STA 4504
 CATEGORICAL DATA ANALYSIS

Demetris Athienitis
University of Florida
Department of Statistics

Contents

1 Introduction 5
1.1 Categorical Response Data 5
1.2 Probability Distributions for Categorical Data 6
1.2.1 Bernoulli distribution 6
1.2.2 Binomial distribution 6
1.3 Statistical Inference for a Proportion 8
1.3.1 Key facts 9
1.3.2 Inference Methodologies 9
2 Contingency Tables 12
2.1 Introduction 12
2.1.1 Key Points 12
2.1.2 Notation 13
2.1.3 Independence 14
2.2 Comparing Proportions in 2×2 Tables 15
2.3 Testing Independence 18
2.3.1 Pearson Test 18
2.3.2 Likelihood-Ratio Test 19
2.3.3 Partinioning Chi-squared 22
2.3.4 Exact Inference 23
2.4 Three-Way Contingency Tables 25
2.4.1 Odds Ratios 25
2.4.2 Cochran-Mantel-Haenszel Test 26
3 Generalized Linear Models 29
3.1 Components of a Generalized Linear Model (GLM) 29
3.2 GLM for Binary Data 30
3.2.1 Linear Probability Model 30
3.2.2 Logistic Regression Model 30
3.3 GLM for Count Data 34
3.3.1 Modeling Counts 34
3.3.2 Modeling Rates 36
3.4 Inference and Model Checking 40
3.4.1 Standard testing - Wald 40
3.4.2 Likelihood Ratio Test - Deviance 40
3.5 Overdispersion 44
4 Logistic Regression 49
4.1 Interpretation 49
4.2 Inference 52
4.3 Multiple Logistic Regression 53
4.3.1 Qualitative predictors 56
4.3.2 Quantitative Treatment of Ordinal Factors 58
4.4 Summarizing Predictive Power 60
4.5 Receiver Operating Characteristic Curve 62
5 Building Logistic Regression Models 63
5.1 Strategies 63
5.1.1 AIC and AICc 63
5.1.2 Multicollinearity 64
5.1.3 Stepwise Selection Algorithms 65
5.2 Model Checking 66
5.3 Effects of Sparse Data 68
6 Multicategory Logit Models 70
6.1 Logit Models for Nominal Responses 70
6.2 Cumulative Logit Models for Ordinal Responses 73
8 Models for Matched Pairs 79
8.1 McNemar's Test 79
8.2 Rater Agreement 82
8.2.1 Cohen's Kappa (unweighted) 83
8.2.2 Cohen's Kappa (weighted) 85
9 Models for Correlated, Clustered Responses 86
9.1 Introduction 86
9.2 Generalized Estimating Equations 86
10 Random Effects: GLMM 92
10.1 Generalized Linear Mixed Models 92
10.2 Comparison with GEE 94
7 Loglinear Models 98
7.1 Loglinear for 2-way 98
7.1.1 $I \times J$ 98
7.1.2 $I \times 2$ 101
7.2 Loglinear for 3-way 104
7.3 Loglinear-Logit Connection 108
7.4 Independence Graphs and Collapsibility 111
7.4.1 Independence Graphs for a 4-Way Table (Variables W, X, Y, Z) 112
7.4.2 Collapsibility Conditions for Three-Way Tables 112
7.4.3 Collapsibility Conditions for Multiway Tables 114
Literature 116

1. Introduction

1.1 Categorical Response Data

1.2 Probability Distributions for Categorical Data 6
1.3 Statistical Inference for a Proportion 8

Methods for response variable whose measurement scale is a set of categories.

1.1 Categorical Response Data

The response variable will be categorical while the predictors/covariates can be either categorical/qualitative or quantitative as you have seen with regression models.

Definition 1.1 (Categorical) A categorical variable is one for which the measurement scale consists of a set of categories. Categorical variables can be

- Nominal: Unordered categories
- Ordinal: Ordered categories

Example 1.1 Categorical variables can be:
Nominal - method of communication: text, call, phonetic, visual

- favorite music: rock, pop, country, indie, EDM, R\&B, etc
- swipe: left, right

Ordinal - political philosophy: liberal, moderate, conservative

- patient condition (excellent, good, fair, poor)

Remark 1.1. Methods designed for ordinal variables utilize category ordering and thus they cannot be used for nominal variables.

1.2 Probability Distributions for Categorical Data

For categorical data a very important distribution is the multinomial distribution of which the binomial is a special case for situations with a a binary outcome.

1.2.1 Bernoulli distribution

Imagine an experiment where the r.v. Y can take only two possible outcomes,

- $\operatorname{success}(Y=1)$ with some probability π
- failure $(Y=0)$ with probability $1-\pi$.

The p.m.f. of Y is

$$
p(y)=\pi^{y}(1-\pi)^{1-y} \quad y=0,1 \quad 0 \leq \pi \leq 1
$$

and we denote this with $Y \sim \operatorname{Bernoulli}(\pi)$ where $E(Y)=\pi$ and $V(Y)=\pi(1-\pi)$.
Example 1.2 A die is rolled and we are interested in whether the outcome is a 6 or not. Let,

$$
Y= \begin{cases}1 & \text { if outcome is } 6 \\ 0 & \text { otherwise }\end{cases}
$$

Then, $Y \sim \operatorname{Bernoulli}(1 / 6)$ with mean $1 / 6$ and variance $5 / 36$.

1.2.2 Binomial distribution

If Y_{1}, \ldots, Y_{n} correspond to n Bernoulli trials conducted where

- the trials are independent
- each trial has identical probability of success π
- the r.v. Y is the total number of successes
then $Y=\sum_{i=1}^{n} Y_{i} \sim \operatorname{Bin}(n, \pi)$ with p.m.f.

$$
p(y)=\binom{n}{y} \pi^{y}(1-\pi)^{n-y}, \quad y=0,1, \ldots, n
$$

where $\binom{n}{y}=\frac{n!}{y!(n-y)!}$ with $E(Y)=n \pi$ and $V(Y)=n \pi(1-\pi)$. Note that ! is the "factorial" operator.

Example 1.3 The shape of 3 different binomials. Notice with $\pi=0.5$ it is symmetric.

Example 1.4 A die is rolled 4 times and the number of 6 s is observed (y).

y	$P(y)$
0	0.4823
1	0.3858
2	0.1157
3	0.0154
4	0.0008

In R, these were found using
dbinom ($0: 4,4,1 / 6$)
Find the probability that there is at least one 6 .

$$
\begin{aligned}
P(Y \geq 1) & =1-P(X<1) \\
& =1-P(X=0) \\
& =0.5177
\end{aligned}
$$

In R, one would simple use
1-pbinom ($0,4,1 / 6$)
Also, $E(Y)=4(1 / 6)=2 / 3$ and $V(Y)=4(1 / 6)(5 / 6)=5 / 9$.

Remark 1.2. Another variable of interest concerning experiments with binary outcomes is the proportion of successes $\hat{\pi}=Y / n$. Note that $\hat{\pi}$ is simply the r.v. Y multiplied by a constant, $1 / n$. Hence,

$$
E(\hat{\pi})=E(Y / n)=\frac{n \pi}{n}=\pi
$$

and

$$
V(\hat{\pi})=V(Y / n)=\frac{1}{n^{2}} V(Y)=\frac{\not \mu \pi(1-\pi)}{n^{2}}=\frac{\pi(1-\pi)}{n}
$$

Remark 1.3. Binomial distribution can be approximated by a normal distribution when n is large such that, $n(\min \{\pi, 1-\pi\}) \geq 5$.

1.3 Statistical Inference for a Proportion

Parameters are often estimated using maximum likelihood (M.L.) That is, finding value of the parameters (of interest) that maximize the likelihood function or equivalently the log of the likelihood function.

Definition 1.2 (Likelihood Function) The probability of the observed data, expressed as a function of the parameter is called a likelihood function.

Definition 1.3 (MLE) The maximum likelihood estimator (MLE) is defined to be the parameter value, for which the likelihood function is maximized.

Example 1.5 Consider a widget that either works (success) or does not work (failure). Hence, if each attempt with the widget is identical and independent, the number of successes follows a $\operatorname{Bin}(n, \pi)$.
Out of 10 attempts, 7 yielded a success. We use $\hat{\pi}=7 / 10$.

$\operatorname{Bin}(10, ?)$	$P(Y=7)$
$\pi=0.5$	0.1172
$\pi=0.6$	0.2150
$\pi=0.7$	0.2668
$\pi=0.8$	0.2013

So by simple, but not thorough search, we saw that the outcome 7, was most "likely" if we had a $\operatorname{Bin}(10,0.7)$. Now lets be thorough:

1. Take the binomial p.m.f. but now treat is a function where π is the argument.

$$
L(\pi):=\frac{n!}{y!(n-y)!} \pi^{y}(1-\pi)^{n-y}, \quad y=7, n=10, \pi \in[0,1]
$$

2. To simplify lets take a look at the log likehood, where maximizing likehood is equivalent to maximizing log likehood.

$$
l(\pi):=\log L(\pi)=\log \{n!\}-\log \{(n-y)!\}+y \log \{\pi\}+(n-y) \log \{1-\pi\}
$$

3. Find maximum, take derivative and equate to 0 .

$$
\frac{d l(\pi)}{d \pi}=\frac{y}{\pi}-\frac{(n-y)}{1-\pi}=0 \Rightarrow \hat{\pi}=\frac{y}{n}=\frac{7}{10}
$$

1.3.1 Key facts

- If $y_{1}, y_{2}, \ldots, y_{n}$ are i.i.d. from a normal distribution, then

$$
L\left(\mu, \sigma^{2} \mid y\right)=\prod_{i=1}^{n} f\left(\mu, \sigma^{2} \mid y_{i}\right)
$$

where $f($.$) is the p.d.f. The MLEs are then \hat{\mu}=\bar{y}$ and $\hat{\sigma}^{2}=\frac{1}{n} \sum\left(y_{i}-\bar{y}\right)^{2}$

- In ordinary linear regression with Y being normal, the least squares estimators of the regression coefficients are also the MLEs.
- For large sample size n, MLEs are optimal (no other estimator has smaller mean squared error: variance plus squared bias). This is true in fairly broad generality.
- For large n, the sampling distribution of the MLE is approximately normal. Again, this is true in fairly broad generality.
- Recall that $\hat{\pi}$ is unbiased with $E(\hat{\pi})=\pi$ and consistent with $V(\hat{\pi}) \underset{n \rightarrow \infty}{\longrightarrow} 0$. MLEs are generally consistent.
- $\hat{\pi}$ is a sample mean for $0-1$ data, so by the Central Limit Theorem, the sampling distribution is approximately normal for large n. Again, this is generally true for MLEs.

1.3.2 Inference Methodologies

Various significance tests exist and inverting them yields corresponding confidence intervals, values for the null hypothesis for which would fail to reject the null. Without loss of
generality consider

$$
\mathrm{H}_{0}: \pi=\pi_{0} \quad \text { vs } \quad \mathrm{H}_{a}: \pi \neq \pi_{0}
$$

Let $p=\hat{\pi}$

Wald

Under the null,

$$
T S=\frac{p-\pi_{0}}{\sqrt{p(1-p) / n}} \stackrel{\text { approx. }}{\sim} N(0,1)
$$

which inverting yields the $100(1-\alpha)$ confidence interval (CI)

$$
p \mp z_{1-\alpha / 2} \sqrt{p(1-p) / n}
$$

We fail to reject the null when

$$
\left|\frac{p-\pi_{0}}{\sqrt{p(1-p) / n}}\right|<z_{1-\alpha / 2}
$$

Solving for π_{0} we obtain the CI formula.

Remark 1.4. Consider cases such as $p=0$ or 1 . Then the CI collapses to a singularity such as $(0,0)$ or $(1,1)$ and the CI can generally perform quite badly when n is relatively small, so other methods are advisable.

R code 1.1 Within the "binom" package use:

```
    binom.confint(y, n, conf.level = 0.95, methods = '`asymptotic'`)
```


Score/Wilson

Being true to fully adopting the null hypothesis, π_{0} is used in the standard error, so that under the null

$$
T S=\frac{p-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}} \stackrel{\text { approx. }}{\sim} N(0,1)
$$

We fail to reject the null when

$$
\left|\frac{p-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}}\right|<z_{1-\alpha / 2}
$$

Solving for π_{0} requires the use of the quadratic formula and is a bit more complex and generally we let software solve for us.

R code 1.2 Within the "binom" package use:
binom.confint(y, n, methods = ‘‘wilson'’)
or with small adaptation (continuity correction) use
binom.confint(y, n, methods = '`prop.test'")

Other methods:

- Agresti-Coull, which has become the new norm.

```
R code 1.3 Use
    binom.confint(y, n, methods = '`agresti-coull'')
```

- Clopper-Pearson a.k.a. "exact" which is recommended when n is small seeing how it is "exact".

R code 1.4 Use
binom.confint(y, n, methods = '`exact'’)

2. Contingency Tables

Analyzing tables involving frequency counts.

2.1 Introduction

2.1.1 Key Points

- X and Y are two categorical variables.
- X has I categories.
- Y has J categories.
- Display the $I J$ possible combinations of outcomes in a rectangular table having I rows for the categories of X and J columns for the categories of Y.

Definition 2.1 (Contingency table) A table of this form in which the cells contain frequency counts of outcomes is called a contingency table.

Example 2.1 (Physicians' Health Study) A study on Myocardial Infraction (MI) and treatment. We consider

- $Y=$ heart attack: yes/no, response variable
- $X=$ group: placebo/aspirin, explanatory variable

Group	MI	
	Yes	No
Placebo	189	10845
Aspirin	104	10933

2.1.2 Notation

- Let $\pi_{i j}=P(X=i, Y=j)$ probability that (X, Y) falls in the cell in row i and column j so that $\left\{\pi_{i j}\right\}$ form the joint distribution of X and Y such that

$$
\sum_{i=1}^{I} \sum_{j=1}^{J} \pi_{i j}=1
$$

- The marginal distribution of X is $\left\{\pi_{i+}\right\}$, which is obtained by $\pi_{i+}=\sum_{j=1}^{J} \pi_{i j}$. (Law of Total Probability)
- The marginal distribution of Y is $\left\{\pi_{+j}\right\}$, which is obtained by $\pi_{+j}=\sum_{i=1}^{I} \pi_{i j}$.

Example 2.2 In a 2×2 table.

- Similarly, let $\left\{n_{i j}\right\},\left\{n_{i+}\right\},\left\{n_{+j}\right\}$ denote the cell counts, row and column totals respectively.

Example 2.3 In a 2×2 table.

	Y			$\begin{aligned} & n_{1+} \\ & n_{2+} \end{aligned}$
		1	2	
	1	n_{11}	n_{12}	
	2	n_{21}	n_{22}	
		n_{+1}	n_{+2}	n

- Let

$$
p_{i j}=\frac{n_{i j}}{n}
$$

and

$$
p_{i+}=\frac{n_{i+}}{n}, \quad p_{+j}=\frac{n_{+j}}{n}
$$

- It is informative to construct separate probability distributions for Y at each level of X. Such a distribution consists of conditional probabilities for Y given the level of X and is called a conditional distribution. That is,

$$
\pi_{j \mid i}=\frac{\pi_{i j}}{\pi_{i+}} \quad \text { estimated by } \quad p_{j \mid i}=\frac{n_{i j}}{n_{i+}}
$$

Example 2.4 (Physicians' Health Study ctd) Look at the probability of heart attack given the treatment group.

Group	MI		
	Yes	No	Total
Placebo	0.017	0.983	1
Aspirin	0.009	0.991	1

Remark 2.1. For many diseases there are tests to detect the disease but such tests are not fail proof. A 2×2 contingency table helps explore the effectiveness of the test. Let

- $Y=$ outcome of the test with $\left\{\begin{array}{ll}1 & \text { positive } \\ 2 & \text { negative }\end{array}\right.$.
- $X=$ actual condition with $\left\{\begin{array}{ll}1 & \text { diseased } \\ 2 & \text { not diseased }\end{array}\right.$.

The following two terms are important

- Sensitivity: $P(Y=1 \mid X=1)$ (True positive)
- Specificity: $P(Y=2 \mid X=2)$ (True negative)

2.1.3 Independence

Definition 2.2 (Independence) Variables X and Y are statistically independent if the true conditional distribution of Y is the same at each level of X.

That is,

$$
\pi_{j \mid i}=\pi_{j \mid i^{\prime}} \quad \forall i, i^{\prime}
$$

and as a consequence
Lemma 2.1 X and Y are independent if and only if

$$
\pi_{i j}=\pi_{i+} \pi_{+j} \quad \forall i, j
$$

Example 2.5 In a 2×2 table.

2.2 Comparing Proportions in 2×2 Tables

Consider the conditional distributions, as in example 2.4, simplifying notation by using $\pi_{i}=\pi_{1 \mid i}$.

	Y	
	1	2
	π_{1}	$1-\pi_{1}$
2	π_{2}	$1-\pi_{2}$

and interested in performing inference, on whether $\pi_{1}=\pi_{2}$.
Before we begin we need to use
Lemma 2.2 (Delta Method) Assume that T_{n} is a statistic based on the data and θ is the parameter which T_{n} is trying to target such that

$$
\sqrt{n}\left(T_{n}-\theta\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)
$$

For a continuous function $g(\cdot)$, the asymptotic distribution of $g\left(T_{n}\right)$ is

$$
\sqrt{n}\left(g\left(T_{n}\right)-g(\theta)\right) \xrightarrow{d} N\left(0, \sigma^{2}\left[g^{\prime}(\theta)\right]^{2}\right)
$$

by Taylor series expansion where $\sqrt{n}\left(g\left(T_{n}\right)-g(\theta)\right) \approx \sqrt{n}\left(T_{n}-\theta\right) g^{\prime}(\theta)$

1. We can use what we learned in an introductory statistics course assuming the two levels of X are independent

$$
p_{1}-p_{2} \mp z_{1-\alpha / 2} \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1+}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2+}}}
$$

Example 2.6 From example 2.4, a 95% C.I. for $\pi_{1}-\pi_{2}$

$$
0.017-0.009 \mp 1.96 \sqrt{\frac{0.017(0.983)}{11034}+\frac{0.009(0.991)}{11037}} \rightarrow(0.005,0.011)
$$

Note that if 0 was in the C.I. that would imply independence.
2. Another concept is

Definition 2.3 (Relative Risk) Relative Risk (R.R.) is defined as

$$
\text { R.R. }=\frac{\pi_{1}}{\pi_{2}}
$$

Example 2.7 From example 2.4, R.R. $=1.82$. Hence, the sample proportion of heart attacks was 82% higher for placebo group.

Note that $\log ($ R.R. $)=\log \left(\pi_{1}\right)-\log \left(\pi_{2}\right)$ and the Delta Method allows us to find an asymptotic normal distribution for each $\log \left(\pi_{i}\right)$, and the linear combination of two asymptotic normal is still a normal. Therefore, a $100(1-\alpha)$ C.I. on $\log \left(\pi_{1} / \pi_{2}\right)$ is

$$
\log \left(\frac{p_{1}}{p_{2}}\right) \mp z_{1-\alpha / 2} \sqrt{\frac{1-p_{1}}{n_{1+} p_{1}}+\frac{1-p_{2}}{n_{2+} p_{2}}} \rightarrow(L, U)
$$

and $100(1-\alpha)$ C.I. on π_{1} / π_{2} is $\left(e^{L}, e^{U}\right)$.
Example 2.8 From example 2.4, a 95% C.I. for $\log \left(\pi_{1} / \pi_{2}\right)$ ends up being ($0.3571,0.8406$) and hence for π_{1} / π_{2}

$$
\left(e^{0.3571}, e^{0.8406}\right) \rightarrow(1.43,2.31)
$$

Note that if 1 was in the C.I. that would imply independence.
3. If we let redefine $Y=1$ as a success and $Y=2$ as a failure, the odds of success are

$$
\operatorname{odds}(\mathrm{S})= \begin{cases}\frac{\pi_{1}}{1-\pi_{1}} & X=1 \\ \frac{\pi_{2}}{1-\pi_{2}} & X=2\end{cases}
$$

Definition 2.4 (Odds Ratio) The Odds Ratio (O.R.) is the ratio of the odds of $Y=1 \mid X=1$ to that of $Y=1 \mid X=2$.

$$
\theta=\frac{\pi_{1} /\left(1-\pi_{1}\right)}{\pi_{2} /\left(1-\pi_{2}\right)}=\frac{\pi_{1}\left(1-\pi_{2}\right)}{\pi_{2}\left(1-\pi_{1}\right)}
$$

Example 2.9 From example 2.4,

$$
\hat{\theta}=\frac{0.0171 / 0.9829}{0.0094 / 0.9906}=1.83
$$

The estimated odds of heart attack in placebo group are 1.83 times the odds of heart attack in the aspirin group.

Using the Delta Method the $100(1-\alpha)$ C.I. on $\log (\theta)$ is

$$
\log (\hat{\theta}) \mp z_{1-\alpha / 2} \sqrt{\frac{1}{n_{11}}+\frac{1}{n_{12}}+\frac{1}{n_{21}}+\frac{1}{n_{22}}} \rightarrow(L, U)
$$

and $100(1-\alpha)$ C.I. on θ is $\left(e^{L}, e^{U}\right)$.
Example 2.10 From example 2.4, a 95% C.I. for $\log (\theta)$

$$
\log (1.83) \mp 1.96 \sqrt{1 / 189+1 / 10845+1 / 104+1 / 10933} \rightarrow(0.365,0.846)
$$

and hence for $\theta,(1.44,2.33)$.

Properties:

- If $1<\theta<\infty$, the odds of success are higher in row 1 than in row 2 .
- If $0<\theta<1$, a success is less likely in row 1 than in row 2.
- $\theta=1 \Leftrightarrow \log (\theta)=0$. This also implies $\pi_{1}=\pi_{2}$, hence independence.
- If rows are interchanged (or columns, but not both), $\theta \rightarrow 1 / \theta$
- $\hat{\theta}=\frac{n_{11} n_{22}}{n_{12} n_{21}}$
- O.R. is valid for retrospective studies while R.R. and differencing are not. In retrospective studies, sampling is done within levels of Y, not to Y, and we cannot estimate $P(Y \mid X)$. We can estimate $P(X \mid Y)$ and hence θ, as θ treats rows and columns symmetrically.

$$
\begin{aligned}
\theta & =\frac{P(X=1 \mid Y=1) / P(X=2 \mid Y=1)}{P(X=1 \mid Y=2) / P(X=2 \mid Y=2)} \\
& =\cdots \\
& =\frac{P(Y=1 \mid X=1) / P(Y=2 \mid X=1)}{P(Y=1 \mid X=2) / P(Y=2 \mid X=2)}
\end{aligned}
$$

Example 2.11 (Case-control study in London Hospitals (Doll and Hill 1950)) Let,

$$
X=\text { smoked at least } 1 \text { cigarette per day for at least } 1 \text { year }
$$

$Y=1$ for lung cancer, 0 otherwise

Smoked	Cancer	
	Yes	No
Yes	688	650
No	21	59
Total	709	709

This is a case-control study because the presence of lung cancer is considered "rare" so they found 709 individuals without lung cancer and then (using records) found 709 with lung cancer, and then looked at whether they smoked or not.

$$
\hat{\theta}=\frac{(688 / 709) /(21 / 709)}{(650 / 709) /(59 / 709)}=\frac{688 \times 59}{21 \times 650}=2.97
$$

Odds of lung cancer for smokers is estimated to be about 3 times the odds for non smokers.

