Scaling is a logical value corresponding to the Use Automatic Scaling check box. If
TRUE, then Solver rescales the objective and constraints internally to similar orders
of magnitude. If FALSE, Solver uses values directly from the worksheet.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative check
box. If TRUE, Solver supplies a lower bound of zero for all variables without
explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports check
box. If TRUE, the Solver will skip preparing the information needed to create Solver
Reports. If FALSE, the Solver will prepare for the reports. For large models,
bypassing the Solver Reports can speed up the solution considerably.

RecognizeLinear is a logical value corresponding to the Recognize Linear Variables
check box. If TRUE, the Solver will recognize variables whose partial derivatives
are not changing during the solution process, and assume that they occur linearly in
the problem. If FALSE, the Solver will not make any assumptions about such
variables. Seethe chapter “Solver Options’ for a further discussion of this option.

Solver User Guide

Using Traditional VBA Functions 295

MultiStart is a logical value corresponding to the Multistart Search check box. If
TRUE, the Solver will use Multistart Search, in conjunction with the GRG Solver, to
seek a globally optimal solution. If FALSE, the GRG Solver alone will be used to
search for a locally optimal solution.

TopoSearch is a logical value corresponding to the Topographic Search check box.
If TRUE, and if Multistart Search is selected, the Solver will construct a topography
from the randomly sampled initial points, and use it to guide the search process.

RequireBounds is a logical value corresponding to the Require Bounds on Variables
check box. If TRUE, the Solver will return immediately from a call to the
SolverSolve function with a value of 18 if any of the variables do not have both
lower and upper bounds defined. If FALSE, then Multistart Search (if selected) will
attempt to find a globally optimal solution without bounds on all of the variables.

Estimates is the number 1 or 2 and corresponds to the Estimates option; 1 for
Tangent and 2 for Quadratic.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option: 1 for
Forward and 2 for Central.

SearchOption is the number 1 or 2 and corresponds to the Search option: 1 for
Newton and 2 for Conjugate.

SolverlGGet

Returns Interval Global Solver option settings for the current Solver problem on the
specified sheet. These settings are entered in the Solver Options dialog when the
Interval Global Solver is selected in the Solver Engine dropdown list.

VBA Syntax
SolverlGGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified in the Interval Global Solver Options dialog box.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Accuracy value (as a decimal number)

4 The Resolution value (as a decimal number)

5 The Max Time w/o Improvement value (as a decimal number)
6 TRUE if the Show lIteration Result check box is selected;

FALSE otherwise

7 TRUE if the Assume Non-Negative check box is selected;
FALSE otherwise

8 TRUE if the Bypass Solver Reports check box is selected;
FALSE otherwise

9 TRUE if the Abs vs. Relative Stop check box is selected;
FALSE otherwise

10 TRUE if the Assume Stationary check box is selected; FALSE
otherwise

296

Using Traditional VBA Functions Solver User Guide

11 A number corresponding to the type of Method:
1 = Classic Interval
2 = Linear Enclosure
12 TRUE if the Second Order check box is selected; FALSE otherwise
13 TRUE if the LP Test check box is selected; FALSE otherwise
14 TRUE if the LP Phase 11 check box is selected; FALSE otherwise

SolverlGOptions

Equivalent to choosing Solver... from the Tools menu and then choosing the Options
button in the Solver Parameters dialog box when the Interval Global Solver is
selected in the Solver Engines dropdown list. Specifies options for the Interval
Global Solver.

VBA Syntax

SolverlGOptions (MaxTime:=, Iterations:=, Accuracy:=, Resolution:=,
MaxTimeNolmp:=, StepThru:=, AssumeNonNeg:=, BypassReports:=,
AbsRelStop:=, AssumeStationary:=, Method:=, SecondOrder:=, LPTest:=,
LPPhasell:=)

The arguments correspond to the options in the Solver Options dialog box. If an
argument is omitted, the Solver maintains the current setting for that option. If any of
the arguments are of the wrong type, the function returns the #N/A error value. If all
arguments are of the correct type, but an argument has an invalid value, the function
returns a positive integer corresponding to its position. A zero return value indicates
that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit
box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit
box.

Accuracy must be a number between zero and one, but not equal to zero or one. It
corresponds to the Accuracy edit box.

Resolution is a number greater than zero. It corresponds to the Resolution box.

MaxTimeNolmp is a number corresponding to the Max Time w/o Improvement edit
box. This argument determines when the Interval Global Solver will stop with the
message “ Solver cannot improve the current solution.”

StepThru is a logical value corresponding to the Show Iteration Results check box.
If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have
supplied SolverSolve with a valid VBA function, your function will be called each
time Solver pauses; otherwise the standard Show Trial Solution dialog box will
appear.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative check
box. If TRUE, Solver supplies a lower bound of zero for all variables without
explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

BypassReports is a logical value corresponding to the Bypass Solver Reports check
box. If TRUE, the Solver will skip preparing the information needed to create Solver
Reports. If FALSE, the Solver will prepare for the reports. For large models,
bypassing the Solver Reports can speed up the solution considerably.

Solver User Guide Using Traditional VBA Functions 297

AbsRelStop is a logical value corresponding to the Abs vs. Relative Stop check box.
If TRUE, the Solver will use the absolute difference when comparing the current
solution"s objective to the best bound. If FALSE, the Solver will use the relative
difference when making the comparison.

AssumeStationary is a logical value corresponding to the Assume Stationary check
box. If TRUE, the Solver will assume that the optimal solution is a stationary point
and is not at a decision variable bound. If FALSE, the Solver will search for optimal
solutions at all points, including those where variables are at their bounds.

Method is the number 1 or 2 and corresponds to the Method option: 1 for Classic
Interval and 2 for Linear Enclosure.

SecondOrder is a logical value corresponding to the Second Order check box. This
option is used only if the Method option is 1. If TRUE, the Solver will use second
order (Interval Newton) methods. If FALSE, the Solver will use only first order
methods.

LPTest is a logical value corresponding to the LP Test check box. This option is
used only if the Method option is 2. If TRUE, the Solver will use a Simplex method
Phase | test to eliminate boxes that contain no feasible solutions. If FALSE, the
Solver will not use this test.

LPPhasell is a logical value corresponding to the LP Phase Il check box. If TRUE,
the Solver will use a Simplex method Phase 11 procedure to seek an improved bound
on the objective in a box. If FALSE, the Solver will not use this procedure.

SolverintGet

Returns integer (Branch & Bound) option settings for the current Solver problem on
the specified sheet. These settings are entered on the Integer Options dialog tab for
any of the Solver engines.

VBA Syntax
SolverIntGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified on the Integer Options dialog tab box.

TypeNum Returns

1 The Max Subproblems value (as a decimal number)

2 The Max Integer Sols value (as a decimal number)

3 The Integer Tolerance value (as a decimal number)

4 The Integer Cutoff value (as a decimal number)

5 TRUE if the Solve Without Integer Constraints check box is

selected; FALSE otherwise

6 TRUE if the Probing / Feasibility check box is selected;
FALSE otherwise

7 TRUE if the Bounds Improvement check box is selected;
FALSE otherwise

8 TRUE if the Optimality Fixing check box is selected;
FALSE otherwise.

9 TRUE if the Primal Heuristic check box is selected;
FALSE otherwise.

298

Using Traditional VBA Functions Solver User Guide

10 TRUE if the Use Dual Simplex for Subproblems check box
is selected; FALSE otherwise.

11 The Gomory Cuts value (as a decimal number)

12 The Gomory Passes value (as a decimal number)

13 The Knapsack Cuts value (as a decimal number)

14 The Knapsack Passes value (as a decimal number)

15 The Max Cut Passes at Root value (as a decimal number)
16 The Max Cut Passes in Tree value (as a decimal number)
17 TRUE if the Use Strong Branching check box is selected;

FALSE otherwise.

18 TRUE if the Lift and Cover (Cuts) check box is selected;
FALSE otherwise.

19 TRUE if the Rounding (Cuts) check box is selected;
FALSE otherwise.

20 TRUE if the Knapsack (Cuts) check box is selected;
FALSE otherwise.

21 TRUE if the Gomory (Cuts) check box is selected;
FALSE otherwise.

22 TRUE if the Probing (Cuts) check box is selected;
FALSE otherwise.

23 TRUE if the 0dd Hole (Cuts) check box is selected;
FALSE otherwise.

24 TRUE if the Clique (Cuts) check box is selected;
FALSE otherwise.

25 TRUE if the Rounding Heuristic check box is selected;
FALSE otherwise.

26 TRUE if the Local Search Heuristic check box is selected;
FALSE otherwise.

27 TRUE if the Flow Cover (Cuts) check box is selected;
FALSE otherwise.

28 TRUE if the Mixed Integer Rounding (Cuts) check box
is selected; FALSE otherwise.

29 TRUE if the Two Mixed Integer Rounding (Cuts) check
box is selected; FALSE otherwise.

30 TRUE if the Reduce and Split check box is selected;
FALSE otherwise

31 TRUE if the Special Ordered Sets check box is selected;
FALSE otherwise

The return value for TypeNum = 6 through 14 is supported only for the Simplex LP
Solver. The return value for TypeNum = 15 through 31 is supported only for the
LP/Quadratic Solver. SheetName is the name of a worksheet that contains the
Solver problem for which you want information. If SheetName is omitted, it is
assumed to be the active sheet.

