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MINIMAL LATTICE-SUBSPACES 

[OANNIS A. POLYRAKIS 

~ \ B S ' ~ R A C T .In this paper the existence of minimal lattice-subspaces of a vector 
lattice Ei containing a subset B of E.:+is studied (a lattice-subspace of 1'7 is, a 
subspace of E u-hich is a vector lattice in the inducecl ordering). It is proved 
that if there exists a Lebesgue linear topology T on E and Ei. is 7.-closed 
(especially if E is a Banach lattice with order continuous norm), then lnirlinlal 
lattice-subspaces u-it11 T-closed positive cone exist (Theorem 2.5). 

In the sequel it is supposed that H = {zl , 2 2 ; .  . . ,x,,} is a finite subset 
of C+(n), where C2 is a compact, Hausdorff topological space. the functions 
x, are linearly independent and the existence of finite-clirrlensional rrlinirnal 
lattice-subspaces is stuclied. To this encl u-e clefine the function P(t) = -$k 
where r ( t )  = (21 ( t ) ;x a ( t ) , . . . ; z,,( t ) ) .If R(,3) is the range of ,3 and K the 
convex hull of the closure of R(fi), it is proved: 

(i) There exists an  m-dimensional rrlininial lattice-suhspace corltaining B if 
and only if K is a polytope of R" u-ith m vertices (Theorem 3.20). 

(ii) The sublattice gericratecl by B is an m-dimensional subspace if and only 
if the set R(P) contains exactly m points (Theorem 3.7). 

This study defines an  algorithm which deterrrlirles whether a fillite-diillensional 
minimal lattice-subspace (sublattice) exists and also determines these sub- 
spaces. 

It is known that C[0,1] is a universal Banach space in the sense that every 
separable Banach space is isoinetric to a closed subspace of C[07 I]. In [ll]it is 
sho~vn that each separable Ranach lattice is order-isomorphic to  a closed lattice- 
subspace of G[O, 11; therefore G[O, 11 is also a universal Rarlach lattice. Since -the 
sublattices of C[O,11 are not enough for this rep]-esentation, the lattice-subspaces 
seems to be the right class of subspaces for studying Banach lattices. 

The structure of lattice-subspaces has not been systematically stuclied. In [7] it 
is sho~vn that a subspace X of a vector lattice is a lattice-subspace i f  and only if 
there exists a positive projection from the vector sublattice generated by X onto 
X. In (101 and [ll]the existence of positive bases in lattice-subspaces is studied. A 
survey of lattice-subspaces and positive projections, as \veil as some new results, is 
proved in [I]. In [12] the finite-dimensional lattice-subspaces of C(R) are studied. 

In the present paper the existence of minimal lattice-subspaces of a vector lattice 
E ~vhich contains a subset 13 of E+ is studied. In the theory of Banach lattices (and 
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in applica,tiorrs) n-e tire il~teresteil iii ii lat iice-subslxicc. of E containiilg B tohie11 is 
as "'closc" ah possiblc to  thc lili(\i3~ subspai.c>[B] by B.gt~nc~rai(~d 

Sllch a. slll~~l)ilc(; B (~iotc, that S(i1) is t l ~ c  is the :;ublat,ticc: S ( B ) gellcraied 1,)-
iliinirnuul sul)latticc> containillg 13 a i d  also t,llat $ ( I : )  -== [B]"- In]" nrllcrc [R]"' 
is the set of tiiiii,r suprernurr of il l( ,  elcmcnt:; of \ I l l )  hur S (H)  i:; in gcmeral a 
'%big'' subspiict: ~vkiich is "ver.'; far'^ i'l,orn [Bj.In E:xa.lrlple 3. 18 In] i:; 3-dilricasio~ial, 
S ( B )is tlcilst. iri i'( 9)bllt a -l-tIiiil(:?isi~i~al coiitaii~i~ig 111l a t t i ~ c - s ~ ~ l ~ s l ~ r l ~ ( '  B ~~i:;t,:j. 
Exfiillplc 3.21 it is sEionm t l ~ a ~  a. rilinirllilri~ lattice-subspace colltailliilg i 3  does iiot 
filvag-:i exist,. 

An iiliporta~it, questioi~ is .'lhou- far" a nliililnal iat,tice-subspacc is from [B]. 
Alotivatcd b!- this cluestion ~ v c  :;t ulil~imalucly the cxistc>ncc oi' G~iitc-dinicnsio11;~l 
la.tti(:c-slilssp;icc.s. Espccial1~-we :;~ippos(' that 13 = (.r I . . ca ,  . . . , . L ,  ) is ii :illl~sot01 
C- ( ( 2 ) .  the T - W ~ O I - ~.r, are lirlearlj- illclcpendcllt arld me $1 lid?. tlie existence of linite- 
rlinlensional mii~imal lattice-silkt:;l,iii:(>s of C(i?)cor1t;iining 23. 111t811c fiiiixicworic 
of this prol)lcrn ive s rud j~  also r l~c  cli~estion \~vhctlter ,Lp'(li') is a finite-tlirr~rilsional 
subspacc. 

'To study t.llis prohleni TT'C ti(:/i~i(>the i'unction .-1(i,) 
, , ( I )  wh(~-er ( l )  ==I= 


( . r . r ( t ) , . i ,2 ( t ) .. . . , ~ , , , ( i ) ) ,This riiirc,l,ion defiiles a clirvr ill tile simplex A,, of 13: 
TI-bich we call !)asit curve of t,hc fi~licfioils :r.i and is very irnportarlt for our st rrd>-. 

In Thcoreiii 3.7 it is proved that S ( H )  is finite-tiirllcusional if arld crll1~- if the 
rangc of' :;l is fir1it.e a l~i l  a po:,il ivi. ba.;is of S( .Rj  is also tlct.c~rrnincd. FQei~cc u;c 
call clett.rn~ilic mhc~ther S ( B )is fii~ito--diulcnsio~~i~I bc~cailsc it is \:or)- easy to elleel: iF 
R ( 0 ) is finite or not. Ey the gropcrly that S ( B )= /El'/ -- [B]"TI-e canxior coiiclude 
whether S ( B ) is filiite-dimcl~:;iolial a i d  also x e  carillot tictertni~le a posiiive basis 
of ,9(B). 

I11 Tl~eorci~l  3.10 it is pi~ovecl tji-lat if ihc convex llr~ll I i  ol the closlsrt3 or I?(,?) 
is a polytope: 11-itl-r771 vertices. tlicii~ an nl-cliri~ensional illininla1 lattice-srrl)sl)acc I' 
exists and a positive basis of Y is gi\~en. The deti:rminaiioi~ of the basis of Y is 
based on thc dctcrlrlillation of i h c  vi.rt,icc.s of I;'. 

111 general it is diiiicult to  study \~:het,her It7is a polyto1,e or not and detormiile 
its vertices. J I I  Corol1ai.y 3.15 it is pl,oved i,hat if K is a. polytoye, 1 3 ( t ~ ~ )a \c1rtex of 
K a i d  to ari interio~ poi~lt  of a. clli.~:e c of i2, the11 the derivative at t i ,  (~vlicmvver it, 
cxist,~)of tlie i.estrictio11 of -3 011 c is (3cjllal to  zero. I f  for cxar~iple !(I C alld the 
hic:tion 3 is dcfiiied or1 the wliole set 12. tile11 t,lle pal.t,ial deri~at~ives 1~~areof 8 k i t  
equal to zero ~v l lene~er  to is an intcrior point of d2 a.iid tlie derivatives at- 1,) of the 
restriction of 'ion he paralliet,ric cltrves of D(R) a r c ,  cc~ual to zero. if tr,t a($!) .  
Belice t r ,car1 he obtained as a solu1,ioil of a syst,em of ctlua.tiolrs. 