- When any values $n_{i j} \approx 0$, it is best to use $\left\{n_{i j}+0.5\right\}$
- When π_{1} and π_{2} are close to zero then O.R. \approx R.R.

2.3 Testing Independence

To test whether X and Y we refer back to Lemma 2.1 that $\pi_{i j}=\pi_{i+} \pi_{+j}$. With any multinomial we have that the expected frequency of a cell is

$$
\begin{aligned}
\mu_{i j} & =n \pi_{i j} \\
& =n \pi_{i+} \pi_{+j} \quad \text { by ind. }
\end{aligned}
$$

The MLEs under the null of the expected frequencies are

$$
\begin{aligned}
\hat{\mu}_{i j} & =n \hat{\pi}_{i+} \hat{\pi}_{+j} \\
& =x \frac{n_{i+}}{x} \frac{n_{+j}}{n}
\end{aligned}
$$

2.3.1 Pearson Test

Testing

$$
\mathrm{H}_{0}: \mu_{i j}=\mu_{i j}^{0} \stackrel{\text { ind. }}{=} \frac{n_{i+} n_{+j}}{n}, \quad \forall i, j
$$

The Pearson chi-square test statistic under the assumption that $\hat{\mu}_{i j}>5 \forall i, j$ is asymptotically

$$
\begin{equation*}
X^{2}=\sum_{i j} \frac{\left(n_{i j}-\hat{\mu}_{i j}\right)^{2}}{\hat{\mu}_{i j}} \underset{\text { approx. }}{\stackrel{\mathrm{H}_{0}}{0}} \chi_{(I-1)(J-1)}^{2} \tag{2.1}
\end{equation*}
$$

with p-value $P\left(\chi_{(I-1)(J-1)}^{2} \geq X^{2}\right)<\alpha$ (the area to the right of the test statistic is less that α). More on the degrees of freedom later in equation (2.3).

Example 2.12 (Job Satisfaction) Data from General Social Survey (1991)

Income	Job Satisfaction				
	Dissat	Little	Moderate	Very	Total
$<5 \mathrm{k}$	2	4	13	3	22
$5 \mathrm{k}-15 \mathrm{k}$	2	6	22	4	34
$15 \mathrm{k}-25 \mathrm{k}$	0	1	15	8	24
$>25 \mathrm{k}$	0	3	13	8	24
Total	4	14	63	23	104

http://users.stat.ufl.edu/~athienit/STA4504/Examples/job_sat.R
> job_test=chisq.test(job)
>job_test

```
data: job
X-squared = 11.524, df = 9, p-value = 0.2415
Warning message: cies are \(<5\).
```

```
> round(job_test$expected,2)
```

> round(job_test\$expected,2)
Dissat Little Moderate Very
Dissat Little Moderate Very
<5
<5
5k-15k 1.31 4.58 20.60 7.52
5k-15k 1.31 4.58 20.60 7.52
15k-25k 0.92 3.23 14.54 5.31
15k-25k 0.92 3.23 14.54 5.31
>25k 0.92 3.23 14.54 5.31

```
>25k 0.92 3.23 14.54 5.31
```

In chisq.test(job) : Chi-squared approximation may be incorrect

Note that when we run the test we obtain a warning because many expected frequen-

2.3.2 Likelihood-Ratio Test

The likelihood-ratio

$$
\Lambda=\frac{\text { maximum likelihood when } H_{0} \text { is true }}{\text { maximum likelihood when parameters are unrestricted }}
$$

Consider

$$
H_{0}: \theta \in \Theta_{0} \quad \text { vs } \quad H_{1}: \theta \in \Theta_{1}
$$

the likelihood ratio is given by

$$
\Lambda=\frac{\sup _{\theta \in \Theta_{0}} L(\theta)}{\sup _{\theta \in\left(\Theta_{0} \cup \Theta_{1}\right)} L(\theta)}
$$

So if the ratio is close to 1 it implies that the estimated parameter(s) under the null are close in proximity to the unrestricted MLEs and hence null is plausible.

For example, assume we wish to test $\mathrm{H}_{0}: \theta=\theta_{0}$. To determine if the null value θ_{0} is plausible we will compare it to the maximum likelihood estimate $\hat{\theta}_{\text {MLE }}$, by seeing how close the likelihood functions are at θ_{0} and $\hat{\theta}_{\text {MLE }}$.

The likelihood ratio test (LRT) statistic is asymptotically

$$
\begin{equation*}
G^{2}=-2 \log \Lambda \underset{\text { approx. }}{\underset{d f}{\mathrm{H}_{0}}} \chi_{d f}^{2} \tag{2.2}
\end{equation*}
$$

and
degrees of freedom $=$ no. of parameters in general - no. of parameters under H_{0}
Recall that multinomial pdf/likelihood function for an $I \times J$ table is

$$
L\left(\pi_{i j} ; n_{i j}\right)=\frac{n!}{n_{11}!\cdots n_{I!}!} \pi_{11}^{n_{11}} \cdots \pi_{I J}^{n_{I J}}
$$

Hence for a two-way contingency table and working with multinomials we have

$$
\Lambda=\frac{\left(\frac{n_{i+} n_{+j}}{n^{2}}\right)^{n_{i j}}}{\left(\frac{n_{i j}}{n}\right)^{n_{i j}}}
$$

We can ignore the constants up from since the play no role when maximizing. Recall $\hat{\mu}_{i j}=$ $\left(n_{i+} n_{+j}\right) / n$, so equation (2.2) becomes

$$
G^{2}=2 \sum_{i j} n_{i j} \log \left(\frac{n_{i j}}{\hat{\mu}_{i j}}\right)
$$

and the df in equation (2.3)

- In general, there are $I J$ groupings in the multinomial with $I J, \pi_{i j}$'s, hence $I J-1$ free parameters in general.
- Under $\mathrm{H}_{0}, I-1$ free π_{i+} 's and $J-1$ free π_{+j} 's
and hence

$$
\begin{aligned}
d f & =(I J-1)-[(I-1)+(J-1)] \\
& =(I-1)(J-1)
\end{aligned}
$$

```
Example 2.13 (Job Satisfaction continued) Performing the likelihood ratio test
http://users.stat.ufl.edu/~athienit/STA4504/Examples/job_sat.R
> library(DescTools)
> GTest(job)
data: job
G = 13.467, X-squared df = 9, p-value = 0.1426
```


Remark 2.3.

- As $n \rightarrow \infty, X^{2} \xrightarrow{d} \chi^{2}$ faster than $G^{2} \xrightarrow{d} \chi^{2}$, but they are usually similar and asymptotically equivalent, i.e. $X^{2}-G^{2} \xrightarrow{d} 0$
- These tests treat X and Y as nominal and reordering rows or columns has no effect. Methods for ordinal tests (section 2.5 of textbook) do exist.

Once dependence is established, of interest is to determine which cells in the contingency table have higher or lower frequencies than expected (under independence). This is usually determined by observing the standardized residuals (deviations) of the observed counts, $n_{i j}$, to the expected counts $\hat{\mu}_{i j}$

Definition 2.5 (Standardized/Adjusted Residuals)

$$
r_{i j}=\frac{n_{i j}-\hat{\mu}_{i j}}{\sqrt{\hat{\mu}_{i j}\left(1-p_{i+}\right)\left(1-p_{+j}\right)}}
$$

which under H_{0} behaves similar to $N(0,1)$. Hence, values exceeding 2 are indication of a lack of fit of H_{0}. Also, note the sign of the residual which describes the nature of the association.

```
Example 2.14 (Job Satisfaction continued) Residuals are:
http://users.stat.ufl.edu/~athienit/STA4504/Examples/job_sat.R
> round(job_test$stdres,4)
    Dissat Little Moderate Very
<5 1.4406 0.7305 -0.1606 -1.0792
5k-15k 0.7525 0.8716 0.6005-1.7726
15k-25k -1.1171-1.5211 0.2198 1.5098
>25k -1.1171 -0.1574 -0.7327 1.5098
```

Remark 2.4. The unstandardized (Pearson) residual is

$$
e_{i j}=\frac{n_{i j}-\hat{\mu}_{i j}}{\sqrt{\hat{\mu}_{i j}}}
$$

tends to have a variance that is smaller than 1. Note that,

$$
X^{2}=\sum_{i j} e_{i j}^{2}
$$

The deviance residual that corresponds to G^{2} is not discussed in this class.

2.3.3 Partitioning Chi-squared

The sum of two independent chi-squared random variables has a chi-squared distribution with degrees of freedom equal to the sum of the df of the two components.

Lemma 2.3 Let $\chi_{\nu_{1}}^{2}$ and $\chi_{\nu_{2}}^{2}$ be independent. Then,

$$
\chi_{\nu_{1}}^{2}+\chi_{\nu_{2}}^{2} \sim \chi_{v_{1}+v_{2}}^{2}
$$

The G^{2} statistic for testing independence can be partitioned into components representing certain aspects of the association. We refer the reader to the textbook for specifics.

Example 2.15 Consider the following data from a survey.

	Democrat	Independent	Republican
F	279	73	225
M	165	47	191

We have $G^{2}=7$ with $d f=2$. However the table can be partitioned into two tables

	Democrat	Independent
F	279	73
M	165	47

With $G^{2}=0.16$ and $d f=1$.

	Dem. and Ind.	Republican
F	352	225
M	212	191

With $G^{2}=6.84$ and $d f=1$.

Example 2.16 Consider example 2.12, with $G^{2}=13.47$ with $d f=9$ but partinioned as

Income	Job Satisfaction					
	Low					0.30
	Dissat	Little	Moderate	Very	G^{2}	df
$<5 \mathrm{k}$	2	4	13	3		
$5 \mathrm{k}-15 \mathrm{k}$	2	6	22	4		
High					1.19	3
$15 \mathrm{k}-25 \mathrm{k}$	0	1	15	8		
$>25 \mathrm{k}$	0	3	13	8		
Low vs High					11.98	3
$<15 k$	4	10	35	7		
$>15 k$	0	4	28	16		

2.3.4 Exact Inference

In this section we take a look at Fisher's Exact Test that does not implement an asymptotic distribution. It is exact for any sample size. It was first created and used for 2×2 tables but has since been extended.

With $\mathrm{H}_{0}: X, Y$ independent $\Leftrightarrow \theta=1$ (odds ratio $=1$)

$$
\begin{aligned}
& \text { Y } \\
&
\end{aligned}
$$

and treating the row and column totals as fixed, the exact null distribution of $\left\{n_{i j} \mid n_{1+}, n_{2+}, n_{+1}, n_{+2}\right\}$ is the hypergeometric distribution. In the 2×2 case the value of n_{11} completely determines the other 3 cells (since marginals are fixed).

$$
p\left(n_{11}\right)=\frac{\binom{n_{1+}}{n_{11}}\binom{n_{2+}}{n_{+1}-n_{11}}}{\binom{n}{n_{+1}}}, \quad n_{11} \in\left\{\max \left(0, n_{+1}+n_{1+}-n\right), \ldots, \min \left(n_{+1}, n_{1+}\right)\right\}
$$

The p-value is the sum of the hypergeometric probabilities for outcomes at least as favorable to the alternative hypothesis as the observed outcome.

Example 2.17 (Tea Testing) The lady is told that milk was poured first in 4 cups and tea first in the other 4 . Order of tasting is randomized. Asked to identify the 4 cups with milk poured first.

Based on the marginals it is possible for $n_{11}=0,1,2,3,4$ (not always the case).
R code 2.1 With software,

```
> cbind(0:4,dhyper(0:4,4,4,4))
    [,1] [,2]
[1,] 0 0.01428571
[2,] 1 0.22857143
[3,] 2 0.51428571
[4,] 3 0.22857143
[5,] 4 0.01428571
```

To test

$$
\mathrm{H}_{0}: \theta \leq 1 \quad \text { vs. } \quad \mathrm{H}_{a}: \theta>1
$$

where the alternative is indicating that the lady can correctly guess better than simply guessing by chance, the p-value is thus

$$
P\left(n_{11} \geq 3\right)=0.243
$$

With software,

```
> TeaTasting=matrix(c(3, 1, 1, 3),2,2,byrow=T,
+ dimnames=list(Truth=c("Milk","Tea"),Guess=c("Milk","Tea")))
> TeaTasting
Guess
Truth Milk Tea
Milk 3 1
Tea 1 3
> fisher.test(TeaTasting,alternative="greater")
data: TeaTasting
p-value = 0.2429
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
0.3135693 Inf
sample estimates:
odds ratio
6.408309
```

The odds ratio in fisher.test is the ML odds ratio, not the unconditional one traditionally taught $(\hat{\theta}=9)$

Example 2.18 (Job Satisfaction continued) For larger than 2×2 tables, In R
> fisher.test(job)
Fisher's Exact Test for Count Data
data: job
p-value $=0.2315$
alternative hypothesis: two.sided

Remark 2.5. For tables with ordinal variables please refer to "Analysis of Ordinal Data" by Alan Agresti. In addition, some methods you can review are:

- section 2.5.1 of our textbook
- Goodman's gamma
- Kendall's tau b

2.4 Three-Way Contingency Tables

2.4.1 Odds Ratios

Extending to three variables the goal is to examine the relationship between X and Y controlling (if significant) for a third variable Z.

Example 2.19 (Death Penalty) A $2 \times 2 \times 2$ table from data from Florida 1976-1987.

Victim's Race	Defendant's Race	Death Penalty		
	Yes	No	Percentage Yes	
	White	53	414	11.3
	Black	11	37	22.9
Black	White	0	16	0.0
	Black	4	139	2.8
Total	White	53	430	11.0
	Black	15	176	7.9

Let

- Y be the response whether they receive death penalty
- X be the defendant's race
- Z be the victim's race

The eastimated conditional odds ratios are

- $Z=$ white, $\hat{\theta}_{X Y(1)}=\frac{53 \times 37}{414 \times 11}=0.43$ (0.42 after adding 0.5 to each cell)
- $Z=$ black, $\hat{\theta}_{X Y(2)}=\frac{0 \times 139}{16 \times 4}=0$ (0.94 after adding 0.5 to each cell)

Controlling for victim's race, odds of receiving death penalty were lower for white defendants than for black defendants.
Ignoring victim's race, odds of death penalty higher for white defendants as

$$
\hat{\theta}_{X Y}=\frac{53 \times 176}{15 \times 430}=1.45
$$

This is an example of Simpson's Paradox.

Definition 2.6 (Simpson's paradox) When a marginal association can have different direction from the conditional associations is this is called Simpson's paradox.

Definition 2.7 (Conditional Independence) Variables X and Y are conditionally independent given Z if they are independent in each conditional table.

In a $2 \times 2 \times K$ table this means

$$
\theta_{X Y(1)}=\cdots=\theta_{X Y(K)}=1.0
$$

The converse however does not apply, as shown in the following example
Example 2.20 Data from clinical treatment yield

		Response		
Clinic	Treatment	Success	Failure	$\hat{\theta}$
1	A	18	12	1.0
	B	12	8	
2	A	2	8	1.0
	B	8	32	
	A	20	20	2.0
	B	20	40	

This also acts as an example of a symmetric property know as
Definition 2.8 (Homogeneous Association) A homogeneous association exists if the conditional odds ratios between X and Y are identical at all levels of Z.

2.4.2 Cochran-Mantel-Haenszel Test

The Cochran-Mantel-Haenszel (CMH) Test is used on $2 \times 2 \times K$ tables to test
$\mathrm{H}_{0}: X$ and Y are conditionally independent given Z, i.e. $\theta_{X Y(1)}=\cdots=\theta_{X Y(K)}=1$

Similar to Fisher's Exact Test, in the k-th partial table, the row totals are n_{1+k}, n_{2+k} and column totals are $n_{+1 k}, n_{+2 k}$. Given both these totals, $n_{11 k}$ has a hypergeometric distribution and that determines all other cell counts in the k-th partial table.

$$
C M H=\frac{\left[\sum_{k=1}^{K}\left(n_{11 k}-E\left(n_{11 k}\right)\right)\right]^{2}}{\sum_{k=1}^{K} V\left(n_{11 k}\right)} \underset{\text { approx. }}{\stackrel{H_{0}}{0}} \chi_{1}^{2}
$$

where under independence,

$$
\begin{aligned}
& E\left(n_{11 k}\right)=\frac{n_{1+k} n_{+1 k}}{n} \\
& V\left(n_{11 k}\right)=\frac{n_{1+k} n_{2+k} n_{+1 k} n_{+2 k}}{n_{++k}^{2}\left(n_{++k}-1\right)}
\end{aligned}
$$

The Mantel-Haenszel estimator of that common value equals

$$
\hat{\theta}_{M H}=\frac{\sum_{k=1}^{K}\left(n_{11 k} n_{22 k} / n_{++k}\right)}{\sum_{k=1}^{K}\left(n_{12 k} n_{21 k} / n_{++k}\right)}
$$

The Delta Method can implemented to obtain the standard error of the $\log \left(\hat{\theta}_{M H}\right)$ but those calculations are ommitted here.

Remark 2.6.

- This test is inappropriate when the association varies widely among the partial tables.
- If the true odds ratios are not identical but do not vary drastically, $\hat{\theta}_{M H}$ still provides a useful summary of the K conditional associations, i.e. the K conditional odds ratios.

Example 2.21 Consider a $2 \times 2 \times 5$ table

> MIOC
, , Agegrp = 1
OCuse
Status Yes No Case 4 Control 62224
, , Agegrp = 2
OCuse
Status Yes No Case $\quad \begin{array}{lll}9 & 12\end{array}$ Control 33390
, , Agegrp = 3

```
                OCuse
Status Yes No
    Case 4 33
    Control 26 330
, , Agegrp = 4
                OCuse
Status Yes No
    Case 6 65
    Control 9 362
, , Agegrp = 5
            OCuse
Status Yes No
    Case 6 93
    Control 5 301
> OR=function(matrix,adjust=TRUE){
+ if(adjust==TRUE){mat=matrix+0.5}
+ OR=(mat[1,1]*mat[2,2])/(mat[1,2]*mat[2,1])
+ return(OR)
+ }
> apply(MIOC,3,OR)
    1 2 3 5
6.465600 8.859104 1.675303 3.786661 3.810890
Since the five sample odds ratios do not very "drastically" we can proceed with the CMH test
> mantelhaen.test(MIOC)
Mantel-Haenszel chi-squared test with continuity correction
data: MIOC
Mantel-Haenszel X-squared = 32.793, df = 1, p-value = 1.025e-08
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
    2.426983 6.493688
sample estimates:
common odds ratio
        3.969895
http://users.stat.ufl.edu/~athienit/STA4504/Examples/CMH.R
```

Remark 2.7. The Breslow-Day Test also exists for testing homogeneity of odds ratios, not just for conditional independence.

3. Generalized Linear Models

Using models as the basis for analyzing associations, which can describe effects in more informative ways.

3.1 Components of a Generalized Linear Model (GLM)

1. Random component: Identifies the response variable Y and assumes a probability distribution for it. We will assume independent observations from the exponential family of distributions. We will primarily be looking at binomial and Poisson, but note that the Gaussian also falls in this family as do most of the "common" distributions.
2. Systematic component: Specifies the explanatory variables $\left(x_{1}, \ldots, x_{k}\right)$ used as predictors in the model using a linear function of coefficients known as the linear predictors

$$
\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}
$$

3. Link: Describes the functional relation between the systematic component and expected value of the random component. It specifies how $\mu=E(Y)$ relates to explanatory variables in the linear predictor.

$$
g(\mu)=\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}
$$

The function $g(\cdot)$ is called the link function.

More about link functions

- Each potential probability distribution has one special function of the mean that is called its natural parameter. The link function that uses the natural parameter as $g(\mu)$ in the GLM is called the canonical link. (The benefit of using the canonical link is that the expected fisher-information matrix is the same as the observed matrix.)
- For the normal distribution, it is mean itself, i.e. identity link.

$$
g(\mu)=\mu=\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}
$$

- For the Poisson, the natural parameter is the \log of the mean. (Recall $\mu=\lambda$.)

$$
g(\mu)=\log (\mu)=\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}
$$

- For the Bernoulli, the natural parameter is the logit of the mean. (Recall $\mu=\pi$.)

$$
g(\mu)=\log \left[\frac{\mu}{1-\mu}\right]=\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}
$$

3.2 GLM for Binary Data

The distribution of a binary response is specified by probabilities

$$
P(Y=1)=\pi \quad \text { and } \quad P(Y=0)=1-\pi
$$

and for n independent and identical trails we end up with a binomial distribution.

3.2.1 Linear Probability Model

For simplicity, consider a single predictor x. Using an identity link,

$$
\pi(x)=\alpha+\beta x
$$

For such a model probabilities may fall between 0 and 1 but for large or small enough values of x, the model may predict $\pi(x)<0$ or $\pi(x)>1$. Hence, this model is valid only for a finite range of predictor values. As such other links shall be used, such as logit and probit.

Figure 3.1: An example of a model with identity, logit and probit links

3.2.2 Logistic Regression Model

Using the logit link,

$$
\begin{equation*}
\log \left(\frac{\pi(x)}{1-\pi(x)}\right)=\alpha+\beta x \quad \Rightarrow \quad \pi(x)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}} \tag{3.1}
\end{equation*}
$$

That is,

$$
\pi(x)=F_{0}(\alpha+\beta x) \quad \Rightarrow \quad F_{0}^{-1}(\pi(x))=\alpha+\beta x
$$

where

$$
F_{0}(x)=\frac{e^{x}}{1+e^{x}}=\frac{1}{1+e^{-x}}
$$

is the (standard) cdf of the logistic distribution. That is, the link function is the logistic's distribution quantile function (which is also the canonical link)

$$
g(\cdot) \equiv F_{0}^{-1}(\cdot)
$$

guaranteeing that $0 \leq \pi(x) \leq 1$. Although logistic regression will be covered more in depth in the next chapter some key points are:

- The parameter β determines the rate of increase or decrease of the curve and the magnitude of β determines how fast the curve increases or decreases.
- When $\beta>0, \pi(x)$ increases as x increases.
- When $\beta<0, \pi(x)$ decreases as x increases.