Solver User Guide Using Traditional VBA Functions 299

SolverIntOptions

Equivalent to choosing Solver... from the Tools menu, choosing the Options button in
the Solver Parameters dialog box, then choosing the Integer Options button in the
Solver Options dialog. Specifies options for the integer (Branch & Bound) Solver.

VBA Syntax

SolverIntOptions (MaxSubproblems:=, MaxIntegerSols:=, IntTolerance:=,
IntCutoff:=, SolveWithout:=, UseDual:=, ProbingFeasibility:=,
BoundsImprovement:=, OptimalityFixing:=, VariableReordering:=,
UsePrimalHeuristic:=, MaxGomoryCuts:=, GomoryPasses:=,
MaxKnapsackCuts:=, KnapsackPasses:=; MaxRootCutPasses:=,
MaxTreeCutPasses:=, StrongBranching:=, LiftAndCoverCuts:=,
RoundingCuts:=, KnapsackCuts:=, GomoryCuts:=, ProbingCuts:=,
OddHoleCuts:=, MirCuts:=, TwoMirCuts:=, CliqueCuts:=, FlowCoverCuts:=,
RedSplitCuts:=, SOSCuts:=, RoundingHeur:=, LocalHeur:=)

The arguments correspond to the options on the Integer Options dialog tab. The first
five options are common to both the Simplex LP and LP/Quadratic Solvers; the next
ten options are specific to the Simplex LP Solver; and the remaining options are
specific to the LP/Quadratic Solver. If an argument is omitted, the Solver maintains
the current setting for that option. If any of the arguments are of the wrong type, the
function returns the #N/A error value. If all arguments are of the correct type, but an
argument has an invalid value, the function returns a positive integer corresponding
to its position. A zero return value indicates that all options were accepted.

MaxSubproblems must be an integer greater than zero. It corresponds to the Max
Subproblems edit box.

MaxIntegerSols must be an integer greater than zero. It corresponds to the Max
Integer Sols (Solutions) edit box.

IntTolerance is a number between zero and one, corresponding to the Tolerance edit
box.

IntCutoff is a number (any value is possible) corresponding to the Integer Cutoff
edit box.

SolveWithout is a logical value corresponding to the Solve Without Integer
Constraints check box. If TRUE, the Solver ignores any integer constraints and
solvesthe “relaxation” of the mixed-integer programming problem. If FALSE, the
Solver uses the integer constraints in solving the problem.

UseDual is a logical value corresponding to the Use Dual Simplex for Subproblems
check box. If TRUE, the Solver uses the Dual Simplex method, starting from an
advanced basis, to solve the subproblems generated by the Branch & Bound method.
If FALSE, the Solver uses the Primal Simplex method to solve the subproblems.

ProbingFeasibility is a logical value corresponding to the Probing / Feasibility
check box. If TRUE, the Solver attempts to derive settings for binary integer
variables, and implications for feasibility of the subproblem, from the subproblem”s
bounds on binary integer variables. If FALSE, the Solver does not employ these
strategies.

BoundsImprovement is a logical value corresponding to the Bounds Improvement
check box. If TRUE, the Solver attempts to tighten the bounds of non-binary integer
variables, based on the initial or derived settings of binary integer variables in the
subproblem. If FALSE, the Solver does not employ this strategy.

300 Using Traditional VBA Functions Solver User Guide

OptimalityFixing is a logical value corresponding to the Optimality Fixing check
box. If TRUE, the Solver attempts to fix the values of binary integer variables based
on their coefficients in the objective function and constraints, and on the initial or
derived settings of other binary integer variables. If FALSE, the Solver does not
employ this strategy.

VariableReordering is a logical value corresponding to the Variable Reordering
check box. In Version 5 of the Premium Solver products, this option is no longer
used and its value is ignored.

UsePrimalHeuristic is a logical value corresponding to the Primal Heuristic check
box. If TRUE, the Solver uses heuristic methods to attempt to discover an integer
feasible solution at the beginning of the Branch & Bound process. If FALSE, the
Solver does not employ this strategy.

MaxGomoryCuts must be an integer greater than or equal to zero. It corresponds to
the Gomory Cuts edit box.

GomoryPasses must be an integer greater than or equal to zero. It corresponds to
the Gomory Passes edit box.

MaxKnapsackCuts must be an integer greater than or equal to zero. It corresponds
to the Knapsack Cuts edit box.

KnapsackPasses must be an integer greater than or equal to zero. It corresponds to
the Knapsack Passes edit box.

MaxRootCutPasses must be an integer greater than or equal to zero. It corresponds
to the Max Root Cut Passes edit box.

MaxTreeCutPasses must be an integer greater than or equal to zero. It corresponds
to the Max Tree Cut Passes edit box.

StrongBranching is a logical value corresponding to the Use Strong Branching
check box. If TRUE,. If FALSE, no action is taken.

LiftAndCoverCuts is a logical value corresponding to the Lift and Cover check box.
If TRUE, Lift and Cover cuts are generated. If FALSE, no cuts of this type are
generated.

RoundingCuts is a logical value corresponding to the Lift and Cover check box. If
TRUE, Rounding cuts are generated. If FALSE, no cuts of this type are generated.

KnapsackCuts is a logical value corresponding to the Knapsack check box. If
TRUE, Knapsack cuts are generated. If FALSE, no cuts of this type are generated.

GomoryCuts is a logical value corresponding to the Gomory check box. If TRUE,
Gomory cuts are generated. If FALSE, no cuts of this type are generated.

ProbingCuts is a logical value corresponding to the Probing check box. If TRUE,
Probing cuts are generated. If FALSE, no cuts of this type are generated.

OddHoleCuts is a logical value corresponding to the Odd Hole check box. If
TRUE, Odd Hole cuts are generated. If FALSE, no cuts of this type are generated.

MirCuts is a logical value corresponding to the Mixed Integer Rounding check box.
If TRUE, Mixed Integer Rounding cuts are generated. If FALSE, no cuts of this type
are generated.

TwoMirCuts is a logical value corresponding to the Two Mixed Integer Rounding
check box. If TRUE, Two Mixed Integer Rounding cuts are generated. If FALSE,
no cuts of this type are generated.

Solver User Guide

Using Traditional VBA Functions 301

CliqueCuts is a logical value corresponding to the Clique check box. If TRUE,
Clique cuts are generated. If FALSE, no cuts of this type are generated.

FlowCoverCuts is a logical value corresponding to the Flow Cover check box. If
TRUE, Flow Cover cuts are generated. If FALSE, no cuts of this type are generated.

RedSplitCuts is a logical value corresponding to the Reduce and Split check box. If
TRUE, Reduce and Split cuts (variants of Gomory cuts) will be generated.

SOSCuts is a logical value corresponding to the Special Ordered Sets check box. If
TRUE, cuts for Special Ordered Sets will be generated.

LocalHeur is a logical value corresponding to the Local Search Heuristic check box.
If TRUE, the Local Search Heuristic is used. If FALSE, no action is taken.

RoundingHeur is a logical value corresponding to the Rounding Heuristic check
box. If TRUE, the Rounding Heuristic is used. If FALSE, no action is taken.

SolverLimGet

Returns Limit Option settings for the Evolutionary Solver problem (if any) defined
on the specified sheet. These settings are entered on the Limit Options dialog tab for
the Evolutionary Solver.

VBA Syntax
SolverLimGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified on the Limit Options dialog tab.

TypeNum Returns

1 The Max Subproblems value (as a decimal number)

2 The Max Feasible Sols value (as a decimal number)

3 The Tolerance value (as a decimal number)

4 The Max Time w/o Improvement value (as a decimal number)

5 TRUE if the Solve Without Integer Constraints check box is

selected; FALSE otherwise

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverLimOptions

Equivalent to choosing Solver... from the Tools menu, choosing the Options button in
the Solver Parameters dialog box when the Evolutionary Solver is selected in the
Solver Engine dropdown list, then choosing the Limit Options button in the Solver
Options dialog. Specifies Limit Options for the Evolutionary Solver.

VBA Syntax

SolverLimOptions (MaxSubproblems:=, MaxFeasibleSols:=, Tolerance:=,
MaxTimeNolmp:=, SolveWithout:=)

The arguments correspond to the options on the Limit Options dialog tab. If an
argument is omitted, the Solver maintains the current setting for that option. If any of
the arguments are of the wrong type, the function returns the #N/A error value. If all
arguments are of the correct type, but an argument has an invalid value, the function

302 Using Traditional VBA Functions Solver User Guide

returns a positive integer corresponding to its position. A zero return value indicates
that all options were accepted.

MaxSubproblems must be an integer greater than zero. It corresponds to the Max
Subproblems edit box.

MaxFeasibleSols must be an integer greater than zero. It corresponds to the Max
Feasible Sols (Solutions) edit box.

Tolerance is a number between zero and one, corresponding to the Tolerance edit
box. This argument works in conjunction with the MaxTimeNolmp argument below.

MaxTimeNolmp is a number corresponding to the Max Time w/o Improvement edit
box. This argument works in conjunction with the Tolerance argument above to
determine when the Evolutionary Solver will stop with the message “ Solver cannot
improve the current solution.”

SolveWithout is a logical value corresponding to the Solve Without Integer
Constraints check box. If TRUE, the Evolutionary Solver ignores any integer
constraints and solves the “relaxation” of the problem. 1f FALSE, the Solver uses the
integer constraints in solving the problem.

SolverLPGet

Returns Simplex LP or LP/Quadratic Solver option settings for the current Solver
problem on the specified sheet. These settings are entered in the Solver Options
dialog when the Simplex LP or LP/Quadratic Solver is selected in the Solver Engine
dropdown list.