This propt:rty llelps us to  c1etei.iniiie a set of possihle \-ertices of h',i.c.. a, subset 
C: of R" ~vl~icll  I< is a po l~ t~ope .  colitairis the vertices of I<: wl~ei~ever Af,er the 
der,ei.miria~tioliof G it is easier to st i l t i i - if A-is a pol!-( ope or not (see Algorii hi11 3.17 
and Exarnple 3.18). 

A11 interesiiilg remark 011 the, stl.uci,ure of tlie lat ticc-subspaces is also lliat a 
~rli~~isiial  a subsltace of S ( R j .  Ex-lattice-subspace co~itaillilig L3 is nor i~ecessa~.ily 
ample 3.21. 

Receritl\- latt,ice-sul,spaces 11a~c been emploj-ed in ccoliorilics 121. 131. 
Let L.! be a (partially) ordcrcd vector space I\-itki ~)ositixre cone E-,alld X a 

subspace of 12,'. The cone /'i'r? fI'-, \\-ill be callcd t 1 1 ~  indzlced cone of X .  and the 
orcleririg defil~cd in ,;Y 1,~. t,liis cone the induccd ord-rlcr.in,g.\I7e will tlerlote 1 ) ~ .X+ tllc 



induced cone of X,i.e.. .X+I=- X . ,411ordered ~ u b s p a c ~  rj E4 of E; is a subspace of 
E ordered by t,he induced con(:. A lnttzce-su.bspace of E is ail ordered subspace of 
E ~~'1iit:llis also a vector latticcl (R,iesz space). 

Let X be a lattice-subspa.ce of E. Then, for each z.9 E S TI-e mill tleiiote by 
1:Vy (resp. x A yj  the suprenlum (resy. ilifinilnri) of {.r, y} in X. It is clear that, 

urheiiever X V  y. x A !j exist. If E is a vector latt,ice and xVy -avy for a.ny x,y E 3' 
then X is a sublattice (Riesz subspace) of E;. Let E bc a11 ordered Baliach :ipa.ce with 
positive cone E,. A sequence {e,) is a posifizle basis of E if {e,,) is a (Schaucler) 

Xbasis of E and ET = {z = X L e i  / Xi E R-+for each i } .  A positive basis { e l l )  
of E is uiiique (ill t,he seiise of a positive multiple). The follo~x-ing result (see [ I ]  or 
[12]) is very important, for tl-ii,study of finite-dirnensioiial lattice-subspaces. It call 
be proved either elementjar\- or as a partial result of the Cl-ioquet-Keiit,al1 Theorem. 

Theorem 1.1. /I finite-di~n~cnsiorlalordered vector space I$ is a vector lattice if 
cind onL?j if E ha8 (1  posiiive basis. 

For notation and terminology not defined here we refer to [a, 6, 91. 

Let 13 be a wetor latticc and B I:,, I? f (4. Let I, be the set of lattic'e- 
subspaces of E.each of which contains B.If X E nrld for anj- Y E I, it holds: 

then we will say that, X is a minimal  lattzce-subspace of E cont,aining 13. 
If E; is a vector lat,t,ice, then the sublattice gcmel-ated by B is the niininiuni 

sublattice containing B. 
As we will show- later (Example 3.21) even if E = RnLa niininiuni lattice-subspace 

of E containing I? does not always exist. So me state the following t-juestion: 

Problem 2.1. Does a rrlinirrlal lattice subspace o,j E containzng B exist2 

Let P be a cone of a linear space L' (i.e., P is a corrvex subset of F .  Xz E P for 
each zE P and X E R, aiid PI7 (--PI = (0) j. Suppose that z ,  ?j E P. If there exists 
z E P with the properties: . - r,z - y E P and for each ?r !  E P;u: - x,  71: - y E P 
imply that u: z E P: then me mill say- t,hat z is the supremuni of {z,y) in P and-

we will denote 

Z = supp{.c, y). 

The infimum of (.r:, y )  in P is defirled analogously. If for each z 7  y E P,z = 
supp{z: y)  exists: then infl~(x:: y) also exists. 

If P is a cone o f  a linear space I; and foi. each :r,y E P the suprenlunz of {:r, y} 
e:cist.s in P )  then  uje ujill soy that P i s  a lattice cone of I=. 

If z = J:I - n.2 where T I ,za E P .  then it is easy to show that sup{.c, 0) = 

supp{zI ,~ 2 )- .c2 is the supremum of {LI,  ZZ)  in X = P - P. Therefore t.he 
following result holds. 

A cone P of a uector spacc F is  a lu,ttice-cone {f and only (f the r:~~.b.space -X 
P - P; ordered by the cone P ,  is  (i. vector lattice. 

In the next resuIt,s of this paragraph w-e will suppose that E is a vect,or lat,t,ice 
equipped with a linear topology T with the properties: 



(i) E+ is i--closetl; 
(ii) each increasing, order bounded net of 15 has a T-convergent subnet (i.e., the 

topology r is Lebesgue). 

Property (i) implies also that r is Bausdorff' because if w-e suppose that n. E E.  
J. # 0 and 0 E ,T $ V for eacli open symmetric neighborhood V of zero, then 
0 E . x .  + V:therefore <x. and -.r belong to E, =::xaild hence 0, contradiction. 

If the topologl- T is order corltinuous (i.e., each decreasing ]let of E with infimum 
zero is T-convergent to  zero) and E is Dedekind complete, then r satisfies (ii). If the 
order intervals of E are r-compact, the statement (ii) is also satisfied (for related 
results see [4,Theorem 11.131). Hence, the weak star topology of a dual Banach 
lattice and the w-eali topology of a Hanach latticc with order contirluous norm 14. 
Theoreni 12.91. have propert?- (ii). 

Proposition 2.2. Let  ( P 2 ) I E Ibe a decleasing n e t  o,f T-closed lattice cones of E-,-
(i .e. ,  P, C:E+ and i 5 j =+I: > I:}.  Ti%en I' P7 is a T-closed lattice cone =: nLCI 
of IT.  

Proof P 1s d T-closed cone of E+. Let . I ,  y E P. Dcrlote b) z7 tlle supremum of 
{ n . 7 / }  in PL.Fbr each 1 ,  j t I nit11 I 5 7 we have P, c PL& E, . thelefore. 

Since T has propert?- (ii), there exists a T--coln:ergellt subnet of (z7j lE 1 nrhich w-e 
will still denote by ( z , ) , , ~ .This net is also increasing: and let z ==l i i r ~ , ~ ~z,. Let 
i E I. Then for each j E I with i 3 j ,  n.e have: 

Since the cone P, ii ?--closed, we hale that 

Therefore 

Suppose that tu t P wlth tu J .  LC - y E P. Since P & P, n.cl have that u, - z, E-

P, PIfbr each J E I with I 3 J Hence w - s E P,for each 7 ,  thelefole a*- z E P. 
So me have proved thai i = iupI,{-r. y). therefore P ie, a lati ice cone Z 

Theorem 2.3. Let P 2 E +  be a cone and let @ ( P )be the set  of 7-clo.i;ed lattice 
cones of E+ each of ?r;hich contains P .  T l ~ e n@ ( P )  has rrsinintal ele'nzents. 

Proof. @ ( P )# 0 because E, E @(P)alld @(P).ordered by the relation ">". is a 
partially ordered set. Si~ppose that F is a totally ordered subset of @(PI.The11 by 
tlle previous result Q = /711,,F 14 is a r-closed lattice cone of E.By Zorn's Lernrna 

&. 

the theorem is true. 