In the next chapter we will see that the $100(1-\alpha) \%$ C.I. on β is

$$
\hat{\beta} \mp z_{1-\alpha / 2}\left(s_{\hat{\beta}}\right)
$$

where the estimate and standard error are provided by the software.
R code 3.1 A GLM is fitted using the
model=glm(formula,data,family)
where the family argument will specify the random component as well as the link function. Basic output is provided with summary (model) and CI created on the coefficients via confint (model).
For a logistic regression, take for example

- When the response column is y is 0 or 1 , use

$$
\operatorname{glm}(y \sim x, f a m i l y=b i n o m i a l, d a t a=m y d a t a)
$$

- When there is a column grouping successes and one grouping failures, use
glm(cbind(Successes,Failures)~x,family=binomial,data=mydata)

Please see the help(glm) help file.

Alternative link: Probit Just as the logistic regression model utilized the logistic's distribution quantile function, an alternative is quantile function of the (standard) normal distribution

$$
g(\cdot) \equiv \Phi^{-1}(\cdot)
$$

which implies

$$
\pi(x)=\Phi(\alpha+\beta x)
$$

The probit transform maps $\pi(x)$ so that the regression curve for $\pi(x)$ (or $1-\pi(x)$, when $\beta<0$) has the appearance of the normal cdf with mean $\mu=-\alpha / \beta$ and standard deviation $\sigma=1 /|\beta|$.

Example 3.1 (Infant Malformation) A study was conducted about infant sex organ malformation and pregnant mother's alcohol consumption.

- $Y=$ infant sex organ malformation $(1=$ present, $0=$ absent $)$
- $x=$ mother's alcohol consumption (avg drinks per day)

Consumption		Malformation	
Measured	Score	Absent	Present
0	0.0	17066	48
<1	0.5	14464	38
$1-2$	1.5	788	5
$3-5$	4.0	126	1
≥ 6	7.0	37	1

```
> malform.logit=glm(cbind(Present,Absent)~Alcohol,
+ family=binomial(link=logit))
> summary(malform.logit)
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.9605 0.1154 -51.637 <2e-16 ***
Alcohol 0.3166 0.1254 2.523 0.0116 *
---
    Null deviance: 6.2020 on 4 degrees of freedom
Residual deviance: 1.9487 on 3 degrees of freedom
AIC: 24.576
```

The logistic regression model is

$$
\operatorname{logit}[\hat{\pi}(x)]=-5.9605+0.3166(\text { Score })
$$

Note that in this example both the logistic and the linear model appear to be good fits. This is because whenever you "zoom" into to a part of a curve a linear relationship is adequate.
http://users.stat.ufl.edu/~athienit/STA4504/Examples/malformation.R

Remark 3.1. If a logistic regression model is deemed an adequate fit then so will a probit model be deemed, i.e. when one is a good fit then so will the other, as seen in figure 3.1

Example 3.2 (Challenger disaster) For the 23 space shuttle flights that occurred before the Challenger mission disaster in 1986, the data shows the temperature at the time of flight and whether at least one primary O-ring suffered thermal distress.

Flight	Temp	Failure
1	66	0
2	70	1
3	69	0
4	68	0
5	67	0
6	72	0
7	73	0
8	70	0
9	57	1
10	63	1
11	70	1
12	78	0
13	67	0
14	53	1
15	67	0
16	75	0
17	70	0
18	81	0
19	76	0
20	79	0
21	75	1
22	76	0
23	58	1


```
> preC.logit=glm(Failure~Temp,family=binomial(link=logit),data=preC)
> summary(preC.logit)
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
(Intercept) 15.0429 7.3786 2.039 0.0415 *
Temp -0.2322 0.1082 -2.145 0.0320 *
    Null deviance: 28.267 on 22 degrees of freedom
```

Residual deviance: 20.315 on 21 degrees of freedom AIC: 24.315
> confint(preC.logit)

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) 3.330584834 .34215133
Temp -0.5154718-0.06082076
The logistic regression model is

$$
\operatorname{logit}[\hat{\pi}(x)]=15.0329-0.2322 \text { (Temp.) }
$$

According to the report, the air temperature at the time of launch, 11:38 a.m. EST, was 36 degrees. This temperature was 15 degrees colder than any previous launch and the O-ring suffered catastrophic failure.
> predict.glm(preC.logit, newdata=data.frame(Temp=36),type="response") 1
0.9987521

http://users.stat.ufl.edu/~athienit/STA4504/Examples/oring.R

3.3 GLM for Count Data

3.3.1 Modeling Counts

Many discrete response variables have counts as possible outcomes. The Poisson distribution is often used as a sampling model for counts.

Example 3.3 Data examples:

- For a sample of cities worldwide, each observation might be the number of automobile thefts in 2003.
- For a sample of silicon wafers used in computer chips, each observation might be the number of imperfections on wafer.

The Poisson probability mass function is

$$
p(y)=\frac{\mu^{y} e^{-\mu}}{y!}, \quad y=0,1, \ldots \mu>0
$$

with $E(Y)=V(Y)=\mu$.
The (simple) Poisson log-linear is

$$
\log (\mu)=\alpha+\beta x \quad \Rightarrow \quad \mu=e^{(\alpha+\beta x)}=e^{\alpha}\left(e^{\beta}\right)^{x}
$$

R code 3.2 For a poisson regression, take for example

$$
\operatorname{glm}(y \sim x, f a m i l y=p o i s s o n, d a t a=m y d a t a)
$$

Please see the help(glm) help file.

Example 3.4 (Silicon Wafers) Let,

- $Y=$ number of defects os silicon wafer.
- $x=0$ if type A, 1 if type B.

A	8	7	6	6	3	4	7	2	3	4
B	9	9	8	14	8	13	11	5	7	6

```
> wafers.log=glm(defects~trt,family=poisson(link="log"),data=wafers)
> summary(wafers.log)
Coefficients:
    Estimate Std. Error z value Pr(> |z|)
(Intercept) 1.6094 0.1414 11.380 < 2e-16 ***
trtB 0.5878 0.1764 3.332 0.000861 ***
---
Null deviance: 27.857 on 19 degrees of freedom Residual deviance: 16.268 on 18 degrees of freedom AIC: 94.349
```

```
> confint(wafers.log)
```

> confint(wafers.log)
2.5 % 97.5 %
2.5 % 97.5 %
(Intercept) 1.3188383 1.8743819
(Intercept) 1.3188383 1.8743819
trtB 0.2469096 0.9400962

```
trtB 0.2469096 0.9400962
```

The log-linear model is

$$
\log [\mu(x)]=1.6094+0.5878 x
$$

giving us
A: $\mu(0)=\exp (1.6094)=5$

B: $\mu(1)=\exp (1.6094) \exp (0.5878)=5+4=9$
http://users.stat.ufl.edu/~athienit/STA4504/Examples/wafers.R

3.3.2 Modeling Rates

There are situations when the counts have different bases and so an adjustment is necessary, that is we model the rate at which an event occurs.

Example 3.5 Consider two individuals given fishing nets and told they have 5 minutes to catch as many fish as possible. After, 5 minutes

- Person A catches 11
- Person B catches 20

Who "perfomed" better?

Person A

Person B

That is a trick question, because what if the sizes of the nets where different, then we need to account on how many fish per square inch of net, i.e. a rate. Also, if person A got 11 fish with that net that's amazing!

Let y be the count and t be the base

$$
E\left(\frac{Y}{t}\right)=\frac{\mu}{t}
$$

Hence,

$$
\begin{aligned}
& \log \left(\frac{\mu}{t}\right)=\log (\mu)-\log (t)=\alpha+\beta x \\
\Rightarrow & \log (\mu)=\alpha+\beta x+\log (t) \\
\Rightarrow & \log (\mu)=\alpha+\beta x+\underbrace{\beta_{2}}_{=1} \underbrace{x_{2}}_{\log (t)}
\end{aligned}
$$

All that is required is to add another "predictor" whose coefficient is set to 1 , and the solve using restricted maximum likelihood. The term $\log (t)$ is called the offset.

R code 3.3 Here when we fit the model we use offset argument

$$
\operatorname{glm}(y \sim x+o f f s e t(\log (\text { base })), \ldots)
$$

Example 3.6 (British Train Accidents) The first stationary gasoline engine developed by Carl Benz was a one-cylinder two-stroke unit which ran for the first time on New Year's Eve 1879. So consider the number of automobile accidents in 1879 compared to 2019. We need to adjust for the fact that there are more automobiles on the road and that they travel larger distances.
The same is true for the following Train-Road collision data, where an offset is needed. Have collisions between trains and road vehicles become more prevalent over time? Total number of train-km (in millions) varies from year to year. Model annual rate of train-road collisions per million train- km with $t=$ annual no. of train- km and $x=\mathrm{no}$. of years since 1975.

traincollisions				
Year				KM
1	2003	518	Train	TrRd
2	2002	516	1	3
3	2001	508	0	4
4	2000	503	1	3
5	1999	505	1	2
6	1998	487	0	4
7	1997	463	1	1
8	1996	437	2	2
9	1995	423	1	2
10	1994	415	2	4
11	1993	425	0	4
12	1992	430	1	4
13	1991	439	2	6
14	1990	431	1	2
15	1989	436	4	4
16	1988	443	2	4
17	1987	397	1	6
18	1986	414	2	13
19	1985	418	0	5
20	1984	389	5	3
21	1983	401	2	7
22	1982	372	2	3
23	1981	417	2	2
24	1980	430	2	2
25	1979	426	3	3
26	1978	430	2	4
27	1977	425	1	8
28	1976	426	2	12
29	1975	436	5	2

[^0]```
+ data=traincollisions)
> summary(trains.log)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.21142 0.15892 -26.50 < 2e-16 ***
I(Year - 1975) -0.03292 0.01076 -3.06 0.00222 **

 Null deviance: 47.376 on 28 degrees of freedom
Residual deviance: 37.853 on 27 degrees of freedom
AIC: 133.52
```

> sum(resid(trains.log,type="pearson")^2)
[1] 42.19178


The model is

$$
\begin{aligned}
\log \left(\frac{\hat{\mu}}{t}\right) & =-4.21142-0.03292 x \\
\frac{\hat{\mu}}{t} & =e^{-4.21142} e^{-0.03292 x} \\
& =(0.0148)(0.968)^{x}
\end{aligned}
$$

Rate estimated to decrease by $1-0.968=0.032=3.2 \%$ per year from from 1975 to 2003, i.e. the rate is 0.968 times the rate of the previous year.

- Est. rate for $1975(x=0)$ is 0.0148 per million km
- Est. rate for $2003(x=28)$ is 0.0059 per million km
http://users.stat.ufl.edu/~athienit/STA4504/Examples/trains.R

Example 3.7 (Airline Fatalities) Data obtained from MIT Airline Data Project and Wikipedia, provides information on fatalities, Available Seat Miles (ASM) and year
> air_deaths

| Fatalities | ASM Year |  |
| ---: | ---: | ---: | ---: |
| 1828 | 829581 | 1995 |
| 2796 | 862621 | 1996 |
| 1768 | 884192 | 1997 |
| 1721 | 898359 | 1998 |
| 1150 | 945245 | 1999 |
| 1586 | 980769 | 2000 |
| 1539 | 953875 | 2001 |
| 1418 | 914901 | 2002 |
| 1233 | 922277 | 2003 |
| 767 | 998868 | 2004 |
| 1463 | 1028621 | 2005 |
| 1298 | 1027553 | 2006 |
| 981 | 1060116 | 2007 |
| 952 | 1040840 | 2008 |
| 1108 | 975307 | 2009 |
| 1130 | 991934 | 2010 |
| 828 | 1012597 | 2011 |
| 800 | 1012261 | 2012 |
| 459 | 1025616 | 2013 |
| 1328 | 1048107 | 2014 |
| 898 | 1090198 | 2015 |
| 629 | 1131694 | 2016 |
| 399 | 1168055 | 2017 |

Fitting a Poisson log-linear model with offset

```
> air.poisson=glm(Fatalities`I(Year-1995),family=poisson,data=air_deaths,
+ offset=log(ASM))
> summary(air.poisson)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.0541485 0.0101474 -596.62 <2e-16 ***
I(Year - 1995) -0.0638961 0.0009377 -68.14 <2e-16 ***

 Null deviance: 6595.9 on 22 degrees of freedom
Residual deviance: 1751.8 on 21 degrees of freedom
AIC: 1959.4
http://users.stat.ufl.edu/~athienit/STA4504/Examples/airline.R
```


### 3.4 Inference and Model Checking

### 3.4.1 Standard testing - Wald

Display 3.1 (Inference on parameters) Since parameter estimation is done via ML, and MLE's are asymptotically normal, inference is done in the traditional way. Let $\theta=(\alpha, \beta)$ denote the parameter vector

$$
\sqrt{n}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right) \xrightarrow{d} N\left(0, \frac{1}{I\left(\boldsymbol{\theta}_{0}\right)}\right)
$$

where $\left(\theta_{0}\right)$ is the Fisher information evaluated at $\theta_{0}$ (not covered in this class). Therefore, hypotheses tests and confidence intervals for the parameter's are done accordingly.

To test $\mathrm{H}_{0}: \beta=\beta_{0}$ you can create the test statistic

$$
T S=\frac{\hat{\beta}-\beta_{0}}{s_{\hat{\beta}}} \stackrel{\mathrm{H}_{0}}{\sim} N(0,1)
$$

and obtain p-value in traditional way. A $100(1-\alpha) \% \mathrm{CI}$ on $\beta$ can also be created

$$
\begin{equation*}
\hat{\beta} \mp z_{1-\alpha / 2}\left(s_{\hat{\beta}}\right) \tag{3.2}
\end{equation*}
$$

These methods can be extended to one-sided tests.
Example 3.8 (Infant malformatrion continued) From the output
> summary(malform.logit)
Coefficients:

$$
\text { Estimate Std. Error z value } \operatorname{Pr}(>|z|)
$$

(Intercept) -5.9605 0.1154-51.637 <2e-16 ***
Alcohol
0.3166
$0.1254 \quad 2.523 \quad 0.0116$ *
we can create a $95 \%$ C.I.

$$
0.3166 \mp 1.96(0.1254) \longrightarrow(0.070816,0.562384)
$$

We will see functions that create C.I.'s but their default is not the Wald method.

### 3.4.2 Likelihood Ratio Test - Deviance

## Goodness of Fit

Deviance is actually the likelihood ratio test for goodness of model fit, that is, equation (2.2) for

$$
\begin{equation*}
D(y ; \hat{\mu}):=G^{2}=-2[L(\hat{\mu} ; y)-L(y ; y)] \underset{\mathrm{H}_{0}}{d} \chi_{d f}^{2} \tag{3.3}
\end{equation*}
$$

with p -value being $P\left(\chi_{d f}^{2} \geq G^{2}\right)$ and where

- $L(\hat{\mu} ; y)$ is the log-likelihood of the fitted model
- $L(y ; y)$ is the log-likelihood of the saturated model, that is the model that has a separate parameter for each observation giving a perfect fit but with 0 degrees of freedom (so no inference can be done within that model).
- $d f$ as in equation (2.3)

Display 3.2 (Goodness of fit) A goodness of fit can be used only in the number of predictor levels is fixed and relatively small to the overall sample size. Either, $X^{2}$ or $G^{2}$ can be used since to compare the observed counts to the values predicted by the fitted model.

Remark 3.2. Goodness of fit can also be performed - preferred even - by using $X^{2}$, instead of $G^{2}$.

## Example 3.9 Revisiting some examples

(Infant Malformation) For example 3.1 a goodness of fit can be used (with either $X^{2}$ or $G^{2}$ ) as there are only 5 binomials and as more women are surveyed/sampled the number of binomials (rows of data) remains fixed.
...
Residual deviance: 1.9487 on 3 degrees of freedom > sum(resid(malform.logit,type=``pearson'')^2)
[1] 2.20523

(Challenger disaster) A goodness of fit is not adequate as each row corresponds to a Bernoulli trial, that is a 0 or 1 . As sample size increases so will the number of rows in the data.

Remark 3.3. If the data is not grouped you may still perform a goodness of fit by

- grouping your predictor(s). For example, for temperature you could create groups 31-40, $41-50, \ldots$ and then create scores such as $35,45, \ldots$ ensuring that the number of predictor levels remains relatively fixed.
- comparing current model to a "fuller" model rather than to a saturated model (fullest). A fuller model could be one with polynomial terms, interactions, etc.


## Parameter testing

Likelihood ratio test can be used to test $\mathrm{H}_{0}: \beta=\beta_{0}$ using deviances. To be specific the difference of two goodness of fit tests.

$$
\begin{align*}
G^{2} & =D\left(y ; \hat{\mu}_{0}\right)-D\left(y ; \hat{\mu}_{1}\right)  \tag{3.4}\\
& =-2\left[L\left(\hat{\mu}_{0} ; y\right)-L(y ; y)\right]-(-2)\left[L\left(\hat{\mu}_{1} ; y\right)-L(y ; y)\right] \\
& =-2\left[L\left(\hat{\mu}_{0} ; y\right)-L\left(\hat{\mu}_{1} ; y\right)\right] \\
& \xrightarrow[\mathrm{H}_{0}]{d} \chi_{d f}^{2}
\end{align*}
$$

where

- $L\left(\hat{\mu}_{0} ; y\right)$ is the log-likelihood of the reduced (under the null) model
- $L\left(\hat{\mu}_{1} ; y\right)$ is the log-likelihood of the fitted model
- $d f$ is the difference in degrees of freedom of the two models which corresponds to the dimension reduction of our coefficient parameter vector, in this case 1 as we are restricting one parameter $\beta=\beta_{0}$.

model fit/no. of parameters
Figure 3.2: Illustration of how Deviances are used in LRTs

Remark 3.4. The "Null Deviance" that is usually provided in R output is the deviance for the null

$$
H_{0}: \beta=0 \quad\left(\beta_{i}=0 \forall i \text { for models with more than one predictor }\right)
$$

So that

$$
\begin{aligned}
\text { Null Deviance }- \text { Residual Deviance } & =D\left(y ; \hat{\mu}_{0}\right)-D\left(y ; \hat{\mu}_{1}\right) \\
& =G^{2}
\end{aligned}
$$

which is the likelihood ratio test statistic.

For binomial and Poisson models

$$
D(y ; \hat{\mu})=2 \sum_{i=1}^{n} y_{i} \log \left(y_{i} / \hat{\mu}_{i}\right)
$$

The likelihood ratio test can be used to create a $100(1-\alpha)$ confidence interval on $\beta$. That is, finding all the null values $\beta_{0}$ for which would yield a test statistics with a large p -value. It is a bit more complicated than equation (3.2) so we use software.

R code 3.4 Use confint(.) to obtain the likelihood ratio confidence intervals.

Example 3.10 (Infant Malformation continued) We focus on testing $\mathrm{H}_{0}: \beta=0$ via deviances.

```
> summary(malform.logit)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.9605 0.1154-51.637 <2e-16 ***
Alcohol 0.3166 0.1254 2.523 0.0116 *

 Null deviance: 6.2020 on 4 degrees of freedom
Residual deviance: 1.9487 on 3 degrees of freedom
AIC: 24.576
> confint(malform.logit)
 2.5 % 97.5 %
(Intercept) -6.19302366 -5.7396968
Alcohol 0.01868149 0.5234947
```

Note that this CI is different from the Wald CI done earlier of ( $0.070816,0.562384$ ). The test statistic from equation (3.4)

$$
\text { Null deviance }- \text { Residual deviance }=6.2020-1.9487=4.2533
$$

with p -value

```
> 1-pchisq(4.2533,1)
```

[1] 0.03917414
and we reject the null.

Exercise 3.1 Do the same for the "Challenger" disaster and "Silicon wafers" examples.

### 3.5 Overdispersion

We know that

$$
E\left(\chi_{v}^{2}\right)=v
$$

so for a well fitting model we expect

$$
X^{2} \approx \text { Residual d.f. }
$$

However, cases where
$X^{2} \gg$ Residual d.f.
are of concern. Could use $G^{2}$ (Residual Deviance) as an alternative but not as efficient in detecting overdispersion.

## Reasons

1. Badly fitting model

- omitted terms/variables
- incorrect relationship (link)
- outliers

2. Variation greater than predicted by model that leads to overdispersion

- count data: $V(Y)>\mu$
- binomial data: $V(Y)>n \pi(1-\pi)$


## Causes of Overdispersion

- variability of experimental material - individual level variability
- correlation between individual responses, e.g. litters of rats
- cluster sampling, e.g. areas; schools; classes; children
- aggregate level data
- omitted unobserved variables
- excess zero counts (structural and sampling zeros)

Consequences With correct mean model we have consistent estimates of $\beta$ but:

- incorrect standard errors
- selection of overly complex models

Remark 3.5. Overdispersion is much more common for count data, especially due to the restriction by the Poisson model $E(Y)=V(Y)$.

The two most popular methods for checking overdispersion are;

- Check whether $X^{2} \gg d f$, or $X^{2} / d f \gg 1$,
- Fit a different model with additional parameters that allow variance to be greater and test the significance of those parameters
- count data: Negative Binomial, parameter $\theta$ is introduced and estimated via MLE

$$
\begin{equation*}
V(Y)=\mu+\left(\frac{1}{\theta}\right) \mu^{2} \tag{3.5}
\end{equation*}
$$

- binomial data: Beta-Binomial, parameter $\rho$ is introduced and estimated via MLE

$$
V(Y)=n \pi(1-\pi)[1+(n-1) \rho]
$$

R code 3.5 Most common ways of fitting these models are

- Negative Binomial: glm.nb(.) in the MASS package
- Beta-Binomial: betabinomial(.) in the VGAM package

Example 3.11 (Homicide) 1308 individuals who where classified as "Black" or "White" were asked: "How many people have you known personally that were victims of homicide?"

|  | Number of victims |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Race | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| Black | 119 | 16 | 12 | 7 | 3 | 2 | 0 |
| White | 1070 | 60 | 14 | 4 | 0 | 0 | 1 |

```
head(homicide) #data entered in '`shorter'` format
 nvics race Freq
O Black 119
2 Black 16
2 Black 12
4 Black 7
5 4 Black 3
6 Black 2
homicide=transform(homicide,race=relevel(race,"White"))
```

```
> hom.poi=glm(nvics~race,family=poisson(link="log"),
+ weights=Freq,data=homicide)
> summary(hom.poi)
.
 Null deviance: 962.80 on 10 degrees of freedom
Residual deviance: 844.71 on 9 degrees of freedom
```

Checking for overdispersion via $X^{2} /(d f) \gg 1$ we first notice that the way the data was entered, the degrees of freedom is not 9 but actually 1308-2=1306

```
> sum(resid(hom.poi,type="pearson")^2)/
+ (sum(homicide$Freq)-length(hom.poi$coefficients))
[1] 1.745692
```

So some evidence of overdispersion is apparent. Now to find the negative binomial

```
> library(MASS)
> hom.nb=glm.nb(nvics~race,weights=Freq,data=homicide)
> summary(hom.nb)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.3832 0.1172 -20.335 < 2e-16 ***
raceBlack 1.7331 0.2385 7.268 3.66e-13 ***

 Null deviance: 471.57 on 10 degrees of freedom
Residual deviance: 412.60 on 9 degrees of freedom
AIC: 1001.8
```

    Theta: 0.2023
    Std. Err.: 0.0409
    2 x log-likelihood: -995.7980
and the estimate of

$$
\left(\frac{1}{\hat{\theta}}\right) \approx 5
$$

seems substantial in equation (3.5). Much better now,

```
> sum(resid(hom.nb,type="pearson")^2)/
+ (sum(homicide$Freq)-length(hom.nb$coefficients))
[1] 1.090373
```

http://users.stat.ufl.edu/~athienit/STA4504/Examples/homicide.R

Example 3.12 (British Train Accidents continued) Checking for potential overdispersion, we are not quite sure if $X^{2} / d f \gg 1$
> sum(resid(trains.log,type="pearson")^2)
[1] 42.19178

```
> sum(resid(trains.log,type="pearson")^2)/trains.log$df.residual
[1] 1.562658
```

So we fit a negative binomial,

```
> library(MASS)
> trains.nb=glm.nb(TrRd ~ I(Year-1975) + offset(log(KM)),
+ data=traincollisions)
> summary(trains.nb)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.19999 0.19584-21.446<2e-16 ***
I(Year - 1975) -0.03367 0.01288 -2.615 0.00893 **

 Null deviance: 32.045 on 28 degrees of freedom
Residual deviance: 25.264 on 27 degrees of freedom
AIC: 132.69
```

    Theta: 10.12
    Std. Err.: 8.00
    $2 \times \log -l i k e l i h o o d: \quad-126.69$

Since, $\hat{\theta}+2 \operatorname{se}(\hat{\theta}) \approx 26$ and hence $1 / 26 \approx 0.0385$ is close to 0 . Therefore the second term in equation (3.5) does not seem to be that significant and conclude no strong evidence of overdispersion.
http://users.stat.ufl.edu/~athienit/STA4504/Examples/trains.R

Example 3.13 (Airline Fatalities continued) Fit a negative binomial model due to potential overdispersion...why is there potential overdispersion?

