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Preface

In the age of artificial intelligence, robotics, intelligent systems and machine learning, which are
increasingly taking up space in practically all areas; and since the emergence of intelligent appli-
cations on which most of the major IT players rely; in this great technological whirlwind, we ask
the computer scientist to know, create and innovate more and more. However, the development
of the necessary skills to master these recent technologies cannot be achieved without having
the essential fundamentals in probability, which is one of their fundamental pillars. Mastering
the foundations of this pillar has thus become essential. It is with this in mind that we have
proposed this book on probability, stochastic processes and simulation, and the challenge of
which is to simplify the basic concepts by the example and by the practice. This book is in-
tended primarily for computer scientists, but can obviously be used by anyone wishing to learn
the elementary concepts of probability with their practical side in order to subsequently be able
to tackle other more advanced subjects such as machine learning and artificial intelligence.

The particularity of this work lies in the large number of included examples, exercises and codes
meant to facilitate the assimilation of the various presented concepts. The codes are written in
Python programming language and allow the reader to expose the most common and efficient
APIs and libraries for probability, stochastic processes and simulation. Python being one of the
most popular programming languages that beginners can learn quickly because of the simplicity
of its syntax and the readability of its code. It is versatile and its packages are among the most
mature of computer languages.

The first part of this work is devoted to the basics of probabilities: in the first chapter the
definitions of the most elementary concepts in probabilities are presented. Chapter 2 focuses
on the notion of discrete and continuous random variables by presenting the most well-known
probability distributions. In the chapters of the second part, we deal respectively with stochas-
tic processes, discrete and continuous Markov chains, as well as their applications to queuing
systems. The last part is devoted to simulation. We first present the random numbers and
variables’ generators, then the different modules offered by Python for the simulation of more
elaborated systems.

Throughout the book, the reader can find a plethora of Python code. The written codes show
how to implement the different concepts on machine using the available libraries in Python, at
the same time, they contribute to their improvement with new classes and functionalities. The
codes are available on the following link: https://github.com/ibslim/probabook. Finally, and to
help the reader better understand the usefulness of theoretical concepts, we have added several
applications with their implementations at the end of the chapters.

Several individuals have provided valuable reviews of this book. We want to thank Rachid
Bechar for his input, comments and corrections. We are indebted to Mohammed Tayebi for his
thorough review and the precious time he spent in detecting several errors. May Allah reward
you for your efforts. Of course, all errors remain the authors’ responsibility.
For any comments or suggestions, the reader can contact the authors at the following address:
prosimpython@gmail.com.
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Chapter 1

Introduction to Probability

1.1 Introduction
When we are faced with uncertain events, i.e events that cannot be predicted with total certainty,
we try to know the chances (how likely) they are to happen. The probability theory gives us
the tools to quantify these chances, to model and to study complex uncertain situations in order
to be able to make proper decisions. For instance, in artificial intelligence (AI), robots have
to evaluate their environment which is mainly dynamic and uncertain before taking (the most
appropriate) actions that lead them to their objectives.
In this chapter the basics of the probability theory are presented along with many examples,
exercises and codes.

1.2 Random experiment
An experiment is a process or a procedure associated to conditions (natural or artificial) that
can be repeated infinitely. It has a well defined set of possible outcomes that can be produced
when it is carried out under these conditions and resulting in one and only one outcome. The
outcome of the experiment is defined by the observer/experimenter (what is he interested in?
what is the subject of the observation?). In case the experiment is achieved in one step, it is
called simple, otherwise (requires many steps) it is said compound.
An experiment is deterministic (predictable) if the conditions determine uniquely the outcome of
the procedure (the same conditions result always in the same outcomes with certainty). When
repeating the process under the same conditions do not result, necessarily, in the same outcomes
the experiment is then unpredictable and it is said random (the outcome depends on chance).
Modeling this type of experiments is the main subject of the probability theory. A probability
model is a mathematical representation of the random aspect of experiments. It consists in a
complete description of possible outcomes and a quantification of the indeterminism attribute
of these phenomenons.

Definition 1.
A random experiment is an experiment that satisfies the following two conditions:

- We can absolutely determine, in advance, all the possible outcomes (there are at least
two).

- We cannot predict, in advance, which one of the outcomes will be obtained even if we
know the experimental conditions.

Each repetition of the experiment is called a trial. When the experiment is compound, a trial
might combine many simple consecutive or simultaneous trials. In the remaining of this book,
random experiments will be noted R indexed by a number.

10
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Definition 2.
Let R be a random experiment,
The sample space of R is the set of the possible outcomes when R is performed, noted Ω.

The outcome of the random experiment R will be noted ω (an element of Ω). If R is a random
experiment compound of random experiments (Ri)1..n then, its sample space Ω is the Cartesian
product of the sample spaces of Ri (Ωi) in the same order of their realisation.

Ω =

n∏
i=1

Ωi

Each trial of R is an ordered tuple (ω1, ω2, · · · , ωi, · · · , ωn).

1.2.1 Discrete and continuous sample spaces
The set of natural numbers (positive integers) is an infinite set and is a prototype of countable
infinite sets. In general, an infinite set is said infinite countable if there is a one to one function
(bijection, we can label/enumerate its elements with natural integers) that assigns the elements
of this set to the set of natural numbers. In other words, each element of the set can be assigned
to a unique natural number and reciprocally, each natural number matches a unique element of
this set. For example, the set of perfect squares: 1, 4, 9, 25, ... is a countable infinite set. Sets
that are either finite or countable infinite are said countable.
The set of points on a straight line and the set of real numbers between 0 and 1 are examples of
infinite uncountable sets. Sets that are neither finite or countable infinite are said uncountable.
Like any other set, Ω can be countable. In this case it is called discrete; otherwise (if Ω is
uncountable), it is said continuous.

Example 1. Consider the following experiments:
- R1 : Tossing a coin.
- R1 is random because we cannot predict with certainty the outcome before the experiment is
done.
- Possible outcomes of R1 are head and tail noted H and T respectively, Ω1 = {H,T} is finite
(discrete).

- R2 : Throwing vertically upward a ball having a mass m with an initial speed s and observing
the height h where its velocity becomes zero.
- R2 is not random, it is deterministic because we can predict, with certainty, its outcome before
its realisation by applying physics laws. (This type of experiments is useful when we have a non
random phenomenon that we do not know its law, and want to confirm experimentally some
hypothesis about it)

- R3 : Rolling a die.
- R3 is random because we cannot predict with certainty the outcome before the experiment is
done.
- The possible outcomes of R3 are the faces of the die, Ω3 = {1, 2, 3, 4, 5, 6} which is finite
(discrete).

- R4 : Choosing randomly a letter out of the word ’statistics’.
- R4 is random because we cannot predict with certainty the outcome before the experiment is
done.
- The possible outcomes of R4 are the letters of this word, Ω4 = {s, t, a, i, c} is finite (discrete).

- R5 : Tossing a coin followed by rolling a die.
- R5 is a compound experiment of two simple random experiments R1 and R3, since we cannot
predict the outcome of the component random experiments, then we cannot predict the one of
R5, so it is random.
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- A possible outcome of R5 is a tuple that contains the outcome of R1 followed by the one of
R3. The sample space Ω5 is the Cartesian product of Ω1 and Ω3 which is finite (discrete).

Ω5 = Ω1 × Ω3 = {T,H} × {1, 2, 3, 4, 5, 6} = {(T, 1), (T, 2), · · · , (H, 5), (H, 6)}

- R6 : We toss a coin three times.
- R6 is a compound experiment of three repetitions of the same simple random experiment R1,
since we cannot predict the outcome of this experiment, we cannot do it for R6, so it is random.
- A possible outcome of R6 is a tuple compound of the outcome of each repetition of R1 in
order. The sample space Ω6 is the Cartesian product of Ω1 by itself three times which is finite
(discrete).

Ω6 = Ω3
1 = {T,H}3 = {(T, T, T ), (T, T,H), · · · , (H,H, T ), (H,H,H)}

- R7 : In a square C on the plane Q, we choose randomly a point inside C.
- R7 is random hypothetically.
- The possible outcomes of R7 are the points inside the square C, so Ω7 = {(x, y) ∈ Q|(x, y) ∈
C}. In this case, the sample space Ω7 is infinite uncountable because Ω7 ⊂ R2 (continuous).

- R8 : Rolling a die until getting number 6, the sample space is the set of integer numbers
Ω8 = N, the outcome k means that 6 is obtained at the kth roll. This set is discrete (infinite
countable).

- R9 : measuring the elapsed time until the first occurrence of a given event, the sample space
is the interval Ω9 = [0,∞[ of real positive numbers that represent the arrival time of the event.
Ω9 is continuous (infinite uncountable).

N01 : SymPy is a Python
library for symbolic
computation, it offers the
possibility of handling
algebraic expressions.
N02 : itertools contains a
set of tools for
implementing iterative
building blocks ( textit
iterators). It contains
functions of combinatorial
generators product(),
permutations(),
combinations().

www.sympy.org
https://docs.python.org/2/library/itertools.html
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Let’s code!

The following code models some of the random experiments given in the example using
sympyN01 and itertoolsN02 and importing get_Omega, set_Product and set_Power func-
tions.
# Code101.py

from sympy.stats import Coin, Die
import sys;sys.path.append(’../lib’)
from utils import get_Omega,set_Product,set_Power

"""
In this section package sympy.stats is used
class Coin models the coin tossing experiment
class Die models the die rolling experiment
"""

Omega1 = {’P’,’F’} ;print("Omega 1 = ",Omega1)
Omega3 = set(range(1,7)) ;print("Omega 3 = ",Omega3)
Omega5 = set_Product([Omega1,Omega3]) ;print("Omega 5 = ",Omega5)
Omega6 = set_Power(Omega1,3) ;print("Omega 6 = ",Omega6)

print("\n Using sympy.....................................\n")
#R1
coin = Coin(’Coin’)
coin_omega=get_Omega(coin)
print("- R1 Toss a coin omega : ",coin_omega)

#R3
die = Die(’Die’)
die_omega=get_Omega(die)
print("- R3 Roll die omega : ",die_omega)

#R6
threeCoins_omega=set_Power(coin_omega,3)
print("- R6 Toss coins omega : ", threeCoins_omega)

#______________________________ Output ______________________________________
# Omega 1 = {’P’, ’F’}
# Omega 3 = {1, 2, 3, 4, 5, 6}
# Omega 5 = {(’F’, 5), (’P’, 1), (’F’, 1), (’P’, 2), (’F’, 2), (’P’, 3),
# (’F’, 3), (’F’, 6), (’P’, 4), (’F’, 4), (’P’, 5), (’P’, 6)}
# Omega 6 = {(’P’, ’F’, ’P’), (’P’, ’P’, ’P’), (’F’, ’P’, ’P’), (’P’, ’P’, ’F’),
# (’P’, ’F’, ’F’), (’F’, ’P’, ’F’), (’F’, ’F’, ’P’), (’F’, ’F’, ’F’)}

# Using sympy.....................................

# - R1 Toss a coin omega : {H, T}
# - R3 Roll die omega : {1, 2, 3, 4, 5, 6}
# - R6 Toss coins omega : {(T, T, T), (H, T, T), (H, H, H), (T, H, T),
# (T, T, H), (H, T, H), (T, H, H), (H, H, T)}

Let’s code!
The following code utils is a custom helper module (that can be found in the package "lib").
It contains many functions shared with the following codes. The finite maps are modeled in
Python with dict data structure which is a set of (key,value) pairs such that the key is the
antecedent element and the value is its image. "utils.py" is in a folder called "lib" and will
be imported using the following statement: "import sys;sys.path.append(’../lib’)" as it is not a
standard or installed module in Python.
# utils.py

import matplotlib.pyplot as plt
from sympy.stats import density
from itertools import accumulate,product
from fractions import Fraction

#---------------------------------------------------------------------------------
# Fraction is a class that respresents rational numbers
Fracstr = lambda p,q : str(Fraction(p,q))

# To format the dictionary values to 2 decimal floats
get_round_dic = lambda dic:{k:round(float(v),2) for k,v in dic.items()}

# Returns the sample space (SS) of the random experiment (RE)
get_Omega = lambda re: set(density(re).dict.keys())

# power: returns cartesian product of a set with itself n times
set_Power = lambda omega,n: set(product(omega,repeat=n))
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# product: returns the cartesian product of the given sets
set_Product = lambda omegas: set(product(*omegas))

# filter: selects elements from a set based on some criterion
set_Filter = lambda predicate,collection:set(filter(predicate,collection))

# Pe: returns the probabbility of an event from equally likely SS
Pe = lambda Omega, Event : Fraction(len(Event), len(Omega))

# Pde: returns the probabbility of an elementary event from equally likely SS
Pde = lambda Omega : { omega : Fracstr(1,len(Omega)) for omega in Omega}

# Pgiven: returns conditional probability of A given B
Pgiven = lambda EventB,EventA :\

Fraction(len(set(EventA) & set(EventB)), len(EventA))

1.2.2 Measurable space and events

Definition 3.
Let R be a random experiment having the sample space Ω,
1- A σ-Algebra F of Ω is a collection of subsets of Ω having the following properties :

i- Ω ∈ F
ii- F is closed under the complement : ∀E ∈ F ⇒ Ec ∈ F
iii- F is closed under the countable union of subsets of Ω :

{Ei}i≥0 ⊂ F ⇒
⋃
i≥0

Ei ∈ F

- The couple (Ω,F) is called the measurable space associated with R.

Let (Ω,F) be a measurable space associated with the random experiment R.
2- An event E is an element of F (subset of the sample space Ω).

E is an event ⇐⇒ E ∈ F , ( E ⊂ Ω )

3- A simple event E is an event that contains one element of Ω (singleton set).

E is a simple event ⇐⇒ E ∈ F and |E| = 1( ∃ω ∈ Ω : E = {ω} )

Let Ω be a sample space, its smallest σ-algebra contains only Ω and ∅ (check that it satisfies
the proprieties i,ii and iii), and is called trivial σ-algebra.

2Ω is the power set of Ω (the set of all subsets of Ω), it satisfies the properties of a σ-algebra,
and is called maximal σ-algebra.

We say that an event E occurs when the result of the experiment belongs to E.

Example 2. Let consider the random experiments of example 1.1 :
1- For all Ri and Ωi, for i ∈ {1, 3, 4, 5, 6}, we have :

a- (Ωi, 2
Ωi) is a measurable space (maximal σ-algebra, all the subsets of Ω are events).

b- (Ωi, {∅,Ωi}) is a measurable space (trivial σ-algebra, only these two subsets of Ω are
events).

2- For R1 and Ω1 = {H,T}, we have :
a- (Ω1, {∅, {H}, {T}, {H,T}}) (maximal σ-algebra).
b- (Ω1, {∅, {H,T}}) (trivial σ-algebra).
c- (Ω1, {∅, {H}, {H,T}}) is not a measurable space because the complement of {H} ({T}) /∈

F .

3- For R3 and Ω3 = {1, 2, 3, 4, 5, 6}, we have :
a- (Ω3, {∅, {1}, {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}}) is a measurable space.
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b- (Ω3, {∅, {1}, {2, 3, 4, 5, 6}, {1, 5}, {2, 3, 5}, {1, 2, 3, 4, 5, 6}}) is not a measurable space be-
cause the property ii is not satisfied ({1, 5} ∪ {2, 3, 5} is not element of F).

4- For R6 and Ω6 = {H,T}3, we have :
a- (Ω6, {∅, {(H,H,H)},Ω6/{(H,H,H)},Ω6}) is a measurable space.

Like any set, in addition to its explicit form (when enumerating its elements), events are
described by a property that characterize them implicitly. This description is usually a linguistic
expression that is made explicit to allow doing calculation in the context of the probability
theory. As an example, for R3 (a die rolling), the event E described by the following property:
"the obtained outcome is an even number" is explicitly described by E = {2, 4, 6}. The σ-
algebra of the events is a set of subsets, so all the sets operations are possible on the σ-algebra.
Within the scope of this theory, we use a specific terminology (probabilistic interpretation) of
these operations.

Set operation Notation Operation occurs iff

Complement Ec negation E does not occur

Union E ∪ F or E or F occurs

Intersection E ∩ F and E and F occur simultaneously

Difference E − F only of E occurs, but not F

Symmetric difference E∆E not simultaneously E or F doesn’t occur simultaneously

To handle events, we use set algebra (associative and distributive properties, Morgan relations,
etc).

If E ∩ F = ∅ then the two events E and F are disjoints.

Two events E and F are mutually exclusives if the occurrence of one excludes the occurrence
of the other. As a generalization of the previous result, events E1, E2, · · · , En are mutually
exclusives if the occurrence of one excludes the occurrence of the others

Let’s code!
The following code presents events’ operations.
#Code102.py

from sympy.stats import Die
import sys;sys.path.append(’../lib’)
from utils import get_Omega,set_Filter

print("Events manipulation (operations)")

abc_Omega = {1,2,3,4,5,6} ;print("Sample space Omega : ",abc_Omega)
A = {2,5} ;print("Event A : ", A)
B = {3,4,5} ;print("Event B : ",B)
isEvent = A < abc_Omega ;print("is A event of Omega : ", isEvent)
a_bar = abc_Omega - A ;print("Complement of A : ", a_bar)
C = A & B ;print("Union of A and B : ", C)
D = A | B ;print("Intersection of A and B : ", D)
E = A - B ;print("Difference of A and B : ", E)
F = A ^ B ;print("Symetric Diff A and B : ", F)

# isEvenNumber: predicate to check if a number is even
isEvenNumber = lambda nb : nb % 2 == 0

die_omega=get_Omega(Die(’Die’))
evenNb =set_Filter(isEvenNumber,die_omega)
print("Event A even numbers : ", evenNb)

evenNbComplement = set(die_omega) - set(evenNb)
print("Event Complement of A : ", evenNbComplement)

#______________________________ Output ______________________________________
# Events manipulation (operations)
# Sample space Omega : {1, 2, 3, 4, 5, 6}
# Event A : {2, 5}
# Event B : {3, 4, 5}
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# is A event of Omega : True
# Complement of A : {1, 3, 4, 6}
# Union of A and B : {5}
# Intersection of A and B : {2, 3, 4, 5}
# Difference of A and B : {2}
# Symetric Diff A and B : {2, 3, 4}
# Event A even numbers : {2, 4, 6}
# Event Complement of A : {1, 3, 5}

Let’s code!
The following code implements R6 with E = (T, T,H), (T,H, T ), (H,T, T ) is the event of getting
two tails.
#Code103.py

from sympy import Symbol
from sympy.stats import Coin
import sys;sys.path.append(’../lib’)
from utils import get_Omega,set_Power,set_Filter

# class Symbol sets symbols for algebric expressions. "T" for coin tail
# twoTails: checks if the outcome has two tails
twoTails = lambda triple : triple.count(Symbol("T") )==2

coin_omega=get_Omega(Coin(’Coin’))
threeCoins_omega = set_Power(coin_omega,3)
has2Tails = set_Filter(twoTails,threeCoins_omega)
print("Event with two tails only : ", has2Tails)

#______________________________ Output ______________________________________
# Event with two tails only : {(T, T, H), (H, T, T), (T, H, T)}

1.3 Probability
Probability is a function that assigns a real number between 0 and 1 (included) to a given
event. This number represents the chance that this event occurs. The probability axioms are
mathematical rules that the probability function has to satisfy.

Definition 4.
Let (Ω,F) be the measurable space associated to a random experiment R.
A probability P is a function of F in the interval [0, 1].

P : F 7→ [0, 1]

that satisfies the following axioms:
- normality : P (Ω) = 1 (a norm on Ω)
- σ-Infinite-additivity : for all family of events mutually exclusive, the probability of

their union is the sum of the probabilities of each of them.

{Ei}i>0 and ∀i 6= j, Ei ∩ Ej = ∅ =⇒ P (
⋃
i>0

Ei) =
∑
i>0

P (Ei)

We call the triplet (Ω,F , P ) a probability measurable space.

In the case of countable spaces, probabilities can be assigned to each subset of the space.
However, in uncountable spaces, "uncommon" subsets can be built up and for which we cannot
assign a probability. So, for some purely mathematical reasons, a probability can be given only
for well defined subsets when the space is uncountable (the axiom σ-Infinite-additivity is not
always satisfied, see [11]). For this reason the probability is defined for σ-algebra on a sample
space with a particular structure that allows the σ-additivity to be satisfied.

Assigning probability to events is actually a transition from a concrete context to a mathematical
model. For a useful choice of the probabilities given to events, the assignment has to result
in an "appropriate" model for real situations. Two main approaches exist: the frequentist
approach and the subjective approach (Bayesian). In the frequentist approach, probabilities
are assigned to the results of a physical experiment that can be repeated many times under
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identical conditions. This is the case, for example, of a die rolling, these probabilities can
be determined experimentally. In the subjective approach (Bayesian), the word probability is
synonym of plausibility, the probability is defined as the belief degree that someone has about
the occurrence of some event. This is the case, for example, of the chances that someone gives
for a team to win a game. This approach is limited to experiments that cannot be repeated.

1.3.1 Probability properties

Proposition 1.
Let (Ω,F , P ) be the probability measurable space, the following properties are satisfied:

1- Finite-Additivity : let {Ei}i∈{1..n} be a finite sequence of mutually exclusive events,
then :

P (

n⋃
i=1

Ei) =

n∑
i=1

P (Ei)

2- Complement rule : ∀E ∈ F , P (Ec) = 1− P (E).

3- Union rule : ∀E,F ∈ F , P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )
4- Inclusion-exclusion formula : let {Ei}i∈{1..n} be a finite sequence of events,

P (∪ni=1Ei) =

n∑
i=1

P (Ei)−
∑
i<j≤n

P (Ei∩Ej)+
∑

i<j<k≤n

P (Ei∩Ej∩Ek)...(−1)n−1P (E1∩...∩En)

5- Monotonicity : ∀E,F ∈ F , E ⊂ F ⇒ P (E) ≤ P (F ).

1- To demonstrate P (∅) = 0, we use the infinite-additivity axiom with Ei = ∅,∀i. We have
P (∅) =

∑∞
i=1 ai such that ai = P (∅),∀i, this implies P (∅) = 0.

Let {Ei}i∈{1..n} be a finite sequence of mutually exclusive events. We consider the following
infinite sequence :

{Ai}i>0 s.t Ai = Ei, for i ≤ n and Ai = ∅, for i > n, so:

∞⋃
i=1

Ai =

n⋃
i=1

Ei

P (

n⋃
i=1

Ei) = P (

∞⋃
i=1

Ai) =

n∑
i=1

P (Ai) +

∞∑
i=n+1

P (Ai) =

n∑
i=1

P (Ei)

2- The second property results from the property of the σ-finite-Additivity :
Let E be an event, and Ec its complement.

Since E and Ec are mutually exclusives.
And since E ∪ Ec = Ω
we have 1 = P (Ω) = P (E ∪ Ec) = P (E) + P (Ec),
So P (Ec) = 1− P (E).

4- By induction, we assume that the property is true. Let : Rn = ∪ni=1Ei

P (Rn) =
∑
i≤n

P (Ei)−
∑
i<j≤n

P (Ei∩Ej)+
∑

i<j<k≤n

P (Ei∩Ej ∩Ek)+ ...+(−1)n−1P (E1∩ ...∩En)

We show that the property is true for Rn+1:

P (Rn+1) = P (∪n+1
i=1 Ei) = P (En+1 ∪ (∪ni=1Ei)) = P (En+1) + P (Rn)− P (En+1 ∩Rn)
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En+1 ∩Rn = ∪ni=1(En+1 ∩ Ei)

P (En+1∩Rn) =
∑
i<n+1

P (Ei∩En+1)−
∑

i<j<n+1

P (Ei∩Ej∩En+1)+...+(−1)n−1P (E1∩...∩En+1)

P (Rn+1) =
∑
i≤n+1

P (Ei)−
∑

i<j≤n+1

P (Ei∩Ej)+
∑

i<j<k≤n+1

P (Ei∩Ej∩Ek)+...+(−1)nP (E1∩...∩En+1)

1.3.2 Equiprobability
Let (Ω,F , P ) be a probability measurable space : if Ω is finite (|Ω| = n < ∞) then, Ω =
{ω1, ω2, · · ·ωn} where ωi is a simple event for all 1 ≤ i ≤ n in this case, we take F = 2Ω the
discrete σ-algebra of Ω and the probability P is defined by its restriction p on Ω, p : Ω→ [0, 1]
such that p(ωi) = P ({ωi}) noted pi. For the event E = {ωi1 , ωi2 , · · · , ωih}, we have :

P ({ωi1 , ωi2 , · · · , ωih}) =

h∑
k=1

pik

Definition 5. Equiprobability
Let (Ω,F , P ) be a probability measurable space :
Simple events are said equally likely if Ω is finite and they have the same probability.

∀ωi ∈ Ω, p(ωi) =
1

|Ω|

The probability of an event E in this space is :

∀E ∈ F , P (E) =
|E|
|Ω|

In this case, the calculation of probabilities comes down to an enumeration (see appendix A).
In random experiments with a finite probability space, it is natural to assume the outcomes to
be equally likely (based on belief). This model is called the classic probability model or Laplace
model.

Let’s code!
We use Pe from Lib to compute the equally likely probability of an event.
#Code104.py

from functools import partial
import sys;sys.path.append(’../lib’)
from utils import Pe, Pde

# partial: returns a new function from the given one by setting the specified parameters
Omega = {1,2,3,4,5,6} ;print("Omega : ", Omega)
A = {2,5} ;print("Event A : ", A)
Pe = partial(Pe,Omega)
pe_A = Pe(A) ;print("Probability of A : ", pe_A)
Pde = Pde(Omega) ;print("Probability App : ", Pde)

#______________________________ Output ______________________________________
# Omega : {1, 2, 3, 4, 5, 6}
# Event A : {2, 5}
# Probability of A : 1/3
# Probability App : {1: ’1/6’, 2: ’1/6’, 3: ’1/6’, 4: ’1/6’, 5: ’1/6’, 6: ’1/6’}

Example 3. Three regular dice are rolled. What is the probability that the outcome of the 3rd

die is equal to the sum of the outcomes of the two others.

Solution
The measurable space is:
1- Ω = {1, 2, 3, 4, 5, 6}3 = {(i, j, k) : i, j, k = 1..6} such that i is the outcome of the 1st die, j the
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outcome of the 2nd, and k is the outcome of the 3rd one. |Ω| = 6× 6× 6 = 216
2- The σ-algebra is 2Ω

3- if we assume the outcomes are equally likely then, ∀ωi ∈ Ω, p(ωi) = 1
216 .

For this probability measurable space (Ω, 2Ω, P ), the event E that ’the outcome of the 3rd die is
equal to the sum of the outcomes of the two others’ has the following outcomes:

E ={(1, 1, 2), (1, 2, 3), (2, 1, 3), (1, 3, 4), (3, 1, 4), (1, 4, 5), (4, 1, 5), (1, 5, 6), (5, 1, 6), (2, 2, 4),

(2, 3, 5), (3, 2, 5), (2, 4, 6), (4, 2, 6), (3, 3, 6)}

P (E) =
|E|
|Ω|

=
15

216
=

5

72

Let’s code!
The code of the previous example.
#Code105.py

from sympy.stats import Die
import sys;sys.path.append(’../lib’)
from utils import get_Omega, Pe, Pde, set_Filter, set_Power

die_Omega=get_Omega(Die(’Die’))
threeDices_Omega = set_Power(die_Omega , 3)

print("- Drop 3 Dices Omega : ", list(threeDices_Omega)[:4])
print("- Omega length : " , len(threeDices_Omega))

P_3Dices_Omega = Pde(threeDices_Omega)
print("- Proba mapping : " , list(P_3Dices_Omega.items())[:4])

# ev_Property: checks if the sum of the two first elements equals the 3rd one
ev_Property = lambda omega : omega[0] + omega[1] == omega[2]
E = set_Filter(ev_Property, threeDices_Omega) ; print("- E Length: ",len(E))
p_E = Pe(threeDices_Omega, E) ; print("- Probability of E : ",p_E)

#______________________________ Output ______________________________________
# - Drop 3 Dices Omega : [(4, 2, 2), (1, 4, 4), (2, 2, 4), (5, 5, 1)]
# - Omega length : 216
# - Proba mapping : [((4, 2, 2), ’1/216’), ((1, 4, 4), ’1/216’), ((2, 2, 4), ’1/216’), ((5, 5, 1)

, ’1/216’)]
# - E Length: 15
# - Probability of E : 5/72

Example 4. In a café, customers pay a cup of tea 30DA, 20DA or 10DA. To know how much
a customer has to pay, he rolls a die. If the outcome is 1, he pays 10DA, if it is 2,3,4 or 5 he
pays 20DA otherwise, he pays 30 DA. Two friends go to this café, what is the probability that
the sum of money paid by them together does not exceed 30DA?

Solution
1- The sample space of this experiment is Ω = {1, 2, 3, 4, 5, 6}2
2- Since Ω is finite, then we choose 2Ω as σ-algebra
3- We assume that the elements of the sample space are equally likely, so ∀ωi ∈ Ω, p(ωi) =
1/|Ω| = 1/36.
For this sample space (Ω, 2Ω, P ), let consider the following events :
E1 = { the first client pays 10 and the second pays 10 } = {(i, j)|i = 1 and j = 1}
E2 = { the first client pays 10 and the second pays 20 } = {(i, j)|i = 1 and j ∈ {2, 3, 4, 5}}
E3 = { the first client pays 20 and the second pays 10 } = {(i, j)|i ∈ {2, 3, 4, 5} et j = 1}
The event E that the sum of money paid by the two friends together does not exceed 30DA can
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be written as the union of these three disjoint events:

E = E1 ∪ E2 ∪ E3

P (E) = P (E1 ∪ E2 ∪ E3)

= P (E1) + P (E2) + P (E3)

=
|E1|
|Ω|

+
|E2|
|Ω|

+
|E3|
|Ω|

=
1

36
+

4

36
+

4

36
=

9

36
=

1

4

Example 5. Let consider the experiment of tossing two coins. E is the event that the first one
gives ’head’ and F the event that the second gives ’head’. What is the probability that the first
or the second gives ’head’?

Solution
1- The sample space is : Ω = {H,T}2 = {(H,H), (H,T ), (T,H), (T, T )}
2- The σ-algebra: F = 2Ω

3- Elements of Ω equally likely.
For this measurable space (Ω, 2Ω, P ), we consider the following events :

E ={ the first coin gives head }
F ={ the second coin gives head }
K ={ the first or the second coin give head }

H : head, T : tail.E ={(H,H), (H,T )}, P (E) =
1

4
+

1

4
=

1

2

F ={(H,H), (T,H)}, P (F ) =
1

4
+

1

4
=

1

2
K =E ∪ F, P (K) = P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )

Since P (E ∩ F ) = P ({(H,H)}) =
1

4

P (K) =
1

2
+

1

2
− 1

4
=

3

4

Let’s code!
The code of the previous example.
#Code106.py

from sympy.stats import Coin
from sympy import Symbol
from functools import partial
import sys;sys.path.append(’../lib’)
from utils import get_Omega, set_Power, set_Filter, Pde, Pe

coin_Omega=get_Omega(Coin(’Coin’))
twoCoins_Omega = set_Power(coin_Omega, 2)
print("- Toss 2 Coins Omega : ",twoCoins_Omega)

p_2Coins_Omega = Pde(twoCoins_Omega)
print("- Proba map : ",p_2Coins_Omega)

# ev_Property: checks if the ith element of the outcome equals val
ev_Property = lambda i, val, omega : omega[i] == val

# set_Filter: filters the given SS using ev_Property with the specified parameters
E = set_Filter(partial(ev_Property,0, Symbol("T")) , twoCoins_Omega)
p_E = Pe(twoCoins_Omega, E)
print("- Event E : ",E, " Probability : ",p_E)

F = set_Filter(partial(ev_Property,1, Symbol("T")) , twoCoins_Omega)
p_F = Pe(twoCoins_Omega, F)
print("- Event F : ",F, " Probabulity : ",p_F)
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EF = E & F
p_EF = Pe(twoCoins_Omega, EF)
print("- Event E et F : ",EF, " Probability : ", p_EF)

K = E | F
p_K = p_E + p_F - p_EF
print("- Event K (E or F) : ", K, " Probability : ", p_K)

#______________________________ Output ______________________________________
# - Toss 2 Coins Omega : {(H, T), (T, T), (T, H), (H, H)}
# - Proba map : {(H, T): ’1/4’, (T, T): ’1/4’, (T, H): ’1/4’, (H, H): ’1/4’}
# - Event E : {(T, H), (T, T)} Probability : 1/2
# - Event F : {(T, T), (H, T)} Probabulity : 1/2
# - Event E et F : {(T, T)} Probability : 1/4
# - Event K (E or F) : {(H, T), (T, H), (T, T)} Probability : 3/4

Example 6. We want to know the probability that in a class of n kids (not twins) at least two
kids have the same birthday. We consider that a year has 365 days (we ignore the leap years)
and that all days are equally likely.

Solution
A class of n non twin kids is represented as n-tuple of birthdays of these kids (di in the set
Y = {d1, d2, · · · d365} is the birthday of the ith kid). The random experiment consists in choosing
a list of n elements of Y (n-tuple) as an outcome that represents a class.

1- The sample space : Ω = Y n = {(ωi1 , ωi2 , · · · , ωin)}1≤ik≤365 the cardinality is |Ω| = 365n

2- The σ-algebra F = 2Ω

3- The elements of Ω are equally likely.

For this measurable space (Ω, 2Ω, P ), we have the event :
E : In a class of n kids (not twins) at least two kids have the same birthday. (there is a birthday
that recurs more than once in the n-tuple).
Ec : is the complement of E , having a class of n kids all, with different birthdays; its cardinality
is the number arrangements (see appendix A) of n elements out of 365.

P (E) = 1− P (Ec) = 1− |E
c|
|Ω|

= 1− An365

365n
= 1− 365!

(365− n)!365n
= f(n)

Figure 1.4 shows the probability function of n. We can see that for n = 23, P (E) = 0.50, for
a class of 23 kids, there is 50% chance that at least two kids have the same birthday which is
much higher than our intuition. With n = 41, p = 90% and reaches p = 99% for n = 57.

Figure 1.1: Probability function of n
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library for numerical
computation offering the
operations to manipulate
matrices, vectors, and the
usual numerical methods.

Let’s code!
The code of the previous example.
#Code107.py

# function prod of numpy is used to compute the product of the vector’s elements
def get_birth(n, L):

import numpy as np

F = lambda n : 1 - np.prod([(365-i)/365 for i in range(n)])
E = [F(i) for i in range(n)]
for i in L :print("F(",i,"):",F(i))
return E

# plotter: plots the function associated with the birthday probability example
def plotter(n,E):

import matplotlib.pyplot as plt

plt.plot(range(n), E, linewidth=1)
xpos = [23, 30, 41, 57]
for xc in xpos: plt.axvline(x=xc, color=’r’, linewidth=1, linestyle=’--’)

ypos = [0.5, 0.7, 0.9, 0.99]
for yc in ypos: plt.hlines(y=yc, xmin=0, xmax=100, linewidth=1, color=’r’,

linestyle=’--’)

plt.xlabel(’$n$’); plt.ylabel(r’$F(n)$’); plt.title(’Birth day problem’)
plt.show()

n = 100
L = [23,30,41,57]
plotter(n,get_birth(n,L))
#______________________________ Output ______________________________________
# F(23): 0.5072972343239857
# F(30): 0.7063162427192688
# F(41): 0.9031516114817354
# F(57): 0.9901224593411699

Application

Digital file identifier Practical applications of this problem include methods that
associate digital identifiers with files. So if we have n files, we have to take K (the size
of the set of identifiers) large enough that the probability that two files have the same
identifier is very low.
The cryptographic hash function In cryptography, the hash function h is used
in conjunction with the electronic signature to generate a digital fingerprint of infor-
mation that will be signed and attached to this information to prove its authenticity
and to guarantee the objective of integrity and non-repudiation. It associates with any
message m of arbitrary size a key message k of fixed size identifying m. h is defined:

h : {0, 1}∞ → {0, 1}n

Based on the definition of h, the birthday attack exploits probabilistic properties to vi-
olate the principle of integrity by changing the message m associated with a key k. As
the message size is arbitrary and n is fixed then it is possible to find two different mes-
sages which have the same key by h. We say that a collision has been found and the
associated problem is called the collision problem. By giving h, the goal of this attack
is to find two messages m1 and m2 such that m1 6= m2 and h(m1) = h(m2). This pair
is called the collision.

1.4 Conditional Probabilities
Let A be an event of a random experiment R. P (A) is the chance of occurrence of A before the
experiment happens. P (A) is called the unconditional probability (or "a priori"). Assuming
that we know that in this experiment an event B has occurred, but we don’t know if A has
occurred or not. Knowing that B has occurred, the sample space Ω is replaced by the sample
space of B. The probability of occurrence of A given that B has occurred is called the the
conditional probability.

www.numpy.org
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Definition 6. Conditional Probability
Let (Ω,F , P ) be the probability measurable space associated with a random experiment R
and the event B having non null probability.
The application PB defined from (Ω,F) to the interval [0, 1] as:

∀A ∈ F , PB(A) =
P (A ∩B)

P (B)

is a probability under the σ-algebra of B. (satisfies the probability axioms).
We call PB the conditional probability given B and noted P (.|B). If Ω is finite, then

∀A ∈ F , P (A|B) =
|A ∩B|
|B|

Proposition 2. Conditional probability properties
Since P(.|A) is a probability on the restriction of the sample space knowing the occurrence
of A, then it has the same properties as a regular probability.

Example 7. We roll two dice such that each of the possible 36 outcomes is equally likely.
We notice that the first die gave 4; knowing that, what is the probability that the sum of the two
dice equals 6?

Solution
Knowing the information that ’4 is the outcome of the first die’, the set of possible outcomes of
this experiment (the new sample space) is :
Ω = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)} associated to its uniform probability.
Let E be the event ’the sum of the two dice is 6’ and F the event that ’the first die is 4’.
E ∩ F = {(4, 2)}

P (E|F ) =
P (E ∩ F )

P (F )
=
|E ∩ F |
|F |

=
1/36

6/36
=

1

6

This is due to the fact that if F occurs, then E will occur if the outcome is in E and F : E ∩F .
And, because we know that F has occurred, then F becomes the new sample space, so the
probability that E ∩F occurs equals the probability of E ∩F in relation to the probability of F

Let’s code!
The code of the previous example.
#Code108.py

import sys;sys.path.append(’../lib’)
from utils import set_Power,set_Filter, Pe, Pgiven

Omega = set_Power(range(1,7), 2)

# set_Filter: filters the outcomes having the first element equals 4.
F= set_Filter(lambda a: a[0] == 4,Omega)
print("F given Event : ", F, ", P(F)=", Pe(Omega,F))

# set_Filter: filters the outcomes having the sum of the 1st and the 2nd elements equals 6.
E= set_Filter(lambda a : a[0] + a[1] == 6,Omega)
print("E event : ",E, ", P(E)=", Pe(Omega,E))

EF = E & F
print("E and F event : ",EF, ", P(E & F)=", Pe(Omega,EF))

p_given_F = Pgiven(E,F)
print("Probability of E given F : ", p_given_F)

#______________________________ Output ______________________________________
# F given Event : {(4, 6), (4, 5), (4, 4), (4, 3), (4, 2), (4, 1)} , P(F)= 1/6
# E event : {(5, 1), (3, 3), (1, 5), (4, 2), (2, 4)} , P(E)= 5/36
# E and F event : {(4, 2)} , P(E & F)= 1/36
# Probability of E given F : 1/6
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Example 8. Let U be a box that contains 4 red balls R and 6 green ones G. Two balls are
drawn from U in a blind way one after another and without replacement. What is the probability
that the second drawn ball is red given that the first drawn one is red?

Solution
R = {r1, r2, r3, r4}
G = {g1, g2, g3, g4, g5, g6}
U = R ∪G
Ω = {(b1, b2) ∈ U2 and b1 6= b2}, |Ω| = |U |(|U | − 1) = 10× 9 = 90
A = { 1th red ball } = {(b1, b2) ∈ Ω and b1 ∈ R}, |A| = |R|(|U | − 1) = 4× 9 = 36

P (A) = |A|
|Ω| = 4×9

10×9 = 4
10

B = { 2 nd red ball } = {(b1, b2) ∈ Ω and b2 ∈ R}

A ∩B = {(b1, b2) ∈ Ω, b1 ∈ R and b2 ∈ R}, |A ∩B| = |R|(|R| − 1) = 4× 3 = 12

P (B ∩A) = |A∩B|
|Ω| = 12

90

Given that A has occurred, we have a new sample space :
ΩA = A, and the associated σ-algebra 2ΩA .
In this sample space, consider the event BA ’the second ball is red’ :
BA = {(ri, rj) ∈ ΩA, rj ∈ R} = A ∩B, |BA| = |A ∩B|

P (B|A) =
|BA|
|ΩA|

=
|A ∩B|
|A|

=
|Ω|
|A|
× |A ∩B|

|Ω|
=
P (A ∩B)

P (A)
=

12

36
=

1

3

Let’s code!
The code of the previous example.
#Code109.py

from functools import partial
import sys;sys.path.append(’../lib’)
from utils import Pe, Pgiven, set_Filter

# get_diff_pairs: returns cartesian product of U discarding the diagonal elements
def get_diff_pairs(U):

return [(i,j) for i in U for j in U if i!=j]

R = { ’r1’ , ’r2’, ’r3’, ’r4’ }
B = { ’b1’, ’b2’, ’b3’, ’b4’, ’b5’, ’b6’ }

Omega=get_diff_pairs(R | B)
P=partial(Pe,Omega)

# selects the outcomes having the 1st element starting with ’r’
A=set_Filter(lambda X:X[0][0]==’r’,Omega)
print("Probability of A:",P(A))

B=set_Filter(lambda X:X[1][0]==’r’,Omega)
print("Probability of B:",P(B))

AB=set_Filter(lambda X:X[0][0]==’r’ and X[1][0]==’r’,Omega)
print("Probability of AB:",P(AB))

print("Probability of B given A:",Pgiven(B,A))

#______________________________ Output ______________________________________
# Probability of A: 2/5
# Probability of B: 2/5
# Probability of AB: 2/15
# Probability of B given A: 1/3

1.4.1 Compound probability
A box contains two blue balls and three red balls, what is the probability to draw (without
replacement) a red ball, and then a blue ball.
The common sense is that 3/5 is the probability that the first ball is red (unconditional), and
then 2/4 = 1/2 is the probability that the second drawn ball is blue because in the second draw,
we know that it remains only 4 balls in the box (conditional). So, the probability that the first
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is red and the second is blue is 3/5×1/2 = 3/10: if R is the event to draw a red ball first and B
the event to draw a blue ball second, then P (R ∩B) = P (R)× P (B|R), this is called the chain
rule and can be extended to n successive events as follows:

Proposition 3.
Let (Ei)i∈I be a collection of events

If I is finite and ∀i ∈ I, P (Ei) 6= 0 then :

P (
⋂
Ei) = P (E1)P (E2|E1) · · ·P (En|E1 ∩ · · · ∩ En−1)

1.4.2 Total probability
We consider the experiment that consists in rolling a die, the outcome is in {1,2,3,4,5,6}, and
then a coin is tossed a number of times equal to the outcome of the rolled die. The coin is fake
so that P(T)=3/4 and P(H)=1/4, and we want to determine the probability of not obtaining a
Tail in this experiment.
Ω of this experiment is a partition, each of its element correspond to a value k obtained by the
die rolling. For example for k = 2, the associated set is {(T, T ), (T,H), (H,T ), (H,H)}. For
each value of k, the probability of event Ek (not getting Tail in k tosses) is P (Ek) = (1/4)k,
and because the events corresponding to different values of k are mutually exclusive, then the
probability of not obtaining a Tail is:

1

4

1

6
+ (

1

4
)2 1

6
+ (

1

4
)3 1

6
+ (

1

4
)4 1

6
+ (

1

4
)5 1

6
+ (

1

4
)6 1

6
= 0.1641

Proposition 4.
Let (Ei)i∈I be a partition of Ω (mutually exclusive events) and A an event, then :

P (A) =
∑
i∈I

P (A|Ei)P (Ei)

Figure 1.2: Total probability diagram

Consider the partitions A and Ac (Ā) of Ω, we can visualize the total probability formula by
the conditional probability diagram whose branches attached to the root represent this partition
with its associated probability to which other branches are attached and which represent the
events B and B̄ conditioned by A and Ā. To calculate the total probability of B, we have just
to sum the probabilities of the branches leading to B.



CHAPTER 1. INTRODUCTION TO PROBABILITY 26

Figure 1.3: Conditional probabilities diagram

1.4.3 Bayes Formula

Proposition 5. Bayes Formula
Let (Ei) be a partition of Ω and A an event, then :

P (Ei|A) =
P (A|Ei)P (Ei)∑
j∈I P (A|Ej)P (Ej)

This results from the fact that:

P (Ei|A) =
P (Ei ∩A)

P (A)
=
P (A ∩ Ei)
P (A)

=
P (A|Ei)P (Ei)∑
j∈I P (A|Ej)P (Ej)

Another approach to present Bayes rule, is using probability rate (odds). The probability rate
of an event A is defined by:

OA =
P (A)

P (Ac)
=

P (A)

1− P (A)
, and the probability of A, P (A) =

OA
1 +OA

Let H and E be two events which represent respectively a hypothesis and a proof of a given
case.

OH|E =
P (H|E)

1− P (H|E)
=

P (H|E)

P (Hc|E)
=
P (E|H)P (H)

P (E)
× P (E)

P (E|Hc)P (Hc)
=

P (H)

P (Hc)
× P (E|H)

P (E|Hc)

OH = P (H)
P (Hc) is the "a priori" probability rate of H (before knowing E).

P (E|H)
P (E|Hc) is called the plausibility rate or the Bayes factor.

OH|E = OH ×
P (E|H)

P (E|Hc)

This rule updates the "a priori" probability rate of H|E by multiplying the "a priori" probability
rate of H by the Bayes factor, which gives us an indication on how much the new evidence (E)
changes the hypothesis belief.

Example 9. [10] A team of scuba divers searches for a ship wreck. They believe that it is in
the search area with a probability 0.4. A search in this zone is successful with a probability 0.9
if it exists. What is the probability that the wreck is in this zone if the search fails?

Solution
H: the wreck exists
E: the search fails
We want to calculate P (H|E).
Method1.

OH|E =
P (H|E)

P (Hc|E)
=

P (H)

P (Hc)
× P (E|H)

P (E|Hc)
=

0.4

0.6
× 0.1

1
=

1

15



CHAPTER 1. INTRODUCTION TO PROBABILITY 27

P (H|E) =
OH|E

OH|E + 1
=

1

16

Method2.

P (H|E) =
P (E|H)× P (H)

P (E|H)× P (H) + P (E|Hc)× P (Hc)
=

0.1× 0.4

0.1× 0.4 + 1× 0.6
=

1

16

Example 10. What is the probability of drawing at least 5 cards (5 or more) from a deck of 52
cards before we get the first ace.

Solution
The first method to solve this problem is to find the size of the sample space Ω that contains 52!
elements, and to compute the number of elements in E, the event of drawing at least 5 cards
before we get the first ace. |E| = 48× 47× ...× 44× 47!. We have:

P (E) =
48× 47× ...× 44× 47!

52!
= 0.6588

A simpler method consists in applying the chain rule by considering the successive steps of the
experiment. Let Ei be the event that the ith draw is not an ace, then:

P (E1 ∩ E2 ∩ ... ∩ E5) =P (E1)P (E2|E1) · · ·P (E5|E4, E3, ..., E1)

=
48

52
× 47

51
× ...× 44

48
=0.6588

In the second method, we need to find the probabilities of some well chosen events without
specifying explicitly the sample space.

Example 11. In an exam, the students have to answer one question with multiple choices.
Some student knows the correct answer with a probability p or guesses it with a probability 1−p.
Having n answers to choose from with only one correct answer. What is the probability that this
student knows the right answer given that he chose the correct one?

Solution
Let E be the event that the student knows the right answer, and F the event that his answer is
correct. Using Bayes formula, we have :

P (E|F ) =
P (E ∩ F )

P (F )

=
P (F |E)× P (E)

P (F |E)× P (E) + P (F |Ec)× P (Ec)

=
1× p

1× p+ 1/n× (1− p)

=
n× p

1 + (n− 1)× p

Let’s code!
The code of the previous example.
#Code110.py

from itertools import product

N, p = 4, 0.4

# omega’s outcomes are represented as tuples (X,i,j) s.t :
# X is Y if the student knows the answer and N otherwise
# i is the correct answer and j is the given answer
E = set(product({’N’},set(range(1,N+1)),set(range(1,N+1))))
F = set([(’Y’,i,i) for i in range(1,N+1)])
Omega = F.union(E);
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Dist = { o : (1-p)/(N*N) if o[0]==’N’ else p/N for o in Omega }
print(Dist)

PF = 0; PEF=0
for i in Omega:

if i[1] == i[2]: PF += Dist[i]
if i[0] == ’Y’ : PEF += Dist[i]

print("P(E|F) = %0.5f" % (PEF/PF))
print("Bayes rule: ",N*p/(1+(N-1)*p))

#______________________________ Output ______________________________________
# {(’N’, 3, 3): 0.0375, (’Y’, 4, 4): 0.1, (’Y’, 2, 2): 0.1, (’N’, 4, 3): 0.0375,
# (’N’, 3, 2): 0.0375, (’N’, 1, 4): 0.0375, (’N’, 2, 2): 0.0375, (’N’, 4, 4): 0.0375,
# (’Y’, 1, 1): 0.1, (’N’, 3, 4): 0.0375, (’N’, 1, 3): 0.0375, (’N’, 2, 3): 0.0375,
# (’N’, 1, 2): 0.0375, (’N’, 1, 1): 0.0375, (’N’, 2, 1): 0.0375, (’Y’, 3, 3): 0.1,
# (’N’, 3, 1): 0.0375, (’N’, 2, 4): 0.0375, (’N’, 4, 1): 0.0375, (’N’, 4, 2): 0.0375}
# P(E|F) = 0.72727
# Regle de Bayes: 0.7272727272727273

Example 12. Consider three boxes, each containing 100 balls.

- Box 1 contains 75 red and 25 green balls.
- Box 2 contains 60 red and 40 green balls.
- Box 3 contains 45 red and 55 green balls.

We choose randomly a box, and then we randomly draw a ball from this box.
1- What is the probability that the chosen ball is red?
2- Assuming that we draw a red ball, what is the probability that it was drawn from Box 1 ?

Solution
- Let E be the event that the drawn ball is red.
- Let Fi be the event that the ith Box is chosen.
1- Using the total probability theorem, we have:

P (E) =P (E|F1)P (F1) + P (E|F2)P (F2) + P (E|F3)P (F3)

=75/100× 1/3 + 60/100× 1/3 + 45/100× 1/3

=3/5

2- Using Bayes rule, we have:

P (F1|E) =
P (E|F1)P (F1)

P (E)

=(75/100× 1/3)/(3/5)

=5/12

Using the conditional probability diagram, we can find the probability of the branches that end
with E. Just add its values to find the probability of E (the total probability).

Figure 1.4: Conditional probabilities diagram



CHAPTER 1. INTRODUCTION TO PROBABILITY 29

Example 13. [9]
A disease affects one out of 10000 people. There is a test to check if someone is affected.
The probability that the test’s result is positive when the person don’t have the disease is 2%.
The probability that the test’s result is negative whereas the person has the disease is 1%.
Someone was tested positive to the disease, what is the probability that this person has indeed
the disease?

Solution
Let M be the event that the person has the disease, and T the event that the test is positive.

P (M) =
1

10000
P (T |M c) =0.02

P (T c|M) =0.01

P (T |M) =1− 0.01 = 0.99

Using Bayes rule:

P (M |T ) =
P (T |M)P (M)

P (T |M)P (M) + P (T |M c)P (M c)

=
0.99× 0.0001

0.99× 0.0001 + 0.02× (1− 0.0001)
= 0.0049

1.5 Independence
We should note that in example 1.8 if we return the balls after each draw, the probabilities
do not change, this is due to the fact that the initial environment of the experiment does not
change (as if the same experiment is repeated one more time).
Events are independents when each event is not affected by the others. This is the case of coin
tosses where each toss is an independent event, i.e the previous tosses do not affect the current
toss and the probability is 1/2 at each toss.

Definition 7.
Two events E and F are independent (notation: E ⊥ F ) if:

P (E ∩ F ) = P (E)P (F )

This definition implies that: P (E|F ) = P (E), this means that E and F are independent if
knowing that F has occurred does not affect the probability that E occurs.
Sometimes the independence of two events is clear because there are no physical interactions be-
tween them; but when this is not the case, one must check whether the condition of independence
is satisfied.

Example 14. Suppose two dice are rolled. Let A be the event that the result of the first die is
equal to 3, B is the event that the sum of the two is 9 and C the event that the sum of the two
is equal to 7. Are A and B independent? Same question for A and C.

Solution
The experiment has 36 equally likely results (i, j) : 1 ≤ i, j ≤ 6 such that i is the result of the
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first die and j the result of the second one.

P (A) = P ({(i, j)|i = 3, 1 ≤ j ≤ 6}) =
6

36
=

1

6

P (B) = P ({(i, j)|i+ j = 9, 1 ≤ i, j ≤ 6}) =
4

36
=

1

9

P (A ∩B) = P ({(3, 6)}) =
1

36
P (A ∩B) 6= P (A)P (B)

A and B are therefore dependent.

P (C) = P ({(i, j)|i+ j = 7, 1 ≤ i, j ≤ 6}) =
6

36
=

1

6

P (A ∩ C) = P ({(3, 4)}) =
1

36
P (A ∩ C) = P (A)P (C)

A and C are therefore independent.

We can explain this result by the fact that event C can occur for any value obtained by the first
die, so it is independent of this one. This is not the case for event B because we cannot have a
sum of 9 if for example the first die gives 1 or 2, so the occurrence of B depends on the result
of the first die.

In the case of countable sample spaces, one should not confuse disjoint and independent events.
Indeed, if E and F are disjoint then they are not independent because if P (E) 6= 0 and P (F ) 6= 0
then, P (E ∩F ) = 0 because E ∩F = ∅ and P (E)×P (F ) 6= 0 because both are not zero which
means that E and F are not independent.

1.5.1 Conditional independence
The concept of independence can be extended to conditionally independent events.

Definition 8.
Two events A and B are conditionally independent given another event C such that P (C) >
0 if :

P (A ∩B|C) = P (A|C)× P (B|C)

If A and B are conditionally independent, then we have P (A|B,C) = P (A|C). Indeed:

P (A|B,C) =
P (A ∩B|C)

P (B|C)
=
P (A|C)× P (B|C)

P (B|C)
= P (A|C)

Example 15. In a box there are two coins, the first is fair and the second is biased so that
p(H) = 1. We choose a coin at random and toss it twice. Let define the following events:

- A: the event that the first toss gives head (H).
- B: the event that the second toss gives head (H).
- C: the event that the first coin is chosen.

Find P (A|C), P (B|C), P (A ∩B|C), P (A), P (B), P (A ∩B)

Solution
P (A|C) = P (B|C) = 1

2
P (A ∩B|C) = 1

4 = 1
2 ×

1
2 = P (A|C)P (B|C)

Therefore, A and B are conditionally independent.



CHAPTER 1. INTRODUCTION TO PROBABILITY 31

Using the total probability rule, we get:

P (A) = P (A|C)P (C) + P (A|Cc)P (Cc) =
1

2
× 1

2
+ 1× 1

2
=

3

4

P (B) = P (B|C)P (C) + P (B|Cc)P (Cc) =
1

2
× 1

2
+ 1× 1

2
=

3

4
P (A ∩B) = P (A ∩B|C)P (C) + P (A ∩B|Cc)P (Cc)

= P (A|C)P (B|C)P (C) + P (A|Cc)P (B|Cc)P (Cc)

=
1

2
× 1

2
× 1

2
+ 1× 1× 1

2
=

5

8

Here, we can notice that A and B are not independent because :

P (A ∩B) =
5

8
6= P (A)P (B) =

9

16

Let’s code!
The code of the previous example.
#Code111.py

from sympy.stats import Coin, density, given, FiniteRV, P
from sympy import Symbol, Eq
import sys;sys.path.append(’../lib’)
from utils import get_Omega,set_Product

#pmf_i: returns the probability of getting tail in the ith toss of coin omega[0]
pmf_i = (lambda omega, i :

(density(cf).dict[omega[i]] if omega[0]==1 else density(cu).dict[omega[i]]))

# The outcome is encoded as follows (H=1, T=2):
# chosen coin * 100 + 1st toss * 10 + 2nd toss
encode_omega = (lambda o:

o[0]*100+(1 if o[1]==H else 2)*10+(1 if o[2] == H else 2))
get_proba = lambda o : PC[o[0]] * pmf_i(o, 1) * pmf_i(o, 2)

H=Symbol(’H’)

# PC: chosen coin, cu: unfair coin, cf: fair coin
PC, cu, cf = { 1:1/2, 2:1/2}, Coin(’CU’, 1) , Coin(’CF’)
omegaPC , omegaC = PC.keys(), get_Omega(cf)

# generates the SS of the experiment (X,Y,Z):
# X is the chosen coin, Y, Z is the outcome of resp, the 1st and 2nd toss
Omega = set_Product([omegaPC, omegaC, omegaC])
dist = { o: PC[o[0]]* pmf_i(o, 1) * pmf_i(o, 2) for o in Omega }
print("Distribution : ", dist)

# Encodes the distribution’s outcomes as numbers to make it easy for events handling
dist_encoded = { encode_omega(o) : get_proba(o) for o in Omega }
print("Encoded distribution : ",dist_encoded)

X = FiniteRV(’X’, dist_encoded)
A = X % 100 < 20 ; print("Probability of getting T in the first toss: %0.2f" % P(A))
B = X % 10 < 2 ; print("Probability of getting T in the second toss: %0.2f" % P(B))
C = X < 200 ; print("Probability of choosing the first coin: %0.2f" % P(C))
AB = Eq(X % 100,11) ; print("Probability of A and B: %0.2f" % P(AB))

AGC = given(A,C) ; print("Probability of A|C: %0.2f" % P(AGC))
BGC = given(B,C) ; print("Probability of B|C: %0.2f" % P(BGC))
ABGC = given(AB,C) ; print("Probability of A et B | C: %0.2f" % P(ABGC))

#______________________________ Output ______________________________________
# Distribution: {(2, T, T): 0, (2, H, H): 0.5, (2, T, H): 0, (2, H, T): 0,
# (1, T, T): 0.125, (1, H, T): 0.125, (1, T, H): 0.125, (1, H, H): 0.125}
# Encoded distribution: {222: 0, 211: 0.5, 221: 0, 212: 0, 122: 0.125,
# 112: 0.125, 121: 0.125, 111: 0.125}
# Probability of getting T in the first toss: 0.75
# Probability of getting T in the second toss: 0.75
# Probability of choosing the first coin: 0.50
# Probability of A and B: 0.62
# Probability of A|C: 0.50
# Probability of B|C: 0.50
# Probability of A et B | C: 0.25
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1.6 Exercises
Exercise 1.
Consider the following experiments :
- R1 : The gender of the delegate chosen from a class of 20 students.
- R2 : The distance between the dart and the center of the target in the game of darts (the target
has 30cm diameter).
- R3 : The IP address of the first website visited after a Google search (IP addresses are of the
form a.b.c.d such that a, b, c, d are numbers between 0 and 255).
- R4 : The numbers of the balls obtained from a drawing without replacement of two balls (one
after another) from an urn containing five numbered balls.
- R5 : The total time required to empty a water tank of volume V equipped with a valve of
diameter D.
- R6 : The choice of a class among 6 classes and the choice of the math teacher among 3 teach-
ers for this class.
- R7 : Number of births in a hospital per day
- R8 : The maximum duration of the delay of the students who arrive at a course of 60 mns.
- R9 : Throwing a bar B inside a circle C, then observing the angle between the horizontal
diameter of C and B.
- R10 : Throwing a bar B of length l on a plane in which a circle C of diameter D is drawn and
observing if B falls inside C.