VBA Syntax
SolverLPGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want. The following
settings are specified in the Simplex LP or LP/Quadratic Solver Options dialog box.

TypeNum Returns

1 The Max Time value (as a number in seconds)

2 The Iterations value (max number of iterations)

3 The Precision value (as a decimal number)

4 The Simplex LP Pivot Tolerance (as a decimal number)

5 The Simplex LP Reduced Cost Tolerance (as a decimal number)
6 TRUE if the Show Iteration Result check box is selected;

FALSE otherwise

7 TRUE if the Use Automatic Scaling check box is selected;
FALSE otherwise

8 TRUE if the Assume Non-Negative check box is selected;
FALSE otherwise

9 TRUE if the Bypass Solver Reports check box is selected;
FALSE otherwise.

10 A number corresponding to the Derivatives group selection:
1 = Forward
2 = Central

11 The LP/Quadratic Primal Tolerance (as a decimal number)

Solver User Guide

Using Traditional VBA Functions 303

12 The LP/Quadratic Dual Tolerance (as a decimal number)

13 TRUE if the Do Presolve check box is selected; FALSE
otherwise.

The return value for TypeNum = 4 and 5 is supported only for the Simplex LP
Solver. The return value for TypeNum = 10 through 13 is supported only for the
LP/Quadratic Solver. SheetName is the name of a worksheet that contains the
Solver problem for which you want information. If SheetName is omitted, it is
assumed to be the active sheet.

SolverLPOptions

Equivalent to choosing Solver... from the Tools menu and then choosing the Options
button in the Solver Parameters dialog box when the Simplex LP or LP/Quadratic
Solver is selected in the Solver Engine dropdown list. Specifies options for the
Simplex LP and LP/Quadratic Solvers.

VBA Syntax

SolverLPOptions (MaxTime:=, Iterations:=, Precision:=, PivotTol:=,
ReducedTol:=, StepThru:=, Scaling:=, AssumeNonNeg:=, BypassReports:=,
Derivatives:=, PrimalTolerance:=, DualTolerance:=, Presolve:=)

The arguments correspond to the options in the Solver Options dialog box. The
PivotTol and ReducedTol options are available only for the Simplex LP Solver; the
Derivatives, PrimalTolerance, DualTolerance, and Presolve options are available
only for the LP/Quadratic Solver. If an argument is omitted, the Solver maintains the
current setting for that option. If any of the arguments are of the wrong type, the
function returns the #N/A error value. If all arguments are of the correct type, but an
argument has an invalid value, the function returns a positive integer corresponding
to its position. A zero return value indicates that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit
box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit
box.

Precision must be a number between zero and one, but not equal to zero or one. It
corresponds to the Precision edit box.

PivotTol is a number between zero and one, but not equal to zero or one. It
corresponds to the Pivot Tolerance edit box for the Simplex LP Solver.

ReducedTol is a number between zero and one, but not equal to zero or one. It
corresponds to the Reduced Cost Tolerance edit box for the Simplex LP Solver.

StepThru is a logical value corresponding to the Show Iteration Results check box.
If TRUE, Solver pauses at each trial solution; if FALSE it does not. If you have
supplied SolverSolve with a valid VBA function, your function will be called each
time Solver pauses; otherwise the standard Show Trial Solution dialog box will
appear.

Scaling is a logical value corresponding to the Use Automatic Scaling check box. If
TRUE, then Solver rescales the objective and constraints internally to similar orders
of magnitude. If FALSE, Solver uses values directly from the worksheet.

AssumeNonNeg is a logical value corresponding to the Assume Non-Negative check
box. If TRUE, Solver supplies a lower bound of zero for all variables without
explicit lower bounds in the Constraint list box. If FALSE, no action is taken.

304 Using Traditional VBA Functions Solver User Guide

BypassReports is a logical value corresponding to the Bypass Solver Reports check
box. If TRUE, the Solver will skip preparing the information needed to create Solver
Reports. If FALSE, the Solver will prepare for the reports. For large models,
bypassing the Solver Reports can speed up the solution considerably.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option group for
the LP/Quadratic Solver: 1 for Forward and 2 for Central.

PrimalTolerance is a number between zero and one, but not equal to zero or one. It
corresponds to the Primal Tolerance edit box for the LP/Quadratic Solver.

DualTolerance is a number between zero and one, but not equal to zero or one. It
corresponds to the Dual Tolerance edit box for the LP/Quadratic Solver.

Presolve is a logical value corresponding to the Do Presolve check box. If TRUE,

the Solver performs a presolve step before starting the Simplex method that detects
singleton rows and columns, removes fixed variables and redundant constraints, and
tightens bounds. If FALSE, no action is taken.

SolverOkGet

Returns variable, constraint and objective selections and settings for the current
Solver problem on the specified sheet. These settings are entered in the Solver
Parameters dialog.

VBA Syntax

SolverOkGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want:
TypeNum Returns

1 The reference in the Set Cell box, or the #N/A error value if
Solver has not been used on the active document

2 A number corresponding to the Equal To option
1 = Max
2 = Min
3 = Vvalue OFf
3 The value in the Value Of box
4 The reference in the Changing Cells box (in the Premium
Solvers, only the first entry in the Variables list box)
5 The number of entries in the Constraints list box
6 An array of the left hand sides of the constraints as text
7 An array of numbers corresponding to the relations
between the left and right hand sides of the constraints:
1 = <=
2 = =
3 = >=
4 = int
5 = bin
6 = dif
7 = soc
8 = src
8 An array of the right hand sides of the constraints as text
9 An array of the entries in the Variables list box as text

Solver User Guide

Using Traditional VBA Functions 305

10 A number corresponding to the Solver engine dropdown list
for the currently selected Solver engine:
1 = Nonlinear GRG Solver
2 = Simplex or LP/Quadratic Solver
3 = Evolutionary Solver
4 = Interval Global Solver
5 = SOCP Barrier Solver
In the Premium Solver Platform, other values may be returned
for field-installable Solver engines

11 A string identifying the currently selected Solver engine:
"Standard GRG Nonlinear” = Nonlinear GRG Solver
""'Standard Simplex LP" = Simplex LP Solver
""Standard LP/Quadratic" = LP/Quadratic Solver
""'Standard Evolutionary" = Evolutionary Solver
"Standard Interval Global™ = Interval Global Solver
""Standard SOCP Barrier™ = SOCP Barrier Solver
"KNITRO Solver™ = KNITRO Solver
"Large-Scale GRG Solver" = Large-Scale GRG Solver
""Large-Scale LP Solver" = Large-Scale LP Solver
“"Large-Scale SQP Solver" = Large-Scale SQP Solver
"MOSEK Solver Engine" = MOSEK Solver Engine
""OptQuest Solver" = OptQuest Solver
"XPRESS Solver Engine" = XPRESS Solver Engine

12 An array of strings corresponding to the comments associated
with each block of constraints

13 An array of logical values corresponding to the Report check
box associated with each block of constraints (TRUE if the
box is checked, FALSE otherwise); no longer used in V7.0

14 An array of strings corresponding to the comments associated
with each block of variables

15 An array of logical values corresponding to the Report check

box associated with each block of variables (TRUE if the
box is checked, FALSE otherwise); no longer used in V7.0

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. If SheetName is omitted, it is assumed to be the active sheet.

SolverSizeGet

Returns statistics about the size of the currently defined Solver problem, and the
problem size limits supported by the currently selected Solver engine. The following
settings are “read-only” and appear on the Problem tab in the Solver Options dialog
for each Solver engine.

VBA Syntax
SolverSizeGet (TypeNum:=, SheetName:=)

TypeNum is a number specifying the type of information you want:

TypeNum Returns

1 The number of decision variables in the current problem

2 The number of constraints in the current problem

3 The number of variable bounds in the current problem

4 The number of integer variables in the current problem

5 The maximum number of decision variables supported by the

currently selected Solver engine

Using Traditional VBA Functions

Solver User Guide

6 The maximum number of constraints supported by the
currently selected Solver engine

7 The maximum number of variable bounds supported by the
currently selected Solver engine

8 The maximum number of integer variables supported by the
currently selected Solver engine

SheetName is the name of a worksheet that contains the Solver problem for which
you want information. If SheetName is omitted, it is assumed to be the active sheet.