```
> air.nb=glm.nb(Fatalities~I(Year-1995)+offset(log(ASM)),data=air_deaths)
> summary(air.nb)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.06375 0.10807-56.110<2e-16 ***
I(Year - 1995) -0.06256 0.00843 -7.421 1.16e-13 ***
 Null deviance: 78.655 on 22 degrees of freedom
Residual deviance: 23.319 on 21 degrees of freedom
AIC: 334.03
```

    Theta: 14.09
    Std. Err.: 4.17
    $2 \times \log -l i k e l i h o o d: \quad-328.03$
we conclude that the rate is decreasing. As an exercise, interpret the magnitude of $\hat{\beta}$ per 1 year increase.
http://users.stat.ufl.edu/~athienit/STA4504/Examples/airline.R

Exercise 3.2 Check for overdispersion with the "Silicon wafers" example

Remark 3.6. The Beta-Binomial is omitted here but an alternative method that does not use a likelihood approach but merely the structure between the mean and variance are the

- count data: Pseudo-Poisson
- binomial data: Pseudo-Binomial
but as result likelihood ratio tests are not possible.


## 4. Logistic Regression



| 4.1 | Interpretation | 49 |
| :--- | :--- | :--- |
| 4.2 | Inference | 52 |
| 4.3 | Multiple Logistic Regression | 53 |
| 4.4 | Summarizing Predictive Power | 60 |
| 4.5 | Receiver Operating Characteristic Curve | 62 |
|  |  |  |

Closer look at logistic regression and reviewing the model fitting process.

### 4.1 Interpretation

We have seen the simple logistic regression model as in equation (3.1). That is

$$
\operatorname{logit}[\pi(x)]=\alpha+\beta x \quad \Rightarrow \quad \pi(x)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}
$$

- $\beta>0$, then $\pi(x) \uparrow$ as $x \uparrow$
- $\beta<0$, then $\pi(x) \downarrow$ as $x \uparrow$
- $\beta=0$, then $\pi(x)=e^{\alpha} /\left(1+e^{\alpha}\right)$ which is a constant, with $\pi(x)>0.5$ when $\alpha>0$
- The rate of change in $\pi(x)$ (but taking derivatives) is $\beta \pi(x)[1-\pi(x)]$.


Figure 4.1: Rate of change

Note that the rate of change is maximized when $\pi(x)=0.5$. This implies

$$
\max \text { rate of change is } \frac{\beta}{4} \text { when } x=\frac{-\alpha}{\beta}
$$

This value of $x$ is sometimes called the median effective level and it represents the level at which each outcome has a $50 \%$ chance.

- The term $e^{\beta}$ is odds ratio for a 1 unit increase in $x$. The odds os success are
- at $x$

$$
\frac{\pi(x)}{1-\pi(x)}=e^{\alpha+\beta x}
$$

- at $x+1$

$$
\frac{\pi(x+1)}{1-\pi(x+1)}=e^{\alpha+\beta x} e^{\beta}
$$

Hence the odds ratio for $x+1$ versus $x$ is

$$
\mathrm{OR}=\frac{\pi(x+1) /[1-\pi(x+1)]}{\pi(x) /[1-\pi(x)]}=e^{\beta}
$$

- Parameters estimated via MLE are asymptotically normal.

Example 4.1 (Horseshoe crab) There are 173 female crabs for which we wish to model the presence or absence of male "satellites" dependent upon characteristics of the female horseshoe crabs.

$$
Y_{i}= \begin{cases}1 & \text { satellite present } \\ 0 & \text { otherwise }\end{cases}
$$



Explanatory variables are: weight (in kg ), width of shell, color (medium light, medium, medium dark, dark), and condition of spine (bad, good, excellent).

```
> fit=glm(y ~ weight, family=binomial(link=logit))
> summary(fit)
```

```
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.6947 0.8802 -4.198 2.70e-05 ****
weight 1.8151 0.3767 4.819 1.45e-06 ***
```

---

Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 195.74 on 171 degrees of freedom AIC: 199.74

The maximum likelihood fit is then $\operatorname{logit}[\hat{\pi}(x)]=-3.6947+1.8151 x$. Note that $\beta$ is positive, implying that $\hat{\pi}(x) \uparrow$ as $x \uparrow$.

$$
\hat{\pi}(x)=\frac{\exp (-3.6947+1.8151 x)}{1+\exp (-3.6947+1.8151 x)}
$$

- At the average weight of $x=\bar{x}=2.44, \hat{\pi}(2.44)=0.676$.
- The rate of change at $x=2.44$ is $\hat{\beta} \hat{\pi}(1-\hat{\pi})=1.8151(0.676)(0.324)=0.398$.
- The estimated change in $\pi$ per 1 kg increase is about 0.398 (in the neighborhood of the sample mean). However, the standard deviation of weight is $s_{x}=0.58$ and hence talking about a 1 unit increase, i.e. 1 kg , may be too much of an increase and so the estimated change in $\pi$ per 0.1 kg increase is about 0.0398 .
- $\hat{\pi}(x)=1 / 2$ when $x=\frac{-(-3.6947)}{1.8151}=2.036$
- For a 1 kg increase in weight, the estimated odds of the presence of a satellite are multiplied by $\exp (1.8151)=6.14169$. Consequently, for a 0.1 kg increase in weight, the estimated odds of the presence of a satellite are multiplied by $\exp (0.1(1.8151))=1.2$, i.e. the odds increase by $20 \%$.


Part (I) of http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R

### 4.2 Inference

We refer the reader to review Section 3.4 and we will expand from there. We have covered how to create confidence intervals on individual (coefficient) parameters, e.g. $\beta$, but now we expand to linear combinations of parameters.

Goal: Create a CI for $\pi(x)$.

1. First work with $\operatorname{logit}[\hat{r}(x)]=\hat{\alpha}+\hat{\beta} x$, where we know (via MLE)

$$
\hat{\alpha} \sim N\left(\alpha, \sigma_{\alpha}^{2}\right) \text { and } \hat{\beta} \sim N\left(\beta, \sigma_{\beta}^{2}\right) \Rightarrow \underbrace{\hat{\alpha}+\hat{\beta} x}_{\operatorname{logit}[\hat{\pi}(x)]} \sim N\left(\alpha+\beta x, \sigma_{\alpha}^{2}+x^{2} \sigma_{\beta}^{2}+2 x \sigma_{\alpha \beta}\right)
$$

2. The $100(1-\alpha) \% \mathrm{CI}$ for $\operatorname{logit}[\pi(x)]=\alpha+\beta x$ is

$$
\begin{equation*}
\hat{\alpha}+\hat{\beta} x \mp z_{1-\alpha / 2} \sqrt{s_{\alpha}^{2}+x^{2} s_{\beta}^{2}+2 x s_{\alpha \beta}} \quad \rightarrow \quad(L, U) \tag{4.1}
\end{equation*}
$$

where $s_{\alpha}^{2}$ and $s_{\beta}^{2}$ are the estimated variances, and $s_{\alpha \beta}$ is the estimated covariance.

$$
V(\hat{\alpha}+\hat{\beta} x)=V(\hat{\alpha})+x^{2} V(\hat{\beta})+2 x \operatorname{Cov}(\hat{\alpha}, \hat{\beta})
$$

## R code 4.1 Using software

- The variance-covariance matrix for all parameters can be found for glm objects by using vcov(model)
- The estimate and the standard error for $\operatorname{logit}[\hat{\pi}(x)]=\hat{\alpha}+\hat{\beta} x$ can obtained using
predict.glm(model, newdata, type='`link' ', ...)

3. The $100(1-\alpha) \%$ CI for $\pi(x)$, using equation (4.1) is then

$$
\left(\frac{e^{L}}{1+e^{L}}, \frac{e^{U}}{1+e^{U}}\right)
$$

Remark 4.1. We looked at CI for $\alpha+\beta x$, a linear combination of two parameters but this method can be extended to linear combinations of any length of parameters.

Example 4.2 (Horseshoe crab continued) Test $\mathrm{H}_{0}: \beta=0$ via

- Wald test given in the summary output (and CI could be derived)
- Likelihhod ratio test $G^{2}$ and prerrably corresponding CI

```
> confint(fit,"weight")
```

$$
\begin{array}{rr}
2.5 \% & 97.5 \% \\
1.113790 & 2.597305
\end{array}
$$

There are 6 female crabs with a weight of 2.4 kg (or 2400 g ), of whom only 4 have at least one satellite. Using the model we construct a $95 \%$ CI for $\hat{\pi}(2.4)$, by first constructing the CI for logit $[\hat{\pi}(2.4)]$
$>$ eta=predict(fit, newdata=data.frame(weight=2.4), type="link", se.fit=TRUE)
> eta
\$fit
[1] 0.6616206
\$se.fit
[1] 0.1780615
Note that the standard error is the same as if we directly use equation (4.1)
$>\operatorname{sqrt}\left(\operatorname{vcov}(f i t)[1,1]+2.4^{\wedge} 2 * \operatorname{vcov}(f i t)[2,2]+2 * 2.4 * \operatorname{cov}(f i t)[1,2]\right)$
[1] 0.1780615
$>$ eta.ci=eta\$fit+c(-1, 1)*qnorm(0.975)*eta\$se.fit
$>$ eta.ci \# This is (1,u) interval
[1] 0.31262651 .0106148
> plogis(eta.ci) \# This is (exp(l)/(1+exp(l)), exp(u)/(1+exp(u)))
[1] 0.57752620 .7331404
Part (I) of http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R

### 4.3 Multiple Logistic Regression

Just as in OLS regression, multiple regression can be used when multiple predictors $x_{1}, x_{2}, \ldots, x_{k}$ are available, yielding

$$
\operatorname{logit}[\pi(x)]=\alpha+\sum_{i=1}^{k} \beta_{i} x_{i} \quad \Leftrightarrow \quad \pi(x)=\frac{e^{\alpha+\sum_{i=1}^{k} \beta_{i} x_{i}}}{1+e^{\alpha+\sum_{i=1}^{k} \beta_{i} x_{i}}}
$$

Example 4.3 (Horseshoe crab continued) Next we introduce the color variable into the model by creating 3 indicator variables for the 4 levels of color. Let,

$$
c_{1}=\left\{\begin{array}{ll}
1 & \text { medium light } \\
0 & \mathrm{o} / \mathrm{w}
\end{array} \quad c_{2}=\left\{\begin{array}{ll}
1 & \text { medium } \\
0 & \mathrm{o} / \mathrm{w}
\end{array} \quad c_{3}= \begin{cases}1 & \text { medium dark } \\
0 & \mathrm{o} / \mathrm{w}\end{cases}\right.\right.
$$

and hence $c_{1}=c_{2}=c_{3}=0$ indicates whether a female crab is dark (i.e. base group). The model is then

$$
\operatorname{logit}[\pi(x)]=\alpha+\beta_{1} x+\beta_{2} c_{1}+\beta_{3} c_{2}+\beta_{4} c_{3}
$$

with

| Color | $\operatorname{logit}[\pi(x)]$ |
| :--- | ---: |
| medium light | $\left(\alpha+\beta_{2}\right)+\beta_{1} x$ |
| medium | $\left(\alpha+\beta_{3}\right)+\beta_{1} x$ |
| medium dark | $\left(\alpha+\beta_{4}\right)+\beta_{1} x$ |
| dark | $\alpha+\beta_{1} x$ |

> color=color - 1 \# color now takes values 1,2,3,4
$>$ color=factor(color) \# treat color as a factor
> fit2. $1=$ glm(y ~ weight + color, family=binomial(link=logit),

+ contrasts=list(color=contr.treatment(4,base=4, contrasts=TRUE)))
> summary(fit2.1)


## Coefficients:

Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -4.5266 $1.0038-4.5106 .50 \mathrm{e}-06$ ***
weight $1.6928 \quad 0.3888 \quad 4.354 \quad 1.34 \mathrm{e}-05$ ***
$\begin{array}{lllll}\text { color1 } & 1.2694 & 0.8488 & 1.495 & 0.13479\end{array}$
$\begin{array}{lllll}\text { color2 } & 1.4143 & 0.5449 & 2.595 & 0.00945 \text { ** }\end{array}$
color3 $1.0833 \quad 0.5884 \quad 1.841 \quad 0.06561$.
Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 188.54 on 168 degrees of freedom AIC: 198.54

Color as Categories, probability


Figure 4.2: Probability curves
Part (II) subpart II1 of http://users.stat.ufl.edu/~athienit/STA4504/Examples/ crab_u.R

In Section 3.4 we saw how to perform inference on a single parameter $\mathrm{H}_{0}: \beta=\beta_{0}$ via

- Using standard normal test

$$
\frac{\hat{\beta}-\beta_{0}}{s_{\hat{\beta}}} \stackrel{\mathrm{H}_{0}}{\sim} N(0,1)
$$

- Using the likelihood ratio test $G^{2}$ in equation (3.4).

Now we extend the methodology in equation (3.4) to testing multiple parameters simultaneously. In the Horseshoe crab data there were 3 parameters for fitting color as a qualitative predictor, $\beta_{2}, \beta_{3}$ and $\beta_{4}$. If we wished to test if color at all was significant one would test

$$
\mathrm{H}_{0}: \beta_{2}=\beta_{3}=\beta_{4}=0 \quad \text { vs } \quad \mathrm{H}_{1}: \text { at least one } \beta \neq 0
$$

which yields the reduced model (under null), $\mu_{0}$ and the full model, $\mu_{1}$

$$
\begin{aligned}
& g\left(\mu_{0}\right)=\alpha+\beta_{1} x \\
& g\left(\mu_{1}\right)=\alpha+\beta_{1} x+\beta_{2} c_{1}+\beta_{3} c_{2}+\beta_{4} c_{3}
\end{aligned}
$$

and by obtaining the deviances we can create the likelihood ratio test

$$
G^{2}=D\left(y ; \hat{\mu}_{0}\right)-D\left(y ; \hat{\mu}_{1}\right) \underset{\mathrm{H}_{0}}{\frac{d}{\longrightarrow}} \chi_{d f}^{2}
$$

where $d f$ is the difference in degrees of freedom of the two models which corresponds to the dimension reduction of our coefficient parameter vector, in this case $d f=3$ as we are restricting 3 parameter under the null.

Example 4.4 (Horseshoe crab continued) To test the significance of color, controlling for weight we must test $H_{0}: \beta_{2}=\beta_{3}=\beta_{4}=0$. The likelihood-ratio test (LRT) statistic is

$$
\begin{aligned}
G^{2} & =D\left(y ; \hat{\mu}_{0}\right)-D\left(y ; \hat{\mu}_{1}\right) \\
& =195.74-188.54=7.2
\end{aligned}
$$

which when compared to a $\chi_{3}^{2}$ produces a p-value of $0.06578905 \approx 0.07$ which at the 0.05 significance level might let us conclude that color is not significant.

However, looking at the individual test statistic values as well as the figure of probability curves we see that there is a more this problem that we will be addressing in the next chapter.
Part (II), subpart A of http://users.stat.ufl.edu/~athienit/STA4504/Examples/ crab_u.R

Example 4.5 (Horseshoe crab continued) From figure 4.2 we notice than there are may be in fact be only two groups: dark and not dark.

```
> dark=ifelse(unclass(color)==4,1,0)
> fit2.2=glm(y ~ weight + dark, family=binomial(link=logit))
> summary(fit2.2)
Coefficients:
```

|  | Estimate | Std. Error | z value | $\operatorname{Pr}(>\|z\|)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ( Intercept) | -3.3134 | 0.8984 | -3.688 | 0.000226 | *** |
| weight | 1.7292 | 0.3825 | 4.520 | 6.18e-06 | *** |
| dark | -1.2954 | 0.5222 | -2.481 | 0.013110 | * |
| Null deviance: 225.76 on 172 degrees of freedom |  |  |  |  |  |
| Residual deviance: 189.17 on 170 degrees of freedomAIC: 195.17 |  |  |  |  |  |
|  |  |  |  |  |  |



Figure 4.3: Probability curves
In example 4.4 the LRT for color yielded a p-value of 0.07 . However, now testing dark vs non dark via $\mathrm{H}_{0}: \beta_{2}=0$ for this model

- Via normal test, p-value $=0.013110$
- Via LRT, $G^{2}=195.74-189.17$ with 1 degree of freedom yields, $p$-value $=$ 0.01039651

Part (II), subpart B of http://users.stat.ufl.edu/~athienit/STA4504/Examples/ crab_u.R
Why did the p-value drop from 0.07 to about 0.01 ? Because we tested using a method that uses less degrees of freedom ( 1 instead of 3 ) and hence has more power in detecting significance.

### 4.3.1 Qualitative predictors

If a qualitative predictor is deemed significant, the next step is an investigation into the different levels. This yields situations where one might we to test linear combinations of parameters.

$$
\begin{equation*}
\mathrm{H}_{0}: \sum_{i=1}^{k} c_{i} \beta_{i}=\Delta_{0} \tag{4.2}
\end{equation*}
$$

for constants $c_{i}$.
Example 4.6 (Horseshoe crad continued) Testing $\beta_{2}=0, \beta_{3}=0$ and $\beta_{4}=0$ individually amounts to testing differences between each group to the base group

| Color | $\operatorname{logit}[\pi(x)]$ |
| :--- | ---: |
| medium light | $\left(\alpha+\beta_{2}\right)+\beta_{1} x$ |
| medium | $\left(\alpha+\beta_{3}\right)+\beta_{1} x$ |
| medium dark | $\left(\alpha+\beta_{4}\right)+\beta_{1} x$ |
| dark | $\alpha+\beta_{1} x$ |

In example 4.3, we note that there appear to be differences between medium and dark, and between medium dark and dark based on those tests. In addition, the estimated odds ratio comparing the following groups to dark at any fixed level of weight are

| Comparison | OR |
| :--- | :---: |
| medium light vs dark | $\exp \left(\hat{\beta}_{2}\right)=\exp (1.2694)=3.56$ |
| medium vs dark | $\exp \left(\hat{\beta}_{3}\right)=\exp (1.4143)=4.11$ |
| medium dark vs dark | $\exp \left(\hat{\beta}_{4}\right)=\exp (1.0833)=2.95$ |

To motivate the next section consider comparing two groups such as medium light vs. medium. We could always refit the model making one of these groups the new base group. Keeping with this model we this comparisons amounts to testing:

$$
\mathrm{H}_{0}: \beta_{2}-\beta_{3}=0
$$

a linear combination of the parameters
To test the null in (4.2), an option is to create a CI for $\sum c_{i} \beta_{i}$ using the asymptotic normality property and see whether $\Delta_{0}$ is a plausible value or not.

$$
\begin{equation*}
\sum_{i=1}^{k} c_{i} \hat{\beta}_{i} \mp z_{1-\alpha / 2} \sqrt{\hat{V}\left(\sum_{i=1}^{k} c_{i} \hat{\beta}_{i}\right)} \tag{4.3}
\end{equation*}
$$

with the estimated variance obtained by the sum of the estimated pairwise covariances using the property that

$$
\begin{aligned}
V\left(\sum_{i=1}^{k} c_{i} \hat{\beta}_{i}\right) & =\sum_{i=1}^{k} \sum_{j=1}^{k} c_{i} c_{j} \operatorname{Cov}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right) \\
& =\sum_{i=1}^{k} c_{i}^{2} V\left(\hat{\beta}_{i}\right)+2 \sum_{i<j} \sum_{i} c_{j} \operatorname{Cov}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right)
\end{aligned}
$$

This concept was used in equation (4.1) where $c=(1, x)$ and the parameter vector was $(\alpha, \beta)$, such that

$$
(1, x)\binom{\alpha}{\beta}=\alpha+\beta x
$$

Example 4.7 (Horseshoe crab continued) The log odds ratio for comparing medium light vs medium at fixed levels of weight is $\beta_{2}-\beta_{3}$. Using equation (4.3) with $c=$ ( $0,0,1,-1,0$ )

$$
(0,0,1,-1,0)\left(\begin{array}{c}
\alpha \\
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right)=\beta_{2}-\beta_{3}
$$

we have that

$$
\hat{\beta}_{2}-\hat{\beta}_{3} \mp z_{0.975} \sqrt{s_{\beta_{2}}^{2}+s_{\beta_{3}}^{2}-2 s_{\beta_{2} \beta_{3}}}
$$

To be thorough though all 6 comparisons need to be made and the critical value adjusted via Bonferroni using $z_{1-\alpha /(2 \times 6)}$.

| Comparison | CI on |
| :--- | :---: |
| medium light vs dark | $\beta_{2}$ |
| medium vs dark | $\beta_{3}$ |
| medium dark vs dark | $\beta_{4}$ |
| medium light vs medium | $\beta_{2}-\beta_{3}$ |
| medium light vs medium dark | $\beta_{2}-\beta_{4}$ |
| medium vs medium dark | $\beta_{3}-\beta_{4}$ |

- Comparing medium light vs dark, the $95 \% \mathrm{CI}$ on $\beta_{2}$, the log odds ratio, is

$$
1.2694 \mp 1.96(0.8488) \longrightarrow(-0.3943,2.9331)
$$

which includes 0 , hence CI on odds ratio will include 1 .

Exercise 4.1 Perform all the CI's mentioned in the previous example.

Example 4.8 For the sake of practice let us compare dark vs non-dark using current model, for a fixed level of weight. Hence a CI on

$$
\frac{\left(\alpha+\beta_{2}+\beta_{1} x\right)+\left(\alpha+\beta_{3}+\beta_{1} x\right)+\left(\alpha+\beta_{4}+\beta_{1} x\right)}{3}-\left(\alpha+\beta_{1} x\right)=\frac{1}{3} \beta_{2}+\frac{1}{3} \beta_{3}+\frac{1}{3} \beta_{4}
$$

is needed. DO IN CLASS.

Example 4.9 (Florida Death Penalty) http://users.stat.ufl.edu/~athienit/ STA4504/Examples/FL_death.R

### 4.3.2 Quantitative Treatment of Ordinal Factors

Qualitative variables can be

- nominal - no order
- ordinal - order
where ordinal variables can be treated as qualitative or quantitative.
Example 4.10 (Horseshoe crab continued) Consider example 4.3 where 3 dummy variables were created to distinguish the 4 levels of color: medium light, medium, medium dark and dark.
In the context of this problem "darkness" is of interest and hence color is ordinal, so a score can be created to reflect this

| Color | Score |
| :--- | :---: |
| Medium Light | 1 |
| Medium | 2 |
| Medium dark | 3 |
| Dark | 4 |

$$
\operatorname{logit}[\pi(x)]=\alpha+\beta_{1} x+\beta_{2} c
$$

Referring to the (qualitative) model of example 4.3,

| Color | $\operatorname{logit}[\pi(x)]$ |  |
| :--- | ---: | ---: |
|  | Qualitative | Quantitative |
| medium light | $\left(\alpha+\beta_{2}\right)+\beta_{1} x$ | $\left(\alpha+\beta_{2}\right)+\beta_{1} x$ |
| medium | $\left(\alpha+\beta_{3}\right)+\beta_{1} x$ | $\left(\alpha+2 \beta_{2}\right)+\beta_{1} x$ |
| medium dark | $\left(\alpha+\beta_{4}\right)+\beta_{1} x$ | $\left(\alpha+3 \beta_{2}\right)+\beta_{1} x$ |
| dark | $\alpha+\beta_{1} x$ | $\left(\alpha+4 \beta_{2}\right)+\beta_{1} x$ |

Note that the qualitative model is a lot more flexible (as it has more parameters) in differentiating between groups, while the quantitative model assumes a systematic change between groups.