1- For each experiment determine if it is random or not, if the answer is yes, give its na-
ture (simple / compound), its sample space and specify its type (discrete / continuous).
2- Implement experiments 1, 4, 6, 9 and 10 in Python.

Exercise 2.
1- Give the measurable space corresponding to the trivial σ-algebra and that of the maximal
σ-algebra of REs 1,4, 6, 9, 11 of exercise 01.
2- Consider the following sets of parts of Ω = {1, 2, 3} :
A- F = {{1, 2}, {1, 2, 3}}
B- F = {{}, {1}, {1, 2, 3}, {2, 3}}
C- F = {{}, {1}, {2}, {2, 3}}
D- F = {{}, {1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2}, {1, 2, 3}}
Which ones are σ-algebra.

Exercise 3.
Give a measurable space that corresponds to a RE with a non-trivial and non-maximal σ-algebra.

Exercise 4.
For the measurable spaces of the REs of exercise 01, give :
1- Examples of events
2- Examples of disjoints events.

Exercise 5. Coding
Write the Python code that :
1- Generates the trivial and maximal σ-algebra of a given finite set.
2- Checks if a set of part of a given finite set is a σ-algebra.
3- Checks if a set is an event of a given RE.
4- Returns the union and the intersection of a collection of parts of Ω

Exercise 6. Coding
Using the class Die with 4 faces of the module sympy.stat (see chapter7)
1- Model the RE of tossing two Dice. Print its sample space.
2- Write a lambda expression of the event E1 "the sum of the outcome is prime".
3- Write a lambda expression of the event E2 " the product of outcomes is greater than k" (k
given as argument).
4- Print event E1 with its complement.
5- Print event E2, its complement, its union and its intersection with E1.
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Exercise 7. Coding
Using the class Die with 8 faces of module sympy.stat (see chapter 7):
1- Print its sample space.
2- Write a lambda expression of the event "the outcome is multiple of k" (k given as argument).
3- Write a lambda expression of the event "the outcome is less than k"(k given as argument).
4- Print event A "the outcome is multiple of 2" and its complement.
5- Print event B "the outcome is multiple of 7", its complement, its difference and its symmetric
difference with A.

Exercise 8.
1- Find c so that the following applications are probabilities :
i- f(k) = c/k! such that k ∈ N
ii- f(k) = cxk such that 0 < x < 1 and k ∈ N

Exercise 9. Coding
1- Write a Python function that returns the non equally likely distribution of a finite sample
space Ω of n elementary events, where ei has the probability pi = i/

∑n
k=1 k.

2- Print the probability of events A = {i est pair } and B = {i < n/2}.

Exercise 10.
Consider a random experiment that consists in tossing three fair coins.
1- What is the probability that the outcome of the third coin is different from the outcomes of
the two first ones ?
2- Coding. Write the Python code that simulates this experiment.

Exercise 11.
Consider a family of events {Ei}{1≤i≤m} of the measurable space (Ω,F , P ). Let {Ai}{1≤i≤k} be
a sub collection of events from this family satisfying the following conditions :
i. P (Ai) = 1

m ,∀1 ≤ i ≤ k
ii. P (Ak|A1, A2, ..., Ak−1) = 1

m−k+1 , ∀1 ≤ k ≤ m

1- Demonstrate the following property

P (Ak, Ak−1, ..., A2, A1) =
(m− k)!

m!

2- For m large enough, demonstrate that:

P (Am ∪Am−1 ∪ ... ∪A2 ∪A1) ≈ 1− 1

e

* For question 2, use the following formula :
∑∞
n=0

xn

n! = ex

Exercise 12.
1. Prove property 3 (the rule of union) of proposition 1.
2. Prove property 5 (the monotonicity) of proposition 1.

Exercise 13.
A fair coin is tossed 80 times. What is the probability of having exactly 40 tails?

Exercise 14.
What is the probability that two different faces each appear twice in the roll of 4 dice?
Coding. Implement the solution of this exercise by:
1. Generating the elements of Ω, the associated events and calculating the requested probability.
2. Calculating the same probability using combinatorial analysis.

Exercise 15.
Two dice are rolled. What is the conditional probability that the sum of the two is equal to 6
given that the two obtained values are different.
Coding. Implement the solution of this exercise by:
1. Generating the elements of Ω, the associated events and calculating the requested probability.
2. Calculating the same probability using combinatorial analysis.
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Exercise 16.
Consider an urn containing 8 balls, 2 red and 6 of other colors different from red. What is the
probability of having to draw at least 3 balls before getting the first red ball.
Coding. Write the Python code that calculates the requested probability using: 1. combinatorial
analysis and 2. the chain rule.

Exercise 17.
Prove proposition 2 of the conditional probability.

Exercise 18.
Consider a committee that contains 8 men and 6 women. Two people are chosen to be responsible
of this committee.
1- What is the probability that the second chosen person is a woman given that the first one is
a man?
2- Write the Python code of this experiment.

Exercise 19.
We have three classes, each has 20 students.
- Class 1 contains 16 students from district A and 4 from district B
- Class 2 contains 14 students from district A and 6 from district B.
- Class 3 contains 12 students from district A and 8 from district B.
We choose a class randomly, then a random student is chosen from that class.
1- What is the probability that the chosen student is from district B?
2- Suppose we have chosen a student from district A, what is the probability that he is from class
1.
3- Write the Python code of this experiment.

Exercise 20. Two players play a game that consists of, in turn, drawing a question at random
and answering it, the first who gives a false answer loses the game. The first player has a
probability p1 of answering correctly and the second has a probability p2 to answer correctly.
What is the probability that the first player loses the game.

Exercise 21. [10]
In a murder case, two fugitives X and Y are suspected. After an initial investigation, it turns
out that both of them have the same probability of being the killer, that the real killer has group
A blood, and 10% of the population have that blood group. Another investigation reveals that X
has type A blood group, but Y’s blood type is unknown. What is the probability that X is the
killer?

Exercise 22.
Two dice are rolled. Let E be the event that the first gives an even number and F the event that
the sum of the two is odd. Are E and F independent?

Exercise 23.
A computer application contains 4 errors: e1, e2, e3, e4. In the verification phase, the application
is tested by several testers independently from each another. Each tester has a 1/3 probability
of finding and correcting each error. It is assumed that the errors are independent of each other
and so are the tests.
1. What is the probability that error e1 will not be corrected at the end of the nth test?
2. What is the probability that all errors will be corrected at the end of the nth test?
3. How many testers do we need to have a probability greater than or equal to 0.9 to correct all
the errors?

Exercise 24.
A person participates in a game. He is in front of three boxes, one of the three contains an
amount of money and the other two are empty. The participant must choose a box. He either
knows the winning box with probability p or guesses it (with probability 1 − p). What is the
probability that the participant already knew the winning box (cheated) given that he has chosen
the one that contains the amount of money.
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Exercise 25.
We have two boxes, the first B1 contains 2 white balls and 7 black balls and the second B2

contains 5 white balls and 6 black balls. We toss a coin, if we get a Head we choose B1 otherwise
B2 is chosen, and then we draw a ball from the chosen box and put it back in the other box. We
repeat this experiment m times, we are interested in the color of the last drawn ball.
1. For m = 2, find the probability that the coin toss sequence is heads and tails given that the
last ball drawn is white.
2. Write the Python code that models this experiment.

1.7 Solutions
Solution 1.
- R1 : Yes, Simple, Ω1 = {M,F} Discrete.
- R2 : Yes, Simple, Ω2 = [0, 15], Continuous
- R3 : Yes, Simple, Ω3 = {a.b.c.d|a, b, c, d ∈ {0, ..., 255}}, Discrete
- R4 : Yes, Compound, Ω4 = {(b1, b2) ∈ {1, ..., 5}2|b1 6= b2}, Discrete
- R5 : No, The time required to empty the tank can be calculated as a function of V and D.
- R6 : Yes, Compound, Ω6 = {(C,E)|C ∈ {1, ..., 6}, E ∈ {1, 2, 3}}, Discrete
- R7 : Yes, Simple, Ω7 = {0, 1, 2, 3, ...} = N, Discrete
- R8 : Yes, Simple, Ω8 = [0, 60], Continuous
- R9 : Yes, Simple, Ω9 = [0, 2π], Continuous
- R10 : Yes, Simple, Ω10 = {I,O}, Discrete

Solution 2.
1- Trivial and maximal σ-algebra:
a- R1, measurable space with trivial σ-algebra :
({M,F}, {{}, {M,F}}) and maximal σ-algebra : ({M,F}, {{}, {M}, {F}, {M,F}}).
b-R4, measurable space with trivial σ-algebra : (Ω4, {{},Ω4}) and maximal σ-algebra : (Ω4, 2

Ω4).
c-R6, measurable space with trivial σ-algebra : (Ω6, {{},Ω6}) and maximal σ-algebra : (Ω6, 2

Ω6).
d-R9, measurable space with trivial σ-algebra : (Ω9, {{},Ω9}) and maximal σ-algebra : (Ω9, 2

Ω9).
e- R11, measurable space with trivial σ-algebra : (Ω11, {{},Ω11}) and maximal σ-algebra :
(Ω11, 2

Ω11).
2- σ-algebra:
A- No, it does not contain the empty set.
B- Yes, it satisfies all the properties of the σ-algebra on Ω.
C- No, no sample space.
D- Yes, maximal σ-algebra.

Solution 3.
Consider the RE that consists of rolling a die with 4 faces, so its random space is Ω = {1, ..., 4},
we choose the set F = {{}, {2, 3, 4}, {1},Ω} that satisfies the properties of the σ-algebra on Ω.
(Ω,F) is a measurable space F non-trivial and non-maximal.

Solution 4.
- R1 : {M}, {M} ∩ {F} = ∅
- R2 : {x ≤ 10}, {x ≤ 5} ∩ {10 ≤ x ≤ 15} = ∅
- R3 : {x|x starts with 192}, {x|x starts with 192} ∩ {x|x starts with 178} = ∅
- R4 : {(b1, b2), (b3, b4)}, {(b1, b2), (b3, b4)} ∩ {(b2, b1), (b4, b3)} = ∅
- R6 : {(C1, E2), (C3, E1)}, {(C1, E2), (C3, E1)} ∩ {(C2, E3), (C4, E2)} = ∅
- R7 : {x ≥ 10}, {x < 10} ∩ {10 ≤ x ≤ 20} = ∅
- R8 : {x ∈ [0, 15]}, {x ∈ [0, 10]} ∩ {x ∈]10, 15]} = ∅
- R9 : {a ∈ [0, π/2]}, {a ∈ [0, π/4]} ∩ {a ∈ [π/3, π/2]} = ∅
- R10 : {I}, {I} ∩ {O} = ∅

Solution 5. codage

Solution 6. codage

Solution 7. codage
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Solution 8.
1- f(k) = c/k! for k ∈ N
f must satisfy the three conditions of probability : positivity, normality and additivity.
i- Positivity : c must be positive c ≥ 0
ii- Additivity : f satisfies this condition since it is defined on a countable set.
iii- Normality : f must satisfy

∑∞
k=0 f(k) = 1 then,

∑∞
k=0 c/k! = c

∑∞
k=0 1/k! = ce = 1

So for c = 1/e, f is a probability.

2- f(k) = cxk for k ∈ N
f must satisfy the three conditions of probability : positivity, normality and additivity.
i- Positivity : c must be positive c ≥ 0
ii- Additivity : f satisfies this condition since it is defined on a countable set.
iii- Normality : f must satisfy

∑∞
k=0 f(k) = 1 then,

∑∞
k=0 cx

k = c
∑∞
k=0 x

k = c/(1 − x) = 1
puisque 0 < x < 1.
So for c = 1− x, f is a probability.

Solution 9. coding

Solution 10.
1. Ω = {h, t}3, E : {(i, j, k) ∈ Ω|k 6= i and k 6= j}, P (E) = 1/4

Solution 11.
Consider a sub collection of events {Ai}{1≤i≤k} from of {Ei}{1≤i≤m} that satisfies (i) and (ii)
(1 ≤ k ≤ m).

1- We demonstrate (1) by induction on k.
For k = 1, this case is verified using hypothesis (i) we have : P (Ak) = 1

m
We assume that the property is true for k and we demonstrate it for k + 1 ≤ m:

P (Ak+1, Ak, ..., A2, A1) = P (Ak+1|Ak, ..., A2, A1)P (Ak, ..., A1)

=
1

(m− k + 1)

(m− k)!

m!

=
(m− (k + 1))!

m!

So the property is true.
2- Let m be a large number, we apply the inclusion-exclusion rule :

P (Am ∪ ... ∪A1) =

m∑
k=1

P (Ak)−
∑

i≤j≤m

P (Ai, Ai) + ...+ (−1)m−1(P (Am, ..., A2, A1)

= C1
m

1

m
− C2

m

(m− 2)!

m!
+ C3

m

(m− 3)!

m!
+ ...+ (−1)m−1C0

m

1

m!

=
1

1!
− 1

2!
+

1

3!
+ ...+ (−1)m−1 1

m!

=

m∑
k=1

(−1)k−1

k!
≈ 1− e−1 for a large m

Solution 12.
3- Union: P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )

E ∪ F = (E − F ) ∪ (F − E) ∪ (E ∩ F )

(E − F ), (F − E) and (E ∩ F ) are disjoints
P (E ∪ F ) = P (E − F ) + P (F − E) + P (E ∩ F )

= P (E)− P (E ∩ F ) + P (F )− P (E ∩ F ) + P (E ∩ F )

= P (E) + P (F )− P (E ∩ F )
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5- Monotonicity: ∀E,F ∈ F , E ⊂ F ⇒ P (E) ≤ P (F ).

P (F ) = P (E ∪ EcF ) = P (E) + P (EcF )− P (E ∩ EcF ) = P (E) + P (EcF ) ≥ P (E)

Such that EcF is the complement of E in F

Solution 13.
In this experiment, the sample space is made up of all the heads and tails sequences of length
80. Its size is therefore 280 sequences. The number of sequences having exactly 40 tails is equal
to C40

80 (see appendix A), so the probability of having exactly 40 tails is: C40
80

280 .
In order to calculate this value, we use the following Stirling approximation: n! ≈

√
2πn(ne )n

for a sufficiently large value of n (n ≥ 10) and e = 2.718. Which gives 1
2
√
π10

= 0.089.

Solution 14.
Ω = {1, .., 6}4
E is the event of having two different heads each appearing twice.
We have C2

6 possibilities of the two different heads that appear and for each of the possibilities,
there are 4!

2!2! = 6 of possible arrangements (permutations with repetition).

So P (E) =
6× 6!

2!4!

|Ω| = 60
64 .

Solution 15.
The set of all possible outcomes is made up of 36 equally likely elements. Let A be the event that
the sum of the two is equal to 6, and B the event that the outcomes are different. In all, there
are 30 outcomes with different values and 4 of them have the sum equal to 6. Then P (A∩B) = 4

and P (B) = 30. So, P (A|B) = P (A∩B)
P (B) = 2

15

Solution 16.
Let Ei be the event that the drawn ball from the ith draw is not red.
Let E be the event of having to draw at least three balls before having the first red ball.
P (E) = P (E1 ∩ E2 ∩ E3) using the chain rule:
P (E) = P (E1)P (E2|E1)P (E3|E1, E2) = 6

8 ×
5
7 ×

4
6 = 5

14

Solution 17.
We demonstrate that P.|A satisfies the properties of a probability on the measurable space (A, 2A):
i- P.|A(A) = P (A∩A)

P (A) = 1

ii- Consider a family of mutually exclusive events {Ei}i>0 :
P.|A(

⋃
i>0Ei) =

P ((
⋃
i>0 Ei)∩A)

P (A) =
P (

⋃
i>0(Ei∩A))

P (A) =
∑
i>0

P (Ei∩A)
P (A) =

∑
i>0 P.|A(Ei)

Solution 18.
1.The fact that the first chosen person is a man, reduces the sample space to 13 persons of which
6 women and 7 men. So the probability that the second chosen person is a woman is 6/13 (using
the new sample space).
2. Coding.

Solution 19.
1. Let EA, EB be the event that the student is from district A, B respectively.
Let Ci the event that the student is from class i.
Using the rule of total probability:

P (EB) = P (EB ∩ C1) + P (EB ∩ C2) + P (EB ∩ C3)

= P (EB |C1)P (C1) + P (EB |C2)P (C2) + P (EB |C3)P (C3)

= 4/20× 1/3 + 6/20× 1/3 + 8/20× 1/3 = 3/10.

2. The probability that the student is in class 1 given that he is from district A. By applying
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Bayes rule:

P (C1|EA) =
P (C1 ∩ EA)

P (EA)

P (C1 ∩ EA) = P (EA ∩ C1) = P (EA|C1)P (C1) =
16

20
× 1

3

P (C1|EA) =
8

30
× 10

7
=

8

21

Solution 20. Let define events: E = "player1 loses" and Ek: "player1 loses on the kth turn".

P (Ek) = (p1p2)k−1(1− p1) so
P (E) = P (E1 ∪ E2 ∪ E3....)

Since the Ei are disjoint events then:

P (E) = P (E1) + P (E2) + P (E3) + · · ·
= (1− p1)[1 + p1p2 + (p1p2)2 + (p1p2)3...]

=
1− p1

1− p1p2

Solution 21.
Consider the two events: H : X is the real killer and E : X has blood type A.
If we use the ODDs method :

OH|E =
P (H|E)

P (Hc|E)
and P (H|E) =

OH|E

OH|E + 1

P (H|E)

P (Hc|E)
=

P (H)

P (Hc)
× P (E|H)

E|Hc
=

1/2

1/2
× 1

0.1
= 10

So, P (H|E) = 10
11 .

If we apply directly the Bayes rule :

P (H|E) =
P (E|H)× P (H)

P (E|H)× P (H) + P (E|Hc)× P (Hc)
=

1× 1/2

1× 1/2 + 0.1× 1/2
=

0.5

0.55
=

10

11

Solution 22.
E = {(i, j)|i ∈ {2, 4, 6}, 0 ≤ j ≤ 6}
P (E) = 18/36 = 1/2
F = {(i, j)|i+ j ∈ {3, 5, 7, 9, 11} and 0 ≤ i, j ≤ 6}
P (F ) = 18/36 = 1/2
E ∩ F = {(i, j)|i+ j ∈ {3, 5, 7, 9, 11}, i ∈ {2, 4, 6}, 0 ≤ j ≤ 6}
P (E ∩ F ) = 9/36 = 1/4 = P (E)P (F )
So E and F are independent.

Solution 23.
1. Let An be the event that error e1 is not corrected at the end of the nth test, and let Ei be
the event that error e1 is not corrected by the ith tester. P (Ei) = 2/3 and the events Ei are
independent.
P (An) = P (E1 ∩ E2 ∩ ... ∩ En) =

∏n
i=1 2/3 = (2/3)n

2. Let Bn be the event that all the errors are corrected at the end of nth test and Fi the event
that error ei is not corrected at the end of nth test.
P (Fi) = (2/3)n ∀i = 1, . . . , 4.
P (Bn) = P (F c1 ∩ F c2 ∩ F c3 ∩ F c4 ) =

∏4
k=1 (1− (2/3)n) = (1− (2/3)n)4
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3.

P (Bn) ≥ 0.9⇐⇒ (1− (2/3)n)4 ≥ 0.9

⇐⇒ n log(2/3) ≤ log(1− 0.91/4)

⇐⇒ n ≥ log(1− 0.9)1/4

log(2/3)

⇐⇒ n ≥ 10.

Solution 24.
K is the event that the person knows the box that contains the money.
S the event that the selected box contains the amount of money.

P (K|S) =
P (S|K)P (K)

P (S|K)P (K) + P (S|Kc)P (Kc)
=

p

p+ (1/3)(1− p)

Solution 25.
HT is the event of getting Head then Tail when the coin is flipped twice.
B is the event that the second moved ball is white.

P (HT |B) =
P (B|HT )P (HT )

P (B|HH)P (HH) + P (B|HT )P (HT ) + P (B|TH)P (TH) + P (B|TT )P (TT )

At each stage, each box has 1/2 probability of being chosen, then the probability of choosing a
white ball in the second draw depends on both the chosen box and the first drawn ball.
P (B|FF ) = 2/9× 1/8 + 7/9× 1/4
P (B|HT ) = 1/2× 2/9 + 7/9× 5/12
P (B|TH) = 5/11× 3/10 + 6/11× 1/5
P (B|TT ) = 5/11× 2/5 + 6/11× 1/2

P (HT |B) = 0.32

Let’s code!
2. Coding
#exo1_24.py

from itertools import product
import copy

def prob_urne_boule(u,i):
return u[i[2]][i[3]]/(u[i[2]][’B’] + u[i[2]][’N’])

u0={ ’F’:{’B’:2,’N’:7}, ’P’:{ ’B’:5, ’N’:6}}
omega=list(product([’F’,’P’],[’B’,’N’],[’F’,’P’],[’B’,’N’]))
PB = 0; PBFP=0
for i in omega:

u = copy.deepcopy(u0)
i0c = ’F’ if i[0] == ’P’ else ’P’

# tirage et transfert de boule
u[i[0]][i[1]] = u[i[0]][i[1]] - 1; u[i0c ][i[1]] = u[i0c ][i[1]] + 1

P1 = prob_urne_boule(u0, (None,None, i[0],i[1]))
P = 0.25 * P1 * prob_urne_boule(u,i)

if i[3] == ’B’: PB = PB + P
if i[0] == ’F’ and i[2]==’P’ and i[3]==’B’: PBFP += P
print(i[0]," ",i[1]," %0.2f" %P, ’ \t ’, u)

print(’P(B) = %0.2f ’%PB, ’ \t P(F,P,B) = %0.2f’ % PBFP, ’ \t P(FP|B) = %0.2f’ % (PBFP/PB) )

#______________________________ Output ______________________________________
# F B 0.01 {’F’: {’B’: 1, ’N’: 7}, ’P’: {’B’: 6, ’N’: 6}}
# F B 0.05 {’F’: {’B’: 1, ’N’: 7}, ’P’: {’B’: 6, ’N’: 6}}
# .....
# P N 0.07 {’F’: {’B’: 2, ’N’: 8}, ’P’: {’B’: 5, ’N’: 5}}
# P N 0.07 {’F’: {’B’: 2, ’N’: 8}, ’P’: {’B’: 5, ’N’: 5}}
# P(B) = 0.34 P(F,P,B) = 0.11 P(FP|B) = 0.32



Chapter 2

Random Variables

2.1 Introduction
When we have an experiment, such as coin tossing for example, and we assign a value to each
elementary outcome, then the set of the obtained values defines a random variable. For instance,
if we give value 10 to heads and value 20 to tails (suppose that these are the amount in Dinar
that we are going to win by getting heads or tails), then we will have defined a random variable
whose set of values is {10, 20}.
More formally, a random variable X is a real-valued function that assigns a value to each pos-
sible outcome ω of a random experiment in the probability space (Ω,F , P ).
Let B be the set of real subsets resulting from the finite union and intersection of the intervals
of R called the set of Borelians which is the σ-algebra generated by the intervals of R.

Definition 1.
Consider a random experiment whose probability space is (Ω,F , P ).
A random variable r.v is the function X : Ω −→ R such that for any Borelian B ∈ B(R),
the image of the set B (X−1(B) = {ω ∈ Ω|X(ω) ∈ B} noted {X ∈ B}) is an event of Ω
(element of the F σ-algebra of Ω).

X : Ω −→ R

ω 7−→ x = X(ω)

Xis a r.v =⇒ ∀B ∈ B(R) : X−1(B) ∈ F

The domain of a r.v X is the sample space of the random experiment (Ω)
The rank RX of a r.v X (X(Ω)) is the set of the possible values that it can take in R.

The event {X ∈ {x}} will be noted {X = x} (respectively {X ∈] − ∞, x]} = {X ≤ x},
{X ∈] − ∞, x[} = {X < x} , {X ∈ [x,+∞[} = {X ≥ x}, {X ∈]x,+∞[} = {X > x},
{X ∈]x1, x2]} = {x1 < X ≤ x2})

Figure 2.1: Random variable definition

40
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Definition 2.
Let X be a r.v, we call the probability distribution of X (the law of X, noted PX) the
application PX : B(R) −→ [0, 1] which associates to any Borelian B, the probability of the
event {X ∈ B}

PX : B(R) −→ [0, 1]

B 7−→ PX(B) = P ({X ∈ B}) = P (X ∈ B)

The diagram below shows the composition of the application X and P to define the law of X
(PX)

F(Ω) [0, 1]

B(R)

P

X
PX

Figure 2.2: Random variable probability distribution (law)

Example 1. Suppose our experiment consists in flipping two coins. Let X be the function that
associates the number of the obtained heads with each result of this experiment, the values taken
by this function are 0, 1 and 2. For all i ∈ {0, 1, 2}, we denote by Bi the class of Borelians which
contain only i. Any other Borelian is written as a union of the disjoint Borelians of these three
classes. The inverse image of a borelian Bi is the inverse image of {i} (X−1(Bi) = X−1({i}))
which is in F and the inverse image of any other Borelian is the union of the inverse images of
the disjoint Borelians of classes Bi which compose the latter, this image is in F so X is a r.v.
Find PX .

Solution
X is a r.v (X : Ω −→ R) its domain is Ω = {H,T}2, its rank is RX = {0, 1, 2} and its distribution
is PX :

PX(B0) = P (X ∈ B0) = P (X−1(B0)) = P (X−1({0})) = P{(H,H)} = 1/4

PX(B1) = P (X ∈ B1) = P (X−1(B1)) = P (X−1({1})) = P{(H,T ), (T,H)} = 2/4

PX(B2) = P (X ∈ B2) = P (X−1(B2)) = P (X−1({2})) = P{(T, T )} = 1/4

For the other Borelians, we apply the additivity rule of the probability P .

Definition 3.
Let X be a r.v, the distribution function of X (denoted by FX) is the function defined from
R to [0, 1] which for all x ∈ R associates the probability of the Borelian ]−∞, x] (also noted
X ≤ x):

FX : R −→ [0, 1]

x 7−→ FX(x) = PX(]−∞, x]) = P (X ∈]−∞, x]) = P (X ≤ x)
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Also called the cumulative distribution function (cdf)

The diagram below shows the composition of the application PX and U that associates x ∈ R
with its semi-interval ]−∞, x] to define the cdf of X (FX)

B(R) [0, 1]

R

PX

U
FX

Example 2. Following the previous example, we have:

PX(x) =

 1/4 if x = 0 or x = 2

2/4 if x = 1

and which will be noted:
PX =

1

4
1{0,2} +

2

4
1{1}

Find FX the distribution function of X (cdf).

Solution
We have FX(x) = P (X ≤ x) = P (X ∈]−∞, x])

FX(x) = 0, x < 0

FX(x) = PX(B0) = 1/4, 0 ≤ x < 1

FX(x) = P (X ≤ 0) + P (0 < X ≤ x) = FX(0) + PX(B1) = 1/4 + 2/4 = 3/4, 1 ≤ x < 2

FX(x) = P (X ≤ 1) + P (1 < X ≤ x) = FX(1) + PX(B2) = 3/4 + 1/4 = 1, x ≥ 2

FX =
1

4
1[0,1[ +

3

4
1[1,2[ + 1[2,∞[

In order to define an application on Ω in Python, we must first create a function or a lambda
expression that associates a value to each elementary event ω of Ω, then we apply this associa-
tion to Ω using the map(function, iterator) function and the result will be matched to the zip()
function. Finally, we create a dictionary for the final result with the dict() function.
From utils we import the functions: createFiniteRV which creates the dictionary of a finite r.v
according to the steps described in the first paragraph, getCDF() allows to define the cdf from a
dictionary of the distribution of a finite r.v and getInversedFiniteRV() returns the inverse image
of this r.v. The function plot_function() plots the cdf using the matplotlib library and its pyplot
module. To plot the probability distribution we use the function bar() and step() for the cdf.

Let’s code!

# utils.py (Continuation)

# sort_PDF: returns a key sorted distribution of the argument
def sort_PDF(prob_RV):

return {key:prob_RV[key] for key in sorted(prob_RV.keys())}

# zip : create an iterator that aggregate a collection’s elements
# map : applies a function to the elements of a list.
# create_FiniteRV: Create a distribution by mapping a function on Omega’s elements
def create_FiniteRV(Omega, map_X):

return dict(zip(Omega, map(map_X, Omega)))

# get_InversedFiniteRV: inverses a finite RV distribution (value:key)
def get_InversedFiniteRV(finiteRV):

return {v:{i for i in finiteRV.keys() if finiteRV[i] == v } for k,v in finiteRV.items()}

# get_PMF: returns the probability distribution P_X of X
def get_PMF(finiteRV, probability_Omega):

inv_X = get_InversedFiniteRV(finiteRV)
prob_values = list(map(sum,

[[probability_Omega[omega] for omega in event] for event in inv_X.values()]))
return dict(zip(inv_X.keys(), prob_values))
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# accumulate : returns the reduced result by applying the given operation on a set
# get_CDF: cumulative distribution function CDF of X
def get_CDF(prob_RV):

sprob_RV =sort_PDF(prob_RV)# {key:prob_RV[key] for key in sorted(prob_RV.keys())}
return sprob_RV,dict(zip(sprob_RV.keys(), list(accumulate(sprob_RV.values()))))

# plot_Pdf_Cdf: plots PDF and CDF of RV X
def plot_Pdf_Cdf(pdf0, cdf0, choice =None):

first = list(pdf0.keys())[0]
last = list(pdf0.keys())[-1]
keys = [first-1] + list(pdf0.keys()) + [last+1]
pvalues = [0.0]+ list(pdf0.values())

fig = plt.figure()
ncols0 = 2 if choice == None else 1
axes = fig.subplots(nrows=1, ncols=ncols0)
axes[0].bar(keys, pvalues + [0.0], width=0.05)

if not choice:
cvalues = [0.0]+ list(cdf0.values())
axes[1].step(keys, [0.0]+ cvalues)

plt.show()
py: sympy.stats.cdf
(RExpr, ..) gives the cdf of
the r.v RExpr
RExpr: is a random
symbolic expression that
represents a r.v function of
another r.v.
sympy.stats.Density
(RExpr, ..) returns an
object that represents the
pmf of a d.r.v. Its dict
property gives the
corresponding dictionary.
sympy.stats.FiniteRV
(name, Density, ..) returns
an object which represents
finite d.r.v giving its pmf in
a dictionary form.

Let’s code!

#Code201.py

import sys;sys.path.append(’../lib’)
from utils import (set_Power, create_FiniteRV, get_InversedFiniteRV,get_PMF,

get_CDF,plot_Pdf_Cdf)

# Random Variable Implementation : Encapsulate the logic of RV X. p:Tail, f:head
distribution = {(’f’,’p’):1/4, (’p’,’f’):1/4, (’f’,’f’):1/4, (’p’,’p’):1/4}

Omega = set_Power({’p’,’f’}, 2) ;print(’Omega : ’,Omega)
prob_Omega = distribution ;print(’ProbaOmega : ’,prob_Omega)

#map_X: counts the number of tails
map_X = lambda a : a.count(’p’)
rv_X = create_FiniteRV(Omega, map_X) ;print(’RV dictionary : ’,rv_X)
rng_X = set(rv_X.values()) ;print(’RV Range : ’,rng_X)
inv_X = get_InversedFiniteRV(rv_X) ;print(’inversed RV : ’,inv_X)
pdf_X = get_PMF(rv_X, prob_Omega) ;print(’P_X RVProbLaw : ’,pdf_X)
pdf_X, cdf_X = get_CDF(pdf_X) ;print(’CDF of X : ’,cdf_X)

plot_Pdf_Cdf(pdf_X, cdf_X)

#______________________________ Output ______________________________________
# Omega : {(’f’, ’p’), (’p’, ’p’), (’f’, ’f’), (’p’, ’f’)}
# ProbaOmega : {(’f’, ’p’): 0.25, (’p’, ’f’): 0.25, (’f’, ’f’): 0.25, (’p’, ’p’): 0.25}
# RV dictionary : {(’f’, ’p’): 1, (’p’, ’p’): 2, (’f’, ’f’): 0, (’p’, ’f’): 1}
# RV Range : {0, 1, 2}
# inversed RV : {1: {(’p’, ’f’), (’f’, ’p’)}, 2: {(’p’, ’p’)}, 0: {(’f’, ’f’)}}
# P_X RVProbLaw : {1: 0.5, 2: 0.25, 0: 0.25}
# CDF of X : {0: 0.25, 1: 0.75, 2: 1.0}

Figure 2.3: Distribution and cdf curve (code201.py)



CHAPTER 2. RANDOM VARIABLES 44

Proposition 1. The properties of a cdf are:
1- Positive and bounded on the unit: 0 ≤ FX(x) ≤ 1
2- Monotone non-decreasing: x1 < x2 =⇒ FX(x1) < FX(x2)
3- Limits: limx→+∞FX(x) = FX(∞) = 1, limx→−∞FX(x) = FX(−∞) = 0
4- Right continuous: limx→a+FX(x) = FX(a+) = FX(a)
5- PX(a < x ≤ b) = FX(b)− FX(a), PX(X > a) = 1− FX(a), FX(b−) = PX(X < b)

2.2 Discrete random variables (d.r.v)
In this section we deal with the case where the rank of the r.v is countable. In this case it is
said to be discrete.

Definition 4.
A r.v X is discrete (d.r.v) if its rank RX is a finite or infinite countable set. i.e. RX =
{xi ∈ R}i∈I and I a finite or infinite countable part of N. In this case the law of X: PX is
a discrete law.

In addition to its probability law and its distribution function, it can be defined by the individual
probabilities of the elementary events.

Definition 5.
Let E be a set, we call function f : E −→ R a mass function if its domain of definition Df

is finite or infinite countable and it satisfies the following properties:
- ∀e ∈ Df , 0 ≤ f(e) ≤ 1
-
∑
ei∈Df f(ei) = 1

Let X be a d.r.v, the function pX defined from RX to [0, 1] which to all xi ∈ RX associates
the probability of {X = xi}:

pX : RX −→ [0, 1]

xi 7−→ pX(xi) = PX(X = xi) = pi

is called the probability mass function (pmf) of X and denoted pX .

The diagram below shows the composition of the application X and p to define the law of X
(pX) in discrete case.

Ω [0, 1]

RX

p

X
pX

If X is a d.r.v, then we can calculate:

PX({xi}) = P ({X = xi}) = P (X = xi) = pX(xi), ∀xi ∈ RX

PX(B) = P (X ∈ B) = P

( ⋃
xi∈B∩RX

{X = xi}

)
=

∑
xi∈B∩RX

P ({X = xi}) =
∑

xi∈B∩RX

P ({X = xi}) =
∑

xi∈B∩RX

pX(xi)

FX(x) = P (X ≤ x) =
∑

xi∈RX&xi≤x

P (X = xi) =
∑

xi∈RX&xi≤x

pX(xi)
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In case X is finite such that RX = {x0, x1, · · · , xn} and x0 ≤ x1 ≤ · · · ≤ xn, we have :

∀x ∈ [−∞, x0[, FX(x) = 0

∀x ∈ [xi, xi+1[, FX(x) = FX(xi−1) + pX(xi) = FX(xi−1) + pX(xi)1[xi,xi+1[(x)

∀x ∈ [xn,∞[, FX(x) = 1

Example 3. To prepare an exam, a teacher randomly chooses two exercises out of 10, four
of them are difficult to solve. Let the r.v X be the number of difficult exercises chosen for the
exam. What is the mass function of X ?

Solution
Let E (resp. Ec) be the set of easy (respectively difficult) exercises. The experiment consists
in choosing two exercises among E ∪ Ec. Since the result is unordered and without repetition,
then the space Ω is:

Ω = {{e1, e2}|(e1, e2) ∈ (E ∪ Ec)2 and e1 6= e2}

the number of possibilities is a combination of 2 among 10 (C2
10). The r.v X is defined by:

X : Ω −→ R

{e1, e2} 7−→ x = X({e1, e2}) = Nb_Difficult_Exercises({e1, e2}) = 1Ec(e1) + 1Ec(e2)

RX = {0, 1, 2}
pX(k) = P (X = k), ∀k ∈ RX

pX(0) = P ({{e1, e2}|(e1, e2) ∈ E2 and e1 6= e2}) =
C2

6

C2
10

=
1

3

pX(1) = P ({{e1, e2}|((e1 ∈ E and e2 ∈ Ec) or (e2 ∈ E and e1 ∈ Ec)) and e1 6= e2}) =
C1

6C
1
4

C2
10

=
8

15

pX(2) = P ({{e1, e2}|e1 ∈ Ec and e2 ∈ Ec and e1 6= e2}) =
C2

4

C2
10

=
2

15

pX(x) = 0 , ∀x /∈ RX

pX =
1

3
1{0} +

8

15
1{1} +

2

15
1{2}

Example 4. Let Ω be the sample space of a given random experiment and X an associated d.r.v
whose rank is RX = {1, 2, 3} and its pmf:

pX =
1

2
1{1} +

1

3
1{2} +

1

6
1{3}

1- Give its cumulative distribution function FX .
2- Write the Python code which models X and plot its pmf and cdf functions.

Solution
1- The cdf is given by: FX = 1

21[1,2[ + 5
61[2,3[ + 1[3,∞[

2- The following code models X, its pmf and its cdf.

Let’s code!

#Code202.py

import sys;sys.path.append(’../lib’)
from utils import get_CDF, plot_Pdf_Cdf, get_round_dic

#dic1: defines a r.v on Omega={o1.o2.o3}, dic2: defines the associated probabilities
dic1,dic2={’o1’:1,’o2’:2,’o3’:3 }, {1:0.5,2:0.33,3:0.17 }

rv_X = dict(dic1) ;print(’RV map : ’,rv_X)
rng_X = set(rv_X.values()) ;print(’RV Range : ’,rng_X)
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pdf_X = get_round_dic(dict(dic2)) ;print(’P_X RVProbLaw : ’,pdf_X)
pdf_X, cdf_X = get_CDF(pdf_X) ;print(’Cdf of X : ’,get_round_dic(cdf_X))

plot_Pdf_Cdf(pdf_X, cdf_X)

#______________________________ Output ______________________________________
# RV map : {’o1’: 1, ’o2’: 2, ’o3’: 3}
# RV Range : {1, 2, 3}
# P_X RVProbLaw : {1: 0.5, 2: 0.33, 3: 0.17}
# Cdf of X : {1: 0.5, 2: 0.83, 3: 1.0}

Figure 2.4: Curve of the pmf and cdf (code202.py)

The following code uses the predefined functions in sympy.stats: FiniteRV, density, cdf for the
r.v whose rank is {0, 1, 2, 3} and the following pmf:

pX =
1

10
1{0} +

2

10
1{1} +

3

10
1{2} +

4

10
1{3}

Let’s code!

#Code203,py

from sympy.stats import FiniteRV, density, cdf
import sys;sys.path.append(’../lib’)
from utils import get_CDF,plot_Pdf_Cdf, get_round_dic

# distribution of r.v X
pmf = {0:.1,1:0.2,2:.3,3:.4}

rv_X = FiniteRV(’X’,pmf) ;print(’RV Range : ’,set(pmf.keys()))
pdf_X = get_round_dic(density(rv_X).dict) ;print(’pdf_X : ’,pdf_X)
cdf_X = get_round_dic(cdf(rv_X)) ;print(’cdf_X : ’,cdf_X )
spdf_X, cdf_X = get_CDF(pdf_X) ;print(’Cdf of X : ’,get_round_dic(cdf_X))

plot_Pdf_Cdf(spdf_X, cdf_X)

#______________________________ Output ______________________________________
# RV Range : {0, 1, 2, 3}
# pdf_X : {0: 0.1, 1: 0.2, 2: 0.3, 3: 0.4}
# cdf_X : {0: 0.1, 1: 0.3, 2: 0.6, 3: 1.0}
# Cdf of X : {0: 0.1, 1: 0.3, 2: 0.6, 3: 1.0}

Figure 2.5: Curve of the pmf and cdf (code203.py)

2.3 Continuous random variables (c.r.v)
Unlike a discrete r.v, the rank of a continuous r.v is uncountable. This is the case for example
of a battery lifetime or the time until the arrival of the next earthquake or the amount of
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precipitation during a given period.
For the continuous case, we speak of the probability that the r.v takes a value in a given interval
instead of the probability of being equal to a given value. So for a c.r.v P (X = x) = 0 ∀x ∈ R
because by taking finer and finer units of measurement, the probability that the r.v is exactly
equal to x becomes zero.
For this reason, we cannot speak of a probability mass function in the continuous case, but
rather of a probability density function which is the limit (when it exists) of the probability that
X takes a value in the interval ]x, x+ ∆x] divided by the length of this interval (which is ∆x )
when ∆x −→ 0:

fX(x) = lim
∆x→0

PX(X ∈]x, x+ ∆x])

∆x
= lim

∆x→0

FX(x+ ∆x)− FX(x)

∆x
=
dFX(x)

dx
= F ′X(x)

if FX(x) is differentiable in x.
f(x) in fact measures the probability that X is close to x and not equal to x .

Definition 6.
Let X be a r.v and its corresponding distribution function FX . X is continuous if its rank
RX is an uncountable set.
A r.v X admits a density if the following limit exists:

fX(x) = lim
∆x→0

PX(X ∈]x, x+ ∆x])

∆x
= lim

∆x→0

FX(x+ ∆x)− FX(x)

∆x

In this case fX is called the probability density function of X and FX is differentiable and
its derivative is fX (fX(x) = F ′X(x) = dFX(x)

dx ).
The probability distribution of X is defined for any set B of real numbers, by the following
relationship:

PX(X ∈ B) =

∫
B

dP =

∫
x∈B

fX(x)dx

If B = [a, b] then P (X ∈ B) =
∫ b
a
fX(x)dx.

If a = b, then P (X ∈ B) =
∫ a
a
fX(x)dx = 0.

This explains that: P (X = x) = 0 ∀x ∈ R.
fX satisfies the following properties:

- Its domain of definition Df is uncountable.
- Positive: ∀x ∈ Df , fX(x) ≥ 0
- Integrable and normed:

∫
Df

fX(x)dx = 1

Example 5. Let X be a c.r.v and f is a function defined by:
fX(x) = ce−x/2 for x ≥ 0 and 0 otherwise. c is a positive constant (fX(x) = ce−x/21x≥0).

1- Find the value of c so that f is a density function.
2- Find the cumulative distribution function FX .
3- Find PX(2 < X < 4).

Solution

1. The function f is a density function if it verifies :
a. Df = R+

b. f(x) ≥ 0,∀c > 0.
c. Integrable and normed over Df if :∫ +∞
−∞ f(x)dx = 1 so :∫ +∞

−∞
f(x)dx =

∫
∞

0

ce−x/2dx = 2c = 1 so c = 1/2

2. The cumulative distribution function FX :

FX(x) =

∫ x

−∞
f(x)dx =

∫ x

0

1

2
e−x/2dx =

1

2
(1− e−x/2)
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3. The probability of 2 < X < 4:

PX(2 < X < 4) = F (4)− F (2) =
e−1 − e−2

2

2.4 Expectation and Variance

2.4.1 Expectation
In the case of a d.r.v, the expectation of X is the weighted average of the possible values that
X can take; each value is weighted by the probability that X takes that value. On the other
hand, if X is a c.r.v, the expectation is the area delimited by the curve of X times its density.

Definition 7.
Let X be a r.v, the expectation of X denoted by E(X) is defined in the general case by:

E(X) =

∫
B

XdP

1- If X is a d.r.v and pX its pmf, then:

E(X) =
∑

xi∈RX

xipX(xi)

2- If X is a c.r.v and fX its pdf, then:

E(X) =

∫
RX

xfX(x)dx

Proposition 2. Properties of Expectation
1- Constant : if X is constant (its value is c), then E(X) = c.
2- Indicator: ∀A ∈ F ,E(1A) = P (A)
3- Linearity: E(aX + bY ) = aE(X) + bE(Y )
4- Monotony : X < Y (orP (X < Y ) = 1) =⇒ E(X) < E(Y )
5- Function : φ : R −→ R (an increasing function):

Discrete case : E(φ(X)) =
∑
RX

φ(x)pX(x)

Continuous case: E(φ(X)) =
∫
RX

φ(x)fX(x)dx

2.4.2 Variance
The variance measures the dispersion of the values of X with respect to its expectation. A large
value of the variance means that X takes values far from the expectation, so the distribution is
very dispersed; on the other hand, a small value indicates that the distribution is concentrated
around its mean.

Definition 8.
The variance of X denoted V(X) is the expectation of the squares of the deviations of X
from its mean if it is defined.

V(X) = E((X − E(X))2), if it exists

The square root of V, σX = σ(X) =
√

V(X) is called the standard deviation of X.

Note that the variance has a different unit than that of X. If for example X is in meters, the
variance is in square meters; for this reason, we define standard deviation which is simply the
square root of the variance.
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Proposition 3. Variance Properties
1- Constant: if X is constant (its value is c), then V(X) = 0.
2- Positive: V(X) ≥ 0
3- V(X) = E(X2)− E2(X)

Example 6. If the pmf of a d.r.v X is given by:

pX =
2

3
1{1} +

1

3
1{2}

1- Calculate its expectation and its variance.
2- Write the Python code which models this r.v.

Solution

E(X) =
∑
xi∈RX xipX(xi) = 1× 2/3 + 2× 1/3 = 4/3.

E(X2) =
∑
xi∈RX x

2
i pX(xi) = 1× 2/3 + 4× 1/3 =2.

V(X) = E(X2)− E2(X) = 2− 16/9 = 2/9.
py: sympy.stats.E(RExpr,
..) returns a symbolic
expression which represents
the expectation of the given
RExpr.
py: sympy.stats.variance
(RExpr, ..) returns a
symbolic expression which
represents variance of the
given RExpr.

Let’s code!

#Code204,py

from sympy.stats import FiniteRV, density, cdf, E, variance
import sys;sys.path.append(’../lib’)
from utils import get_CDF,plot_Pdf_Cdf, get_round_dic,plt

pmf = {1:0.66,2:0.34}

rv_X = FiniteRV(’X’,pmf) ;print(’RV Range : ’,set(pmf.keys()) )
pdf_X = density(rv_X).dict ;print(’pdf_X : ’,pdf_X)
cdf_X = get_round_dic(cdf(rv_X)) ;print(’cdf_X : ’,cdf_X)
spdf_X, cdf_X = get_CDF(pdf_X) ;print(’Cdf of X : ’,get_round_dic(cdf_X))
E_X, V_X = E(rv_X), variance(rv_X) ;print(’E(X) : ’,round(E_X,2), ’, V_X : ’, round(V_X,2))

plot_Pdf_Cdf(spdf_X, cdf_X, E_X)

#______________________________ Output ______________________________________
# RV Range : {1, 2}
# pdf_X : {1: 0.66, 2: 0.34}
# cdf_X : {1: 0.66, 2: 1.0}
# Cdf of X : {1: 0.66, 2: 1.0}
# E(X) : 1.34 , V_X : 0.22

Figure 2.6: Curve of the pmf and the cdf (code204.py) in red: the expectation

2.4.3 Probability inequalities
There are several important inequalities in probability. The Markov and Chebychev inequalities
are at the base of several other inequalities, they allow us to have bounds on probabilities by
knowing only the expectation and/or the variance of the probability law.
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Proposition 4. Inequalities between P,E and V:
- 1- Cauchy-Schwartz:

E(XY )2 ≤ E(X2)E(Y 2)

- 2- Markov: Let X be a non-negative r.v and φ an increasing function,

P (φ(X) ≥ t) ≤ E(φ(X))

t

- 3- Chebychev:

P (|X − E(X)| ≥ c) ≤ V(X)

c2

- 4- Jensen: Let φ be a convex function:

E(φ(X)) ≥ φ(E(X))

Proof
2- Markov inequality (For the case φ = I is the identity map)

Let a be a given value
Consider the indicator 1X≥a r.v.
E(1X≥a) = P (X ≥ a)
X ≥ a1X≥a since X is non-negative
E(X) ≥ aE(1X≥a) = aP (X ≥ a)

Figure 2.7: Markov inequality

3- Chebychev inequality
(X − E(X))2 is a non-negative r.v

P ((X − E(X))2 ≥ c2) ≤ E((X − E(X))2)

c2
, we apply the inequality of Markov for a = c2

P (|X − E(X)| ≥ c) ≤ E((X − E(X))2)

c2
=

V(X)

c2

Example 7. If the number of requests processed by a server is a r.v X with an average of
500r/min. Find a limit to the probability that it processes at least 1000 requests in one minute.
If the variance is 100, find a limit to the probability that it processes between 400 and 600 requests
in a minute.

Solution

1. By the Markov inequality:

P (X ≥ 1000) ≤ 500

1000
=

1

2

2. By Chebychev inequality:

P (|X − 500| ≥ 100) ≤ σ2

1002
=

1

100
, so P (|X − 500| < 100) ≥ 1− 1

100
=

99

100
= 0.99
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Example 8. Three roommates want to decide who should cook dinner. They all flip a fair coin
at the same time, they repeat the experiment until one of them gets a different result than the
two others. What is the expectation of the number of required flips.

Solution
Let X be a r.v that gives the number of flips until a different value from the two others is
obtained. Its rank RX = N∗

For each ith flip, we have the universe Ωi = {P, F}3
Let Li be the event that the ith flip gives different results (Lci similar results).

Lci = {(P, P, P ), (F, F, F )}
P (Li) = 1− P (Lci ) = 3

4 = p
The realization of event X = k corresponds to having similar results (all heads or all tails) at
the first k − 1 flips and a different result at the kth flip.
(X = k) = (∩k−1

i=1 L
c
i ) ∩ Lk(intersection of disjoint events) therefore:

pX(k) = P (X = k) = P ((∩k−1
i=1 L

c
i ) ∩ Lk) = (1− p)k−1p, ∀k ∈ N∗

E(X) =

∞∑
k=1

kpX(k) =

∞∑
k=1

k(1− p)k−1p =
p

(1− (1− p))2
=

1

p

we could say that X counts the first success (getting different outcome), it is a geometric r.v.
Therefore its mean is 1/p.

Example 9. Let X be a d.r.v of rank RX = {−1, 0, 1, 2, 3}, its pmf pX(k) = 1/5 for k ∈ RX
and let Y = 2|X|.
1- Find the rank and the pmf of Y .
2- Write the Python code that models this situation.

Solution
1-RY = {2|x| s.t x ∈ RX} = {0, 2, 4, 6}, its pmf must be defined ∀k ∈ RY .

pY (k) = P (Y = k) = P ({2|x| = k s.t x ∈ RX}) = P ({|x| = [k/2] s.t x ∈ RX})
= P ({x = [k/2] or x = −[k/2] s.t x ∈ RX})

pY (0) = P (X = 0) = 1/5

pY (2) = P (X ∈ {−1, 1}) = P (X = −1) + P (X = 1) = 2/5

pY (4) = P (X = 2) = 1/5

pY (6) = P (X = 3) = 1/5

Let’s code!

#Code205,py

from sympy.stats import FiniteRV, density, cdf, E, variance
from sympy.functions import Abs
import sys;sys.path.append(’../lib’)
from utils import get_CDF,plot_Pdf_Cdf, get_round_dic

# RV X
pmf = {-1:0.2,0:0.2,1:0.2,2:0.2,3:0.2}
rv_X = FiniteRV(’X’,pmf)

# RV Y=2|X|
rv_Y = 2 * Abs(rv_X)
pdf_Y = get_round_dic(density(rv_Y).dict) ;print(’pdf_Y : ’,pdf_Y)
rng_Y = set(pdf_Y.keys()) ;print(’Range_Y : ’,rng_Y)
cdf_Y =get_round_dic(cdf(rv_Y)) ;print(’cdf_Y : ’,cdf_Y )
spdf_Y, cdf_Y = get_CDF(pdf_Y) ;print(’cdf_Y : ’,get_round_dic(cdf_Y))
E_Y = round(E(rv_Y),2)
V_Y = round(variance(rv_Y),2) ;print(’E(Y) : ’, E_Y, ’, V(Y):’, V_Y)

plot_Pdf_Cdf(spdf_Y, cdf_Y, E_Y)

#______________________________ Output ______________________________________
# pdf_Y : {2: 0.4, 0: 0.2, 4: 0.2, 6: 0.2}
# Range_Y : {0, 2, 4, 6}
# cdf_Y : {0: 0.2, 2: 0.6, 4: 0.8, 6: 1.0}
# cdf_Y : {0: 0.2, 2: 0.6, 4: 0.8, 6: 1.0}
# E(Y) : 2.80 , V(Y): 4.16
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Figure 2.8: Curve of pmf and cdf (code205.py)

Example 10. Consider the following function f : f(x) = 4
x5 1{X≥1}(x)

1- Prove that f is a density function.
2- Let X be a c.r.v whose pdf is fX = f , find E(X),V(X),

Solution
1-f is integrable and its integral:∫ +∞

−∞
fX(t)dt =

∫ ∞
−∞

4

t5
1{X≥1}(t)dt =

[
(−t−4)

]∞
1

= 1

f(t) is continuous over R∗, positive and the area bounded by its curve is equal to the unit, so it
can be a pdf for a r.v.

2-

E(X) =

∫ +∞

−∞
xfX(x)dx =

∫ +∞

1

4

x−4
dx =

[
−4

3
x3

]∞
1

=
4

3

E(X2) =

∫ +∞

−∞
x2fX(x)dx =

∫ +∞

1

4

x3
dx =

[
−2x−2

]∞
1

= 2

V(X) = E(X2)− E2(X) = 2− 16

9
=

2

9

Let’s code!
The following code shows how to use symbolic calculation to verify that a given function is a
probability density.
#Code206.py

# Symbol is a class that allows creating algebric expressions
# integrate(f,D) function calculates the integral of f over domain D
from sympy import Symbol, oo, Piecewise, integrate
from sympy.plotting import plot
from sympy.stats import ContinuousRV, density, E, variance,cdf

# symbols
x,t = Symbol(’x’), Symbol(’t’)

# function f: checks if it is density, its integral has cdf properties
f = Piecewise((4/x**5, x >= 1), (0, True)) ;print("f(x) = ",f)
val = integrate(f,(x,-oo,+oo)) ;print("f is normed ? surface = ", val)
F = integrate(f,(x,-oo,t)) ;print("F(t) = ", F)
print("Lim x->-oo F(x)= ", F.subs(t,-oo),"Lim x->+oo F(x)= ", F.subs(t,+oo))

# create RV X with f as PDF
X = ContinuousRV(symbol=x, density= f) ;print("PDF_X = ",density(X)(t))
cdf_X = cdf(X)(t) ;print("CDF_X = ",cdf_X)

EX2 = integrate(x**2 * f)
print("E(X)=",E(X), ",E(X^2)=",EX2, "=", E(X**2),",Var(X)=", variance(X))

# plot f and F
plot(f, adaptive=False, nb_of_points=400)
plot(F, adaptive=False, nb_of_points=400)

#______________________________ Output ______________________________________
# f(x) = Piecewise((4/x**5, x >= 1), (0, True))
# F(t) = Min(1, t)**(-4) - 1/t**4
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# Lim x->-oo F(x)= 0 Lim x->+oo F(x)= 1
# f is normed ? surface = 1
# PDF_X = Piecewise((Piecewise((4/z**5, z >= 1), (0, True)), (z >= -oo) & (z < oo)), (0, True))
# CDF_X = Min(1, z)**(-4) - 1/z**4
# E(X)= 4/3 ,E(X^2)= Piecewise((0, x <= 1), (2 - 2/x**2, True)) = 2 ,Var(X)= 2/9

Figure 2.9: Curve of pdf and cdf (code206.py)
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2.5 Usual distributions

2.5.1 Discrete distributions
1- Uniform U(a, b): represents a RE with a finite sample space whose elements are all equally likely in the interval[a, b].
2- Bernoulli Ber(p): represents a RE with a sample space of only two results, often called success and failure, parameterized with p which represents the
probability of success (and therefore 1− p is the probability of failure).
3- Geometric Geo(p): represents a RE with an infinite sample space whose elements represent the appearance of the first success (have k−1 failures followed
by a success (kth) for a sequence of Bernoulli trials Ber(p)).
4- Pascal Pas(n, p): represents the number of necessary repetitions of the Bernoulli test (with probability of success p) until n success.
5- Binomial Bin(n, p): represents the total number of successes obtained from n repetitions of Bernoulli trials Ber(p).
6- Poisson Pois(λ): represents a RE which counts the number of occurrences of a certain event in a time interval.

Law X Uniform Bernouli Geometric Pascal Binomial Fish

X ; Uni(a, b) Ber(p) Geo(p) Pas(n, p) Bin(n, p) Pois(λ)

Param a, b ∈ N p ∈ [0, 1] p ∈ [0, 1] n ∈ N∗, p ∈ [0, 1] n ∈ N∗, p ∈ [0, 1] λ ∈ R∗

Rank {a, · · · , b} {0.1} N∗ N∗ {0, ..., n} N

pX(k)
1

b− a+ 1
pk(1− p)1−k (1− p)k−1p Ck−1

n−1p
n(1− p)(k−n) Cknp

k(1− p)n−k e−λλk/k!

FX(x) [x]−a+1
b−a+1 1[a,b[(x) + 1[b,∞[(x) p1[0,1[(x) + 1[1,∞[(x) 1− (1− p)[x] .

∑[x]
i=1 C

i
np
i(1− p)n−i e−λ

∑[x]
i=1

λi

i!