Solver User Guide Using Traditional VBA Functions 307

Index

A

ABS funCtion ..., 64, 116
absolute cell references.......coccvve e icee e 85, 135
Absolute vs. Relative Stop option...........cccceeeveiveennnne 192
academic teXthOOKS........cc.ccceeviveiiiiec e, 18
ACCUraCy OPLiON.....ccvvveiecie e 169, 191
Active ONly OptioN.........cooveivie i 118
active WOrKSheetccccvveieiiii e 118
Add Constraint dialog.........ccccoevveveerviinrie e, 83
Add Variable Cells dialogccceevevvvieiinieecene. 88
add-in fuNCLioN.........oooeiiiii e, 82
advanced DasiS........ccccevvieiie i 204
Albright, S. Christianc.cccccoevevveiiiiie e, 38
algebraic form...........cccoevevvennnn, 62, 63, 81, 82, 91, 136
all real solutions............cccecevee.e 19, 28, 58, 73, 122, 238
AllAN WareN.....c.ooiiiece e 39

alldifferent constraint17, 29, 35, 59, 72, 76, 89, 90, 161,
196, 200, 203, 210

Analysis TOOIKIt..........cccceevviiiiiiree e 24
Analyzer option groupcccceeeveiveiieieece e 115
Analyzing and Solving Models.........c.cccceeveviiiiniinnne 101
Answer Report.......ccccvvvvvveniinnns 17, 219, 226, 227, 276
array form ..o 135
array form of DOTPRODUCTcccccovevv e, 138
array formulas.........ccccccevevviiennnnns 24, 36, 135, 136, 137
Assume Linear Model check box................ 68, 156, 177
Assume Non-Negative option...........cccceevee 57,90, 178
Assume Stationary Optionc.ccccevvvevveveeiesieinns 192
Automatic ChoiCeccceeviiiiii e 115

automatic differentiation.. 19, 26, 34, 66, 121, 135, 170,
182, 186, 187

automatic transformationcoccoveeeee e 25
B

Baker, Kennethccceveviiveeicec e, 38,126
balance CONSLrAINTS.........cvvveveeeie e 127
Barrier Methodcvvviieeeeeieeee e 71

basiC Variableocoeveiiiiee e 186

Dasis SEIECTIONeeeeiiviieeeceee e 22

Bayesian testccveiiiieiiineeeen 72,160, 166
DeSt boUNd ..o 202
BeSt VAlUESoceeiiiieiiee e 234
BFGS method (Search)cccccovveieiiiencicnenee, 187
binary integer variable....29, 59, 90, 127, 130, 131, 132,
133
binding constraintscccooevvireincncieee, 187, 230
biological 0rganismsccccoevirirniineneiseeen 74
books about optimization ..., 37
Bounds Improvement optioncccccvvereieneneennen. 205
bounds on the variables..57, 71, 90, 129, 161, 189, 195,
196, 228
DOXES ..o 72,192
Branch & Bound 75, 159, 166, 169, 202, 204, 206
Branch & Bound method..........cccoovevvevenenvnencenne, 209
Building Large-Scale Models...........ccccooereiinennnnnen. 125
Building Solver Modelsc.ccoeiviiiniiiiiecen, 81
built-in fUNCLioNSocvveieii e, 123
Bypass Solver Reports option................... 179, 181, 221
C
candidate SOIULIONScceveriniriiieiee e 195
CEILING fUuNCHiONccveiiiiicicceeeeee e 64
Central choice (Derivatives)..........ccccoceverenunnne. 182, 187
Changing Cells.........ccoviiieiiicr e 54
Check Model button.....50, 62, 103, 105, 106, 107, 109,
111, 112, 121, 122, 158, 164, 289
CHOOSE fuNCHiON ..o 27,64
Christian Albright...........ccoiieii i 38
circular referenCe.......covveiiiiiicc 159
classic interval methods ..o, 72
Classic Interval option.........c.ccccevvvevveieeie e 193
Cliff Ragsdale..........cccovveiiiiiiiece e 38
o] 1T U SR 205
Cligue Cuts OptioN........cccccvevveeieiiecee e 212
CliqueCuts SDK parameter.........c.cccevveverivesieesnenne. 212
CIUSEEING ...veeie e 71, 189
COEfficient.... ... 61, 62, 139, 230
Comment edit DOXccoevviiiiiiiniieeeec e 223
Comments iN FEPOISecvvereeieciese e 227
concave function ... 60, 64
conflicting constraintscccccveviveve s, 89
CONIC OPtIMIZAtioNcccovvvrrreeeeee e 24,53
Conjugate choice (Search)cccocevvverernieneinennns 187
conjugate gradient methodccoceevveriinennnnenn 187
constant derivativecccooevvvieve s 66
constant right hand Sidesccccocevvireiien. 54,59, 90
constraint handling methods............ccccocevviininnne 198
constraint left hand side...54, 88, 92, 136, 176, 229, 273
constraint propagation..........ccoceevveversienenecnnen, 72,193
constraint right hand side .54, 85, 89, 92, 136, 176, 227,
229, 273
CONSEFAINTS ..ot 54

AAAING .o 129
DAIANCE ...t 127
CONFIICHING ..o 89
BItNBI-0F .. v 132
BAUATTTIES ... 57
fiXxed-Charge ..o 131
INEQUALITIESoveeiccc e 57
MOFE ADOULeeeviiiiiecree et 57
OVETIAPPING «.veeiieice s 89
- L[SO 130
Constraints BUttONccocvveicieeiieccree e 88
CoNtiguous CellS........coovireiiiiiiicen s 85, 87
Continue button.........coccoeeeeereeiiveenne. 150, 175, 179, 285
Controlling the Solver"s Operation................... 241,271
convergence in probability.........c.ccccoveiiininiinen 72
Convergence option.......... 153, 165, 172, 177, 185, 195
Convergence SDK parameter............ 177,185, 191, 195
convex function............... 32,56, 58, 59, 60, 61, 64, 123
CONVEX ODJECLIVE ... 56
convex optimizationccccoeeeveeve e, 24,53, 58
convex problem....... 25, 29, 35, 55, 67, 69, 70, 105, 164
CONVEX QUAAIALIC ...vvevvveiee e 63
CONVEXILY..e.vviivresrieieeie e e 60, 101
Convexity OptioN.......cccccevieeieeie e 105, 107
CONVEXItY teSt...cvveviiieree e 25, 105, 123, 164
COUNT fUNCLION ..o 64
CrOSSOVET w.eiivieireesiviesieesireesnee s 74,77, 195, 197, 199
CUStOM FeSUIt COABSvvvverieeriee e e 152
customized user interface.........ccccccevvvevievinenccicsenn, 34
CUt GENEratiON.......ccvvevreiece e 75, 206
CYCHING it 166
D
Dash Optimizationcccooviriniineneseeeeee 23
At SOUICES....ccvveiivieeceee e ctee ettt sree e 128
data WarehOUSESceeeivereereeeirie e s e 128
Dealing with poor scalingccccovvviineincnennn, 163
decision variables..........covevveeiii e 54
Decision Variables and Parameters.............ccccevevveenen. 53
defined names............cccceveeveenen, 35, 81, 85, 93, 126, 159
EFINITENESS ..o 63
ABIENETACY ...ttt 153
degeneracy, NONIINEANccovveverieienece e 22
degenerate problem..........cococveriiiniiieneee 166
DENSE MOAEveeeeveiiriece ettt 117
dense representation..........cccovvvevvrieneeeeniennneens 68, 136
Dependent % BOX.......cccovevevvnivnininseeee e 104, 118
dependent on the decision variables...................... 60, 61
dependents analysiS.........coovvreiinenenene e 114
Dependents REPOIt........ccovviireiiirieeecneenes 219, 233
ErIVALIVE ..o 65, 116
CONSEANT ...ttt 66
LTS SR 65

derivative evaluationccceuveeveiieeiciie e 26

DEFIVALIVEScovvieciiiiiiicce et 64, 187

for Quadratic SOIVErc.cooviiiiiiiieeeee e 182
Derivatives SDK parameter............cccovevrennne 187, 196
Desired Model option groupccoeeevrereeinennenn, 106
deterministic methods............cccceveeiieicneenne 27, 28, 167
Deterministic Pattern Searchccoceevvvvevvieceveenne 197
diagnosing problems...........ccoevvireiiincieneee 36
direct search method...........c..ccccooiviiiiiiiciecen, 27,74
directed roundingccovereiinineine 167
discontinuous function..................... 23,63, 64,169, 170
distance filter......c.coovveiiiicecce e 198
iStanCe Filercveiiveece e 74
diversity of population............cccoceveineneinencinee 171
DOTPRODUCT function............ccccvnee. 36, 62, 92, 137
dual feasiblec.ocvveiiiiiec 204
Dual Simplex method.............cccovvvviierenennne 34,75, 204
dual ValUEBS........ccvveiceeeeciie e 228
DualTolerance SDK parameter 181, 183, 184
During the Solution Process.........ccocvevvivrieienennnenns 150
E
Efficiency of Constraint FOrmscccccovevvvieinenen, 90
either-or constraintccccoevveeveeeiie e, 132
Elements of Solver ModElScoceevvvevieevie e, 53
EMAIL. . 37
ENgines option groupccccveveeveeiesieesee e siee e 111
EQUALIONS ..o 57
Error condition at cell address..........ccccccveeneen. 157, 158
Error inmodelcooveiiiiiiiiece e 159
EITOr ValUE ... 91, 156, 157
ESC key

10 StOP SOIVEr....cviciiciececeee e 175, 178
Estimates optionccccecvveveevecie e 186, 187
Estimates SDK parameter...........ccccoevvvvevieeieesnesnnenn, 187
evaluation liCENSEccvveveeeiie e 152
evolutionary algorithmccccooevveinienen, 27,73, 170

Evolutionary Solver....13, 17, 19, 27, 38, 57, 66, 71, 72,
73,75, 115, 116, 129, 153, 154, 155, 157, 160,
161, 167, 169, 171, 199, 221, 222, 234, 276

Evolutionary Solver Stopping Conditions................. 170
EXAMPLES.XLS ..ot 91, 219
Excel

MiICroSoft.......covvvreiveiciienn 41,91, 135, 219, 272
Excel macro languagecccoovveeinienciencne. 241,271
Excel recalculator..........cocooovveiiiiincnciens 119,121, 124
Excel Scenario Manager...........ccooceoeeeienenennenn 53,178
external data SOUICESccceiverererieniene e 35
EXLErNal NAMEoceiviiiiieieee e 159
F
fast problem setup17, 33, 34, 62, 83, 117, 134, 135,

136, 137

Fast Setup oOptionccoerieniieieee e 117

Feasibility Report....... 17, 30, 31, 33, 36, 149, 155, 203,
210, 220, 223, 226, 231, 277