```
> linear=unclass(color) # convert back to integer levels
> fit2.3=glm(y ~ weight + linear, family=binomial(link=logit))
> summary(fit2.3)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.0316 1.1161 -1.820 0.0687 .
weight 1.6531 0.3825 4.322 1.55e-05 ***
linear -0.5142 0.2234 -2.302 0.0213 *

 Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 190.27 on 170 degrees of freedom
AIC: 196.27
```

Testing the significance of color via $\mathrm{H}_{0}: \beta_{2}=0$ for this model

- Via normal test, p-value $=0.0213$
- Via LRT, $G^{2}=195.74-190.27$ with 1 degree of freedom yields, p -value $=$ 0.0193637

Part (II), subpart C of http://users.stat.ufl.edu/~athienit/STA4504/Examples/ crab_u.R
To summarize in terms of the LRT for color

| Color | df | LRT p-value |
| :--- | ---: | ---: |
| Qualitative | 3 | 0.07 |
| Binary (dark vs. non-dark) | 1 | 0.01 |
| Quantitative | 1 | 0.02 |



Figure 4.4: Probability curves

Remark 4.2. To achieve more power in testing factors, it is best to use methodology, i.e. tests, that use fewer degrees of freedom.

Exercise 4.2 Try to fit a quantitative model with a more representative score than $1,2,3,4$, in order to obtain a p-value (for a LRT less) than 0.0193637

### 4.4 Summarizing Predictive Power

A naive way of summarizing predictive power is to calculate the correlation between observed responses and fitted responses.

Example 4.11 (Horseshoe crab continued) We look at the correlation between the observed values of $y=0,1$ and the fitted probabilities of the logistic regression models.

```
> cor(y,fitted(fit)) # weight
[1] 0.3955277
> cor(y,fitted(fit2)) # weight and color
[1] 0.4476282
> cor(y,fitted(fit2.2)) # weight and binary dark
[1] 0.3958138
> cor(y,fitted(fit2.3)) # weight and linear color
[1] 0.4385387
```

A more sophisticated method, similar to methods learned in other courses, is the (approximate) leave-one-out cross-validation, and producing classification tables

1. Fit the model to the data leaving out $\mathrm{i}^{\text {th }}$ observation
2. Use fitted model and the predictor settings of the $\mathrm{i}^{\text {th }}$ observation to compute response $\hat{\pi}\left(\boldsymbol{x}_{i}\right)$
3. Predict

$$
\hat{y}_{i}= \begin{cases}1 & \hat{\pi}\left(x_{i}\right)>0.50=: \pi_{0} \quad \text { (cutoff probability) } \\ 0 & \hat{\pi}\left(x_{i}\right) \leq 0.50\end{cases}
$$

where the cutoff of 0.50 can be altered.

Example 4.12 (Horseshoe crab continued) Using the model with weight and (qualitative) color we obtain

| Actual | Predicted |  |  |
| :--- | :---: | :---: | :---: |
|  | $\hat{y}=0$ | $\hat{y}=1$ | Total |
| $y=0$ | 27 | 35 | 62 |
| $y=1$ | 17 | 94 | 111 |

$$
\begin{aligned}
& \text { Sensitivity }=P(\hat{Y}=1 \mid Y=1)=\frac{94}{111} \approx 0.847 \\
& \text { Specificity }=P(\hat{Y}=0 \mid Y=0)=\frac{27}{62} \approx 0.435
\end{aligned}
$$

and

$$
P(\text { correct classification })=\frac{94+27}{173} \approx 0.699
$$

Part (III) of http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R

### 4.5 Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve plots the true positive rate, sensitivity, against false positive rate, 1 -specificity, as the cutoff value $\pi_{0}$ varies from 0 to 1 . It can also be thought of as a plot of the Power as a function of the Type I Error of the decision rule.

- The higher the sensitivity for a given specificity, the better, so a model with a higher ROC curve is preferred to one with a lower ROC curve.
- The area under the ROC curve is a measure of predictive power, called the concordance index, $c$.
- Models with larger $c$ have better predictive power.
- When $c=1 / 2$ it is no better than random guessing.
- If feasible, use cross-validation.
- ROC curves should not be used with random predictors.

Example 4.13 (Horseshoe crab continued) The concordance indexes for some of the fitted models are

| Model | Concordance |
| :--- | :---: |
| Weight | 0.738 |
| Weight and Color | 0.769 |
| Weight and Dark | 0.738 |
| Weight and Linear Color | 0.761 |



Part (IV) of http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R

## 5. Building Logistic Regression Models



Strategies in model selection and model checking.

### 5.1 Strategies

### 5.1.1 AIC and AICc

The Akaike information criterion (AIC) is an estimator of the relative quality of statistical models for a given set of data. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models. Thus, AIC provides a means for model selection.

$$
\operatorname{AIC}=2(k+1)-2 \log (\hat{L})
$$

It is comprised of a "penalizing" function $2(k+1)$ that penalizes for complicated models with a large $k$ value, and the maximum value of the likelihood function for the model. Hence, smaller values are desirable when comparing models.

When the sample size is small, there is a substantial probability that AIC will select models that have too many parameters. AICc was developed that includes a correction for small sample sizes. The formula for AICc depends upon the statistical model. Assuming that the model is univariate, is linear in its parameters, and has normally-distributed residuals (conditional upon regressors), then the formula for AICc is as follows.

$$
\mathrm{AICc}=\mathrm{AIC}+\frac{2(k+1)^{2}+2(k+1)}{n-k-2}
$$

Thus, AICc is essentially AIC with an extra penalty term for the number of parameters.

Example 5.1 (Horseshoe crab continued) Results best illustrated via


### 5.1.2 Multicollinearity

Multicollinearity is a phenomenon in which one predictor variable can be linearly predicted from the other predictors with a substantial degree of accuracy.

## Effects:

- Coefficient estimates may change erratically in response to small changes in the model or the data.
- Coefficient standard errors are inflated.

Multicollinearity does not reduce the predictive power or reliability of the model as a whole, at least within the sample data set; it only affects calculations regarding individual predictors.

Example 5.2 (Horseshoe crab continued) Consider the weight and width of a crab that are likely to be correlated
> cor(weight,width)
[1] 0.8868715

and we could use either variable. However, we will see in this example it is best to use width.

```
> fit.we=glm(y ~ weight, family=binomial(link=logit))
> summary(fit.we)
Coefficients:
 Estimate Std. Error z value Pr(> | | |)
(Intercept) -3.6947 0.8802 -4.198 2.70e-05 ***
weight 1.8151 0.3767 4.819 1.45e-06 ***

AIC: 199.74
```

> fit.wi=glm(y ~ width, family=binomial(link=logit))
> summary(fit.wi)
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -12.3508 $2.6287-4.6982 .62 \mathrm{e}-06$ ***
$\begin{array}{llll}\text { width } & 0.4972 \quad 0.1017 \quad 4.887 & 1.02 \mathrm{e}-06 & * * *\end{array}$
---
AIC: 198.45
> fit.wewi=glm(y ~ weight+width, family=binomial(link=logit))
> summary(fit.wewi)
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -9.3547 $\begin{array}{lllll} & 3.5280 & -2.652 & 0.00801 * *\end{array}$
$\begin{array}{lllll}\text { weight } & 0.8338 & 0.6716 & 1.241 & 0.21445\end{array}$
$\begin{array}{llllll}\text { width } \quad 0.3068 & 0.1819 & 1.686 & 0.09177\end{array}$
---
AIC: 198.89

### 5.1.3 Stepwise Selection Algorithms

There are 3 common types of algorithms

- Backward - Start with a full model and remove 1 factor/predictor at a time, based on a criterion, until a stopping is reached.
- Forward - Start with a reduced simple model and add 1 factor/predictor at a time, based on a criterion, until a stopping is reached.
- Both - Start with any model (of varying complexity) and at each step add or remove a variable.

Common criteria include (but not limited to)

- AIC
- LRT p-values

Example 5.3 (Horseshoe crab continued) DONE IN CLASS. Part (V) of http: / /users. stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R

Remark 5.1. There is a study that suggests $\geq 10$ outcomes of each type per model predictor (where dummy variables for qualitative predictors are considered individual predictors).

Example 5.4 (Horseshoe crab) In this example there were 173 crabs, 111 had a male satellite while 62 did not. Hence, choosing the smaller count of the two

$$
\frac{62}{10} \approx 6 \text { predictors }
$$

We noticed that a model with the 3-way interaction term was not estimable. In fact, based on this guideline, we probably should be attempting to fit some (if not all) of the 2-way interactions.

### 5.2 Model Checking

There 3 main ways of checking model fit

- Goodness of fit test. Using deviance $G^{2}$ and Pearson's chi-square $X^{2}$ are generally limited to "non-sparse" contingency tables.
- Check whether fit improves by adding other predictors or interactions between predictors.
- Residuals.

Example 5.5 (Florida Death Penalty continued) In this example we will look at the first two points. In example 4.9 you were asked to perform a goodness of fit test as an exercise. Summarizing fit over 8 cells of table:

$$
\begin{aligned}
& X^{2}=\sum \frac{(\text { observed }- \text { fitted })^{2}}{\text { fitted }}=0.20 \\
& G^{2}=2 \sum(\text { observed }) \log \left(\frac{\text { observed }}{\text { fitted }}\right)=0.38 \longleftarrow(\text { Residual Deviance }) \\
& d f=\text { num. binomials }- \text { num. model params }=4-3
\end{aligned}
$$

For $\mathrm{H}_{0}$ : "model correctly specified", $G^{2}=0.38, d f=1, \mathrm{p}$-value $=0.54$. Hence, no evidence of lack of fit.
The model assumes lack of interaction between $d$ and $v$ in effects on $Y$ (homogeneous association). Adding interaction term gives saturated model, so goodness-of-fit test in this example is a test of $\mathrm{H}_{0}$ : "no interaction". (Try it and look at df).

## Remark 5.2.

- $X^{2}$ usually recommended over $G^{2}$ for testing goodness of fit. Why?
- These tests only appropriate for grouped binary data with most ( $\geq 80 \%$ ) of fitted cell counts being "large" (e.g., $\hat{\mu}_{i}>5$ ). In example 4.9 there were a two cells with fitted values of 0.18 and 3.82.
- For continuous predictors or many predictors with small fitted values, distributions of $X^{2}$ and $G^{2}$ are not well approximated by $\chi^{2}$. For better approximations, try grouping data before applying $X^{2}, G^{2}$.
- Hosmer-Lemeshow test forms groups using ranges of $\hat{\pi}$ values.
- Or can try to group predictor values (if only 1 or 2 predictors).

For obtaining residuals, notate at setting $i$ of explanatory variables

- $y_{i}=$ number of successes
- $n_{i}=$ number of trials (preferably "large")
- $\hat{\pi}_{i}=$ estimated probability of success based on ML fit of model

Definition 5.1 (Pearson residuals) For a binomial GLM, the Pearson residuals are

$$
e_{i}=\frac{y_{i}-n_{i} \hat{\pi}_{i}}{\sqrt{n_{i} \hat{\pi}_{i}\left(1-\hat{\pi}_{i}\right)}} \quad\left(X^{2}=\sum_{i}^{n} e_{i}^{2}\right)
$$

The distribution of $e_{i} \stackrel{\text { approx }}{\sim} N(0, v)$ when model holds (and $n_{i}$ large), but $v<1$.
R code 5.1 Recall we use
residuals(model,type='`pearson'’)

Definition 5.2 (Standardized Pearson residual) For a binomial GLM, the standardized Pearson residuals are

$$
r_{i}=\frac{y_{i}-n_{i} \hat{\pi}_{i}}{\sqrt{n_{i} \hat{\pi}_{i}\left(1-\hat{\pi}_{i}\right)\left(1-h_{i}\right)}}=\frac{e_{i}}{\sqrt{1-h_{i}}}
$$

which correct for standard error so that $r_{i} \stackrel{\text { approx }}{\sim} N(0,1)$ and $h_{i}$ is the i-th diagonal element of the "Hat" matrix (not covered here).

Therefore, values of $\left|r_{i}\right|>2$ suggest a lack of fit.
R code 5.2 The function rstandard() provides standardized deviance residuals by default.

- For standardized Pearson residuals specify
rstandard(model,type='`pearson'’)
- Standardized Deviance residuals are the default option


## rstandard(model)

Example 5.6 (Berkeley Graduate Admissions) http://users.stat.ufl.edu/ ~athienit/STA4504/Examples/admissions.R

### 5.3 Effects of Sparse Data

As the term suggests, sparse data are when certain combinations of variables have no actual data or "limited" information. This can lead to parameter estimates being infinite (in value).

Example 5.7 Consider,

|  |  | S | F |
| :---: | :---: | :---: | :---: |
| X | 1 | 8 | 2 |
|  | 0 | 10 | 0 |

Fitting a simple logistic regression will yield the estimates odds ratio

$$
e^{\hat{\beta}}=\frac{8 \times 0}{2 \times 10}=0 \quad \Rightarrow \quad \hat{\beta}=\log (0)=-\infty
$$

Infinite estimates exist when predictor values ( $x$ values) where $y=1$ can be separated from predictor values where $y=0$. This extends to multidimensional predictor space.

Example 5.8 Let

$$
y= \begin{cases}0 & x<50 \\ 1 & x>50\end{cases}
$$

with no values at $x=50$.
Data were simulated at
http://users.stat.ufl.edu/~athienit/STA4504/Examples/sparse.R
> fit=glm(y~x,family=binomial)
Warning messages:
1: glm.fit: algorithm did not converge
2: glm.fit: fitted probabilities numerically 0 or 1 occurred > summary (fit)
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) $-297.566174094 .706-0.002 \quad 0.999$
$\begin{array}{lllll}x & 6.051 & 3542.717 & 0.002 & 0.999\end{array}$
---
Null deviance: $4.1054 \mathrm{e}+01$ on 29 degrees of freedom
Residual deviance: 5.0225e-09 on 28 degrees of freedom
AIC: 4
where although $\hat{\beta}=6.051$ the standard error is 3542.717 .


This is because the likelihood function has no point of inflection, that is, it keeps increasing as $\beta \uparrow$.

## 6. Multicategory Logit Models

### 6.1 Logit Models for Nominal Responses

### 6.2 Cumulative Logit Models for Ordinal Responses

### 6.1 Logit Models for Nominal Responses

Let

$$
\pi_{j}=P(Y=j), \quad j=1,2, \ldots, J
$$

Conisder a binomial with two groups and two probabilities, $\pi_{1}, \pi_{2} \ni \pi_{1}+\pi_{2}=1$. A simple logistic model was

$$
\log \left(\frac{\pi_{1}}{1-\pi_{1}}\right)=\log \left(\frac{\pi_{1}}{\pi_{2}}\right)=\alpha+\beta x
$$

Baseline-category logits are similar but have the form

$$
\log \left(\frac{\pi_{j}}{\pi_{J}}\right)=\alpha_{j}+\beta_{j} x, \quad j=1, \ldots, J-1
$$

There is seperate set of parameters $\left(\alpha_{j}, \beta_{j}\right)$ for each logit. We compare the probability of being in group $j$, versus the baseline group $J$.


Hence,

$$
\pi_{j}=\frac{e^{\alpha_{j}+\beta_{j} x}}{1+\sum_{i=1}^{J-1} e^{\alpha_{i}+\beta_{i} x}}, \quad \pi_{J}=\frac{1}{1+\sum_{i=1}^{J-1} e^{\alpha_{i}+\beta_{i} x}}
$$

but we can compare any two groups that where one group is not the baseline


- Category used as baseline (i.e., category $J$ ) is arbitrary and does not affect model fit, since categories are nominal.
- The term $e^{\beta_{j}}$ is the multiplicative effect of a 1 -unit increase in $x$ on the conditional odds of response $j$ given that response is one of $j$ or $J$.
- Could also use this model with ordinal response variables, but this would ignore information about ordering.


## Example 6.1 (Job Satisfaction) Data from 1991 GSS

| Income | Job Satisfaction |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Dissat | Little | Moderate | Very |
| $<5 \mathrm{k}$ | 2 | 4 | 13 | 3 |
| $5 \mathrm{k}-15 \mathrm{k}$ | 2 | 6 | 22 | 4 |
| $15 \mathrm{k}-25 \mathrm{k}$ | 0 | 1 | 15 | 8 |
| $>25 \mathrm{k}$ | 0 | 3 | 13 | 8 |

Consider $x=$ income scores $(3,10,20,30)$ and define $\mathrm{VD}=1, \mathrm{LD}=2, \mathrm{MS}=3, \mathrm{VS}=4$

```
> fit.blogit=vglm(cbind(VD,LD,MS,VS)~income,family=multinomial,data=dat)
> summary(fit.blogit)
Coefficients:
```

|  | Estimate | Std. Error | z value |
| :--- | ---: | ---: | ---: |
| (Intercept):1 | 0.563824 | 0.960138 | 0.58723 |
| (Intercept):2 | 0.645091 | 0.668771 | 0.96459 |
| (Intercept):3 | 1.818698 | 0.528955 | 3.43828 |
| income:1 | -0.198773 | 0.102096 | -1.94693 |
| income:2 | -0.070502 | 0.036954 | -1.90785 |
| income:3 | -0.046918 | 0.025519 | -1.83858 |

Residual deviance: 4.17662 on 6 degrees of freedom Log-likelihood: -16.71316 on 6 degrees of freedom

The prediction equations are

$$
\begin{aligned}
& \log \left(\frac{\hat{\pi}_{1}}{\hat{\pi}_{4}}\right)=0.564-0.199 x \\
& \log \left(\frac{\hat{\pi}_{2}}{\hat{\pi}_{4}}\right)=0.645-0.071 x \\
& \log \left(\frac{\hat{\pi}_{3}}{\hat{\pi}_{4}}\right)=1.819-0.047 x
\end{aligned}
$$

For each logit, the odds of being in a less satisfied category (instead of "very satisfied") decreases as income increases. ML estimates determine the effects for all pairs of categories. For example, comparing group 1 and 2, i.e. "dissatisfied" to "little dissatisfied"

$$
\log \left(\frac{\hat{\pi}_{1}}{\hat{\pi}_{2}}\right)=\log \left(\frac{\hat{\pi}_{1}}{\hat{\pi}_{4}}\right)-\log \left(\frac{\hat{\pi}_{2}}{\hat{\pi}_{4}}\right)=-0.081-0.128 x
$$

A global test of income effect is $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0$.