E(X) a+ b

2

p 1/p n(1−p)
p np λ

V(X) (b− a+ 1)2 − 1

12

p(1− p) (1− p)/p2 n(1−p)
p2 np(1− p) λ

Curve
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Let’s code!
The following code implements some discrete distributions in Python.
#Code207.py

from sympy import S , Symbol, symbols, Rational
from sympy.stats import density, cdf
from sympy.stats import E, variance as V
from sympy.stats import (FiniteRV, Die, Coin, DiscreteUniform, Bernoulli,

Binomial, Geometric, Poisson, Hypergeometric)

# I- Finite Random Var List
myDensity = {0: .1, 1: .2, 2: .3, 3: .4}
p = S.One / 5
finiteRVs = {

"Finite R.V :":FiniteRV(’X’, myDensity),
"Die6 :":Die(’D6’, 6),
"Die4 :":Die(’D4’, 4),
"Coin Half :":Coin(’C’),
"Coin3/5 :":Coin(’C2’, Rational(3, 5)),
"Discrete Uniform3:":DiscreteUniform(’X’, symbols(’a b c’)),
"Discrete Uniform5:":DiscreteUniform(’Y’, list(range(5))),
"Bernoulli3/4 :":Bernoulli(’X’, S(3)/4),
"Bernoulli Half :":Bernoulli(’X’, S.Half, ’Heads’, ’Tails’),
"Binomial Half 4 :":Binomial(’X’, 4, S.Half),
"Hypergeometric :":Hypergeometric(’X’, 10, 5, 3)

}

# Print density, Expectation and Variance of each FRV in list above.
for k,X in finiteRVs.items() :

Pdf, Ex, Vx = density(X).dict, E(X), V(X)
print(k,’ \t ’, Pdf, ’ \t ’, Ex, ’ \t ’, Vx)

print("-------------------------------------------------------------")
# II- Discrete (infinite) RV List
k = Symbol("k")
lamda = Symbol("Lambda", positive=True) # rate = lamda

discreteRVs = {
"Geometric:":Geometric("X", p), # Geometric(p=1/5)
"Poisson :":Poisson("X", lamda) # Poisson(lambda)

}
print("-----------------------------------------------------------")
for key,X in discreteRVs.items() :

Pdf, Cdf, Ex, Vx = density(X)(k), cdf(X)(k), E(X), V(X) #simplify(V(X))
print(key,’ \t ’,Pdf, ’ \t ’, Cdf, ’ \t ’, Ex, ’ \t ’, Vx)

#______________________________ Output ______________________________________
# R.V Distribution E Variance
# Finite R.V :{0:0.1, 1:0.2, 2:0.3, 3:0.4} 2.00 1.00
# Die6 :{1:1/6, 2:1/6, 3:1/6, 4:1/6, 5:1/6, 6:1/6} 7/2 35/12
# Die4 :{1:1/4, 2:1/4, 3:1/4, 4: 1/4} 5/2 5/4
# Coin Half :{H:1/2, T:1/2} H/2+T/2 (-H/2 + T/2)**2/2 + (H/2 -

T/2)**2/2
# Coin3/5 :{H:3/5, T:2/5} 3*H/5+2*T/5 2*(-3*H/5 + 3*T/5)**2/5 +

3*(2*H/5 - 2*T/5)**2/5
# Discrete Unif3:{b:1/3, c:1/3, a:1/3} a/3+b/3+c/3 (-a/3 - b/3 + 2*c/3)**2/3

+ (-a/3 + 2*b/3 - c/3)**2/3 + (2*a/3 - b/3 - c/3)**2/3
# Discrete Unif5:{0:1/5, 1:1/5, 2:1/5, 3: 1/5, 4: 1/5} 2 2
# Bernoulli3/4 :{0:1/4, 1:3/4} 3/4 3/16
# Bernoulli Half:{Tails:1/2, Heads:1/2} Heads/2+Tails/2 (-Heads/2 + Tails

/2)**2/2 + (Heads/2 - Tails/2)**2/2
# BinomialcHalf4:{0:1/16, 1:1/4, 2:3/8, 3:1/4, 4:1/16} 2 1
# Hypergeometric:{0:1/12, 1:5/12, 2:5/12, 3:1/12} 3/2 7/12

# ------------------------------------------------------------------------
# Geometric:(4/5)**(k - 1)/5 Piecewise((1 - 5*(4/5)**(k + 1)/4, k >= 1), (0, True)) 5

20
# Poisson :Lambda**k*exp(-Lambda)/factorial(k) Piecewise(((-Lambda**(-k - 1)*Lambda**(k + 1)

*(k + 1)*exp(Lambda)*lowergamma(k + 1, Lambda)/factorial(k + 1) + exp(Lambda))*exp(-Lambda), k
>= 0), (0, True)) Lambda Lambda

In what follows we demonstrate some results given in the previous table:
Pmf of the Binomial law:

pX(k) = Cknp
k(1− p)n−k

The probability that a r.v X takes value k is explained by the fact that there are Ckn sequences
of n results having k successes with probability p and n−k failures with probability of 1−p (for
the result (ωi1 , ωi2 , · · · , ωin) the positions for the k success results are the subset {j1, j2, · · · , jk}
whose elements are chosen from {1, 2, · · · , n}). If n = 3 and k = 2, then the possible sequences
are: {(success, success, failure), (success, failure, success) and (failure, success, success) } each
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one corresponds to a subset of two positions ({1,2}, {1,3},{2,3}) the number of these subsets is
C2

3 = 3 and each sequence has a probability equal to p2 × (1− p) (2 successes with probability
p and 1 failure with probability 1− p).

Note that since the experiment behind the Binomial law is to flip n times a coin, we can think of
a Binomial r.v X of parameters (n, p) as the sum of n independent Bernoulli r.vs X1, X2, ..., Xn

of parameter p. This interpretation is sometimes useful as can be seen in example 11.

Calculation of the expectation of a Geometric d.r.v
Let X ; Geo(p), let’s say q = p− 1

E(X) =

∞∑
k=1

kqk−1p = p

∞∑
k=1

d

dq
(qk) = p

d

dq
(

∞∑
k=1

qk)

= p
d

dq
(

q

1− q
) =

p

(1− q)2
=

1

p

Calculation of the expectation of a Poisson d.r.v
Let X ; Poi(λ)

E(X) =

∞∑
x=0

xe−λλx

x!
=

∞∑
x=1

e−λλx

(x− 1)!

= λe−λ
∞∑
x=1

λx−1

(x− 1)!
= λe−λ

∞∑
k=0

λk

k!
= λe−λeλ = λ

Calculation of the variance of a Uniform d.r.v
LetX ; Uni(a, b)
Let n = b− a+ 1

V(X) = E(X2)− E2(X)

E(X) =

b∑
i=b−n+1

1

n
i =

1

n

b∑
b−n+1

i =
n+ 1

2

E(X2) =

b∑
i=b−n+1

1

n
i2 =

1

n

b∑
b−n+1

i2 =
(n+ 1)(2n+ 1)

6

V(X) =
(n+ 1)(2n+ 1)

6
− (n+ 1)2

4
=
n2 − 1

12

Example 11. Let X ; Bin(n, p) and Y ; Bin(m, p) be two independent r.vs, and Z = X+Y .
Find the pmf of Z.

Solution
A simple method, consists in considering that: Z = X + Y =

∑n
i=1Xi +

∑m
i=1 Yi such that the

Xi, Yi ; Ber(p). We can deduce that Z ; Bin(n+m, p) and therefore its pmf is:

PZ(k) = Ckn+m × pk × (1− p)n+m−k1{0,1,··· ,n+m}(k)

If we look for the same result directly, it becomes more complicated. Indeed, the rank of
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RZ = {0, 1, 2, · · · , n+m} and using the total probability law, we have:

P (Z = k) = P (X + Y = k) =

n∑
i=0

P (X + Y = k|X = i)× P (X = i)

=

n∑
i=0

P (Y = k − i|X = i)× P (X = i)

=

n∑
i=0

P (Y = k − i)× P (X = i) because X and Y are independent

=

n∑
i=0

Ck−im × pk−i × (1− p)m−k+i × Cin × pi × (1− p)n−i

= pk × (1− p)m+n−k
n∑
i=0

Ck−im × Cin

= Ckn+m × pk × (1− p)n+m−k1{0,1,··· ,n+m}(k)

Let’s code!

#Code208.py

from sympy.stats import Binomial
from sympy import S
from sympy.stats import density

# sum2Bin: creates two binomial r.v X,Y with parameters (n,p) and (m,p) as well
# as their sum Z. W is binomial r.v with parameters (n+m, p)
def sum2Bin(n, m, p):

X, Y, W = Binomial(’X’, n, p), Binomial(’Y’, m, p), Binomial(’X’, n+m, p)
Z = X + Y
return [{ ’dic’: density(X).dict, ’legend’: ’X ~ Bin(10,1/2)’},

{ ’dic’: density(Y).dict, ’legend’: ’Y ~ Bin(20,1/2)’},
{ ’dic’: density(Z).dict, ’legend’: ’Z = X+Y’},
{ ’dic’: density(W).dict, ’legend’: ’W ~ Bin(30,1/2)’}]

# plotter: plots X,Y,Z and W
def plotter(rv_infos):

import matplotlib.pyplot as plt
plt.figure(figsize=(12, 8))
for i in range(len(rv_infos)):

plt.subplot(221 + i).set_title(rv_infos[i][’legend’])
plt.bar(list(rv_infos[i][’dic’].keys()), rv_infos[i][’dic’].values())

plt.show()
#
s2b=sum2Bin(4, 8, S.Half)

# prints associated distribution of X,Y,Z and W.
for i in range(len(s2b)):

print("Pmf de " + s2b[i][’legend’][0] + ’ : ’, s2b[i][’dic’])
plotter(s2b)
#______________________________ Output _____________________________________
# Pmf de X : {0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}
# Pmf de Y : {0: 1/256, 1: 1/32, 2: 7/64, ..., 8: 1/256}
# Pmf de Z : {0: 1/4096, 1: 3/1024, 2: 33/2048, ..., 12: 1/4096}
# Pmf de W : {0: 1/4096, 1: 3/1024, 2: 33/2048, ..., 2: 1/4096}
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Figure 2.10: Curve of pmf (code208.py)
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2.5.2 Continuous distributions
1- Uniform U(a, b): is characterized by a uniform representation of the values taken by the r.v over the interval[a, b].
2- Exponential Expo(λ)): models the lifetime of a memoryless phenomenon with an average 1/λ.
3- Normal N (µ, σ2): the density of a normal r.v is the Gauss function.
4- Logistic Logistic: its distribution function is a logistic function.
5- Triangular T ri(a, b, c): its density function is increasing affine for values between a and c (c is its mode) and decreasing affine between c and b.
6- Gamma Gam(n, λ): represents the sum of n expo(λ) rvs. It is based on the Gamma function.

Law X Uniform Exponential Normal Logistics Triangular Gamma

X ; U(a, b) Expo(λ) N (µ, σ2) Logistic T ri(a, b, c) Gam(n, λ)

Params a, b ∈ R λ ∈ R µ, σ - a, b, c n, λ

Rank [a, b] R R R R [0,∞[

fX(x)
1

b− a
1[a,b](x) λe−λx1[0,∞[(x)

1√
2πσ

e
(x−µ)2

2σ2
ex

(1 + ex)2

{
2(x−a)

(b−a)(b−c) on ]a, c]
2(b−x)

(b−a)(b−c) on ]c, b]

λαxα−1e−λx

Γ(α)
1[0,∞[(x)

FX(x)
x− a
b− a

1[a,b[(x) + 1[b,∞[(x) 1− e−λx
∫ x
−∞

1√
2π
e−t

2/2 dt
ex

1 + ex

{
(x−a)2

(b−a)(c−a) on ]a, c]

− b−x2

(b−a)(b−c) on ]c, b]

∫ t
0

λαtα−1e−λt

Γ(α)
1[0,∞[(t)dt

E(X)
a+ b

2

1

λ
µ 0

a+ b+ c

3

α

λ

V(X)
(b− a+ 1)2 − 1

12

1

λ2
σ π2/3 a2+b2+c2−ab−ac−bc

18

α

λ2

Plot
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Memoryless property of the Exponential distribution
The most important property of the exponential law is thememoryless property.

Proposition 5.
A c.r.v X ; Exp(λ) if and only if X satisfies the following property:

P (X > x+ a|X > a) = P (X > x) for x, a ≥ 0

This property is called the memoryless property.

Proof
1- Consider a c.r.v X ; Expo(λ) and x, a two positive real numbers,

P (X > x+ a|X > a) =
P (X > x+ a,X > a)

P (X > a)
=
P (X > x+ a)

P (X > a)

=
1− FX(x+ a)

1− FX(a)
=
e−λ(x+a)

e−λa
= e−λx = P (X > x)

Then X satisfy the memoryless property.

2- Consider a c.r.v X that satisfies the memoryless property and x, a two positive real numbers,

P(X > x+ a) = P(X > a)P(X > x+ a | X > a) = P(X > x)P(X > a)

1− FX(x+ a) = (1− FX(x))(1− FX(a))

GX(x+ a) = GX(x)GX(a) such that GX(z) := 1− FX(z)

GX(n) = GX(1)n = enlnGX(1) ∀n ∈ N

GX(1/m) = GX(1)1/m ∀m ∈ N

GX(r) = GX(1)r ∀r ∈ Q

GX(x) = GX(1)x = exlnGX(1) ∀x ∈ R

Then X ; Expo(λ) with λ = −lnG(1)

The last result, generalization for all reals, is based on the fact that all real is a limit of a rational
sequence (here is the proof).
This means that if no event has occurred until time a (X > a), then the waiting time from time
a until the next event arrives (Y = X − a) follows the same distribution as the waiting time
from the initial moment (instant 0).

Example 12. Suppose the duration of a phone booth call (in minutes) is X ; Exp(1/10).
1- If someone arrives just before you (in booth call), find the probability that you will wait: a)
less than 5 minutes, b) more than 10 minutes, c) between 5 and 10 minutes.
2- Calculate the mean waiting time as well as its variance.
3- Write the Python code that models this situation.

Solution
Let X be a r.v that represents the duration of the call X ; Expo(λ).
Let Y be a r.v that represents your waiting time.
It is assumed that you arrived after A minutes of calling from whoever occupies the booth. You
already have the information (and he too) that his call duration X is greater than A. With this
condition, your waiting time will be the rest of his call i.e Y = X − A. "Y does not exceed 5
min" is equivalent to X < 5 +A given that X > A (figure 2.11 shows the relationship between

https://proofwiki.org/wiki/ Rational_Sequence _Increasing_to_Real_Number
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X and Y and the waiting bounds Max and Min). Using the memoryless property of Expo r.v,
we can calculate the probability of waiting no more than d minutes.

P (Y < d) = P (X < A+ d|X > A)

= 1− P (X > A+ d|X > A)

= 1− P (X > d) = P (X ≤ d)

This expression shows that the waiting time is not function of the arrival time (it does not
remember when we arrived - no memory-) and it follows the same law as the call duration
Y ; Expo(λ).

Figure 2.11: Relationship between the two r.v X and Y

P (Y < 5) = P (X < 5) = 1− e−λ5 = 1− e− 1
2 = 0.3934

P (Y > 10) = P (X > 10) = 1− P (X ≤ 10) = 1− 1 + e−1 = 0.3678

P (5 ≤ Y ≤ 10) = P (5 ≤ X ≤ 10) = 1− [P (X ≤ 5) + P (X > 10)] = 1− (0.3934 + 0.3678) = 0.2388

E(Y ) = E(X) =
1

λ
= 10

V(Y ) = V(X) =
1

λ2
= 100

Let’s code!

#Code209.py

# subs: substitutes parameters with values in the algebric expression
# simplify: simplifies an algebric expression.
from sympy.stats import Exponential, density, cdf, E, variance, given, P
from sympy import Symbol, simplify, And

lamda , z = Symbol("lambda", positive=True), Symbol("z")

X = Exponential("x", lamda)
pdf_X, cdf_X, E_X, V_X = density(X)(z), cdf(X)(z), E(X), variance(X)
print(’RV X. \n pdf:’,pdf_X,’\n cdf:’,cdf_X,’\n E:’,E_X,’\n V:’,V_X)

Z = X.subs(lamda,1/10)
pdf_Z = density(Z)(z) ;cdf_Z = cdf(Z)(z) ;E_Z = E(Z) ;V_Z = variance(Z)
print(’RV Z. \n pdf:’, pdf_Z,’\n cdf:’, cdf_Z,’\n E:’,E_Z,’\n V:’,V_Z)

Y = given(X - 3, X > 3)
pdf_Y = simplify(density(Y)(z))
P_Y5 = P(Y < 5).subs(lamda, 1/10)
P_Y10 = P(Y > 10).subs(lamda, 1/10)
P_Y510 = P(And(Y > 5,Y < 10)).subs(lamda, 1/10)
print(’RV Y. \n pdf:’, pdf_Y,’\n P(Y<5):’,P_Y5,’\n P(Y<10):’,P_Y10,’\n P(Y>5,Y<10):’,P_Y510)

#______________________________ Output ______________________________________
# RV X.
# pdf: lambda*exp(-lambda*z)
# cdf: Piecewise((1 - exp(-lambda*z), z >= 0), (0, True))
# E: 1/lambda
# V: lambda**(-2)
# RV Z.
# pdf: 0.1*exp(-0.1*z)
# cdf: Piecewise((1 - exp(-0.1*z), z >= 0), (0, True))
# E: 10.0000000000000
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# V: 100.000000000000
# RV Y.
# pdf: -lambda*(Heaviside(-z) - 1)*exp(-lambda*z)
# P(Y<5): 0.393469340287367
# P(Y<10): 0.367879441171442
# P(Y>5,Y<10): 0.238651218541191

Example 13. A manufacturer wants to assure that his cars have a probability of less than
p = 0.1 of breaking down over the first year. Assuming that the time until the first breakdown
follows Expo law:
1- What is the minimum average of the first breakdown time of the car?
2- Write the Python code of this example.

Solution
Let Tp be the r.v giving the time of the first breakdown of the car which follows an exponential
law of parameter λp (Tp ; Expo(λp), parameterized by p). The manufacturer wants to ensure
that:

P (Tp ≤ 1) = 1− e−λp×1 ≤ p =⇒ λp ≤ −ln(1− p)

=⇒ E(Tp) =
1

λp
≥ − 1

ln(1− p)

For p = 0.1, E(T ) = 1
λ ≥ 9.5.

So the minimum average is 9.5 years before getting the first breakdown (for a first breakdown
probability less than 0.1).

The standard Normal law (normalized Normal law).
A r.vX that follows the standard Normal distribution is denoted byX ; N (0, 1), its expectation
is equal to 0 and its variance is equal to 1. This law is generally defined by its distribution
function φ : R→ R+ :

φ(x) =
1√
2π

∫ z

−∞
e−

1
2 t

2

dt ∀x ∈ R

There is no analytical expression for this function. To get the value of φ(x) = P (X ≤ x), we
often use the distribution’s tables.
The area under the bell curve of the standard normal distribution is equal to 1. It is symmetrical

Figure 2.12: The distribution of the density of the reduced centered Normal law

with respect to z = 0 (as it is an even function ∀x ∈ R, φ(x) = φ(−x), 50% is to the left of 0 and
50% to its right). The full plot of this distribution is shown in figure 2.12. To have the value of
φ(z), we use the tables of the standard normal distribution left or right. The first one gives us
the area to the right of the value z and the second one gives us the area to its left.

Example 14. The number of sunny days per year in a given city follows normal distribution
with an average of µ = 230 days and a standard deviation equal to σ = 52 days.
1- What is the probability that the next year in this city there will be more than 300 sunny days?
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Figure 2.13: The value of the cdf at point z

Solution
If X is the r.v representing the number of sunny days per year in this city, X ; N (µ, σ) then:

P (X > 300) = P (
X − 230

52
>

300− 230

52
) = 1− φ(1.346)

= 0.09012 (using the right Normal distribution table)
= 1-0.9099 = 0.0912 (using the left Normal distribution table)
= 0.5-0.4099 = 0.09012 (using the 0 to z table)
(See standard normal distribution table (Z-table) in appendix C for the value of φ(1.346))

Let’s code!
The following code implements a reduced centered r.v X and Y = 3 ∗X + 5.
#Code210,py

from sympy.stats import E,variance, Normal,density
from sympy import Symbol
from sympy.plotting import plot

def processNormalRV(rv_Name, rv_X):
print(’E(’,rv_Name,’)= ’,E(rv_X),’ V(’,rv_Name,’)= ’,variance(rv_X))
z = Symbol(’z’)
plot(density(rv_X)(z), (z, -10, 20))

processNormalRV(’X’, Normal(’X’,0,1))
processNormalRV(’Y’, 3*Normal(’X’,0,1)+5)

#______________________________ Output ______________________________________
# E( X )= 0 V( X )= 1
# E( Y )= 5 V( Y )= 9

Figure 2.14: Standard vs non-standard normal distribution (code210.py)

In this code, a standard normal X r.v is created and used to create another one equal to
3 ∗X + 5 (scaled with 3 and shifted with 5), the expectation and variance of the two variables
are calculated and the two r.v are plotted using the plotting package of sympy. On the two
graphs, we can see that X is centered on the axis x = 0 with E(X) = 0 while Y is centered on
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the axis x = 5 with E(Y ) = 5; the variance of Y (V(Y ) = 9) is also much larger compared to
that of X (V(X) = 1) which has given a larger graph than that of X.

2.6 Multiple random variables
In many experiments, one may be interested in more than one random variable in relation to
each other. For example, in the study of the effectiveness of a given diet, we can look at the age
of the participants, their gender as well as the nature of their work (physical, intellectual,...).
Here, we present the case of two r.vs (bivariate r.v), which can easily be extended to several
r.vs (multivariate).

2.6.1 Joint, marginal and conditional distribution

Definition 9.
Let X and Y be two r.vs. The joint probability law of X and Y is defined by:

PXY (B1 ×B2) = P ((X,Y ) ∈ B1 ×B2) = P (X ∈ B1, Y ∈ B2), ∀(B1, B2) ∈ B2

The rank of this joined law is: RXY = RX ×RY = {(x, y)|x ∈ RX and y ∈ RY }

The joint distribution function of X and Y is defined by:

FXY (x, y) = PXY (]−∞, x]×]−∞, y]) = P ((X,Y ) ∈]−∞, x]×]−∞, y]) = P (X ≤ x, Y ≤ y)

The marginal distribution function with respect to X (respec Y ) is defined by:

FX(x) = FXY (x,∞) = PXY (]−∞, x]× R) = P (X ≤ x)

FY (y) = FXY (∞, y) = PXY (R×]−∞, y]) = P (Y ≤ y)

The conditional distribution of X given Y is defined by:

PX|Y (B1, B2) = P (X ∈ B1|Y ∈ B2) =
PXY (B1, B2)

PY (B2)
, ∀(B1, B2) ∈ B2

FX|Y (x, y) = PX|Y (]−∞, x], ]−∞, y]) =
FXY (x, y)

FY (y)

Definition 10. discrete case
Let X and Y be two d.r.v:

1- The function of joined mass of X and Y is defined by:

pXY (x, y) = PXY ({(x, y)}) = P ((X,Y ) = (x, y)) = P (X = x, Y = y)

2- The function of marginal mass with respect to X (respectively Y ) is:

pX(x) =
∑
y∈RY

pXY (x, y) (PY (y) =
∑
x∈RX

pXY (x, y))

3- The conditional mass function of X and Y is defined by:

pX|Y (x, y) = P (X = x|Y = y) =
pXY (x, y)

pY (y)

Example 15. Let X and Y be two d.r.v with the following joint mass function:
RXY = RX ×RY = {0, 1} × {0, 1, 2} Find:

1. P (X = 0, Y ≤ 1)
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(X,Y ) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

pXY (x, y)
1

6

1

4

1

8

1

8

1

6

1

6

2. The marginals of X and Y

3. P (Y = 1|X = 0)

Solution
1-P (X = 0, Y ≤ 1) = PXY ({0} × {0, 1}) = pXY (0, 0) + pXY (0.1) = 1/6 + 1/4 = 5/12
2- The marginals ∀x ∈ RX :

pX(x) =
∑

y∈{0,1,2}

pXY (x, y) = pXY (x, 0) + pXY (x, 1) + pXY (x, 2) =
13

24
1{0}(x) +

11

24
1{1}(x)

Similarly, for Y ,

3- P (Y = 1|X = 0) =
P (X = 0, Y = 1)

P (X = 0)
= 1/4× 24/13 = 8/13

(X, Y) 0 1 2 PX

0 1
6

1
4

1
8

13
24

1 1
8

1
6

1
6

11
24

PY
7
24

5
12

7
24 1

Let’s code!

#Code211.py

import numpy as np
from functools import reduce
from scipy.stats import rv_discrete
import matplotlib.pyplot as plt
import seaborn as sns
from random import random

generateDRV=lambda rv: [rv.ppf(random()) for _ in range(1000)]

def getbar3Data(Rg_x, Rg_y, p_xy):
xpos, ypos = reduce(lambda ls, e: ls+[e]*len(Rg_y), Rg_x, []) , [0,1]*len(Rg_x)
zpos = np.zeros(len(xpos))
dx, dy = np.ones(len(xpos))*0.02, np.ones(len(xpos))*0.02
dz = list(p_xy.flatten())
return xpos, ypos, zpos, dx, dy, dz

def plotjointDistribution(xpos, ypos, zpos, dx, dy, dz):
fig = plt.figure()
ax1 = fig.add_subplot(111, projection=’3d’)
ax1.bar3d(xpos, ypos, zpos, dx, dy, dz, color=’#00ceaa’)
plt.show()

# random variables
Rg_x, Rg_y = np.array([0,1,2]), np.array([0,1])
p_xy = np.array([[1/6,1/4,1/8],[1/8,1/6,1/6]])

# data for joint distribution plotting
xpos, ypos, zpos, dx, dy, dz = getbar3Data(Rg_x, Rg_y, p_xy)
plotjointDistribution(xpos, ypos, zpos, dx, dy, dz)

# data for marginal plotting
p_x, p_y = np.sum(p_xy, axis=0), np.sum(p_xy, axis=1)
rv_X = rv_discrete(name=’X’, values=(Rg_x, p_x))
rv_Y = rv_discrete(name=’Y’, values=(Rg_y, p_y))

sns.jointplot(generateDRV(rv_X),generateDRV(rv_Y)).set_axis_labels("X", "Y")
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Figure 2.15: Joint and marginal pmf (code211.py)

Example 16. Let X and Y be two d.r.v representing the lifetime of two connected components
of a given machine. The joint mass function is given by: pXY (x, y) = e−2

x!(yx)! for x ∈ N∧ y ≥ x.
Calculate:

1- The joint mass function of X and Y −X
2- The marginal of X ,Y −X and Y

Note: The sum of two Poisson r.v X and Y of respective rates λ1 and λ2 is a Poisson r.v of
rate λ1 + λ2 (this result will be demonstrated in the next chapter).

Solution
Let Z = Y −X

pXZ(x, z) = P (X = x, Z = z) = P (X = x, Y −X = z) = P (X = x, Y = z + x)

= pXY (x, z + x) =
e−2

x!z!
, ∀x, z ∈ N

So pX(x) =

∞∑
z=0

= pXZ(x, z) =

∞∑
z=0

e−2

x!z!
=
e−1

x!
,

(
the same for pZ(z) =

e−1

z!

)
So, we have X,Z ; Pois(1) (they follow the same law). We have,

P (X = x, Y −X = z) =
e−2

x!z!
= e−1x!

e−1

z!
= P (X = x)× P (Y −X = z)

We deduce that X and Y −X are independent, and Y ; Pois(2).

Definition 11. continuous case
Let X and Y be c.r.v:
1- The joint density function of X and Y is the function verifying:

PXY (B1 ×B2) =

∫
B1

∫
B2

fXY (x, y)dxdy, ∀(B1, B2) ∈ B2

2- The relation between this function and the joint cdf:

fXY (x, y) =
∂2

∂x∂y
FXY (x, y) FXY (x, y) =

∫ x

−∞

∫ y

∞
fXY (x, y)dxdy

3- The marginal density function with respect to X is:

fX(x) = fXY (x,∞) =

∫ ∞
−∞

fXY (x, y)dy =
∂

∂x
FX(x)dx
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4- The conditional density function (c-pdf) of X and Y is the function satisfying:

fX|Y (x, y) =
fXY (x, y)

fY (y)

Example 17. A point is chosen randomly inside a circular disk D of radius r. Let X be the
r.v that represents the distance of the segment going from the center of this disc to the chosen
point and Y the r.v measuring the angle (in radians) between this segment and the horizontal
axis. What is the joint distribution of X and Y ?

Solution
Both r.vs X,Y are defined on the same probability space (Ω,F , P ), Ω is the set of points on the
disk, F a σ−algebradefinedonthissetandPtheuniformprobabilityofchoosinganareaonthisdisk(P(B)
= |B|/|D|, where|Z|istheareaofthezoneZ).FXY (x, y) = P (X ≤ x, Y ≤ y) corresponds to the
probability that the chosen point is in the segment with radius x and angle y whose area is yx2

2 .
So the cdf and its corresponding pdf:

FXY (x, y) =
yx2

2πr2
1[0,r]×[0,2π](x, y)

fXY (x, y) =
∂2

∂x∂y
FXY (x, y) =

x

πr2
1[0,r]×[0,2π](x, y)

2.6.2 Covariance and correlation coefficient
The covariance of two r.v X and Y is a measure that gives information about the linear depen-
dence of X and Y . That is, how the values of X change according to those of Y .

Definition 12.
The covariance between X and Y is defined as:

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y )

When Cov(X,Y ) = 0, X and Y are said to be uncorrelated.
If Cov(X,Y ) is positive, they are said to be positively correlated i.e. either X − E(X) > 0 and
Y −E(Y ) > 0 or X −E(X) < 0 and Y −E(Y ) < 0; otherwise X and Y are said to be negatively
correlated.
The covariance can also be used in variance calculation:

V(X + Y ) = V(X) + V(Y ) + 2Cov(X,Y )

So if X and Y are uncorrelated (Cov(X,Y ) = 0) then: V(X + Y ) = V(X) + V(Y )
This result can be generalized to several uncorrelated pairs of r.vs. Independent r.vs are always
uncorrelated, but the opposite is not necessarily true.
Correlation is often measured by the correlation coefficient.

Definition 13.
The correlation coefficient is the ratio defined by:

ρXY =
Cov(X,Y )√
V(X)

√
V(Y )

, satisfaing − 1 ≤ ρXY ≤ 1

It is zero when the two r.vs are uncorrelated, positive if they are positively correlated and
negative otherwise.
In fact, ρ is the normalized version of the covariance. It is obtained by calculating the covariance
of the two r.v X ′ = X−E(X)

σX
and Y ′ = Y−E(Y )

σY
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Proposition 6. Covariance properties:
1- Cov(X,X) = V(X)
2- Cov(X,Y ) = Cov(Y,X)
3- Cov(aX, bY ) = abCov(X,Y )
4- Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z)
5-

Cov(

n∑
i=1

aiXi,

m∑
j=1

bjYj) =

n∑
i=1

m∑
j=1

aibjCov(Xi, Yj)

Example 18.
1. Calculate the covariance and the correlation coefficient of X and Y from Example 15.
2. Write the corresponding code

Solution
1.

Cov(X,Y ) = E(XY )− E(X)E(Y ) = 1/2− 11/24× 1 = 1/24

ρXY =
Cov(X,Y )√
V(X)

√
V(Y )

= 0.109

2. Let’s code!

#Code212,py

import numpy as np
from sympy.stats import FiniteRV
from sympy.stats import E,variance
import math

XDensity,YDensity = {0:13/24,1:11/24},{0:7/24,1:5/12,2:7/24}
X, Y = FiniteRV(’X’,XDensity ), FiniteRV(’Y’,YDensity )

JDensity = {(0,0):1/6,(0,1):1/4,(0,2):1/8,(1,0):1/8,(1,1):1/6,(1,2):1/6}

ZDensity = {(k[0]-E(X))*(k[1]-E(Y)):v for k,v in JDensity.items()}
cov = np.dot(list(ZDensity.keys()),list(ZDensity.values()))

print("E(X)=",E(X)," E(Y)=",E(Y))
print("V(X)=",variance(X)," V(Y)=",variance(Y))
print("Cov(X,Y)=",cov)
print("Correlation Coefficient=",cov/(math.sqrt(variance(X))*math.sqrt(variance(Y))))

#______________________________ Output ______________________________________
# E(X)= 0.458333333333333 E(Y)= 1.00000000000000
# V(X)= 0.248263888888889 V(Y)= 0.583333333333333
# Cov(X,Y)= 0.0416666666666667
# Correlation Coefficient= 0.109489780290272

Example 19.
1. Calculate the covariance and the correlation coefficient of the two r.vs X and Y having the
joint function:

fXY (xy) = 3x 0 ≤ y ≤ x ≤ 1
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Solution

fX(x) =

∫ +∞

−∞
fXY (x, y)dy =

∫ x

0

3xdy = 3x2

fy(y) =

∫ +∞

−∞
fXY (x, y)dx =

∫ 1

y

3xdx =
3(1− y2)

2

E(XY ) =

∫ +∞

−∞

∫ +∞

−∞
xyfxy(x, y)dxdy =

3

10
[x5]10 =

3

10

E(X) =

∫ 1

0

xfX(x)dx =
3

4

E(Y ) =

∫ 1

0

yfY (y)dy =
3

8

Cov(X,Y ) = E(XY )− E(X)E(Y ) =
3

160

E(X2) =

∫ 1

0

x2fX(x)dx =
3

5

E(Y 2) =

∫ 1

0

y2fX(y)dy =
1

5

V(X) = E(X2)− E2(X) =
3

80

V(Y ) = E(Y 2)− E2(Y ) =
19

320

ρXY =
Cov(X,Y )√
V(X)

√
V(Y )

= 0.397

Let’s code!

#Code213.py

from sympy import Symbol, integrate, Interval
from sympy.stats import density, E, variance as V
from math import sqrt

x = Symbol(’x’); y = Symbol(’y’)

fxy = 3*x
fx = integrate(fxy,(y,0,x)) ; print("marginal of X:",fx)
fy = integrate(fxy,(x,y,1)) ; print("marginal of Y:",fy)

# Direct method
Ex , Ey = integrate(x*fx,(x,0,1)) , integrate(y*fy,(y,0,1))
print("E(X)=",Ex," E(Y)=",Ey)

Exy = integrate(integrate(x*y*fxy,(y,0,x)),(x,0,1)) ; print("E(X*Y)=",Exy)
cov = Exy-Ex*Ey ; print("Cov(X,y)=",cov)

Ex2 , Ey2 = integrate((x**2)*fx,(x,0,1)) , integrate((y**2)*fy,(y,0,1))
vx , vy = Ex2-Ex**2 , Ey2-Ey**2
print("V(X)=",vx) ; print("V(Y)=",vy)

cor = cov/(sqrt(vx)*sqrt(vy)) ; print("Correlation coefficient:",cor)

# ContinuousRV
from sympy.stats import ContinuousRV

X = ContinuousRV(symbol=x, density= fx, set=Interval(0, 1))
Y = ContinuousRV(symbol=y, density= fy, set=Interval(0, 1))
print("E(X)=",E(X), ",E(X^2)=", E(X**2),",Var(X)=", V(X))
print("E(Y)=",E(Y), ",E(Y^2)=", E(Y**2),",Var(Y)=", V(Y))

cov = Exy-E(X)*E(Y) ; print("Cov(X,y)=",cov)

cor = cov/(sqrt(V(X))*sqrt(V(Y))) ; print("Correlation coefficient:",cor)

#______________________________ Output ______________________________________
# marginal of X: 3*x**2
# marginal of Y: 3/2 - 3*y**2/2
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# E(X)= 3/4 E(Y)= 3/8
# E(X*Y)= 3/10
# Cov(X,y)= 3/160
# V(X)= 3/80
# V(Y)= 19/320
# Correlation coefficient: 0.397359707119513

2.7 Moment Generating Functions

Definition 14.
The nth moment of a r.v X is defined to be m(n)

X = E(Xn).
The nth central moment of X is defined to be m̄(n)

X = E((X − E(X))n).
The moment generating function (MGF) of a r.v X is a function MX(t) that associates to
t the expectation of the r.v etX .

MX(t) = E(etX)

MX exists, if there exists a positive constant c such that E(etX) is finite for all |t| ≤ c
(neighborhood of 0, t ∈ δ(0, c)).

∃c > 0,∀|t| < c,E(etX) <∞ =⇒ ∃MX

- The first moment is the expectation of X m
(1)
X = mX = E(X).

- The second central moment is the variance of X, m̄(1)
X = m̄X = V(X).

- The MGF of X gives us all moments of X.

Example 20. For each of the following r.vs, find the MGF .
a- X ∼ Ber(p)
b- X ∼ Uni(0, 1)
c- X ∼ Expo(λ)
d- X ∼ Pois(λ)

Solution
we have MX(t) = E[etX ]

a−X ∼ Ber(p) : MX(t) = etp+ e0t(1− p) = pet − p+ 1

b−X ∼ Uni(0, 1) : MX(t) =

∫ 1

0

etxdx =
etx

s

∣∣∣∣1
0

=
et − 1

t

c−X ∼ Expo(λ) : MX(t) =

∫ ∞
0

etxλe−λxdx = λ

∫ ∞
0

e−(λ−t)xdx =
λ

λ− t

d−X ∼ Pois(λ) : MX(t) =

∞∑
k=0

etke−λ
λk

k!
= e−λ

∞∑
k=0

(etλ)k

k!
= eλ(et−1)

2.7.1 MGF as a tool to find the moments
Substituting etX by its Taylor expansion in MX shows that m(k)

X represents the kth coefficient
of this serie which can be determined by taking the kth derivative of MX(t) and evaluating it
at t = 0.

MX(t) = E[etX ] = E[

∞∑
k=0

Xktk

k!
] =

∞∑
k=0

E[Xk]
tk

k!
=

∞∑
k=0

E[Xk]

k!
tk

dk

dsk
MX(t) = M

(k)
X (t) =

∞∑
n=k

E[Xn]

(n− k)!
tn−k = E[Xk] + t(

∞∑
n=0

E[Xn+k+1]

(n+ 1)!
tn)

Then, we have :
dk

dtk
MX(t)

∣∣∣∣
t=0

= M
(k)
X (t)

∣∣∣∣
t=0

= E[Xk] = m
(k)
X
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Example 21. For the questions of example 20, find E[Xk] using MX(t).

Solution

we have E(X) =
d

dt
MX(t)

∣∣∣∣
t=0

a−X ∼ Ber(p) : E(X) =
d

dt
(pet − p+ 1)

∣∣∣∣
t=0

= pes
∣∣∣∣
t=0

= p

b−X ∼ Uni(0, 1) : E(X) =
d

dt

et − 1

t

∣∣∣∣
t=0

=
(t− 1)et + 1

t2

∣∣∣∣
t=0

=

Hopital rule︷ ︸︸ ︷
lim
x→0

(
ett− et + 1

t2

)
=

1

2

c−X ∼ Expo(λ) : E(X) =
d

dt

λ

λ− t

∣∣∣∣
t=0

=
λ

(λ− t)2

∣∣∣∣
t=0

=
1

λ

d−X ∼ Pois(λ) : E(X) =
d

dt
eλ(et−1)

∣∣∣∣
t=0

= λeteλ(et−1)

∣∣∣∣
t=0

= λ

if MX exists, it uniquely determines the distribution of X (FX).

Definition 15. Let X and Y be two r.vs
Suppose that there exists a positive constant c such that the MGFs of X and Y are finite
and identical ∀|t| ≤ c. Then, FX(x) = FY (x),∀x ∈ R

∃c > 0,MX ,MY & ∀|t| ≤ c,MX(t) = MY (t) =⇒ FX(x) = FY (x),∀x ∈ R

Definition 16. Sum of Independent Random Variables with MGF:
Suppose X1, X2, ..., Xn are n independent r.vs

∀1 ≤ i, j ≤ n, i 6= j, Xi ⊥ Xj =⇒ M∑n
i=1Xi

=

n∏
i=1

MXi

Proof

M∑n
i=1Xi

(t) = E[et(
∑n
i=1Xi)] = E[

n∏
i=1

etXi ] =

n∏
i=1

MXi(t)

Example 22.
a- For X ∼ Bin(n, p), find its MGF.
b- Prove that :

X ∼ Bin(m, p) & Y ∼ Bin(n, p) & X ⊥ Y =⇒ X + Y ∼ Bin(m+ n, p)

Solution
Let X ∼ Bin(n, p)
Then X =

∑n
i=1Xi such that Xi ∼ Ber(p) & ∀1 ≤ i, j ≤ n, i 6= j, we have Xi ⊥ Xj

MX(t) = E[et(
∑n
i=1Xi)] =

n∏
i=1

MXi(t) = (MX0
(t))n

MX+Y (t) = MX(t)MY (t) = (MX0
(t))n(MX0

(t))m = (MX0
(t))n+m

X+Y ∼ Bin(n+m, p)

2.8 Transformation of random variables
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Definition 17. Variable change

x =

x1

x2

 ∈ R2

Changing variable x and y is a bijective map (transformation) φ : R2 → R2 such that:

y =

y1

y2

 = φ(x) =

φ1(x1, x2)

φ2(x1, x2)


The inverse transformation of φ is φ−1 : R2 → R2 defined by:

x =

x1

x2

 = φ−1(y) =

φ−1
1 (y1, y2)

φ−1
2 (y1, y2)



Definition 18. The law of a transform

Consider the vector of r.v in R2, X =

X1

X2

, the vector Y =

Y1

Y2

 is the transform of X

with a transformation φ: Y = φ(X) if the law of Y is given by

∀A ∈ B, PY (A) = P (Y ∈ A) = P (X ∈ φ−1(A)) = PX(φ−1(A))

Example 23. Given the following transformation:

y = φ(x) =

y1

y2

 =

φ1(x)

φ2(x)

 =

x1 − x2

x1 + x2


Find its inverse transformation and find P (Y2 < 1).
Solution
The inverse transformation :

x = φ−1(y) =

x1

x2

 =

φ−1
1 (y)

φ−1
2 (y)

 =

 y1+y2
2

y2−y1
2


Y = φ(X)

P (Y2 < 1) = P (Y ∈ R×]−∞, 1[) = P (φ−1
1 (R×]−∞, 1[)) = P (X1 +X2 < 1)

Definition 19. Jacobian of a transformation
Consider the transformation φ over Rm × Rn, the Jacobian of φ = (φ1, · · · , φm)T is given
by:

Jφ(x) =
∂φ(x)

∂x
=
∣∣∣ ∂
∂x1

φ(x) · · · ∂
∂xn

φ(x)

∣∣∣ =

∣∣∣∣∣∣∣∣∣
∂
∂x1

φ1(x) · · · ∂
∂xn

φ1(x)
...

. . .
...

∂
∂x1

φm(x) · · · ∂
∂xn

φm(x)

∣∣∣∣∣∣∣∣∣
For the case of φ in the first example :

Jφ(x) =

∣∣∣∣∣∣
∂
∂x1

φ1(x) ∂
∂x2

φ1(x)

∂
∂x1

φ2(x) ∂
∂x2

φ2(x)

∣∣∣∣∣∣ =
∂y1

∂x1

∂y2

∂x2
− ∂y1

∂x2

∂y2

∂x1
= 2



CHAPTER 2. RANDOM VARIABLES 73

For the case of φ−1 in the first example :

Jφ−1(y) =

∣∣∣∣∣∣
∂
∂y1

φ−1
1 (y) ∂

∂y2
φ−1

1 (y)

∂
∂y1

φ−1
2 (y) ∂

∂y2
φ−1

2 (y)

∣∣∣∣∣∣ =
∂x1

∂y1

∂x2

∂y2
− ∂x1

∂y2

∂x2

∂y1
= 1/2

Theorem 1. Density of a transform
The density of a random vector Y transformed from X by φ is:

fY (y) = fX(φ−1(y))|Jφ−1(y)|

Example 24. Consider X and its transform Y from the previous example. The density of X
over the domain A = {(x1, x2) ∈ R2|0 < x1 < x2 <∞} is given by:

fX(x) = e−x21A

1- Find the density of Y
2- Calculate P (Y2 < 1)
Solution
The domain of Y is the transform of A by φ :

φ−1(A) = {(y1, y2) ∈ R2|0 < y2 − y1 < y1 + y2 <∞}
= {(y1, y2) ∈ R2|0 < y1 < y2 <∞}

fY (y) = fX(φ−1(y))|Jφ−1(y)| = e−(y1+y2)/21φ−1(A)
1

2
=

1

2
e−(y1+y2)/21φ−1(A)

P (Y2 < 1) = P (X1 +X2 < 1) =

∫ 1/2

0

∫ x2

0

fX(x1, x2)dx1dx2

=

∫ 1/2

0

∫ x2

0

e−x21Adx1dx2 =

∫ 1/2

0

x2e
−x2dx2 = 0.09020︸ ︷︷ ︸

Integration by part

Example 25. Let φ be an invertible transformation defined over R2

y = φ(x) =

x2
1 + x2

2

x1/x2


Let X be a random vector with the following density function:

fX(x) = fX(x1, x12) =
e−(x2

1+x2
2)/2

2π

and its transform Y by φ
Y = φ(X)

Determine the density of Y .
Solution
The inverse transform and its jacobian :

x = φ−1(y) =

y2

√
y1√

1 + y2
2√

y1√
1 + y2

2



Jφ−1(y) =

∣∣∣∣∣∣∣∣∣
y2

2
√
y1

√
1 + y2

2

−
√
y1

(y2
2 + 1)

3
2

1

2
√
y1

√
1 + y2

2

−
y2
√
y1

(y2
2 + 1)

3
2

∣∣∣∣∣∣∣∣∣ =
−1

2(1 + y2
2)
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Using the previous theorem, the density of Y is :

fY (y) = fX(φ−1(y))|J(y)| = e−y1/2

2︸ ︷︷ ︸
Y1∼Expo( 1

2 )

1

π(1 + y2
2)︸ ︷︷ ︸

Y2∼Cauchy

Figure 2.16: fX Density of X

Figure 2.17: fY Density of Y

2.9 Independent random variables
The concept of independent random variables is similar to that of independent events. Indeed,
if X,Y are two r.vs, then the two events EA = X ∈ A and EB = Y ∈ B ∀A,B ∈ B(R) can be
independent and in this case we speak of the independence of r.v.

Definition 20.

1- Two r.v X and Y are independent (⊥) if their joint probability is the product of the
two respective probabilities:

∀A,B ∈ B(R), P (X ∈ A, Y ∈ B) = P (X ∈ A)× P (Y ∈ B) =⇒ X ⊥ Y.
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i.e.
PXY (A,B) = PX(A)× PY (B), ∀A,B ∈ B(R)

FXY (x, y) = FX(x)× FY (y),∀(x, y) ∈ RX ×RY
2- Discrete case: pXY (x, y) = pX(x)× pY (y)
3- Continuous case: fXY (x, y) = fX(x)× fY (y)

In general:
pX1,X2,..Xn(x1, x2, · · · , xn) =

∏n
i=1 P (Xi = xi)

fX1,X2,..Xn(x1, x2, · · · , xn) =
∏n
i=1 fXi(xi)

Intuitively, two random variables are independent if knowing the value of one of them does not
change the probability of the other. Just like with events, it is sometimes easy to see that two
random variables are independent just because they have no physical interactions between them.
If for example we toss a coin 2N times, and we define X as the number of heads obtained in
the N first tosses and Y in the N last tosses, as X and Y are the result of independent tosses
so they are independent.

Proposition 7.
If X and Y are two independent r.vs then

1. f(X) and g(Y ) are also independent for all functions f and g.

2. E(XY ) = E(X)E(Y )

3. V(X + Y ) = V(X) + V(Y )

Example 26. Let X1 and X2 be two independent r.vs with mean 0 and variance σ. What is
the covariance and the correlation coefficient of X1 + 2X2 and 3X1 −X2 ?

Solution
Let U = X1 + 2X2 and V = 3X1 −X2, by applying the properties of the covariance:

Cov(U, V ) = Cov(X1 + 2X2, V )

= Cov(X1, V ) + 2Cov(X2, V )

= [3Cov(X1, X1)− Cov(X1, X2)] + 2[3Cov(X2, X1)− Cov(X1, X1)]

Cov(X1, X2) = 0 and Cov(X1, X1) = V(X1) = σ2(by independence)

Cov(U, V ) = 3σ2 − 2σ2 = σ2

Corr(U, V ) =
Cov(U, V )√

V(U)V(V )
=

σ2

√
5σ210σ2

= 0.14

Example 27. Calculate the variance of a d.r.v X ; Bin(n, p).

Solution
Since the Binomial d.r.v represents the number of successes in n independent trials each one
with a success parameter p, it can be written in the form: X =

∑n
i=1Xi such that the r.vs

Xi ; Ber(p) are independent. Therefore:

V(X) = V(

n∑
i=1

Xi) =

n∑
i=1

V(Xi) = n× p× (1− p)

2.10 Expectation and conditional variance

Definition 21.
Consider the probability space (Ω,F , P ).
1- Conditioned by an event:
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The expectation of X conditioned by a non-zero event H (P (H) > 0)

E(X|H) =
E(1HX)

P (H)
=
∑
x

xP ({X = x} ∩H)

P (H)

2- Conditioned by a d.r.v Y :
The expectation of X conditioned by a d.r.v Y is a r.v noted E(X|Y ) from Ω to R ( or a
map f(Y ) from RY to R).

a- Y is a d.r.v:

E(X|Y )(y) = E(X|Y = y) =
∑
RX

xP (X = x|Y = y) (P (Y = y) > 0)

b- Y is a c.r.v:
E(X|Y )(y) =

∫
RX

xfX|Y (x, y)dx

3- The variance of X conditioned by a r.v Y is defined:

V(X|Y ) = E((X − E(X|Y ))2|Y )

Example 28. A box contains 30 balls: 5 out of them are white, 10 are black and 15 are red.
Three balls are randomly drawn. Let the r.vs X and Y represent, respectively, the number of
white and black drawn balls.
1. Find the conditional pmfs of X given Y and of Y given X.
2. Calculate E(Y |X = 0)

Solution
1. pmf.

P (X = x, Y = y) =
Cx5 × C

y
10 × C

3−xy
15

C3
30

for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 3− x

P (X = x) =

3−x∑
y=0

P (X = x, Y = y) =
Cx5 × C3−x

25

C3
30

P (Y = y) =

3−y∑
x=0

P (X = x, Y = y) =
Cy10 × C

3−y
20

C3
30

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
=
Cx5 × C

3−xy
15

C3−y
20

for 0 ≤ x ≤ 3− y

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
=
Cy10 × C

3−xy
15

C3−x
25

for 0 ≤ y ≤ 3− x

2. Expectation

E(Y |X = 0) =

3∑
y=0

yP (Y = y|X = 0) = 1.10

Example 29. Consider two r.v X and Y having the joint function:

fXY (x, y) =
12

5
xy(3− x− y) for 0 ≤ x and y ≤ 1

Calculate the conditional expectation of X given Y = y.
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Figure 2.18: joint pdf of example 23

Solution

E(X|Y = y) =

∫
RX

xfX|Y (x, y)dx

fX|Y (x, y) =
fXY (x, y)

fY (y)

fY (y) =

∫
RX

fXY (x, y)dx =

∫ 1

0

12

5
xy(3− xy)dx =

2y (−3y + 7)

5

fX|Y (x, y) =
6x(3− x− y)

7− 3y

E(X|Y = y) =

∫ 1

0

6x2(3− xy)

7− 3y
dx =

9− 4y

2(7− 3y)

2.10.1 Law of total expectation
This law allows us to calculate the unconditional expectation of a r.v X by conditioning X with
respect to another r.v Y .

Theorem 2.
Let X,Y be two r.v defined on the same probability space, we have:

E(X) = E(E(X|Y ))

Discrete case:
E(X) =

∑
y

E(X|Y = y)P (Y = y)

Continuous case:
E(X) =

∫
y

E(X|Y = y)fY (y)dy
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Proof ∑
y

E(X|Y = y)P (Y = y) =
∑
y

∑
x

xP (X = x|Y = y)P (Y = y)

=
∑
y

∑
x

x
P (X = x, Y = y)

P (Y = y)
P (Y = y)

=
∑
y

∑
x

xP (X = x, Y = y)

=
∑
x

x
∑
y

P (X = x, Y = y)

=
∑
x

xP (X = x)

= E(X)

In other words, the expectation of X is considered as the expectation of E(X|Y = y) with
respect to Y for y ∈ RY (expectation of the conditioned expectation which is a r.v) which is a
function of RY in R.

Example 30. A student has to present his work in a conference, he chooses English with
probability 2/3 and Spanish with probability 1/3. If the number of linguistic mistakes he may
make in English follows a U(3,12) law and the number of errors in Spanish follows a U(4,20)
law. What is the expectation of the number of errors he will make?

Solution
Let X be the value of the number of errors he makes, and Y the chosen language.
RX = N and RY = {0, 1} (0: English and 1: Spanish)

E(X) =

1∑
y=0

E(X|Y = y)P (Y = y)

= E(X|Y = 0)P (Y = 0) + E(X|Y = 1)P (Y = 1)

= 15/2× 2/3 + 24/2× 1/3 = 9

Example 31. This example illustrates the use of the law of total expectation with recurrence.
A person is in a room with three exits. The first exit (chosen with probability 1/2) leads to the
outside.The second and the third (both chosen with probability 1/4) with 7m and 5m path long
respectively. He returns back to the room by choosing them. What is the expectation of the total
distance to leave the room.

Solution
Let X be the r.v representing the crossed distance to exit to the outside, and Y the chosen exit.
RY = {1, 2, 3}.
E(X) =

∑
RY

E(X|Y = y)P (Y = y)
E(X|Y = 1) = 10
E(X|Y = 2) = 7 + E(X)
This is explained by the fact that when this person returns to the room, the same experiment
(independent of the previous ones) is repeated.
E(X|Y = 3) = 5 + E(X)
E(X) = 10× 1

2 + (7 + E(X))× 1
4 + (5 + E(X))× 1

4
E(X) =16.

Let’s code!

# Code214.py

import numpy as np
from random import choices
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def go_out():
distance=0
while True:

s=choices([1,2,3],prob)[0]
distance+=10 if s==1 else(7 if s==2 else 5)
if(s==1):break

return distance

n=100000
prob=[0.5,0.25,0.25]
d=[go_out() for _ in range(n)]

print("Expexted crossed distance: ",np.mean(d))

#______________________________ Output ______________________________________
# Expexted crossed distance: 15.99408

The expectation of the geometric law
Another way to calculate the expectation of a geometric r.v with parameter p is to use recurrence.
Let X be the r.v representing the number of coin tosses necessary to obtain the first head. p is
the probability of success.
Let Y be the r.v representing the outcome of the first toss: 1 if head and 0 if tail.
Each time we get a failure (Y = 0), the same experiment is repeated (recurrence on X ) with
one more toss. When we get a success (Y =1), we stop.

E(X) = E(X|Y = 0)P (Y = 0) + E(X|Y = 1)P (Y = 1)

E(X|Y = 0) = 1 + E(X)

E(X|Y = 1) = 1

So E(X) = (1 + E(X))(1− p) + p which gives E(X) = 1/p.

Example 32. Each year, a park opens its doors for two months (60 days) given that it does not
rain. During this period, every day, there is a probability p of raining. Consider the two r.vs:
Y the number of days the park opens its doors and X the total number of visitors during the Y
days. If X|Y ; Poisson(100Y ) what is the distribution and the expectation of Y . Calculate
the expectation of X.

Solution
Y ; Bin(60, 1− p) and E(Y ) = n(1− p)
Since X|Y ; Poisson(100Y ) then E(X|Y ) = 100Y
E(X) = E(E(X|Y )) = E(100Y ) = 100E(Y ) = 100× 60× (1− p) = 6000(1− p)

Let’s code!

#Code215.py

import numpy as np
from sympy import *
from sympy.stats import Poisson, Binomial, E
from sympy import Symbol

p, n, mu = Symbol("p"), Symbol("n"), Symbol("mu")
Y = Binomial("Y",n,1-p); XgivenY = Poisson("X",mu*Y)
print(’E(Y) = ’, E(Y))
print(’E(X|Y) = ’, E(XgivenY))
print(’E(X) = ’, E(E(XgivenY)))

p0, mu0, n0 = 0.3, 100, 60
print(’Resultat Symbolique :’)
print("Esperance de Y : ", E(Y).subs([(n,n0),(p,p0)]).doit())
print("Esperance de X|Y : ", E(E(XgivenY)).subs([(n,n0),(p,p0),(mu,mu0)]).doit())

N = 1000
Ye = np.random.binomial(n0 ,1-p0, N)
XgivenYe = np.random.poisson(mu0*Ye, (N, len(Ye)))

print(’Resultat Empirique :’)
print("Esperance de Ye : ", Ye.mean())
print("Esperance de X|Ye : ", XgivenYe.mean())

#______________________________ Output ______________________________________
# E(Y) = Sum(Piecewise((_k*p**(-_k + n)*(1 - p)**_k*binomial(n, _k),
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# (_k >= 0) & (_k <= n)), (0, True)), (_k, 0, n))
# E(X|Y) = mu*Y
# E(X) = Sum(Piecewise((_k*mu*p**(-_k + n)*(1 - p)**_k*binomial(n, _k),
# (_k >= 0) & (_k <= n)), (0, True)), (_k, 0, n))
# Resultat Symbolique :
# Esperance de Y : 41.99
# Esperance de X|Y : 4199.99
# Resultat Empirique :
# Esperance de Ye : 42.13
# Esperance de X|Ye : 4213.06

The expectation and conditional variance preserve the properties of the classical expectation
and variance. Some properties are specific to this type (the conditional):

Proposition 8. Properties of conditional expectation and variance
1- X ⊥ Y =⇒ E(X|Y ) = E(X)
2- X ⊥ Y =⇒ E(XY |Z) = E(X|Z)E(Y |Z)
3- E(E(X|Y )|Y ) = E(X)
4- E(E(X|Y, Z)|Y ) = E(X|Y )
5- V(X|Y ) = E(X2|Y )− (E(X|Y ))2

6- V(X) = E(V(X|Y ))− (V(E(X|Y ))

2.11 Sequence of r.vs and Convergence

2.11.1 Sequence of r.vs (s.r.v)

Definition 22. A sequence of r.vs is an indexed family (Xi)i>0 such that ∀i, Xi is a r.v.
The sequence is denoted X∗n (or X∗ = (Xi)i>0).

Consider the sequence of r.v’s X∗n = (Xi)1≤i≤n such that Xi ∼ Ber(1/2), then X∗n is a random
sequence of bits (binary digits). For example X∗16 =0111010101001001.

Example 33. Consider the sequence of r.v X∗ = (Xi)i≥0 such that Y ∼ Ber(2/3) and

Xi = Y
1

i+ 1
+ (1− Y )

1

i+ 2
=

1

i+ 2− Y
a- Give X∗10

b- Are Xn independent?
c- Find the pmf (pXn) and the cdf (FXn) of Xn, for n > 0.

Solution
a- First we generate a sequence of 10 r.v of Bernouli Yi

i 0 1 2 3 4 5 6 7 8 9

Yi 0 0 1 0 1 1 1 0 0 1

Xi
1
2

1
3

1
3

1
5

1
5

1
6

1
7

1
9

1
10

1
10

a- Since ∀i 6= j,Xi 6⊥ Y ∨Xj 6⊥ Y , then Xi 6⊥ Xj . For example for X1 and X2:

P (X1 = 1/3, X2 = 1/4) = P (Y = 0) =
1

3

P (X1 = 1/3) · P (X2 = 1/4) = P (Y = 0) · P (Y = 0) =
1

9
So X1 6⊥ X2

RXn pXn FXn

{ 1
n+2 ,

1
n+1}

1
31{ 1

n+2}
+ 2

31{ 1
n+1}

1
31[ 1

n+2 ,
1

n+1 [ + 1[ 1
n+1 ,∞[
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2.11.2 Sum of independent sequences of r.v
Consider the sequence of independent r.v X∗ = (Xn)n>0. Let Sn be the r.v which is equal to
the sum of the first n r.vs Xi of X∗.

Sn fSn(x) E(Sn) V(Sn)

n∑
i=1

Xi fX1
(x)∗fX2

(x)∗· · ·∗fXn(x)
n∑
i=1

E(Xi)

n∑
i=1

V(Xi)

The probability distribution of the sum of a sequence of independent r.vs is the convolution of
their individual distributions which is denoted by ∗.

∀X,Y X ⊥ Y =⇒ fX+Y = fX ∗ fY .

Discrete case:

pX(z) ∗ pY (z) =
∑
w∈RX

pX(w)pY (z − w) =
∑
w∈RY

pY (w)pX(z − w)

Continuous case:

fX(z) ∗ fY (z) =

∫ ∞
−∞

fX(w)fY (z − w)dw =

∫ ∞
−∞

fY (w)fX(z − w)dw

Example 34. Let X and Y be two r.vs. X represents a die toss and Y represents a coin flip.
Give the pmf of S1 = X + Y and S2 = X + 2Y

Solution

X 1 2 3 4 5 6

pX 1/6 1/6 1/6 1/6 1/6 1/6

Y 0 1

pY 2/3 1/3

The rank of S1 is RS1 = {1, 2, 3, 4, 5, 6, 7}
pS1(k) =

∑
h px(k − h)× py(h), so that h ∈ RY and k − h ∈ RX

pS1
(1) = px(1)py(0) = 1/6× 2/3 = 1/9

pS1
(2) = px(1)py(1) + px(2)py(0) = 1/6× 1/3 + 1/6× 2/3 = 1/6

pS1
(7) = px(6)py(1) = 1/6× 1/3 = 1/18

S1 1 2 3 4 5 6 7

pS1
1/9 1/6 1/6 1/6 1/6 1/6 1/18

S2 = X + 2Y = S1 + Y
The rank of S2 is RS2 = {1, 2, 3, 4, 5, 6, 7, 8}

pS2(k) =
∑
h pS1(k − h)× py(h), such that h ∈ RY and k − h ∈ RS1

pS2
(1) = pS1

(1)py(0) = 1/9× 2/3 = 2/27
pS2

(2) = pS1
(2)py(0) + pS1

(1)py(1) = 1/6× 2/3 + 1/9× 1/3 = 4/27
pS2

(3) = pS1
(3)py(0) + pS1

(2)py(1) = 1/6
pS2(7) = pS1(7)py(0) + pS1(6)py(1) = 1/18× 2/3 + 1/6× 1/3 = 5/54
pS2(8) = ps1(7)py(1) = 1/18× 1/3 = 1/54

S2 1 2 3 4 5 6 7 8

pS2 2/27 4/27 1/6 1/6 1/6 1/6 5/54 1/54

Example 35. Let X and Y ; U(0, 1). Find the distribution of Z = X + Y
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Solution

fZ(z) =

∫ +∞

−∞
fX(z − y)fY (y)dy =

∫ 1

0

fX(z − y)dy

=

∫ z

0

dy = z if 0 ≤ z ≤ 1

=

∫ 1

z−1

dy = 2− z if 1 < z ≤ 2

= z1[0,1](z) + (2− z)1[1,2]

So z ; T ri(0, 2, 1)

2.11.3 Convergence
Consider a sequence of r.v’s X∗ = (Xn)n>0 and a r.v X.

Definition 23.
X∗ converges in distribution to X (denoted Xn

d−→ X) if:

lim
n→∞

FXn(x) = FX(x), ∀x, FX(x) is continuous

Example 36. Let X∗ be a s.r.v such that FXn(x) = 1{x>0}(1− (1− q/n)nx/p) p, q > 0.