Feasibility-Bounds Report.........c.ccocoeverinienen 232,277
Feasible and Optimal Solutionsc.cccoveieienenene 55
feasible regions.........coeoveiiinenc e 70,73
feasible sOIULION........cccceevviiiiiece e, 55, 67
field-installable Solver engines18, 22, 34, 128, 152, 281
Fill CONSLrAINES .vecvviiciec e 134
filtered local Search........c..ccccevevviicecviec e, 74
Filtered Local Search.......cccccoovevveiiiiccieeciccee e, 198
finite differencing 26,119, 120, 134, 182, 186, 187
finite precisionc.ccococverienen. 54,67, 163, 176, 178
first derivativecooeeiiiiiie e 65
first order methods.........cccceveeiiiccieciiece e, 192
fitNesS....ceevviicee e, 74,153, 154, 171, 195, 200
Fix Nonsmooth Variables..........ccccoevveveeeviiccieeenen, 194
Fix Nonsmooth Variables..........ccccoovveveeeiii e, 116
Fix Nonsmooth Variables..........ccccoovveveeeiiiecneeenen, 197
fixed-charge CoNStraints..........ccccoeevvireriinenccnienn, 131
floating point OVerflow ..o, 157
FLOOR fUNCLIONccivieiie e 64
Flow Cover Cuts optioncceovvvverereniennnenns 212, 213
FlowCoverCuts SDK parameterc.ccocev..e 212,213
fOrmattingcoccveveveii i 81, 228
Forward choice (Derivatives)cccooevvrenen. 182, 187
From Algebra to Spreadsheets.........ccccceveveneiennnnnnn 81
function

DUIE-IN. e 123

UNKNOWN......viiiciie ittt et 157

UNSUPPOITEA. ... 157
Function cannot be evaluated.............ccccooeveeieenennee. 162
functions

of the variables..........cccevvveveeiii e, 59, 88
Functions to Avoid - Discontinuitiesc.ccc.cv..... 64
Further Readingcocoereiieriienencisc e 37
Fylstra, Daniel.........cccocoveiiiininr e 39
G
Generalized Reduced Gradient..................... 39, 70, 186
genetic algorithmccoevevveiviieinns 27,73,77,170

global optimization 18, 19, 23, 26, 56, 57, 71, 160, 165,
166, 167, 190

globally optimal solution17, 19, 26, 55, 56, 71, 72, 152,
160, 162, 166, 168, 171, 192

Goal Seek... commandc.coovvrieiiniiiincccens 54
g0al SEEKINGoveviiieiiieiieiee e 39
GOMOTY CULS.....eeieeiieiie e e 207
GomOry CUts OPLION......c.cevveieieicrerceee e 212
GOMOIY PASSES......ceiviiiiieiriiesii et 207
GomoryCuts SDK parameterccccveeieereeneene. 212
good model design..........ccoeiiieiiieiiiieee e 125
good SOIULIONocviiiiiiiice e 55, 57, 169, 170

good spreadsheet designccoceverieiineic e 126

Oradientooeeiie e 65, 120
Gradient LoCal.........ccooeieiiieiesiceee e 115
gradient-based methodccccoeiiiiiiiienn. 27,73,74
GRG Method........cccooviiriiiiiiicee e, 70,71
GRG Nonlinear Solver................ 13, 19, 26, 34, 56, 170
GRG SoIver Optionsccccveviireiinineeeeseeeieen 194
GRG Solver stopping conditions...................... 165, 185
H
H.P. WITIAMS ..o 39
Help

Solver ..., 13, 36, 81, 135, 149, 166, 173, 219
Hesse, RIChArdccooveinniineeec e 39
Hessian matriX..........cccovevene. 65, 66, 120, 122, 135, 187
Hessian of the Lagrangian..........cccccocevevevenesnevennen, 69
heuristic Stopping rules..........ccccvvveviveiesie s 171
How to Use This GUIde.........ccccovviririincicinecienen 35
hull CONSIStENCY ..o 72,193
hybrid Evolutionary Solverc.cccccoevveiennnn, 27,198
I
IF fUNCtion.......coovv i 27,64, 132, 169
If You Aren't Getting the Solution Y ou Expect........ 149
Ignore nonsmooth variablesccocoeviiinenicnen, 117
Implicit Non-Negativity Constraintsc.ccoceennen. 90
INCUMDBENT ...t 202, 203
INAETINITE .oveeceee e 63, 68
INDEX fUNCHIONcoviieie it 24
INAEX SBLS..eviiie e 127
individual selectioncccccvervinnnn 85, 88, 137, 138
INEQUALILIES ..o 57
inner solution.........ccccoeeveveevieccveeenen. 19, 28, 73, 227, 237
Insert Name Create.......ccoveeeeeveeeeecveee e 93, 126
Insert Name Defineccoevvvvvvceciciiecnenne, 93, 126, 137
INSEAlAtioN.......ccviiieeeccrie e 35, 41
installation programccccveviiniininenee e 42
installing Solver enginesc.ccoveveineneinieneeee, 50
installing the SOftware ..o, 42
INT fUNCHION. ... 64
IntCutoff SDK parametercccocevvvvrvrennnnnn. 203, 209
integer constraint...........cc.ccceuene. 55, 67, 75, 77, 88, 176
Integer Cutoff option..........coeeviieiicicien, 203, 209
Integer Options dialog....... 156, 201, 208, 213, 298, 300
integer programming.............c.... 37,39, 59, 67, 75, 202
Integer Tolerance option................... 159, 164, 202, 209
integer variables ... 76
Interior Point methodcccoovvevviveicienec e 71
Interpreter.......... 101, 117, 138, 141, 149, 161, 182, 187
Interpreting Dual Values ..o, 229
Interpreting Range Information...........c.ccccoceveninennen. 230
interval arithmeticc..ccocvevvveeicceece 26,122,168
Interval Branch & Boundcccceeeevveveeineennnen. 72,192
Interval Global SOIVEr ..., 56

Interval Global Solver..........ccocoeevevviiinneen. 13, 18, 19, 28

Interval Global SOIVer.........cccoeviivieciceee e, 57
Interval Global SOIVer.........cocoevviiiieiiiieee e, 57
Interval Global SOIVer..........cccoevviiiieciieee e, 58
Interval Global SOIVer..........cccoevviiiieciie e, 64
Interval Global SOIVer.........cocoevviiiiiciiee e, 64
Interval Global SOIVer..........ccccoevviiiieiciiieee e, 71
Interval Global SOIVer..........cocoevviiiiecciiece e, 72
Interval Global SOIVer..........ccccovveveiiiiiecie e, 115
Interval Global SOIVer..........ccccovvveiiiiiece e, 122
Interval Global SOIVer..........ccccoevviciiiiiece e, 129
Interval Global SOIVer..........ccccoevviviiiiieeie e, 154
Interval Global SOIVer..........ccccovveiiiiiiece e, 161
Interval Global SOIVer..........cccovveeiiiiiieee e, 162
Interval Global SOIVer..........ccccovveveiiiiiecie e, 167
Interval Global SOIVer..........cccocovveviciiieeee e, 167
Interval Global SOIVer..........cccocovveiiciiiiece e, 192
Interval Global SOIVer.........cccccoeveiveiiieece e, 221
Interval Global SOIVer..........ccccoovviiciiiiece e, 222
Interval Global SOIVer..........ccccovveviiiiiiec e, 237
Interval Global SOIVer..........ccccovveivciiiiece e, 285
Interval Global Solver Options..........ccococevevieniennn 190
Interval Global Solver stopping conditions............... 168
interval gradient ... 192
interval methods...........ccovivevicii e 28
Interval Newton method...........ccoceoveveeiriviieenen, 72,193
intervals..........c........ 19, 26, 72, 122, 162, 169, 192, 239
IntTolerance SDK parameter 177, 200, 202, 209
Irreducibly Infeasible Systemc.ccocoovinienenn 231
ITEratioNS ..vvveiciee e 175, 185
Iterations OptioNcceovevverevene s 154, 175
Iterations SDK parametercocccevvervenennenenenne 175
J

Jacobian matrix............. 65, 66, 120, 122, 135, 186, 187
K

Kenneth BaKerc..cocovvvvieiciecii e 38,126
KNAPSACK CULScveiveieiiiieieieiieeese e 207
Knapsack Cuts OPtioncccvereienereienenieisenieneas 212
KNapSaCk PaSSEScveviverieieiiirieiie e 207
KnapsackCuts SDK parameter..........c.cccvvereieneriniens 211
KNITRO SOIVErcvvceeeiieecee e 23,26,71
KraweCzyk OPerator.........c.ccovviereeieneeneneesienienens 193
Kuhn-Tucker conditionsccccoeveeveriiiveeee e, 165
L

Lagrange MUltipliers.........ccoccoeviiiiniienieeee 228
Large-Scale GRG Solver 22,68, 70,71, 76,131
Large-Scale LP SolVer.........cccocoiiiiiiiieiiiene 22,68
Large-Scale SQP Solver 22,32,68,70,71,77,131
Lasdon, LEONccecovieiieeiie ettt 39

JAYOUL....cviiiee s 35,92
Layout and FOrmattingccoceeeeinenennienenecnieee 92
left hand side