```
> vglm(cbind(VD,LD,MS,VS)~1,family=multinomial,data=dat)
Degrees of Freedom: 12 Total; 9 Residual
Residual deviance: 13.4673
and hence
\[
G^{2}=13.4673-4.17662 \quad d f=3 \quad p \text {-value of0.0257 }
\]
http://users.stat.ufl.edu/~athienit/STA4504/Examples/jobsatis.R
```

Exercise 6.1 For the job satisfaction example, we obtained the logit for comparing "dissatisfied" to "little dissatisfied" to be

$$
\log \left(\frac{\hat{\pi}_{1}}{\hat{\pi}_{2}}\right)=-0.081-0.128 x
$$

where $\hat{\beta}_{1}-\hat{\beta}_{2}=-0.128$. Create a $95 \%$ confidence interval around $\beta_{1}-\beta_{2}$ and interpret.

### 6.2 Cumulative Logit Models for Ordinal Responses

The cumulative logit probabilities are

$$
P(Y \leq j)=\sum_{i=1}^{j} \pi_{j}, \quad j=1, \ldots, J
$$

and the cumulative logit model is

$$
\begin{aligned}
\operatorname{logit}[P(Y \leq j)] & =\log \left(\frac{P(Y \leq j)}{1-P(Y \leq j)}\right) \\
& =\log \left(\frac{P(Y \leq j)}{P(Y>j)}\right) \\
& =\alpha_{j}+\beta x, \quad j=1, \ldots, J-1
\end{aligned}
$$



$$
P(Y \leq j)=\frac{e^{\alpha_{j}+\beta x}}{1+e^{\alpha_{j}+\beta x}}, \quad j=1,2, \ldots J-1
$$

- Separate intercept $\alpha_{j}$ for each cumulative logit
- Same (slope) coefficient $\beta$ for each cumulative logit.
- The term $e^{\beta}=$ multiplicative effect of 1 -unit increase in $x$ on odds that $(Y \leq j)$ instead of $(Y>j)$.

$$
\begin{aligned}
\frac{\operatorname{odds}\left(Y \leq j \mid x_{2}\right)}{\operatorname{odds}\left(Y \leq j \mid x_{1}\right)} & =\frac{e^{\alpha_{j}+\beta x_{2}}}{e^{\alpha_{j}+\beta x_{1}}} \\
& =e^{\beta\left(x_{2}-x_{1}\right)} \\
& =e^{\beta}, \quad \text { when } x_{2}=x_{1}+1
\end{aligned}
$$

Also called proportional odds model.

Example 6.2 (Job Satisfaction continued) The model has form

$$
\operatorname{logit}[P(Y \leq j \mid x)]=\alpha_{j}+\beta x \quad j=1,2,3
$$

```
> fit.clogit1=vglm(cbind(VD,LD,MS,VS)~income,
+ family=cumulative(parallel=TRUE),data=dat)
> summary(fit.clogit1)
Coefficients:
 Estimate Std. Error z value
(Intercept):1 -2.473156 0.568376 -4.3513
(Intercept):2 -0.781728 0.373724 -2.0917
(Intercept):3 2.211091 0.445123 4.9674
income -0.056347 0.020871-2.6998
```

Residual deviance: 5.9527 on 8 degrees of freedom Log-likelihood: -17.60121 on 8 degrees of freedom

The fitted model is

$$
\operatorname{logit}[\hat{P}(Y \leq j \mid x)]=\hat{\alpha}_{j}-0.056 x \quad j=1,2,3 .
$$

Hence the odds of response at low end of job satisfaction scale decrease as $x$ increases, i.e. $\exp (-0.056)=0.95$. Estimated odds of job satisfaction below any given level (instead of above it) multiply by 0.95 for a 1 -unit increase in $x$ (1-unit=\$1000). For a $\$ 10,000$ increase in income, the estimated odds multiply by $\exp (10(-0.056))=0.57$. (If we were to reverse the order of the responses, then $\hat{\beta}=+0.056$ ).

Odds ratio is the same between same two categories of $x$ irrespective of cutoff region for response categories (to make response binary) as shown in the diagrams in the class notes.

In addition, the odds ratio is the same between categories $x=10$ and $x=20$, and $x=20$ and $x=30$ due to the same increment in $x$.

A goodness of fit test yields a p-value of

```
> 1-pchisq(deviance(fit.clogit1),df.residual(fit.clogit1))
```

[1] 0.6525305
so we conclude that the model is a good fit.
A test of $\mathrm{H}_{0}$ : job satisfaction independent of income (i.e. $\beta=0$ in cumulative logit model) yields

- A Wald $z$-stat of -2.6998 (or $\chi^{2}$ of 7.17) and a p-value of 0.007 .
- A LR statistic of $13.4673-5.9527=7.5146$ on 1 df and a p-value of 0.006 . The null deviance was computed using

```
> vglm(cbind(VD,LD,MS,VS)~1,
+ family=cumulative(parallel=TRUE),data=dat)
Coefficients:
(Intercept):1 (Intercept):2 (Intercept):3
 -3.218876 -1.563976 1.258955
```

Degrees of Freedom: 12 Total; 9 Residual
Residual deviance: 13.4673
Log-likelihood: -21.35851


A model with nonparallel lines, i.e. different $\beta_{j}$ for $j=1,2,3$ instead of one common slope, if fit but it does not differ from the parallel lines model (conclusion via LR test stat).

```
> fit.clogit2=vglm(cbind(VD,LD,MS,VS)~income,
+ family=cumulative(parallel=FALSE),data=dat)
> summary(fit.clogit2)
Coefficients:
 Estimate Std. Error z value
(Intercept):1 -1.74105 0.816828-2.1315
(Intercept):2 -0.82432 0.449753-1.8328
(Intercept):3 2.20524 0.515114 4.2811
income:1 -0.14443 0.091070-1.5860
income:2 -0.05356 0.029750-1.8003
income:3 -0.05603 0.024771 -2.2619
```

Residual deviance: 4.37717 on 6 degrees of freedom Log-likelihood: -16.81344 on 6 degrees of freedom

- To test $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0$ via LRT, we use

```
> 1-pchisq(13.4673-4.37717,3)
[1] 0.02811625
```

and conclude that at least one of the $\beta^{\prime}$ 's is significant.

- To test $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\beta_{3}$ via LRT, that is comparing the "parallel" model to the "non-parallel", we use
> 1-pchisq(5.9527-4.37717,2)
[1] 0.4548603
and conclude that at wwe should be using one common $\beta$, i.e. the "parallel" model.

```
http://users.stat.ufl.edu/~athienit/STA4504/Examples/jobsatis.R
```

Exercise 6.2 Instead of testing $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\beta_{3}$ via LRT, to determine whether to use the "non-parallel" model, obtain the AIC for each model, compare and conclude.

Example 6.3 (Political Ideology) An example with the following data yields
> ideow
Gender Party VLib SLib Mod SCon VCon
1 Female Democrat $44 \quad 47118 \quad 23 \quad 32$
2 Female Republican $\begin{array}{llllll}18 & 28 & 86 & 39 & 48\end{array}$
3 Male Democrat $\begin{array}{llllll}36 & 34 & 53 & 18 & 23\end{array}$
4 Male Republican $\begin{array}{llllll}12 & 18 & 62 & 45 & 51\end{array}$
> library(VGAM)
> ideo.cl1=vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender + Party,
$+\quad$ family=cumulative(parallel=TRUE), data=ideow)
> summary(ideo.cl1)
Coefficients:
Estimate Std. Error z value
(Intercept): $1 \quad-1.45177 \quad 0.12284-11.81819$
$\begin{array}{llll}\text { (Intercept): } 2 & -0.45834 & 0.10577 & -4.33337\end{array}$
$\begin{array}{llll}\text { (Intercept): } 3 & 1.25499 & 0.11455 & 10.95598\end{array}$
$\begin{array}{llll}\text { (Intercept): } 4 & 2.08904 & 0.12916 & 16.17374\end{array}$
$\begin{array}{llll}\text { GenderMale } & -0.11686 & 0.12681 & -0.92147\end{array}$
$\begin{array}{llll}\text { PartyRepublican -0.96362 } & 0.12936 & -7.44917\end{array}$
Residual deviance: 15.05557 on 10 degrees of freedom Log-likelihood: -47.41497 on 10 degrees of freedom

- First we perform a goodness of fit test with $G^{2}=15.056$ and 10 degrees of freedom to obtain a p-value of 0.13
- Testing for party effect (controlling for gender) we have
- Wald: $z=-7.449$
- LR: 71.902-15.056 = 56.846 with $\mathrm{df}=1$. (Deviance of 71.902 was obtained by fitting model with only gender effect)

Strong evidence that Republicans tend to be less liberal (more conservative) than Democrats (for each gender).
Controlling for gender, estimated odds that a Republican's response (i.e. going from $x_{2}=0$ to $x_{2}=1$, a 1-unit increase) is in liberal direction $(Y \leq j)$ rather than conservative $(Y>j)$ are $\exp (-0.964)=0.38$ times estimated odds for a Democrat.
(Equivalently, controlling for gender, estimated odds that a Democrat's response is in liberal direction rather than conservative $\exp (0.964)=2.62$ times estimated odds for a Republican.) The $95 \%$ CI for the odds ratio is (but best to use confint)

$$
\exp (-0.964 \pm 1.96(0.129)) \rightarrow(0.30,0.49)
$$

- Testing for gender effect (controlling for party) we have a Wald statistic -0.921 indicating a lack of evidence.

However, before we simply drop the gender effect, we know from a previous example that there is a relationship between gender and party affiliation (see party affiliation example). It makes sense that an interaction may be present.

```
> ideo.cl2=vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender*Party,
+ family=cumulative(parallel=TRUE), data=ideow)
> summary(ideo.cl2)
Coefficients:
\begin{tabular}{lrrr}
& Estimate & Std. Error & Z value \\
(Intercept) :1 & -1.55209 & 0.13353 & -11.62339 \\
(Intercept):2 & -0.55499 & 0.11703 & -4.74225 \\
(Intercept):3 & 1.16465 & 0.12337 & 9.44006 \\
(Intercept):4 & 2.00121 & 0.13682 & 14.62633 \\
GenderMale & 0.14308 & 0.17936 & 0.79772 \\
PartyRepublican & -0.75621 & 0.16691 & -4.53062 \\
GenderMale:PartyRepublican & -0.50913 & 0.25408 & -2.00381
\end{tabular}
```

Residual deviance: 11.06338 on 9 degrees of freedom Log-likelihood: -45.41887 on 9 degrees of freedom

Notice that the interaction term appears significant.

- Wald: $z=-2.004$ with p -value $=0.04507$
- LR: $15.056-11.063=3.993$ with $\mathrm{df}=1$ and p -value $=0.0457$.

The goodness of fit test with $G^{2}=11.063$ residual deviance and $\mathrm{df}=9$ wields a p -value of 0.2714153 , a big improvement from 0.13 for the additive model. This is because the interaction takes into account the relationship between gender and party affiliation and how they affect political ideology.

## Interpretation:

- Odds ratio
- Estimated odds ratio for party effect ( $x_{2}$ ), (allowing gender to differ) is

$$
\begin{aligned}
\exp \left(b_{2}\right)=\exp (-0.756)=0.47 \quad \text { when } x_{1}=0(\mathrm{~F}) \\
\exp \left(b_{2}+b_{3}\right)=\exp (-0.756-0.509)=0.28 \quad \text { when } x_{1}=1(\mathrm{M})
\end{aligned}
$$

* Estimated odds that a female Republican's response is in liberal direction rather than conservative are 0.47 times estimated odds for a female Democrat.
* Estimated odds that a male Republican's response is in liberal direction rather than conservative are 0.28 times estimated odds for a male Democrat.
- Estimated odds ratio for gender effect $\left(x_{1}\right)$ is

$$
\begin{aligned}
\exp \left(b_{1}\right)=\exp (0.143)=1.15 \quad \text { when } x_{2}=0(\text { Dem }) \\
\exp \left(b_{1}+b_{3}\right)=\exp (0.143-0.509)=0.69 \quad \text { when } x_{2}=1(\text { Rep })
\end{aligned}
$$

* Estimated odds that a male Democrat's response is in liberal direction rather than conservative are 1.15 times estimated odds for a female Democrat.
* Estimated odds that a male Republican's response is in liberal direction rather than conservative are 0.69 times estimated odds for a female Republican.
- Probabilities

$$
\hat{P}(Y \leq j)=\frac{\exp \left(\hat{\alpha}_{j}+0.143 x_{1}-0.756 x_{2}-0.509 x_{1} x_{2}\right)}{1+\exp \left(\hat{\alpha}_{j}+0.143 x_{1}-0.756 x_{2}-0.509 x_{1} x_{2}\right)}
$$

- $\hat{P}(Y=1)=\hat{P}(Y \leq 1)$. For $j=1$ (very liberal) the probability for a male republican ( $\hat{\alpha}_{1}=-1.55, x_{1}=1, x_{2}=1$ ):

$$
\hat{P}(Y=1)=\frac{e^{-2.67}}{1+e^{2.67}}=0.065
$$

- Similarly, $\hat{P}(Y=2)=\hat{P}(Y \leq 2)-\hat{P}(Y \leq 1)$, etc. Note $\hat{P}(Y=5)=\hat{P}(Y \leq 5)-\hat{P}(Y \leq 4)=1-\hat{P}(Y \leq 4)$.
http://users.stat.ufl.edu/~athienit/STA4504/Examples/pol_ideology.R
Exercise 6.3 Check the (cumulative probability conditions) whether a model with "non-parallel" systematic component is feasible.


## 8. Models for Matched Pairs



Methods for comparing categorical responses for two samples that have a natural pairing between each subject in one sample and a subject in the other sample.

### 8.1 McNemar's Test

Methods so far (e.g., $X^{2}$ and $G^{2}$ test of independence, CI for odds ratio, logistic regression) assume independent samples. Inappropriate for dependent samples (e.g., same subjects in each sample yielding matched pairs of responses).

Example 8.1 (Crossover Study: Drug vs Placebo) Consider 86 subjects. Randomly assign each to either "drug then placebo" or "placebo then drug". Binary response (S,F) for each.

| Treatment | S | F | Total |
| :--- | :---: | :---: | :---: |
| Drug | 61 | 25 | 86 |
| Placebo | 22 | 64 | 86 |

To reflect the dependence and looking at the full information

| Drug | Placebo |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | S F |  |  |  |
|  | S | 12 | 49 | 61 |
|  | F | 10 | 15 | 25 |
|  |  | 22 | 64 | 86 |

\[

\]

Definition 8.1 (Marginal Homogeneity) There is marginal homogeneity if

$$
\pi_{1+}=\pi_{+1} \Leftrightarrow \pi_{12}=\pi_{21}
$$

since

$$
\pi_{1+}-\pi_{+1}=\left(\pi_{11}+\pi_{12}\right)-\left(\pi_{11}+\pi_{21}\right)=\pi_{12}-\pi_{21}
$$

Under $\mathrm{H}_{0}$ : marginal homogeneity

$$
\frac{\pi_{12}}{\pi_{12}+\pi_{21}}=\frac{1}{2}
$$

and each of $n^{\star}=n_{12}+n_{21}$ observations has probability $1 / 2$ of contributed to $n_{12}$ and $1 / 2$ of contributing to $n_{21}$

$$
n_{12} \sim \operatorname{Bin}\left(n^{\star}, 0.5\right) \Rightarrow z=\frac{n_{12}-n^{\star} / 2}{\sqrt{n^{\star}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}}=\frac{n_{12}-n_{21}}{\sqrt{n_{12}+n_{21}}} \stackrel{\text { approx. }}{\sim} N(0,1)
$$

and finding the two sided p-value as usual. However, using the normal approximation to the binomial we are assuming that $n^{\star}(1 / 2)>5$. Some authors suggest $>10$ or even $>25$. Equivalent to a z-test you may see

$$
z^{2}=\frac{\left(n_{12}-n_{21}\right)^{2}}{n_{12}+n_{21}} \sim \chi_{1}^{2} \equiv[N(0,1)]^{2}
$$

and the p -value being the area to the right (because we squared, only nonnegative values possible). To create a $100(1-\alpha) \%$ confidence interval for $\pi_{1+}-\pi_{+1}$ use

$$
\underbrace{p_{1+}-p_{+1}}_{\frac{n_{12}-n_{21}}{n}} \mp z_{1-\alpha / 2} \frac{1}{n} \sqrt{n_{12}+n_{21}-\frac{\left(n_{12}-n_{21}\right)^{2}}{n}}
$$

Remark 8.1. Depending on the situation, such as, if it is desirable $n_{12}$ to be large then a 1 -sided test of CI might yield some gain in power.

- Hypothesis $H_{a}: \pi_{12}>\pi_{21}, p$-value $=P(Z \geq z)$ area to the right (using normal distribution).
- CI, use $+z_{1-\alpha}$

R code 8.1 Use
mcnemar.test $(x, y=$ NULL, correct $=$ TRUE $)$
The continuity correction for using a continuous distribution to approximate the discrete binomial, is the default setting. Also recommended to use mcnemar.exact $\{$ exact $2 \times 2\}$ which uses the exact Binomial test and does not require $n^{\star}(1 / 2)>5$.

Example 8.2 (Crossover Study: Drug vs Placebo continued) Looking at the data again,

| Drug | Placebo |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | S | F |  |
|  | S | 12 | 49 | 61 |
|  | F | 10 | 15 | 25 |
|  |  | 22 | 64 | 86 |

and

$$
z=\frac{49-10}{\sqrt{49+10}}=5.1 \quad \text { and } \mathrm{p} \text {-value }<0.0001
$$

Extremely strong evidence that probability of success is higher for drug than placebo. The $95 \%$ CI for $\pi_{1+}-\pi_{+1}$ is

$$
\frac{49}{86}-\frac{10}{86} \mp 1.96 \frac{1}{86} \sqrt{49+10-\frac{(49-10)^{2}}{86}} \longrightarrow(0.31,0.60)
$$

and hence the probability of success under drug is larger than that under placebo.

```
> mcnemar.test(crossover,correct=FALSE)
McNemar's Chi-squared test
data: crossover
McNemar's chi-squared = 25.78, df = 1, p-value = 3.827e-07
> require(exact2x2)
> mcnemar.exact(crossover)
Exact McNemar test (with central confidence intervals)
data: crossover
b = 49, c = 10, p-value = 2.706e-07
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 2.451984 10.849724
sample estimates:
odds ratio
 4 . 9
Part (A) of http://users.stat.ufl.edu/~athienit/STA4504/Examples/
crossover_gee.R
```

Remark 8.2. The derivation of the standard error for the CI is derived by the fact that

$$
\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \sim M N\left(n,\left\{\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}\right\}\right)
$$

and hence

$$
\begin{aligned}
V\left(n_{i j}\right) & =n \pi_{i j}\left(1-\pi_{i j}\right) \\
\operatorname{Cov}\left(n_{i j}, n_{i^{\prime} j^{\prime}}\right) & =-n \pi_{i j} \pi_{i^{\prime} j^{\prime}} \quad\left(i \neq i^{\prime} \text { or } j \neq j^{\prime}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
V\left(p_{1+}-p_{+1}\right) & =V\left(\frac{n_{12}-n_{21}}{n}\right)=\frac{1}{n^{2}} V\left(n_{12}-n_{21}\right) \\
& =\frac{1}{n^{2}}\left[V\left(n_{12}\right)+V\left(n_{21}\right)-2 \operatorname{Cov}\left(n_{12}, n_{21}\right)\right] \\
& =\cdots \\
& =\frac{1}{n}\left[\pi_{12}+\pi_{21}-\left(\pi_{12}-\pi_{21}\right)^{2}\right]
\end{aligned}
$$

and hence

$$
\hat{V}\left(p_{1+}-p_{+1}\right)=\cdots=\frac{1}{n^{2}}\left[n_{12}+n_{21}-\frac{\left(n_{12}-n_{21}\right)^{2}}{n}\right]
$$

Remark 8.3. [McNemarBowker tests.] For larger than $2 \times 2$ tables, $k \times k$ tables, McNemar's test is generalized as the McNemar-Bowker symmetry test for testing

$$
H_{0}: \pi_{i j}=\pi_{j i}, \quad \text { for all pairs. }
$$

However, it may fail if there are 0's in certain locations in the matrix.
R code 8.2 Use nominalSymmetryTest\{rcompapion\}
nominalSymmetryTest(x, method = "fdr", digits = 3, ...)
For examples see https:// rcompanion.org/handbook/H_05.html

### 8.2 Rater Agreement

In this section we wish to determine if two raters/reviewers are in agreement or not.
Example 8.3 (Movie reviews) Two movie reviewers give their opinion on 160 movies

|  | Reviewer 2 |  |  |  |
| :--- | :---: | :---: | :---: | ---: |
| Reviewer 1 | Con | Mixed | Pro | Total |
| Con | 24 | 8 | 13 | 45 |
| Mixed | 8 | 13 | 11 | 32 |
| Pro | 10 | 9 | 64 | 83 |
| Total | 42 | 30 | 88 | 160 |

### 8.2.1 Cohen's Kappa (unweighted)

Let $\pi_{i j}=P(R 1=i, R 2=j)$,

$$
\begin{array}{rlr}
P(\text { agree }) & =\sum_{i} \pi_{i i} & \text { general case } \\
& =\sum_{i} \pi_{i+} \pi_{+i} & \text { if independence }
\end{array}
$$

Definition 8.2 (Cohen's Kappa)

$$
\kappa=\frac{\sum_{i} \pi_{i i}-\sum_{i} \pi_{i+} \pi_{+i}}{1-\sum_{i} \pi_{i+} \pi_{+i}}
$$

where

- $\mathcal{K}=0$ if agreement only equals that expected under independence.
- $\kappa=1$ if perfect agreement.
- Denominator $=$ maximum difference for numerator, attained if agreement is perfect, since perfect agreement implies $\sum_{i} \pi_{i i}=1$.
- It is possible for the statistic to be negative, which implies that there is no effective agreement between the two raters or the agreement is worse than random.

Asymptotic normality can be established

$$
\hat{\kappa} \stackrel{\mathrm{H}_{0}}{\sim} N(0, V(\hat{\kappa}))
$$

and hence the standard error must first be found. Let,

- $\hat{\pi}_{0}=\sum_{i} \hat{\pi}_{i i}$
- $\hat{\pi}_{c}=\sum_{i} \hat{\pi}_{i+} \hat{\pi}_{+i}$

$$
\begin{aligned}
\hat{V}(\hat{\kappa})= & \frac{1}{n\left(1-\hat{\pi}_{c}\right)^{4}}\left\{\sum_{i} \hat{\pi}_{i i}\left[\left(1-\hat{\pi}_{0}\right)-\left(\hat{\pi}_{+i}+\hat{\pi}_{i+}\right)\left(1-\hat{\pi}_{0}\right)\right]^{2}\right. \\
& \left.+\left(1-\hat{\pi}_{0}\right)^{2} \sum \sum_{i \neq j} \hat{\pi}_{i j}\left(\hat{\pi}_{+i}+\hat{\pi}_{i+}\right)^{2}-\left(\hat{\pi}_{0} \hat{\pi}_{c}-2 \hat{\pi}_{c}+\hat{\pi}_{0}\right)^{2}\right\}
\end{aligned}
$$

R code 8.3 In R there are multiple packages such as irr, psych, concord that have their own functions and their own weight scheme.
We will use cohen. kappa\{psych\}.

Example 8.4 (Movie reviews continued) From the data,

- $\sum_{i} \hat{\pi}_{i i}=\frac{24+13+64}{160}=0.63$
- $\sum_{i} \hat{\pi}_{i+} \hat{\pi}_{+i}=\frac{1}{160^{2}}(45 \times 42+32 \times 30+83 \times 88)=0.40$

$$
\hat{\kappa}=\frac{0.63-0.40}{1-0.40}=0.39
$$

Moderate agreement: difference between observed agreement and agreement expected under independence is about $40 \%$ of the maximum possible difference.

Inference To test $\mathrm{H}_{0}: \mathcal{K}=0$

- Create test statistic

$$
\frac{\hat{\kappa}-0}{0.06}=6.49
$$

with a small p -value when finding the two tails on a $N(0,1)$.

- Create $95 \%$ CI

$$
\hat{\kappa} \mp(1.96)(0.06) \quad \longrightarrow \quad(0.27,0.51)
$$

Calculation of standard error is left to software