Show that Xn
d−→ X ∼ Exp(p/q)

Solution
Consider the r.v X ∼ Exp(p/q),
i- In case x ≤ 0, we have

FXn(x) = FX(x) = 0, ∀n ≥ 2

ii- In case x ≥ 0, we have

lim
n→∞

FXn(x) = lim
n→∞

(
1−

(
1− q

n

)nx/p)
= 1− lim

k→∞

(
1− 1

k

)k pq x
︸ ︷︷ ︸

k=bn/qc

= 1− e−
p
q x = FX(x), ∀x

Theorem 3.
Let X∗ be a s.r.v and X a d.r.v. Suppose that X and Xn (for all n) are non-negative
integer values, (RX ⊂ N, RXn ⊂ N,∀n ∈ N∗). So,

Xn
d−→ X ⇐⇒ lim

n→∞
pXn(k) = pX(k), ∀k ∈ N

Proof.
We prove both directions of the implication.
i- Since X is an integer valued r.v, its cdf,FX(x), is continuous at each x ∈ R/N.
If Xn

d−→ X, then

lim
n→∞

FXn(x) = FX(x), ∀x ∈ R/N.
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For k ∈ N, we have

lim
n→∞

PXn(k) = lim
n→∞

FXn
(
k +

1

2

)
− FXn

(
k − 1

2

)
︸ ︷︷ ︸

Xn an integer valued


= lim
n→∞

FXn

(
k +

1

2

)
− lim
n→∞

FXn

(
k − 1

2

)
= FX

(
k +

1

2

)
− FX

(
k − 1

2

)
︸ ︷︷ ︸

(since Xn
d−→ X)

= PX(k)︸ ︷︷ ︸
Xi.v.r.v

ii- Suppose that: limn→∞ pXn(k) = pX(k), ∀k ∈ N. So

∀x ∈ R, lim
n→∞

FXn(x) = lim
n→∞

P (Xn ≤ x)

=

xfixed, {0,1,··· ,bxc}finished︷ ︸︸ ︷
lim
n→∞

bxc∑
k=0

PXn(k) =

bxc∑
k=0

lim
n→∞

PXn(k) =

bxc∑
k=0

PX(k)︸ ︷︷ ︸
(hypothesis)

= P (X ≤ x) = FX(x).

Example 37. Let X∗ be a s.r.v such that Xn ∼ Bin(n, λ/n),∀n ∈ N, n > λ , and λ > 0 is
constant.
Show that Xn

d−→ X ∼ Pois(λ).

Solution

lim
n→∞

PXn(k) = lim
n→∞

Ckn

(
λ

n

)k (
1− λ

n

)nk

=
λk

k!
. lim
n→∞


[
n(n− 1)(n− 2)...(n− k + 1)

nk

]
︸ ︷︷ ︸

1(n→∞)

(
1− λ

n

)n
︸ ︷︷ ︸
e−λ(n→∞)

(
1− λ

n

)−k
︸ ︷︷ ︸

1(n→∞)

 .

=
e−λλk

k!
= PX(k) and X ∼ Pois(λ)

Definition 24.
X∗ converges in probability to X (denoted Xn

p−→ X) if :

lim
n→∞

P
(
|Xn −X| ≥ ε

)
= 0,∀ε > 0

Example 38. Let X∗ be a s.r.v such that Xn ∼ Exp(n), show that Xn
p−→ 0.

Solution
Let ε > 0, then limn→∞ P

(
|Xn − 0| ≥ ε

)
= lim
n→∞

P
(
Xn ≥ ε

)
︸ ︷︷ ︸

Xn≥0

= lim
n→∞

e−nε︸ ︷︷ ︸
Xn∼Exp(n)

= 0
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Definition 25.
X∗n converges almost sure to X (noted Xn

a.s−−→ X) if :

P
({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1

Example 39. Consider the sequence X∗ and the r.v X defined on the probability space (Ω =
[0, 1], P ([a, b]) = b− a) for all 0 ≤ a ≤ b ≤ 1 by:

Xn(ω) = 1{0≤ω<n+2
3n }

and X(ω) = 1{0≤ω< 1
3}

Consider the following set:

A =
{
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

}
- Determine the event A and its probability. What conclusion can you make?

Solution
i− If ω ∈ [0, 1

3 [, ω ∈ [0, n+2
3n ] therefore Xn(ω) = X(ω) = 1, then [0, 1

3 [⊂ A
ii− If ω ∈] 1

3 , 1[

∃nω ∈ N, such that
1

nω
< (3ω − 1)/2︸ ︷︷ ︸

propertyofArchimedes

,

we have
nω + 2

3nω
< ω, so Xnω (ω) = X(ω) = 0 then ] 1

3 , 1[⊂ A

From i and ii, Ω = A ∪ { 1
3} and P ( 1

3 ) = 0, then P (A) = P (Ω) = 1

So Xn
a.s−−→ X

A sequence can converge to one type but not to another. Some of these types of convergence
are stronger than others.

Definition 26.
Convergence type A is stronger than convergence type B (B is weaker than A), if type A
implies type B.

X∗n
A−→ X =⇒ X∗n

B−→ X

Theorem 4.
The almost sure convergence is stronger than the probability convergence which is stronger
than the distribution convergence. Let X∗ be a s.r.v, we have :

Xn
p.s−−→ X =⇒ Xn

p−→ X =⇒ Xn
d−→ X

2.11.4 Large numbers law

Theorem 5. Weak law of large numbers
Let X∗ be a s.r.v such that Xn are i.i.d, of finite mean E(Xn) = µ <∞. Then the empirical
mean Xn = X1+X2+···+Xn

n tends in probability towards µ (Xn
p−→ µ).

lim
n→∞

P
(
|Xn − µ| ≥ ε

)
= 0,∀ε > 0
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Let’s code!

#Code216.py

import numpy as np
from numpy.random import geometric, binomial

# Large number law for s.r.v
def generate(law, args, k):

return np.sum([i*(law(*args)==i).sum() for i in range(100)])/k

def plotter(E):
import matplotlib.pyplot as plt

plt.plot(range(N), E, linewidth=0.5,label=str(N))
plt.xlabel(’N’)
plt.ylabel(’Empirical expectation’)
plt.show()

p, N, n = 1/12, 1000, 100

E1 = [generate(geometric, [p,k*10], k*10) for k in range(N)] ;plotter(E1)
E2 = [generate(binomial , [n,p, k*10 ], k*10) for k in range(N)] ;plotter(E2)

print(’Theoretical Expectation - Binomial(np)= ’, n*p , ’, - Geometric (1/p)= ’, 1/p)

#______________________________ Output ______________________________________
#Theoretical Expectation - Binomial(np)= 8.333333333333332 , - Geometric (1/p)= 12.0

Figure 2.19: WLLN for the Geometric law(E1) and Binomial(E2) In red is the theoretical
mean

Let’s code!

#Code217.py

import numpy as np
from numpy.random import geometric
import matplotlib.pyplot as plt
from fractions import Fraction
from scipy.stats import geom

N, M = 100000, 3000 # N: number of generated r.v, M: the limit
parameters=[1/70,1/30,1/12,1/2]

# generate: generates N geometric r.v samples for different parameters
# and returns their frequencies
def generate():

f=[]
for i in range(len(parameters)):

z= geometric(parameters[i], size=N)
somme=np.array([(z==k).sum() for k in range(M)])/N
f.append(somme)

return f

freqs = generate()
esps =[f*range(M) for f in freqs ]

for i in range(len(parameters)):
plt.plot(range(1,199), freqs[i][1:199], color=’green’, linewidth=1,label="P="

+str(Fraction(parameters[i]).limit_denominator())+" E="+str(round(np.sum(esps[i]),2))
)
plt.legend(); plt.xlabel(’i’); plt.ylabel(’Frequence’)
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plt.plot(range(1,199), geom.pmf(range(1,199), parameters[i]),linewidth=0.7, color=’r’)
plt.show()

Figure 2.20: Empirical frequency for different values of p

2.11.5 Central limit theorem
This theorem is related to the Normal distribution. It indicates that the sum of n independent
r.vs having the same probability distribution of mean µ and standard deviation σ, has approxi-
mately a Normal distribution of mean nµ and standard deviation σ

√
n for a large enough value

of n :

Theorem 6. TCL
Consider X∗n such that Xi are i.i.d with finite mean E(Xi) = µ and variance V(Xi) = σ2

, so Ŝn (Sn standard : Ŝn = Sn−E(Sn)√
V(Sn)

= Sn−nµ√
nσ

) converges in distribution to a r.v which

follows the standard normal distribution.

X∗n| Xiiid, E(Xi) <∞, V(Xi) <∞ =⇒ Ŝn
d−→ Z ; N (0, 1)

lim
n→∞

FŜn(x) = lim
n→∞

P (
X1 +X2 + · · ·+Xn − nµ

σ
√
n

≤ x) = FZ(x) = φ(x) ∀x

Let’s code!

#Code218.py

import numpy as np
from numpy.random import geometric
import matplotlib.pyplot as plt
import math
from scipy.stats import norm

def generate(p,k,mu,sigma):
z = geometric(p, size=k)
s = (np.sum(z)-(k*mu))/(sigma*math.sqrt(k))
return s

def plotter(result):
# Central limit theorem using sampling as histogram
M = max(np.abs(result))
ls = np.linspace(start=-M, stop=+M,num=50 + 1, endpoint=True)
plt.hist(result,bins=ls,density=1,histtype=’step’,label="Histogramme")

# Central limit theorem using theoretic approximation (Normal distribution)
mu, variance = 0, 1
sigma = math.sqrt(variance)
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x = np.linspace(mu - 5*sigma, mu + 5*sigma, 100)
plt.plot(x, norm.pdf(x, mu, sigma),linewidth=0.7, color=’r’)
plt.show()

def TCL(N):
k, p = 1000, 1/12
mu, sigma = 1/p, math.sqrt((1-p)/(p**2))
result = [generate(p,k,mu,sigma) for _ in range(N)]
plotter(result)

TCL(100000)

Figure 2.21: TCL applied to the geometric law

Example 40. Let Y be the number of heads obtained by tossing a coin 40 times.
Find PY (20) the probability that Y = 20.
Find the probability of getting 20 heads
Find the probability of getting 30 heads

Solution
1- Y = Sn is the sum of n i.i.d r.vs (∀i,Xi ; Ber(1/2)).
Since Ŝn

d−→ Z ; N (0, 1) , then PŜn(k) can be approximated by P (|Xk| < c) such that 2c the
length of the interval centered by k must not contain any other values of RŜn except k. We
choose c = 0.5√

nσ
.

PS40
(20) = PŜ40

(
20− (40× 0.5)√

40× 0.5
) = PŜ40

(0)

= P (−0.158 ≤ Ŝ40 ≤ +0.158)

≈ P (−0.158 ≤ X ≤ +0.158) = P (|X| < 0.158)

= φ(+0.158)− φ(−0.158) = 0.1272

Direct calculation gives: P (Y = 20) = C20
40 × ( 1

2 )40 = 0.1268

PS40
(30) = PŜ40

(
30− (40× 0.5)√

40× 0.5
) = PŜ40

(3.16)

= P (3.16− 0.158 ≤ Ŝ40 ≤ 3.16 + 0.158) = P (3.002 ≤ Ŝ40 ≤ 3.318)

≈ P (3.002 ≤ X ≤ 3.318) = P (|X − 3.16| < 0.158)

= φ(3.318)− φ(3.002) = 0.0008

2.12 Application: linear regression
Linear regression is widely used in machine learning and data analysis. It consists in establishing
a linear relationship (model) between a variable Y (called dependent variable) and one or more
variables X (called independent variables). In its most basic form, a single variable X is used
to predict the value of variable Y .
In case X and Y are Normal bivariate r.vs, the linear regression model denotes a model in which
the conditional expectation of Y given X is an affine function:

E(Y |X) = a+ bX
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this is equivalent to:
Y = a+ bX + ε

such that ε is a Normal r.v representing the error and it is independent of X with E(ε|X) = 0.
Proof
1- Assume that we have Y = a+ bX + ε such that ε is a Normal r.v representing the error and
it is independent of X with E(ε|X) = 0, then :

E(Y |X) = E(Y |a) + E(bX|X) + E(ε|X) = a+ bX

2- We have E(Y |X) = a+ bX, assume that ε = Y − a+ bX
As Y , X are bivariate Normal then ε is Normal r.v. verifying

E(ε|X) = E(Y |X)− E(a+ bX) = 0

We have

E(ε) = E(E(ε|X)) = 0

E(εX) = E(E(εX|X)) = E(XE(ε|X)) = 0 = E(ε)E(X)

Then ε ⊥ X (independent).
This result allows us to define the value of a and b in terms of E(X), E(Y ), V(X) and

Cov(X,Y ).
As ε and X are independent, they are uncorrelated, then

Cov(X,Y ) = Cov(X, a+ bX + ε) = Cov(X, a) + bCov(X,X) + Cov(X, ε) = bV(X)

So:
b =

Cov(X,Y )

V(X)

we have
E(Y ) = E(E(Y |X)) = E(a+ bX) = a+ bE(X)

Then
a = E(Y )− bE(X) = E(Y )− Cov(X,Y )

V(X)
E(X)

In the following code we apply the result obtained in this section and compare it to the result
obtained by the linear_model module of the sklearn library which uses the least squares method.

Let’s code!

#Code219.py

import numpy as np
import matplotlib.pyplot as plt

# sklinreg: performs linear regression using sklearn package
def sklinreg():

import pandas as pd # To read data
from sklearn.linear_model import LinearRegression
data = pd.read_csv(’data.csv’) # load data set
X = data.iloc[:, 0].values.reshape(-1, 1) # values converts it into a numpy array
Y = data.iloc[:, 1].values.reshape(-1, 1) # -1 means that calculate the dimension of rows,
but have 1 column
linear_regressor = LinearRegression() # create object for the class
m=linear_regressor.fit(X, Y) # perform linear regression
Y_pred = linear_regressor.predict(X) # make predictions
return X,Y,m.intercept_[0],m.coef_[0][0],Y_pred

# analytic: performs linear regression using the results of the application
def analytic(X0,Y0):

X=[X0[i][0] for i in range(len(X0))]
Y=[Y0[i][0] for i in range(len(Y0))]
Ex,Ey,Vx=np.mean(X),np.mean(Y),np.var(X)
Cov=np.cov(X,Y)[0][1]
b=Cov/Vx; a=Ey-Ex*b
predictedY=a+b*np.array(X)
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return a,b,predictedY

def plotter(X,Y,predictedY,col):
plt.scatter(X, Y)
plt.plot(X, predictedY, color=col)
plt.show()

X,Y,ska,skb,skY_pred=sklinreg()
print("SKlearn results: a=",ska," b=",skb)

anala,analb,analY_pred=analytic(X,Y)
print("Analytic: ""a=",anala," b=",analb)

plotter(X,Y,skY_pred,’red’)
plotter(X,Y,analY_pred,’green’)

#______________________________ Output ______________________________________
# SKlearn results: a= 9.908606190326537 b= 1.2873573700109313
# Analytic: a= 9.263291199945208 b= 1.3004936697049203

Figure 2.22: Linear regression
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2.13 Exercises
Exercise 1. Two counterfeit banknotes were concealed in a packet of three real banknotes. To
withdraw them, the banknotes are checked one by one in a random order. Let X be the random
variable representing the minimum number of banknotes that must be checked to find the two
fake banknotes.
1. Give the mass function of X.
2. Calculate its expectation and its variance.
3. Code the exercise.

Exercise 2. Consider the following function:

f(x) = cx2(1− x)10<x<1

1. Determine the value of c so that f is a density function.
2. Suppose that f is the density function of the c.r.v X which represents the volume of yearly
precipitation over an area on which a dam will be built. What capacity should be provided for
this dam so that the probability of overflow in a given year does not exceed 1%?

Exercise 3. Knowing that the number of major earthquakes each year in the world follows
Poisson law with an average of 4.2 earthquakes a year. What is the probability that there will be
more than 7 major earthquakes in the world next year?

Exercise 4. Let X and Y ; U(a, b)
1. Find the distribution of Z = X + Y
2. Write the corresponding code.

Exercise 5. Let X ,Y be two r.vs following Ber(1/2) law.
1. Find the distribution of the r.v |X − Y |.
2. Find the distribution of the r.v |X − Y | when X and Y follow Ber(p).
3. Write the corresponding code.

Exercise 6. Let X1, X2, · · · , Xn be n exponential r.vs with respective rates λ1, λ2, · · · , λn.
Show that min(X1, X2, · · · , Xn)is an exponential r.v of rate

∑n
i=1 λi.

Exercise 7. Let X1 and X2 be two exponential r.v of respective rates λ1 and λ2. What is the
probability that X1 is less than X2?

Exercise 8. An urn contains 10 balls numbered 1 to 10. One ball at a time is repeatedly drawn
(with replacement). Let the r.v X representing the number of draws until the appearance of
number 3, and the r.v Y representing the number of draws until the appearance of number 7.
1. What is the joint mass function of P (X = x, Y = y).
2. Calculate P (X = 2|Y = 4)

Exercise 9. Buffon’s experiment consists in throwing needles of length h on a plane on which
parallel lines separated by the same distance l are drawn. The number of needles crossing these
lines are observed.
1. Let X be the r.v which represents the distance from the center of the needle to the nearest
line; and let θ be the r.v representing the angle of the needle with respect to the lines of the plane.
Find the joint distribution of X and θ.
2. What is the probability that a needle crosses a line?

Exercise 10. An electronic device contains two important components. The device fails if one
of the two components fails. The joint density function of the lifetimes X and Y (in years) of
the two components is:

f(x, y) =
1

12
(1 + x+ y)10<x,y<2

What is the probability that the electronic device fails in the first year of operation.

Exercise 11. A coin is repeatedly tossed. What is the average number of tosses until we get
tail followed by head (TH) for the first time? same question for getting two successive tails for
the first time.
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Exercise 12.
1. Consider the c.r.v X ∼ U([a, b]), check that :

V(X) ≤ (b− a)2

4

2. Let X be a r.v, prove the following implication:

P (a ≤ X ≤ b) = 1 =⇒ V(X) ≤ (b− a)2

4

Exercise 13. A person types a text of 2000 characters. He may enter an incorrect character
for every 200 characters typed. Suppose that the errors of the entry are independent.
1. What is the probability that the number of errors exceeds 50?
2. What is the size of the text (number of characters) so that the probability that the number of
errors is less than 25 equals 0.9.

Exercise 14. Consider Xn = X+Yn, such that E(Yn) = 1/n, V(Yn) = σ2n, σ > 0 is a constant,
show that Xn

p−→ X.

Exercise 15. Consider X∗ a s.r.v:
1- Let

pXn(x) =
1

n
1{n2} + (1− 1

n
)1{0}

Show that Xn
p−→ 0

2- Let Y ; Ber(1/3) and
Xn =

n

n+ 1
Y +

n

n2 + 1
(1− Y )

a- Study the convergence of Xn(ω),∀ω ∈ {P, F}.
b- Find P ({ωi ∈ Ω : limn→∞Xn(ωi) = 0}) .

3- Let
pXn =

1

2
1{−1

n }
+

1

2
1{ 1

n}

Show that Xn
p.s.−−→ 0.

Exercise 16. Consider the probability space (Ω = [0, 1], P ([a, b]) = b− a,∀ 0 < a < b < 1), We
define X∗ a s.r.v by Xn = 1[0,n+1

2n [ ∀n > 0 and a r.v X by X = 1[0,1/2[. Show that Xn
d−→ X.
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2.14 Solutions
Solution 1.
1. The rank of X, RX = {2, 3, 4}.
Ω = {00111, 01011, 01101, 01110, 10011, 10101, 10110, 11001, 11010, 11100}.
0 represents a fake banknote and 1 represents a good banknote
It is a permutation with repetition of length 5 of the elements of B and M ( B is repeated 3

times and M 2 times), so |Ω| = 5!

2!3!
= 10

ωi 00111 01011 01101 01110 10011 10101 10110 11001 11010 11100

xi 2 3 4 4 3 4 4 4 4 3

Xi is the minimum number of required tests to find the fake banknotes.
P (X = 2) = 1/10, P (X = 3) = 3/10, P (X = 4) = 6/10
We can directly use the chain rule as follows:

• P (X = 2) = P (M,M) = 2/5× 1/4 = 1/10

• P (X = 3) = P (B,M,M) + P (M,B,M) + P (B,B,B) = 3/5 × 2/4 × 1/3 + 2/5 × 3/4 ×
1/3 + 3/5× 2/4× 1/3 = 3/10

• P (X = 4) = 1− (P (X = 2) + P (X = 3)) = 6/10

2. Calculate the expectation and variance of X :
E(X) = 2P (X = 2) + 3P (X = 3) + 4P (X = 4) = 3.5
V(X) = (2− 3.5)2P (X = 2) + (3− 3.5)2P (X = 3) + (4− 3.5)2P (X = 4) = 0.45

Solution 2.
1. Find c ∫ 1

0

c(1− x)dx =
[
c(x− x2/2)

]1
0

= c/2 = 1

So c = 2

2. Let x0 be the capacity of the dam.
The probability that the volume of precipitation exceeds the storage capacity:

P (X > x0) = 1− P (X) = 1− F (x0) = 1−
∫ x

0
0(2t− t2)dt = x2

0 − 2x0 + 1

P (X > x0) ≤ 0.01 =⇒ x2
0 − 2x0 + 1 ≤ 0.01 =⇒ x2

0 − 2x0 + 0.99 ≤ 0

The solution of this inequality is x = 0.9, so the capacity of the dam in thousands of litres is 0.9

Solution 3.
Using a random variable X following the Poisson distribution of parameter λ = 4.2, we can
calculate

P (X > 7) = 1− P (X ≤ 7) = 1−
7∑
k=0

e−4.24.2k/k! = 0.064

Solution 4.

fZ(z) =

∫ +∞

−∞
fX(z − y)fY (y)dy

=

∫ b

a

fX(z − y)dy

=

∫ z

a

dy = a+ z if a ≤ z ≤ a+ b

2

=

∫ b

z− a+b2

dy = a+ bz if
a+ b

2
< z ≤ a+ b

= z1[a, a+b2 ](z) + (a+ bz)1[ a+b2 ,a+b]
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So Z ; T riang(a, a+ b, a+b
2 )

Solution 5.

(X,Y ) (1,1) (1,0) (0,1) (0,0)

|X − Y | 0 1 1 0

p|X−Y | 1/4 1/4 1/4 1/4

So the rank of |X − Y | is: {0, 1} and |X − Y |; Ber(1/2).
2.

(X,Y ) (1,1) (1,0) (0,1) (0,0)

|X − Y | 0 1 1 0

p|X−Y | p2 p(1− p) p(1− p) (1− p)2

So the rank of |X − Y | is: {0, 1} and |X − Y |; Ber(2p(1− p)).

Solution 6.
We have {min(X1, X2, ..., Xn) > x} = {∩ni=1(Xi > x)}

Xi are independent︷ ︸︸ ︷
P (∩ni=1(Xi > x)) =

n∏
i=1

P (Xi > x) =

n∏
i=1

e−λix︸ ︷︷ ︸
Xi;Exp(λi)

= e−(
∑n
i=1 λi)x

So min(X1, X2, ..., Xn) ; Exp(
∑n
i=1 λi))

Solution 7.
This probability is easily calculated by conditioning on X1:

P (X1 < X2) =

Total law and X1;Exp(λ1)︷ ︸︸ ︷∫ ∞
0

P (X1 < X2|X1 = x)λ1e
−λ1xdx

=

X2;Exp(λ2)︷ ︸︸ ︷∫ ∞
0

P (x < X2)λ1e
−λ1xdx =

∫ ∞
0

e−λ2xλ1e
−λ1xdx

=

∫ ∞
0

λ1e
−(λ1+λ2)xdx

=
λ1

λ1 + λ2

Solution 8.
1. Let k = min(x, y)

P (X = x, Y = y) = (
8

10
)k−1 × 1/10× (

9

10
)|yx| × 1/10

2. Find
P (X = 2|Y = 4) =

P (X = 2, Y = 4)

P (Y = 4)

P (Y = y) = (
9

10
)y−1 × 1

10

P (X = 2|Y = 4) =
8
10 ×

1
10 ×

9
10 ×

1
10

( 9
10 )3 × 1

10

=
8

81
.
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Solution 9.
1. RX = [0, l/2] and Rθ = [0, π/2].
X ∼ U([0, l/2]) and θ ∼ U([0, π/2])
X and θ are independent because the orientation of the needle does not depend on the position
of its center.

PX,θ(x, α) = P (X = x, θ = α) = P (X = x)P (θ = α) =
4

lπ

2. The needle inclined by an angle θ crosses the line if X is less than the length of the opposite
side of the angle θ in the right triangle whose hypotenuse is h/2 (see figure 2.23).

Figure 2.23: Buffon’s experiment

P (X < h/2 sin θ) =

∫ π/2

0

∫ h/2 sinα

0

PX,θ(x, α)dxdα

=

∫ π/2

0

∫ h/2 sinα

0

4

lπ
dxdα =

4

lπ

∫ π/2

0

∫ h/2 sinα

0

dxdα =
4

lπ

Solution 10.
The device fails when the first of the two components fails. So the requested probability is:

P (min(X,Y ) ≤ 1) = 1− P (min(X,Y ) > 1)

P (min(X,Y ) > 1) = P (X > 1, Y > 1)

=

∫ 2

1

∫ 2

1

1/12(1 + x+ y)dxdy

= 1/12

∫ 2

1

dx

∫ 2

1

(1 + x+ y)dxdy

= 1/12

∫ 2

1

(1 + x+ 1.5)dx = 1/3.

So P (min(x, y) ≤ 1) = 2/3.

Solution 11.
1. In the total expectation section, we have shown that the expectation of obtaining the first tail
in successive flips of a coin is equal to 1/p. In this question, the average number of needed flips
for the first TH is the sum of the average number of the first T and the average number of the
first H, so it is equal to 1/p+1/q. For p=1/2, it will be equal to 4.
Another solution: let X be a r.v of the number of necessary flips to obtain the first TH, Y r.v
of the result of the first flip and Z r.v of the number of necessary flips to obtain the first H.

E(X) = E(X|Y = H) 1
2 + E(X|Y = T ) 1

2
E(X) = (1 + E(X)) 1

2 + (2× 1
2 + (2 + E(Z)) 1

2 ) 1
2 . E(Z) = 2

E(X) = 4

2. Let X be the r.v of the average number of necessary tosses for the first TT, and Y the
r.v of the result of the first toss. If the first toss gives H, we will have lost a toss and we will
resume the experiment, otherwise, we will condition on the result of the second toss. If the latter
is T, we will have obtained TT otherwise 2 tosses are lost and we resume the experiment from
the beginning.
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E(X) = E(X|Y = H) 1
2 + E(X|Y = T ) 1

2
E(X) = (1 + E(X)) 1

2 + (2× 1
2 + (2 + E(X)) 1

2 ) 1
2

E(X) = 6

Solution 12.
1. Let X ∼ U([a, b]), then

V(X) =
(b− a)2

12
≤ (b− a)2

4

2. We have P (a ≤ X ≤ b) = 1, so P (0 ≤ X − a ≤ b− a) = 1

V(X) = V(X − a) = E((X − a)2)− E2(X − a)

≤ (b− a)E(X − a)− E2(X − a)

≤ (b− a)2

4
− (

(b− a)

2
− (b− a)E(X − a) + E2(X − a))

≤ (b− a)2

4
− (

(b− a)

2
− E(X − a))2

≤ (b− a)2

4

Solution 13.
1. Let Xi ; Ber(p = 1/50) for i = 1, · · ·n (n = 2000), equal to 1 if the character i is typed
wrong and 0 otherwise. Sn = X1 + X2 + · · · + Xn is the number of wrong characters in the
message.
E(Xi) = p = 0.02 and V(Xi) = p(1− p) = 0.0196.
By applying the central limit theorem:

P (Sn > 50) = P (
Sn − np√

nσ
>

50− np√
nσ

)

= P (
Sn − np√

nσ
>

50− 40√
39.2

)

= 1− φ(1.59) = 0.0559.

2. Find :

P (Sn < 65) = 0.95

P (Sn < 65) = P (
Sn − np√

nσ
<

65− np√
nσ

)

= φ(
65− 0.02n√

n0.14
) = 0.9 = φ(1.65)

65− 0.02n√
n0.14

= 1.65

n = 2655.

Solution 14.

P
(
|Xn −X| ≥ ε

)
= P

(
|Yn| ≥ ε

)
≤ P (|Yn − E(Yn)|+ |E(Yn)| ≥ ε)︸ ︷︷ ︸

inequality triangular

= P

(
|Yn − E(Yn)| ≥ ε− 1

n

)
≤ V(Yn)(

ε− 1
n

)2︸ ︷︷ ︸
Chebyshev inequality

=
σ2

n
(
ε− 1

n

)2

So lim
n→∞

P
(
|Xn −X| ≥ ε

)
= 0, we can conclude that Xn

p−→ X
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Solution 15.
1- Let ε > 0,

P
(
|Xn −X| ≥ ε

)
= P

(
|Xn| ≥ ε

)
= 1− P

(
|Xn| < ε

)
< 1− P

(
|Xn| ≤ 0

)
=

1

n

So lim
n→∞

P
(
|Xn −X| ≥ ε

)
= 0, we can conclude that Xn

p−→ X

2- We separate the cases according to ω:
a1- For ω = H, we have Y = 1 and Xn(ω) = n

n+1 therefore lim
n→∞

Xn = 1

a2- For ω = T , we have Y = 0 and Xn(ω) = n
n2+1 therefore lim

n→∞
Xn = 0

b- P ({ωi ∈ Ω : limn→∞Xn(ωi) = 0}) = P (T ) = 2/3

3- Let Ω be the sample space associated with X, ∀ω ∈ ω, we have the following three cases:
i1- Xn(ω) = 1

n , with probability 1/2, so lim
n→∞

Xn(ω) = 0

i2- Xn(ω) = −1
n , with probability 1/2, so lim

n→∞
Xn(ω) = 0

i3- Xn(ω) ∈ R/{1/n,−1/n}, with probability 0

Then from i1 and i2 we have: P
({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1

so Xn
ps−→ 0

Solution 16.
It suffices to show that Xn

p.s−−→ X and then use p.s−−→>> d−→ to conclude that Xn
d−→ X

We have two cases :
i- ω ∈ [0, 1

2 [
ω ∈ [0, n+1

2n ] therefore Xn(ω) = X(ω) = 1
then [0, 1

2 [⊂ A

ii− ω ∈] 1
2 , 1[

∃nω ∈ N, such that 1
nω

< 2ω − 1

we have nω+1
2nω

< ω

therefore Xnω (ω) = X(ω) = 0 then ] 1
2 , 1[⊂ A

From i and ii, Ω = A ∪ { 1
2} and P ( 1

2 ) = 0 then P (A) = P (Ω) = 1

So Xn
p.s.−−→ Xand resulting in Xn

d−→ X
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Chapter 3

Stochastic Processes

3.1 Introduction
For many complex phenomena, the systems that govern their evolution are dynamic and ran-
dom (given their complexity). This random aspect is not limited only to a given moment but it
follows this dynamic by becoming a function of time. In order to study this class of phenomena,
we must mathematically model its different components and in particular the dynamic random
part. Stochastic processes are one of the mathematical tools to carry out this modeling. They
describe the evolution of the state of a random entity of a dynamic system over time by deter-
mining its probability laws and its statistical characteristics. Examples of dynamic phenomena
that can be modeled using random processes are the evolution of the price of a listed company
stock or the daily temperature during a year.

Definition 1.
A Stochastic process is a family of random variables Xt indexed by t a parameter with values
in a set T and defined on a given probability space (Ω,F , P ), and its rank is RXt = S.

X(T,S) = {Xt is r.v on (Ω,F , P ) in S : ∀t ∈ T}

T is called the set of parameters/indices, S is called the state space whose elements s are
the states of this process. The parameter t often

represents time, but it can
represent other quantities
such as a position in the
space.Notation.

- In the rest of the document, we abbreviate the stochastic process by SP.
- If S is well known, then X(T,S) will simply be noted XT = (Xt)t∈T .

X(t, ω), t ∈ T, ω ∈ Ω is a two-variable function (T × Ω 7→ S), if we set :

• t, we get Xt a r.v Xt : Ω 7→ S

• ω : Xt(ω) a function of t called a realization of the SP (a trajectory) associated with ω.

Depending on the nature of the elements of the set T and of S (the countability property), we
can classify the set of SPs into several types. Table 3.1 gives the families of SPs according to
their nature:

Figure 3.1 in its part E shows the realizations corresponding to the eventualities ω1, ω2 and
ω3 and the r.v associated with instant t1. The distribution law of Xt (PXt) is a function of t.
The sub-figures A, B, C and D give the graphic representation of the classes of SPs.
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T | Xt Discrete Continuous

Discrete discrete values PS continuous values PS

and discrete time: B and discrete time: C

Continuous discrete values PS continuous values PS

and continuous time: A and continuous time: D

Table 3.1: Types of stochastic processes

Figure 3.1: (A,B,C,D): types of SP. E: realisations of SP

Example 1. Several phenomena are characterized by their dynamic and stochastic nature and
may be subject of SP modeling. As examples :

1. The fortune of a player after playing n heads or tails (winning 1 dinar for heads and losing
1 dinar for tails). SP X(N,Z).

2. The temperature on the nth day of the year. SP X(N,R).

3. The number of requests arriving to a server at a given time t. SP X(R,N).

4. The wind speed at a given time t. SP X(R,R).

Mathematically, we can integrate the random aspect into any equation that describes a dynamic
of a system. To have a stochastic model we introduce a random disturbing factor (one or more
r.vs). As an example of this category :

1. if Y ∼ Ber(p) and RY = {+1,−1} and we define Xn = Xn−1 + Y then X(N,Z) is a SP
(called random walk).

2. if Y ∼ N (0, 1) and we define Xn = aXn−1 + Y thenX(N,R) is a SP.

Let’s code!
The codes in this section will use some helpers that implement recurring features.
# utils.py (Continuation)

# generate_SP: generates a stochastic process X* one sample Path for T[0..999]
def generate_SP(rvY, N=1000):

spX, X_n = [0], 0 #stochastic process, random variable X_n
for i in range(N):

X_n = X_n + rvY() #current r.v X_n+1
spX.append(X_n) #newt step in SP X*

return spX

# plotSP: plots the SP’s sample paths
def plotSP(generate_SP1, nbSP=5, N=100) :

for i in range(nbSP):
spX = generate_SP1(); #ith sample path
plt.plot(spX[:N])
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Let’s code!
The following code shows how to generate a simple random process modeling the sum of a
Bernoulli test sequence (modeling the fortune of a player tossing a coin by winning +1 to the
head and losing 1 to the tail).
#Code301.py

import numpy as np
import random
import sys;sys.path.append(’../lib’)
from utils import generate_SP,plotSP

fY=lambda : 1 if random.randint(0, 1) else -1
def generate_BerSum1():

return generate_SP(fY)

# generate_BerSum2: equavalent version of generate_BerSum1 using umpy.cumsum
# (cummulative sum of the r.v values)
def generate_BerSum2():

return np.cumsum([fY() for i in range(1000)])

plotSP(generate_BerSum2)

Figure 3.2: Multiple trajectories of the SP modeling the sum of a sequence of Bernoulli tests
(-1/1)

3.1.1 CDF functions and statistics of SP
It is not enough to define a SP by the distribution of values Xt or their CDFs (PXt or FXt) but
it is necessary to integrate the interaction factor between its components by defining the joint
functions of any finite subset of its r.vs.
A SP is specified by the joint distribution of a finite set of its r.vs. To describe the relationship
between the values of the SP at different times, we define the finite-dimensional distribution
function.

Definition 2.
A SP is defined by the following finite-dimensional joint CDF :

∀k ∈ N, {t1, · · · , tk} ⊂ T, Ft1,t2,··· ,tk(x1, x2, · · · , xk) = P (Xt1 ≤ x1, · · · , Xtk ≤ xk)

In the context of SPs, the statistical quantities of r.vs (E,V, · · · ) are functions parameterized
by t. Subsequently, they will be the necessary tool to characterize each studied SP (it is not
always easy to determine the finite-dimensional joint CDF).

Definition 3.
Let t and s be two different moments in T and k ∈ N∗:
- Function of moments of order k : the function which gives the moment of order k of
each r.v at each moment t.
- Average function (moment of order 1 mathematical expectation ): m(t) = E(Xt)
- Variance function (moment of order 2): v(t) = V(Xt)
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- Autocovariance function : K(t, s) = Cov(Xt, Xs)
- Autocorrelation function : φ(t, s) = K(t, s)/

√
v(t)v(s).

Example 2. Consider a SP X∗(N,N) represented by the sum of the sequence of the r.vs that
follow Bernoulli’s distribution, we know that this sum is a Binomial r.v (Binomial SP) so we
know its statistic characteristics:

• Consider Y ∼ Ber(p) and RY = {1, 0}, we define Xn = Xn−1 + Y so Xn ∼ Bin(n, p).

• m(n) = E(Xn) = np and v(n) = V(Xn) = np(1− p) are function of the parameter n

Let’s code!
The following code shows the mean function m(t) and variance v(t) associated to Binomial SP.
#Code302.py

import numpy as np
import random
import matplotlib.pyplot as plt
import sys;sys.path.append(’../lib’)
from utils import generate_SP,plotSP

# plotter: plots SP realisations and E and V functions
def plotter(rgN, gen_SP, fE, fV):

n = rgN
plt.step(n, fE(n) , color=’red’)
plt.step(n, fE(n) + fV(n)/2, color=’black’)
plt.step(n, fE(n) - fV(n)/2, color=’black’)
plotSP(gen_SP, 5, N)

N, p = 30, 0.5; rgN = np.arange(0,N)
fYBer = lambda : random.randint(0, 1)
fnEBer = lambda n: n*p
fnVBer = lambda n: n*p*(1-p)
def generate_SP_Ber(): return generate_SP(fYBer)

plotter(rgN, generate_SP_Ber, fnEBer, fnVBer)

Figure 3.3: SP that models the sum of a sequence of Bernoulli (0/1) trials

3.1.2 Classes of stochastic processes
The set of r.vs forming the SP presents certain interesting aspects which allow us to charac-
terize the SP (its tendency, its components, the relationship between its elements, ...). This
characterization will be useful to simplify the analysis of the behavior of the SP.

Definition 4.
Consider a SP (Xt)t∈T , the SP is said :

1. Independent and identically distributed iid if the generated r.vs have the same
law and are independent.

(Xt)t∈T is iid ⇐⇒ ∀t, s ∈ T, t 6= s =⇒ Xt ⊥ Xs et PXt = PXs

2. Stationary in the strict sense s.s.s : when the joint distribution of a set of its
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r.v, (for example. from the first to the fourth) is the same as the joint distribution
of another disjoint set of the same SP, (example from the sixth to the ninth). Its cdf
depends only on the temporal difference (the difference between times).

(Xt)t∈T is Stationary ⇐⇒
∀s > 0, i 6= j,Xti+s, Xtj+s has the same joint CDF as Xti , Xtj

or

∀s > 0,∀k ∈ N, {t1, · · · , tk} ⊂ T, Ft1+s,··· ,tk+s(x1, · · · , xk) = Ft1,··· ,tk(x1, · · · , xk)

3. Stationary in the weak sense s.w.s : The expectation and the variance are con-
stant and finite, and the function of the covariance does not depend on the instants t,
but the relative difference between these instants (SP whose statistical characteristics
do not change as a function of time).

∃c > 0, c′ > 0, E(Xt) = c ≤ ∞,V(Xt) = c′ ≤ ∞ et ∀t, s > 0,K(t, s) = f(t− s)

4. With independent increments: we call increment a r.v which gives the difference
between the two values taken by the SP Xt at instants s and t, ∆X(t,s) = Xt − Xs

such that s < t. (if s = 0 then the increment will be noted ∆Xt).
We say that Xt with independent increments if the increments r.vs for non-overlapping
parameters are independent.

∀0 < t1 < t2 < s1 < s2, ∆X(t1,t2) ⊥ ∆X(s1,s2)

5. Of stationary increments if ∀t > s > 0, c > 0,∆X(t+c,s+c) follows the same
distribution as ∆X(t,s) (the distribution is invariant by translation over time).

6. Memoryless (Markovian) if its future evolution does not depend on the past, but
only on the present. In case, of discret space SP, we have:

∀t1 < · · · < tn+1,∀n, P (Xtn+1
= xn+1|Xt1 = x1, · · · , Xtn = xn) = P (Xtn+1

= xn+1|Xtn = xn)

Example 3.
1- The white noise (Xt)t≥0 is an i.i.d SP (a sequence of i.i.d r.vs) which has a constant mean
and a finite variance. This SP is stationary.
E(Xt) = µ V(Xt) = σ2

For t = s: K(s, t) = Cov(Xt, Xs) = cov(Xt, Xt) = V(Xt) = σ2

For t 6= s: K(t, s) = Cov(Xt, Xs) = 0

φ(s, t) = K(s, t)/
√
v(s)v(t)

For t = s: φ(s, t) = 1
For t 6= s: φ(s, t) = 0

2- The random walk (Xt)t≥0 is a SP, for t > 1, Xt = Xt−1 + εt Such that εt is white noise
with zero mean and variance σ2.
E(Xt) = E(Xt−1 + εt) = E(Xt−1) + E(εt) = 0
V(Xt) = cov(Xt, Xt) = V(Xt−1 + εt) = V(Xt−1) + V(εt) = tσ2

For t = s:
K(s, t) = Cov(Xt, Xs) = cov(Xt, Xt) = V(Xt) = tσ2
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For s < t:

K(t, s) = Cov(Xt, Xs) = Cov(Xs +

t∑
h=s+1

εh, Xs)

= Cov(Xs, Xs) + Cov(

t∑
h=s+1

εh, Xs)

= sσ2 +

t∑
h=s+1

Cov(εh, Xs) = sσ2

For t = s: φ(s, t) = 1
For t 6= s:

φ(t, s) = K(t, s)/
√
v(s)v(t) =

sσ2

√
sσ2tσ2

=

√
s

t

3- Consider a SP with Xn = Xn−1 + Y such that Y ∼ Ber(0.5) (1,-1) then Xn ∼ Bin(n, p).
m(n) = E(Xn) = 0 and v(n) = 1 are constants and as the covariance function depends on the
deviation not on the relative positions, then this SP is stationary.

Figure 3.4: stationary SP vs non-stationary SP

3.2 Counting process
To model the change of state of a system whose dynamics are governed by the appearance of a
particular type of random event over time, we are sometimes interested in the number of events
during the life of this system which evolves in amplitude jumps of one or more units.

Definition 5.
The stochastic process (Nt)t∈T is a counting process (enumeration) if it has non-negative
integer values, increasing whose values represent the total number of events that have oc-
curred up to time t. Nt must meet the following conditions:
1- Non-negative integer valued : RNt ⊂ N
2- Increasing : s < t then Ns ≤ Nt
3- Jump (increment) : For s < t, ∆N(t,s) = Nt−Ns is equal to the number of events that
have occurred in the time interval [s, t]

The last event associated with instant t will be noted ENt = En, such that n = Nt called nth
arrival.
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Example 4.
1- Calls to a telephone center, Et = ’receiving a call at time t’
2- Radioactive particle emissions, Et =’a radioactive particle emission’
3- Customers who have arrived at a counter until a given time. Et =’the arrival of a customer
at a ticket counter’.
4- Consider a series of Bernoulli tests. Et =’Bernoulli’s experiment that gives success’. Y ∼
Ber(p) and RY = {1, 0} and the SP defined by Xt = Xt−1 + Y . Xt represents the number of
Bernoulli’s experiments that gave success after a certain number of repetitions.

a- RXt ⊂ N
b- ∀s, t > 0, s ≥ t,Xs ≥ Xt increasing.
c- ∆X(t,s) equals the number of events Et corresponding to an experiment giving success in

[s, t]. So Xt is a counting SP.

Figure 3.5: Counting process

The set of r.vs that appear naturally with the counting process are the sojourn time (inter-
arrival) Sn between event En and En+1 for n ≥ 0. (Sn)n>0 is the SP of the inter-arrival time of
the events. The quantity Nt can be expressed as a function of another r.v Tn the arrival time
of the nth event En. (Tn)n>0 is the SP associated with the variation of this quantity.
Thereafter we agree on the following terminology :
- Nt : number of arrivals (events) until time t.
- Tn : arrival time of the nth event En.
- Sn : sojourn time of the process in state n. (the inter-arrival time between En and En+1).

The relationships between these quantities are :

Nt =

∞∑
k=0

1{Tk<t}

{Tn < t} = {Nt ≥ n} and {Tn ≥ t} = {Nt ≤ n}

Tn = S0 + S1 + · · ·Sn =

n∑
k=0

Sk

3.3 Poisson process
One of the most important counting processes is the Poisson process.

Definition 6.
A counting process (Nt)t≥0 is a Poisson process of rate λ > 0 if :

1. N0 = 0

2. Nt has independent and stationary increments.
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3. P (Nh = 1) = λh+ o(h) and P (Nh > 1) = o(h) when h→ 0+

A function f(h) is said

o(h) if lim
h→0

f(h)
h = 0.

The third condition is equivalent to the fact that the probability of observing more than one
event in an interval δt of length h tends toward 0 as h tends toward 0.
Since Nt has stationary increments, then over the interval [s, s + h] of length h, the increment
is equal to its value at instant h.

∆N(s,s+h) = ∆N(0,h) = Nh

λ represents the average number of events occurring in a unit of time.

Proposition 1.
If (Nt)t≥0 is a Poisson process of rate λ > 0 then :
1- Nt ∼ Pois(λt) i.e pNt(n) = e−λt (λt)n

n!

2- Tn ∼ Gamma(λ, n) i.e P (Tn ≤ t) = λe−λt (λt)n−1

(n−1)!

3- Sn ∼ Exp(λ) i.e P (Sn ≤ t) = 1− e−λt.

3.3.1 Law of Nt

The Poisson distribution is used in the modeling of rare events. It is the limit of the Binomial
distribution of parameters n and p when n (the number of repetitions of a Bernoulli experiment)
is very large and p (the probability of success) is very small , the total number of successes follows
Poisson’s law.
We have: λ = np and X ; Bin(n, p).

lim
n→∞,p→0

P (X = k) = e−λ
λk

k!
for k = 0, 1, 2, ...

Let p = λ/n

P (X = k) = Ckn(
λ

n
)k(1− λ

n
)(n−k)

=
λk

k!
(1− λ

n
)n(

n!

nk(n− k)!
)(1− λ

n
)−k

n!

nk(n− k)!
=
n(n− 1)...(n− k + 1)

nk
= (1− 1

n
)...(1− k − 1

n
)

This expression tends towards 1 as n tends to ∞ and the term (1− λ
n )−k too. We have also:

lim
n→∞

(1 +
b

n
)n = eb ∀ b ∈ R, so lim

n→∞
(1− λ

n
)n = e−λ

3.3.2 Law of Sn
We consider instant Tn.
Sn= waiting time until the next occurrence.

P (Sn > t) = P (NTn+t −NTn = 0)

P (Sn > t) = P (Nt = 0) (hypothesis of temporal independence)

P (Sn > t) = e−λt

P (Sn ≤ t) = 1− e−λt

So:
Sn ; Exp(λ)
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3.3.3 Law of Tn
Let Tn be the moment on which the nth event occurs. Tn − Tn−1 ; Exp(λ) n>0, T0 = 0.
So Tn is the sum of n exponential parameter variables λ and it is the Gamma law noted Γ(n, λ).
The density fTn(t) of the r.v Tn is written:

fTn(t) = λe−λt
(λt)n−1

(n− 1)!
t ≥ 0

E(Tn) =
n

λ
V(Tn) =

n

λ2

Let’s code!

#Code303.py

import numpy as np
import matplotlib.pyplot as plt

# poisson_Proc: generates sampling for Poisson SP for different parameters
def poisson_Proc(N,lambdas):

X_T = [np.random.poisson(lam, size=N) for lam in lambdas]
return [np.cumsum(X) for X in X_T]

def plot_Poisson(N,S,lambdas):
X = np.linspace(0, N, N)
G = [plt.step(X, S[i], label="Lambda = %d"%lambdas[i])[0] for i in range(len(lambdas))]
plt.legend(handles=G, loc=2)
plt.title("Poisson Process", fontdict={’fontname’: ’Times New Roman’, ’fontsize’: 21}, y=1.03)
plt.ylim(0); plt.xlim(0)
plt.show()

N , lambdas = 20 , [4, 7, 13]
S = poisson_Proc(N,lambdas)
plot_Poisson(N,S,lambdas)

Figure 3.6: Poisson process

Example 5. A volcano in a given city is estimated to erupt, on average, once every 400 years.
What is the probability that a newly born person living in this city will not witness an eruption
during his first 20 years?
Solution
Poisson’s law can be used to model this event. λ = 1/400 (one eruption in 400 years).
Nt ; Pois(λt) and the time between two successive eruptions Sn ; Exp(λ)
The event that a newly born person does not witness an eruption during his first 20 years is
equivalent to {Sn > 20}.

P (Sn > 20) = 1− P (Sn ≤ 20) = e−20λ = e−
1

400×20 = 0.9512

Another solution: during the first 20 years of a person’s life, no eruption will occur ≡ {N20 = 0}

P (N20 = 0) = e−20λ (20λ)0

0!
= e−20λ = 0.9512

Example 6. People immigrate to a given city following a Poisson law rate λ = 3 persons/day.
1- What is the average time until the 10th person arrives?
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2- What is the probability that the time between the arrival of the 10th and the 11th person
exceeds 1 day?
Solution
1- E(T10) = 10/λ = 3.33 days
2- P (S10 > 1) = e−3×1 ≈ 0.049

Let’s code!

#Code304.py

import numpy as np
from numpy.random import exponential

# Example3.6
N, lamda, dixieme, dixOnze =10000, 3, [], []
for j in range(N):

T_n = exponential(1/lamda)
for i in range(12):

S_n = exponential(1/lamda)
T_n += S_n
if(i==9): dixOnze.append(S_n)
if(i==8): dixieme.append(T_n)

# question1
avg = np.array(dixieme).mean()
print("Average time until 10th arrival:",np.round(avg,3),"\n")

# question2
plusdunjour=[1 if i>1 else 0 for i in dixOnze]
proba = np.array(plusdunjour).sum()/len(plusdunjour)
print("Probability more than a day:",np.round(proba,3))

#______________________________ Output ______________________________________
# Average time until 10th arrival: 3.325
# Probability more than a day: 0.053

3.3.4 Sum and composition of Poisson processes

Proposition 2.
Let X and Y be two independent r.vs following the Poisson distribution with parameters λ
and µ respectively. The r.v X + Y follows the Poisson distribution of parameter λ+ µ:

P (X = k) = e−λ
λk

k!
and P (Y = k) = e−µ

µk

k!
=⇒ P (X + Y = k) = e−(λ+µ) (λ+ µ)k

k!

X ∼ Pois(λ) and Y ∼ Pois(µ) =⇒ X + Y ∼ Pois(λ+ µ)

Demonstration.

P (X + Y = k) =

k∑
j=0

P (X = j)P (Y = k − j)

=

k∑
j=0

e−λ
λj

j!
e−µ

µk−j

(k − j)!

=
eλ+µ

k!

k∑
j=0

Cjkλ
jµk−j

= eλ+µ (λ+ µ)k

k!
for k = 0, 1, ...

Newton’s Binome: (a+ b)k =
∑k
j=0 C

j
ka
jbk−j is used in the last step of the demonstration.

Proposition 3.
Let (Nt)t≥0 be a Poisson process of rate λ, the events that occur are of two types: type 1
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arrive with probability p and type 2 with probability 1 − p . Each event is independent of
all the others.
Let N (1)

t and N (2)
t be the number of events of type1 and type2, respectively, occurring between

0 and t.
Nt = N

(1)
t +N

(2)
t

(N
(1)
t )t≥0 and (N

(2)
t )t≥0 are Poisson processes having respectively rate λp and λ(1− p)

and are independents.

Proof.

P (N
(1)
t = j,N

(2)
t = k) = P (N

(1)
t = j,N

(2)
t = k,Nt = j + k)

= P (N
(1)
t = j,N

(2)
t = k|Nt = j + k)P (Nt = j + k)

= Ckj+kp
j(1− p)ke−λ λj+k

(j + k)!

= e−λp
(λp)j

j!
× e−λ(1−p) (λ(1− p))k

k!
for j, k ≥ 0

P (N
(1)
t = j) =

∞∑
k=0

P (N
(1)
t = j,N

(2)
t = k) = e−λp

(λp)j

j!

P (N
(2)
t = k) =

∞∑
j=0

P (N
(1)
t = j,N

(2)
t = k) = e−λ(1−p) (λ(1− p))k

k!

Which proves that (N
(1)
t )t≥0 and (N

(2)
t )t≥0 are Poisson processes having respectively rate λp

and λ(1− p) and are independents.

3.4 Exercises
Exercise 1. Suppose that the time a person spends in the bank is exponentially distributed with
an average of 10 minutes.
1- What is the probability that a customer spends more than 15 minutes in the bank?
2- What is the probability that the customer will spend more than 15 minutes given that he has
already spent 10 minutes in the bank?

Exercise 2. In a quay, on average, five ships arrive per day. Let us model the arrivals of ships
by a Poisson process. Let X be the random variable which measures the time between midnight
until the arrival of the first ship.
1- What is the expectation of X?
2- What is the probability that more than two ships will arrive between midnight and 6 a.m.?

Exercise 3. A server receives requests following a Poisson process with a rate of 10 requests
per minute. There is a probability 1/12 that the query is erroneous.
What is the probability that the server does not receive any bad request for 5 minutes?

Exercise 4. [21] A scientific theory assumes that division defects of a cell occur following a
Poisson process of rate 2.5 per year, and that an individual dies when 196 such defects occur.
Find:
(a) The average lifespan of a person,
(b) The variance of a person’s lifespan.
(c) What is the probability that a person will die before the age of 67.2,

Exercise 5. [10] In a football match between two teams A and B, goals are scored following
Poisson process with rate 1/30 per minute. The full time of the match is 90 minutes. Each
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scored goal comes from team A with probability 12/25 and team B with probability 13/25.
1. What is the probability that the total number of goals will be 3 or more during the match.
2. What is the probability of having exactly two goals in the first half and 1 goal in the second half.

3.5 Solutions
Solution 1.
1/ X ; Exp(λ), λ = 1/10 P (X > 15) = 1− P (X ≤ 15) = 1− (1− e− 1

10∗15) = e−
3
2 = 0.22

2/ Since the exponential distribution has the memoryless property, the probability that the cus-
tomer spends more than 15mns given that he has already spent 10mns in the bank is equal to
the probability that the customer spends at least 5mns in the bank, i.e P (X > 5), P (X > 5) =
e−5/10 = e−1/2 = 0.604

Solution 2.
X ; Exp(λ), λ = 5

24 (one time unit = 1 hour)

E(X) = 1
λ = 4.8 hours

P (N6 > 2) = 1− P (N6 ≤ 2) = 1− (P (N6 = 0) + P (N6 = 1) + P (N6 = 2))

P (N6 > 2) = 1− (e−6λ + 6λe−6λ + (−6λ)2 e−6λ

2! ) = 0.1315

Solution 3.
Let T1 be the r.v representing the time elapsed until the next bad request arrives.
The Poisson process of receiving requests (of rate λ = 10) is composed of two types of inde-
pendent events: erroneous request (with probability p1 = 1/12) and non-erroneous request (with
probability p2 = 11/12). According to Proposition 3, each type is a Poisson process of rate λpi.
So, T1 ; Exp(λp1). The desired probability is equal to P (T1 > 5).

P (T1 > 5) = 1− P (T1 ≤ 5) = e−10∗ 1
12∗5 = e−

25
6

Solution 4.
Let Nt ∼ Pois(2.5)
a- Tn is the r.v representing the arrival time of nth event, it follows Gamma(λ) distribution.
E(T196) = 196

λ = 78, 4 years.
b- V(T196) = 196

λ2 = 31, 36.
c- We apply CLT:

P (T196 < 67, 2) = P (

196∑
i=1

Si < 67, 2)

= P (

∑196
i=1 Si − 196/2.5√

196/2.5
<

67.2− 196/2.5√
196/2.5

)

≈ φ(2.035) = 0.9788

Solution 5.
Let N(t) be the r.v representing the number of goals at time t. N(t) ; Pois(λ), λ = 90× 1

30 = 3
(time unit is 90mns)

1. P (N1 ≥ 3) = 1−
∑2
k=0 e

−3 × 3k

k! = 0.5768

2. P (N 1
2

= 2)× P (N 1
2

= 1) = e−1.5 (1.5)2

2! × e
(−1.5) × 1.5 = 0.084



Chapter 4

Markov Chains

4.1 Introduction
In epidemiological science, for instance, when a disease is spreading in a community, the number
of infected people at any time may increase or decrease depending on infections of healthy
individuals and recovery of those infected at the present time. Any person can be in one of three
states: healthy, infected, or recovered. Its future interaction with others changes its current state
and consequently the number of infected people in the population. In this phenomenon, the
state of the community and of individuals depends only on their current state. This behavior
controls the number of future infections, and its study can predict the trend of transmissible
diseases. In the real world, many systems exhibit similar behavior: the future state depends
only on the present state.
The mathematical model that allows to model and study this kind of systems is the Markovian
stochastic process. In the case where the system has a countable number of states, this process
is called a Markov chain "MC".

4.2 Discrete Time Markov Chains

Definition 1.
A discrete time MC "DTMC" (Xn)n≥0 is a discrete-time Markovian stochastic process
(which satisfies the memoryless property):

∀i, j, in−1, in−2, ...i0 ∈ S

P (Xn+1 = j|Xn = i) = P (Xn+1 = j|Xn = i,Xn−1 = in−1, Xn−2 = in−2, ..., X0 = i0)

S is the set of all possible states.
If S is finite then the MC is said to be finite otherwise it is infinite.

P (Xn+1 = j|Xn = i) is the transition probability from state i to state j at the nth step.
The MC is said to be homogeneous if the transition probabilities do not depend on the instant
n in consideration:

P (Xn+1 = j|Xn = i) = P (Xn = j|Xn−1 = i) = ... = P (X1 = j|X0 = i) = pij

pij is sometimes noted π(i, j) or πij . Note that pij does not denote the joint probability but
the conditional probability of being in state j given that we were in state i. It is also called the
one-step transition probability. In the rest of this book we only deal with homogeneous DTMCs.
An homogeneous DTMC is completely determined by:

• the states set S.