CONSLraINtS.....coveveeereennae 54, 88, 92, 136, 176, 229, 273
LeoNn LasdON.........ooviiieieiinieieie e 39
lICENSE COUB ... 43
1iCENSE rECONT ... 152
Lift and Cover Cuts OptioNn.........ccceovvereeinenininennn, 211
LiftAndCoverCuts SDK parameterccocecvvennee. 211
Limit Options dialogcccceovvervirennne, 171, 194, 302
limitations

global optimization..........c.cccveviineniiiccsc 167

NON-SMOOth OptiMIZation...........ccccceveivinciiiieas 169

smooth nonlinear optimizationccccceeevrenne. 164
Limits Report.......ccoceoeverrenerinn. 17, 219, 226, 231, 276
Linear and Nonlinear FUNCLIONSc.ccoverenincniennn. 59
Linear and Nonlinear Programmingc.ccccecevuenen 67
linear enclosure form.........ccceveeiiiveecce e 73,192
Linear Enclosure optioncccoeevenninencinnenenn, 193
linear function 59, 61, 104, 130, 131, 154, 156, 233
Linear Local Gradient Search............ccocecvervinennnn. 197
linear model

TESEING TOF i 62
linear programmingcccccceevvenee. 22,67,82,137,230

SOIULION ... 152
linear variable...........cccoovvveiiieiee e 104
linearity conditions not satisfied................ 150, 156, 177
Linearity Report17, 30, 36, 150, 156, 220, 223, 226,

232,276
linearity teSt......ccovevene v 25,163, 170
linearized local gradient methodcccccooeiiiniennnn 74
Load MOlccooeiiiiiieceeee e 214
Local Seaarch Heuristic optionccccccvervinennnne. 213
local SEArCh.......ccooviiic 199
Local Search options...........ccoovevvevieneinninns 196, 287, 288
LocalHeur SDK parameter.........cccocvereinerncnennenn 213
locally optimal solution55, 56, 70, 73, 160, 165, 166,
172,192

Locally Versus Globally Optimal Solutions.............. 165
LOOKUP fUNCLIONveeeveecvie e 27,64
10SS OF AIVEISILY ..c.ocvieicic s 171
LOTUS 1-2-3 ..ttt 216
LP Phase I1 0ption........cccoeviininiiiiccecsees 194
LP TeSt OPtiONc.eevirieiciirieiecreeee s 193

LP/Quadratic Solver...13, 19, 56, 62, 68, 179, 180, 184,
229

LU decompoSition..........cccoereireneineneneese e 68
M

MACIO 1aNQUAGEeveeveeieie e 241,271
Macro RECOIdEr........cooveveiiieiieieeee e 34, 36, 271
maintainable Models...........cccooiiiiinii e 149
MAaNAgEMENt SCIENCEcoverververieriereeieeeeie e 18, 38

MArKOWITZoeeeiiviieece e 19

Markowitz refactorization............ccooeoeeeieiincinnnne, 68
matrix factorization..............ccoceov i 68
Max Feasible Sols option.......... 154, 160, 172, 194, 200
Max Feasible Solutions optionccccceveeneiininnen. 209
MAX FUNCHION.....oiiiii e 64, 116
Max Integer SolS Option..........ccoceveireneirennen. 160, 202

Max Subproblems option... 33, 154, 160, 172, 194, 199,
201, 202, 208

Max Time Optioncccccovvereireneinee, 157, 175, 194

Max Time w/o Improvement option 154, 168, 171, 191,
200

maximize the minimum............c.ccoceinieieinnc e, 130
Maximum Cut Passes Option...........ccoceeevrenerinennen. 210
Maximum ValUES.........cccoceivreiinenieienese s 234
MaxIntegerSols SDK parameter 200, 202, 208
MaxRootCutPasses SDK parameterc.ccoceenene 210
MaxSubProblems SDK parameter 199, 201, 207, 208
MaxTime SDK parameter..........ccococvveneinenenisennnn. 175
MaxTreeCutPasses SDK parameter...........c.ccocevvenene 210
mean value form ... 192
MEAN VAlUEScceveveiieiie e 234
MEMOIY ..t 41, 68, 117, 129, 158

VIFEUL .. 158
Merge Model functionccoceeeienninenencee, 280
merging Solver models ..o, 216
MENt FIEEr oo 74,198
Method OptionS groupP.........ccevrerieirenecreneeie e 192
Microsoft Excel 39, 41, 91, 92, 119, 123, 135, 138, 216,

221

Microsoft Excel Help.......ocoooieiiiininiineceeee 13
MIN fUNCLIONveieeeccecce e 64,116
minimize the Maximum...........ccocoevviniere e 130
MinIMUM ValUEscoerviiiiiicecee e 234
MirCuts SDK parametercoceoevrieneinenenesennens 212
Mixed Integer Rounding Cuts option..........c.cccce..... 212
mixed-integer programming.... 67, 75, 77, 200, 202, 209

SOIULION ... s 152
MMULT fUNCLION ..o 36, 136
model analysisccccooveieveieiciniece 18, 24, 33, 35
Model BULtONoceveeece 102
model diagnosiscccovervrvrerennn. 24,25, 32,112, 122
model diagnosis exceptionsccccevvrurne. 25, 35, 106
MOAEl SIZE ... 125
MOdEl SPAISILY.....cceieiiiieeie e 101
model StatiStiCS.......cvevveevieiiee e, 103, 108
modeling teChNiQUESccccereiiereiiiiceic s 35, 130
MOSEK Solver................... 23, 26, 29, 59, 69, 114, 131
Multi-area not SUPPOItEd.........ccovrvvireniiireneieiees 159
multi-level single linkage............ccccovviiiiiinnn 27,71
multiple locally optimal solutions............ccccecvvvvennene. 57
multiple selection...... 33, 85, 86, 92, 135, 137, 138, 139
multiple Solver models ..o, 215
multiple WOrksheetsccoceveiiiniiniiceee, 127
multistart methods...... 19, 27, 56, 57, 71, 129, 160, 161,

165, 166, 167, 188, 190

MultiStart SDK parameterccocevevenenenenesieene. 188

Munirpallam Venkataramanancccoceoevereiienne. 38
MULAtioNoovvvevveiceseieee, 74,77, 195, 196, 197, 199
Mutation Rate option................... 33,153,171, 172, 195
N
natural SElECtioNcccvervireirree e 74
negative definite ..o, 63, 68
Newton choice (Search)cccccoevevveveienievesieseeene 187
NLP (nonlinear programming problem)...........c.......... 70
no feasible SOIUtIoN ..., 155
nonbasic variable.........cccooeviiiiiiicnnn, 186, 228, 229
non-convex function............ccocevvevveinenn, 32,58, 59, 60
NON-CONVEX ODJECHIVE ..o 56
non-convex problem....... 25, 26, 27, 35, 55, 70, 71, 105,
164, 168

NON-CONVEX QUAAIALICcceevveeieeie et 63
nondeterministic methods.............c.......... 27,28, 72,167
nonlinear function 59, 62, 63, 154, 186, 232
Nonlinear Gradient Search.........cccoovveveneniennnnne. 197
nonlinear GRG SolVer..........cccocovvinincnnns 39, 229, 283
nonlinear optimization.........ccccceoveievevie s 67

SOIULION ... 152, 153
nonlinear problems..........cccccov v, 164
nonlinear Programmingccccceeeeevverieseesieeseesneinens 70
NON-NEGALIVILY.....cccvieieiie e 57,90
non-smooth function....23, 57, 59, 64, 66, 116, 161, 169
non-smooth optimization.............c.cccceevevennnnne 17, 35, 67
NoN-smMooth Problems..........ccccvvcevievienee e 73, 169
NSP (non-smooth optimization problem).................... 67
numerical instability ... 67,70
numerical tOlEranCes..........ccoevererieeieiene e 173
@]
ODjJECt BIOWSEL ...t 36
objective fUNCLION..........coovirii e, 54
Odd Hole Cuts 0ptionccocevvereiineneiceneieeeen 212
OddHoleCuts SDK parameter..........cccccvevvrvererennennes 212
Office

MICIOSOTt....eiciiiiic e 41
OFFSET funCtion........cooovevevieceeceeeec e 24,124
OLAP databases.......cccoerverererenenieeerenese e 128
0perations reSearch..........cccocevevvvveecerenese e 18, 38
optimal solution..................... 36, 55, 152, 202, 219, 230
Optimality conditionsS..........ccoceovvirerniiniieineieeen 165
Optimality FiXing Option..........cccccovervirernienereeenen 205
optimization modeling hints.........cccccooovvernenen. 35, 127
Options

global optimization...........cccoevieneiienceee, 190

Solver....... 90, 149, 163, 179, 180, 182, 184, 190, 194
OptQuest Solver................ 23,71,73, 75,129, 157, 161
orders of magnitude.........c.cccoecvreerivnivinnnnns 163, 178, 282
Other Functions for Fast Problem Setup 136

Other Nonlinear OPtioNns.........cccovevererenieeeienie s 186

OULlINE REPOIScviveiiiiieiiriee e 223
outlining Of rEPOrtS........ccevvrireiicieirc e 30, 81
Overlapping CoNSLraintscccoeverenerienenieeere e 89
P
Parameters of your modelc.cccooeveviviviiircieienn, 53
partial derivative............ 65, 66, 119, 122, 134, 186, 187
PErMUEALIONoveiecercecece e 17,30, 76
piecewise-linear fuNCtions............ccocvvevvivnireincicieinens 134
PiVOt TOIEranCecovvvvreeiiiriiireesc s 179, 180
PIVOLTADIES ... 128
Polymorphic Spreadsheet Interpreter18, 24, 34, 41, 119,
121, 135
poorly scaled models .32, 101, 129, 153, 163, 165, 166,
178
population of sOIUtiONS..........ccccceeveiie i, 27,73