Proposition 2.4. Let  (S , ) , , l  he a decreaszng n e t  of lattice-su1)spaces of I.: 'with 
T-closed positive cones. Let  X = n7tlX 7 .Y -S. X+ alnd Yr= Y n IT,. T h e n-

(i) ,Y+ = n,,, X7+. 
(ii) Y c X .  1% = X+ and Y is  a lattice-sz~hsgace o f  1.7 with r-closed positive 

C 



Proof (i) X_c = X nE+ = (niEIx,)3E, = nirrX T .  
(ii) Y = X, - X ,  C: X .  Y+ X n E ,  = X,. Also X ,  = X+ - (0) 5 Y :  

therefore ,Y+ C Y+. Hence X+ = Yi . The net ( X T ) , E r  is a decreasing net of 
T-closed lattice cones of E+: therefore Y+ is a 7-closed lattice cone. Hence Y,is a 
lattice-subspace of E .  

Theorem 2.5. Lef B C E+ and 

l ( B )  = {I' C E / Y as a latt~ce-subspace,Y- zs T-closed and B 5: Y ) .  

Then l (B)has mznzmal elemcnfs. 

Proof. The set l ( B )  is nonelnpty because it contains E. The set l ( B ) .  ordered by 
the relation "7>", is a partially ordered set. Let F be a totally ordered subset of 
l ( B ) .  By the previous proposition there exists I' E 1(B)  such that Y A for each 
,4 E 3. Therefore. by Zorn's Lemma l ( B )  has minimal elements. 11 

Corollary 2.6. Let E be a Danach lattice with order continuous norm and B <: 
E+.Th,en thc set of lattice-slabspaces of E with (norm) closed posit~iue cone which 
contains B has minimal elements. 

3. THEFINITE-DIMENSIONAL CASE IN (?((I) 

In this paper we shall denote by S1 a compact, Hausdorff topological space and 
by C ( 0 ) the Banach lattice of continuous real x-alued functio~lsdefined on R. 

\Ye ~villalso denote by 21, . . . ,z,, n fixed linrarly independent positive elements 
of C ( R )  and by X the subspace of C ( R )generated by z l ,  . . . ,z,. i.e., 

X '/2 , ,x2, . . .  ,x , ] .  

In [12] necessary and sufficient corlditions in order for X to be a lattice-subspare 
of C ( 0 )  are given. 

In this paper we study the problem: 

Problem 3.1. Does a finate-dzmrnszonal laftzce-subspacr (sublatt7ce) of C ( 0 )  con-
taanzng z: ,2 2 .  . . . ,xn emsf? 

Ebr each x E Rnl  we will denote by x ( z )  the z-coordinate of x ,  by j/x// the 
77,norm /Ixjj = EL=,lz(7)1 ,  bv {r l ,  e2. . . . ,r,,) the usual basis of R7"and by An,  the 

simplex (baye) of R;",i.e.. 

n,,= {Z E W: / I / x / / ,= 1). 

filso if x E Rn' ,y E R'we shall denote by ( x ,y )  the vector z of Rnl+'with z ( z )  = x ( z )  
for 7 = 1,2. .  . . ,m and z ( m  + z) == b(z) for 7 = 1.2. . . . , l .  If A is an rn x rn matrix 
we shall denote by Ar the transpose and by A -' the inverse matrix of A. 

Let ~ 1 . ~ 2 , .. . , y, E C,(R).  Then we will call the function a ( t )  = ( y l ( t ) ,y2(t) ,  
. . . .y,,,(t)).t E 0. the curce and the function ? ( t )  = & . t  E 0,with zl(tj + 0, 
the baszc curue of yl ,  yz, . . .y,, . \Ve -will denote by D ( y )  the domain and by R ( y )  
the range of y.It is clear that D(y) is an open subset of R and R ( y )  A,. 

In this paper we will denote by r the curve and by U the basic curve of z l ,  1 2 ,  . . . , 
x m . i.e., 

r i t )
r ( t )  = (xl( t ) ,z zjt), . . . ,z, ( t ) ), t E S1 and O(t) = -'-- . 

! l r ( t )il I 



As 11s11al if I< is a suhset of a topologic.al space F. n-c shall denote by irlt(K) t,he 
interior, by h7the c.losl~rc anti b>- i)(l<) F ia athe bou~lclar!- of K.Also \~-hene~?er 
linear topological space \re s11all denote by co K the ccmrrcs hull of I\', by coIt7 ttllp 
closl~re of co I< arid by ep(K) the set of extreme poillt,s of Ji. 

Proposition 3.2(112.Propc~sitic~n Lei 1' 	 of C ( 0 ) tilitl~2.21). a l~ f t i , c ' t : - .q i~bs~~eic i~bfj  

a posbti'ue bus^..; { b l . !I?. . . . .!I,,). Then Y of r((l)1.5 a ~ ~ / , b l a t f ~ ~ ~  if a n d  01269 ~f t h e  
s e t s  b ~ ' ( 0 ,c )- (iE t2 ( h, ( i )  > 0). i := 1. 2. .  . . . n: arc pciini!i,.sc c l~~s jo in t .  

Theorem 3,3 ([12, Tlleorerr~3.61). T h e  s ta iernents  ( i )  cinil jib) are  eq~ii~!cii t:nt:  

( i j  X i.s a lallice-.sl/,?~sl)aceqf C'(i?) .  
(ii) 	Th~he7.e e m s t  12 linea1.1,y znrlcpendenf ,t:rc,to/,s P I .F'>, . . . , P,, of  R";belon,qi'n,q t o  


t h e  clos7~r.e of t he  r,ange of  3 .'ilic.h t ha t  f01. each f D(B) t h e  't:ector, D ( t )  i s  a 

c o r ~ ~ l e : ~ :  . . . , P,, .
c,orr~Oinntion of  f h e  11ector.s PI,P2, 

[f f h e  s ic l fernenf  (12) 1s tr,!ue? is t hc  i i  x il rnaf/.i:r. chose i f h  col7ar~n is t h e  uec,tor 
P, ancl b l ,  b2 .  . . . , b,, a7.e f h e  j i ~ n c , f ~ o r ~ s  de,b>nnfdOzi t he  forrnlila 

(1) 	 b 2 , .  . . , = 11- '(.I.~..X.~.. . . ..r,,)1 

t h e n  ( b l ,  b 2 , . . . : b,,,) i s  o, p o ~ i t i ~ t :  b a s ~ so f  3.. 

Wle~nlrpa3.4. T h e  f~ini . t ion.s I/, E C I(R),i = 1;: d . .  . . . in,are linea1.1y inr lependenf  
if and onky if tire space gener,ated b y  thr. range  of  t h e  hns7c cfn/.,t:e ,:, of y,, i = 
1.2 ,  . . . , in, i.5 R'". 

Proo f .  Let LI' be the subspace of 18"'generatetli bj- R(qi). Then I l i  is also generated 
by the range of the curve 1: of y, i = 1 . 2 , . . . . 171. Li't (71, = ( ~ ( f , )1 i = 1 , 2 . .  . . , 1 }  
l ~ ea basis of ll;. Then l < 1i1 .  

Suppose that the hlnctiorls y, are linearly independent. Then 

~ ( t )= x-;, ( / ) t i ,  for ear11 t E f l :
% 

1 - 1  

therefore 

where u,( j )  is the j-coordinate 0171,. For each f .  the vector (61( I ) ,[ 2  (t). . . . , <I ( 1 ) )  
is the ll~licjue solut,ion of t,lie s>-stem (2): therefore the functions <, as linear coi~~bi-- 
nations of the functions lj, belong to C1(!2). P,J- ( 2 )  we have also that 

y,t i,- [[I , ( 2 ,  . . . . [ I ] ,  Sor eacli i ;  

therefore in  5 clirn < I. I3ei1ce~ r i= 1 and T I '  - EZ"' 
To prove t h ~  conxerse, suppose that 1 - i t !  ;ind 

! I !  