111
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• the initial probabilities vector πππ0 which contains the probability distribution of being ini-
tially in each of the states: πππ0(j) ∀j ∈ S satisfying : πππ × 111 =

∑
j∈S πππ0(j) = 1 ( 111 is a

vector that has the same size as πππ0 and all its elements are one).

• The transition probabilities pij in one step as a square matrix P = (pij).

4.2.1 Transition matrix and graph
The transition matrix P of an homogeneous DTMC is a stochastic matrix composed of the
elements pij , the probabilities of going from state i to state j in a single step. This matrix is of
size |S| × |S|; all of its elements are probabilities, so between 0 and 1, and the sum of each row
is equal to 1.
The transition graph corresponding to matrix P is composed of vertices representing the states
and of arcs corresponding to the possible transitions (having non-zero probabilities).

Example 1. Consider the DTMC modeling the weather condition of a given city, having the set
of states S = {sun, rain}, the vector of initial probabilities π0π0π0 = [0, 1] and the transition matrix
P.

P =

0.7 0.3

0.5 0.5


The elements pij of the matrix are the probabilities of going from a day of type i to a day of
type j, i, j ∈ S. The sum of each row is equal to 1. The following graph is the transition graph
of the DTMC.

Sun rain0.7 0.5

0.3

0.5

Figure 4.1: Transition Graphe

Example 2. We have two boxes A and B, each contains r balls. Altogether there are: r red
balls and r green balls. At each step, a ball is randomly chosen from A and another one is
randomly chosen from B, and each of them is moved from its box to the other box.
1- Define a DTMC (with its transition matrix) that describes the number of red and green balls
in each box.
Solution
Let Xn be the number of red balls in box A after the nth transfer. The process (Xn)n≥0 is a
DTMC with the states set S = {0, 1, 2, ..., r}. The transition matrix P(pij) is defined as:

1. pi,i+1 = (r−i)2
r2

2. pi,i−1 = i2

r2

3. pi,i = 2i(r−i)
r2

4. pi,j = 0 otherwise

Case 1 occurs when a green ball is chosen from A with probability (r − i)/r and a red ball is
chosen from B with probability (r − i)/r.
Case 2 occurs when a red ball is chosen from A with probability i/r and a green ball is chosen
from B with probability i/r.
Case 3 occurs when a red ball is chosen from A and B or a green ball is chosen from A and B.
Case 4 cannot occur.
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Let’s code!
In the following code, we propose a class DTMC that implements a DTMC whose attributes
are: the set of states S, the transition matrix P and the initial distribution pi0 . The main
methods of the class will be implemented progressively in the next sections of this chapter.
#Code401.py (Continuation)

# nSteps probabilities
def nSteps(self,n):

return self.pi0.dot(np.linalg.matrix_power(self.P,n))

4.2.2 Probability law of Xn

Let πππn(j) = P (Xn = j) = PXn(j) for n ≥ 0 and j ∈ S be the probability that the process is in
state j at instant (step) n. The vector πππn = [πn(1), πn(2), πn(3), ...] is a probability distribution
(the sum of the terms is equal to 1).
Knowing πππ0 the vector of initial probabilities, we want to determine πππn ∀n. We have:

πππ1(j) =
∑
k∈S

P (X1 = j ∩X0 = k) total probability theorem,

=
∑
k∈S

P (X1 = j|X0 = k)× P (X0 = k) chain rule

=
∑
k∈S

πππ0(k)× pkj

πππ1 = πππ0 ×P
In the same way: πππ2 = πππ1P = πππ0P

2

In general: πππn = πππ(n−1)P
πππn = πππ0 ×Pn

πππn is the Probability law of Xn.

4.2.3 n steps transition probabilities

p
(2)
ij is the probability of going from i to j in 2 steps.

p
(2)
ij = P (X2 = j|X0 = i) =

∑
k∈S

P (X2 = j|X1 = k,X0 = i)× P (X1 = k|X0 = i

= P (X2 = j|X0 = i) =
∑
k∈S

P (X2 = j|X1 = k)× P (X1 = k|X0 = i) Markov property

= P (X2 = j|X0 = i) =
∑
k∈S

pik × pkj

In general: p(n)
ij = P (Xn = j|X0 = i) is the element i, j of matrix P(n) which is the n steps

transition Probability.

4.2.4 Chapman Kolmogorov equation
For n ≥ 2

p
(n)
ij =

∑
k∈S

p
(n−1)
ik × pkj ∀i, j ∈ S

The probability of going from i to j in n transitions is obtained by summing (for all states k)
the probabilities of the mutually exclusive events of going from i to a certain state k in n − 1
steps then going from k to j at the nth step.
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Matrix form: let P(n) be the transition probability matrix in n steps.

P(n) = P(n−1) ×P = P×P(n−1)

This relation is called the Chapman Kolmogorov equation.
We have P(1) = P, by iterating the formula, we get:

P(n) = P×P× ...×P = Pn

Example 3. In each chocolate packet we purchase there is a collectible figurine. The complete
serie includes 4 figurines. Initially, we have one purchased packet. We are trying to get the
complete collection.
1. Represent the collection process by a Markov chain.
2. Establish the transition matrix. Calculate the probability distribution vector after three pur-
chases.
Solution
Let Xn be the number of different collected figurines after the nth purchase. The process (Xn)n≥0

is a MC defined by S = {1, 2, 3, 4} such that each state represents the number of the different
collected figurines. The transition probabilities are as follows:

• pi,i+1 = 4−i
4 for i = 1, .., 3

• pi,i = i
4 for i = 1, .., 4

• pi,j = 0 otherwise

P =


0.25 0.75 0 0

0 0.5 0.5 0

0 0 0.75 0.25

0 0 0 1


The initial distribution (probability vector): πππ0=(1, 0, 0, 0). After three purchases:

P3 =


0.0156 0.3281 0.5625 0.0938

0 0.125 0.5938 0.2813

0 0 0.4219 0.5781

0 0 0 1


So πππ3 = πππ0P

3 = (0.016, 0.33, 0.56, 0.09)

Let’s code!
We have added the following method that calculates the probabilities in n steps to the DTMC
class.
#Code401.py (Continuation)

# nSteps probabilities
def nSteps(self,n):

return self.pi0.dot(np.linalg.matrix_power(self.P,n))

Let’s code!
This code shows its application to the precedent example.
#Code401.py (Continuation)

# nSteps probabilities
def nSteps(self,n):

return self.pi0.dot(np.linalg.matrix_power(self.P,n))
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Example 4. In a given city, the weather can be sunny, cloudy, or rainy. The weather for the
next day depends only on today’s weather and not on the previous days’ weather. If some day
the weather is sunny, the next day will be sunny, cloudy, rainy with the respective probabilities
0.7, 0.1 and 0.2; when it is cloudy, the probabilities are 0.5, 0.25, 0.25 and the probabilities are
0.4, 0.3, 0.3 for a rainy day.
If on some given day the weather is rainy, what is the probability that it will be sunny after three
days?
Solution
We consider a MC with three states: 1 (sunny), 2 (cloudy) and 3 (rainy). Let Xn be the r.v
representing the weather at the nth day. The stochastic process X1, X2, ...Xn is a DTMC with
states S = {1, 2, 3} and the transition matrix P:

P =


0.70 0.10 0.20

0.50 0.25 0.25

0.40 0.30 0.30


To calculate the probability of sunny weather after three days of a rainy day, we can calculate
the matrix P3.

P3 =


0.60150 0.16825 0.23025

0.59125 0.17525 0.23125

0.58550 0.17975 0.23475


So the requested probability is: 0.5855

Another way to find this probability is to calculate πππ3 starting with πππ0 = (0, 0, 1) using the
relationship:
πππ3 = πππ2P such that :

πππ1 = πππ0P = (0.4000, 0.3000, 0.3000)
πππ2 = πππ1P = (0.5500, 0.2050, 0.2450)
πππ3 = πππ2P = (0.5855, 0.1797, 0.2347)

and we get the same value: 0.5855

4.2.5 Classification of states
Let (Xn)n≥0 be a DTMC having the state space S, the initial probability vector πππ0 and the
transition matrix P.

• We say that state j is accessible from state i if the probability of going from i to j is
non-zero:

i→ j ⇔ ∃n > 0 : p
(n)
ij > 0

This means that in the transition graph there is a path between i and j.

• We say that states i and j communicate if each of them is accessible from the other:

i↔ j ⇔ i→ j ∧ j → i

The communication relationship between two states is:

• reflexive (by convention ∀i πππ0(i, i) = 1),

• symmetric (by definition)

• transitive (by Chapman Kolmogorov equation)
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It is therefore an equivalence relationship and it is possible to construct a partition of the MC’s
states into equivalence classes such that all the states of a class communicate with each other
and that two states belonging to two different classes do not communicate. These classes are
pairwise disjoint and their union gives the set of all the states.
Two types of classes exist:

• Recurrent class: it is impossible to leave it.

C is recurrent ≡ ∀i ∈ C,∀j ∈ S, i→ j =⇒ j ∈ C

• Transient class: it is possible to get out of it without ever being able to come back.

C is transient ≡ ∃i ∈ C,∃j ∈ S, i→ j ∧ j /∈ C

Example 5. Consider the DTMC defined by the following transition graph:

1

2

3 4 5

8 6

7

Figure 4.2: States classification

In this example, there are 4 classes:
C1={1,2} transient
C2={3,4} transient
C3={5} transient
C4={6,7,8} recurrent

If the recurrent class is made up of a single state, this state is said to be absorbing.
A Markov chain for which there is only one class which is recurrent (equal to the states set) is
said irreducible.

Let’s code!
The method classify() has been added to the CMTD class as follows:
#Code401.py (Continuation)

# classify
def classify(self):

graf, succ = makeGraf(self.S,self.P)
cfcs=list(nx.strongly_connected_components(graf))
classes={"transitoire":[],"reccurente":[]}
for i in range(len(cfcs)):

cfc , voisins = cfcs[i] ,set()
for s in cfc: voisins = voisins|succ[s]-cfc
classes["transitoire" if(len(voisins)>0) else "reccurente"].append(cfc)

return classes

Let’s code!
The following method of the CMTD class allows us to test if a MC is irreducible.
#Code401.py (Continuation)

# is_irreducible
def is_irreducible(self):

return(nx.is_strongly_connected(makeGraf(self.S,self.P)[0]))
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Let’s code!
Its application to the previous example is in the following code.
#Code403.py

from CMTD import CMTD

# Classification example
P = [[0.00, 1/2 , 1/2 , 0.00, 0.00, 0.00, 0.00, 0.00],

[1/3 , 2/3 , 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[0.00, 0.00, 0.00, 1/4 , 0.00, 0.00, 0.00, 3/4 ],
[0.00, 0.00, 1/2 , 0.00, 1/2 , 0.00, 0.00, 0.00],
[0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00],
[0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00],
[0.00, 0.00, 0.00, 0.00, 0.00, 2/3 , 0.00, 1/3 ],
[0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00]]

print(CMTD(P).classify())
print(CMTD(P).is_irreducible())
#______________________________ Output ______________________________________
#{’transitoire’: [{5}, {3, 4}, {1, 2}], ’reccurente’: [{8, 6, 7}]}

4.2.5.1 Recurrent and transient states

It is often useful to know if, starting from state i, the process will return to this state or not.
Consider the r.v Ti = Min{n ≥ 0 : Xn = i} representing the time of the first passage

through state i.
Consider the r.v Tji = Ti|X0 = j representing the time of the first passage through state i

given that it was initially in j
Let the r.v Tii = Ti|X0 = i be the time of the first return to state i.

The value E(Tii) =
∑∞
k=0 kP (Tii = k) represents the average return time to i .

Let fii = P (Tii <∞) be the probability that the process returns to state i given that it was
initially in i.

Definition 2.
A state i of a DTMC is said:

1- recurrent if fii = P (Tii <∞) = 1
2- transient if fii = P (Tii <∞) < 1.
3- positive recurrent if E(Tii) <∞
4- null recurrent if E(Tii) =∞

Proposition 1.

Let Ni be the number of visits to state i of a DTMC before leaving it definitively. The
average number Ni satisfies:

E(Ni|X0 = i) =

∞∑
n=1

p
(n)
ii

We can express the r.v Ni as follows: Ni =
∑∞
n=1 1Xn=i given that X0 = i such that its average

is given by:

E(Ni|X0 = i) = E(

∞∑
n=1

1Xn=i|X0 = i) =

∞∑
n=1

E(1Xn=i|X0 = i)

=

∞∑
n=1

1× P (Xn = i|X0 = i) + 0× P (Xn 6= i|X0 = i)

E(Ni|X0 = i) =

∞∑
n=1

P (Xn = i|X0 = i)

=

∞∑
n=1

p
(n)
ii
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if i is:

1- Recurrent:
Starting from this state, the probability of returning back is 1 and therefore the probability of
returning back again is always 1, this means that the state i will be visited an infinity of times.

P (Ni <∞|X0 = i) = 0

P (Ni =∞|X0 = i) = 1

So a recurrent state has the property that the average number of passages through i is infinite.

E(Ni|X0 = i) =

∞∑
n=1

p
(n)
ii = 0× E(Ni <∞|X0 = i) + 1× E(Ni =∞|X0 = i) =∞

so i is a recursive state if and only if
∑∞
n=1 p

(n)
ii =∞

Recurrent states of a finite-state MC are all positive, which is not the case for a infinite-state MC.

2- Transient
The probability of going back fii is less than 1 and therefore the probability of never going back
there is 1− fii. Let T (h)

ii be the hth return to state i

Proposition 2.
If i is a transient state then the r.v Ni|X0 = i follows the geometric law with parameter
1− fii

P (Ni = k|X0 = i) = P ((

k−1⋂
h=1

T
(h)
ii <∞) ∩ (T

(k)
ii =∞))

=

k−1∏
h=1

P (T
(h)
ii <∞)× P (T

(k)
ii =∞)

= (P (Tii <∞))k−1 × (1− P (Tii <∞))

= fk−1
ii × (1− fii)

This means that:
Ni|X0 = i; Geo(1− fii)

And then

E(Ni|X0 = i) =

∞∑
n=1

p
(n)
ii =

1

1− fii
<∞

We have shown that the average number that the process visits i is finite and equal to 1
1−fii

So the average return time is infinite
E(Tii) =∞

Recurrence is a class property, which means that all states belonging to a class are all transient
or all recurrent.

4.2.6 Case of infinite MCs
1- A finite DTMC has the property that the set of recurrent states is non-empty and that the
average return time to each recurrent state is finite E(Tii) <∞.

2- An infinite DTMC does not necessarily have the same property as a finite DTMC.
1- If we take for example the DTMC with the following states and transitions:
1- S = N and pi,i+1 = 1,

∀i ∈ S, ∀k ≥ 1, P (Tii = k) = 0 < 1
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All the states are transient and we have E(Tii) =∞.

2- Consider the infinite discrete Markov chain described by the following transition graph:

0 1 2 3 4
1 1/2 2/3 3/4
1/2

1/3
1/4

1/5

Figure 4.3: Transition Graph

T0 is the d.r.v of the time of the first passage through state 0.
Ti0 = T0|X0 = i is the r.v of the first passage through state 0 starting from state i ( T00 time of
first return to 0).

To determine the type of recurrence of the chain (positive or null), we must calculate:
a- The probability that T00 has a finite value (P (T00 <∞)).
b- The average time to return to 0 (E(T00)).

a- The probability that T00 <∞:
If returning to 0 is impossible then T00 =∞ is a possible event (P (T00 =∞) > 0).

P (T00 ≥ 1) = 1

P (T00 ≥ 2) = 1 ( 0→ 1)

P (T00 ≥ 3) = 1 · 1
2 ( 0→ 1→ 2)

P (T00 ≥ 4) = 1 · 1
2 ·

2
3 = 1

3 ( 0→ 1→ 2→ 3)

P (T00 ≥ k + 1) = 1 · 1
2 · · ·

k−1
k = 1

k ( 0→ 1→ · · · → k)

Since limk→∞ P (T00 ≥ k) = limk→∞
1

k−1 = 0, then P (T00=∞) = 0
and we have P (T00<∞) = f00 = 1
We conclude that the chain is recurrent.

b- The average time to return to 0 (E(T00)).

E[T00] =

∞∑
k=1

k · P (T00 = k)

=

∞∑
k=1

k∑
j=1

P (T00 = k) =

∞∑
j=1

∞∑
k=j

P (T00 = k)

=

∞∑
j=1

P (T00 ≥ j) = 1 + 1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · · =∞

So this Markov chain is null recurrent
It returns to 0 with a probability 1, but the average return time is infinite, E(Tii) =∞

4.2.7 Periodic states
A state i is said to be periodic, of period t, if a return to this state can only happen at steps: t,
2t, 3t, ... s.t t = PGCD{n, p(n)

ii ≥ 0, t ≥ 1}. If t = 1 we say that the state i is aperiodic.
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Two communicating states have the same period, so the period is constant within the commu-
nication classes. The common period of the elements of a class is called period of the class. If
the period of a class is equal to 1, it is an aperiodic class.

Let’s code!
The following method of the CMTD class allows us to test whether a MC is aperiodic.
#Code401.py (Continuation)

# is_aperiodic
def is_aperiodic(self):

return(nx.is_aperiodic(makeGraf(self.S,self.P)[0]))

4.2.8 Mean of the first passage time (first hitting time)
Let tij be the average number of required steps to reach, for the first time, state j from state i.
If Tj = Min{n ≥ 0 : Xn = j} is the time (number of steps) it takes for the chain to visit state
j for the first time then, tij = E[Tj |X0 = i]. We have: tii = 0 and ∀j 6= i :

tij = 1 +
∑

k∈S/{i}

piktkj

In matrix form Ti = [tji]j 6=i, P̂(i) = [pjk]k 6=i,j 6=i :

Ti = 1 + P̂(i)Ti

Let’s code!

#Code401.py (Continuation)

# hitting_time : average time to hit for the first time the state given in the argument
def hitting_time(self,state):

n, i = len(self.S), self.S.index(state)
I = np.identity(n); I[i,i] = 0;
g = np.ones(n); g[i]=0;
for k in range(n):

if(self.P[k,k] == 1): I[k,k], g[k] = 0, 0
return np.matmul(np.linalg.inv(np.identity(n)-np.matmul(I,self.P)), g)

4.2.9 Mean return time
Starting from state i, the average number of required steps to return to it is noted ri.
Consider Ri = Min{n ≥ 1 : Xn = i} therefore ri = E[Ri|X0 = i] We have: ri = 1 if i is
absorbing, otherwise :

ri = 1 +
∑
k∈S

piktki

tki is the mean of the first hitting time to reach state i starting from k.

Let’s code!

#Code401.py (Continuation)

# return_time : average return time to the state given in the argument
def return_time(self,state):

i = self.S.index(state)
return 1 + ( 0 if self.P[i,i] == 1 else np.dot(self.P[i], self.hitting_time(state)))

Example 6. Consider the DTMC defined by S = {1, 2, 3} and the following transition matrix:

P =


1/2 1/2 0

0 1/3 2/3

1/2 1/2 0
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Let tk1 be the average time of the first passage by state 1 starting from state k and r1 the
average time to return to state 1. Calculate t21, t31 and r1.
t21 and t31 are obtained by solving the system of equations such that t11 = 0:

T1 = 1 + P̂(1)T1 =

t21

t31

 =

1

1

+

1/3 2/3

1/2 0

t21

t31

 =

 t21 = 1 + 1
3 t21 + 2

3 t31

t31 = 1 + 1
2 t21 + 0t31

We get : [t21, t31]T = [5, 7/2].
We notice that if X0 = 1 then X1 = 1 with probability 1/2 or X1 = 2 with probability 1/2, so:
r1 = 1 + 1/2t11 + 1/2t21 = 7/2.

Let’s code!

#Code404.py

from CMTD import CMTD

P = [[0.5, 0.5, 0.0],
[0.0, 1/3, 2/3],
[0.5, 0.5, 0.0]]

print(CMTD(P).hitting_time(3))
print(CMTD(P).return_time(1))

#______________________________ Output ______________________________________
# [3.5 1.5 0. ]
# 3.499999999999999

4.2.10 Absorbing probabilities
In the following MC, 0 and 3 are absorbing states.

10 2 31 1
1/3

2/3

1/2

1/2

Figure 4.4: Absorbing probabilities

Let ai0 be the probability of being absorbed by state 0 starting from state i. a00 = 1 and a30 = 0
(because 3 is another absorbing state).

By applying the total probability law, we will have ai0 =
∑
k pik × ak0 this gives the following

system of equations such that a00 = 1 and a30 = 0 : a10 = 1
3a00 + 2

3a20

a20 = 1
2a10 + 1

2a30

Its resolution gives the values of ai0 : a10 = 1/2, a20 = 1/4.
In general, for all absorbing state j:

aij =
∑
k

pik × akj

Let’s code!
The method of calculating absorption probabilities.
#Code401.py (Continuation)

# absorption probability
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def absorbing_proba(self,state):
n, j = len(self.S) , self.S.index(state)
absorb = [i for i in range(n) if(self.P[i][i] == 1) ]
if(j not in absorb):

print("The state must be absorbant")
sys.exit(0)

A, B = np.zeros((n,n)), np.zeros(n)
A[j][j], B[j] = 1 , 1
for i in range(n):

if(i != j):
if(i in absorb): A[i][i] = 1
else:

for k in range(n):
A[i][k] = self.P[i][k] if(k != i) else A[i][i]-1

return np.linalg.inv(A).dot(B)

Let’s code!
Code of the example.
#Code405.py

from CMTD import CMTD

P = [[1.0, 0.0, 0.0, 0.0],
[1/3, 0.0, 2/3, 0.0],
[0.0, 1/2, 0.0, 1/2],
[0.0, 0.0, 0.0, 1.0]]

print(CMTD(P).absorbing_proba(1))
#______________________________ Output ______________________________________
#[1. 0.5 0.25 0. ]

4.2.11 Mean absorbing time
Let ni be the average time until the absorption of the MC starting from state i. It represents
the required average time for the process to be absorbed given that its initial state is i. ni =
E[T |X0 = i] such that T is the time (number of steps) required for the chain to reach an
absorbing state.
The values of ni are obtained by solving the following system (A is the set of absorbing states),
if i ∈ A, then ni = 0, otherwise:

ni = 1 +
∑
j /∈A

pijnj

This system can be written as follows :

NĀ = 1 + P̂ĀNĀ

Such that NĀ = [ni]i∈Ā and P̂Ā = [pij ]i,j∈Ā

Let’s code!
The method of calculating the mean absorption time.
#Code401.py (Continuation)

# average absorption time
def absorbing_time(self):

n = len(self.S)
absorb = [i for i in range(n) if(self.P[i][i] == 1)]
if(len(absorb) == 0):

print("No absorbant state exists!")
sys.exit(0)

A, B = np.zeros((n,n)), np.zeros(n)
for i in range(n):

if(i in absorb): A[i][i]=1
else:

B[i] = -1
for j in range(n):

if(j not in absorb): A[i][j]=self.P[i][j]
A[i][i] -= 1

return np.linalg.inv(A).dot(B)

Example 7.
In Example 3, state 4 is absorbing and it is the winning state. If we want to calculate the
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absorption probabilities by this state (probability of winning), we simply have to solve the system
of equations with A = {4} :

NĀ = 1 + P̂ĀNĀ =


1

1

1

+


1/4 3/4 0

0 1/2 1/2

0 0 3/4



n1

n2

n3

 =


n1 = 1 + 1/4× n1 + 3/4× n2

n2 = 1 + 1/2× n2 + 1/2× n3

n3 = 1 + 3/4× n3

Which gives : n1 = 22/3, n2 = 6, n3 = 4 and n4 = 0

Let’s code!
The method of calculating absorption probabilities.
#Code406.py

from CMTD import CMTD

P = [[1/4, 3/4, 0.0, 0.0],
[0.0, 1/2, 1/2, 0.0],
[0.0, 0.0, 3/4, 1/4],
[0.0, 0.0, 0.0, 1.0]]

print(CMTD(P).absorbing_time())

#______________________________ Output ______________________________________
#[7.33333333 6. 4. 0. ]

4.2.12 Stationary and limit distributions
If we take example 4 again and we calculate the successive powers of matrix P, we will realize
that there is a limiting probability for the system to be in a some state after a large number of
transitions and this probability is independent of the initial state. In the example we have:

P =


0.7 0.1 0.2

0.5 0.25 0.25

0.4 0.3 0.3

 P2 =


0.62 0.155 0.225

0.575 0.1875 0.2375

0.55 0.205 0.245



P5 =


0.596 0.171 0.231

0.595 0.172 0.231

0.595 0.172 0.231

 P8 = P9 = ... =


0.596 0.172 0.231

0.596 0.172 0.231

0.596 0.172 0.231


We notice that from power 8 and on, the three lines have identical values, this implies that the
probabilities of having a given weather after 8 days are independent of the weather we had in
the initial day.

In general, when a MC contains transient and recurrent states, after a large number of steps, the
process moves to a recurrent class and never leaves it. So if i is transient, lim

n→+∞
p

(n)
ij = 0 ∀j.

Also, if i and j belong to two different recurrent classes, then p(n)
ij = 0 ∀n. So the analysis of

long-term behavior makes sense only for MCs without absorbing states; for this reason we are
interested in this section in irreducible MCs where all the states belong to the same recurrent
class. If in addition to being irreducible, the finite MC (a finite number of states) is aperiodic,
then it is said ergodic; and for any ergodic MC, the lim

n→+∞
pnij ∀i, j exists and is independent

of i.

Let’s code!
The following method of the DTMC class allows us to test whether a MC is ergodic.
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#Code401.py (Continuation)

# is_ergodic
def is_ergodic(self):

return (self.is_irreducible() and self.is_aperiodic())

The aperiodicity property is necessary because if we consider for example the CM described by
the following transition matrix:

P =

0 1

1 0


This chain is irreducible but periodic, this means that as a function of n, p(n)

ij takes the values
0 and 1 , therefore, it has no limit as n tends to infinity.

Any finite and irreducible DTMC has a unique stationary distribution πππ = (π1, π2, π3, .., π|S|)

1. The πj are independent of the initial state i and are the unique solution of the system of
the linear equations:

πj =
∑
k∈S

πk × pkj ∀j ∈ S and
∑
j∈S

πj = 1.

2. If in addition, the MC is aperiodic, then, lim
n→+∞

p
(n)
ij = πj ∀i, j ∈ S.

The previous system of equations can be written in the form: πππ ×P = πππ

πππ × 111 = 1

Let’s code!
The following code implements the method that calculates the steady-state probabilities.
#Code401.py (Continuation)

# steady state probabilities
def steady_prob(self):

if(not self.is_ergodic()):return None
n = len(self.S)
A = np.vstack([self.P.T - np.identity(n),np.ones(n)])
B = np.append(np.zeros(n),1)
return np.linalg.lstsq(A,B)[0]

Example 8. The stationary distribution in Example 10 is obtained by solving the system of
equations: 

0.7π1 + 0.5π2 + 0.4π3 = π1

0.1π1 + 0.25π2 + 0.3π3 = π2

0.2π1 + 0.25π2 + 0.3π3 = π3

π1 + π2 + π3 = 1

We get: π1 = 0.596 π2 = 0.172 π3 = 0.231. Since the chain is aperiodic, these probabilities
correspond to the limit probabilities. In this case, the πi can have two possible interpretations:

1. As probabilities: in the distant future, a day will be sunny with probability 0.596, cloudy
with probability 0.172, and rainy with probability 0.231.

2. As proportions: In the long run, 59.6% of the days will be sunny, 17.2% cloudy, and 23.1%
rainy.

However, if the MC is periodic, the πi will have only the second interpretation.
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Let’s code!

#Code407.py

from CMTD import CMTD

P = [[0.70, 0.10, 0.20],
[0.50, 0.25, 0.25],
[0.40, 0.30, 0.30]]

print(CMTD(P).steady_prob())

#______________________________ Output ______________________________________
#[0.59602649 0.17218543 0.23178808]

In an irreducible finite state MC, if rj is the mean time to return to state j, then: rj = 1
πj
.

This result can be explained by the fact that any recurrent state j can serve as a regeneration
state, i.e a state from which the process can recycle. If we take a cycle as the time between
two successive visits to state j, then the average length of a cycle is rj , so in the long term, the
average rate of visits to state j per unit of time is 1

rj
which represents the proportion of time

that the process spends in state j and which is given by πj .
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4.3 Continuous Time Markov Chains
In a DTMC, the time parameter t is discrete (it takes the values 0,1,2, ..) and each time the
process reaches a state, it spends a unit of time there before making another transition. The
time that the process spends in state i is equal to 1 if pii = 0 and follows a Geometric distribu-
tion of parameter (1 - pii) otherwise.
In a continuous time MC the time that the process spends in state i is an exponential r.v which
has the memoryless property.

Definition 3.
A Continuous Time MC "CTMC" (Xt)t≥0 is a continuous time Markovian stochastic pro-
cess (satisfies the memoryless property):

∀j, i, in−1, in−2, ..., i0 ∈ S t > s > tn−1 > tn−2 > ... > t0

P (Xt = j|Xs = i) = P (Xt = j|Xs = i,Xtn−1 = in−1, Xtn−2 = in−2, ..., Xt0 = i0)

Such that S is the discrete set of all possible states.
If S is finite then the MC is said finite otherwise it is said infinite.

4.3.1 Transition probabilities
Let (Xt)t≥0 be a CMTC, and S its states set:
• Xt: is the r.v representing the state of the system at time t.
• pij(t, s): is the continuous-time transition probability function. It represents the probability
that the process passes from state i to state j in a period of time equal to t starting from s.

pij(t, s) = P (X(t+s) = j|Xs = i)

If the transition probabilities are independent of s, they are said homogeneous

pij(t) = pij(t, s) = P (X(t+s) = j|Xs = i) = P (Xt = j|X0 = i) ∀s ≥ 0

The matrix P(t) = [pij(t)] is the transition matrix in a duration equal to t (the sum of each row
of the matrix equals 1 and the elements are between 0 and 1, ∀t >= 0).
When t tends towards 0, the limit of the probability that the process changes its state is zero,
i.e the probability that the process changes its state in an infinitely small amount of time is
almost zero.

lim
t→0

pij(t) =

 1 si i=j

0 si i 6= j

Therefore, P(0) = I s.t I is the identity matrix.

Example 9. Consider the following matrix:

N(t) = 1/2

1 + e−t 1− e−t

1− e−t 1 + e−t


For N(t) to be a transition matrix, the sum of each row of the matrix must be equal to 1 and
the elements are between 0 and 1:

1/2(1 + e−t + 1− e−t) = 1 ∀t ≥ 0

Since 0 ≤ e−t ≤ 1, so: 0 ≤ 1+e−t

2 ≤ 1 and 0 ≤ 1−e−t
2 ≤ 1, then, N(t) is a transition matrix.
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4.3.2 Sojourn time
The time that the process spends in state i is called the sojourn time, it is a r.v noted
Ti.

Proposition 3. The sojourn time Ti follows an exponential distribution.

Proof

P (Ti > s+ t|Ti > s) = P (Xr = i for 0 ≤ r ≤ s+ t|Xr = i for 0 ≤ r ≤ s)
= P (Xr = i for s ≤ r ≤ s+ t|Xr = i for 0 ≤ r ≤ s)
= P (Xr = i for s ≤ r ≤ s+ t|Xs = i) (Markov property)
= P (Xr = i for 0 ≤ r ≤ t|X0 = i) (homogeneity)
= P (Ti > t)

So Ti follows an exponential distribution.
We denote by λi, the parameter of the distribution of Ti.
When the process enters state i, the time it spends in i before going to state j 6= i (if no
transition to another state occurs before the transition towards state j) is also an exponential
rv denoted by Tij of rate λij . Ti, the sojourn time in i is the minimum of Tij , ∀j 6= i. If i is an
absorbing state then pii(t) = 1 and λi = 0 which means that the process will spend an infinite
time in this state.

• When the process leaves state i, it moves to state j with probability pij(t) satisfying:

pii(t) = 0 ∀i ∈ S and
∑
j∈S

pij(t) = 1

• The state visited after i is independent of the time spent in i.

4.3.3 Chapman Kolmogorov equation
For t > 0, the transition from i to j in a time t+ s is given by:

pij(t+ s) =
∑
k∈S

pik(t)× pkj(s)

We have:

pij(t+ s) = P (Xt+s = j|X0 = i)

=
∑
k∈S

P (Xt+s = j|Xt = k,X0 = i)× P (Xt = k|X0 = i) total probability

=
∑
k∈S

P (Xt+s = j|Xt = k)× P (Xt = k|X0 = i) Markov property

=
∑
k∈S

P (Xs = j|X0 = k)× P (Xt = k|X0 = i) homogeneity

=
∑
k∈S

Pik(t)× Pkj(s)

In matrix form:
P(t+ s) = P(t)P(s),∀s, t ≥ 0

4.3.4 Generator matrix

pij(0) =

 1 si i=j

0 si i 6= j
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Let h be an infinitely small time, we define the following quantities:

qij = p′ij(0) = lim
h→0

pij(h)− pij(0)

h
= lim
h→0

pij(h)− 1i=j
h

So we have :
pij(h) = 1i=j + qijh+ o(h)

Since :
∑∞
j=0 pij(h) = 1

1 =

∞∑
j=0

pij(h) = 1 +

∞∑
j=0

qijh+ o(h) = 1 + qiih+

∞∑
j=0,j 6=i

qijh+ o(h)

qii = −
∞∑

j=0,j 6=i

qij

The matrix Q built of [qij ] is called the generator matrix (the sum of each row is equal to 0).

Q = lim
h→0

P(h)− I

h
= Q′(0)

Such that I is the identity matrix. Since h is small enough then:

P (Xh = i|X0 = i) = P (Ti > h) = e−λih = 1− λih+ o(h)

λi = lim
h→0

1− P (Xh = i|X0 = i)

h
= lim
h→0

1− pii(h)

h
= −qii

• The transition rate from state i is λi = −qii, it represents the average number of times the
process leaves state i in a unit of time spent in i.

−qii = λi =
1

E(Ti)

• Similarly, qij is the transition rate from state i to state j, it is the average number of times
the process leaves state i to state j in a unit of time.

Example 10. Consider a CMTC whose transition matrix is as follows:

P(t) = 1/2

1 + e−t 1− e−t

1− e−t 1 + e−t



P′(t) = 1/2

−e−t e−t

e−t −e−t


Q = P′(0) = 1/2

−1 1

1 −1


4.3.5 Forward and backward equations
Let P′(t) be the derivative of matrix P(t) and Q the generator matrix of the CTMC.

• The Forward equations given by: P′(t) = P(t)Q equivalent to :

p′ij(t) =
∑
k∈S

pik(t)qkj ∀i, j ∈ S
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• The Backward equations are given by: P′(t) = QP(t) equivalent to :

p′ij(t) =
∑
k∈S

qikpkj(t) ∀i, j ∈ S

Forward equations:

pij(t+ s) =
∑
k∈S

pik(t)pkj(s)

= pij(t)pjj(s) +
∑
k 6=j

pik(t)pkj(s)

≈ pij(t)(1 + qjjs) +
∑
k 6=j

pik(t)qkjs

= pij(t) + pij(t)qjjs+ s
∑
k 6=j

pik(t)qkj

= pij(t) + s
∑
k∈S

pik(t)qkj

So,
pij(t+ s)− pij(t)

s
= p′ij(t) =

∑
k∈S

pik(t)qkj

p′ij(t) = −λjpij(t) +
∑
k 6=j

pik(t)qkj

Backward equations:

pij(t+ s) =
∑
k∈S

pik(s)pkj(t)

= pij(t)pii(s) +
∑
k 6=i

pik(s)pkj(t)

≈ pij(t)(1 + qiis) +
∑
k 6=i

qikspkj(t)

= pij(t) + pij(t)qiis+
∑
k 6=i

qikspkj(t)

= pij(t) + s
∑
k∈S

qik(t)pkj(t)

Therefore,
pij(t+ s)− pij(t)

s
= p′ij(t) =

∑
k∈S

qikpkj(t)

p′ij(t) = −λipij(t) +
∑
k 6=i

qikpkj(t)

The solution of the system of differential equations

P′(t) = QP(t) = P(t)Q

such that P(0) = I is given by:
P(t) = eQt + C

eQt is the exponential matrix:

eQt =

∞∑
k=0

Qk t
k

k!
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In case Q is diagonalizable (Q = UDU−1), eQt can be calculated as follows:

eQt = UeDtU−1 = Udiag(ed1t, ed2t, ..., ednt)U−1

Such that di, 1 ≤ i ≤ n are the elements of the diagonal matrix D and diag(ed1t, ed2t, ..., ednt)
is the matrix obtained by applying the function ex to the elements of the diagonal D.

Example 11. Let (Xt)t≥0 be a CMTC whose generator matrix is:

Q =

−1/2 1/2

1/2 −1/2


The system solution P′(t) = P(t)Q is eQt + C:
Since Q is diagonalizable, then

Q =

1 −1

1 1

0 0

0 −1

 1

2

 1 1

−1 1



eQt =

1 −1

1 1

0 0

0 e−t

 1

2

 1 1

−1 1

 =
e−t

2

 1 −1

−1 1


So, P(t) = e−t

2

 1 −1

−1 1

+

c11 c12

c21 c22


We know that P(0) = I

P(0) =
1

2

 1 −1

−1 1

+

c11 c12

c21 c22

 =

1 0

0 1



P(t) =
e−t

2

 1 −1

−1 1

+
1

2

1 1

1 1


The generator matrix allows us to find the stationary distribution of the MC using the fol-

lowing proposition:

Proposition 4.
The probability vector π is the stationary distribution of X(t) if and only if:

πππQ = 0

Proof
1. If πππ is a stationary distribution, then πππ = πππP(t).
By differentiating on the two sides we have :

0 = πππP′(t)= πππQP(t)

Since P(t) 6= 0 then πππQ = 0

2. Let πππ be a probability vector that satisfies πππQ = 0.
We have P′(t) = QP(t), so πππP′(t) = πππQP(t) = 0.
Knowing that πππP′(t) is the derivative of πππP(t), so πππP(t) does not depend on t.
that is: πππP(t) = πππP(0) = πππ, (because P(0) = I), so πππ is a stationary distribution.
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4.3.6 Stationary probabilities
A CTMC is irreducible if:

∀i, j ∈ S ∃ t > 0 / pij(t) > 0

Irreducibility is satisfied in almost all real-world applications.
For CTMCs, periodicity is not a problem because the transition times between states are con-
tinuous r.vs.

If a CTMC is irreducible, then: lim
t→∞

pij(t) = πj always exists and is independent of the initial
state i. The values πj are the stationary probabilities of the MC and satisfy:

πj =
∑
i∈S

πipij(t) ∀j ∈ S and t ≥ 0

To calculate stationary probabilities, it is more convenient to solve the system given by: πππ ×Q = 0

πππ × 1 = 1

and which is equivalent to:  πjqj =
∑
i 6=j πiqij ∀j ∈ S∑

j∈S πj = 1

The equations obtained by the first line of this system, are often called the equilibrium equations
in the sense that the left side of the equation πjqj represents the rate that the process leaves
state j in the long run (since πj is the stationary probability to be in state j and qj is the rate
that the process leaves state j), while the right side πiqij represents the rate that the process
enters into state j (the sum from all the other states i) which means that the two rates of exit
and entry are equal.

4.3.7 Embedded Markov Chain
When the process leaves state i after an exponential time Ti, it passes to another state j with
probability pij called the jump probability. This probability is given by pij =

qij
λi

for j 6=
i and pii = 0.
The matrix P whose elements are (pij) is a stochastic matrix which gives the one-step transition
probabilities of a discrete Markov chain called the embedded Markov chain (integrated Markov
chain) of the CTMC. The transition matrix P determines the probabilistic behavior of the in-
tegrated CTMD, but cannot represent the behavior of the continuous-time process because it
does not specify the transition rates of the process.
The states classification of a CTMC is the same as the classification of its embedded CTMD.

Let’s code!

#CMTC.py

import sys
import numpy as np
from CMTD import CMTD

# CMTD subclass of CMTD
class CMTC(CMTD):

# constructor
def __init__(self,P, lambdas, S = None, pi0 = None ):

super().__init__(P ,S ,pi0)
n = len(P)
self.lambdas=np.array(lambdas)
if((len(self.lambdas) != n)or(len(list(filter(lambda x:x<0,self.lambdas))) != 0)):

print("lambdas should have ",n," positive values")
sys.exit(0)

copyP = self.P.copy()
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np.fill_diagonal(copyP,-1)
self.Q = np.matmul(self.lambdas * np.identity(n),copyP)

# steady state probabilities
def steady_prob(self):

n = len(self.S)
A = np.vstack([self.Q.T,np.ones(n)])
B = np.append(np.zeros(n),1)
return np.linalg.lstsq(A,B)[0]

Example 12. Consider the CMTC (Xt)t≥0 whose integrated CM have the following transition
graph: We assume that: λ1 = 2,λ2 = 1 and λ3 = 3.

1 2

3

1

11/2
1/2

Figure 4.5: Transition graph

1. Find the generator matrix of the CTMC.

2. Find the corresponding limit distribution.

The generator matrix Q is defined by:

qij =

 λipij si i 6= j

−λi si i = j

Q =


−2 2 0

0 −1 1

3/2 3/2 −3


The limiting distribution is obtained by solving:

πππQ = 0 and πππ1 = 1

Which gives:

πππ = (
3

19
,

12

19
,

4

19
)

Let’s code!

#Code408.py

from CMTC import CMTC

p = [[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
[1/2, 1/2, 0.0]]

lambdas = [2,1,3]

continuous = CMTC(p, lambdas)
print(continuous.steady_prob())

#______________________________ Output ______________________________________
#[0.15789474 0.63157895 0.21052632]
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4.3.8 First hitting time
Consider the CTMC (Xt)t≥0 and let k be a state accessible from the other states. We are
interested in the time of the first passage (visit) through state k from state i.
We define Ti the r.v of the time of the first passage by k from i.

Hi(t) = P (Ti > t) = P (Xu 6= k for 0 ≤ u ≤ t|X0 = i) for t ≥ 0, i 6= k

We define the CTMC (X̄t)t≥0 such that state k is an absorbing state and its generator matrix:
q̄ij = qij1{i 6=k} ∀j ∈ S, i 6= k.
Its transition probability matrix: p̄ij(t) = P (X̄t = j|X̄0 = i) and p̄kk(t) = 1.
So we have, Hi(t) = 1− p̄ik(t).
Applying the backward equation:

H ′i(t) = −p̄′ik(t) = −(q̄iip̄ik(t) +
∑
l 6=i

q̄ilp̄lk(t))

= −q̄iip̄ik(t)−
∑
l 6=i,k

q̄ilp̄lk(t)− q̄ikp̄kk(t)

= −qii(1−Hi(t))−
∑
l 6=i,k

qil(1−Hl(t))− qik

= qiiHi(t) +
∑
l 6=i,k

qilHl(t)− qii −
∑
l 6=i,k

qil − qik

= qiiHi(t) +
∑
l 6=i,k

qilHl(t)− (qii +
∑
l 6=i,k

qil + qik)

H ′i(t) = qiiHi(t) +
∑
l 6=i,k

qilHl(t)

This system can be written as :
H′(t) = WH(t)

W is the matrix whose elements are (qij) s.t i 6= k and j 6= k.

The solution of this differential equation gives us the complement of the cumulative function of
the r.v Ti (1−Hi(t) = Fi(t)). To obtain the average time of the first passage, we calculate its
expectation:

E(Ti) =

∫ ∞
0

tfi(t)dt = −
∫ ∞

0

tH ′i(t)dt = −tHi|∞0 +

∫ ∞
0

Hidt

Example 13. Consider the CTMC (Xt)t≥0 whose generator matrix is:

Q =


−2 1 1

1 −2 1

0 2 −2


Find the average passage time from all states to state 2.

H′(t) = WH(t)

W =

−2 1

1 −2


The solution of this system:

H(t) = c1e
λ1tV1 + c2e

λ2tV2
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such that λ1, λ2, V1, V2 are the eigenvalues and eigenvectors of W.

λ1 = −1 : V1 =

1

1


λ2 = −3 : V2 =

−1

1



H(t) = c1e
−t

1

1

+ c2e
−3t

−1

1


To calculate c1 and c2, we consider the initial conditions: H(0) = 1. We therefore have:
c1 = 1 and c2 = 0
To calculate E(Ti), we have H0(t) = H1(t) = e−t:

E(Ti) = −tHi(t)|∞0 +

∫ ∞
0

Hi(t)dt = −(t+ 1)e−t|∞0 = 1 i = 0, 1

A simpler method to calculate the average first hitting time is to apply recursive reasoning. Let
µi be the value of the average transition time through state k starting from state i. The sojourn
time in state i is equal to 1/λi, the process will then pass to another state j with probability pij.
From j, it reaches state k in an average time equal to µj. µi can therefore be obtained by the
following recursive expression :

µi =
1

λi
+
∑
j 6=i,k

pijµj for i 6= k.

Its matrix form can be written as:

Mk = −diag−1(Q)1 + P(k)Mk

Such that Q is the generator matrix of the CTMC, Mk the vector of the mean first hitting times
from the other states to state k and P(k) is the probability matrix of the integrated MC without
row and column k. The solution of this system is:

Mk = −(I−P(k))−1diag−1(Q)1

diag(Q) is a function that returns a matrix whose diagonal is the same as Q and the other
elements are zero.
The result obtained by this method is: µ0 = 1 and µ1 = 1.

This equation expresses the fact that this time is composed of two parts, the first represents the
sojourn time in the current state and the second represents the average time to reach k from the
other states to which the process has transited after the expiration of his stay in state i.

Let’s code!

#CMTC.py (Continuation)

# hitting_time : average time to hit for the first time the state given in the argument
def hitting_time(self,state):

i = self.S.index(state)
I = np.identity(len(self.S)-1);
lambdas_inv = np.delete(np.reciprocal(self.Q.diagonal()),i)
PK = np.delete(np.delete(self.P,i,0),i,1)
return -np.matmul(np.linalg.inv(I-PK), lambdas_inv)

Let’s code!
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#Code409.py

from CMTC import CMTC

p = [[0.0, 0.5, 0.5],
[0.5, 0.0, 0.5],
[0, 1, 0.0]]

lambdas = [2,2,2]

continuous = CMTC(p, lambdas)
print("Hitting time: ",continuous.hitting_time(3))

#______________________________ Output ______________________________________
# Hitting time: [1. 1.]

4.4 Application: PageRank Algorithm
PageRank is an algorithm that analyses hyperlinks to rank web pages. It is used by Google
search engine to rank web pages.
PageRank models the web by a directed graph whose vertices are the set of web pages and the
arcs are the hyperlinks between them, this structure is called the web graph. The inbound (Ii)
and outbound (Oi) links of the page determine the importance of that page. Links from impor-
tant pages carry more weight than links from less important pages, and a page fairly shares its
weight over its successors. Consider:
N the total number of pages.
Ii the set of the pages pointing to i.
Oi the set of the pages to which i points.

In order to represent the navigation process in the web graph, Google modeled it by a
DTMC whose states (the set S) are the set of pages, and the transition matrix is called the
Google matrix ( G), and it is constructed as follows:

G = dH + (1− d)E

Such that:
0 < d < 1 a constant which represents the probability of following the links of the pages (not
restarting the navigation).
H is a matrix of size N ×N defined by: hij = 1

|Oi| if i ∈ Ij and 0 otherwise.
E is a matrix of size N ×N defined by: eij = 1

N ∀ 1 ≤ i, j ≤ N

G is a stochastic matrix because:
1. Each element of row i of matrix dH is equal to d

|Oi|1j∈Oi , its sum is equal to d.
2. The sum of each row of (1− d)E is equal to 1− d.
So all elements of G are between 0 and 1 and the sum of each row is 1.

The DTMC defined by G is aperiodic and irreducible, it therefore admits a unique stationary
probability vector
πππ, the stationary probability vector of the chain is obtained by the system of equations: πi =

∑N
j=1 πjgji∑N

i=1 πi = 1

We have:

πi =

N∑
j=1

πjgji =

N∑
j=1

πj
1− d
N

+
∑
j∈Ii

πj
d

|Oj |
=

1− d
N

+
∑
j∈Ii

πj
d

|Oj |

We define Ri the rank of page i as the quantity Nπi which verifies the recurring relationship
used by Google to determine the ranking of web pages:

Ri = (1− d) +
∑
j∈Ii

Rj
d

|Oj |
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Let’s code!

#Code410.py

import numpy as np
from CMTD import CMTD

def getRankPage(G,d):
N = len(G)
_output = list( map(lambda x: 0 if list(x).count(1) == 0 else 1/list(x).count(1) , G))
M = np.identity(N) - d * np.multiply(np.array(_output), G.T).T
M = np.vstack([M.T ,np.ones(N)])
B = np.hstack([np.ones(N)*(1-d), N])
return np.linalg.lstsq(M,B)[0]

# Test with getRankPage
d = 0.85
A = np.array([[0, 1, 1],

[1, 0, 0],
[0, 1, 0]])

print(’R : ’, getRankPage(A,d))

# Test with the steady state computation
G = [[0.050, 0.475, 0.475],

[0.900, 0.050, 0.050],
[0.050, 0.900, 0.050]]

print( ’R : ’, CMTD(G).steady_prob()*3)

#______________________________ Output ______________________________________
# R : [1.16336914 1.19219898 0.64443188]
# R : [1.16336914 1.19219898 0.64443188]
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4.5 Exercises
Exercise 1. For the temperature forecast of a given city, at the end of each day the temperature
is recorded. We noticed that if it has increased, the probability that it will increase tomorrow is
0.6, if it has decreased, the probability that it will increase tomorrow is 0.7.
1. Represent this system by a DTMC.
2. Suppose that the model has changed so that the temperature of tomorrow depends on that
of yesterday and today: it increases with probability 0.8 if it has increased today and yesterday.
If it increases today and has decreased yesterday, it increases tomorrow with probability 0.4. If
it decreases today and has increased yesterday then it increases tomorrow with probability 0.5
and if it decreases today and decreased yesterday then it increases tomorrow with probability 0.3.
Represent the system by a DTMC.
3. Code the example in Python.

Exercise 2. Consider a player who has 2 dinars initially; at each stage of the game, he can
win 1 dinar with probability p or lose 1 dinar with probability 1− p. He stops when he has won
4 dinars or when he has lost everything.
1. Represent this experiment by a DTMC.
2. Classify this DTMC.
3. With p = 1/3, calculate the probability that the player loses everything.
4. Determine the value of p such that the probability of losing is equal to 0.5.
5. Give the Python code that determines the classes of this DTMC for p = 1/3.

Exercise 3. To obtain a certificate, each candidate must pass two tests (level 1 test and level
2 test). To pass level 2 test, one must pass level 1 test. In case of failure, it is possible to redo
each test only once. Someone who retakes a test and fails is automatically excluded.
Each participant has a probability p of passing each test (q = 1− p is the probability of failing).
1. Using a DTMC, model the path of a candidate.
2. After passing two tests, what are the possible states in which a candidate can be?
3. With p = 2/3, what is the probability that a candidate will obtain his certificate.
4. Write the Python code that determines the average time of success.

Exercise 4. With friends you play the following game: three candles numbered 1 to 3 are on a
table. A die is rolled repeatedly. If the outcome is 1 or 6 then the first candle is lit if it is unlit
or unlit if it is lit. The same is done with the second candle if the obtained outcome is 2 or 5
and with candle 3 if the outcome is 3 or 4. Initially, the three candles are extinguished, and the
game is over when all the candles are lit. Let N be the number of the required die rolls until the
three candles are lit. Calculate E(N).

Exercise 5. Let (Xn)n≥0 be a DTMC defined by:
S = {1, 2, 3, 4, 5}

P =



1/4 0 3/4 0 0

1/4 1/2 1/4 0 0

1/3 0 1/3 0 1/3

0 0 0 0 1

0 0 0 1 0


1. Classify the states of this chain and calculate their period.
2. What is the mean first passage time through state 4?
3. Give the Python code that determines the classification of the states of this chain and the
average of the first return time to state 4.
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Exercise 6. Let (Xn)n≥0 be a DTMC defined by S = {1, 2, 3, 4} and P :

P =


1 0 0 0

1/4 0 3/4 0

0 1/3 0 2/3

0 0 0 1


1. Draw the transition graph and classify the states of this chain.
2. Calculate the probability and the mean absorption time starting from state 2.
3. Write the Python code for the 2nd question.

Exercise 7. Consider the DTMC be described by the following transition matrix.

P =


1/4 3/4 0

0 1/2 1/2

1/3 2/3 0


1. Find tk1, the average time of the first passage through state 1 starting from state k (for
k = 2, 3).
2. Find r1, the average return time to state 1.
3. Write the Python code that determines the average return time to state 1.

Exercise 8. It is assumed that the income of a person depends on the income of his parents,
the relationship is given by the following matrix. For example if the father has a high income,
his son will have an average income with a probability 0.4. S = {L,M,H}:

P =


0.5 0.3 0.2

0.2 0.6 0.2

0.1 0.4 0.5


L: low, M: medium, H: high
1. What is the probability that the income of a grandson in a low-income family to be high?.
2. In the long term what is the percentage of the population with low income.
3. Write the Python code of question 2.

Exercise 9. Consider a client / server computer system:
- the client sends requests and the server returns the corresponding response.
- the server can have a buffer memory to store requests whose size can be unlimited. The system
has three components Client (Request), Buffer and Server will be noted: [λ,m = 1, k = 1, µ, n =
1]
- λ : requests arrival rate.
- m : number of sent requests (default 1)
- k : size buffer k (* infinite) (default 1)
- n : number of servers (default)
- µ : service rate.
When an element is omitted, it takes the default value. In the case of a memory of size 0, the
requests received when the server is busy are lost. Consider the following cases:
01− [λ, , 0, µ, ] 02− [λ, , , µ, ] 03− [λ, , 2, µ, ] 04− [λ, , k − 1, µ, ] 05− [λ, , ∗, µ, ]

06− [λ, , 0, µ, 2] 07− [λ, , , µ, 2] 08− [λ, , 2, µ, 2] 09− [λ, , k, µ, 2] 10− [λ, , ∗, µ, 2]

11− [λ, , 0, µ, n] 12− [λ, , k, µ, n] 13− [λ, , ∗, µ, n]

1- Model each case as a CTMC by giving the states and the transition diagram.
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Exercise 10. Consider a production system whose elements are:
- Producer (P ): is the entity that produces k units of a product A (by default 1)
- Storage (S): is an intermediate storage area of size M where the product A is deposited or
withdrawn.
- Consumer (C): is the entity that consumes A by removing h units (by default 1)
The system is denoted [λ, k, S, µ, h]
- k: number of units of A produced simultaneously by P (a batch).
- λ: production rate.
- S: the maximum capacity of the temporary storage (by default 1).
- h: number of units A withdrawn and consumed simultaneously by C (by default 1).
- µ: consumption rate.
Consider the following cases :
1− [λ, 1, 1, µ, 1] 2− [λ], 1, 4, µ, 1] 3− [λ, 2, 6, µ, 1] 4− [λ, 2, 8, µ, 3]

1- Model each of these cases by a CTMC by giving the transition diagram.

Exercise 11. Consider the following matrix P(t) :

P(t) = D + f(t)A

- D is a constant transition matrix of the same size as P .
- A is a constant matrix of the same size as P .
- f is a positive function .
1- Given D, What are the conditions on f and A so that P(t) is a transition matrix for a
CTMC
2- Find non-null, integer-valued matrices A for f(t) = e−t/2 and

A =

a b

c d

 D =

1/2 1/2

1/2 1/2


Exercise 12. Consider a population of n individuals. It is initially considered that there is
one person infected with a contagious disease, and that the times between contact of any two
individuals in the population follows an exponential distribution of rate λ and that the times
between the different contacts are independent of each other. If a healthy person contacts an
infected person, he/she becomes infected too. Once infected, a person always remains so. Model
the spread of the disease by a CTMC.

Exercise 13. Customers arrive at a beverage vending machine following a Poisson process of
rate λ. Each customer takes a single unit. When the vending machine is empty, all incoming
requests are lost. The vending machine is only filled when it is empty; and its filling happens
following a Poisson process rate µ which is independent of that of the incoming requests. The
filling time is negligible and the quantity filled is always equal to N units. Propose a CMTC to
model this description.

Exercise 14. An electronic system uses one operating unit, and has n − 1 other replacement
units. The lifetime of each unit is exponentially distributed with rate λ. If the operating unit fails,
it is immediately replaced with another operating unit if available. There are enough repairers,
and every broken unit goes straight for repair. The repair time is exponentially distributed of
rate µ. A repaired unit is as good as a new unit. Model the number of units under repair by a
CTMC.

Exercise 15. Let (Xt)t≥0 be the CTMC associated to the embedded MC with the following
transition graph : We assume that: λ1 = 1, λ2 = 2, λ3 = 1 and λ4 = 1.

1. Find the generator matrix of the CTMC.

2. Find the associated limit distribution.

3. Determine the average first return time to state 4.

4. Write the Python code for questions 2 and 3.
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Figure 4.6: Transition graph

4.6 Solutions
Solution 1.
1- Let S = {0, 1} be the set of states. State 0 represents the increase in temperature and state 1
represents the decrease in temperature. Thus, the transition matrix is defined by:

P =

0.6 0.4

0.7 0.3


2- If we keep the same set of states as question 1, the memoryless property will be lost because
the future will depend on the present and also on the past. To find this property back, we define
a new set of states S = {0, 1, 2, 3} such that:
• state 0: the temperature has increased today and yesterday
• state 1: the temperature has increased today and has dropped yesterday
• state 2: the temperature went down today and increased yesterday
• state 3: the temperature went down today and went down yesterday
We get the following transition matrix:

P =


0.8 0 0.2 0

0.4 0 0.6 0

0 0.5 0 0.5

0 0.3 0 0.7


The first element of the second row, for example, represents the probability of increasing tomor-
row and today given that it has increased today and has decreased yesterday, it is simply the
probability of increasing tomorrow given that it has increased today and has decreased yesterday
which equals 0.6. The probability is equal to 0 in the case of inconsistent events.

Solution 2.
1- Let (Xn)n≥0 be the r.v representing the number of dinars that the player has at step n. The
set of states is: S = {0, 1, 2, 3, 4}. The transition matrix is as follows:

P =



1 0 0 0 0

1− p 0 p 0 0

0 1− p 0 p 0

0 0 1− p 0 p

0 0 0 0 1


2- The classes of the DTMC are:
- {0} a recurrent class (0 is an absorbing state)
- {4} a recurrent class (4 is an absorbing state)
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Figure 4.7: Transition graph

- {1, 2, 3} is a transient class (there is a non zero probability to go from the states of this class
to the absorbing states).

3- The probability that the player loses everything is the probability of being absorbed by state 0
starting from state 2: a20 and which can be calculated by the following system:

a10 = 2
3 + 1

3 × a20

a20 = 2
3 × a10 + 1

3 × a30

a30 = 2
3 × a20

a20 = 4
5

4- We solve the system of equations of question 3 (q = 1− p):
a10 = q + pa20

a20 = qa10 + pa30

a30 = qa20

So: a20 = p2

2p2−2p+1

For: a20 = 1
2 =⇒ p2

2p2−2p+1 = 1
2

We have: p = 1
2

Solution 3.
1- S = {t1, r1, t2, r2, R,E}
1. t1: takes the first test the first time.
2. r1: repeats the first test.
3. t2: takes the second test the first time.
4. r2: repeats the second test.
5. E: exclusion
6. R : passes (obtaining the certificate)
The transition matrix is:

P =



0 q p 0 0 0

0 0 p 0 q 0

0 0 0 q 0 p

0 0 0 0 q p

0 0 0 0 1 0

0 0 0 0 0 1


2- πππ0 = (1, 0, 0, 0, 0, 0), πππ2 = πππ0P

2

After two tests, the candidate can be in:
R with probability p2,
E with probability q2,
t2 with probability qp,
r2 with probability pq
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Figure 4.8: Transition graph

3- The following system should be solved such that aER = 0 and aRR = 1 :

at1R = 1
3ar1R + 2

3at2R

ar1R = 2
3at2R + 1

3aER

at2R = 1
3ar2R + 2

3aRR

ar2R = 1
3aER + 2

3aRR

at1R = 16
27

Solution 4. We can define a MC with the set of states S = {0, 1, 2, 3}, each state represents the
number of lit candles, 3 is therefore an absorbing state, and the transition matrix is as follows:

P =


0 1 0 0

1/3 0 2/3 0

0 2/3 0 1/3

0 0 0 1


To find E(N), which is, in fact, the average absorption time of the chain by state 3 starting from
state 0; we must solve the following system such that n3 = 0:

n0 = 1 + n1

n1 = 1 + 1
3n0 + 2

3n2

n2 = 1 + 2
3n1 + 1

3n3

E(N) = n0 = 10

0 1 2 3

1

1/3

2/3

2/3

1/3

1

Figure 4.9: Transition graph

Solution 5.
1.