Population Report....17, 30, 31, 36, 172, 220, 221, 222,
226, 234, 235, 276

Population Size option........ 33,153,171, 172,190, 195
PopulationSize SDK parametercc.ccecuve.ee. 190, 195
portfolio optimizationc..c......... 63, 139, 215, 224
positive definite.........ccccovvieiieiieiie e, 63, 68
Powell, Stephen ..., 38, 126
Precision and Integer Constraintsccccceevvenenne. 176
Precision and Regular Constraints..........c...ccccvevnne. 176
Precision optionc.cccccvevvviniennen, 54, 165, 176, 194
Precision SDK parameter...........cccvevevveviveseereeinennns 176
Premium SOIVEr ..o 13, 17, 62
Premium Solver for Education...........c.ccccceeeiennne 18, 38

Premium Solver Platform. 13, 18, 22, 24, 62, 66, 71, 72,
75, 101, 122, 128, 140, 161, 162, 163, 165, 166,
167, 170, 190, 204, 233, 237, 277, 281, 299, 304

Premium VBA Functions..........c.ccooeeovvveinnenne. 272,291
Preprocessing & Probingccccoeeviveiveieinnne, 34,75
Presolve SDK parameter.........ccccccvvvvevieeiieevieesieennennns 181
primal feasible..........cocooviiiiieiie e, 204
primal heUFIStICS.cccveiieiee e, 75
PrimalTolerance SDK parameter 181, 183, 184
Probing......cccooee e 205
Probing Cuts optionccccccvevveiiiiese e 212
Probing/Feasibility option...........ccccocevvevieiveiecne, 204
ProbingCuts SDK parameter...........ccccccevevevveieenenne 212
ProbIEM SIZE.....ccvveiieeee e 32, 156
Problem Size and Numerical Stabilitycccc.c.... 67
Problems with Poorly Scaled Models........................ 163
Progress rePOrtiNgccveeerverierierereseseeeeie e 17,32
proving optimality.........cccooeieiiniiienreeeeee e 56
proving optimality.........cccooeieiiniiienreeeeee e 28
proving optimality........cccocoveiiiiniiiiiieee e 167
pseudocost branching..........ccccooceveiiiiieniciiice e 206
PSEUAOCOSES ...ttt 75

Q
QUADPRODUCT function..........cccceevrerieervennnn. 62, 139
quadratic approXimation...........cccceeeevreeveereereseseenns 131
Quadratic choice (EStIMAtes)........cooveveivevverierenennnns 187
quadratic function..........cccocevvviviveiencieinnns 62, 139, 156
quadratic objectiVecccevvvvvciieieieens 19, 139, 182
quadratic programming19, 22, 23, 67, 68, 135, 139, 229

SOIULION ... 152
QuUAdratiC SOIVET.......ccveveieiireece e 136, 182
QUADTERM functioncccocevvvrenenineneneeseae 141
quasi-Newton method...........cccceevvviveviciennnnn, 27,74, 187
R
Ragsdale, Cliff.........cccoiiiiiiieceee 38
random ChOICEceevvveeiieece e, 27, 28, 167
random number generator..........cc.cevverereereeneenn 190, 196
Random Seed optioncccccevenee 33,72, 73,190, 196
Randomized Local Search............ccocvevvivnveiencinnnnns 197
RandomSeed SDK parameter............c...... 190, 191, 196
RaNge SElECLOrcoeiiiriicreesee e 87
ranges

for dual valuescccvvveeeiciiicie e, 228, 230
ratio CONSEIAINT........ccoveieieree e 130
readable ModelS..........cocvevviiiiiicii e, 91, 149
Reading model settings from VBA..........c.ccocvovnennne. 272
Recognize Linear Variables option 34,131, 186
RecognizeLinear SDK parameter............cccevevrennne. 186
reduced COSt fIXING ...ccovrveirereineneese e 75
Reduced Cost Tolerance.........cccceeeveeeeevveenen. 179, 180
Reduced COStS.....cc.cevvveeeeee e 180, 228, 230
Reduced Gradientscoovevevereriennseeenene e 228
redundant CONSEraINES.........cccoovvvrerieeeeieee e 154
referencing Solver functions in VBAcccceeen. 272
Relation dropdown list ... 90
relational databasesccccevvvvvrerieeieeiiee e 128
relative cell references.........covvvvvececcie e, 85, 135
FEIAXALION ... cieiieieieee e 33

of integer problemcccoviv i 200, 202, 209
repair of @ SOIULIONcoeiieriii 74
replacing IF functionccocooveininniencce 132
report OULTININGcoviiiiiiece e 30
Report Scaling Problems..........ccccccceeeeene 123, 129, 224
Reports

SOIVEF v 13, 179, 228, 230, 276
Reports list DOXcccvcvvvvveieiiiein, 179, 221, 222, 223
Require Bounds on Variables option.129, 161, 189, 196
Require SmMOOth........ccooviviriiiie 198
Require Smooth option..........cccocevvivenniencncne, 116
RequireBounds SDK parameter 189, 196, 197
Resolution Option ... 191
Restart buttoncccovvveeeiciecieeee, 150, 179, 201, 285
FESUIt COABS....oeiveeiriiccee e 150, 151

CUSEOIM e aaaaes 152

Return to Solver Parameters Dialog check box 151, 224

Richard HESSEccveviieiiie e 39
right hand side

CONSEANT ...ttt 54,59

constraints...... 54, 85, 88, 92, 136, 176, 227, 229, 273
rigorous global optimizationccoceeevnennenen. 167
roots Of QUALIONS........c.eoveiiiriciieee e 238
ROUND funCtioN.......ccooveiiiii e 64
rounding and possible loss of solutions 167
Rounding Cuts OptioNcccceveinenieienieieeseeieee 211
Rounding Heuristic 0ption..........c.ccococvveiiineniiennen, 213
RoundingCuts SDK parameter...........cc.ccoceevnerinienen. 211
RoundingHeur SDK parameter..........cc.ccoceevveririennen. 213
S
SAAdIE POINT......corviiiirric e 63
satisfied

CONSEIAINTS ... 54, 58, 176, 227
SaVe MOGELcociiciiicicc e 214
scalable models..........c.coovricince 91

scaling.. 32, 68, 123, 125, 129, 150, 163, 166, 176, 178,
224,282, 293

Scaling Reportcccccvenenen. 30, 32, 36, 219, 224, 225
Scaling SDK parameterccccccvevveivennennnnn, 178, 180
SCALTEr SEAICN.......ecveiiiriicere e 23,75
Scenario Manager........ccocvcveieeieeneeneese e 53,178
Search optionccceveveevee e 186, 187
SearchOption SDK parametercccoccevvevvereeennn. 187
SeCoNd deriVatiVecceveiireiieece e 64, 66
second order cone constraint . 29, 34, 35, 55, 56, 58, 69,
91
second order cone programming.. 18, 20, 28, 29, 56, 58,
69, 152
second order methodscccoeeieiinenieicncnc e 72
Second Order OptioNn.........ccccovvevvevrcie e, 193
Selecting the Reports........ccccvvvevvevviieve s, 221
selection process.......ccovvvvvevieeveereeanne. 74,195, 197, 199
SEMI-EfiNIteceeeiii 63, 68
SEIMINATS ..ttt bbb 38
SENSILIVILY aNalySiScovvevicieiie e 231
Sensitivity Report 17, 36, 219, 226, 228, 276
Sequential Quadratic Programming...........cc......... 23,70
SELCEI e 54
Set Cell Value of ..o 54
Set Cell values do not CONVErge.........coevververeniennnnn 154
Setting Up a Model.........coooiiiiiiiiiiee e 81
sexual reproducCtion..........coeveneieneneniee e 74
Shadow PriCES......ccvveiieiee e 228, 230
SNAIPE e 19
Show lIteration Results option...........ccccccvenenne. 149,178
Show Trial Solution dialog....... 150, 154, 155, 282, 284,
293, 295, 297, 304
SIGN fUNCLION......cccoeie e, 116

SIMplex LP SOIVET ..o 34,55

Simplex methodcooveeiiniiiiiee 28, 68, 74,180
Simplex Solver Optionscccovvervevenes 179, 180, 184
slack

INCONSETAINESvvecveciiec e 227
SMOOth fUNCLION........covvveveiireccec e, 56, 64, 104
SMOOth variableccccoeviieiiiiiecee e 104

SOCP Barrier Solver..13, 18, 19, 23, 26, 28, 29, 34, 56,
59, 69, 114, 131, 151, 182

SOCP Barrier Solver Optionscccccevevviincienennes 182
SOIULION ...t 252
SOIULION tIME .o 67
Solutions Report.............. 30, 36, 73, 221, 237, 238, 239
Solve With
AULOMALIC....cviiiiciicicceece e 114, 115
CONVEXILY ..ottt 114
Gradi€NtSveeeeeiivie e 114, 115
NO ACLION ..o 115
SEFUCTUNE . 114,115
Solve With NO ACION ...c..ovviiiicieeeee e 117
Solve With option group......ccccceeveevveve e, 113
Solve Without Integer Constraints option .200, 203, 210
Solver cannot improve the current solution......153, 168,
171, 200
Solver converged in probabilityccccoeveeviinnnn 160
Solver could not find a feasible solution 155
Solver dialogs......cccveveiieiiesieree e 83
Solver encountered an error computing derivatives..161
Solver encountered an error value...........c.ccoccveenenee. 156
SOIVEr ENQINE....cviciececece e 22
Solver engine compatibility..........cccoovvvevieiieieernenne. 42
Solver engine dropdown list.................... 22,27,84,112
Solver engine size lIMits..........ccccoovevveiceeieeiinennn. 32, 156
Solver function return valuescccocevennnennn. 272
Solver has converged to the current solution.....153, 171
Solver Model dialog..31, 32, 35, 62, 101, 233, 287, 289
Solver Model VBA Functions............ccccoeeeuene. 272, 286
Solver Models and Optimization.............ccccoevvevuennen. 53