A, !jL( f , ,  ) = 0 for each j = 1 , 2 :  . . . , n7 
,--I 




Si~lcethe vectors v( t , ) ,  i = 1 , 2 . .  . . ! m: are linearly independent,, tihe systeln has the 
uilique solution A, = 0 for each i ;  therefore the functions y, are linearly independent. 

D 

Sublattices. 

Theorem 3.5. Let R(9) = P,, . . . .P,,).  	 ?:PC-{PI, (By the  pr-evious lernrna the  
tors  P, are lzneurl?/ independent  und by T h e o r e m  3.3 X i s  a lattice-subspuce.) Let  
{b ' ,  b2. .  . . ,b r a )  be the  positive busis of X ilefined h:y ( I ) and let I, = b ~ ' ( 0 ,+x); 
for each i .  

T h e n  the  follou;i,ng statements hold: 

(i) X i s  a sublattice of C ( 0 ) .  
(ii) I, = 	 I,.P--'(P,)for  each i and D(P) -U~=z, 

(iii) 	I f  gy i = 1 ,  2 , .  . . , r n ,  are linearly independent  e lements  of Xi. and 7 i s  the  

basic cur?:e of I/,: i = 1 .2 , .. . , rn. then there exists @ C: (1,2 , .  . . . T I }  such 

thut  

(a) D(n/)= UiG+I ? ;  
(b) 	th,e firriction y i s  constar~l  on  I, ,for e u c l ~  i E a, 
( c )  m < l < 71, v ~ h e r eI i s  the  cur.ilinal nurnbcr of R(y). 

Proof,  Let z = Cfz-,z,and R,= 3- ' ( P , ) ,i = I,%,.. . .n.T11e11 thc sets Ri arc 
pairwise dis joi~~t  U:",, 13, .  By ( 1 )  nTe 11a.i.e that and D(P)  = 

Since A-I . A = I ,  the dot-product of the ]-row of A- ' and the vector is ecjual 
to  1 if 7 = J and 0 wllenever 7 # J ,  therefore 

'4-1 (6(t))'  = for each t E Bx% 

where (el. e z ,  . . . .e,,)  is the usual basii of Rn.Therefore 

I 

-- ( b l ( t ) ,  b ~ ( t ) > .  ,b, , ( t ) )  = for each i E B,. . e ,
z(t)  

Hence for each t E B, it holtis: 

z(t) = b,( t )> 0 and b, (t)  = 0 for cach j # 1 

So 

B, I, and R, rlI, = 0 for each J # z 

Suppose that t E I, \ K , .  Since D ( 3 )  = U;=l B,,. t E 23, for exactly one 1 f ,. 
Hence I, r? B, f 0,contradi~tion Hcnce B, = I ,  for edch L ,  and by Theorem 3.2. 
X 1s a sublattice. I$-e hale also shown the statenlent (ii). 

T h t ~  basic curve y is 

where y = ~~~i yi. Let 
n 


y,=CI':ib,,3 = 1 , 2  , . . .  $77. 

L= L 



Then y = ELlp,b, where ,LL, = xyLLp,, for c.arll z Let @ = { t  1 p, > 0). Then 

17 

it is clear that 

D(?)  = 
1F ~i) 

If i E @ and t E I , .  then 
I 

hence ? is constant on I , .  Therelore 

Since is a subset of {l.2 . .  . . , n) ,  we have that 1 < n and bj- Lenrma 3.4. m 5 
1. C 

Theorem 3.6. T h e  following s tatements  are equi~lalent.  

(i) X is ( L  s'ublnttace of C(R). 
(ii) 11(,3)= { P I .  P2 . .  . . . P7]). 

Prooj. Let X be a sublattice of C(R)  and lei { b  . b2. . . . b,,) be a positi~re basis of 
X Let n-, = C7- I XJLbL.Then z = Cy=lc, = CyL1XLb,mherr X L  = CYz1A,, 
Then the sets 

are pairmise disjoint by I'roposition 3.2. Hence for each t E Ih we have n-, ( t )  -
,Alh bh( t )and n-(t)= Ah bA ( t ) .and therefore 

Also D(B) = [Jk1I ,  because 1' E D ( 8 )  iff z ( t )  > 0 iff b , ( t )  > 0 for at least one i. 
Hence 

therefore the theorem is true. Ll 

Theorem 3.7. Let % be the s?sblntticc of C(62) yenerr~terl b y  . T I . . T ~ . .. . ,x,,c~nrl 
Let m E N. T h e n  the str~ternents pi) r ~ n d  (ii) are eq?si,unLent: 

(i) diin(Z) = 771. 

(ii) R(P)= {PI, P2, . . . P,,,). 

If the statement (ii) is true, then Z is constructed as follows: 

(a) Enunierate R ( J )so that its n first vectors are linearly independent. (Such an 
enumeration exists by Lemma 3.4.) Denote again by P,, i = 1 . 2 . .  . . , m ,  the 
new enumeration and let I-, = ,3-l(I3,). i = 1:2 ,  . . . , m .  

(b) Define the functions 

where n h  is the characteristic lunction of In+h 

(c) 2 = [.11,X2. ..1,,.X,]+1. . . Xn,]  



Proof. Suppose that (ii) is true and tile assumptioils (a) ,  (b) arcL satisfied. Jf?e shall 
show that (c) is true. It  is clear that rn 2 n. The set,s I, are open subsets of 
D(P) because the sets {P,)are ope11 subsets of R(P) .  Also D(P)  = lJ:t-l1;. Since 
D(,3) is an open subset of R, the scts Ii are open, nonempty subsets of Q. Also 
d(I i )  n I, = @. Hence d(I,) R \, D(3) ;  therefore /lr(f)ljl= 0 for each t E d(1,). 
This implies that ihe functions x,,+k are continuous; therefore :r,,+~E C ,  (Q)  for 
each k:. 

Let v be the curve and 7 the basic curve of xi, i = 1 , 2 , . . . , 7 7 1 .  Then by the 
defiilitiorl of x,+k we have that 

I 1  

0) Itr>(t)= ( ~ ( i ) .  For each t E IJ 
,==I 

and 

I )= ( ( ) r ( ) )  i f t  E I , , ?  > n. 

Let t E I,. Then 

1 1 
~ ( t )  2 (P( t ) , e,--,) = 72 (P i , ?,.-,,) = Q,. for each i = n+ 1,. .  . .m,.= -

Since D ( 7 ) = D(P) = UyL, I , .  tiTe have that 

R(?)= {Q, 1 i = 1:2, .  . . , m ) .  

The vectors Qi ,  i = 1,2 .. . . ,171, are linearly inclependent. Hence the fullctioils 
x,, i - 1 ,2 ,. . . ,171, are also linearly independe~~t ; therefore the subspace Y gener-
ated by x,, i = 1,2 ,. . . ,~ r ?, is an m--diu~ensional of C(R)  by the pre~~iou:; s~iblat~tice 
theorem. Therefore Z 5 Y .  Since xi, i = 1 - 2 . .. . , n ,  are linearly independent 
elements of Z+ and the cardinal number of R(,3)is rrz, by the statcmclnt (iii) of 
Theorem 3.5 tve have t,hat rrz 5 dim Z. Therefore dim Z = rrz; hence Z == Y. 