C1 = {1, 3} : transient, period=1
C2 = {2}: transient, period=1
C3 = {4, 5}: recurrent, period=2

2. To find the average time of the first passage, we must solve the following system of equations:
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Figure 4.10: Transition graph

ti4 = 1 +
∑

piktk4

such that t44 = 0 and t54 = 1 + t44 = 1
t14 = 1 + 1

4 t4 + 3
4 t34

t24 = 1 + 1
4 t14 + 1

2 t24 + 1
4 t34

t34 = 1 + 1
3 t14 + 1

3 t34 + 1
3 t54

So, we have: t14 = 20
3 t24 = 8 t34 = 16

3 t54 = 1

Solution 6.
1.The classes of this DTMC are:

1 2 3 4
1/4

3/4

1/3
2/3

1 1

Figure 4.11: Transition graph

C1 = {1}: absorbing, C2 = {2, 3}: transient, C4 = {4}: absorbing
2. This MC contains two absorbing states: 1 and 4. The probability of absorption from state 2
is therefore the sum of the probabilities of absorption by 1 and by 4 starting from 2. We must
solve the following two systems of equations such that a1 = 1, a4 = 0, b1 = 0 and b4 = 1 : a2 = 1

4a1 + 3
4a3

a3 = 1
3a2 + 2

3a4

The solution is: a1 = 1 a2 = 1
3 a3 = 1

9 a4 = 0 b2 = 1
4b1 + 3

4b3

b3 = 1
3b2 + 2

3b4

The solution is: b1 = 0 b2 = 2
3 b3 = 8

9 b4 = 1
a2 + b2 = 1, therefore starting from 2, the chain will certainly be absorbed either by state 1 with
probability 1/3 or state 4 with probability 2/3.

Solution 7.
1- To calculate t21 and t31 we use the total probability law with recursion such that t11 = 0: t21 = 1 + 1

2 t21 + 1
2 t31

t31 = 1 + 1
3 t11 + 2

3 t21
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The solution is t21 = 9 and t31 = 7
2- r1 = 1 + 1

4 t11 + 3
4 t21 = 1 + 3

4 × 9 = 31
4

Solution 8.
1. We have S = {F,M,E}, π0π0π0 = (1, 0, 0) and π2 = π0π2 = π0π2 = π0P

2 = (0.33, 0.41, 0.26). The probability
that the income of a grandson in a low-income family is high is: 0.26
2. This MC is ergodic: 1) irreducible because all the states communicate, and 2) aperiodic
because the period is equal to 1 (p00 > 0). It therefore admits a limit stationary distribution
which can be calculated by the system: πππP = πππ and πππ1 = 1
which gives the solution: πππ = ( 12

49 ,
23
49 ,

2
7 )

The percentage of the population with low income is : 24.48%

Solution 9.
The CTMC states represent the number of requests in the system.

0 1 1. [λ, , 0, µ, ]

λ

µ

0 1 2 2. [λ, , , µ, ]

λ

µ

λ

µ

0 1 2 3 3. [λ, , 2, µ, ]

λ

µ

λ

µ

λ

µ

0 1 2 3 k-1 k 4. [λ, , k − 1, µ, ]

λ

µ

λ

µ

λ

µ

λ

µ

. . .

0 1 2 3 k k+1 5. [λ, , ∗, µ, ]
λ

µ

λ

µ

λ

µ

λ

µ

. . . . . .

0 1 2 6. [λ, , 0, µ, 2]

λ

µ

λ

2µ

0 1 2 3 7. [λ, , , µ, 2]

λ

µ

λ

2µ

λ

2µ

0 1 2 3 4 8. [λ, , 2, µ, 2]

λ

µ

λ

2µ

λ

2µ

λ

2µ

0 1 2 3 k+1 k+2 9. [λ, , k, µ, 2]

λ

µ

λ

2µ

λ

2µ

λ

2µ

. . . . . .

0 1 2 3 n-1 n 10. [λ, , ∗, µ, 2]

λ

µ

λ

2µ

λ

3µ

λ

nµ

. . .

0 1 2 3 n-1 n n+1 11. [λ, , 0, µ, n]

λ

µ

λ

2µ

λ

3µ

λ

nµ

λ

nµ

. . .
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0 1 2 3 n-1 n n+1 n+k n+k-1 12. [λ, , k, µ, n]

λ

µ

λ

2µ

λ

3µ

λ

nµ

λ

nµ

λ

nµ

. . . . . .

0 1 2 3 n-1 n n+1 13. [λ, , ∗, µ, n]

λ

µ

λ

2µ

λ

3µ

λ

nµ

λ

nµ

. . . . . .

Solution 10.

0 1

λ

µ

0 1 2 3 4

λ

µ

λ

µ

λ

µ

λ

µ

0 1 2 3 4 5 6

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ µ

0 1 2 3 4 5 6 7 8

λ λ λ

µ

λ

µ

λ

µ

λ

µ

λ

µ µ

Solution 11.
1- For P(t) to be a transition matrix, it must be stochastic. A and f must therefore satisfy the
following conditions:
1.1- The sum of each row of A is equal to 0.
1.2- The elements of P(t) must be values between 0 and 1, therefore:

0 ≤ dij + f(t)aij ≤ 1 =⇒ −dij
aij
≤ f(t) ≤ (1− dij)

aij
if aij 6= 0

2- From 1.1 and 1.2 we can deduce that a = −b, c = −d therefore − 1
2|a| ≤

e−t

2 ≤ 1
2|a| then

0 ≤ e−t ≤ 1
|a| = 1 so |a| = 1 =⇒ a = ±1

In the same way we get c = ±1

A1 =

1 −1

1 −1


For the other matrices we exchange the values of the same row (A2,A3,A4).
3- We have − 1

2|a| ≤ f(t) ≤ 1
2|a| =⇒ |a| = 1 and − 1

3|c| ≤ f(t) ≤ 2
3|c|

and − 2
3|c| ≤ f(t) ≤ 1

3|c| =⇒ 0 < e−t < 2
3|c| = 1 =⇒ |c| = 2

3

A1 =

1 −1

2
3 − 2

3


For the other matrices we exchange the values of the same row (A2, A3, A4).
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Solution 12.
Let (Xt)t>0 be the number of infected individuals at time t. S = {1, 2, · · · , n}
If we have i infected people then the time until one of the n− i people to become infected is the
min of (n− i) ∗ i r.vs of rate λ.
qi,i+1 = (n− i)× i× λ for i = 1, 2, ..., n− i.

1 2 3 n-1 n

λ(n− 1) 2λ(n− 1) λ(n− 1)2

. . .

Figure 4.12: Transition graph

Solution 13.
Let (Xt)t>0 be the number of drink units in the vending machine at time t. S = {0, 1, ..., N}.
The Markov property is satisfied by the fact that the Poisson processes are memoryless, i.e. at
any time, the time elapsed since the arrival of the last event, does not affect the arrival of future
events.
qi,i−1 = λ, qi,j = 0 for j 6= i− 1 and q0,N = µ, q0,j = 0 for j 6= N .

0 1 2 3 N-1 N

µ

λ λ λ λ

. . .

Figure 4.13: Transition graph

Solution 14. Let (Xt)t>0 be the number of units under repair at time t. S = {0, 1, ..., n}.
The minimum of i exponential r.vs of rate µ follows an exponential distribution of rate i × µ.
If at any given time t, there are i units under repair, then qi,i−1 = i × µ. and qi,i+1 = λ for
0 ≤ i ≤ n− 1.

0 1 2 i-1 i n-1 n

λ

µ

λ

2µ

λ

iµ

λ

nµ

. . . . . .

Figure 4.14: Transition graph

Solution 15.
1. The generator matrix Q is defined by:

qij =

 λipij if i 6= j

−λi if i = j

Q =


−1 1/3 1/3 1/3

0 −2 2 0

0 0 −1 1

1 0 0 −1


2. The limit distribution is obtained by solving the following system of equations:

πππQ = 000 and πππ111 = 1
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We get:

πππ = (
6

17
,

1

17
,

4

17
,

6

17
)

3. We calculate the first hitting time of state 4 using the recursive method:

µi =
1

λi
+
∑
j 6=i,k

pijµj for i 6= 4.


µ1 = 1 + 1

3µ2 + 1
3µ3

µ2 = 1
2 + µ3

µ3 = 1

The solution is : (µ1, µ2, µ3) = (11
6 ,

3
2 , 1)



Chapter 5

Application to queuing models

5.1 Introduction
Queuing is a class of models for studying systems that offer services. The creation of a queue
begins when the demand for the service exceeds the capacity of the servers (entities offering the
service). Given the non-deterministic (random) aspect of the arrival of requests, decision-makers
often face the problem of predicting the time that will be necessary to serve the requests, which
is an information that makes it possible to decide on the required number and/or frequency of
servers. Being able to make these decisions helps, on the one hand, to avoid offering an excess
of service, something that generates unnecessary costs (costs of unoccupied servers); and on
the other hand, it avoids too long waits for the services which generates the loss of requests
(often clients) or sometimes unnecessary social costs. The objective is therefore to find the right
compromise between the cost of service and the cost of waiting.
Using queue models helps calculate some metrics of the system’s performance, such as the client’s
average waiting time used by decision-makers to find this trade-off.
In this class of models the system to be studied is called station where clients (requests) arrive
to receive a service. If the servers are busy, the clients wait their turn to be served; and when
served, they leave the system.
A common example of this type of system is the emergency department in a hospital, where
patients (clients) arrive to receive treatment (the service) by a doctor (the server). When the
doctor is treating a patient, the patients who come must wait their turn (queue). The hospital
director must decide of the number of doctors to be put into service in order to limit the waiting
time for patients while limiting the idle hours of the doctors. Figure 5.1 schematizes a queuing
system. The same description applies to many other systems such as administrative, commercial,
transport, IT service systems, etc.

Figure 5.1: An elementary queuing system

5.2 Components of a queuing system
The elements that make up a queuing system are:

• The queue: can be finite or infinite. When a customer tries to enter the station whose

148
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queue is full and limited, he is considered lost.

• Client : is the entity that receives the service offered by the system.

• Server : when speaking of a single server, there is one server that processes clients one
after the other. When speaking of multiservers, several clients are served at the same time
by several servers.

• Discipline of service: this is the order in which customers in a queue will be served. The
default discipline is FIFO (First In First Out: first come first served). If another discipline
is used, it must be specified (Round Robin, LIFO, ...)

• Arrival process: describes the time between two successive arrivals of customers. This
time can be deterministic (it is necessary to give its value) or random (it is necessary to
specify the law and the parameters that make it possible to define it)

• Service process: describes the time it takes for a server to process a client. (same remark
as the arrival process)

5.3 Kendall notation A/B/C/K/P/D
The different models of queuing systems can be classified and characterized by the properties of
the systems they model and the type and context of the application. In 1958, Kendall proposed a
notation to represent each type of these models which was subsequently standardized. The cur-
rent notation scheme has 6 classification references and has the following form A/B/C/K/P/D
(P and D are often omitted) such that:

• A and B: arrival and service processes. Can take values:

– M: Exponential distribution (Markovian)

– D: Degenerate distribution (taking a constant value).

– Ek: Erlang distribution (of parameter k).

– G: General distribution.

• C: Number of servers.

• K: System capacity (Queue and currently served customers omitted if infinite).

• P: Population (omitted if infinite).

• D: Service policy (FIFO by default).

The model M/M/s for example considers that the inter-arrival time and the service time follow
exponential distribution, the number of servers is s and the size of the queue is infinite. The
model M/G/1 has an exponential inter-arrival time, but there is no restriction on the service
time distribution, only the expectation and the variance of this distribution are necessary to
know (or to estimate), there is only one server and the queue is of infinite size. In the case of
M/D/s, the inter-arrival time is exponentially distributed, the service time is constant and the
system has s servers.
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5.4 Station study
The study of a given station makes it possible to determine its performances. In order to find
them analytically, we use the following notations:

λ : Average arrival rate (average number of arrivals per unit of time)
µ : Average service rate (average number of customers completing the service per unit of time)
πn : Probability of having n clients in the system.
L : Average number of customers in the station (waiting customer + customers being served).
Lq : Average number of customers in the queue (excluding customers being served).
W : Average customer response time (between entering and leaving the station).
Wq : Average waiting time in the queue.
ρ : Utilization factor. i.e the fraction of the average time during which individual

servers are busy.

ρ =
B

B + I
=

λ

sµ

B is the length of time the server is occupied during the operating period.
I is the length of time the server is idle.
If, in a unit of time, each server can serve µ clients and the system receives λ clients, then each
of the servers will have an average occupancy rate equal to λ/s clients

µ clients = ρ.

5.4.1 Little law
Consider the following processes:
L(t) the number of clients in the system at time t.
A(t) the number of clients who have arrived in the system at time t.
D(t) the number of clients who left the system (after receiving the service) at time t.
Wk the total time spent by client k in the system.

L(t) = A(t)−D(t)

λ = lim
t→∞

A(t)

t

Figure 5.2: Little law

H(t) is the area between the curve A(t) and that of D(t). It is equal to the sum of the total
time spent by the clients who arrived before time t.

H(t) =

∫ t

0

L(s)ds =

A(t)∑
i=1

Wi

Dividing by t we get:

1

t

∫ t

0

L(s)ds =
1

t

A(t)∑
i=1

Wi =
A(t)

t
×
∑A(t)
i=1 Wi

A(t)
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lim
t→∞

1

t

∫ t

0

L(s)ds = lim
t→∞

(
A(t)

t
×
∑A(t)
i=1 Wi

A(t)
)

When these limits exist, we get
L = λ×W

In the same way we can show that:
Lq = λ×Wq

W = Wq +
1

µ

( 1
µ is the average service time)

To know the performances L, Lq, W and Wq, it is necessary and sufficient to calculate πn for
n ∈ N: the probability of having n customers in the station.

Relationships between performance indicators.

- The average number of clients in the system:

L =

∞∑
n=0

nπn

- The average number of clients in the queue (there are s servers in the system) :

Lq =

∞∑
n=s

(n− s)πn =

∞∑
n=s

nπn − s
∞∑
n=s

πn = L− (1− s
s−1∑
n=0

πn)

- The average response time:

W =
L

λ

- The average waiting time in the queue (response time - service time):

Wq = W − 1

µ

Let’s code!

#Code501.py

from math import factorial

# Queueing Class
class Queueing(object):

# constructor
def __init__(self, model=’MM1’, A=’M’ ,B=’M’ ,C=1, K=-1, P=None, D=’FIFO’, laws =None):

self.model = model

self.s, self.k = C, K
self.lamda, self.mu = A[’params’][’lambda’], B[’params’][’mu’]
self.rho = 1.0 * self.lamda/(self.s*self.mu)

self.p0 = laws[self.model][’p0’](rho1=self.rho, s=self.s , k=self.k)
self.pk = self.pn(self.k) if self.k > 0 else 0;
self.lamdae = (1 - ( 0 if self.k == -1 else self.pk)) * self.lamda
self.rhoe = 1.0 * self.lamdae/(self.s* self.mu)

#
self.Lq = laws[self.model][’Lq’](rho1=self.rhoe, s=self.s , k=self.k, p0=self.p0)
self.L = self.Lq + self.s * self.rhoe
self.W = lambda q : (self.L if q == ’’ else self.Lq)/self.lamdae

# isErgodic
def isErgodic(self):

return self.rho <1
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# getStationaryProb
def pn(self,n):

pn0 = lambda n: self.s**min(self.s,n)/factorial(min(self.s,n)) * self.rho**n * self.p0
if n == 0 : return self.p0
if self.k != -1 and n > self.k : return 0
return pn0(n)

# show perforamnces
def test(self):

print(’==================’ + self.model + ’ =======================’)
print("p0* :{:.5f}".format(self.p0))
print("p1* :{:.5f}".format(self.pn(1)))
print("Lq :{:.2f}".format(self.Lq))
print("L :{:.2f}".format(self.L))
print("W :{:.2f}".format(self.W(’’)))
print("Wq :{:.2f}".format(self.W(’q’)))

5.4.2 M/M/1 system
In this system, arrivals follow Poisson distribution with rate λ (average number of clients arriv-
ing during a unit of time) and the service is exponential of rate µ (average number of customers
served during a unit of time, so 1

µ is the average service time of a client). There is only one
server and the queue size is unlimited. It is assumed that the discipline is FIFO.

If (Xt)t≥0 represents the number of clients in the system at time t, then S = {0, 1, 2, ...}. We
move from state i to i + 1 if a customer arrives, we move from state i to i − 1 if a customer is
served. This is described by the following graph. It corresponds to a CTMC whose generator
matrix is:

0 1 2 n-1 n n+1

λ

µ

λ

µ

. . .
λ

µ

λ

µ

. . .

Figure 5.3: M/M/1 system

Q =

0 1 2 3 . . . i . . .

0 −λ λ 0 0 . . . 0 . . .

1 µ −(λ+ µ) λ 0 . . . 0 . . .

2 0 µ −(λ+ µ) λ . . . 0 . . .
...

i 0 0 0 µ −(λ+ µ) λ . . .
...

We are looking for πn, the probability of having n clients in the system at the steady state. We
know that in this state:  πππQ = 0

πππ1 = 1

Which gives the system of equations:
µπ1 − λπ0 = 0

λπi−1 + µπi+1 − (λ+ µ)πi = 0 for i ≥ 1∑∞
i=0 πi = 1
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The solution of this system gives:

π1 =
λ

µ
π0

πi+1 −
λ

µ
πi = πi −

λ

µ
πi−1 = π1 −

λ

µ
π0 = 0 for i ≥ 1

so

πi+1 =
λ

µ
πi for i ≥ 1

We deduce that :
πn = ρn × π0

such that ρ = λ
µ . Which can be verified by induction.

To calculate π0 we use the relation
∑∞
i=0 πi = 1. We get:

π0 =
1

1 + ρ+ ρ2 + ρ3 + ...

The expression in the denominator is a geometric progression of reason ρ. It is convergent if
ρ < 1 and equals to : 1/(1− ρ). The condition ρ < 1 is essential for the stability of the system,
it is called the ergodicity condition of the system. ρ < 1 means that the arrival rate is lower
than the departure rate, otherwise there will be an overflow of the number of customers in the
system. We deduce that:

π0 = 1− ρ and πn = ρn(1− ρ) = ρnπ0 for n ≥ 1

Performances.

• The average number of customers in the system:

L =

∞∑
n=0

nπn =

∞∑
n=0

n(1− ρ)ρn = ρ(1− ρ)

∞∑
n=1

nρn−1

= ρ(1− ρ)

( ∞∑
n=1

ρn

)′
= ρ(1− ρ)

1

(1− ρ)2

So:
L =

ρ

1− ρ
=

λ

µ− λ
=

ρπ0

(1− ρ)2

• Average number of customers waiting in the queue:
Lq= average number of customers in the station - the average number of customers being
served.

Lq = L− (1− π0) = L− ρ

• The average response time:

W =
L

λ
=

1

µ− λ

• The average waiting time in the queue (response time - service time):

Wq = W − 1

µ
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Example:
For a M/M/1 system with parameters λ = 4c/h and µ = 6c/h, we have:
- Average service time : 1/µ = 1/6 = 10 min per client
- Server utilization rate : ρ = λ/µ = 4/6 = 2/3 = 0.666
- Probability of having 0 clients in the system : π0 = (1− ρ) = 1/3 = 0.333
- Probability that the server is busy : 1− π0 = ρ = 0.666
- Probability of having only one client in the queue : π1 = ρπ0 = 2/3× 1/3 = 2/9 = 0.2222
- Probability of having 0 clients in the queue : π0 + π1 = 0.333 + 0.222 = 0.555
- Average number of clients in the system : L = ρ/(1− ρ) = 2/3× 3/1 = 2
- Average number of clients in the queue : Lq = L− ρ = 2− 0.666 = 1.333
- Average waiting time in the system : W = L/λ = 2/4 = 1/2h = 30 min
- Average waiting time in the queue before service : Wq = 0.333 = 20 min

The parameters and performance indicators of this system indicate that :
- 66.6% of time the server is busy.
- 33.3% of time the system is idle.
- 22.2% of time one client is in the system.
- 55.5% of time the queue is empty.
- 4.3% of time there are 5 clients in the system.
- In average 2 clients in the system.
- In average 1.333 clients are in the queue.
- Each client waits in average 30 min.
- Each client waits in the queue in average 20 min.

For a M/M/1 system with an arrival rate λ = 8c/h:
For the utilization rate to be greater than 80%, its service rate must be: µ = λ/ρ = 8/0.8 =
10c/h.

Let’s code!

#Code502.py

from Code501 import Queueing

# getMM1
def getMM1(lamda, mu):

#
laws ={
’MM1’ : {

’p0’ : lambda **p: (1 - p[’rho1’]), # p0 = 1 - rho,
’Lq’ : lambda **p: p[’rho1’] / (1 - p[’rho1’]) - p[’rho1’], # Lq = L - rho
},

}

#=========================================================================
# Tests
qs = Queueing(

model = ’MM1’,
A ={’D’:’Pois’ , ’params’: { ’lambda’: lamda}},
B ={’D’:’Expo’ , ’params’: { ’mu’: mu}},
laws = laws)

qs.test()

if __name__ == "__main__": getMM1(4,6)
# ==================MM1 =======================
# p0* :0.33333
# p1* :0.22222
# Lq :1.33
# L :2.00
# W :0.50
# Wq :0.33

5.4.3 M/M/1/K system
In this system the arrivals follow Poisson distribution of rate λ (average number of clients arriv-
ing during a unit of time) and the service is exponential of rate µ (average number of customers
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served during a unit of time, therefore 1
µ is the average customer service time). There is only

one server and the queue size is limited to K−1 clients. We assume that the discipline is FIFO.

In this system, the arrival rate λ is significant during the period when the queue size is less than
K − 1, after this step all the clients that arrive at the system will be rejected, the system does
not see these clients. The rate of arrivals perceived by an observer in the system is less than
λ and equal to the real rate multiplied by the fraction of time when the system is not in its
maximum capacity (K). This is called the effective rate and it will be noted λe .

If (Xt)t≥0 represents the number of clients in the system at time t, then S = {0, 1, 2, ...,K}. We
move from state i to i+ 1 if a client arrives, we move from state i to i− 1 if a client is served.
This is described by the following graph. It corresponds to a CTMC whose generator matrix is
as follows:

Q =

0 1 2 3 . . . K-2 K-1 K

0 −λ λ 0 0 . . . 0 0 0

1 µ −(λ+ µ) λ 0 . . . 0 0 0

2 0 µ −(λ+ µ) λ . . . 0 0 0
...

K-1 0 0 0 0 . . . µ −(λ+ µ) λ

K 0 0 0 0 . . . 0 µ −µ

0 1 2 K-1 K

λ

µ

λ

µ

. . .
λ

µ

Figure 5.4: M/M/1/K system

We are looking for πn, the probability of having n clients in the steady state system. The
balance equations of this system are :

µπ1 − λπ0 = 0

λπi−1 + µπi+1 − (λ+ µ)πi = 0 for 2 ≤ i ≤ K − 1

µπK − λπK−1 = 0∑∞
i=0 πi = 1

The solution of this system gives (in the same way as M/M/1):

πn = ρn × π0 for 1 ≤ i ≤ K

To calculate π0 we use the relation
∑∞
i=0 πi = 1. We get:

π0 =
1

1 + ρ+ ρ2 + ρ3 + ...+ ρK
=

1− ρ
1− ρK+1

The denominator expression is a finite geometric progression of K terms and reason ρ .
We deduce that:

πn = ρn
1− ρ

1− ρK+1
for 0 ≤ n ≤ K

Performances.

As explained above the system perceives another arrival rate: λe which will be used to determine
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the performance factors instead of λ. λe is equal to λ times the probability that the system is
not in state K (πK). So the effective utilization rate λe in the system is :

λe = λ(1− πK).

ρe =
λe
µ

• The average number of customers in the system:

L =

K∑
n=0

nπn =

K∑
n=0

n
1− ρ

1− ρK+1
ρn = ρ

1− ρ
1− ρK+1

K∑
n=1

nρn−1

= ρ
1− ρ

1− ρK+1

(
K∑
n=1

ρn

)′
= ρ

1− ρ
1− ρK+1

(
1− ρK+1

1− ρ

)′
= ρ

1− ρ
1− ρK+1

[
−(1− ρ)(K + 1)ρK + 1− ρK+1

(1− ρ)2

]
So:

L = ρ
1− ρ

(1− ρ)2

[
−(1− ρ)(K + 1)ρK + 1− ρK+1

1− ρK+1

]
=

ρ

(1− ρ)

[
−π0(K + 1)ρK + 1

]
• Average number of customers waiting in the queue:
Lq = average number of customers in the station - the average number of customers being
served.

Lq = L− ρe

• The average response time:

W =
L

λe
=

1

µ− λe

• The average waiting time in the queue (response time - service time):

Wq = W − 1

µ

Example:
For a M/M/1/12 system with parameters λ = 5c/h and µ = 10c/h, we have :
- Average service time : 1/µ = 1/10 = 6 min per client
- Server utilization rate : ρ = λ/µ = 5/10 = 0.5
- Probability of having 0 customers in the system : π0 = 0.5
- Probability that the server is busy : 1− π0 = 0.5
- Probability of having only one client in the queue : π1 = 0.25
- Probability of having no clients in the queue : π0 + π1 = 0.5 + 0.25 = 0.75
- Average number of clients in the system : L = 1
- Average number of clients in the queue : Lq = 0.5
- Average waiting time in the system : W = 0.2h = 12 min
- Average waiting time in queue before service : Wq = 0.10 = 6 min

Particular case: ρ = 1
πn = π0 for 1 ≤ i ≤ K

To calculate π0 we use the relation
∑K
i=0 π0 = (K + 1)π0 = 1. So:

π0 =
1

K + 1
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Let’s code!

#Code503.py

from Code501 import Queueing

# p0
def getP0(**p):

rho, k = p[’rho1’], p[’k’]
return (1 - rho)/(1 - rho**(k+1))

# Lq
def getLq(**p):

rho, k, p0 = p[’rho1’], p[’k’], p[’p0’] #
return rho/(1-rho) * ( 1 - p0 * (k*rho**k + 1))

#
laws ={ ’MM1K’ : { ’p0’ : getP0, ’Lq’ : getLq, }}

#=========================================================================
# Tests
def getMM1K(mu, lamda, K):

qs = Queueing(
model = ’MM1K’,
A ={’D’:’Pois’ , ’params’: { ’lambda’: lamda}},
B ={’D’:’Expo’ , ’params’: { ’mu’: mu}},
C = 1,
K = K,
laws=laws)

qs.test()

if __name__ == "__main__": getMM1K(10, 5, 12)
# ==================MMS =======================
# p0* :0.50006
# p1* :0.25003
# Lq :0.50
# L :1.00
# W :0.20
# Wq :0.10

5.4.4 M/M/s system
When the number of servers s is greater than 1 (multi-servers), the model diagram becomes as
follows:

0 1 2 3 S-2 S-1 S S+1

λ

µ

λ

2µ

λ

3µ

. . .
λ

(s-1)µ

λ

sµ

λ

sµ

. . .

Figure 5.5: M/M/s system

In this diagram, the exit rate from state i is iµ for i < s and sµ for i ≥ s. This is because the
transition from state i to state i − 1 occurs when the first of the busy servers terminates its
service. i.e, the r.v T of the time of passage from state i to state i−1 is the minimum of the r.vs
of the service time of all the i busy servers and which (see exercise 6 of Chapter 2) follows an
exponential distribution of rate iµ. From state s, all servers are busy and therefore the service
rate is sµ.
The condition for the queuing system of this model to admit a stationary state (ergodicity
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condition) is that ρ = λ
sµ < 1

Q =

0 1 2 3 . . . s-1 s s+1 . . .

0 −λ λ 0 0 . . . 0 0 0 . . .

1 µ −(λ+ µ) λ 0 . . . 0 0 0 . . .

2 0 2µ −(λ+ 2µ) λ . . . 0 0 0 . . .
...

s-1 0 0 0 0 · · · −(λ+ (s− 1)µ) λ 0 . . .

s 0 0 0 0 · · · sµ −(λ+ sµ) λ . . .

s+1 0 0 0 0 · · · .. sµ −(λ+ sµ) . . .
...

The balance equations of this system are :
µπ1 − λπ0 = 0

λπi−1 +min(s, i+ 1)µπi+1 − (λ+min(s, i)µ)πi = 0 for i ≥ 1∑∞
i=0 πi = 1

so 
π1 = λ

µπ0

πi+1 = (λ+min(s,i)µ)πi−λπi−1

min(s,i+1)µ for i ≥ 1∑∞
i=0 πi = 1

If i > s, this part of the diagram is similar to M/M/1, and we apply the same analysis method
with πs as initial state.

πn = ρ(n−s) × πs
If i ≤ s, we have :

πi+1 =
(λ+ i)µπi − λπi−1

(i+ 1)µ
for i ≥ 1

πi+1 =
λ

(i+ 1)µ
πi +

i

(i+ 1)
πi −

λ

(i+ 1)µ
πi−1 for i ≥ 1

πi+1 −
λ

(i+ 1)µ
πi =

i

(i+ 1)

(
πi −

λ

iµ
πi−1

)
for i ≥ 1

By substituting the other terms :

πi+1 −
λ

(i+ 1)µ
πi =

1

(i+ 1)

(
π1 −

λ

µ
π0

)
= 0 for i ≥ 1

From the first balance equation, we have:

πi+1 =
λ

(i+ 1)µ
πi for i ≥ 1

so:

πi+1 =
1

(i+ 1)!

(
λ

µ

)i+1

π0 for i ≥ 1

πn =
1

n!

(
λ

µ

)n
π0 =

sn

n!
ρnπ0 for 1 ≤ n ≤ s

πn =
smin(n,s)

min(n, s)!
ρnπ0 for 1 ≤ n ≤ s
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To calculate π0 we use the relation
∑∞
i=0 πi = 1. We get:

∞∑
n=s+1

ρ(n−s)πs +

s∑
n=0

sn

n!
ρnπ0 = 1

πs

∞∑
n=s

ρ(n−s) + π0

s−1∑
n=0

sn

n!
ρn = 1

We can deduce that:
π0 =

1∑s−1
n=0

sn

n! ρ
n + ss

s! ρ
s 1

1−ρ

Performances.

• Average number of customers waiting in the queue:
Lq= average number of clients in the station - the average number of clients being served.
Queue creation begins from the arrival of the (s+ 1)th client who will find all the servers
busy so he joins the queue.

Lq =

∞∑
n=s

(n− s)πn =

∞∑
n=s

(n− s)s
s

s!
ρnπ0

=
ss

s!
π0ρ

s
∞∑
n=s

(n− s)ρn−s =
ss

s!
π0ρ

s+1
∞∑
k=0

kρk−1

So:
Lq =

ss

s!
π0ρ

s+1 1

(1− ρ)2

Example:
For a M/M/4 system with parameters λ = 10c/h and µ = 5c/h, we have :
- Average service time : 1/µ = 1/5 = 0.2h/c = 12 min per client
- Server utilization rate : ρ = λ/sµ = 10

4×5 = 1/2 = 0.5
- Probability of having 0 clients in the system : π0 = 0.13043
- Probability that the server is busy : 1− π0 = 0.86957
- Probability of having one client in the queue : π1 = 0.26087
- Average number of clients in the system : L = 2.17
- Average number of clients in the queue : Lq = 0.17
- Average waiting time in the system : W = 0.22
- Average waiting time in the queue before service : Wq = 0.02

Let’s code!

#Code504.py

from Code501 import Queueing
from math import factorial
#
fsum01 = lambda rho,s, n : 1 if n == 0 else fsum01(rho,s, n-1) + (s**n/factorial(n))*rho**n

# p0 :
def getP0(**p):

rho,s = p[’rho1’], p[’s’]
return 1/( fsum01(rho,s , s-1) + (s**s/factorial(s)) * rho**s * (1/(1 - rho)))

# Lq
def getLq(**p):

rho, s, p0 = p[’rho1’], p[’s’], p[’p0’]
return (s**s /factorial(s)) * p0 * rho**(s+1)/(1-rho)**2

#
laws ={ ’MMS’ : { ’p0’ : getP0, ’Lq’ : getLq }}

#=========================================================================
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# Tests
def getMMS(mu, lamda, S):

qs = Queueing(
model = ’MMS’,
A ={’D’:’Pois’ , ’params’: { ’lambda’: lamda}},
B ={’D’:’Expo’ , ’params’: { ’mu’: mu}},
C = S,
laws=laws)

qs.test()

if __name__ == "__main__": getMMS(5,10,4)
# ==================MMS =======================
# p0* :0.13043
# p1* :0.26087
# Lq :0.17
# L :2.17
# W :0.22
# Wq :0.02

5.4.5 M/M/s/K system

Q =

0 1 . . . s-1 s s+1 . . . K-1 K

0 −λ λ · · · 0 . . . 0 · · · 0 0

1 µ −(λ+ µ) · · · 0 . . . 0 · · · 0 0

2 0 2µ · · · 0 . . . 0 · · · 0 0
...

s-1 0 0 · · · −(λ+ (s− 1)µ) λ 0 · · · 0 0

s 0 0 · · · sµ −(λ+ sµ) λ · · · 0 0

s+1 0 0 · · · 0 sµ −(λ+ sµ) · · · 0 0
...

K-1 0 0 · · · 0 0 0 · · · −(λ+ sµ) λ

K 0 0 · · · 0 0 0 · · · sµ −sµ

When the number of servers s is greater than 1 (multi-servers) and the queue size is limited,
the model diagram is as follows:

0 1 2 3 S-1 S S+1 K-1 K

λ

µ

λ

2µ

λ

3µ

. . .
λ

sµ

λ

sµ

. . .
λ

sµ

Figure 5.6: M/M/s/K system

In this diagram, the exit rate from state i is iµ for i < s and sµ for i ≥ s. This comes from
the fact that the passage from state i to state i − 1 when the first of the busy servers ends its
service, (i.e the r.v T of the passage time from i to state i − 1) is the minimum of the r.vs of
the service time of all the i busy servers and which follow an exponential distribution of rate iµ.
From state s and on, all the servers are busy and therefore the transition rate is sµ.
The same reasoning as for the M/M/s system is followed to obtain the performance of this
queuing systems. The balance equations of this system are :

µπ1 − λπ0 = 0

λπi−1 +min(s, i+ 1)µπi+1 − (λ+min(s, i)µ)πi = 0 for 1 ≤ i ≤ K∑π
i=0 i = 1
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By following the same reasoning as the M/M/S system, we get :

πn =
smin(n,s)

min(n, s)!
ρnπ0 for 1 ≤ n ≤ K

We calculate π0 :
K∑

n=s+1

ρ(n−s)πs +

s∑
n=0

sn

n!
ρnπ0 = 1

πs

K∑
n=s

ρ(n−s) + π0

s−1∑
n=0

sn

n!
ρn = 1

We deduce that:
π0 =

1∑s−1
n=0

sn

n! ρ
n + ss

s! ρ
s 1−ρK−s+1

1−ρ

πK =
ss

s!
ρKπ0

Performances.

• Average number of clients waiting in the queue:
Lq= average number of clients in the station - the average number of clients being served.

Lq =

K∑
n=s

(n− s)πn =

K∑
n=s

(n− s)s
s

s!
ρnπ0

=
ss

s!
π0ρ

s
K∑
n=s

(n− s)ρn−s =
ss

s!
π0ρ

s+1
K−s∑
k=0

kρk−1 =
ss

s!
π0ρ

s+1

(
1− ρK−s+1

1− ρ

)′
So:

Lq =
ss

s!
π0ρ

s+1

(
1 + (K − s)ρK−s+1 − (K − s+ 1)ρK−s

(1− ρ)2

)
We can calculate the other performance indicators: L, W , Wq in the same way as for
M/M/1/K.

Example:
For a M/M/2/15 system with parameters λ = 5c/h and µ = 4c/h, we have :
- Average service time : 1/µ = 1/6 = 10 min per client
- Server utilization rate : ρ = λ/sµ = 4

2×5 = 1/5 = 0.2
- Probability of having 0 clients in the system : π0 = 0.23092
- Probability that the server is busy : 1− π0 = ρ = 0.76907
- Probability of having one client in the queue : π1 = 0.28865
- Probability of having 0 clients in the queue : π0 + π1 = 0.51957
- Average number of clients in the system : L = 2.04
- Average number of clients in the queue : Lq = 0.79
- Average waiting time in the system : W = 0.41
- Average waiting time in line queue service : Wq = 0.16
Particular case: ρ = 1

πn =
smin(n,s)

min(n, s)!
π0 for 1 ≤ n ≤ K

π0 =
1∑s

n=0
sn

n! + ss

s! (K − s)
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Let’s code!

#Code505.py

from Code501 import Queueing
from math import factorial

#
fsum = lambda rho,s, n : 1 if n == 0 else fsum(rho,s, n-1) + (s**n/factorial(n))*rho**n

# p0
def getP0(**p):

rho, s, k = p[’rho1’], p[’s’], p[’k’]
return 1/( fsum(rho,s , s-1) + ((s**s/factorial(s)) * rho**s * (1/(1 - rho))) * (1 - rho**(k-s
+1)))

# Lq
def getLq(**p):

rho, s, k, p0 = p[’rho1’], p[’s’], p[’k’], p[’p0’]
return (s**s /factorial(s)) * rho**(s+1) * p0 * ((1 + (k-s)*rho**(k-s+1) - (k-s+1)*rho**(k-s))
/(1 - rho)**2)

#
laws ={ ’MMSK’ : { ’p0’ : getP0, ’Lq’ : getLq}}

#=========================================================================
# Tests
def getMMSK(mu, lamda, S, K):

qs = Queueing(
model = ’MMSK’,
A ={’D’:’Pois’ , ’params’: { ’lambda’: lamda}},
B ={’D’:’Expo’ , ’params’: { ’mu’: mu}},
C = S,
K = K,
laws=laws)

qs.test()

if __name__ == "__main__": getMMSK(4, 5, 2, 15)

# ==================MMSK =======================
# p0* :0.23092
# p1* :0.28865
# Lq :0.79
# L :2.04
# W :0.41
# Wq :0.16
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The following table summarizes the previous results
λe = λ(1− πK) and ρe = (1− πK)ρ

M/M/1 M/M/S (S>1) M/M/1/K M/M/S/K (S>1)

π0 1− ρ
(
s−1∑
n=0

sn

n!
ρn +

ss

s!
ρs

1

1− ρ

)−1 {
1−ρ

1−ρK+1 ρ 6= 1

1
K+1 ρ = 1


(∑s−1

n=0
sn

n! ρ
n + ss

s! ρ
s 1−ρK−s+1

1−ρ

)−1

ρ 6= 1(∑s
n=0

sn

n! + ss

s! (K − s)
)−1

ρ = 1

πn
ρnπ0

smin(n,s)

min(n, s)!
ρnπ0 ρnπ0

smin(n,s)

min(n, s)!
ρnπ0

Lq π0
ρ2

(1− ρ)2

ss

s!
π0

ρs+1

(1− ρ)2


ρ

1−ρ (1− π0(KρK + 1)) ρ 6= 1

π0
K(K−1)

2 ρ = 1

 ss

s! π0
ρs+1

(1−ρ)2 (1 + (K − s)ρK−s+1 − (K − s+ 1)ρK−s) ρ 6= 1

ss

s! π0
(K−s+1)(K−s)

2 ρ = 1

L
Lq + ρ Lq + sρ Lq + ρe Lq + sρe

Wq Lq
λ

Lq
λ

Lq
λe

Lq
λe

W
Wq +

1

µ
Wq +

1

µ
Wq +

1

µ
Wq +

1

µ
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5.5 Exercises
Exercise 1. In a store with only one checkout, customers arrive (at checkout) following the
Poisson law. Give Kendal’s notation, if:
1. The time to scan the purchased items by each customer follows an exponential distribution,
the queue is infinite.
2. The service time is fixed, the queue has size n
3. The service time follows the uniform law, the queue has size 1.

Exercise 2. In a university department, there are 60 students. During lunch between noon and
2:00 p.m., each student uses the drink dispensers on average twice. The average service time
is 2.5 mns (The inter-arrival times for students and service follow an exponential distribution).
There are three distributors.
1.Calculate the utilization rate of the servers in this system and the average waiting time in the
queue.
2. A new distributor with the same characteristics is acquired. Calculate the new utilization rate
and the average waiting time in the queue.

Exercise 3. In a store, customers arrive at the checkout following the Poisson law of rate λ.
The average number of items in each customer’s cart is 10, and the service is exponential of
rate µ customers per minute. Let A be the average number of items entered per minute by the
cashier. Determine the minimum value of A so that the average waiting time does not exceed
T0.

Exercise 4. A telecommunication system has a transmission line of speed V = 1800bit/s. Each
message has a size of L bits which is an exponential r.v of average 900bits. The arrival of
messages is Poisson process. We are looking for the maximum arrival rate (messages/s) that
the system can support so that the waiting time for each message in the queue is less than 2s.

Exercise 5. In a post office, there is only one counter that can serve an average of 6 customers
per hour. Customers’ arrivals are Poisson process of rate 5 customers per hour.
1. Calculate the average number of customers and the average waiting time in the system.
2. The manager wants to add a second counter with an independent (separate) queue from that
of the first one. Recalculate the same performance in the new system.
3. Suppose the customers choose the first counter with probability p = 2/3. Find the average
number of customers and the average waiting time in this system.

Exercise 6. In a hairdressing salon, there is only one hairdresser who operates. Customers
arrive in a Poisson process with an average of 32 customers in 8 hours. The duration of a cut
is exponential of average equal to 10 minutes for each customer. Customers are served in the
order of their arrival and there is no limit on seatings in the hairdressing salon.

1. Calculate the probability that exactly 4 customers will arrive between 8 am and 9 am.

2. Calculate the probability that a customer will be served for more than 20 minutes.

3. Calculate πn the probability of having n customers in the salon at a given time (in the
steady state).

4. Calculate the average number of customers and the average waiting time in the salon.

Exercise 7. In a queuing system, customers arrive following a Poisson process of rate λ = 10
per hour and the service time is exponentially distributed of average 4 minutes if the number of
customers in the system is less than 3 otherwise the average service time is 2 minutes.
1. Draw the transition diagram of this system.
2. Find the steady-state probability.
3. Find the performances of this system.

Exercise 8. Consider a station with Poisson arrivals of rate λ. The service is exponential of
rate µ . If the number of customers in the station is less than sL, the service rate is lowered to
µL, and when it reaches sH (sH ≥ sL), the service rate is increased to µH .
1. Draw the transition diagram.
2. Find the expression of πn as a function of π0.
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Exercise 9. Consider a queuing system with a single server and a queue of infinite size. The
arrivals are Poissonian of rate λ and the service is exponential of rate kµ when the system is
in state k for k = 0, 1, 2, ... (the server increases the service rate according to the number of
customers in the queue).
Calculate the average number of customers and the average waiting time in this system.

Exercise 10. A service station has only one gasoline pump. Cars arrive following a Poisson
process of average 15 cars per hour. If the pump is busy, the customers may leave without
receiving service. When there are n cars in the station, the probability that a customer leaves
without service is n/3. The service time follows an exponential law of mean 4 minutes. X(t)
represents the number of cars in the station:

1. Build the transition graph of this queuing system.
2. Find the probabilities of the steady state.
3. Find the average number of customers in the station.
4. Find the average waiting time in the station.

5.6 Solutions
Solution 1.
1- M/M/1
2- M/D/1/n+1
3- M/G/1/2

Solution 2.
λ = 60c/h, µ = 24c/h
1− s = 3, ρ = 60/(3× 24) = 5/6 = 83.33%,Wq = 3, 6min
2− s = 4, ρ = 60/(4× 24) = 5/8 = 62.5%,Wq = 0.6min

Solution 3.
The cashier can serve A/10 clients per minutes (µ = A/10).
W = 1

µ−λ < T0 =⇒ µ > (T−1
0 + λ) =⇒ A > 10(T−1

0 + λ)

Solution 4.
In this system the transmission line represents the server. On average, it requires L/V seconds
to be transmitted, µ = V/L = 2messages/s. We want that Wq be less than 2s, so:

1
µ−λ −

1
µ < 2 which implies: λ < 8/5.

Solution 5.
1. λ = 5, µ = 6, the system is M/M/1, so ρ = 5

6 , L = ρ
1−ρ = 5, W = 1

µ−λ = 1.

2. In the new system, each customer chooses the queue with probability 1/2. So the arrival rate
for each server is λ/2. We calculate the performance of M/M/1 with this arrival rate, which
gives:
λ = 5/2, µ = 6, the system is M/M/1, so ρ = 5

12 :
L = 2× ρ

1−ρ = 10/7.
W = 1

2 ×
1

µ−λ + 1
2 ×

1
µ−λ = 2/7.

3. λ1 = 10/3, λ2 = 5/3, so: ρ1 = 5
9 and ρ2 = 5/18

L1 = ρ1
1−ρ1 = 5/4 and L2 = ρ2

1−ρ2 = 5/13; L = L1 + L2 = 1.63

W1 = 1
µ−λ1

= 3/8 and W2 = 1
µ−λ2

= 3/13; W = 2/3×W1 + 1/3×W2 = 0.32

Solution 6.
1- The station is M/M/1, λ = 4 and µ = 6, so ρ = 2

3 .

N(t) is the number of customers arriving during a time interval t. P (N(t) = k) = e−λt (λt)k

k!

P (N(1) = 4) = e−4 44

4! = 0.195.

2- Let Ts be the service time : P (Ts > t) = e−µt

P (Ts >
1
3 ) = s−2 = 0.135 .
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3- πn = ρn(1− ρ) = 1
3 ( 2

3 )n.

4- L = ρ
1−ρ = 2 clients, W = 1

µ−λ = 1
2 hour=30 mns.

Solution 7.
λ = 10, µ1 = 15, µ2 = 30
1- 2. The balance equations :

0 1 2 3 4 n n+1

10

15

10

15

10

30

10

30

. . .
10

30

. . .

Figure 5.7: Diagram of exercise 7

µ1π1 = λπ0

λπ0 + µ1π2 = (λ+ µ1)π1

λπ1 + µ2π3 = (λ+ µ1)π2

λπn−2 + µ2πn = (λ+ µ2)πn−1, ∀n > 3

So:

π1 =
λ

µ1
π0, πn = (

λ

µ2
)n−2(

λ

µ1
)2π0, ∀n > 1

We have:
∑∞
i=0 πi = 1

π0 +
λ

µ1
π0 +

∞∑
n=2

(
λ

µ2
)n−2(

λ

µ1
)2π0 = 1

π0 =
1

1 + λ
µ1

+ ( λµ1
)2( 1

1− λ
µ2

)
=

3

7

So: π1 = 2
7 , π2 = 4

21 and πn = 4
7 ( 1

3 )n−1 for n > 2

3. L = π1 + 2π2 + 4
7

∑∞
n=3 n( 1

3 )n−1 = 2
7 + 8

21 + 7
4 ( 1

(1− 1
3 )2
− 5

3 ) = 1

Lq =
∑∞
n=1 (n− 1)πn =

∑∞
n=1 nπn −

∑∞
n=1 πn = L− (1− π0) = 3

7

W = L
λ = 1

10 ; Wq =
Lq
λ = 3

70

Solution 8.

0 1 L-1 L L+1 H-1 H H+1

λ

µL

. . .
λ

µL

λ

µ

. . .
λ

µ

λ

µH

. . .

Figure 5.8: Diagram of exercise 8

λπn = µLπn+1 if n < sL

λπn = µπn+1 if sL ≤ n < sH

λπn = µHπn+1 if n ≥ sH

πn =


( λ
µL

)nπ0 if n < sL

(λµ )n−sL+1( λ
µL

)sL−1π0 if sL ≤ n < sH

( λ
µH

)n−sH+1(λµ )sH−sL( λ
µL

)sL−1π0 if n ≥ sH
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Solution 9.

0 1 2 3 S-1 s S+1

λ

µ

λ

2µ

λ

3µ

. . .
λ

sµ

λ

(s+1)µ

. . .

Figure 5.9: Diagram of exercise 9

The equations system in the stationary state is as follows: πππQ = 0 and πππ1 = 1
−λπ0 + µπ1 = 0

λπk−1 − (λ+ kµ)πk + (k + 1)µπk+1 = 0, ∀n > 0∑∞
i=0 πi = 1

From this system of equations we have the following relation which can be verified by induction.

πi =
ρi

i!
π0 such that ρ =

λ

µ

From
∑∞
i=0 πi = 1 and under the condition that ρ < 1, we have:

π0 =
1

1 + ρ+ 1
2ρ

2 + ...+ 1
i!ρ

i + ...

So: π0 = e−ρ and πn = ρi

i! e
−ρ

We can notice that the expression of πn corresponds to the Poisson distribution of parameter ρ.
We can therefore deduce that:

L =

∞∑
i=0

iπi = ρ the Poisson distribution expectation.

W =
L

λ
=

1

µ

Solution 10.
The possible states set is S = {0, 1, 2, 3}, each state represents the number of clients in the
station. The transition rate from state i to state i+ 1 is equal to : λ× (1− i

3 )

10 2 3

15

15

10

15

5

15

Figure 5.10: Diagram of Exercise 10

2. In the steady state π ×Q = 0 and
∑3
i=0 πi = 1, this system of equations gives:

π = ( 9
26 ,

9
26 ,

3
13 ,

1
13 )

3. The average number of customers in the station: L =
∑
n∈S n× πn = 27

26
4. The average waiting time in the station. Since the arrival rate changes from state to state,
Little’s law must be applied using λe which is equal to the expectation of λi:
λe =

∑3
i=0 λiπi = 9.80

W = L
λe

= 0.1059
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Chapter 6

Random Variables Generation

6.1 Introduction
Random numbers generators are the basis of the simulation of any probability distribution.
Unlike manual methods (coins, dice, cards, ...), tables of random numbers and physical processes;
algorithmic generators produce pseudo-random numbers (because they come from deterministic
algorithms), but they have the advantage of being simple to produce on a computer. They allow
a very large number of experiments to be carried out in a very short time. They can repeat
the same sequence multiple times which is important in the context of debugging and programs
verification, comparing systems by simulation and reducing variance.

6.2 Generation of random numbers

Definition 1. [15]
The pseudo-random number generator (PRNG) is a structure (S, P0, f, U, g) such that:
- S : a finite set of states (states space) s0, s1, · · · , sn
- P0 : probability distribution on S to select the initial state s0 (seed)
- f : transition function f : S → S
- U : space of generated numbers (output) (often [0, 1])
- g : output function g : S → U

The elements of this structure make it possible to perform the steps of random numbers gener-
ation, which are :
1- Select s0 using P0, then generate the first random number u0 = g(s0)
2- At each step i ≥ 1, the transition function changes the state of the generator and then the
output function gives the random number associated with the new state.

si = f(si−1) & ui = g(si)

These two functions express the dynamics of this system. We can express the current state
according to the initial state s0:

si = f (n)(s0) & ui = (g ◦ f (n))(s0)

170
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Figure 6.1: Random number generator

The sequence u0, u1, · · · returned by g is the sequence of random numbers generated by
the RNG. Since S is finite and f is from S in S, then there exists p ∈ N and sk ∈ S so that
sk = f (p)(sk) i.e sk+p = sk. The smallest number p which satisfies this property is called the
period of the PRNG. From this state, the sequence becomes cyclic with cycle length p. This
number is upper bounded by the cardinality of S (p ≤ |S| its upper bound). A long time period
is better than a short one but it does not ensure the good quality of the generator.
Several methods of generating random numbers exist which are defined by the specification of
the elements of the RNG structure. They all start from the initial value s0: seed and calculate
the successive values sn recursively. The implementation of many generators is optimized for
efficiency on the target platform on which it is going to be run. Often, the size of the memory
word of this platform is considered to be an important factor in the choice of the parameters
and in making the calculation optimal and more efficient. In the rest of this section we will
present the most used RNGs.

6.2.1 Linear congruential generators
LCG(a,m) are used by most programming languages because of their simplicity and quickness.
They are defined on the set (Zm) (congruential generator CG) with m = |S| and they define f
as a linear function defined on Zm, g is the quotient of the result of f by m :

xn = f(xn−1) = (axn−1)[m] and un = g(xn) =
xn
m

a is the multiplier and m is the module. The value un is the generated pseudo random number.
It is considered to be the approximation of the value of the uniform random variable in [0,1].

6.2.2 Mixed congruential methods
MCM(a,c,m) is a congruential generator with f an affine function defined on Zm with m = |S|
and a, c ∈ Zm:

xn = f(xn−1) = (axn−1 + c)[m] and un = g(xn) =
xn
m

c is called the increment.

Examples :
1- MCM(a,c,m)=(128, 1, 235), xn = f(xn−1) = (axn−1 + c)[m] = (27xn−1 + 1)[235]
2- MCM(a,c,m)=(69069, 1327217885, 232), xn = (69069xn−1 + 1327217885)[232]
3- LCG(a,m)=(216, 231), xn = (216xn−1)[231]
4- LCG(a,m)=(75, 231 − 1), xn = (75xn−1)[231 − 1] period p = 231 − 2
5- MCM(a,c,m)=(25214903917, 11, 48), xn = (25214903917xn−1 + 11)[48]
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Theorem 7. Hull-Dobell Thoerem [22]
The generator MCM specified by (a, c,m) has the period m (complete period ) iff :
1- pgcd(c,m) = 1 (c and m are relatively prime)
2- ∀p ∈ P∗, p|m =⇒ p|(a− 1)
3- 4|m =⇒ 4|(a− 1)

P∗ is the set of prime numbers and x|y means that x is a divisor of y.
Let X be a uniform d.r.v on Zm to be simulated by a CG. Its expectation and variance are :

E[X] =
∑
k∈Zm

k
1

m
=
m− 1

2
and V[X] =

∑
k∈Zm

k2 1

m
− (m− 1)2

4
=
m2 − 1

12

Let U be a c.r.v such that :

U =
X

m
and E[U ] =

1

2
(1− 1

m
) and V[U ] =

1

12
(1− 1

m2
)

when m >>, U ∼ U[0, 1]
The choice of a, c is crucial for the quality of the RNG.

6.2.3 Multiple recursive generators
MRG is a recursive equation of order greater than 1 (the current term is a function of previous
terms).

xn = (a1xn−1 + a2xn−2 + ...+ akxn−k + c)[m]

for k > 1, generation time increases and improves the period and the random properties.
For some cases, the MRG can be simplified to the form :

xn = (arxn−r + akxn−k)[m] such that r < k

Examples :

RNG1 = MRG(k=3, a=143580, b=-810728, m1 = 232 − 209)
Xn = (143580Xn−2 − 810728Xn−3)[(232 − 209)]

RNG2 = MRG(k=3, a=527612, b=-1370589, m2 = 232 − 22853)
Yn = (527612Yn−1 − 1370589Yn−3)[(232 − 22853)]

Let’s code!

# Code601.py

from functools import partial

# number of generated values
N=200

# plot the random number points in a grid
def plotRNG(x,y, title):

import matplotlib.pyplot as plt
fig, axs = plt.subplots(1, 2, constrained_layout=True, figsize=(10,5))
axs[0].scatter(x, y)
axs[1].plot(range(N-1),x)
fig.suptitle(title, fontsize=16)

# Congruential Generator
# conGen is a Python generator that yields a random number each time next() is called
def congGen(rng_function, seed, m, **params):

x_n = seed
while True:

yield x_n[0]
s = rng_function(x_n, **params) % m
x_n = x_n[1:]; x_n.append(s)
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# a_1 x_n-1 + a_2 x_n-2 + .... + a_k x_n-k + c
def sumRNG(x, **p):

s = 0
for i in range(p[’k’]): s += p[’a’ + str(i)] * x[i]
return s + p[’c’]

# partial congruential generator
pcg = partial(congGen, lambda x, **p : sumRNG(x,**p))

# test RNG
def test(smas):

for sma in smas:
seed,m , abc = sma[0], sma[1], sma[2]
cgi = pcg(seed, m, **abc); rs = [ next(cgi) for _ in range(N)]
plotRNG(rs[:-1],rs[1:], sma[3])

# Random number generators
test([

[[1], 2**10, {’k’:1,’a0’:99, ’c’:0}, ’Congruentiel Lineaire’],
[[1], 2**10, {’k’:1,’a0’:99, ’c’:1}, ’Congruentiel Mixte’],
[[1,2,3], 2**10, {’k’:3,’a0’:99, ’a1’:2, ’a2’:3, ’c’:1}, ’Congruentiel Recursif’],

[[1], 2**10, {’k’:1,’a0’:95, ’c’:0}, ’Congruentiel Lineaire’],
[[1], 2**10, {’k’:1,’a0’:95, ’c’:1}, ’Congruentiel Mixte’],
[[1,2,3], 2**10, {’k’:3,’a0’:95, ’a1’:2, ’a2’:3, ’c’:1}, ’Congruentiel Recursif’]
])

Figure 6.2: linear congruential generator. left a=99, and right a=95

Figure 6.3: Mixed congruential generator. left a=99, and right a=95

Figure 6.4: Recursive congruential generator. left a=99, and right a=95

The numbers generated by LCGs sometimes create a uniform structure called a lattice (which has
the appearance of parallel lines, planes or hyper-planes) when the sequence of pairs (xn, xn+1) is
plotted. It has been shown that the farther the planes are, the poorer the generator quality [8].
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It can be noted that for this example, when the parameter a = 95, the recursive congruential
generator gives a sequence of more apparent randomness than the other two generators. Also,
for the three generators, the sequences generated with a value of a = 99 are more random than
those generated with 95. The spectral test compares the distances between the planes of the
lattice structure, the larger they are, the worse the generator is [5].