```
> movie=matrix(c(24,8,10,8,13,9,13,11,64),3,3)
> dimnames(movie)=list(c("Con","Mixed","Pro"),c("Con","Mixed","Pro"))
> print(movie)
 Con Mixed Pro
Con 24 8 13
Mixed 8 13 11
Pro 10 9 64
>
> library(psych)
> cohen.kappa(movie)
Cohen Kappa and Weighted Kappa correlation coefficients
and confidence boundaries
 lower estimate upper
unweighted kappa 0.27 0.39 0.51
weighted kappa }00.32\quad0.46 0.6
 Number of subjects = 160
> sqrt(cohen.kappa(movie)$var.kappa)
[1] 0.05979313
http://users.stat.ufl.edu/~athienit/STA4504/Examples/cohen_kappa.R
```


### 8.2.2 Cohen's Kappa (weighted)

Weighted kappa lets you count disagreements differently and is especially useful when codes are ordered. Three matrices are involved

- the matrix of observed scores, $n_{i j}$
- the matrix of expected scores based on independence, $m_{i j}=n_{i+} n_{+j}$,
- the weight matrix $w_{i j}$

Derivations of weighted kappa are sometimes expressed in terms of similarities, and sometimes in terms of dissimilarities. In the latter case, the weights on the diagonal are 1 and the weights off the diagonal are less than one. We omit the calculation and use software.

Example 8.5 (Movie reviews continued) Performing both unweighted and weighted versions
> cohen.kappa(movie)
Cohen Kappa and Weighted Kappa correlation coefficients
and confidence boundaries

|  | lower | estimate | upper |
| :--- | ---: | ---: | ---: |
| unweighted kappa | 0.27 | 0.39 | 0.51 |
| weighted kappa | 0.32 | 0.46 | 0.60 |

Number of subjects $=160$
with weight matrix
> cohen.kappa(movie) \$weight
Con Mixed Pro
$\begin{array}{llll}\text { Con } & 1.00 & 0.75 & 0.00\end{array}$
Mixed $0.75 \quad 1.00 \quad 0.75$
Pro $0.00 \quad 0.751 .00$
Notice that cells with 0.75 although they represent disagreement it is not as severe as disagreements with 0 weight.
http://users.stat.ufl.edu/~athienit/STA4504/Examples/cohen_kappa.R

Exercise 8.1 In cohen. kappa\{psych\} you can also create your own custom weights as an argument to the function. Repeat the previous example but use 0.5 instead on 0.75 in the weight matrix.

## 9. Models for Correlated, Clustered Responses



Expanding matched pairs to multiple matched sets, i.e. repeated measures.

### 9.1 Introduction

Correlated responses occur in several ways, including:

- Repeated measures/longitudinal studies: repeated observations on each subject.
- Multiple, matched sets of subjects.
- Children in the same family.
- Children in the same elementary school class (children within class, class within school, school within district, etc).
- Fetuses from the same litter.

Usual model forms apply (e.g., logistic regression for binary response, cumulative logit for ordinal response), but model fitting must account for dependence (e.g., from repeated measures on subjects) in order to get appropriate standard errors and valid inferences.

We will use two approaches to such data: Observations ( $Y_{1}, Y_{2}, \ldots, Y_{T}$ )

- (In this chapter) Generalized Estimating Equations (GEE) to simultaneously fit marginal models on each (marginal) $E\left(Y_{t}\right), t=0, \ldots T$.
- (in the next chapter) Generalized Linear Mixed Models (GLMM) to find random effect for the subject/block effect.


### 9.2 Generalized Estimating Equations

## Focusing on GEE for Repeated Measures.

- Specify model in usual way by deciding what the random, component, link function and systematic components are.
- Select a working correlation matrix for best guess about correlation pattern between pairs of observations. That is the within-cluster correlation.

Example 9.1 For $T$ repeated responses, exchangeable correlation matrix is

| Time | 1 | 2 | $\cdots$ | $T$ |
| :--- | :---: | :---: | :---: | :---: |
| 1 | 1 | $\rho$ | $\cdots$ | $\rho$ |
| 2 | $\rho$ | 1 | $\cdots$ | $\rho$ |
| $\vdots$ | $\vdots$ | $\vdots$ | $\ddots$ | $\vdots$ |
| $T$ | $\rho$ | $\rho$ | $\cdots$ | 1 |

When there is positive within-cluster correlation (as often is the case):

- The standard errors for between-cluster effects (such as different treatment groups) and standard errors of estimated means within clusters tends to be larger than when independent.
- The standard errors for within-cluster effects, such as a slope for a trend in the repeated measurements in a subject, tend to be smaller than when observations are independent.

Fitting method gives estimates that are consistent even if correlation structure is missspecified. Adjusts standard errors to reflect actual observed dependence. Therefore, overly complicated structures are not encouraged. For other structures the reader is encouraged to review the literature.

Example 9.2 (Crossover Study: Drug vs Placebo continued) Going back to example 8.1

| Drug | Placebo |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | S | F |  |
|  | S | 12 | 49 | 61 |
|  | F | 10 | 15 | 25 |
|  |  | 22 | 64 | 86 |

Fit the model

$$
\operatorname{logit}\left[P\left(Y_{t}=1\right)\right]=\alpha+\beta d, \quad d= \begin{cases}1 & \text { drug } \\ 0 & \text { placebo }\end{cases}
$$

where $t=1,2$ represents the two time points, the two observations on each subject.

```
head(crossm1)
 Subject Treat Resp
1 1 Drug 1
2 Placebo 1
3 Drug 1
2 Placebo 1
5 3 Drug 1
6 3 Placebo 1
tail(crossm1)
```



Remark 9.1. With $\hat{\rho} \approx 0$ it implies that there is no significant correlation between the "clustered" responses.

Remark 9.2. With cross-over designs it is important to allow enough time for the effects of the previous treatment not influence the results of the next treatment the unit will cross-over to.

Remark 9.3. With GEE approach, can also have "between-subject" explanatory variables. In
the Drug vs Placebo, $d$ was a variable monitored "within-subject" but we could have monitored "between-subject" gender and even order of treatment, e.g.

$$
\text { sequence }= \begin{cases}1 & \text { placebo then drug } \\ 2 & \text { drug then placebo }\end{cases}
$$

GEE is a known as quasi-likelihood method.

- No particular form assumed for joint distribution of $\left(Y_{1}, Y_{2}, \ldots, Y_{T}\right)$.
- Hence, no likelihood function, no LR inference (LR test, LR CI).
- For responses $\left(Y_{1}, Y_{2}, \ldots, Y_{T}\right)$ at $T$ times, we consider marginal model that describes each $Y_{t}$ in terms of explanatory variables.

Example 9.3 (Depression) Consider the response on mental depression (normal, abnormal) measured three times (after 1, 2, and 4 weeks of treatment) with two drug treatments (standard, new) and two severity of initial diagnosis groups (mild, severe). Of interest is to find out if the rate of improvement better with the new drug?

Time Response Pattern

|  | 0 | A | A | A | A | N | N | N | N |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | A | A | N | N | A | A | N | N |
|  | 2 | A | N | A | N | A | N | A | N |
| Severity | Drug |  |  |  |  |  |  |  |  |
| Mild | Std | 6 | 15 | 4 | 14 | 3 | 9 | 13 | 16 |
|  | New | 0 | 9 | 2 | 22 | 0 | 6 | 0 | 31 |
| Severe | Std | 28 | 27 | 15 | 9 | 9 | 8 | 2 | 2 |
|  | New | 6 | 32 | 5 | 31 | 2 | 5 | 2 | 7 |

Let
$Y_{t}=$ response of randomly selected subject at time $t(1=$ normal, $0=$ abnormal $)$
$s=$ severity of initial diagnosis $(1=$ severe, $0=$ mild $)$
$d=\operatorname{drug}(1=$ new, $0=$ std $)$
$t=$ time $(0,1,2)$, which is $\log 2$ (weeks of trt)
Model:

$$
\log \left[\frac{P\left(Y_{t}=1\right)}{P\left(Y_{t}=0\right)}\right]=\alpha+\beta_{1} s+\beta_{2} d+\beta_{3} t+\beta_{4}(d t)
$$

so that

$$
\log \left[\frac{P\left(Y_{t}=1\right)}{P\left(Y_{t}=0\right)}\right]= \begin{cases}\alpha+\beta_{1} s+\beta_{3} t & \text { if } d=0 \text { (standard drug) } \\ \alpha+\beta_{2}+\beta_{1} s+\left(\beta_{3}+\beta_{4}\right) t & \text { if } d=1 \text { (new drug) }\end{cases}
$$

> dep.gee1=gee((response == "normal") ~ severity + drug*time,

+ id=subject, data=depression, family=binomial, corstr="exchangeable",

```
+ contrasts=list(drug=contr.treatment(2,base=2,contrasts=TRUE)))
> summary(dep.gee1)
Model:
 Link: Logit
 Variance to Mean Relation: Binomial
 Correlation Structure: Exchangeable
```

Coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z

| (Intercept) | -0.02809866 | 0.1625499 | -0.1728617 | 0.1741791 | -0.1613205 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| severitysevere | -1.31391033 | 0.1448627 | -9.0700417 | 0.1459630 | -9.0016667 |
| drug1 | -0.05926689 | 0.2205340 | -0.2687427 | 0.2285569 | -0.2593091 |
| time | 0.48246420 | 0.1141154 | 4.2278625 | 0.1199383 | 4.0226037 |
| drug1:time | 1.01719312 | 0.1877051 | 5.4191018 | 0.1877014 | 5.4192084 |

Estimated Scale Parameter: 0.985392
Number of Iterations: 5
Working Correlation
$[$ [ 1] [,2] [,3]
[1,] $1.000000000-0.003432729-0.003432729$
[2,] -0.003432729 1.000000000-0.003432729
[3,] -0.003432729-0.003432729 1.000000000

Notice that $\beta_{4}$ is significant indicating very strong evidence of faster improvement for new drug.

## Remarks:

- When initial diagnosis is severe, estimated odds of normal response are $e^{-1.31}=$ 0.27 times estimated odds when initial diagnosis is mild, at each $d \times t$ combination.
- $\hat{\beta}_{2}=-0.06$ is drug effect only at $t=0 . e^{-0.06}=0.94 \approx 1$, so essentially no drug effect at $t=0$ (after 1 week). However, drug effect at end of study $(t=2)$ estimated to be $e^{\hat{\beta}_{2}+2 \hat{\beta}_{4}}=7.2$.
- Estimated time effects are:
- standard drug $(d=0): \hat{\beta}_{3}=0.48$
- new drug $(d=1): \hat{\beta}_{3}+\hat{\beta}_{4}=1.50$
- Examined $s \times d$ and $s \times t$ interactions, but they were not statistically significant.
- Started with exchangeable working correlation, but estimated $\rho \approx 0$.

Note that the working correlation matrix can be "independence" (default), "exchangeable", "AR-M", "stat M dep", "non stat M dep", "unstructured", and " $f$ ixed". See the help for gee for details.
http://users.stat.ufl.edu/~athienit/STA4504/Examples/depression.R

Remark 9.4. Missing data is not uncommon and can be very problematic unless missing completely at random (MCAR): missingness unrelated to response or any explanatory variables.

Missing at random (MAR) means missingness unrelated to response after controlling for explanatory variables. Methods exist to handle this and some other forms of missingness.

Ignoring missing data leads to biased estimates.

## 10. Random Effects: GLMM

10.1 Generalized Linear Mixed Models 92
10.2 Comparison with GEE 94

Unlike marginal modeling, this chapter presents an alternative model type that has a term in the model for each cluster.

### 10.1 Generalized Linear Mixed Models

A GLMM with a random effects is able to account for having multiple responses per subject (or "cluster") by putting a subject term in model.

Binary response $Y_{t}=0$ or 1. Let $Y_{i t}=$ response by subject $i$ at time $t$. Model:

$$
\operatorname{logit}\left[P\left(Y_{i t}=1\right)\right]=\alpha_{i}+\beta x_{i t}, \quad t=1, \ldots, T
$$

The intercept $\alpha_{i}$ varies by subject so that a heterogeneous population implies a highly variable $\left\{\alpha_{i}\right\}$.

Treating $\alpha_{i}$ as fixed is not possible because this model would yield at least $n$ parameters, so the solution is to treat it as random, i.e. $\alpha_{i} \stackrel{\text { ind. }}{\sim} N\left(\alpha, \sigma^{2}\right)$ or equivalently

$$
\alpha_{i}=\alpha+u_{i}, \quad u_{i} \sim N\left(0, \sigma^{2}\right)
$$

Model:

$$
\operatorname{logit}\left[P\left(Y_{i t}=1\right)\right]=\alpha+u_{i}+\beta x_{i t}, \quad t=1, \ldots, T
$$

Parameters $\alpha$ and $\beta$ are fixed effects and $\left\{u_{i}\right\}$ are random effects.
$Y_{i 1}, Y_{i 2}, \ldots, Y_{i T}$ are conditionally independent given $u_{i}$, but marginally dependent. That is, responses within subject more alike than between subjects.

Remark 10.1. Note that random effects $\left\{u_{i}\right\}$ are unobserved (not data), so software must "integrate out" $\left\{u_{i}\right\}$ to get likelihood function.

Example 10.1 (Depression continued) Using the same data from example 9.3

$$
\log \left[\frac{P\left(Y_{t}=1\right)}{P\left(Y_{t}=0\right)}\right]=u_{i}+\alpha+\beta_{1} s+\beta_{2} d+\beta_{3} t+\beta_{4}(d t)
$$

```
> dep.lme=glmer((response == "normal") ~ severity+drug*time+(1|subject),
+ data=depression, family=binomial,
+ contrasts=list(drug=contr.treatment(2,base=2,contrasts=TRUE)))
> summary(dep.lme)
```

    AIC BIC logLik deviance df.resid
    \(1173.9 \quad 1203.5 \quad-581.0 \quad 1161.9 \quad 1014\)
    Scaled residuals:

| Min | 10 | Median | 30 | Max |
| ---: | ---: | ---: | ---: | ---: |
| -4.2849 | -0.8268 | 0.2326 | 0.7964 | 2.0181 |

Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 0.0032310 .05684
Number of obs: 1020, groups: subject, 340
Fixed effects:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) $-0.02797 \quad 0.16406-0.170 \quad 0.865$
severitysevere -1.31488 $0.15261-8.616<2 e-16$ ***
$\begin{array}{lllll}\text { drug1 } & -0.05967 & 0.22239 & -0.268 & 0.788\end{array}$
time $\quad 0.48274 \quad 0.11566 \quad 4.1743 .00 \mathrm{e}-05 \quad$ ***
$\begin{array}{llll}\text { drug1:time } \quad 1.01817 & 0.19150 \quad 5.317 & 1.06 \mathrm{e}-07 \quad * * *\end{array}$
---
Correlation of Fixed Effects:
(Intr) svrtys drug1 time
severitysvr -0.389
drug1 -0.614-0.005
time $\quad-0.673-0.123 \quad 0.524$
drug1:time $0.462-0.121-0.742-0.562$
http://users.stat.ufl.edu/~athienit/STA4504/Examples/depression2.R

In this example, GLMM and GEE estimates and standard errors for fixed effects are nearly identical:

|  | GLMM |  |  | GEE |  |
| :---: | :---: | :---: | :--- | :--- | :---: |
|  | Est | SE | Est | SE |  |
| alpha | -0.03 | 0.16 | -0.03 | 0.17 |  |
| beta.1 | -1.31 | 0.15 |  | -1.31 | 0.15 |
| beta.2 | -0.06 | 0.22 |  | -0.06 | 0.23 |
| beta.3 | 0.48 | 0.11 |  | 0.48 | 0.12 |
| beta.4 | 1.02 | 0.19 |  | 1.02 | 0.19 |

There appears to be little correlation between repeated measurements on subjects:

- $\hat{\rho}=-0.003 \approx 0$ in GEE with exchangeable working correlation.
- $\hat{\sigma}=0.057 \approx 0$ in GLMM. According to model, $95 \%$ of all individuals will have $u_{i}$ between $\pm 1.96 \sigma \approx \pm 0.11$. But $e^{ \pm 0.11} \rightarrow(0.89,1.12)$, so effect of $u_{i}$ on odds is estimated to be small for most subjects.


### 10.2 Comparison with GEE

- When $\hat{\sigma}=0$, estimates and standard errors same as treating repeated observations as independent.
- When $\hat{\sigma}$ is large, estimated $\beta$ 's from random effects logit model usually larger than from marginal model. They are estimating different things.


Example 10.2 (Teratology Overdispersions) Female rats on iron-deficient diets assigned to four groups:

1. placebo
2. iron injections on days 7 and 10
3. iron injections on days 0 and 7
4. iron injections weekly

Then they are made pregnant and sacrificed after 3 weeks. The response is whether fetus is dead or alive and the cluster is the litter.

## Notation:

- GRP = group,
- LS = litter size,
- $\mathrm{ND}=$ number dead in litter

$$
\operatorname{logit}[P(\text { fetus } t \text { in litter } i \text { dead })]=\alpha+\beta_{2} z_{i 2}+\beta_{3} z_{i 3}+\beta_{4} z_{i 4}
$$

where

$$
z_{i j}= \begin{cases}1 & \text { if litter } i \text { in group } j \\ 0 & \text { otherwise }\end{cases}
$$

```
> terat$GRP=factor(terat$GRP)
> terat.binom=glm(cbind(ND,N-ND)~GRP, family=binomial, data=terat)
> summary(terat.binom)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.1440 0.1292 8.855 < 2e-16 ***
GRP2 -3.3225 0.3308-10.043<2e-16 ***
GRP3 -4.4762 0.7311 -6.122 9.22e-10 ***
GRP4 -4.1297 0.4762 -8.672< 2e-16 ***

 Null deviance: 509.43 on 57 degrees of freedom
Residual deviance: 173.45 on 54 degrees of freedom
AIC: 252.92
> 1-pchisq(173.45,df.residual(terat.binom)) # Gooodness of fit via LRT
[1] 1.876277e-14
> X2=sum(resid(terat.binom,type="pearson")^2);X2
[1] 154.707
> 1-pchisq(X2,df.residual(terat.binom)) # Gooodness of fit via Pearson
[1] 1.187217e-11
> X2/df.residual(terat.binom) # Evidence of overdispersion
[1] 2.864945
```


## Results:

- Binomial model fits poorly $\left(X^{2}=154.7, G^{2}=173.5, d f=54\right.$, $p$-value $\left.\approx 0\right)$.
- There is inter-litter variability that cannot be accounted for in a binomial model by treatment group alone. Fetuses are more alike within litters than across litters, even within the same treatment group.
- Standard errors invalid (too small) due to overdispersion.
- Possible solutions:
- GEE: models marginal (population averaged) effect of treatment.
- GLMM: models litter-specific effect.
- At least two other approaches not discussed (thoroughly) in this class:
* Quasi-binomial: simplified version of GEE.
* Beta-binomial: parametric mixture model, analogous to negativebinomial for count data. Motivation similar to GLMM

```
> terat.gee <- gee((Resp == "Dead") ~ GRP, id = Litter,
+ data = teratbnry, family = binomial, corstr = "exchangeable")
> summary(terat.gee)
Summary of Residuals:
 Min 10
 Q Median
 30
 Max
```

| -0.7881637 | -0.3568763 | 0.2118363 | 0.3420839 | 0.6431237 |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |
| Coefficients: |  |  |  |  |  |
|  | Estimate | Naive S.E. | Naive z | Robust S.E. | Robust z |
| (Intercept) | -0.5889477 | 0.2317694 | -2.541093 | 0.2966943 | -1.985032 |
| GRP2 | 1.2429690 | 0.4469084 | 2.781261 | 0.5612748 | 2.214546 |
| GRP3 | 1.6997950 | 0.7248173 | 2.345136 | 0.8877114 | 1.914806 |
| GRP4 | 1.9028396 | 0.5776533 | 3.294086 | 0.7226377 | 2.633186 |

```
Estimated Scale Parameter: 0.709622
```

> \# Big working correlation matrix (17 x 17), but
> \# all correlations equal with exchangeable struc:
> terat.gee\$working.correlation[1,2]
[1] 0.8051211
> library (lme4)
> \# Using grouped data
> terat.glmm <- glmer(cbind(ND, N-ND) ~ GRP + (1|Litter),
$+\quad$ data $=$ terat, family = binomial)
> \# Using ungrouped binary data
> terat.glmm <- glmer((Resp == "Dead") ~ GRP + (1|Litter),
$+\quad$ data $=$ teratbnry, family = binomial)
> summary(terat.glmm)
AIC BIC logLik deviance df.resid
$\begin{array}{lllll}445.9 & 468.0 & -218.0 & 435.9 & 602\end{array}$
Scaled residuals:

| Min | 10 | Median | 30 | Max |
| ---: | ---: | ---: | ---: | ---: |
| -4.7821 | -0.2431 | 0.1158 | 0.2673 | 2.8214 |

Random effects:
Groups Name Variance Std.Dev.
Litter (Intercept) 2.2841 .511
Number of obs: 607, groups: Litter, 58
Fixed effects:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -1.8094 $0.3616-5.0045 .62 \mathrm{e}-07 \quad$ ***
GRP2 $4.53960 .7345 \quad 6.1816 .39 \mathrm{e}-10 \quad * * *$
GRP3 $\quad 5.8833 \quad 1.1754 \quad 5.005 \quad 5.58 \mathrm{e}-07 \quad * * *$
GRP4 5.60620 .9076 6.177 6.54e-10 ***
Correlation of Fixed Effects:
(Intr) GRP2 GRP3
GRP2 -0.562