Suppose no1v that the statement (i) is true. Then x,, i = 1 ,2 , .. . , T I > ,  are linearly 
independent elements of Z+; therefore b3- Theorem 3.5, there exist a nonempt;~ 
sttbset @ of (1.2, . . . ,In) and nonenipty. pairaise tiisjoint open subsets I,. .i E Q), 
of fi such that D(,fi) = UiEgI, and 3 is constant on each I,. Hence R(P) == 

( P I ,P2 , .. . , Pi)where I is the cardinal number of a. By the same theorem we have 
also that 71. < I < 772. As 1ve have proved before, we can construct an I-dimensional 
sublattice Y of R containing T I ,z2 , . . . , xn ;  therefore % 5 Y and n/< 1 .  Hence 
1 = ~nand therefore the statement (ii) is trne. 17 

Lattice-subspaces. il sttbset K of B1 is a polytopc if K is the corn-ex hull of a 
finite subset of Kt1. The extreme points of h' are called vertices of K. 

Theorem 3.8. Let Y be a n  I -d in~en~s iona l  lattice-su,bspace o j  C ( 0 )containing el, 
x2, .  . . ,x,,. Suppose that  (b l ,  b2,.. . , b,) i s  a positive basis of Y ,  



-

(i) P, E R(li) for- each i E 9 .  
(ii) h' is a polytope z~lith vertices El,Pi.,. 'where n 5 m < 1 and it, E Q" 

for' U U C ~11 - 1:2 , .  . . ,111. 

. . . . c,,, 

Prooj .  Let x,,+1 , . . . . xi E Y+ such that 

and ?,it)= . . . x i ( t ) ) ,  t E Q. Then Iltl(t)lll = s,b, and the( r l ( t ) .i z ( t ) .  c:_, 
fun(t1on 

is the basic curve of 5 2 , .  . . ,n.i.By [12. Proposition 2.31. for each i - 1 :  2 . . . . , 1  
there exists a sequence ( L J , ~ )of f 2  s11c11 that 

linl 
1 ) - x  b/(dwl 

= 0, for each j # i 

Then 

lirn 
.r7 (L'%!,) 

= liln 
A,, 

1, x ( d ) i / - - x  S7 

therefore 

Let A be the 1 x l matrix with column:; the vectors AI,, i = 1 , 2 , .. . . 1 .  Then 
using the expansion of x, relative t,o the positive basis of Y n-e get 

Sl~ice{ s l , . r 2 ,  . .xi)is also a basis of Y. n e  have that ranlcA = I :  therefore the 
vectors J1,.i = 1.2, . . , 1  are linearlv independent. 1,et 

nr ( t )= [, ( t )11I/  
1-1 

bc the expansloll of - ( t ) relative to the basis {i\Il. i\12,. . . . -\Ii} of R'.Then 

http:{sl,.r2


-- - 

and by (4)wt: get 

Hence <,(-1) E IRL and c:=, = 1. Therefore ? ( t )1s a torlvex con~binatioli of [ , ( t )  
hfl, ,!Iz, . . . .-Ifr. Therefore 

~ ( - - jc ~ ~ ( n r , ,  . . ,nijl}.1~12..  

Let P ( z )  = ( ~ ( l ) ,  . x E R'. be the natural projection of I%' onto 82".a ( 2 ) ,. . . .z(rc)) 
Then 

(6) = F J ,  for each r E a. 

If I @ cT?, then P(il1,) = 0. because a, = 0 and therefore XA, = O for tach k = 

1 - 2 , . . . ,n. Also 

3(t)= 
" v t " l  ( t ) ) ,  for each t t D ( @ )2 I)(?); 

therefore by ( 5 )  we get 

l l 4 t ) l l l  c,,3(L)= C----<.(t)- P.. 
7 t '1' l l r ( f )l l  1 s 1 

Since 3 ( t )  and P, belong to the simplex A,, of R:, we haw that 3( f  tq a convex 
combinatiori of the tectors I:, 1 E Q'; hence 

R(N)C co{l', I z E a }  = L. 

Since is finite. the set L is closed: hence R ( O )  C L. We shall show that i<E Rj3). 
for eacli 7 E a. By (3) and (6) we have that P(? 1(4,,))E),. Slnce JJ,  # 0, n-e-3 

have that P(? (LL.'.,,)) # 0, for each u.  Tlierefore r(ij,,,) 11  f 0:= 1 1  ~ ( w . ~ , )P ( ?  (dL, , ))  

hence diV E D(j3),  for each z r .  Similarly I\-ith the proof of (3) ~e can s11o.i~ that -
P, = l i lnO(i~ , , ) .Hence P, E R ( 8 ) :  thercfore h' = L. Also ep(K) C: ( I :  i z E a}. 
Hence 

epiIo = (P,I ,  P,L.. .. ,I J tm)  

where L , ,  6 for 1) = 1 , 2 , .  . . ,n 7 :  therefore 

A- = c0(Pz1,P,2... , P,?,,). 

By Lemma. 3.4, the subspace gca~rated by I ? ( $ ) .  and tl~erefore also bv K ,  is the 
space R". Hence ep(K) contanls at least n vcctors: therefore 17 < n2 < I .  L? 

Theorem 3.9 ([5,Theorem 21). Let d l ,  d2 , .  . . ,d71,E 82' and let the polyfope D = 
co(di ,d2. . . . ,d m } .  Th,en there exist n,on-negative, real-vo,iueil con t lnuo~is  f1rnct.io.n~ 

. . .<, ,dejirred o,n D s?l.ch that x = <ijz)d i and x::, c,(zj - 1, for. each 
z E D. 

The previous result in a more general form is given also in [8]. 
-

Theorem 3.10. Let the set K = co R(B)be n polytope with tiertices r ? , I ' z :  . . . ,F',:. 
Suppose th,at the 11 first vertlces P I ,  PL,. . . , Prcof K are linearly] independent1. Sup-
pose also that (,, i = 1.2. . . . , r n ,  are positi~ie con~tznuous real-valued fi1,nctions de- 
fined on D ( 3 )  such th,at CyL, [ , ( t )  = 1 arcd ,O(t)  = xyLl<i( t )Pi ,  f o r  each t E D(,!,'). 

'-4 such cilumeratic)il of the vertices of K cxists by Lemrna 3.4. 



Le t  .c,,+, . i - 1 .  2 , .  . . , r t r  - 7%. be ihe  1111zrdions .c,,~+, ( f )  = c,?-+, ( t )i17 . (1) / /1 f(j'r. earl! 
t E D (3)ci~zrla,, , ( f , )  = O i j  t $! (,J) . 7% e n  

i s 	 n mln,irnml la f f l rc-suhspc~ce of (?(I!) con,tai~zin,g2.1 , zz.. . . . z, and dim Y = n7. 
A p o n i t ~ v e  busis { b l , b s .  . . . . b, , , )  o f  Y i.s yi~len, by tlze ,fofol.mula 

, , 1'( b l ,  b:'. . . . . b,, ,) '  - A-' ( . C ~ % J : ~ .  - 1 . ~ ~ ~ 1. . . 

iidie~,eA 2.7 t he  r r l  x n7 rrrai~,i:r ulitll colunzn,s fll,f: ~lectoi-s R,. i = 1.2 ,  . . . . r r i ;  iiej?n,ed 
helo'u!. i n  ( 8 ) .  

1~1~ooJ :\\P shall show t,liat Y is a lat t,ice-sitbspace of C:(R). Let 2 1 ( 1 )  = ( X I  ( f ) ;  n.2 ( t ) ,  
v ( i )  . . . . .c,,, ( t ) ); y ( f  ) = ----- arid 1 = rrl -- n .  'l'hen 

' l l ~ ( i ) l ' ,  

n PIe -\I, ai e t ilr following vector i01 W"' 

l1, = ( l ' , , l l % e l )  lor 1 = 1 * 2 ? . .. , /  

The ~ ~ c c t o r s  	 = 1 for i . n  andJI,are liriearly int1ept:litlerlt n-it,h I/!lfjljl = 1,2: .  . . 
~ ~ A \ ~ f i ~ l ,2 for i = 1 ,  + 1 , .. . . 7 7 7 .  = l i r ( t ) l l l  , g ( t ) ;  1vht:re g(1 )  == Hence !11;(i)Il,
xi' <,(t)i . I f li l l  = 14-CZ,,, C l ( t ) . Therefore. hj- ( 7 )we have. 