6.2.4 Mersene Twister RNG (MT)
Mersene Twister RNG (MT) [16] is a well designed and powerful RNG characterized by its long
period (219937). It is a feedback shift register with twisting feature (TFSR). It has w bits as
a word length and Z2w−1 as output set. Its algorithm is based on recurrence relation for the
seed initialization and for the state twisting. It consists of two steps, the first one tries to loop
through the state and twist it recursively (state bit reflection), and the second generates the
random number by tempering the current output. The Mersenne Twister algorithm manipulates
a matrix of linear recurrence relations over the finite binary field (F2,⊕,⊗) (⊕ is xor, ⊗ is
multiplication, over Z2) where each number is represented as a sequence of bits (bw−1 · · · b1b0)
and it could be written as a polynomial in this field

∑w−1
0 bi2

i. Its parameters :
- w: word size (number of bits)
- n: recurrence degree
- m: an offset used in the recurrence relation defining the series x, 1 ≤ m < n
- r: the number of bits of the lower bitmask, 0 ≤ r ≤ w − 1
- a: the rational normal form twist matrix
- b, c: tempering bitmasks
- s, t: tempering bit shifts
- u, d, l: additional Mersenne Twister tempering bit shifts/masks

In order to make computation and test easy these parameters are selected in such a way that
2nw−r − 1 is a Mersenne prime. Twisting recurrence relation:

xi+n = xi+m ⊕ (

(concat of r−LSB&(w−r)−MSB)︷ ︸︸ ︷
msb(xi, w − r) | lsb(xi+1, r))A

such that LSB(respc MSB) are the r least(respc w− r most) significant bits of the current word
xi and A is a matrix called twisting transformation matrix, defined as :

A =

 0 Iw−1

aw aw−1 . . . a1


The multiplication by the matrix A is the relational normal form matrix, it is simplified by the
following relation :

xA = (x >> 1)⊕ si(x0 = 1, a, 0w)

Tempering function φg:

φg(z, t,m) = z ⊕ ((z � t)&m)

φl(z, t,m) = z ⊕ ((z � t)&m)

y = φ(x) = φg(φl(φl(φg(xi, u, d), s, b), t, c), l, 1w)

where t and m are shift-number and bit-masks respectively, “&” is a bit-wise-and operation,
and � is the shift operator. y = φ(x) will be the output (random number) of the algorithm in
Z2w−1, in order to get a uniform random number in [0, 1], we choose g as the function

u =
φ(x)

2w − 1

There are two variants of this algorithm based on the platform of the implementation 32bits
variant called MT19937 and 64bits called MT19937-64. Their parameters are respectively :
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Implementation MT19937-32bits MT19937-64bits

(w, n, m, r) (32, 624, 397, 31) (64, 312, 156, 31)

(l,a) (18, 9908B0DF16) (43, B5026F5AA96619E916)

(u, d) (11, FFFFFFFF16) (29, 555555555555555516)

(s, b) (7, 9D2C568016) (17, 71D67FFFEDA6000016)

(t, c) (15, EFC6000016) (37, FFF7EEE00000000016)

f 1812433253 6364136223846793005

Given a specific seed, we start initializing the state of the algorithm (an array of n elements
in Z2w−1) using the following recurrence relation starting with x0 = seed :

xi = (f ∗ (xi−1 ⊕ xi−1 >> (w − 2))) + i)

Algorithm 1 Mersene Twister Generator
1: Input: seed
2: i, (xi)i:0..n−1 = 0, initialize(seed)
3: while True:
4: y = (xi ∧ u) ∨ (x(i+1)[n] ∧ l)
5: xi = (x(i+m)[n] ⊕ (y >> 1)⊕ si(LSN(y) = 0, 0, a)
6: yield tempering(xi)
7: i = (i+ 1)[n]
8:
9: function initialize(s)

10: z0 = s
11: for i ∈ {1..n− 1} : zi = (f ∗ (zi−1 ⊕ zi−1 >> (w − 2))) + i)
12: return (zi)i:0..n−1

13:
14: function tempering(x)
15: z = x⊕ (x >> q)
16: z = z ⊕ ((z << s) ∧ b))
17: z = z ⊕ ((z << t) ∧ c))
18: return z ⊕ (z >> p)

Let’s code!
The following code gives the Python implementation of the MT19937 variant.
# Code601_1.py

# algo MT19937
def algo_MT19937(seed=0):

# coefficients for MT19937
(w, n, m, r) = (32, 624, 397, 31)
a = 0x9908B0DF
(u, d) = (11, 0xFFFFFFFF)
(s, b) = ( 7, 0x9D2C5680)
(t, c) = (15, 0xEFC60000)
(l, f) = (18, 1812433253)
(lower_mask, upper_mask)= (0xFFFFFFFF, 0x00000000)

# The state of the generator array of n elements
MT = [0 for i in range(n)]
index = n+1

# initialize the generator from a seed
def initialize_mt(seed):

MT[0] = seed
for i in range(1, n):

MT[i] = (f * (MT[i-1] ^ (MT[i-1] >> (w-2))) + i) & 0xffffffff

# Generate a random number
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def generate_number():
# do a twist on every n numbers
nonlocal index
if index >= n:

for i in range(0, n):
x = (MT[i] & upper_mask) + (MT[(i + 1) % n] & lower_mask)
xA = x >> 1 if (x % 2) == 0 else (x >> 1) ^ a
MT[i] = MT[(i + m) % n] ^ xA

index = 0

# Extract a tempered value based on MT[index]
y = MT[index]
y = y ^ ((y >> u) & d)
y = y ^ ((y << s) & b)
y = y ^ ((y << t) & c)
y = y ^ (y >> l)

index += 1
return y & 0xffffffff

# Generator core
initialize_mt(seed)
while True:

yield generate_number()

# generate 10 random numbers
if __name__ == ’__main__’:

g_MT= algo_MT19937()
for _ in range(10): print(next(g_MT))

# =====================================================================
2357136044
2546248239
3071714933
3626093760
3729171009
3684848379
3480577985
2632805477
679261451
3685339089

6.2.5 Combined RNG
A combined RNG is made up of several RNGs composed by the application of an operation which
combines the different results of the LCGs. Addition, xor or any other operation can be used for
this combination. This process makes it possible to improve the quality of these generators by
creating an equivalent generator with long periods and possibly with better statistical properties.

6.2.5.1 Sum/Subtraction

This technique consists in summing the generated results by the CGs based on the following
two propositions:

Proposition 1. If (Wi)1≤i≤n is a collection of independent d.r.v, such that W1 is uniform
over Zd, then the r.v of the sum of this collection in Zd is uniform over this set.

W1 ∼ U(Zd) =⇒
n∑
1

Wi ∼ U(Zd)

Proposition 2. If (Li)1≤i≤n is a family of CG such as Lj with period pj and transition
function sj,i = fj(sj,i−1) and the starting seed is s0 = (s1,0, s2,0, · · · , sn,0) and p is the
period of the sequence si = (s1,i, s2,i, · · · , sn,i) generated by this family then

p = LCM(p1, p2, · · · , pn)

The LCM is the least common multiple for two integers.
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6.2.5.2 Wichmann-Hill

It consists in generating two or more uniform real numbers Uj,i =
Xj,i
mj

on [0, 1] using the CGs
and taking the decimal part of the sum of Uj,i.

Vn = h(
X1,n

m1
+
X2,n

m2
+ · · ·+ Xk,n

mk
)

Such that h(x) = x− bxc is the function that gives the decimal part of a real number.
The Wichmann-Hill generator

L1 = LCG(171, 30629) output X n = L1(Xn−1)
L2 = LCG(172, 30307) output Y n = L2(Yn−1)
L3 = LCG(170, 30323) output Z n = L3(Zn−1)

Un = h(
Xn

m1
+
Yn
m2

+
Zn
m3

)

These three generators L1, L2 and L3 have the maximum period (mi − 1) and the respective
periods are 30268, 30306 and 30322. The period of the combined generator is the smallest
common multiple (LCM) of these three periods 6953607871644 [4].

6.2.6 Quality criteria
A good random number generator should:

1- have a very long period (which must be proven mathematically) to avoid looping quickly
when used,

2- be efficient in terms of execution and memory usage,
3- the generated sequences must be reproducible,
4- and obviously the most important criterion of random number generators is the random-

ness of the generated sequences. In other words, the generated sequence must be uniform r.v s
over (0,1), independent and identically distributed.
The numbers obtained from the algorithmic generators present in most programming languages
are r.v’s which follow the uniform distribution, either in the interval [0, 1] or in [0,Max] such
that Max is the maximum limit given by the programmer. In the next section, we’ll see how to
turn those uniform r.v’s into r.v’s of other distributions.

6.3 Statistical tests of random number generators
The field of statistical tests of RNGs remains an active field of research, and to this day, several
tests have been proposed, among these we will see the frequency test for uniformity and the
autocorrelation test for independence. The uniformity and independence are the most tested
properties for RNGs. The tests that we are going to see are based on hypothesis tests known in
statistics. The idea is to have two hypotheses:
1. H0: the null hypothesis, in the case of uniformity for example, this hypothesis states that
the RNG is uniformly distributed.
2. H1: the alternative hypothesis which states that the RNG is not uniformly distributed.
The result decides whether the test rejects H0 or fails to reject it (we speak of failure of rejection
instead of acceptance because to accept a hypothesis we must test an infinite number of cases.
A failure of the rejection means that no evidence of non-compliance was detected).
Two types of errors must also be defined:
• Type I error: consists of rejecting H0 when it is true.
• Type II error: consists of not rejecting H0 when it is false.
The result of the test is always established with a significance level α which is the probability
of rejecting H0 while it is true (standard error I) P(rejecting H0|H0 is true). We are looking
for a small probability, but reducing α increases the probability of type II error, so a balance
between the two is necessary.
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6.3.1 Frequency test
Two frequency tests exist: the Kolmogorov-Smirnov test and the Chi-square test.

6.3.1.1 Kolmogorov-Smirnov (K-S) test

This test is used to decide whether a sequence follows a specific (theoretical) distribution.
Consider a sequence of N ordered data (from smallest to largest): Y1, Y2, ..., Yn. The empirical
cumulative distribution function is defined by: En(Yi) = n(i)/N such that n(i) is the number of
values less than or equal to Yi. The n(i) values are also ordered from the smallest to the largest.
The K-S test is based on the maximum distance between the theoretical distribution and the
empirical distribution. We define the hypotheses:
H0: the data follows a specific distribution
H1: the data does not follow the specific distribution.
Consider the statistic:

DKS = max
i=1..N

|F (Yi)− En(Yi)|

F is the cumulative function of the theoretical distribution to be tested which must be contin-
uous and completely specified (all its parameters must be known).
The value Dα is determined from the K-S statistics table (see appendix C) for the signification
level α and N . If DKS > Dα, the null hypothesis H0 is rejected otherwise there is no evidence
to reject it.

Example 1. We want to know (with α = 0.05) if the below serie follows a Normal distribution:

4, 5, 5, 1, 1, 3, 2, 2, 4, 10, 7, 5, 5, 4, 8, 9, 7, 6

The method consists of sorting the values in ascending order, then centering and reducing them,
calculating the statistic DKS described above and finally looking for the value in the K-S table
(appendix KS-table C) corresponding to N and α to decide whether to reject the hypothesis or not.

DKS = 0.148 < D18,0.05 = 0.30936, so H0 is not rejected.

Let’s code!

#Code602.py

from scipy import stats
from scipy.stats import ksone

# stats.kstest: returns the calculeted KS statistic
# ksone.ppf: returns the KS table value correspondent to alpha and n
def testKS(data,alpha,F,p):

n = len(data)
DKS = stats.kstest(data, lambda x: F(x,**p))[0]; print(’DKS :’, DKS)
DA = ksone.ppf(1-alpha/2, n); print(’Dalpha :’, DA)
return(DKS<DA)
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# Test, loc is the sequence average and scale is its standard deviation
x = [4,5,5,1,1,3,2,2,4,10,7,5,5,4,8,9,7,6]
alpha = 0.05
print(’H0 : ’,testKS(x, alpha, stats.norm.cdf, {’loc’:4.88,’scale’:2.60}))

#______________________________ Output ______________________________________
# DKS : 0.14826048100509914
# Dalpha : 0.30936031179258944
# H0 : True

6.3.1.2 Chi-square test (χ2)

This test is based on the same idea as the K-S test except that the statistic used is the expectation
of the difference between the theoretical frequency and the observed frequency.
Consider a sample of n independent observations assumed to belong to some distribution. This
observation sequence can be grouped into k intervals or classes. The number of observations
within the ith class is called the "observed frequency Oi". The number of theoretical observations
within this class is called "theoretical frequency Ei" (Expected).

χ2
c =

n∑
i=1

(Oi − Ei)2

Ei

This value is called the calculated Chi-square statistic. For accuracy, the number of frequencies
observed in each class must be greater than 5.

Example 2. Consider a sequence of 100 random numbers between 0 and 9. The tested hypothesis
are:

H0: the generated sequence follows the uniform distribution in the interval [0,9]
H1: the generated sequence does not follow the uniform distribution in the interval [0,9]

The probability of occurrence of each integer is 1/10. The expected theoretical frequency is
100 ∗ 1/10, equals 10. The following results are obtained:

Since χ2
c = 8 is lower than that of the table χ2

9,0.05 = 16.9, we do not reject the hypothesis H0

(that the generated sequence follows a uniform distribution in the interval [0,9]).
Pseudo-random number generators can also produce highly random sequences, empirical tests in
this case give very low χ2

c values, or even close to 0. It is therefore recommended to perform a
left test: H0 is rejected if χ2

c < χ2
(k−1,1−α). In this example, χ2

c = 8.0 is not lower than that of
the table χ2

(9,0.95) = 3.32, so we do not reject H0.

Let’s code!

#Code 603.py

from scipy.stats import chisquare
from scipy.stats import chi2

# chisquare: returns the calculeted Chi2 statistic
# chi2.ppf: returns the chi2 table value correspondent to alpha and df
def testChi2(data_obs, data_expected=None, alpha=0.05):

df = len(data_obs) - 1
Dc2 = chisquare(data_obs, data_expected) if data_expected else chisquare(data_obs)
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print(’DChi2 :’, Dc2[0])
DA = chi2.ppf(1-alpha, df); print(’Dalpha :’, DA)
return(Dc2[0]<DA)

# Test, loc is the sequence average and scale is its standard deviation
x = [8,12,13,14,9,6,8,7,14,9]
alpha = 0.05
print(’H0 : ’,testChi2(x))

#______________________________ Output ______________________________________
# DChi2 : 8.0
# Dalpha : 16.918977604620448
# H0 : True

6.3.2 Auto-correlation test
We consider a sequence Y1, Y2, ...Yn of random numbers. The serial auto-correlation coefficient
(Pearson correlation coefficient) is defined by:

C =
n(
∑n
i=1 YiYi+1 + YnY1)− (

∑n
i=1 Yi)

2

n(
∑n
i=1 Yi

2)− (
∑n
i=1 Yi)

2

It measures the dependence between two successive numbers. It always takes a value between
−1 and +1. A value close to 0 means that the random numbers are independent, while a value
close to −1 or +1 indicates a linear dependence between the numbers and therefore the absence
of the randomness property.

Let’s code!

# Code604.py

# Pearson correlation coefficient
def autocorrelation(data):

n=len(data)
nextData = [data[i]*data[(i+1)%n] for i in range(n)]
squareData = [data[i]**2 for i in range(n)]
autocorrel = (n*sum(nextData) - sum(data)**2 ) / ( n*sum(squareData) - sum(data)**2)
return autocorrel

data1 = [96, 929, 192, 833, 288, 737, 384, 641, 480, 545, 576, 449, 672, 353,
768, 257, 864, 161, 960,65, 32, 993, 128, 897, 224, 801, 320, 705, 416,
609, 512, 513, 608, 417, 704, 321, 800, 225,896, 129, 992, 33, 64, 961,
160, 865, 256, 769, 352, 673, 448, 577, 544, 481, 640, 385, 736,289, 832,
193, 928, 97, 0, 1, 96, 929, 192, 833, 288, 737, 384, 641, 480, 545, 576,
449, 672,353, 768, 257, 864, 161, 960, 65, 32, 993, 128, 897, 224, 801,
320, 705, 416, 609, 512, 513,608, 417, 704, 321, 800]

print(’Data1 : ’, autocorrelation(data1))

data2 = [100, 685, 232, 441, 652, 37, 592, 241, 308, 797, 56, 425, 92, 917, 672,
993, 4, 397, 392, 921,44, 261, 240, 209, 212, 509, 216, 905, 508, 117,
320, 961, 932, 109, 552, 377, 460, 485, 912,177, 116, 221, 376, 361,
924, 341, 992, 929, 836, 845, 712, 857, 876, 709, 560, 145, 20, 957,
536, 841, 316, 565, 640, 897, 740, 557, 872, 313, 268, 933, 208, 113,
948, 669, 696, 297, 732,789, 288, 865, 644, 269, 8, 793, 684, 133, 880,
81, 852, 381, 856, 777, 124, 1013, 960, 833,548, 1005, 168, 249, 76]

print(’Data2 : ’, autocorrelation(data2))

#______________________________ Output ______________________________________
# Data1 : -0.6533458794659233
# Data2 : -0.023560372803231835

6.4 Random variables simulation

6.4.1 Simulating discrete r.v
6.4.1.1 Reverse transformation method

Suppose we want to generate the value of a discrete r.v X having the probability function:

P (X = xj) = pj j = 0, 1, .. and
∑
j

pj = 1
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We need to generate a random number u uniformly distributed over [0, 1] then we define:

X =



x0 if u < p0

x1 if p0 ≤ u < p0 + p1

...

xj if
j−1∑
i=0

pi ≤ u <
j∑
i=0

pi

...

And since for 0 < a < b < 1, p(a ≤ u < b) = b− a, we have

P (X = xj) = P (

j−1∑
i=0

pi ≤ u <
j∑
i=0

pi) = pj

So, X has the required distribution.
Algorithmically this process results in:

Algorithm 2 Reverse transformation method for d.r.v
1: Input: xi, pi i ≥ 0
2: u = RNG()
3: for i = 0 to N do
4: if (u <

∑i
k=0 pk) then

5: return xk

Where RNG() is the generator used to get a value from uniform distribution.
If the values of xi, i ≥ 0 are sorted in ascending order x0 < x1 < x2 <..... and if F is

the cumulative distribution function of X, then F (xi) =
i∑

k=0

pk, and X will be equal to xi if

F (xi−1) ≤ u < F (xi).

In other words, after generating a random number u, we determine the value of X by finding
the interval [F (xi−1), F (xi)] where u is situated (by finding the inverse of F (u)).
The required time to generate a discrete r.v using this method is proportional to the number
of intervals that one must seek. For this reason, it is sometimes better to consider the possible
values xi of X in descending order of pi

Example 3.
Simulate a d.r.v X such that: p1 = 0.20, p2 = 0.15, p3 = 0.25, p4 = 0.40
pj = P (X = j).
method 1.

1. Generate u
2. If u<0.20 then, X=1.
3. If u<0.35 then, X=2.
4. If u<0.60 then, X=3.
5. otherwise X=4.

A more efficient method is to consider the probabilities in descending order:
1. Generate u
2. If u<0.40 then, X=4.
3. If u<0.65 then, X=3.
4. IF u<0.85 then, X=1.
5. Otherwise X=2.
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Let’s code!

#Code 605.py

import random
from itertools import accumulate
from operator import itemgetter
#
def transformation_inverse(prob,indices):

u = random.random()
for i in range(len(prob)):

if(u<prob[i]): return indices[i]
return indices[-1]

# returns the frequencies in N generated rv
def generate(prob, N=100000):

indices, prob = zip(*sorted(enumerate(prob), key=itemgetter(1),reverse=True))
prob = list(accumulate(prob))
freq = {k:0 for k in range(len(prob))}
for _ in range(N):

gen = transformation_inverse(prob,indices)
freq[gen] += 1

return {k:v/N for k,v in freq.items()}

# test
prob = [0.2,0.15,0.25,0.4]
print(generate(prob))

#______________________________ Output ______________________________________
#{1: 0.19671, 2: 0.1498, 3: 0.25018, 4: 0.40331}

In case the r.v follows a discrete uniform distribution, it is not necessary to search for the
appropriate interval where the random number is found. Indeed, if we want to generate the
value of X which takes values of 1..n:

P (X = j) = 1/n j = 1, ...n

Using the previous results, we can accomplish this by generating u and considering:

X = j if
j − 1

n
≤ u < j

n
=⇒ x = j if (j − 1) ≤ n× u < j

In other words X = b(n× u) + 1c such that bxc is the integer part of x.

6.4.1.2 Acceptance-rejection method

Suppose we have an efficient method to simulate a r.v Y having the probability function
{qj , j ≥ 0}, we can use it as a base to simulate a r.v X having the distribution {pj , j ≥ 0}
by simulating Y , then accept the obtained value with a probability proportional to py

qy
. This

method is also called the rejection method.

Let c be a constant such that: pj
qj
≤ c, ∀j. The rejection technique is as follows:

Algorithm 3 Reject method for d.r.v
1: Input: c, pj , qj ∀j
2: while True do
3: y ← simulate the r.v Y having the probability function qj
4: generate a random number u
5: if u < py

cqy
then

6: return y

Example 4. Consider the r.v X which takes values in {1, 2, 3, ..., 10} with the respective prob-
abilities: 0.11, 0.12, 0.09, 0.08, 0.12, 0.10, 0.09, 0.09,0.10, 0.10.
It is preferable to use the rejection method with q the discrete uniform density; i.e: qj = 1/10
∀j = 1, .., 10. For this choice of qj, we can take C = Max

pj
qj

= 1.2, and the simulation algorithm
is as follows:
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(1) generate a random number u1, set, y = Int(10u1) + 1
(2) generate a second random number u2

(3) If u2 <
py

0.12 then X = y; otherwise go to (1).
The value 0.12 comes from the fact that cqj = 1.2/10. This method takes on average of only 1.2
iterations to have the generated value of X.

Let’s code!

#Code606.py

import random

# acceptance-rejection method
def acceptationRejet(pj, qj, genY, **p):

c = max([pj[k]/qj[k] for k in pj.keys()])
while (True):

y = genY(qj, **p)
u = random.random()
if(u < pj[y]/(qj[y]*c)): return y

return -1
#
def generate(pj,qj,N=100000):

freq = {k:0 for k in pj.keys()}
for _ in range(N):

gen = acceptationRejet(pj, qj, lambda qi : int(random.random()*10)+1 , **{})
freq[gen] += 1

return {k:v/N for k,v in freq.items()}

# test
pj = {1:0.11,2:0.12,3:0.09,4:0.08,5:0.12,6:0.10,7:0.09,8:0.09,9:0.05,10:0.15}
qj = {1:0.1 ,2:0.1,3:0.1,4:0.1,5:0.1,6:0.1,7:0.1,8:0.1,9:0.1,10:0.1}
print(generate(pj,qj))

#______________________________ Output ______________________________________
#{1: 0.10696, 2: 0.1202, 3: 0.09187, 4: 0.07928, 5: 0.11926, 6: 0.09927,
# 7: 0.09127, 8: 0.09055, 9: 0.0494, 10: 0.15194}

6.4.2 Simulating continuous r.v
6.4.2.1 Reverse transformation method

Consider a continuous r.v having the distribution function F . The inverse transformation
method is based on the following proposition:

Proposition 3.
Let U be a uniform r.v on [0, 1]. For any continuous distribution function F , the r.v X
defined as X = F−1(U) has distribution F . (F−1(U) is defined to be the value of x such
that F (x) = U).

Proof. Consider FX the distribution function of X = F−1(U) (increasing and monotonic a < b
implies that F (a) < F (b)) so,

X ≤ x =⇒ F−1(U) ≤ x =⇒ F (F−1(U)) ≤ F (x) =⇒ U ≤ F (x)

then,
FX(x) = P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = FU (F (x)) = F (x)

Since F is the distribution function then F (x) is a function of x increasing and monotonous,
thus a ≤ b is equivalent to F (a) ≤ F (b) so FX(x) = P (F (F−1(U)) ≤ F (x))

FX(x) = P (U ≤ F (x)) because F (F−1(U)) = U
FX(x) = F (x) because U is uniform on [0, 1]

This proposition shows that we can generate a r.v X of a distribution function F by generating
a random number u and set X = F−1(u)
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Algorithm 4 Reverse transformation method for c.r.v
1: Input: FX
2: generate a random number u ∈ [0, 1]
3: return F−1

X (u)

Example 5.
Use this method to generate a r.v with distribution function F (x) = xn, 0 < x < 1.

If we consider x = F−1(u) then, u = F (x) = xn and equivalently, x = u1/n

We can therefore generate such r.v X by simulating a uniform v.a U then set X = U1/n

Example 6. If X is an exponential r.v of rate 1, then its distribution function is given by:
F (x) = 1− e−x
If x = F−1(u) then u = F (x) = 1− e−x
1− u = e−x =⇒ x = −log(1− u)
We can therefore, simulate an exponential r.v of parameter 1 by simulating a uniform r.v U and
set:

X = −log(1− U)

We can replace 1− U by U because both are uniform r.v on [0,1].
An exponential r.v X of rate λ is simulated by simulating a uniform r.v U and set:

X = − 1

λ
log(U)

Let’s code!

#Code607.py

from sympy import symbols, solveset,S
from sympy.functions import exp
import random
import matplotlib.pyplot as plt
import numpy as np

#
def plot_fc(x,y):

plt.plot(x,y)
plt.show()

# to find the inverse of f we solve the equation y =f(x) using solveset of sympy
def inverse(f):

expr1 = solveset(f-y,x, domain=S.Reals)
return(expr1.args[1].args[0])

#
def generate_inverse(f,l,N=1000):

fc = inverse(f).subs(lamda,l)
p = np.sort([random.random() for _ in range(N)])
r = [ fc.subs(y,u) for u in p]
return {’x’:r, ’y’:p}

# symbols
x ,y ,lamda = symbols(’x ,y ,lamda’)
if __name__== ’__main__’:

f = 1-exp(-lamda*x)
plot_fc(**generate_inverse(f,1))



CHAPTER 6. RANDOM VARIABLES GENERATION 185

Figure 6.5: generated CDF

6.4.2.2 Acceptance-rejection method

The acceptance-rejection method is exactly the same as in the case of discrete r.v s, with the
only difference that density functions replace mass functions.
Let X be a r.v of density fX , Y another r.v of density fY and C a constant. We define h = fX

fY
.

Consider the r.v U of uniform r.v on [0,1].

fY (x|U <
h(Y )

C
) = h(x)fY (x) = fX(x)

Indeed:
fY (x|U ≤ h(Y )

C ) =
P (U≤h(Y )

C |Y=x)fY (x)

P (U≤h(Y )
C )

P (U ≤ h(Y )
C |Y = x) = P (U ≤ h(x)

C ) = h(x)
C

P (U ≤ h(Y )
C ) =

∫
R P (U ≤ h(Y )

C |Y = x)fY (x)dx =
∫

R
h(x)
C fY (x)dx = 1

C

∫
R fX(x)dx = 1

C So:

fY (x|U ≤ h(Y )

C
) = fX(x)

We set C = max{h(x)} and we apply the following algorithm :

Algorithm 5 Rejection method for c.r.v
1: Input: C, fX , fY
2: while True do
3: generate y of probability function fY
4: generate a random number u
5: if u < fX(y)

CfY (y) then
6: return y

The average number of iterations required for this method to simulate the r.v X equals to C.
Since the stopping condition of the algorithm u < fX(y)

CfY (y) depends on X and Y , its iterations
number N is a r.v.
The algorithm is similar to a Bernoulli experiment such that a false condition is considered as
a failure and a true condition as a success which ends the algorithm, N therefore follows the
Geometric distribution of parameter 1

C .
Indeed:

P (U ≤ fX(Y )

CfY (Y )
) =

∫ +∞

−∞
P (U ≤ fX(y)

CfY (y)
)fY (y)dy =

∫ +∞

−∞

fX(y)

C
dy =

1

C

So:
E(N) = C

Example 7.
Let’s use this method to generate a r.v having the density function:

f(x) =
3

4
x2(2− x) such that 0 < x < 2
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We consider the rejection method with:

g(x) = x/2, 0 < x < 2

To determine the value of the constant C such that f(x)
g(x) ≤ C, we must determine the maximum

value of

h(x) =
f(x)

g(x)
=

3

2
x(2− x)

(
f(x)

g(x)
)′ = 3− 3x = 0 =⇒ x = 1

f(x)

g(x)
≤ h(1) =

3

2
= c

The average required number of iterations is c = 3
2 .

Let’s code!

#Code609.py

from sympy import diff, simplify
import random
import numpy as np
from sympy.solvers import solve
from Code607 import inverse, plot_fc, x, y

#
def reject(h, g, c):

nb_iter = 0
while True:

v = inverse(g).subs(y,random.random())
u = random.random()
nb_iter += 1
if u <= h.subs(x,v)/c: return v,nb_iter

#
def generate_reject(f,g,h,c,N=1000):

res = [reject(h,g,c) for _ in range(N)]
freq = sum([v[1] for v in res])/N ;print("average iterations number",freq)
r = np.sort([v[0] for v in res])
p = [ f.subs(x,u) for u in r]
return {’x’:r, ’y’:p}

#symbols
f = (3/4)*x**2*(2-x)
g = (1/2)*x
h = f/g
hp = simplify(diff(h)); print("derivative:",hp)
sols = solve(hp); print("solutions:",sols)
c = h.subs(x,sols[0]); print("C:",c)

plot_fc(**generate_reject(f,g,h,c))

#______________________________ Output ______________________________________
# derivative: 3.0 - 3.0*x
# solutions: [1.00000000000000]
# C: 1.50000000000000
# average iterations number 1.53

Figure 6.6: Generated PDF
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6.5 Exercises
Exercise 1.
Give the first thirty numbers generated by the following RNGs (seed=1) :
1- xn = (5xn−1)[7]
2- xn = (6xn−1 + 4)[11]
3- xn = (xn−1 + xn−2)[9]
4- xn = (2xn−1 + 3xn−2)[9]

Exercise 2.
Consider the following sequence of random numbers:

92, 550, 238, 40, 110, 520, 615, 493, 369, 507

1.Using K-S test with a threshold α = 0.05 check if this sequence follows an exponential distri-
bution with parameter λ equal to 1

e such that e is the empirical mean of the sample.
2. By calculating the Pearson correlation coefficient, check if this sequence is random.

Exercise 3.
Consider the linear congruential generator of parameters a, m and seed = x0.
1. Show that xn = anx0[m].
2. What is the period of this generator? (use Euler’s theorem: if m and a are positive integers
prime to each other then the following relation holds: aφ(m) = 1[m] such that φ is Euler’s
function which gives the number of relatively prime numbers with m).
3. What is the value of this period if m is prime? give its value for m = 11.
4. Show that the period of the RNG is m

4 if m = 2b, ∀ b > 2.

Exercise 4.
Consider the mixed congruential generator of parameters a,m and c.
1. Show that xn+1 = (an+1x0 + ca

n−1
a−1 )[m].

2. What is the period of this generator?

Exercise 5.
Two dice are rolled 150 times, the observed frequencies of the sum of the obtained values are
given in the following table:

i 2 3 4 5 6 7 8 9 10 11 12

Oi 5 6 10 16 18 32 20 13 16 9 5

Test the following hypothesis by applying the χ2 test (α = 0.05):
H0: the two dice are fair.
H1: the two dice are biased.

Exercise 6.
Let X be a c.r.v having the density function fX(x) = 3x2 for 0 < x < 1. Using the inverse
transformation method, write the algorithm that simulates this r.v.

Exercise 7.
Consider the c.r.v. X of density f(x) = 30x2(1− x)2 for 0 ≤ x ≤ 1
and Y of density g(y) = 1 for 0 ≤ y ≤ 1.
Write the algorithm that simulates the r.v X by the rejection method.

Exercise 8.
1. Simulate the generation of the values of a r.v X that follows the Bin(5, 0.2) distribution.
2. Write the corresponding Python code.
3. Plot pX , FX and F−1

X .

Exercise 9.
Consider the r.v X that follows the Geo(p) distribution. Show that X = b ln(U)

ln(1−p)c+ 1



CHAPTER 6. RANDOM VARIABLES GENERATION 188

6.6 Solutions
Solution 1.
1. [1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6, 2, 3, 1, 5, 1, 5, 4, 6, 2, 3, 1, 5, 4, 6], period=6.
2. [1, 10, 9, 3, 0, 4, 6, 7, 2, 5, 1, 10, 9, 3, 0, 4, 6, 7, 2, 5, 1, 10, 9, 3, 0, 4, 6, 7, 2, 5], period=10.
3. [1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 0, 1, 1, 2, 3, 5, 8], period= 24.
3. [1, 1, 5, 8, 7, 1, 8, 8, 4, 1, 2, 8, 1, 1, 5, 8, 7, 1, 8, 8, 4, 1, 2, 8, 1, 1, 5, 8, 7, 1], period= 12.

Solution 2.
λ = 1/353.4
F (x) = 1− e−λx

1- Since D10,0.05 > DKS then the sequence follows the exponential distribution.
2- The auto-correlation C = 0.1014, so the sequence is random.

Solution 3.
1. xn+1 = axn[m] = a2xn−1[m] = a3xn−2[m] = ... = an+1x0[m] (by induction).
2. Let p be the period of this linear congruential generator.
xn+p = an+px0[m] = xn =⇒ ap = 1[m] so p = φ(m) according to Euler’s theorem.
3. Since m is prime then, p = φ(m) = m − 1, φ(11) = 10. When m is prime, the period is
maximal.
4. xn = axn−1[2b] = anx0[2b]
We show by induction on b that 2b/4 is the period:
The induction hypothesis : a

2b

4 = a2b−2

= 1[2b]

We show that : a
2b+1

4 = a2b−1

= 1[2b+1]

(a2b−2

)2 = 12[2b] = (k2b + 1)2 = k222b + 2k2b + 1

a2b−1

= 2k2b(k2b−1 + 1) + 1 = 1[2b+1]

Solution 4.
1.

xn+1 = (axn + c)[m]

= (a2xn−1 + ac+ c)[m]

= (a3xn−2 + a2c+ ac+ c)[m]

= ...

= (an+1x0 + c

n∑
i=0

ai)[m]

= (an+1x0 + c
an − 1

a− 1
)[m]

2. Let p be the period of xn+1 = an+1x0[m]

xn+p = (an+px0 + ca
n+p−1−1
a−1 )[m] = xn

p is also the period of the mixed congruential generator.
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Solution 5.

i 2 3 4 5 6 7 8 9 10 11 12

Oi 5 6 10 16 18 32 20 13 16 9 5

pi 1
36

1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

Ei 4 8 12 16 20 24 20 16 12 8 4
(Oi−Ei)2

Ei
1
4

1
2

1
3 0 1

5
8
3 0 9

16
4
3

1
8

1
4

χ2
c =

∑n
i=1

(Oi−Ei)2
Ei

= 6.22083

The value χ2
10,0.05 = 3.94 < χ2

c, so the hypothese H0 is rejected.

Solution 6.
fX(x) = 3x2, so FX(x) = x3 for 0 < x < 1
F−1
X (x) = x1/3, therefore, the simulation algorithm is as follows:

1. generate a random number u ∈ [0, 1].
2. return F−1

X (u).

Solution 7.
Let h(x) = f(x)

g(x) and C = max{h(x)}.
C = 15

8 . The simulation algorithm is as follows:
1. generate y of function g.
2. generate a random number u ∈ [0, 1].

3. if u < h(u)
c then return y else goto step 1.

Solution 8.
pX(k) = Cknp

k(1− p)n−k

X = F−1
X (U) = min{x|FX(x) < U}

X 0 1 2 3 4 5

FX(x) 0.32768 0.73728 0.94208 0.99328 0.99968 1.000

1. generate u
2. If u < 0.32768 then, X=0.
3. If u < 0.73728 then, X=1.
4. If u < 0.94208 then, X=2.
5. If u < 0.99328 then, X=3.
5. If u < 0.99968 then, X=4.
6. Otherwise X=5.

Figure 6.7: Binomial simulation
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Solution 9.
FX(k − 1) < U ≤ FX(k)∑k−1

n=0 (1− p)k−2p < U ≤
∑k
n=0 (1− p)k−1p

p 1−(1−p)k−1

1−(1−p) < U ≤ p 1−(1−p)k
1−(1−p)

1− (1− p)k−1 < U ≤ 1− (1− p)k

(1− p)k ≤ 1− U < (1− p)k−1

kln(1− p) ≤ ln(1− U) < (k − 1)ln(1− p)

k − 1 < ln(1−U)
ln(1−p) ≤ k

So X = b ln(1−U)
ln(1−p) c+ 1



Chapter 7

Simulation in Python

7.1 Introduction
In Python different simulation packages exist, they allow to simulate predefined random ex-
periments such as the coin toss or dice roll, the drawing of cards, balls from the urns as well
as user-defined experiments. They also allow to define and simulate random variables with
their distributions, random processes and the graphical representation of their outcomes. Simpy
package for instance offers the possibility of simulating systems by modeling their components
in the form of processes and shared resources. In what follows we present the APIs of these
libraries as well as codes to show their use in simulation.

7.2 Simulation tools

7.2.1 Python
Python is an interpreted programming language that promotes structured imperative, functional
and object-oriented programming (multi-paradigm) and it is dynamic typing, open source and
multi-platform. It is appreciated for the simplicity of its syntax. In 1991, the first version of
Python language was released by its creator Guido van Rossum. Currently it is maintained
by Python Software Foundation under its own license (PSF License). Python community has
adopted a code writing style convention that is standardized as PEP8. From 2009 and in order
to eliminate the weaknesses of the 2.x versions of the language, version 3 was introduced without
keeping compatibility with its previous one. The most recent version 3.11.0a5 was released in
February 2022. The most used IDEs for Python development are VS code, Pycharm, Jupyter,
Spyder, PyDev and Eclipse.

In addition to the IDE, and in order to boost the productivity of developers, Python in-
tegrates two utilities that facilitate the development process which are Pip and venv (virtual
environment). Pip is a package manager that allows you to manage the dependencies of soft-
ware projects. As Python is used in many systems as a scripting language for administration
tasks, when using it for development it is best to isolate it from the rest of the system, a vir-
tual environment is created to ensure this isolation by creating a controlled environment (with
dependencies specific to the current project) using venv module.

7.2.1.1 Python Standard Library

Python Standard Library (PSL: Python Standard Library) gathers a collection of packages and
modules that implement the core of the language and the basic libraries (Integrated elements
(Functions, types, Exceptions), String, Math, Functional, IO, Parallelism, Internet Networks
, XML JSON, I18, ..). In what follows we will expose the modules that serve as support for
statistics and simulation packages.
Random module
random generates the pseudo-random numbers by implementing the generators of different dis-
tributions and according to the desired types (integer, sequence or real). Python uses the
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https://www.python.org/
https://www.python.org/psf-landing/
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/random.html
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Mersenne Twister algorithm as a base generator whose period is 219937 − 1 and 53 bits of pre-
cision for real numbers. random() function plays the role of a PRNG of the c.r.v X of uniform
distribution [0.0, 1.0[, it is used by the other functions for the generation of other distributions.

Pyhthon 3.9/Lib/random.py:class Random(_random.Random)

1-Core
init(x=None) Random constructor, x is the seed.
seed(a=None, version=2) Initializes the random number generator.
get/setState([value]) Returns an object capturing the internal state of the generator/modifying it.
random() Returns a random floating point number in the range [0,1[.

2-Discrete generators
randbytes(n) Generate n random bytes.
randrange([b,] s[, p]) Returns a randomly selected element from range (b:start, s:stop, p:step).
randint(a,b) Returns an integer N such that a ≤ N ≤ b. Alias for randrange (a,b+1).
getrandbits(k) Returns a non-negative integer of k random bits
choice(seq) Returns an element of sequence seq.
choices(pop, weights=Nn, *,
cum_weights=Nn, k=1)

Returns a list of k items chosen from population p with discount.

sample(pop, k,*,
counts=Nn)

Returns a list of k unique items in the population without replacement.

shuffle(x, random=Nn) Shuffle the sequence x without creating a new instance.

3- Continuous generators
distribution(parameters) which are: betavariate(alpha, beta); expovariate(lambd); gammavari-

ate(alpha, beta); gauss(mu, sigma); lognormvariate(mu, sigma); normal-
variate(mu, sigma); paretovariate(alpha); triangular(low=0.0, high=1.0,
mode=None); uniform(a,b); vonmisesvariate(mu, kappa)

Itertools Module
Itertools contains functions to create iterators for efficient loops. Some are widely used in the
field of probability, statistics and combinatorial calculus:

Pyhthon3.9/Lib/itertools.py

1- Finite iterators
accumulate(p [,func]) returns p0, p0 + p1, p0 + p1 + p2, · · · (φ([1,2,3])=1 3 6).
chain(p, q,..) returns p0, p1, · · · , pl, q0, q1, · · · , (φ(ABC, DE)=ABCDE
compress(d,s) d:data, s:selectors, return (di if si) i≥0, (φ(ABCD,[1,0,1,0])=AC
dropwhile(pred, seq) returns seq[n], seq[n+1], starting when pred fails, (φ(lambda x: x<5,

[1,4,6,4,1])=6 4 1
filterfalse(pred, seq) returns elements of seq for which pred(elem) is false, (φ(lambda x: x % 2,

range(10))=0 2 4 6 8
groupby(iteraable [,key]) returns sub-iterators grouped by the value of key(v)
islice(seq, [b,] s [,p]) returns elements of seq [b:start, s:stop, p:], (φ(ABCDEF,2,Nn)=C D E F
startmap(func, seq) returns func(*seq [0]), func(*seq[1]),...,(φ(pow,[(2,5),(3,2)])=32 9
takewhile(pre, seq) returns seq[0], seq[1], until pred fails, (φ(lambda x: x <5, [1,4,6,4])=1 4
tee(it, n) returns it1, it2, · · · , itn separates an iterator into n
zip_longuest(p, q,..) returns (pi, qi) i≥0, (φ(ABCD, xy, fillvalue = −) = AxByC −D−

2- Infinite iterators
hline count(start [,step]) start, start + step, start + 2 * step, ( phi (10) = 10, 11, 12, 13, 14 ...)
cycle(p) p0, p1, · · · plast, p0, p1 · · · ,(φ(′ABCD′) = ABCDABCD...)

repeat(e [,n]) e, e, e, · · · to ∞ or up to n times, (φ(8, 3) = 888)

3- Combinatorial iterators
hline product(p,
q,...[repeat=1])

Cartesian product,(φ(AB, repeat = 2) = AA,AB,BA,BB

permutations(p[, r]) Arrangements of n elements among r, without replacement. φ(AB, 2) =
AB,BA

combinations(p,r) tuples of length r, unordered, without repetition. φ(AB, 2) = AB

combinations_with _replace-
ment(p, r)

n-tuples of length r, ordered, with repetition. φ(AB, 2) = AA,AB,BB

https://numpy.org/
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7.2.1.2 Python’s Ecosystem

Numpy module
numpy is an open source library that allows to manipulate multidimensional structures (matrix,
vector) based on the ndarray structure. Version 1.22.0 was released in december 2021.

Numpy 1.20/Lib/core.py

1- Methods
all/any([x, o, k, w]) Returns True if all/at least one element equals True.
argmax/min([x, o]) Returns the indices of the maximum/minimum values on the given axis.
astype(t [, s, cast, subok, cp]) Returns a copy of the array converted to the specified type.
copy([order]) Returns a copy of the array.
cumprod/sum([x, t, o]) Returns the cumulative product/sum of the elements of the given axis.
diagonal([offset, x1, x2]) Returns the specified diagonals.
fill(value) Fill the array with a scalar.
flatten([order]) Returns a copy of the one-dimensional projected array.
max/min([x, o, k, init, w]) Returns the maximum/minimum of the given axis.
mean([x, t, o, k, w]) Returns the average of the array elements on the given axis.
nonzero () Returns the indices of nonzero elements.
prod/sum([x, t, o, k, init, w]) Returns the product/sum of the array elements on the given axis.
ravel([S]) Returns the flattened array.
repeat(repeats[, X]) Repeat the elements of an array.
reshape(shape [, S]) Resize an array.
resize(newshape [,refcheck]) Change the dimension and size of an array.
round([decimals, out]) Each item is rounded to the given number of decimals.
sort([X, kind, S]) Sort an array.
std/var([x, t, o, ddof, k, w]) Returns the standard deviation/variance of the elements of an array on the

given axis.
tolist() Turn an array into a nested list.
tostring([s]) A tobytes compatibility alias.
trace([offset, x1, x2, t, out]) Returns the sum of the diagonals of an array.
transpose(*axes) Returns a view of the array with the axes transposed.

2- Attributes
T: ndarray Transposed array. data: buffer Pointer to the start of the array.
dtype: dtype Data type of the elements. flags: dict Information on memory occupation.
flat: flatiter A 1-D iterator of the array. imag: ndarray Imaginary part of the array.
real: ndarray Real part of the array. size: int Size of the array.
itemsize: int Size of a single item in bytes. nbytes: int Size of the array in bytes.
ndim: int Number of array dimensions. shape: tuple Tuple of the array dimensions.

Numpy 1.16, Numpy.random

1- Sampling
rand(d0, d1,· · · , dn) Random values of the given form.
randn(d0, d1,· · · , dn) Generate a sample(s) of the standard normal distribution.
randint(lw [,hi, sz, dtp]) Generate random integers between lw (inclusive) and hi (exclusive).
random_integers(lw [, hi, sz]) Random integers of type np.int between low and high, inclusive.
random_sample([sz]) Return random floats in [0.0, 1.0[.
random([sz]) Return random floats in [0.0, 1.0[.
ranf([sz]) Return random floats in [0.0, 1.0[.
sample([sz]) Return random floats in [0.0, 1.0[.
choice(a [, sz, replace, p]) Generate a random sample of the given 1D array.
bytes(length) Returns random bytes.
shuffle(x) Modify a sequence by shuffling its contents.
permutation(x) Randomly permute a sequence.

3- Distributions
distribution(parameters) beta(a,b), binomial(n,p), chisquare(df), dirichlet(alpha), exponential() sc,

f(dfnum, dfden), gamma(sh) sc, geometric(p), gumbel() lc, sc, hypergeomet-
ric(ngood, nbad, nsample), laplace() lc sc, logistic() lc sc, lognormal([mean,
sigma]), multinomial(n, pvals), normal() lc sc, pareto(a), fish([lam]) triangu-
lar(left, mode, right), uniform([low, high])

https://numpy.org/
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All distribution functions take as optional parameters size, local and scale (denoted respectively
lc, sc, sz). This module also contains the functions of the generator (seed initialization ([s0])
and management of its state RandomState([s0]), get/set([state])).

Sympy module
sympy is a library designed for symbolic (formal) calculus. It is used in arithmetic, algebraic,
differential calculus as well as other fields such as quantum mechanics.
sympy.stats.

1- Methods
class Probability(prob, condition=None,
**kw)

The symbolic expression of the probability.

class Expectation(expr, condition = Nn, **
kw)

The symbolic expression of the expectation.

class Variance(arg, condition=Nn, **kw) Symbolic expression of the variance.
class Covariance (arg1, arg2, condition=Nn,
**kw)

Symbolic expression of the covariance.

JointRV(symbol, pdf, _set=Nn) Creates a joint r.v with each continuous component.
marginal_distribution(rv, *indices) Marginal distribution function of a joint r.v.
P(condition, given_condition=Nn, numsam-
ples=Nn, evaluate=True, **kw)

Probability that a condition is true knowing another condi-
tion.

E(expr, condition=None, numsamples=Nn,
evaluate=True, **kw)

The expectation of a random expression.

density (expr, condition=Nn, evaluate=True,
numsamples=Nn, **kw)

The density of a random expression knowing a second condi-
tion.

given (expr, condition=Nn, **kw) Conditions a random expression.
where (condition, given_condition=Nn,
**kw)

Returns the domain where a condition is true.

variance(X, condition=Nn, **kw) Variance of a random expression.
covariance(X, Y, condition=Nn, **kw) Covariance expression of two r.vs.
median(X, evaluate=True, **kw) Calculate the median of the probability distribution.
std(X, condition=Nn, **kw) Standard deviation of a random expression.
sample(expr, condition=Nn, size=(), library
=’scipy’, numsamples=1, seed=Nn, **kw)

A realization of the random expression.

correlation(X, Y, condition=Nn, ** kw) Correlation of two random expressions.

SciPy module
sciPy is a library for scientific computing based on numpy structures. Its modules are very
diverse including linear algebra, optimization, image and signal processing, ... The most recent
version is 1.8.0 released in February 2022. stats module contains a collection of statistical rou-
tines which can be classified according to its function into one of the following categories:

a- Generic functions :
- rv_continuous([momtype, a, b, xtol, . . . ]): A generic c.r.v.
- rv_discrete([a, b, name, badvalue, . . . ]): A generic d.r.v.
- rv_histogram(histogram, *args, **kwargs): Generate a distribution.

b- Continuous/discrete distributions
It contains almost all the usual distributions. These functions take the same form of param-

eter definition, the collection of positional parameters and those of named parameters. (*args,
**kwargs).
c- Multivariate distributions
d- Statistics and correlation functions.
e- Descriptive statistics.
f- Statistics tests

7.2.2 Symbulate
Symbulate is a framework for the simulation of probability models. It allows us to specify, run,
analyze and view the simulation results. The most important functions serve to:

Symbulate

https://www.sympy.org/
https://www.scipy.org/
https://docs.scipy.org/doc/scipy/reference/stats. html
https://dlsun.github.io/symbulate/index.html
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2- Distributions
discrete(parameters) Bernouli(p), Binomial(n,p), Hypergeometric(n,N0,N1), Geometric(p), NegativeBi-

nomial(), Pascal(r,p), Poisson(lam), DiscretUniform (a=0, b=1p)
continuous(parameters) Uniform(a=0.0, b=1.0]), Normal(mean=0.0, sd=1.0, var=None), Exponen-

tial(rate=1.0, scale=Nn), Gamma(shape, rate=1.0 , scale=Nn), Beta(a,b), Stu-
dentT(df), chisquare(df), F(dfN,dfD), Lognormal([mean,sigma]), Pareto(b=1.0,
scale=1.0), Triangular(left,mode,right),

mltivariate(parameters) MultivariateNormal([mean,cov]), MultiNormal([n,p])

3- Processes
Gaussian GaussianProcessProbabilitySpace(meanfunc, covfunc, indexset =

Reals());GaussianProcess(meanfunc, covfunc, indexset = Reals())

Brownian BrownianProcessProbabilitySpace(drift=0, scale=1), BrownianProcess(drift=0,
scale=1)

Poisson ProcessProbabilitySpace(rate), PoissonProcess(rate)
Markov MarckovChainProbabilitySpace(transiton_matrix, initial_dist,

state_labels=None), MarckovChain(transiton_matrix, initial_dist,
state_labels=None), ContinuousTimeMarckovChainProbabilityS-
pace(generator_matrix, initial_dist, state_labels = None), ContinuousTimeMarck-
ovChain(generator_matrix, initial_dist, state_labels = None),

1. Define probability spaces: This is possible by using BoxModel() and draw() which allows
to simulate a draw of the BoxModel or by writing functions specifying them. It is also
possible to create independent probability spaces by multiplying two probability spaces.

2. Define random variables on already defined sample spaces using the RV class. To define a
g function of a random variable X we can use X.apply(g) method. If g is a known math-
ematical function (log, exp, sin, ...), it can be called directly without using apply: g(X).
Other very useful functions exist like: mean() to calculate the expectation of the r.v sim-
ulations, sd() to calculate the standard deviation and standardize() for the normalization
of the r.v (expectation = 0 and variance = 1).

3. Use the most common probability models: whether it is discrete, continuous, joint distribu-
tions or even some random processes, Symbulate offers a rich and easy-to-use set of meth-
ods. Methods such as: DiscreteUniform(), Bernoulli(), Binomial(), Hypergeometric(),
Poisson(), Geometric() as well as other methods are available for discrete distributions;
and it is always possible to define your own discrete distribution using the BoxModel.
The same is possible for continuous distributions with the methods: Uniform(), Normal(),
LogNormal(), Exponential(), Gamma(),...
For both types of distributions, very useful methods can be used: pdf(x) returns the
value f(x) (density function), cdf(x) returns the cumulative function F(x), mean(), var(),
sd(),median() and quantile() returns respectively the values of the expectation, the vari-
ance, the standard deviation, the median and the quantiles.
On the other hand, MarkovChain(TransitionMatrix, InitialDistribution, states) method
allows to create a discrete MC and to effectively simulate it with sim(). The same is
possible for continuous MCs using ContinuousTimeMarkovChain(Q, InitialDistribution,
states), and the Poisson process of a given transition rate with PoissonProcess(rate = 2)
method.

Conditional probabilities are possible with Symbulate by using the sign "|" (given that)
and that can be applied to r.vs as well as events.
Another Symbulate tool that should not be overlooked is the plot() graphical tool which
allows us to visualize the simulation results in several possible forms.
When the number of simulations is small, we can visualize the individual obtained values
with the parameter type = "rug". By default plot() displays the outcomes with their
relative frequencies. We can also display the outcomes as a histogram or as a density
(continuous), scatter plot and other custom types.

4. Simulate: the same simulation tools can simulate sample spaces, random variables and
stochastic processes.
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The already mentioned draw() method makes it possible to simulate a single outcome of
a sample space; to simulate several ones, sim() method is used by specifying the desired
number of simulations. apply() method is used to apply a given function to each outcome
of the simulation. It is also possible to define a method written in Python and pass it as
a parameter to apply() method.
tabulate() method presents in a tabular form the outcomes of the simulation by counting
the number of appearances of each outcome. With the parameter normalize = True, the
number of occurrences is transformed into probability. To get a subset of simulations equal
to a particular outcome, the filter_eq () method can be used.

Let’s code!

#code701.py

from symbulate import BoxModel

# Die sampling
# this line could be replaced by :list(range(1, 6+1))
die = [1, 2, 3, 4, 5, 6]
roll = BoxModel(die)
print(roll.draw())

# draws 10 samples from [’A’, ’B’, ’C’, ’D’] with probabilities [0.22, 0.27, 0.41, 0.10]
print(’’.join(list(BoxModel([’A’, ’B’, ’C’, ’D’], probs=[0.22, 0.27, 0.41, 0.10], size=10).draw())

))

#______________________________ Output ______________________________________
# 2
# CACCCCBAAB

In several basic situations, the probability space can be defined by a BoxModel. draw() method
is used to simulate a BoxModel draw.
BoxModel options are:

box : a list of tickets used for the draw.
size: the number of tickets to be drawn from the box.
replace: True if the draw is made with replacement and False otherwise.
probs: ticket selection probabilities. By default they are equally likely.
order_matters: True if the order is important and False otherwise.

Another way to define the probability model is to define a function allowing to describe how the
draw should be done, then give this function as a parameter to the ProbabilitySpace() method
as described in the following example:

Let’s code!

#code702.py

from symbulate import BoxModel, ProbabilitySpace, Poisson, Exponential

#1 probabaility space with user defined function
def gender_hobbies_sim():

gender = BoxModel(["male", "female"], probs=[.2, .8]).draw()
if gender == "male":

hobbies = BoxModel(["science", "art", "sport"], probs=[.3, .3, .4]).draw()
else:

hobbies = BoxModel(["science", "art", "sport"], probs=[.2, .5, .3]).draw()
return gender, hobbies

P = ProbabilitySpace(gender_hobbies_sim)
print(P.draw())

#2 independants probability spaces
die6, die4 = list(range(1,7,1)), list((1,5,1))
lancers = BoxModel(die6)*BoxModel(die4)
print(lancers.draw())

#3 independants probability spaces
three = BoxModel([’P’,’F’])*Poisson(lam=3)*Exponential(rate=4)
print(three.draw())

#______________________________ Output ______________________________________
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#(’female’, ’art’)
#(5, 1)
#(F, 1, 0.029286540827854368)

7.2.2.1 Random variable Simulation

Let’s code!
The following example shows the definition of a r.v from a BoxModel, its simulation with sim()
method, specifying the number of simulations in parameters, as well as the tabular representation
of the outcome using the method tabulate().
#Code703.py

from symbulate import BoxModel, RV, Normal, exp

# 5 Bernoulli trials and successes number
P = BoxModel([0,1],size=5); X = RV(P,sum)
tab = (X>3).sim(10000).tabulate()
print("Tabulate without normalization: ",tab)
tab = (X>3).sim(10000).tabulate(normalize=True)
print("Tabulate with normalization: ",tab)
X.sim(10000).plot()

# function of rv
X = RV(Normal(mean=0, var=1)); Y = exp(X) # could be replaces with: X.apply(exp)
Y.sim(10000).plot()

#______________________________ Output ______________________________________
# Tabulate without normalization: {True: 1826, False: 8174}
# Tabulate awith normalization: {True: 0.1842, False: 0.8158}

The r.v X in this example can be considered as the number of tails obtained in 5 successive
tosses of a coin. Then 10,000 simulations are performed to simulate X > 0. We should note
here that the simulation is repeated as many times as necessary to obtain 10,000 results such as
X > 3 and not (as one might think) of 10,000 simulation we only keep those with X > 3. The
use of normalize = True in the method allows to have the results in the form of frequencies.
The graphic representation is also possible with the plot() method.

Figure 7.1: Simulation of Normal distribution (left) and Exponential distribution (right)
(code703.py)

Let’s code!

#Code704.py

from symbulate import RV, Normal, Exponential

X = RV(Exponential(rate=1/4))
simX = X.sim(10000)
print("Expected value:", simX.mean())
print("Variance:", simX.var())
print("Standard deviation:", simX.sd())

#Normalization
X = RV(Normal(mean=3,sd=2))
simX = X.sim(10000)
print("Before normalization. mean and sd:", round(simX.mean(),2), round(simX.sd(),2))
simX.plot()

z = simX.standardize()
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print("After normalization. mean and sd:", round(z.mean(),2), round(z.sd(),2))
z.plot()

#______________________________ Output ______________________________________
# Expected value: 3.9628993353781383
# Variance: 15.587130335771537
# Standard deviation: 3.9480539935228265
# Before normalization. mean and sd: 3.03 2.0
# After normalization. mean and sd: -0.0 1.0

In this example the mean, the variance and the standard deviation are calculated from the
outcomes of the simulation and not theoretically.
Normalization consists of modifying the r.v so that its expectation is 0 and its standard deviation
is 1. The modification consists in subtracting the expectation from each value and dividing it by
the standard deviation. With symbulate, this can be done by the standardize() method which
normalizes the values obtained by the simulation.

Figure 7.2: Normal distribution before vs after normalisation (code704.py)

7.2.3 Simpy
Simpy is a discrete event simulation Python framework based on processes. processes are cre-
ated by environments using generator functions (returning an iterator) and can model active
components like clients, vehicles or agents. Simpy also offers the concept of shared resources
allowing to model the interactions between processes; they represent congestion points where
processes must wait in a queue to use them. In Simpy, there is also the notion of events which
is used to process different types of events in the simulator. Exceptions are used to synchronize
the different processes.

7.2.3.1 Environments

Belonging to simpy.core package (the core of Simpy components), BaseEnvironment is the base
class which mainly allows us to manage simulation time, schedule events and process them.
Among the main methods:

simpy.core

1- API core
C: BaseEnvironment Base class for event processing environments.
C: BoundClass Allows classes to behave like methods.
C: Environment<BaseEnvironment> A runtime environment.
C: StopSimulation<Exception> Stops the simulation.
a: now The current time of the environment.
a: active_process The currently active process in the environment.
m: schedule(ev, priority=NORMAL,
delay=0)

Schedules an event with the given priority and delay.

m: step() Processes the next event.
m: run(until=Nn) Executes step() until the criterion is met.
m: peek() Returns the time of the next scheduled event.

https://gitlab.com/team-simpy/simpy


CHAPTER 7. SIMULATION IN PYTHON 199

7.2.3.2 Events

The main events are managed by simpy.events module. Event is the base class for all event
types:
Events

1- API events
C: Event(env) An event that can occur at a given point in time.
C: Timeout<Event>(env,
delay, value=Nn)

An event that is triggered after an elapsed time.

C: Initialize<Event>(env, p) Initialize a process p.
C: Interrupt<Event>(process,
cause)

Immediately schedule an interrupt.

C: Process<Event>(env, gen-
erator)

Process a source generator of an event.

C: ConditionValue(object) The result of a Condition.
C: Condition<Event>(env,
evaluate, evts)

An event that is raised after the function of the condition returns True.

C:
AllOf<Condition>(env,events)

The event that is launched if all the events in a list have been triggered.

C:
AnyOf<Condition>(env,events)

The event that is fired if at least one of the events in the list has been fired.