Solver Options dialog.90, 149, 163, 173, 179, 180, 182,
184, 190, 194, 277, 278, 282, 291, 292, 294, 295,
296, 297, 303, 304

Solver Parameters dialog............ccccccveruennee. 84, 278, 305
Solver Platform SDK ..o 21
Solver Reports.......cccccvevvevenneenn, 13, 179, 228, 230, 276
Solver Result Messagecccevvvevvveiieinnnns 149, 151, 165

Solver Results dialog....33, 85, 149, 150, 151, 179, 221,
223, 276, 284

SolverAdd (FOrM 1) ..o 273
SolverAdd (FOIM 2)oveeiieeeeeeee e 274
SolverAdd funCtioncccoevenerineiesene 273, 280
SolverChange (FOrmM 1)cocooiiiieniniiiee e 274
SolverChange (FOrM 2)cccoooeieienenieeiee e 274
SolverChange functionccocooviiiiiiin i, 273
SolverDelete (FOrmM 1).....ccoocoiiiiieiiniiee s 275
SolverDelete (FOrMmM 2).......cocoviiiiiiiiieieie s 275
SolverDelete funCtion...........cccovereinencnisee 273

SolverDependents function.............ccocceeeiieiiinicieene 291

SolverEVGet fuNCtioN........ccoeeiveecie e 291
SolverEVOpLions function...........ccoeeeereneincnenn 292
SolverFinish function..........ccccoevvevveiiiccneeee, 276, 284
SolverFinishDialog function...........cc.ccccoeeneininenn 277
SolverGet fUNCLIONcvveeiee e 277
SolverGRGGet funCtion..........covveeveiiieccie e 294
SolverGRGOptions function...........cccceeveneincniennn 295
SolverlGGet fUNCLIoN.........covveiiiieeie e 296
SolverlGOptions fuNCtioncccoceeeereneineneen 297
SolverIntGet function.........ccccocvvveee e 298
SolverIntOptions fuNCtion............ccoceevereneincnienns 300
SolverLimGet functionccocveeveiiieccie e 302
SolverLimOptions function...........cccoeeveneinenenn 302
SolverLoad function...........ccceeevvieiiveevine e, 280, 283
SoIVErLPGet fUNCLIONccovveeiiieccee e 303
SolverLPOptions function............ccoceeveneneincnennn 304
SolverModel fUNCLIONoovviiiiecie e 287
SolverModelGet function..........ccceeeveiiieiiiiiciicne, 289
SolverOK function..........coceeeviiceeiciec e, 17, 274, 280
SolverOkDialog function ..o 281
SolverOKGet funCtionccoveivvecie e 305
SolverOptions functioncccccocvevvenennn. 280, 282, 284
SolverReset funCtioNccovvivvecii i 283
SolverSave function.........cccceceevve e 283
SolverSizeGet fuNCtioncccocvveee i 306
SolverSolve function..17, 150, 151, 155, 271, 272, 284,
285
SolveWithout SDK parameter .. 200, 203, 204, 205, 210
SOLVSAMP.XLS......ccoovveiiieeeeieceeen. 13, 82, 85, 135
SOS CONSLIAINTvveeceeeccvee et 205
SPArSE MALMIX ...c.veeireeieeerieieie e se e 67,92, 136
SPArSE MOUE ... 117
Evolutionary SOIVEr ... 118
KNITRO SOIVENccoeeiciieeceece e 118
SPArse OPLioNcccvveiiiriicreee e 115, 117
SPAISILY ..ttt 32,101
special functionsccocveveveiennnns 116, 157,162, 170
Special Ordered Set ... 205
Speed 17, 33, 34, 68, 122, 134, 135, 293, 295, 297, 305
Spreadsheet DeteCtive...........coevvreniinenerenee 127
spreadsheet formulas..........cccoceevvvvriiiniiicreienn, 35, 82
spreadsheet modeling hints...........ccocvvevivveienennn, 35, 126
SQP Methodcooeviiiiiiiiecce e, 70,71
Standard Deviations..........cccoceeveeveiiecire e, 234
standard Excel SOIVErcocvevvviiieicii e, 16, 174
standard Excel Solver Help........ccoccoviiiiiinniiciene 36
Standard VBA FUNCLIONScoovvevvieeiiee e, 272,273
Stephen POWEIIccooveieiiiiiiscecc e 38,126
Stop bUttON.....oevecvcecceece 150, 179, 284, 285
Stopping conditions
GRG SOIVEN...oociiiieeeeece e 165, 185
Interval Global SOIVEr........c..ccovvveviiieceeceeee, 168
Stopping Solver

ESCKEY oot 175, 178, 284

StrongBranching SDK parameter...........cccccceeveneenne. 211
Structure Reportcccocvveveveiinenens 30, 31, 36, 62, 106
subproblem

Branch & Bound..........ccccocvvineiiennncnnnn 75, 203, 209
SUM fUNCHION ..o 135
SUMIF fUNCLION ..o 65
SUMMAation NOLAtIONccoevveviiiieiirece e, 136
SUMPRODUCT function.................. 36, 61, 81, 92, 135
SWAPPING ..ttt 158
symbol table ... 121
system of equationscccoceverreriennn. 19, 28, 58, 238
system of inequalitiescc.cceverennn 19, 28, 29, 237
T
tabU SEArCh. ..o 23,75
Tangent choice (EStIMAtes)cccvvevvereeresieesiennnn, 187
technical SUPPOITc.ocovveiie e 36
testing for linearitycccooevveiii v 62
Tolerance option 153, 154, 164, 171, 177, 200
Tolerance Option and Integer Constraints................. 164
Too many adjustable cells..........cccooevvevieiiviieien, 156
T0O0 Many CONSLIaiNtScccveveeeeriereeree e 156
Too many integer adjustable cells............cccoevvvrnenen. 156
Tools Macro Record New Macro...........cccoeeverennenne. 271
TOOIS REFEIENCES ..o 272
topographic Searchcccccvvieevveve e 71, 189
Topographic Search optionccccevevvevvcieviennen, 189
TopoSearch SDK parameter...................... 189, 192, 193
Total Cells DOX.....oovviiiiiiiii e, 104
Tour of NeW FEAtUreS..........oovevereiiniereeie e 24
Transferring models between spreadsheets 215
transformation of non-smooth functions...................... 25
Transformation RepOrt.........ccccoevevvevieveece e, 30, 36
TRANSPOSE function..........ccccoeeveieieneieseseeeeans 136
Traveling Salesman Problem..............ccccvene. 17, 29,59
trial licenseooeveveviiiiiccceee, 22,49, 50, 152
true global optimum ... 167
Two Mixed Integer Rounding Cuts option................ 212
TwoMirCuts SDK parameterccccceevvvevveivesnennn. 212
)
unbounded objective value...........cccocevevrvriveeienen, 67
undefined identifier ... 159
UNINSEAITING .o 45
UNIVEISITY USB..e.vveveeeeerieseesiesieereeeeeeteseeseesseeneeeeseeseenes 18
UNKNOWN FUNCLIONccieicice e 157
UNProven SOIULIONccevvveresr e 162, 169
unsupported Excel function..........cccccoeeveneniicniennn 157
Use Automatic Scaling option...163, 165, 176, 178, 224
Use Dual Simplex for Subproblems option............... 204
Use Strong Branching optionc.ccoceevevvinennnn, 211
user interface improvements..........coccovveverereneienennnn, 32
user-defined fUNCLIONScccovevverene v 24

Using Array FOrmulas...........ccoooeiinieniecieienc e 136

Using Defined Names........cccccoevvieneiencncieic e 93
Using Integer Constraintscccvevveereiencnnenns 90, 91
Using Microsoft Excel Help ..., 272
Using QUADPRODUCTccccovvirieieieiee e, 139
Using the Macro RecOrder..........c.cooevvnerneneninennn, 271
Using the Premium Solver Platformcc.ccce.ee.. 13
Using the Variables Button...........cccccoovevenencieicnnnn 87
\Y

Value of edit DOXcvevveiiciiieeceee e 54
Variable Cells list DOXccccocvvviciiiniienecee, 274
Variable Reordering optioncc.cccecevevvnnenn 205, 206
Variables and Multiple Selections.............cccccoevvvennne. 85
Variables button..........cccccovviviininnnn, 33,87, 88,274
VBA Function Reference..........ccoccooveveiiicnencneannns 272
Venkataramanan, Munirpallam............cccccoeeveeinnne. 38
Visual BaSiC.......cccoovreiiniiiieiecie 34, 36, 241, 271
w

Waren, Allan.........cocoeiiiiecce e 39
WatsoNn, JONNooovviciiicecce e 39
Wayne WINStoNcccoereeninnienenee e 38
What Is Not POSSIbIecceovviiiiiiiiicecceeie, 238
What YOU NEEdccoeiiiiiiiiceccece e 41
Williams, H.P. oo 39
WiNSLON, WaYNecccoovvviiiieiiceseeeee e 38
X

XPRESS SOIVEN ..o 23, 68, 130
XPIESSMP e, 23
Z

Ziena Optimization ..o 23