Hrlnce y ( t )  is a convex coinbirlatioll of K,. i = 1.2... . . m .  IT-e shall show that 

R, E R(;,) lor each i .  If P, = 3(1,),then P, = I;:,&(t,)F',and by our assumption 
that P, is an extreme point of K .  \ye have t,hat $ , (1 , )  = 1 and E l  ( 1 , ) = O for each 
,j # i. Hence by (8) we have 

If 	 P, @ R(d).then there exiits a sequence (dl,) of D ( d ) s ~ ~ c hthat 
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Since 0 5 & ( i ~ , )5 1, there exists a subsequence of ( i ~ , ) ,which we will denote 
again by (d,) such that 

A,  = lim <,(ul,), foreach j = 1 , 2  , . . .  ,m.  
V + X  

Hence 

which implies that A, = 1and A, = 0 for each j# z,because P, is an extreme point 
of K. By (8) and the definition of g we have that 

lim n/(d,) = R,. 
V + X  

So by Theorem 3.3, Y is a lattice-subspace and a positive basis of Y is as in the 
formulation of the theorem. 

Suppose that Z c Y is a lattice-subspace containing a:i,a:2,.. . . a:, and let 
dim Z = 1. Then 1 < m. By Theorem 3.8 the number m of vertices of K is 
less than or equal to 1 ;  therefore rri. = 1. Hence Z = Y: therefore Y is minimal. 

Definition 3.11. Let C be a convex subset of a n,ormed space E .  W e  shall say 
that  xo i s  a conic point of C if nro i s  a n  extreme point of C, C \  {xO)# 0,and there 
exists a real number  p > 0 such  thai  

Proposition 3.12. Let  D be a conuez subset of a normed  space E and zu E E .  
I f 2  d = d(xo,D )  > 0 and C - co({zu) U D): t h e n  xo i s  a conic point of C .  (If D 
i s  bounded and closed, t h e n  C i s  also bounded and closed.) 

Proof.  Let x z: E,a: # zo Then x = Xxo + (1- X)y, where y E D and X E [0,1]. 
Hence x - xo = (1- X)(y - xu);therefore 

Also zo + l(y - zo)  E C for each 1 E [0,1]. Therefore 

To show that xo is an extreme point of C suppose that zo = '*where X I ,  ZL E C 
and x 1 , x ~# 20. Then x, = X,xo + (1 - X,)y, with XI E ( 0 , l )  and y, E D.  Then 

1 
xo = ((1- Xl)yl + (1 - X2)yl) E D ,  contradiction. Hence zo is a conic 
point of C .  

Example 3.13. (i) For each cone P # (0) of a normed space, 0 is a conic point 
of P. 

(ii) Let C be a closed, convex, bounded subset of a Banach space E and let xu be 
an extrenle point of C .  If C = a e p ( C )  (i.e., C is the closure of the convex hull of 
the extreme points of C )  a i d  zo @ 12 = m(ep (C)  \ {zo)), then C = co({xo) U D ) ;  
therefore xo is a conic point of C .  

(iii) Each vertex of a polytope C of Rn?s a conic point of C .  

'wi th  d(zc i ,D )  we denote the distance from xo to  D. 



lye prove helow that the tangent vector of' a curve of' C' at a coilic point of C is 
equal to zero. 

Proposition 3.14. Let C' be a closed, cor~71t.x ~ u h s e t  of u normed .space E and ;la 
ht. a conic point of C .  Let Q : (---t,t )  -+ C be a t i ~ n c l i o n  ~villz ~ ( 0 )= zo where c is 
cr positiuc~ ?,en1 n u v ~ b e r .  Tl ien 

wher~e'oer the deriuatilre o l ( 0 )  exists.  

i>(1 ) - O((1l
Proof Let ( ~ ' ( 0 )== liril, ,i, ---?-- - 7 0 Th(-'il thew exist? d > 0 such that o ( t )  # 
o ( 0 )  for each It 1 < 6. TIence 

Since is a conic point of C ,  there exists p > 0 s~lch that 

rco -i-
r - so 

E C, for each rc E C.s # ro
( I T  - J o I I  

Tlic~refoicx 

anti 

Hence ~ - i : ( j= -ti 2 j .  co~ltradiction. Therefore ~ ' ( 0 )= 0 .  

Corollary 3.15, Lt.t the  set K = co R(0)he (1 polytope of R" a7ad let 3 ( t o )  ht. a 
!oertc.:e of Ii.I/ f is n positiue real 7aurnht.r asnd g : ( - r .  r )  -7 !2 i.s n ti lnclion 'ullth, 
g ( 0 )  = to  and (>(A)= r?( ,y (A)) . then 

~ ' ( 0 )= 0 :  

whe'nelrer the derit:ativt. e:rist.s 

Rt.'mc~rk3.16. Suppose t>liat there esist>s a finit>e-dimensional lattice-subspace of 
C'(C2) containing S. Then I< is a polytope of W1'.Suppose that , ! ? ( L o )  is a. ver- 
tex of I<. IS c is a curve of R ant1 to an interior point of c, then the derivative at f o  
of thc: re~t~riction of ,$ on the curve c is equal to zero. 

If for example 6 2  IRL,then t,he partial dcrivat,ives of at to  are ccjilal to zero 
whenever t o  E i n t ( f 2 ) .  If to E a(R),the derivatives at to  of the restriction of ,$ on 
the parainetrics curves of d(R) are ecjilal to zero. 

Algorithm 3.17. Theorem 3.111 and Corollar:q J.15 define a process which 277, n tany 
cases, especially ?ohen R & IR1, rit.tcrmi7at.s whether a ,finite dim!ensional rnisnirnal 
lattice-subspace exists and determines also u positifue hasis of these suhspaces. To 
studg this ~irohlern 7oe s tudy if K is a polytope or  'not. 



If the set R(P) is  closed, then  each extreme point (uertez) Pqlof K =: co R(P) 
helongs to  R(P);therefore Po = P ( t 0 ) .  Also the geometrl~ o,f the boundary of D ( P )  
and the di;rferent.iability of the functions x ,  are verg important  for thsis study. 

Let R = [ a ,  b] ,  the functions x ,  are differentiable and D ( P )  = R .  Suppose that 
the set K is  a polytope zuith uertices P ( t , ) ,  i = 1 ,  2 , .  . . ,n7. T h e n  at least rn - 2 of 
t ,  belong to  ( a ,  b ) ;  therefore the eq,uation 

(9) 	 P 1 ( t )= 0 ,  

where ,!7' zs the derzuatzue of p .  has at least In - 2 roots an ( a ,  b ) .  Hence the vertzce:; 
of K belong t o  the set 

G = { @ ( t ) l t= a , t  = b, o r  t is a root of (9))  

which 7oe call the set of possihle vertices of K .  Lei D = co G. It is  easy t o  sholu 
that K is  a polytope if and only if D ,is a polytope and R(P)C: D.  

Hence i n  this case the algorithm is the following: 

(i) 	Determine equation (9) .  I f  this equation does not  have at least n -- 2 roots i n  
( a ,b ) ,  then  K is  not  a polytope. 

(ii) 	Determ~ine the roots t ,  of  (9 )  i n  ( a ,  b ) .  
(iii) 	W e  study whether R(P)c D .  S o  we study whether P ( t )  is  a convex combina- 

t ion  of P ( a ) , B ( b ) , f l ( t L ) ,  for each i .  If R(P) D ,  then  K is  n o i  a polytope. 
(iv) 	Determine the vertices of  K and a positive basis of the min imal  lattice- 

s,ubspace, i n  accordance with Theorem 3.10. 