C: Interrupt<Exception> The exception thrown to the process when it is interrupted.
p: triggered() True if the event has been triggered and its function is about to be invoked.
p: processed() True if the event has been processed.
p: ok() True if the event was started successfully.
p: defused([value]) True if the exception of a failed event has been "defused".
p: target() The event the process is waiting for.
p: is_alive() True until the generator quits.
p: value() The value of the event if it is available.
m: trigger(event) Trigger the event with the given state.
m: succeed(value=Nn) Modify the value of the successful event.
m: fail(exception) Modify the value of the failed event.
m: cause() The cause of the interrupt.
m: interrupt(cause=Nn) Interrupt this process by returning a cause.
sm: all_events(ev, count) A function that returns "True" if all * events * have been started.
sm: any_events(evts, count) A function that returns "True" if at least one of the * events * has been

fired.

7.2.3.3 Shared resources

Three types of resources can be used to synchronize processes with Simpy in the simpy.resources
module using the following three classes:
1- resource: for resources that allow priorities and preemption.
2- container : for sharing of homogeneous resources (discrete or continuous).
3- store: to store an unlimited number of items. Allows selective queries on specific objects.
Resources
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1- API resources
C:
Put/Get<Event>(resource)

Generic event for a request to drop/pull an entity into/from the resource buffer.

m: cancel(self) Cancel the put/get request.
C: BaseResource<object>(e,
cap)

Abstract base class of the shared resource.

Put/GetQueue = list Type of the put/get queue.
p: capacity(self) The maximum capacity of the resource.
put = BoundClass(Put) Request to put an object in the resource and return a Put event raised once the

request is satisfied.
get = BoundClass(Get) Request to remove an object from the resource and return a Get event triggered

when the request is satisfied.
C: Preempted(by, us-
age_since, resource)

Cause a preemption, events.Interrupt contains information about the preemption.

C: Re-
quest<base.Put>(exc_type,
value, traceback)

Request the use of the resource. The event is raised after access is granted.

C: Re-
lease<base.Get>(resource,
request)

Release the use of the resource granted on request. This event is triggered immedi-
ately.

C: PriorityRe-
quest<Request>(rsc, prior-
ity=0, preempt=True)

Request the use of the resource with a given priority.

C: Sort-
edQueue(maxlen=None)

Queue to sort events by their PriorityRequest.key attribute.

m: append(self, item) Sort the item in the queue. Raise a RuntimeError if the queue is full.
C: Resource<BaseResource>
(env, capacity=1)

Resource with capacity that can be requested by processes.

p: def count(self) Number of users currently using the resource. returns len (self.users).
request = Bound-
Class(Request)

Request a usage location.

release = Bound-
Class(Release)

Release a usage slot.

C: PriorityRe-
source<Resource>(env, ca-
pacity=1)

A resource supporting priority requests.

PutQueue = SortedQueue Type of the drop queue.
GetQueue = list Type of the withdrawal queue.
request = Bound-
Class(PriorityRequest)

Request a location with the given priority.

release = Bound-
Class(Release)

Release a slot.

C: PreemptiveRe-
source<PriorityResource>

A Resource with priority and preemptive.

Containers

1- Containers API
C: ContainerPut/Get<base.Put/Get>(c, a) Ask to put/get quantity a in container c.
C: Container<base.BaseResource>(env, ca-
pacity=float(’inf’), init=0)

Limited capacity resource containing a continuous or dis-
crete entity.

p: level() The current quantity available.
a: put/get = BoundClass<ContainerPut> Ask to put/get a quantity in the container.

Stores
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1- Stores APIs
C: StorePut<base.Put>(store, item) Ask to put an ’i’ object in store ’s’.
C: StoreGet<base.Get>(resource, fil-
ter=lambda item:True)

Ask to remove an object from the "store".

C: FilterStoreGet<StoreGet> Ask to remove an object corresponding to the filter in the
"store".

C: Store<base.BaseResource>(env, capac-
ity=float(’inf’))

Resource of a given capacity to store objects.

C: PriorityItem(namedtuple(’PriorityItem’,
’priority item’))

Associate a priority to an object.

C: PriorityStore<Store> Resource of a given capacity to store objects in order of
priority.

C: FilterStore<Store> Resource of a given capacity to store objects admitting re-
quests with filter.

a: put/get = BoundClass<StorePut/Get> Ask to put/remove an object in/from the "store".
a: get = BoundClass<FilterStoreGet> Ask to remove an object from the "store" corresponding to

the given filter.

7.2.3.4 Exceptions

The module simpy.exceptions contains the base class SimPyException for all specific exceptions.
There is Interrupt (cause) which returns the exception thrown to the process if it is interrupted
for the given cause and StopProcess (value) thrown to stop a Simpy process.

7.3 Simulation of stochastic processes

7.3.1 Simulation of Poisson process
The Poisson process N(t) is considered as an arrival sequence whose inter-arrival time (IAT) is
an exponential r.v of parameter λ (we know how to generate it). So to generate the number of
arrivals up to time T, we proceed with the generation of IATs until their sum exceeds T. The
number of generated IATs represents the value generated for N(T ).

Let’s code!

# Code705.py

from scipy.stats import expon
import matplotlib.pyplot as plt

def generatePoissonSP(lamda=1, T=1):
t, N, tim = expon.rvs(scale=1/lamda), 0, []
while (t<T):

tim.append(t)
N, t = N+1, t+expon.rvs(scale=1/lamda)

return N,tim

def plotPP(lamda):
n,tim = generatePoissonSP(lamda,20)
return plt.step(tim,range(n))

lamdas = [0.25,0.5,1,2]
plt.legend([plotPP(l)[0] for l in lamdas],["lambda="+str(l) for l in lamdas])
plt.xlabel(’Time’); plt.ylabel(’arrivals number’)
plt.show()
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Figure 7.3: Simulation of Poisson process (code705.py)

7.3.2 Simulation of discrete time Markov chain
As shown in the following code, the simulation of a DMTD consists in, repeatedly, generating
the following state out of the current state using the inverse transformation method having its
distribution as a parameter.

Let’s code!

# Code 706.py

from itertools import accumulate
from random import random
import sys;sys.path.append(’../chap4’)
from CMTD import CMTD

def simulateCM(P,S,steps,cs):
CM = CMTD(P,S)
ls = []
indices = range(len(CM.S))
for i in range(steps):

ls.append(CM.S[cs])
prob = list(accumulate(P[cs]))
cs=transformation_inverse(prob,indices)

return (CM, "".join(ls))

def transformation_inverse(prob,indices):
u = random()
for i in range(len(prob)):

if(u<prob[i]): return indices[i]
return indices[-1]

def compareToSteadyState(P,S,n,s0):
res = simulateCM(P,S,n,s0)
ana_p = res[0].steady_prob(); print("Analytical prob : ", ana_p)
emp_p = [res[1].count(s)/n for s in S]; print("Empirical prob : ", emp_p)

# Test
n = 10000
print(’Ergodic’)
P = [[1/3, 1/3, 1/3],

[3/5, 0.0, 2/5],
[3/4, 1/8, 1/8]]

S = [’R’,’N’,’S’]

compareToSteadyState(P,S,n,1)
n = 50
print("CMTD1: ",simulateCM(P,S,n,1)[1])

print(’Not ergodic’)
P = [[1.0, 0.0, 0.0],

[3/5, 0.0, 2/5],
[3/4, 1/8, 1/8]]

print("CMTD2: ",simulateCM(P,S,n,1)[1])

#______________________________ Output ______________________________________
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# Ergodic
# Analytical prob : [0.50769231 0.20512821 0.28717949]
# Empirical prob : [0.5065, 0.2072, 0.2863]
# CMTD1: NRNRSRSRNSRRRNRSRNRNRSRRSNRRNRSRRSRNSNRSSRRNRSRNRR
# Not ergodic
# CMTD2: NRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Given the non-deterministic nature of the code, it is obvious that the obtained result can change
from one execution to another.

7.3.3 Simulation of continuous time Markov chain
In this section, we will see how to simulate a CTMC. As input, we need the transition matrix
P of the embedded MC and the value λi of each state of the CTMC. The simulation will run
for a time Tmax. The proposed Python code is as follows:

Let’s code!

# Code 707.py

from itertools import accumulate
from random import random
import math
import sys;sys.path.append(’../chap4’)
from CMTC import CMTC

expo = lambda lamda : (-1/lamda)*math.log(random())

def transformation_inverse(prob,indices):
U = random()
for i in range(len(prob)):

if(U < prob[i]): return indices[i]
return indices[-1]

def simulateCM(P,lamdas,S,T_max,cs):
CM = CMTC(P,lamdas,S)
indices = range(len(CM.S))
ls, tc = [], 0
while tc < T_max:

tps = expo(lamdas[cs])
ls.append((CM.S[cs], round(tps,2)))
tc = tc + tps
prob = list(accumulate(P[cs]))
cs = transformation_inverse(prob,indices)

return (CM , ls)

def compareToSteadyState(res,T):
ana_p = [ round(p,2) for p in res[0].steady_prob()]
print("Analytical prob : ", ana_p)
emp_p = [ round(sum(map(lambda r: r[1], filter(lambda r: r[0]==s, res[1])))/T,2) for s in S]
print("Empirical prob : ", emp_p)

S = [’R’,’N’,’S’]
P = [[0.0, 2/3, 1/3],

[3/5, 0.0, 2/5],
[3/4, 1/4, 0.0]]

lamdas = [4, 5, 6]
T_max = 500

res = simulateCM(P,lamdas, S,T_max,1)
compareToSteadyState(res, T_max)
print("CMTC : ",simulateCM(P,lamdas,S,5,1)[1])

#______________________________ Output ______________________________________
# Analytical prob : [0.47, 0.32, 0.21]
# Empirical prob : [0.46, 0.33, 0.22]
# CMTC : [(’N’, 0.05), (’R’, 0.0), (’S’, 0.03),..., (’S’, 0.09), (’R’, 0.19)]

7.3.4 Simulation of queuing systems
7.3.4.1 Simulation of station M/M/1

The simulation of a M/ M/1 station takes as input the average arrival rate λ (tau1), the average
service rate µ (tau2) and the maximum simulation time (maxT); after this time, only departures
of customers already received in the station are processed and no arrivals are possible. We use
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a clock variable to follow the evolution of time. We also need two variables: t1 that represents
the time of the next arrival in the system and t2 the time of the next departure. Variable n
calculates the number of customers in the station, it is incremented at each arrival event and
decremented at each departure. The other variables are used for the calculation of simulation
statistics, namely the average response time of customers in the station and the average response
time.

Let’s code!

# Code708.py

import random
import math
import matplotlib.pyplot as plt
import sys;sys.path.append(’../chap5’)
from Code502 import getMM1

expo = lambda lmbd : (-1/lmbd)*math.log(random.random())

#
def simul(lamda,mu,maxT):

clock, n, nb = 0, 0, {} # n is customers number in the system
t_arv, t_dep = expo(lamda), maxT # next arrival/departure/max time
arv, dep = [], [] # Arrival/Departure times
n_arv, n_dep = 0, 0 # Arrivals/Departures number

#
def departure():

nonlocal n_dep, dep, n, t_dep, mu, maxT, clock

n_dep += 1; dep.append(t_dep)
if(n >= 0): nb[n] = (nb[n] if n in nb else 0) + t_dep - clock
n, clock = n-1, t_dep
t_dep = clock + expo(mu) if n>0 else maxT

stats = []
#
while(clock < maxT):

stats.append((clock,n)) # add event id and time
if(t_arv < t_dep): # arrival event

n_arv += 1; arv.append(t_arv)
nb[n] = (nb[n] if n in nb else 0) + t_arv - clock
n, clock = n+1, t_arv
t_arv = clock + expo(lamda)

if(n == 1): t_dep = clock + expo(mu)
else: # departure event

departure()

#
while(n_arv > n_dep):

stats.append((clock,n))
departure()

prob = {s:nb[s]/clock for s in nb}
avg_nb_clients = sum(s*prob[s] for s in prob)
wait = list(map(lambda x, y: x - y, dep, arv))
avg_time = sum(wait)/len(wait)
return(avg_nb_clients,avg_time, stats)

#
print(’Analytical performances : ’); getMM1(2,3)
print(’Empirical performances : ’); nb, tps, stats =simul(2,3,10)
print("Average number of clients in the station: "+str(round(nb,2)))
print("Average response time: " + str(round(tps,2)))

# Plot
plt.step([t[0] for t in stats], [t[1] for t in stats])
plt.xlabel(’Time’); plt.ylabel(’clients number’)
plt.show()
#______________________________ Output ______________________________________
# Performances ananlytiques :
# ==================MM1 =======================
# p0* :0.33333
# p1* :0.22222
# p3* :0.09877
# L :2.00
# Lq :1.33
# W :1.00
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# Wq :0.67
# Performances empiriques :
# Nombre moyen de clients dans la station:1.97
# Temps de reponse moyen:0.98

Figure 7.4: Simulation of M/M/1 (code708.py)

7.3.4.2 Simulation of queuing stations with simpy

To simulate queuing systems, servers are modeled as shared resources and clients as processes.
Another process responsible for generating customer processes should be added. The simulation
is started by the run() instruction. When a client process is created, it first requests a resource
(a server), if no server is available, the process is suspended (put into the queue) until a server is
released. At this point, the client process leaves the queue and hangs for the time of the service,
then it ends its execution, which makes the resource available again. By default the simulation
ends when no event is pending, but other stopping conditions can be used as the maximum
simulation time for instance.

Let’s code!
The following module is a utility that groups together the common functions and variables used
by the codes in the following sections. Global variables are initialized by Simpy classes such as
simpy.Environment and simpy.Resource, ... Among the functions we find the lambda expressions
that define the laws of the random generators and those which collect and plot the statistics of
the simulation as well as the Gant diagram used in the application of this chapter.
# Code709.py

import random
import simpy
from simpy.resources import resource

# Shared
e = simpy.Environment()
P = e.process
R = e.run

# Resources
RSC = simpy.Resource
RSC_withCapacity = lambda cap: simpy.Resource(e, capacity=cap)
RSC_Prempt = lambda cap: resource.PreemptiveResource( e , capacity = cap )
RSC_Prio = lambda cap: resource.PriorityResource( e , capacity = cap )
RQT_prio = resource.PriorityRequest

TO = e.timeout
SETO = simpy.events.Timeout

# load datastructures
ld = { ’Ls’:[], # Load historique in the system

’L’:[0], # current load
’Q’:[0], # current queue
’tl’:[0], # time when updating the load
’tq’:[0], # time when updating the queue
’Nfs’:[1] # Number of servers
}
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# updateLoad L/Q
def updateLoad(E, te, h,k, stationId=0):

global ld
ld[E][stationId] = ld[E][stationId] + h; # number of client in Queue Q or System L
ld[’Ls’].append((round(e.now - ld[te][stationId],4), ld[E], k)); ld[te][stationId] =e.now

#
rexpo = lambda mu : random.expovariate(mu)
rinverse = lambda probas : random.choices(range(len(probas)), probas)[0]
runif = lambda a,b : random.randint(a, b)
randColor = lambda:(random.random(),random.random(),random.random())

# iterator for the loop
def geti():

i=0;
while True: i=i+1; yield i

g = geti()

# on Event Arrival + Sertvice + Departure
def onEvent(event, id, stats, stationId=0):

typEvent = event[0]
# update system load
if typEvent != ’S’: updateLoad(’L’ ,’tl’ ,(1 if typEvent=="A" else -1) ,0, stationId)

# update system queue
if ((typEvent == ’A’ and ld[’Nfs’][stationId] == 0) or

(typEvent == ’S’ and ld[’Q’][stationId] > 0)) :
updateLoad(’Q’ ,’tq’ ,(1 if typEvent=="A" else -1) ,1, stationId)

# update number of available servers
if typEvent != ’A’:

ld[’Nfs’][stationId]= ld[’Nfs’][stationId] + (1 if typEvent=="D" else -1)

#statistic array [’E’, time, ’ID’, servers , L ,Q ,Station]
stats.append(

[ typEvent, # Event type Arrival, Service and Departure
round(e.now,4), # time
id, # client id ’ClientID’
ld[’Nfs’][stationId], # number of available servers
ld[’L’][stationId], # station load
ld[’Q’][stationId], # station queue
stationId # station id
]

)

# ===========================================================================
# wait_queue + wait_system +
def process_output(psim):

wait_queue, wait_system, N = 0, 0, len(psim)
for evt in psim:

wait_queue += evt[2] - evt[1]
wait_system += evt[3] - evt[1]

wait_queue = round(wait_queue /N,4)
wait_system = round(wait_system/N,4)
return (wait_queue, wait_system)

#
def plot_state(stats0):

import matplotlib.pyplot as plt
nbstations = len(stats0)
for i in range(nbstations):

plt.step([v[0] for v in stats0[i].values()], [v[3] for v in stats0[i].values()])
plt.xlabel(’Time’); plt.ylabel(’clients number’)
plt.show()

# Statistics
def collect_stats(psim, pld, show, nbstations=1):

stats0 =[{} for _ in range(nbstations)]
stats1 =[{} for _ in range(nbstations)]
eprev, L, Lq = 0, 0, 0

for currentStation in range(len(stats0)):
stats = stats0[currentStation]; statsW = stats1[currentStation]
psim0 = [e for e in psim[’staE’] if e[6] == currentStation] # filter stats for the

current station

# collect stats [time, [(’E’, ’ID’),...], Server, Q, L, Station]
for evt in psim0:

# stats for the system based on time as key
if not evt[1] in stats.keys(): # evt[1] time

stats[evt[1]] = [evt[1], [],0, 0, 0,0]
stats[evt[1]][2] = evt[3] # Available servers
stats[evt[1]][3] = evt[4] # L
stats[evt[1]][4] = evt[5] # Q

else:
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stats[evt[1]][2] = min(stats[evt[1]][2], evt[3])
stats[evt[1]][3] = min(stats[evt[1]][3], evt[4])
stats[evt[1]][4] = min(stats[evt[1]][4], evt[5])

stats[evt[1]][1].append((evt[0], evt[2]))

# stats for the system queue : W based on client_ID [ID, A, S, D]
if evt[2] != ’None’: # evt[2] Client ID

if not evt[2] in statsW.keys(): statsW[evt[2]] = [evt[2], 0, 0, 0]
if evt[0]==’A’: statsW[evt[2]][1] = evt[1]
if evt[0]==’S’: statsW[evt[2]][2] = evt[1]
if evt[0]==’D’: statsW[evt[2]][3] = evt[1]

L += (evt[1] - eprev)*evt[4]
Lq += (evt[1] - eprev)*evt[5]
eprev = evt[1]

wqs = process_output(statsW.values())
lds = (round(L/psim[’T_sim’],4), round(Lq/psim[’T_sim’],4))
return wqs, lds, stats0

# show_statistics
def show_statistics(psim, pld, show, nbstations=1):

wqs, lds, sta = collect_stats(psim, pld, show, nbstations)#
if show :

for e in sta:
for v in e.values() : print(v)

print("Empirical performances :")
print("Average time in the queue : ", wqs[0])
print("Average time in the system : ", wqs[1])
print("Average number of clients in the queue : ", lds[1])
print("Average number of clients in the system : ", lds[0])
plot_state(sta)

# ===========================================================================
# method that plots the gant chart of the application
def gant(cpus, tasks,l, H=50, M=5 ):

import matplotlib.pyplot as plt
fig, axi = plt.subplots()
axi.set_ylim(0, H); axi.set_xlim(0, l)
axi.set_xlabel(’Time’); axi.set_ylabel(’Processor’)
axi.grid(True)

# Setting ticks on y-axis
dx = int((H - 2*M)/ len(cpus))
axi.set_yticks([dx + i*dx for i in range(len(cpus))])
axi.set_yticklabels(cpus)

# Declaring a bar in schedule
for k,task in tasks.items():

posH=(task[’cpu’]+1)*dx-M/2
axi.broken_barh(task[’length’], (posH, M) , facecolors = task[’color’])
for t in task[’length’]:

axi.annotate(k, (1,1), xytext=(t[0]+t[1]/2-1, posH+M+1))
plt.show()

7.3.4.3 Example of a car wash station

The following code allows us to simulate several configurations (M/M/1, M/M/S/K, ...) of a
car wash system which has a limited number of automatic car wash machines and which receives
cars to be washed.
Washing machines are modeled as resources, and washing as a process. When a car arrives, it
asks for a washing machine, when it gets it, it starts the washing process and waits for it to
finish, then it releases the machine and quits the system. If no machine is available, it remains
on standby. Cars and washing processes are generated by a setup process.

Let’s code!

# Code710.py

from Code709 import e,P,R,TO, RSC, rexpo, g, show_statistics, ld, onEvent
import sys;sys.path.append(’../chap5’)

# =========================================================================
# station entity model
class Station(object):
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def __init__(self, psim):
self.machines = RSC(e, psim[’S’]);
self.mu = psim[’mu’]; self.sd = psim[’SD’]

def wash(self, voit):
yield TO(self.sd(self.mu))

# car entity model
def Car(name, station, psim):

# event Arrival, Service, Departure
onCarEvent = lambda E: onEvent(E, name, psim[’staE’])

# core
onCarEvent(’Arrival’) # onArrival event
with station.machines.request() as machine:

yield machine; onCarEvent(’Service’) # onService event
yield P(station.wash(name)); onCarEvent(’Departure’) # onDeparture event

# simulation setup
def setup(psim):

station = Station(psim)
ld[’Nfs’]= [psim[’S’]]
psim[’staE’].append([’I’, 0.0, ’None’, psim[’S’] ,0 ,0 ,0]) # initilize statistics
while True:

yield TO(psim[’AD’](psim[’lambda’]))
if psim[’K’]==-1 or len(station.machines.queue) < psim[’K’]: # Queue Capcity limit

if(e.now > psim[’T_sim’]): break # Simulation time limit
P(Car(’C%d’ % next(g), station, psim)) # new arrival process

# =============================================================================

def run_sim(sim, show=False):
P(setup(sim)); R() # Simulation
show_statistics(sim, ld, show) # Statistic

#
def sim_mmsk(show=False):

from Code505 import getMMSK

# simulation examples
sim = {
’T’ : ’MMSK’, # type of the model
’mu’ : 4, # service rate
’lambda’: 10, # arrival rate
’S’ : 3, # number of servers
’K’ : 30, # Queue capacity
’SD’ : rexpo , # service distribution
’AD’ : rexpo, # arrival distribution
’T_sim’ : 1000, # Simulation time
’staE’ : [] } # Statistics array

run_sim(sim, show) # simulation
getMMSK(sim[’mu’],sim[’lambda’],sim[’S’], sim[’K’]) # Theory

sim_mmsk()

# def sim_md1(show=False):
# simulation de la station M/D/1
# sim = {
# ’T’:’MDS’, # type of the model
# ’mu’:8, # service rate
# ’lambda’:6, # arrival rate
# ’S’:1, # number of servers
# ’K’:-1, # Queue capacity
# ’SD’: lambda x:1/x , # service distribution
# ’AD’:rexpo, # arrival distribution
# ’T_sim’:10000, # Simulation time
# ’staE’:[] } # Statistics array

# run_sim(sim, show) # simulation
# print("Performances analytiques :")
# D , rho = 1/sim[’mu’], sim[’lambda’]/sim[’mu’]
# Wq = rho/((2/D)*(1-rho));
# W = D + Wq ;
# Lq = 1/2*rho**2/(1-rho);
# L = rho + Lq;
# print("Temps d’attente moyen dans la file : ", Wq)
# print("Temps d’attente moyen dans la station : ", W)
# print("Nombre moyen de clients dans la file : ", Lq)
# print("Nombre moyen de clients dans la station : ", L)

# sim_md1()
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Figure 7.5: Empirical vs analytical results (code710.py)
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7.3.4.4 Simulation of queuing networks with simpy

In this section we simulate queuing networks (see appendix B.2). The network is described by
the topo structure which contains a list of tuples, each one describes a station connected to the
network as follows:
1. The number of servers (considered homogeneous) in the station and their speed (number of
clients per unit of time).
2. The list of successor stations (where outgoing clients can go).
3. For each successor station, the probability that an outgoing customer will move on there. If
outgoing customers can exit the system, an additional exit probability is added. If no successor
exists, the value None is used.
The setup() method creates the network from the topo structure, then proceeds to the continu-
ous generation (up to a maximum time T) of the incoming clients at the initial stations. Each
created client is directed to his station to acquire a server (or join the queue if the server is not
available), when he ends his service, he goes to the next station or leaves the system depending
on the topology of the network.

Let’s code!

#Code711.py

import heapq # heapqueue allows to allocate servers in round robin policy
from Code709 import e,P,R,TO, rexpo, g, rinverse, RSC_withCapacity, SETO

# ===============================================================================================
# show
def show(cz, args):

if cz == 2 : print(’%7.2f \t %s \t %s \t %s \t %s’ % tuple([e.now] + args))
else : print(’%7.2f \t %s \t %s \t\t %s’ % tuple([e.now] + args))

# main method
def carwash(T, topology):

class Station(object):
def __init__(self, id, infos):

self.id=id;
self.S= infos[’S’]
self.M = infos[’Mu’]
self.nextStations= infos[’nextS’]
self.probas=infos[’probas’]
self.Indices = list(range(self.S));
self.Servers = RSC_withCapacity(self.S);

def pf_svc(self, c): X =rexpo(self.M); yield TO(X)

# onService
def onService(self, id):

if len(self.Indices) > 0:
svr = heapq.heappop(self.Indices); # pop in queue
show(2, [id, ’S’, svr, self.id])

return svr

# onDeparture
def onDeparture(self,id, svr):

heapq.heappush(self.Indices, svr); # push from queue
show(1, [id, ’D’,self.id])

# pf_getin : when access a station
def pf_getin(self, id):

show(1, [id, ’A’, self.id]) # Arrival
with self.Servers.request() as s:

yield s; svr = self.onService(id) # Service
yield P(self.pf_svc(id)); self.onDeparture(id, svr) # Departure
if self.nextStations != None:

i = rinverse(self.probas)
if(i<len(self.nextStations)):

P(self.nextStations[i].pf_getin(id)) # go to next station

# create_system : create the topology
def create_system(topo):

stations = [ Station(i, # the station’s ID
{ ’S’: topo[i][0][0], # number of servers
’Mu’: topo[i][0][1], # service rate
’nextS’:None , # list of next stations
’probas’: topo[i][2] # probabilities to go to next stations

})
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for i in range(len(topo)) if i!=0]
# create next stations
for station in stations:

if(topo[station.id][1]!=None):
station.nextStations = [stations[v-1] for v in topo[station.id][1]]

# returns initial stations with their arrival rates
return [stations[i-1] for i in topo[0][1]] , topo[0][2]

# setup the simulation
def setup():

def firstS(lamdas):
t=min(times)
first=times.index(t)
for k in range(len(times)): times[k]-=t
times[first]=rexpo(lamdas[first])
return first,t

initStations, lamdas = create_system(topo)

times=[0 for i in range(len(initStations))]
for i in range(len(times)): times[i]= rexpo(lamdas[i])
while e.now<T:

indf, t=firstS(lamdas)
car = yield SETO(e, delay=t, value=’C%d’ % next(g))
P(initStations[indf].pf_getin(car))

P(setup()); R()

# Test
topo = [
#(Svr_Nb,mu) [successors], [Probavility]
((None,None), [1,3], [6,2]),
((2 ,4 ), [2,3], [0.6,0.2,0.2]),
((1 ,3 ), [3] , [0.5,0.5]),
((1 ,6 ), None , None)]

carwash(5,topo)
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7.3.4.5 Simulating queues with priorities

In this section, we simulate a queue station whose incoming clients have priorities. Priorities
may or may not be preemptive. We use PreemptiveResource and PriorityResource from Simpy.
We consider an exponential service time (memoryless), so in the case of preemptive priorities,
when a client is interrupted by another one with a higher priority, it is inserted into the server
queue, and when he acquires the server again, it resumes its execution from the beginning (mem-
oryless). The case of a service without memoryless property is dealt with in the application of
this chapter.

Let’s code!

# Code712.py

from simpy import Interrupt
from Code709 import e,P,R,TO, rexpo, RSC_Prempt, RQT_prio, RSC_Prio

#
def station(nbClients,serveurs,lamdas,mu,stat, preemption=True):

times = [ rexpo(l) for l in lamdas ] # arrival times initialization
for id in range(nbClients):

t = min(times) # selects the earlier arrival
priority = times.index(t) # gets its priority
times = [ tc - t for tc in times ] # updates the arrival times
times[priority] = rexpo(lamdas[priority]) # generate the next arrival of this priority
yield TO(t)
stat[priority][id]=[0,0,0]
P(client(id,priority,serveurs,mu,stat, e.now, preemption))

#
def client(id,priority,serveurs,mu,stat, beginTime, preemption=True):

try:
stat[priority][id][0] = beginTime
with RQT_prio(serveurs,priority, preempt=preemption) as req:

req.time=beginTime
yield req
stat[priority][id][1] = e.now
yield TO(rexpo(mu))
stat[priority][id][2] = e.now

except Interrupt: # in case of preemptive priority
P(client(id,priority,serveurs,mu,stat, beginTime, preemption))

#
def statistiques(stat):

rgs = range(len(stat))
wait_queue, wait_system = [0 for _ in rgs], [0 for _ in rgs]
for priority in rgs:

for k in stat[priority].keys():
wait_queue[priority] += stat[priority][k][1] - stat[priority][k][0]
wait_system[priority] += stat[priority][k][2]- stat[priority][k][0]

print("Wq : Average waiting time in the queue")
print("W : Average waiting time in the station")

print("priority \t Wq \t\t W ")
for p in rgs:

twq = round(wait_queue[p]/len(stat[p]),2)
tw = round(wait_system[p]/len(stat[p]),2)
print(p," \t\t\t ", twq, " \t ", tw)

#
nbClients, nbServeurs, mu, lamdas, preemption = 100, 1 ,10, [3,4,2], False
stat = [{} for p in range(len(lamdas))]

serveurs = (RSC_Prempt if preemption else RSC_Prio)(nbServeurs)
P(station(nbClients, serveurs, lamdas, mu, stat, preemption)); R()

#
print("Empirical performances:")
statistiques(stat)
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7.4 Application: Scheduling
A scheduling problem consists of planning the execution of a set of tasks by allocating the re-
quired resources to them and setting their start dates. In the context of multiprocessor systems,
tasks are the processes to run on parallel processors that represent the resources in that system.
In the following application we consider a multiprocessor system having n processors with dif-
ferent characteristics (speed) and queues, and a sequence of tasks to be executed on this system.
The scheduler is the component that assigns the submitted tasks to processors according to a
given policy.
In what follows we consider that the tasks are independent of each other and they have different
sizes (number of elementary instructions) and priorities. The adopted scheduling policy con-
siders preemptive priorities (a higher priority task interrupts the execution of a lower priority
task). Execution time is calculated based on the size of the task and the speed of the allocated
processor. The Gant chart is the tool used to visualize the result of the scheduling and in par-
ticular the occupation of the processors.

Let’s code!

# method that plot the gant chart of the application
def gant(cpus, tasks,l, H=50, M=5 ):

import matplotlib.pyplot as plt
fig, axi = plt.subplots()
axi.set_ylim(0, H); axi.set_xlim(0, l)
axi.set_xlabel(’Time’); axi.set_ylabel(’Processor’)
axi.grid(True)

# Setting ticks on y-axis
dx = int((H - 2*M)/ len(cpus))
axi.set_yticks([dx + i*dx for i in range(len(cpus))])
axi.set_yticklabels(cpus)

# Declaring a bar in schedule
for k,task in tasks.items():

posH=(task[’cpu’]+1)*dx-M/2
axi.broken_barh(task[’length’], (posH, M) , facecolors = task[’color’])
for t in task[’length’]:

axi.annotate(k, (1,1), xytext=(t[0]+t[1]/2-1, posH+M+1))
plt.show()

The following code uses Simpy to implement the system in question. The schedule method
fulfills the role of the scheduler by generating the tasks according to a transition rate lamda and
by allocating the processors according to a policy given as a parameter. This policy is defined
as a method which implements the strategy to be studied. In our case we have opted for the
strategy which selects the processor with the least loaded queue lessLoaded. We implemented
the processors as Simpy resources with preemptive priorities.

Let’s code!

#Code713.py

import simpy
from Code709 import (e,P,R,TO, rexpo, runif, g, RSC_Prempt, SETO,

RQT_prio, gant, randColor)

remain = lambda X,start,speed: X - (e.now - start)*speed # remaining time in the server
# show
def show(evt, s, task, X):

print(round(e.now,3), " \t " + evt + " \t ",task[0], " \t ", X ,
" \t ", s.id, " \t ", task[2], " \t ", end=’’)

class Station(object):
def __init__(self, id, infos):

self.id = id;
self.Speed = infos[’Speed’]
self.Servers = RSC_Prempt(1);

def update(self, task, X, dicTask, evnt, start):
X = int(remain(X,start,self.Speed))
dicTask[task[0]][’length’].append((round(start,3),round(e.now-start,3)))
show(evnt, self, task, X)
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return X

def pf_svc(self, X): delay = X/self.Speed ; yield TO(delay)

def pf_run(self, task, stations, X, dicTask, preemption=True):
if X>0:

try:
with RQT_prio(self.Servers,task[2], preempt=preemption) as s:

print([len(s.Servers.queue) for s in stations])
yield s;
start = e.now
show(’S’, self, task, X) ; print()
yield P(self.pf_svc(X))
X = self.update(task, X, dicTask, ’D’, start)

print([len(s.Servers.queue) for s in stations])
except simpy.Interrupt:

if remain(X,start,self.Speed)>0:
X = self.update(task, X, dicTask, ’I’, start)
P(self.pf_run(task,stations, X, dicTask, preemption))

# create the system: one station for each processor
def create_system(proc):

stations = [ Station(i,{’Speed’: proc[i]}) for i in range(len(proc))]
return stations

#
def schedule(T,lamda, procs, pmin, pmax, policy, dicTask):

print(’Time \t Event \t Task \t Remain \t Server \t Priority \t Queues’)
stations = create_system(procs)
while e.now<T:

t = rexpo(lamda) # next arrival
# creates a new task (Id, length, priority)
task = yield SETO(e, delay=t, value=(’T%d’ % next(g), runif(pmin,pmax)*10, runif(1,3)))
proc = policy(stations) # calls the specified policy to selects a processor
# intialize execution structure of the task
dicTask[task[0]] = {’length’:[], ’cpu’:proc, ’color’:randColor()}
show(’A’, stations[proc] , task, task[1])
# creates the station process associated to the current task
P(stations[proc].pf_run(task, stations, task[1], dicTask ))

# lessLoaded policy
def lessLoaded(stations):

lp = list( map(lambda s: s.Servers.count, stations))
if(min(lp) == 0): return lp.index(min(lp))
lq = list( map(lambda s: len(s.Servers.queue), stations))
return lq.index(min(lq))

# processors speeds, tasks dictionary
processors, dicTask = [3,2,4], {}
# pmin, pmax: minimum and maximum length of tasks, T: simulation time
lamda, pmin, pmax, T = 5, 1, 9, 2
P(schedule(T,lamda,processors, pmin, pmax, lessLoaded, dicTask)); R()

for k,t in dicTask.items():
print(k," cpu:",t[’cpu’],’ length:’,t[’length’])

lastD = max([d[0]+d[1] for t in dicTask.values() for d in t[’length’]])
gant(range(len(processors)),dicTask, int(lastD)+10)

#______________________________ Output ______________________________________
# T1 cpu: 0 length: [(0.232, 1.872), (25.438, 21.333)]
# T2 cpu: 1 length: [(0.33, 0.647), (50.976, 24.0)]
# T3 cpu: 2 length: [(0.655, 22.5)]
# T4 cpu: 0 length: [(5.438, 20.0)]
# T5 cpu: 1 length: [(0.976, 20.0)]
# T6 cpu: 2 length: [(23.155, 12.5)]
# T7 cpu: 0 length: [(46.771, 6.667)]
# T8 cpu: 1 length: [(20.976, 30.0)]
# T9 cpu: 2 length: [(35.655, 15.0)]
# T10 cpu: 0 length: [(2.104, 3.333)]
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Figure 7.6: Gant diagram: processors occupency (code713.py)
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7.5 Exercises
Exercise 1. Write the code that simulates the birthday problem described in Chapter 1.

Exercise 2. Write the code that simulates exercise 23 of chapter 1 considering the number of
k errors and n testers.

Exercise 3. Simulate example 25 from chapter 2.

Exercise 4. Empirically verify (using simulation) the Markov and Chebychev inequalities seen
in chapter 2.

Exercise 5.
1. Simulate exercise 9 in chapter 2.
2. Find an approximation of the number π using the result of the simulation.

Exercise 6. Simulate the random walk (chapter 3) in a plane (2D) and in a 3D space.

Exercise 7. Simulate exercise 5 of chapter 3.

Exercise 8. Simulate example 2 from chapter 4.

Exercise 9. Simulate example 4 from chapter 4.

Exercise 10. Consider Polya’s model which consists of a box containing w white balls and b
black balls. At each stage, a ball is drawn at random and it is returned to the box, adding a ball
of the same color. Simulate this model.

Exercise 11. Write the code that simulates and compares the two systems described in exercise
5 of chapter 5.

Exercise 12. Write the code that simulates the system described in exercise 7 of chapter 5 and
compare the simulation results with the analytical results.

Exercise 13. Implement the code which calculates the analytical results of Jackson’s networks
in the appendix and compare them with those obtained by code711.

Exercise 14. In the application code:
1. Implement the policy of assigning each priority to a different processor (e.g. processor1 to
priority 1 tasks, processor2 to priority 2 tasks, and processor3 to priority 3 tasks).
2. Compare the total execution time (the time to complete the last executed task) and the load
of the processors with the lessLoaded () policy.
3. Modify code 713 so that we increase the priority (in fact we lower its value to make it of
greatest priority) of the task each time it is interrupted.
4. Compare the average wait time for the tasks of each priority with the previous strategies.
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Appendix A

Counting

The resolution of many probability problems require counting techniques to count the number
of possible outcomes in a given random experiment.

A.1 Multiplication principle
Consider k random experiments {Ei}1..k such that Si is the set of possible outcomes of the ith
experiment (Ei) and |Si| = ni. The random experiment E which consists in performing this
sequence {Ei}1..k of experiments has

S =

k∏
i=1

Si

whose number of possible outcomes is equal to

|SE | = n =

k∏
i=1

ni

Example 1. We roll a coin and a dice, what is the number of possible outcomes of this experi-
ment E?
E is an experiment composed of the sequence of random experiments E1: tossing a coin and E2:
rolling a dice.
- E1 has the possible outcomes S1 = {T,H}, |S1| = n1 = 2,
- E2 has the possible outcomes S2 = {1, 2, 3, 4, 5, 6} |S2| = n2 = 6,
So,

SE = S1×S2 = {(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6), (H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6)}

|SE | = n1 ∗ n2 = 2 ∗ 6 = 12.

Counting in the context of probability depends on the description of the random experiment
and its characteristics described by the way in which the experiment is performed.

Sampling is the operation of drawing randomly from a set one or more of its elements. The
set of possible outcomes of this experiment depends on how we perform the draw.

1. With or without replacement : in the case the draw is made with replacement, a given
element may be drawn several times in the same sample because the drawn element is
returned after each draw.

2. With or without order : if the draw is performed with order, the elements of the same
sample are drawn one after another (sequence) otherwise they are said to be chosen si-
multaneously. In other words, the result {a1, a2, a3, a4} is different from {a3, a2, a4, a1} in
the case of an ordered draw, but identical if the draw is without order.

Therefore, four types of draws are possible: ordered with replacement, ordered without replace-
ment, unordered with replacement and unordered without replacement.

218
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A.2 List (draw with order and replacement)
In this experiment, we have a set of n objects, and we want to draw k objects so that the order
is important and that after each draw, the object is put back into the set. The result is called
a list.
Here, the list to choose has k positions, and there are n options for each position and because
the order is important, the total number of ways to choose k elements from a set of n elements
is:

|SE | = n× n× ...× n︸ ︷︷ ︸
k positions

= nk

Example 2. Consider A = {1, 2, 3}. The number of lists of size 2 chosen from the elements of
A is :
|SE | = 32 = 9 different possibilities :

SE = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

A.3 Arrangement and permutation (draw with order and
without replacement)

A list of k elements among n elements where replacement is not allowed is called k-permutation
or arrangement of n elements and noted Akn. It is interpreted as the number of injective (one to
one) mappings from a set of k elements to a set of n elements. Here, the list contains k positions,
for the first one, we have n possibilities, in the 2nd position we have n− 1 possibilities (because
the first element drawn is not put back) , ..., and for the kth position there are n − k + 1. So
the total number of possible ways is:

Akn = n× (n− 1)× (n− 2)× ...× (n− k + 1) =
n!

(n− k)!
, for 0 ≤ k ≤ n

When k = n, it is called permutation: Pn = n!. It can also be interpreted as the number of
bijections from a set of n elements to itself.

Example 3. Consider A = {1, 2, 3}. The number of permutations of size 2 chosen among the
elements of A is |SE | = P 2

3 = 3!
(3−2)! = 3×2

1 = 6 different possibilities :

SE = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}

A.4 Combination (draw without order and without replace-
ment)

Here we have a set of n elements, and we derive a subset (the order is not important) of k
elements. This experiment is called a combination of k elements among n and noted Ckn. The
number of subsets of 2Ω of cardinality k is the number of combinations of k elements chosen
from n elements :

Ckn =

(
n

k

)
=

n!

(n− k)!k!
, for 0 ≤ k ≤ n

Ckn is also called the binomial coefficient which is the number of binary partitions (binomials of
complementary subsets of cardinality k and n−k elements). It can be interpreted as the number
of possible ways to divide n objects into two groups of sizes k and n− k. It also represents the
coefficients of the expanded terms of Newton’s binomial.

(a+ b)n =

n∑
0

Ckna
n−kbk
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Example 4. Consider A = {1, 2, 3}. The number of size 2 combinations chosen from the
elements of A is |S| = C2

3 = 3× 2/2 = 3 different possibilities :

S = {{1, 2}, {1, 3}, {2, 3}}

Multinomial coefficient is a generalization of the binomial coefficient and which represents the
number of possible ways to divide n objects into m groups (subsets) of sizes k1, k2,...,km (an
ordered partition) and which is equal to:

Ck1,k2,...,kmn =

(
n

k1, k2, ..., km

)
=

n!

k1!k2!...km!

It can be considered as the number of permutations of n elements taken from the set {e1, e2, · · · , em}
where each element ei is repeated ki times.
The nominator n! is the number of total permutations if we consider that the n elements are
discernible. To eliminate repeated arrangements, we divide by the number of possible permuta-
tions of each element). This is the number of m-partitions (m-tuples of parts of size k1, k2, ..., km
elements). It also represents the coefficients of the expanded terms of Newton’s multinomial.

(a1 + a2 + · · ·+ am)n =
∑

k1+k2+···+km=n

Ck1,k2,...,krn ak11 a
k2
2 · · · akmm

Example 5. Consider the word ’RECHERCHER’ what is the number of arrangements of the
letters of this word (words that can be composed)?
A positioning is made up of 3 E, 3 R, 2 C, 2 H. There are 4 partitions E,R,C,H of respective
sizes 3, 3, 2, 2, therefore the number of these partitions is the number of permutations with
repetition of the 10 characters of this word; then the corresponding multinomial coefficient is:

C3,3,2,2
10 =

10!

3!.3!.2!.2!
= 25200

RECHERCHE :

a 10 letter word with repetition︷ ︸︸ ︷
RRREEEHHCC : ︸ ︷︷ ︸

3 R

3 E︷ ︸︸ ︷ 2 H︸ ︷︷ ︸
2 C︷ ︸︸ ︷

A.5 Combination with repetition (draw without order with
replacement)

k-combination with replacement is a sampling of a set A = {a1, a2, · · · , an} k times so that
replacement is allowed and the order is irrelevant. The number of results of this experiment is
equal to the number of solutions of the equation : x1 + x2 + · · · + xn = k, such that xi ∈ N is
the number of times ai appears. This number is equal to

Ckn+k−1 =
n+ k − 1

k

An intuitive method which justifies this result is to consider k white balls and n− 1 black balls.
each arrangement of these balls represents a combination with repetition where the number of
white balls between the ith and the (i+ 1)th black ball represents the repetition of element ei.
The non-repeating k-combination of the positions of the black balls among {1, 2, · · · , n+ k− 1}
represents uniquely the k-combination with repeating n elements.

· · · ︸ ︷︷ ︸
partition xi

· · ·

partition xn︷ ︸︸ ︷
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Example 6. We have 10 million DA and we want to invest this amount in 5 projects, what is
the number of possibilities of this investment?
xi is the amount invested in the project pi. We have : x1 +x2 +x3 +x4 +x5 = 10, such that xi ∈
N. So we look for the number of solutions of this equation which is equal to C10

5+10−1 =
14!/10!.4! = 1001

Example 7. Consider the random experiment of rolling 8 dice, and the result as the tuple
of the number of occurrences of each face, what is the cardinality of the sample space of this
experiment?
The tuple (o1, o2, o3, o4, o5, o6) s.t oi is the number of occurrences of side i. Since we have 8

rolled dice then
∑6
i=1 oi = 8, a tuple represents 8-combination with repetition of 6 elements.

The following figure shows two combinations: the first one represents the tuplet (1, 0, 4, 1, 2, 0)
and the second one (2, 2, 0, 1, 0, 3).

︸ ︷︷ ︸
4 of sides 3

2 of sides 5︷ ︸︸ ︷
2 of sides 1︷ ︸︸ ︷ ︸ ︷︷ ︸

0 of sides 3

3 of sides 6︷ ︸︸ ︷
The total number is :

C8
6+8−1 =

13!

8!5!
=

13.12.11.10.9

5.4.3.2
= 1287

Here is a summary table of the four previous cases:

Sampling With replacement Without replacement

With order nk P kn = n!
(n−k)! case k = n, Pn = n!

Without order Ckn+k−1 = (n+k−1)!
k!(n−1)! Ckn = k!(n−k)!

n!

Table A.1: Combinatorial analysis
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Queuing models with priority

In some systems, clients have different priorities, for example, in a task scheduling system, tasks
are executed according to their importance. Servers serve the highest priority clients first, and
if multiple clients in the queue have the same priority then FIFO discipline is applied.
We define N priority classes, the first is the highest priority and the last is the lowest priority. In
the case of preemptive priority, the client who is being served is interrupted if a higher priority
client arrives at the system, whereas in the case of non-preemptive priority, the service of the
current client is completed before passing to the client with the highest priority.
With an exponential distribution service time (which has the memoryless property), we don’t
care about the remaining service time of an interrupted client.
The average waiting time of priority class k in a non-preemptive priority system is:

W (k)
q =

1

UVk−1Vk
for k = 1, ..., N.

So that:

U = s!
sµ− λ
ρs

s−1∑
i=0

ρi

i!
+ sµ

Vk = 1−
∑k
i=1 λi
sµ

and V0 = 1

λi : arrival rate of priority i clients .

λ =

N∑
i=1

λi (λ < sµ at the steady state.)

L, Lq and W (k) can be obtained by the same relations seen previously.
In the case of a preemptive priority system, the average waiting time in a k class queue is:

W (k)
q =

1/µ

Vk−1Vk
− 1

µ
for k = 1, ..., N.

In some systems the average service times is different from a class to another, if there is only
one server and the system is non-preemptive, then the average waiting time is given by:

W (k)
q =

Uk
Vk−1Vk

for k = 1, ..., N.

So that:

Uk =

k∑
i=1

λi
µ2
i

Vk = 1−
k∑
i=1

λi
µi

and V0 = 1

µi : arrival rate of priority i clients.
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B.1 Queuing networks
A queuing network is a system where several individual queues are interconnected. The serial
queuing system is the simplest model of this class. A queuing network is said open if the clients
leave the system after receiving the desired services, otherwise it is said closed (clients flow
between stations).
The equivalence property states that if the arrivals of customers at a station are Poissonian with
rate λ, then the departure rate in the steady state is also Poissonian with rate λ.
The direct consequence of this property is that if, at the end of this station, customers must go
directly through another station, then the latter will also have Poisson arrivals with the same
rate.

B.1.1 Serial queuing systems
Consider a set ofm stations of typeM/M/S linearly connected and each station satisfies si×µi >
λ such that si is the number of servers in station i, µi is the service rate of station i, λ is the
arrival rate of customers. Each client visits the m stations in the same order of their connection.
This system is a serie of infinite queues. Each station is studied as an independent M/M/S
system, and the complete set of queues is studied as follows:

The joint probability π(n1,n2,...,nm) of having n1 customers in station1, n2 customers in
station2,...,nm customers in station m at the steady state is the product of the individual
probabilities:

π(n1,n2,...,nm) =

m∏
i=1

π1
n1
π2
n2
...πmnm =

m∏
i=1

(1− ρi)ρnii

The average number of L customers in the system is the sum of the Li in all stations; and
the average waiting time W in the system is the average of Wi for i = 1, ...,m.
If stations have queues of limited size, they are not considered independent, so the previous
results do not apply.

B.1.2 Jackson networks
A Jackson network is an open queuing network described by a set of independent M/M/S
stations, and the steady state probability is calculated by the product of the individual proba-
bilities. The main difference with the serial queuing case is that in a Jackson network customers
may visit stations in a different order and may not visit all stations. So each station can receive
customers coming from any other station or from outside.
The arrival rate of customers at station i is:

λi = ei +
m∑
j=1

λjpji

so that:
ei is the rate of customers arriving directly from outside station i.
pji is the probability that a customer leaving station j goes to station i.
qj = 1 −

∑m
i=1 pji is the probability that the customer leaves the system when leaving station

j. This formula comes from the fact that the process of arrival at station i is the sum of several
Poisson processes, it is therefore a Poisson process whose parameter is the sum of the parameters
of the processes that compose it (exterior + other stations), and since the departure rate of each
station j is the same as its arrival rate then the arrival rate at station i from station j is λjpji.
For the stationary state, the condition λi < siµi must be satisfied.
si is the number of servers of station i, and µi is its service rate.
The values of λi for 1 ≤ i ≤ m are obtained by solving the system of linear equations: Λ =
e + ΛP . So that:

Λ = (λ1, λ2, ..., λm).

e = (e1, e2, ..., em)

P = [pij ]1≤i,j≤m.
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The solution of the system is: Λ = e(I−P)−1

The matrix I − P is invertible because the Jackson networks are open systems. The system’s
performances are calculated in the same way as described for serial stations.

Example 8. Consider two queuing stations connected by a network. The service time is expo-
nential of rate 8 for the server of the first station and rate 10 for the second. Customers arrive
from outside following a Poisson process of rate 4 towards the first station and rate 5 towards
the second. Customers leaving station 1 go to the second station with probability 0.5, and those
leaving the second go to the first with probability 0.25.
Determine the steady-state probabilities of the network, the average number of customers in the
system, and the average waiting time.

Solution
e = (4, 5), µµµ = (8, 10)

P =

 0 0.5

0.25 0


Λ = e + PΛ = (6, 8) and λ = Λ1 = λ1 + λ2 = 14

ρ = (
3

4
,

4

5
)

π(n1, n2) =
1

20
(
3

4
)n1(

4

5
)n2

L = (
λ1

µ1 − λ1
,

λ2

µ2 − λ2
) = (3, 4), L = L1 + L2 = 7 and W = L

λ = 1
2

B.2 Models with non exponential distributions
In many systems, exponential distribution cannot be used to describe inter-arrival times and
service times. This is for example the case when arrivals are previously scheduled (planned) and
the service is similar for all customers. However, the analytical method applied to this type of
models is more difficult than those based on Poisson processes.

B.2.1 General distribution service
In such systems, customers’ service times are independent and have the same probability dis-
tribution. This distribution can be of any law, but only the mean µ and the variance σ2 of the
distribution must be known.
For the case of the M/G/1 model, the arrivals are Poissonnian with rate λ, the service is of
general distribution and there is a single server and a queue of infinite size. The steady state is
reached if ρ = λ

µ < 1, and the performance of this system is:

π0 = 1− ρ

Wq = λ
σ2 + 1/µ2

2(1− ρ)

Note that the M/M/1 model is a special case of the M/G/1 where σ2 = 1
µ2 .

For the case of M/G/s, the performances are still unknown and remain an open research prob-
lem.

B.2.2 Degenerative distribution (deterministic) service
This model is used in the case of systems characterized by a fixed (deterministic) and identical
service time for all customers.
In theM/D/1 model, arrivals are Poissonnian with rate λ and service time is deterministic with
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value D with a single server and a queue of infinite size. The service rate µ = 1
D .

The performances of this system are:

Wq =
ρ

2µ(1− ρ)

B.2.3 Erlang distribution service
Erlang distribution is defined by the following density function:

f(x) =
(µk)k

(k − 1)!
xk−1e−kµx for x ≥ 0.

k is an integer, called the shape parameter. It makes it possible to specify the degree of vari-
ability of the service times compared to their average. µ is a real called the intensity parameter.
When k = 1, this law reduces to the Exponential distribution; and when k takes real values
greater than 1, it generalizes to the Gamma distribution. Its expectation is 1

µ and its standard
deviation σ = 1√

kµ
.

Note that 0 < σ < 1
µ such that 0 is the standard deviation of the degenerate (deterministic)

distribution and 1
µ is that of the exponential distribution, which allows the Erlang distribution

to represent all cases of intermediate service times between the two.
The sum of k v.a Exponential with mean 1

kµ is an Erlang r.v with parameters µ and k.
The Erlang distribution can be used in the case where the service of each client requires the
execution of the same task (of exponential time) k times.
Another major advantage of the Erlang distribution is that it can be used as an approximation
to empirical distribution service times. Indeed, after estimating the values of the expectation
and the variance of the empirical distribution, these are used to choose the value of k which
best corresponds to this estimate.

For the M/Ek/1 system, the performances are as follows:

Wq =
λ(1 + k)

2kµ(µ− λ)

No general solution for the performance of the system M/Ek/S (S>1) exists so far.
For the other types of systems where the arrivals are non-Poissonian, there are very few estab-
lished results, which led us to omit them from this section. The reader can refer to [12] for more
details.
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0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Table 1 Normal Distribution
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dl χ2
0.005 χ2

0.01 χ2
0.025 χ2

0.05 χ2
0.1 χ2

0.9 χ2
0.95 χ2

0.975 χ2
0.99 χ2

0.995

1 .0000 .0002 .0010 .0039 .0158 2.706 3.841 5.024 6.635 7.879
2 .0100 .02010 .0506 .1026 .2107 4.605 5.991 7.378 9.210 10.60
3 .0717 .1148 .2158 .3518 .5844 6.251 7.815 9.348 11.34 12.84
4 .207 .2971 .4844 .7107 1.064 7.779 9.488 11.14 13.28 14.86
5 .4117 .5543 .8312 1.145 1.610 9.236 11.07 12.83 15.09 16.75
6 .6757 .8721 1.237 1.635 2.204 10.64 12.59 14.45 16.81 18.55
7 .9893 1.239 1.690 2.167 2.833 12.02 14.07 16.01 18.48 20.28
8 1.344 1.646 2.180 2.733 3.490 13.36 15.51 17.53 20.09 21.95
9 1.735 2.088 2.700 3.325 4.168 14.68 16.92 19.02 21.67 23.59
10 2.156 2.558 3.247 3.940 4.865 15.99 18.31 20.48 23.21 25.19
11 2.603 3.053 3.816 4.575 5.578 17.28 19.68 21.92 24.72 26.76
12 3.074 3.571 4.404 5.226 6.304 18.55 21.03 23.34 26.22 28.30
13 3.565 4.107 5.009 5.892 7.042 19.81 22.36 24.74 27.69 29.82
14 4.075 4.660 5.629 6.571 7.790 21.06 23.68 26.12 29.14 31.32
15 4.601 5.229 6.262 7.261 8.547 22.31 25.00 27.49 30.58 32.80
16 5.142 5.812 6.908 7.962 9.312 23.54 26.30 28.85 32.00 34.27
17 5.697 6.408 7.564 8.672 10.09 24.77 27.59 30.19 33.41 35.72
18 6.265 7.015 8.231 9.390 10.86 25.99 28.87 31.53 34.81 37.16
19 6.844 7.633 8.907 10.12 11.65 27.2 30.14 32.85 36.19 38.58
20 7.434 8.260 9.591 10.85 12.44 28.41 31.41 34.17 37.57 40.00
22 8.643 9.542 10.98 12.34 14.04 30.81 33.92 36.78 40.29 42.80
24 9.886 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56
26 11.16 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64 48.29
28 12.46 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 50.99
30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67
35 17.19 18.51 20.57 22.47 24.80 46.06 49.80 53.20 57.34 60.27
40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77
45 24.31 25.90 28.37 30.61 33.35 57.51 61.66 65.41 69.96 73.17
50 27.99 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.4 104.2
80 51.17 53.54 57.15 60.39 64.28 96.58 101.9 106.6 112.3 116.3
90 59.20 61.75 65.65 69.13 73.29 107.6 113.1 118.1 124.1 128.3
100 67.33 70.06 74.22 77.93 82.36 118.5 124.3 129.6 135.8 140.2
120 83.85 86.92 91.57 95.70 100.6 140.2 146.6 152.2 159.0 163.6

Table 2 Chi-square Distribution
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Significance level, α
Trials number, n 0.1 0.05 0.02 0.01

1 0.95000 0.97500 0.99000 0.99500
2 0.77639 0.84189 0.90000 0.92929
3 0.63604 0.70760 0.78456 0.82900
4 0.56522 0.62394 0.68887 0.73424
5 0.50945 0.56328 0.62718 0.66853
6 0.46799 0.51926 0.57741 0.61661
7 0.43607 0.48342 0.53844 0.57581
8 0.40962 0.45427 0.50654 0.54179
9 0.38746 0.43001 0.4796 0.51332
10 0.36866 0.40925 0.45662 0.48893
11 0.35242 0.39122 0.43670 0.46770
12 0.33815 0.37543 0.41918 0.44905
13 0.32549 0.36143 0.40362 0.43247
14 0.31417 0.34890 0.38970 0.41762
15 0.30397 0.33760 0.37713 0.40420
16 0.29472 0.32733 0.36571 0.39201
17 0.28627 0.31796 0.35528 0.38086
18 0.27851 0.30936 0.34569 0.37062
19 0.27136 0.30143 0.33685 0.36117
20 0.26473 0.29408 0.32866 0.35241
21 0.25858 0.28724 0.32104 0.34427
22 0.25283 0.28087 0.31394 0.33666
23 0.24746 0.27490 0.30728 0.32954
24 0.24242 0.26931 0.30104 0.32286
25 0.23768 0.26404 0.29516 0.31657
26 0.23320 0.25907 0.28962 0.31064
27 0.22898 0.25438 0.28438 0.30502
28 0.22497 0.24993 0.27942 0.29971
29 0.22117 0.24571 0.27471 0.29466
30 0.21756 0.24170 0.27023 0.28987
31 0.21412 0.23788 0.26596 0.28530
32 0.21085 0.23424 0.26189 0.28094
33 0.20771 0.23076 0.25801 0.27677
34 0.20472 0.22743 0.25429 0.27279
35 0.20185 0.22425 0.26073 0.26897
36 0.19910 0.22119 0.24732 0.26532
37 0.19646 0.21826 0.24404 0.26180
38 0.19392 0.21544 0.24089 0.25843
39 0.19148 0.21273 0.23786 0.25518
40 0.18913 0.21012 0.23494 0.25205

Table 3 Kolmogorov-Smirnov Distribution
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In the age of artificial intelligence, robotics, intelligent systems and machine learning, which
are increasingly taking up space in practically all areas; and since the emergence of intelligent
applications on which most of the major IT players rely; in this great technological whirlwind,
we ask the computer scientist to know, create and innovate more and more. However, the de-
velopment of the necessary skills to master these recent technologies cannot be achieved without
having the essential bases in probability, which is one of their fundamental pillars. Mastering
the foundations of this pillar has thus become essential.

It is with this in mind that we have proposed this book on probability, stochastic processes and
simulation, and the challenge of which is to simplify the basic concepts by the example and by
the practice.

This book is intended primarily for computer scientists, but can obviously be used by anyone
wishing to learn the elementary concepts of probability with their practical side in order to sub-
sequently be able to tackle other more advanced subjects such as machine learning and artificial
intelligence.
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