We give three examples below. In (i) it is shown that a finite-dimensional minimal 
lattice-subspace does not always exist. In (ii) we consider three elements x l ,  x 2 ,  x3 
of C ( R ) ,where R is a square of R'. We show that a 4-dimensional minimal lattice- 
subspace Y exists ancl a positive basis of Y is determined. We also remark that the 
sublattice generated b>- the elements x ,  is dense in C ( R ) .  In (iii) the functions x ,  
are as in (ii), but R is a circle of R 2 .  It is shown that a finite-dimensional minimal 
lattice-subspace does not exist. This difference between (ii) ancl (iii) depends on 
the geometry of the boundar>- of 0. 

Example 3.18. (i) Let R = [O,  11, x l  ( t )= l . x 2 ( t )= t , x 3 ( t )= t 2 .  Then 

is the basic curve of 2 1 .  x2.  5 3  and P 1 ( t )# 0 for each t E ( 0 . 1 ) .  Suppose that Y 
is a finite-dimensional lattice-subspace of C ( R )  containing the functions x, .  Then 
dimY > 3, and therefore by Theorem 3.8 K is a polytope of with at  least 
three vertices. P ( t l ) ,P( ta) .P ( t 3 ) .  Hence P'(t) = 0 for a t  least one point of ( 0 ,  I ) ,  
contradiction. 

(ii) Let R = [ O ,  11 x [ O ,  I ] ,  x l ( u , v )  = 1. x 2 ( u ,  u )  = U .  5 3 ( ~ , 0 )== 2: and X = 

[ X I .  2 2 , 5 3 1  Then 

is the basic curve of x l . x 2 , x 3  and let K = co R ( 0 ) .  Since the lange of P is not 
finite, the sublattice Z generated by x l .  x ~ .  is an infinite-cliniensional subspace X J  

of C ( R ) ,Theorem 3.7. In this example we can also show that Z is dense in C(C2) 
because Z is a sublattice of C(S2)and Z contains the constant functions. 



In order to study the existence of minimal lattice-subspaces we study whether 
the set K is a polytope of R3 To this end suppose that I< is a po l~ tope .  Then b> 
Theorem 3.8, K has at least three vertices and let 3(to)be a vertex of h'. Then to  
is also a vertex of R because in the contiary case fo will be an inte~ior point of a line 
segment parallel to an axis of R2: therefore, and b~ the p~evious corollar~ at least 
one of the partial cle~ivatives of /3 at to will be equal to x r o ,  contradiction EIerlce 
the points PI = r S ( O , O )  = ( 1 , 0 , 0 ) .  PL = I j ( l . O )  = ( 1 / 2 . 1 / 2 , 0 ) .Pj= rS(O.1) -
( 1 / 2 , 0 , 1 / 2 )  and Pi = 9 ( 1 . 1 )  = (113.1 / 3 . 1 / 3 )  define the set of possible vertices 
of K.  Let D = co{PI,P2.P?. Pl). From the above ~enlarlts we have that K is a 
polytope if and onl) if K = I1 or equivalentl> if R ( 9 )  2 D. It is easy to show that 

where E C(b1).< L ( z i  v )  = 2(* - [ I  ( u ,7 , ) ) .  0 )  = qiJ= -< < ( u >  <I ( ~ L .4) 
and < l ( u .  v )  = 3 ( e + t l ( u . 7 , ) )  

Since r S ( 2 i .  u )  and the points P, belong to  the plane s ( 1 ) i-J. ( 2 )i-s ( 3 ) = L of W 
1we have that C , = ,  <,( u .71 )  = 1. If < ( t i 3v )  = and if we put <I = <&. then 

the functions E, ,  I = 1 - 2 . 3 ,$. ale positive and continuous. therefore R(, j)i D 
Hence K is a polytope with veltices P,,  L = 1 . 2 , 3 , 4 .  and the three first of them 
are linearly independent. By Theore171 3.10. 

where z.l(.u, v )  = < l ( u ,  u )  Ilr(u, v) j j l  = 3 ( 1 -- u - zl)+, is a ~ninimal lattice-subspace 
containing 21 : 2 2  :2 3 .  

A positive basis { b l .  b2. b:<, b3} of I/ is givt~n b ~ -  the for~nula 



where A 1s the 4 x 4 matrlv ~ ~ l t l l  columns the vectors R, = ~, 2 = 1,2.3.4,  

and l\I1 = (Pl,O)= (1.0.0.0),  iW2= ( P 2 , O )  = (1/2,1/2,0.0).  Jf,{= (P3.0) = 

(1/2,0,1/2,0).  = (PI,e l )  = (I/:<, 1/3,1/3,1).  
After the computations we get 

b,  (u,v)  = - :X:2 - 23 + -24 = 
1 - u - j u + v < I ,  

3 j u + v >  1, 

bl(u,v) = 2x4 = 
j u + v < l ,  

(Figure I).
3 ( u + v - 1 )  / u + v > l  

(iii) Let ,C2 = {('u, u )  E R21z~" 21' < 1) and let x,,  i = 1,2,3, be the functions of 
the previous example. Suppose that K is a polytope and O ( t o ) a vertex of K .  As 
before we have that to E a(f2) ancl let to = (cos Qo, sinQo). Then by the corollary 
we have $ ( D o )  = O where 4(0) = /3(cos0,sinD). This is a contradiction because 
qS(0) # 0 for each 8. Therefore a finite-dimensional lattice-subspace containing the 
functions 2, does not exist. 

To stud!- subspaces of IR1,1> 1. suppose that fl =: (1.2, . . . .1). Then C(fl) = R'. 

x, = (x2(1), x,(2), . . . ,x, (1 ) ) ,  i = 1,2. . . . . n, 

are linearly independent, positive elements of R' and 

X = [xl.5 2 . .  . . ,x,]. 

The curve r and the basic cursre ,<7of the vectors x,. z = 1 , 2 . .. . . n, are the 
fimct ions: 

( i )  ( ( i ) , ( i ) , .  x ( ) )  i = 1 , 2 , . . .  , l .  

and 

Let m be the cardinal number of R(/3). Then rn < 1 ancl by Lemrna 3.4. n < rn; 
therefore n < m < I .  Let K be the convex hull of R(j3). Then K .  as the conyex 
hull of a finite subset of R",is a polytope with d vertices. It is clear that 

ancl that each vertex of K belongs to R(P). Let 

R(P) = {Pi.P2. . . . ,P,,) 

be an enumeration of R(P)such that: 

(i) the vectors P,, z = 1 , 2 , .. . .n ,  are linearly independent and 
(ii) the points PI,7 = 1.2 , .. . ,d ,  are the 17ertic.e~ of K. 

As an applicatioll of Theorems 3.6, 3.3. 3.7 and 3.10 we obtain the follonring 

Theorem 3.19 (The case of IRL).  Suppose that R = {1,2, .. . . 1 )  and that the above 
assumptions are sat~~sfied. Then 



(i) X i s  o sublattice of  R' i f  and  only  if K ( P )  contnans exactly n points ji.e.. 
nx = 12). 

(ii) 	X i s  a latt ice-s~rbspace o f ~ li f  and  only  i f  the  polytope K has  12 ~ler t i ces  l i e . .  
cl = 7,) .  

(iii) Let  772 > n.  I f  Ik = Dpl(PJc):and 

i s  th,e sublattice generated by  . r i .  ,rn; . . . ;,r,, and din1Z = i n .  
rl(iv) 	Let  t i  > n. I f < ,  : D(,;i)+ RL;i = 1;2 ; . . . , cl, such tha t  x,_,[ , ( j ) = 1 and  

B ( j ) = c:',,(, ( j )P i  for each j E D ( J ) ,anti  z7,+,:i = 1,2:.. . , d - n: are the  
following vectors o f  PS'I 

t h e n  

In the folio\\ ing result $2 is again a conipact, Bausdorff, topological space 

Theorem 3.20. Let  K = co R ( 3 )  and let L be the  se t  of f in i te-di~nensional  mint-
ma1 lattice-s?~bspaces of C(R) containing -1.1..ra, . . . , .r7,. T h e n  the follo'u~ing state- 
rnents are equi~ialent:  

(i) K i s  n polytope with, i n  vertices.  
(ii) 	L # @ anti  dim Y = 772: ,for each Y E I,. 

(iii) L .f 0. 

Proof.  Suppose that (i) is true. Then by Theorem 3.10, there esists I' E L with 
dim Y = n?. Suppose that Z E L and { b l ,  b2 .  . . . , b l )  is a positive basis of Z.Let 

c f , = { j j o , # O }  and 

Then by Theorern 3.8 P, E K for each a E and the vertices of K are ainong the 
points P,. L E a: therefore there exist ~ 1 . 2 2 ,  . z,,, E such that Pi,, . .PzL, , 



are the vertices of K. Also n 5 rn 5 I .  Let T : Z -+ R1 such that T ( c ~ = ,  E_,b,) = 

~ h = ~ ~ _ , e ,and let y, = T(s , ) ,  2 = 1 , 2 . .. . , n .  The basic curve b of yl, y2, . . , y n  is: 

with range 

R(b) = {P,  / i E a) 
So R(b) is a subset of K containing the vertices of K ;  therefore 

Hence co R(b) is a polytope with vertices Ptl,Pt2,.. . ,PtIn.By the previous theo-
rem, there exists an nl-dimensional lattice-subspace F of R1 containing yl. y ~ ,. . . , 
y,. If G = T- ' (F) .  then G is a lattice-subspace of Z and therefore alrio of C(R)  
containing T I ,  T J ,  . . . .rI2.Since Z is minimal, we have that G = 2,and therefore 
dim Z = dim F = nz. Hence we have shown that (i) =+ (ii). --

Suppose now that the statement (ii) is true. Let Y E L and K = co 12(0). Then 
by Theorem 3.8, K is a polytope with k vertices and 

By Theorem 3.10 there exists Z E L with d i m 2  = k .  BJ-our assumption me have 
that k = nt; therefore h' has nt vertices. Hence (ii) =+(i). 

Also (ii) + (iii) and (iii) + (i) by Theorem 3.8. 

In the following example we construct the sublattice Z generated by a four-
dimensional subspace X of R7as well as two minimal lattice-subspaces Y and Y' 
which contain X. It  is remarkable that Y nY' is not a lattice-subspace as well as 
that both Y and Y' are not subspaces of Z. 

Example 3.21. Let 

and let X = [ .q ,s.2, ;c:{, x 4 ]  Let r be the curve and the basic curve of s.,, ,i = 
1,2 ,3 .4 .  T h e n r ( 1 )  = ( 1 , 0 , 2 , 1 ) , r ( 2 )  = (2 ,1 ,1,0) .  r(3) = ( 1 , 1 , 0 , 1 ) , r ( 4 )  = 

( 0 . 1 , l . l ) ;  r(5) = (1 ,1 ,1 ,1) ,  r(6) = (1 ,0 ,1 ,0) .  r(7) = (4 ,2;2,0)  and P(1) = 

$(1;0,2,1) .  P(2) = P(7) = +(2 ,1 ,1 ,0) .P(3) = +(1 ,1 ,0 .1) ,P(4) =. +(0 .1 ;1 ,1) ,  
P(5) = +(I.1.1.1).P(6) =: ;(I ,  0 ,1 ,0 ) .  In order to  enumerate R(P) as in Theo-
rem 3.19 we remark the following: 

(i) The vectors PI = i3(4). P 2  = 8(1).P3 = 0(6) and P4 = P(3) are linearly 
independent. 

(ii) Let 0(2) = P5. Then it is easy to  show that for ally proper subset cP of 
{P,,P,,P3,P,,P5).co@ # co{P13P2.PJ, P4.P5)  = K: therefore P,. z = 

1,2.3,4,5,  are vertlces of the polytope K. 
(iii) It is easy also to show that 



Hence for aslv 0 E [O, i]the vector PC,= ,3(5) it>a cormex cornbinatioli of 
P,,2 = 1 , 2 ,  3 .4 ,  5: therefore PC,E I<. 

Hence 

and in accordance with the ~lot~ations = = 5 and 171 = 6.of Theorem 3.19. 12 3 .  d 
Since rr < cl, X is not a lattice-subspace and therefore also X is slot a sitblattice of 
R'. Let Z be the sitblattice of R' geiierat,ed by 21,s.2.  .z:j,xi. Is1 order to  determine 
Z we define the sets 

and t,lle vectors 

and 

Then by the thcoreru 

By Theoren~3.3 a positive basis { b , ,  b2 .  b 3 ,  b4,bi. b ~ }of Z is given by the formula 

where .4 is the 6 x 6 niatrix xvitli columns the vectors ~ ( i ) ,i = 1 , 2 , . . . , 6, and 7 
is the basic curve of the vect,ors xi, i = 1 . 2 . . . . , 6 .  So after the computations we 
find that b1 = 4 e l .  b2 = 8e2 + 16e7, bCi= 3e3 , b4 = 3e4 , b; = Xe5 and b6 = 2es.  

T o  det.errnine a minimal lat,ticc-subspace define the vectors [, , i = 1 , 2 , 3 , 4 , 5 ,of 
Re7 such that, 

J 1 

( j ) = 1 a d  ( j )  = ( ( J , for caclr j = 1.2,  . . . -7. 

( l ) = P 1 ( l ) P 1  t 2 ( l ) = land S k ( l ) = O f o r k #  2. 

8 ( 2 ) = P 5 = ~ : = , $ , ( 2 ) ~ ,  C j ( 2 ) = 1  and < k ( 2 ) = 0 f o r k # z  

d ( 3 ) = P ~ = ~ ; = , t , ( 3 ) ~ ,  ( ~ ( 3 ) - 1and & , ( 3 ) = O i o r k # 4 
= 

zf=l P,  ( 4 )= 0 for k  # 1a ( 4 ) = P I  = Cz(4)  =+ 1 and Ek ( 4 ) = 

F:C(5 )= Pc, = x ; = ,  [ , ( 5 )P1  ( ~ ( 5 )= [4(5) = 7-. 
3 (1- 0 )  

[3(5) = <5(5)= 0. 
&(5) = y . by ( 10 )  

d(6)- Pi= xi=,<,(6)P, 3 [ ( 6 )= 1 and ( 6 ) =. 0 for k # 3 

, ! j ( 7 )=P2=C:= ,E2(7 )P ,  =+ C2(9)= 1 and E k ( 7 ) = 0 f o r k # 2 .  

Define also the vector 



Suppose that 0 > 0 in y5 and that y; is the vector corrrsponding to 9 = 0, i.e.. 
y i  = 4eL. Then the subspaces 

are rninirnal lattice-subspaces containing the vectors r,.S~ncethe vectors J I ,x2.~ 3 .  

~ 4 ,y?.y i  are linearly independent. we hace Y # Y' . Also X = Y nY1  is not a lattice- 
subspace. An important remark is that the vectors y5. y i  do not beloqg to Z. To 
show this suppose that y: E Z .  Then y j  E ZL.and therefore 

b 

y;, = A,b,, \villi A, E R, for each r .  
2 = 1  

This implies that A 2  = 112 and A r  = 0, contradiction. Hence y, 
Therefore Y, Y' are riot subspaces of %. 
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