```
GRP3 -0.373 0.235
GRP4 -0.496 0.316 0.221
http://users.stat.ufl.edu/~athienit/STA4504/Examples/teratology.R
\begin{tabular}{rrrr}
\hline & Binomial ML & GEE & GLMM \\
\hline (Intercept) & \(1.14(0.13)\) & \(1.21(0.27)\) & \(1.81(0.33)\) \\
GRP2 & \(-3.32(0.33)\) & \(-3.37(0.43)\) & \(-4.54(0.68)\) \\
GRP3 & \(-4.48(0.73)\) & \(-4.58(0.62)\) & \(-5.88(1.18)\) \\
GRP4 & \(-4.13(0.48)\) & \(-4.25(0.6)\) & \(-5.61(0.86)\) \\
\hline
\end{tabular}
```

- SEs for binomial ML fit invalid (because of lack of fit)
- GEE estimates are similar to binomial but with larger SEs. Estimate marginal (population averaged) effects.
- GLMM estimates are larger in magnitude. Estimate conditional (within litter) effects.

As a final note it seems that there are differences between groups $2,3,4$ with the base group 1. As an exercise compare groups 2 and 3 for the GLMM model.

## 7. Loglinear Models

Loglinear models for contingency tables treat all variables as response variables, like multivariate analysis.

### 7.1 Loglinear for 2-way

7.1.1 $I \times J$

All variables are treated as responses, in that a set of variables is not used to model another variable but are interested in patterns of dependence and independence among the variables:

- Are the variables independent?
- The strength of associations
- Are there any interactions?

|  | Y |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | $\ldots$ | J |
| 1 | $n_{11}$ | $n_{12}$ | $\ldots$ | $n_{1 J}$ |
| X 2 | $n_{21}$ | $n_{22}$ | $\cdots$ | $n_{2 J}$ |
| - | : | : | $\bullet$. | ! |
| I | $n_{I 1}$ | $n_{I 2}$ | $\cdots$ | $n_{I J}$ |

Loglinear models treat cell counts as Poisson and use log link function. From Lemma 2.1 we have that

$$
\mu_{i j}=n \pi_{i j} \stackrel{\text { ind. }}{=} n \pi_{i+} \pi_{+j} \Rightarrow \log \left(\mu_{i j}\right)=\underbrace{\log (n)}_{\lambda}+\underbrace{\log \pi_{i+}}_{\lambda_{i}^{X}}+\underbrace{\log \pi_{+j}}_{\lambda_{j}^{Y}}
$$

- $\lambda_{i}^{X}$ : effect of classification in row $i(I-1$ non-redundant parameters with the restriction of $\lambda_{1}^{X}=0$ for base group)
- $\lambda_{j}^{Y}$ : effect of classification in column $j(J-1$ non-redundant parameters with the restriction of $\lambda_{1}^{Y}=0$ for base group))

The degrees of freedom are

$$
d f=\underbrace{\text { number of Poisson counts }}_{\text {number of cells in table }}-\text { number of parameters }
$$

- For the independence model

$$
\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}
$$

and hence

$$
d f=\underbrace{I J}_{\text {no. of cells }}-\underbrace{[\overbrace{1}^{\lambda}+\overbrace{(I-1)}^{\lambda_{i}^{X}}+\overbrace{(J-1)}^{\lambda_{j}^{Y}}]}_{\text {no. of parameters }}=(I-1)(J-1)
$$

- For the saturated model

$$
\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y}
$$

and hence

$$
d f=\underbrace{I J}_{\text {no. of cells }}-\underbrace{[\overbrace{1}^{\lambda}+\overbrace{(I-1)}^{\lambda_{i}^{X}}+\overbrace{(J-1)}^{\lambda_{j}^{Y}}+\overbrace{(I-1)(J-1)}^{\lambda_{i j}^{X Y}}]}_{\text {no. of parameters }}=0
$$

Log-odds-ratio comparing levels $i$ and $i^{\prime}$ of $X$ and $j$ and $j^{\prime}$ of $Y$ is


$$
\begin{aligned}
\log \left(\frac{\mu_{i j} \mu_{i^{\prime} j^{\prime}}}{\mu_{i j^{\prime}} \mu_{i^{\prime} j}}\right)= & \log \left(\mu_{i j}\right)+\log \left(\mu_{i^{\prime} j^{\prime}}\right)-\log \left(\mu_{i j^{\prime}}\right)-\log \left(\mu_{i^{\prime} j}\right) \\
= & \left(\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y}\right)+\left(\lambda+\lambda_{i^{\prime}}^{X}+\lambda_{j^{\prime}}^{Y}+\lambda_{i^{\prime} j^{\prime}}^{X Y}\right) \\
& -\left(\lambda+\lambda_{i}^{X}+\lambda_{j^{\prime}}^{Y}+\lambda_{i j^{\prime}}^{X Y}\right)-\left(\lambda+\lambda_{i^{\prime}}^{X}+\lambda_{j}^{Y}+\lambda_{i^{\prime} j}^{X Y}\right) \\
= & \lambda_{i j}^{X Y}+\lambda_{i^{\prime} j^{\prime} \prime^{\prime}}^{X Y}-\lambda_{i j^{\prime}}^{X Y}-\lambda_{i^{\prime} j}^{X Y}
\end{aligned}
$$

- For the independence model, since all $\lambda_{i j}^{X Y}=0$ (they do not even exist), this is 0 and the odds-ratio is $e^{0}=1$.
- For the saturated model, the odds-ratio, expressed in terms of of the parameters of the loglinear model, is

$$
\exp \left(\lambda_{i j}^{X Y}+\lambda_{i^{\prime} j^{\prime}}^{X Y}-\lambda_{i j^{\prime}}^{X Y}-\lambda_{i^{\prime} j}^{X Y}\right)
$$

Substituting the MLEs of the saturated model (perfect fit) just reproduces the empirical odds ratio

$$
\frac{n_{i j} n_{i^{\prime} j^{\prime}}}{n_{i j^{\prime}} n_{i^{\prime} j}}
$$

Example 7.1 (Job Satisfaction) We are revisiting

- Example 2.12 where we tested independence via Pearson's $X^{2}$
- Example 6.1 where we fitted a baseline logit model
- Example 6.2 where we fitted a cumulative logit model
to fit

$$
\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{I}+\lambda_{j}^{S} \quad i=1,2,3,4 j=1,2,3,4
$$

which can be expressed as

$$
\log \left(\mu_{i j}\right)=\lambda+\lambda_{1}^{I} z_{(10)}+\lambda_{2}^{I} z_{(20)}+\lambda_{3}^{I} z_{(30)}+\lambda_{1}^{S} w_{(L D)}+\lambda_{2}^{S} w_{(M S)}+\lambda_{3}^{S} w_{(V S)}
$$

where

$$
z_{(10)}= \begin{cases}1 & \text { income score }=10 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
w_{(L D)}= \begin{cases}1 & \text { little dissatisfaction } \\ 0 & \text { otherwise }\end{cases}
$$

and similarly for the rest. The independence model is
> jobsat.ind=glm(count ${ }^{\sim}$ factor(income) + jobsat,

+ family=poisson(link=log),data=table.sat)
> summary(jobsat.ind)
Coefficients:

|  | Estimate | Std. Error | z value | $\operatorname{Pr}(>\|z\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | -0.16705 | 0.53464 | -0.312 | 0.75469 |
| factor(income) 10 | 0.43532 | 0.27362 | 1.591 | 0.11162 |
| factor(income)20 | 0.08701 | 0.29516 | 0.295 | 0.76815 |
| factor(income)30 | 0.08701 | 0.29516 | 0.295 | 0.76815 |
| jobsatLD | 1.25276 | 0.56694 | 2.210 | $0.02713 \quad *$ |
| jobsatMS | 2.75684 | 0.51563 | 5.347 | $8.96 \mathrm{e}-08 \quad * * *$ |
| jobsatVS | 1.74920 | 0.54173 | 3.229 | $0.00124 \quad * *$ |

Null deviance: 90.242 on 15 degrees of freedom
Residual deviance: 13.467 on 9 degrees of freedom
AIC: 77.068
and performing a goodness of fit test is comparing this (independence) model to the saturated one, so hence the goodness of fit is the test of independence. That is, the goodness of fit tests

$$
\mathrm{H}_{0}: \lambda_{i j}^{I S}=0 \quad \forall i, j
$$

```
> jobsat.sat=update(jobsat.ind,.~.+factor(income)*jobsat)
```

> anova(jobsat.ind, jobsat.sat,test="Chisq")
Analysis of Deviance Table
Model 1: count ~ factor(income) + jobsat
Model 2: count ~ factor(income) + jobsat + factor(income): jobsat
Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>C h i)$
$1 \quad 9 \quad 13.467$
$\begin{array}{llllll}2 & 0 & 0.000 & 9 & 13.467 & 0.1426\end{array}$
and hence we conclude independence. Using the Independence model we can also obtain expected values under independence.

- Under example 2.12 with
- $\hat{\mu}_{(3, D)}=\frac{22 \times 4}{104}=0.846$
- $\hat{\mu}_{(10, L D)}=\frac{34 \times 14}{104}=4.5769$
- Under the independence model with
- $\hat{\mu}_{(3, D)}=e^{-0.16705}=0.846$
- $\hat{\mu}_{(10, L D)}=e^{-0.16705+0.43532+1.25276}=4.5769$
http://users.stat.ufl.edu/~athienit/STA4504/Examples/jobsatis_ loglinear.R


### 7.1.2 $I \times 2$

Let $J=2$, that is, $Y=1,2$ to only have two levels. Then, with $\pi_{i}:=P(Y=i)$

$$
\begin{align*}
\log \left(\frac{\pi_{1}}{1-\pi_{1}}\right)=\log \left(\frac{n \pi_{1}}{n \pi_{2}}\right)=\log \left(\frac{\mu_{i 1}}{\mu_{i 2}}\right) & =\log \left(\mu_{i 1}\right)-\log \left(\mu_{i 2}\right) \\
& =\left(\lambda+\lambda_{i}^{X}+\lambda_{1}^{Y}+\lambda_{i 1}^{X Y}\right)-\left(\lambda+\lambda_{i}^{X}+\lambda_{2}^{Y}+\lambda_{i 2}^{X Y}\right) \\
& =\left(\lambda_{1}^{Y}-\lambda_{2}^{\not Y^{\prime}}\right)+\left(\lambda_{i 1}^{X Y}-\lambda_{12}^{X Y^{0}}\right) \tag{7.1}
\end{align*}
$$

if we chose group 2 to be the base group then $\lambda_{2}^{Y}=\lambda_{i 2}^{X Y}=0$.
Remark 7.1.

- If group 1 was chosen as the base group then its corresponding parameters would be 0 .
- If the independence model is used then all $\lambda^{X Y}=0$ and the formula simplifies.

Example 7.2 (Belief in afterlife) Reconsider

|  | Belief |  |
| :--- | :---: | :---: |
| Race | Yes | No |
| White | 1339 | 300 |
| Black | 260 | 55 |
| Other | 88 | 22 |

## Independence model

$$
\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y} \quad i=1,2,3 j=1,2
$$

```
> Race=rep(c("White","Black","Other"),each=2)
> Belief=rep(c("Yes","No"),3)
> count=c(1339,300,260,55,88,22)
> after=data.frame(Race,Belief,count)
> after=transform(after,Race=relevel(Race,"Other"))
> B_R=glm(count`Belief+Race,family=poisson(link=log),data=after)
> summary(B_R)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
\begin{tabular}{lllrll}
(Intercept) & 3.00032 & 0.10611 & 28.28 & \(<2 \mathrm{e}-16 \quad * * *\) \\
BeliefYes & 1.49846 & 0.05697 & 26.30 & \(<2 \mathrm{e}-16 \quad * * *\) \\
RaceBlack & 1.05209 & 0.11075 & 9.50 & \(<2 \mathrm{e}-16 \quad * * *\) \\
RaceWhite & 2.70136 & 0.09849 & 27.43 & \(<2 \mathrm{e}-16 \quad * * *\)
\end{tabular}
```

---

Null deviance: 2849.21758 on 5 degrees of freedom
Residual deviance: 0.35649 on 2 degrees of freedom AIC: 49.437

Note that the estimated odds (not odds ratio) of belief in the afterlife was $\exp \left(\hat{\lambda}_{1}^{Y}-0\right)=$ $\exp (1.49846)=4.474793$ for each race.

## Saturated model/Dependence model

$$
\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y} \quad i=1,2,3 j=1,2
$$

with

```
> BR=glm(count~Belief*Race,family=poisson(link=log),data=after)
> summary(BR)
Coefficients:
(Intercept) 3.0910 0.2132 14.498 < 2e-16 ***
BeliefYes 1.3863 0.2384 5.816 6.03e-09 ***
RaceBlack 0.9163 0.2523 3.632 0.000281 ***
RaceWhite 2.6127 0.2209 11.829 < 2e-16 ***
 Estimate Std. Error z value Pr(>|z|)
```

```
BeliefYes:RaceBlack 0.1671 0.2808 0.595 0.551889
BeliefYes:RaceWhite 0.1096 0.2468 0.444 0.656946
--
 Null deviance: 2.8492e+03 on 5 degrees of freedom
Residual deviance: -8.7930e-14 on 0 degrees of freedom
AIC: 53.081
```

We can test for independence by $\mathrm{H}_{0}: \lambda_{i j}^{X Y}=0 \forall i, j$ by a likelihood ratio test using the difference of deviances. Notice that the model with the interaction is a saturated model, so the LR test is in fact a goodness of fit test for the independence model with

$$
D_{0}-D_{1}=0.35649-0
$$

on $\mathrm{df}=2$ and p -value $=0.8367$, so we fail to reject $\mathrm{H}_{0}$ and conclude independence between belief and race.

```
> anova(B_R,BR,test="Chisq")
Analysis of Deviance Table
Model 1: count ~ Belief + Race
Model 2: count ~ Belief * Race
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 2 0.35649
2 0 0.00000 2 0.35649 0.8367
http://users.stat.ufl.edu/~athienit/STA4504/Examples/afterlife.R
```


### 7.2 Loglinear for 3-way

Definition 7.1 (Associations) We review 5 types of associations

- $X, Y, Z$ are mutual independent, $(X, Y, Z)$ if $\pi_{i j k}=\pi_{i++} \pi_{+j+} \pi_{++k}$

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}
$$

- $Y$ is jointly independent of $X$ and $Z,(X Z, Y)$ if $\pi_{i j k}=\pi_{+j+} \pi_{i+k}$

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}
$$

- $X$ and $Y$ are conditionally independent given $Z,(X Z, Y Z)$ if $\pi_{i j \mid k}=\pi_{i+\mid k} \pi_{+j \mid k}$

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}
$$

- Homogeneous association, $(X Z, X Y, Y Z)$ if two variables have the same association for all levels of the third, e.g. $\pi_{i j \mid k}=\pi_{i j \mid k^{\prime}}$ same $\forall k, k^{\prime}$

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}+\lambda_{i j}^{X Y}
$$

- Non restricted association, (saturated model) (XYZ)

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}+\lambda_{i j}^{X Y}+\lambda_{i j k}^{X Y Z}
$$

Example 7.3 Consider a $2 \times 2 \times 2$ with $X, Y$ conditional independence $(X Z, Y Z)$

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}
$$

Hence,

- $X$ and $Y$ are conditionally independent given $Z$ :

$$
\log \left(\theta_{X Y(k)}\right)=\log \left(\frac{\mu_{i j k} \mu_{i^{\prime} j^{\prime} k}}{\mu_{i^{\prime} j k} \mu_{i j^{\prime} k}}\right)=\cdots=0 \Longrightarrow \theta_{X Y(k)}=1
$$

- The $X-Z$ odds ratio is the same at all levels of $Y$ :

$$
\log \left(\theta_{X(j) Z}\right)=\log \left(\frac{\mu_{i j k} \mu_{i^{\prime} j k^{\prime}}}{\mu_{i^{\prime} j k} \mu_{i j k^{\prime}}}\right)=\cdots=\lambda_{11}^{X Z}+\lambda_{22}^{X Z}-\lambda_{12}^{X Z}-\lambda_{21}^{X Z}
$$

which does not depend on $j$.

- Similarly, $Y-Z$ odds ratio same at all levels of $X$. Model has no three-factor interaction.

Example 7.4 Consider the loglinear homogeneous association model denoted (XY,XZ,YZ).

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}+\lambda_{i j}^{X Y}
$$

Each pair of variables is conditionally dependent, but association (as measured by odds ratios) is the same at all levels of third variable.

Example 7.5 (Teen substance usage) A survey of 2276 high school seniors

```
> ftable(teens, row.vars=c("alc","cigs"))
```

            mj yes no
    alc cigs
yes yes 911538
no 44456
no yes $3 \quad 43$
no 2279
> teens.df=as.data.frame(teens)
> teens.df=transform(teens.df,
$+\quad$ cigs $=$ relevel(cigs, "no"),
$+\quad$ alc $=$ relevel(alc, "no"),
$+\quad m j=r e l e v e l(m j, ~ " n o "))$
> teens.AC.AM.CM $=$ glm(Freq $\sim$ alc*cigs + alc*mj $+c i g s * m j$,
$+\quad$ family=poisson, data=teens.df)
> summary(teens.AC.AM.CM)
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

| (Intercept) | 5.63342 | 0.05970 | 94.361 | $<2 \mathrm{e}-16$ | $* * *$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| alcyes | 0.48772 | 0.07577 | 6.437 | $1.22 \mathrm{e}-10$ | $* * *$ |
| cigsyes | -1.88667 | 0.16270 | -11.596 | $<2 \mathrm{e}-16$ | $* * *$ |
| mjyes | -5.30904 | 0.47520 | -11.172 | $<2 \mathrm{e}-16 \quad * * *$ |  |
| alcyes:cigsyes | 2.05453 | 0.17406 | 11.803 | $<2 \mathrm{e}-16 \quad * * *$ |  |
| alcyes:mjyes | 2.98601 | 0.46468 | 6.426 | $1.31 \mathrm{e}-10$ | $* * *$ |
| cigsyes:mjyes | 2.84789 | 0.16384 | 17.382 | $<2 \mathrm{e}-16 \quad * * *$ |  |

---
Null deviance: 2851.46098 on 7 degrees of freedom
Residual deviance: 0.37399 on 1 degrees of freedom
AIC: 63.417
> deviance(teens.AC.AM.CM)
[1] 0.3739859
> X2=sum(residuals(teens.AC.AM.CM,type="pearson")^2); X2
[1] 0.4011005
> 1-pchisq(X2,1)
[1] 0.5265215

The ( $A C, A M, C M$ ) model fits well with $G^{2}=0.37$ (and $X^{2}=0.4$ ) on 1 df . Equivalently
done via,
> teens.ACM <- update(teens.AC.AM.CM, . ~ alc*cigs*mj)
> anova(teens.AC.AM.CM, teens.ACM, test="Chisq")
Analysis of Deviance Table
Model 1: Freq~alc * cigs + alc * mj + cigs * mj
Model 2: Freqalc + cigs + mj + alc:cigs + alc:mj + cigs:mj + alc:cigs:mj
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
110.37399
$\begin{array}{llllll}2 & 0 & 0.00000 & 1 & 0.37399 & 0.5408\end{array}$
Next we check if any 2-way interactions can be removed
> drop1(teens.AC.AM.CM, test="Chisq")
Single term deletions

## Model:

|  | Df | Deviance | AIC | LRT | $\mathrm{Pr}(>\mathrm{Chi})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <none> |  | 0.37 | 63.42 |  |  |
| alc:cigs | 1 | 187.75 | 248.80 | 187.38 | < $2.2 \mathrm{e}-16$ |
| alc:mj | 1 | 92.02 | 153.06 | 91.64 | < $2.2 \mathrm{e}-16$ |
| cigs:mj | 1 | 497.37 | 558.41 | 497.00 | < $2.2 \mathrm{e}-16$ |

To test for conditional independence of $A$ and $C$ given $M$

```
> teens.AM.CM <- update(teens.AC.AM.CM, . ~ alc*mj + cigs*mj)
> anova(teens.AM.CM, teens.AC.AM.CM, test="Chisq")
Analysis of Deviance Table
Model 1: Freq ~ alc + mj + cigs + alc:mj + mj:cigs
Model 2: Freq ~ alc * cigs + alc * mj + cigs * mj
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 2 187.754
2 1 0.374 1 187.38< 2.2e-16 ***
```

We can also get predicted counts under a variety of models and compare them to the actual data/saturated model
> table.7.4

| alc cigs mj | $(\mathrm{A}, \mathrm{C}, \mathrm{M})$ | (AC,M) | (AM,CM) | (AC, AM, CM) | (ACM) |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 yes yes yes | 540.0 | 611.0 | 909.00 | 910.00 | 911 |  |  |
| 2 yes yes no | 740.0 | 838.0 | 439.00 | 539.00 | 538 |  |  |
| 3 yes | no yes | 282.0 | 211.0 | 45.80 | 44.60 | 44 |  |
| 4 | yes | no no | 387.0 | 289.0 | 555.00 | 455.00 | 456 |
| 5 | no | yes yes | 90.6 | 19.4 | 4.76 | 3.62 | 3 |
| 6 | no | yes no | 124.0 | 26.6 | 142.00 | 42.40 | 43 |
| 7 | no | no yes | 47.3 | 119.0 | 0.24 | 1.38 | 2 |
| 8 | no | no no | 64.9 | 162.0 | 180.00 | 280.00 | 279 |

In $(A C, A M, C M)$ model, $A C$ odds-ratio is the same at each level of $M$. With $1=$ yes and $2=$ no for each variable, the estimated conditional $A C$ odds ratio is

$$
\frac{\hat{\mu}_{112} \hat{\mu}_{22 k}}{\hat{\mu}_{12 k} \hat{\mu}_{21 k}}=\exp \left(\hat{\lambda}_{11}^{A C}+\hat{\boldsymbol{y}}_{22}^{4 火^{0}}-\hat{\lambda}_{12}^{44^{0}}-\hat{\lambda}_{21}^{4 e^{0}}\right)=e^{2.0545}=7.8
$$

A $95 \% \mathrm{CI}$ is

$$
e^{2.05 \mp(1.96)(0.174)} \longrightarrow(5.5,11.0)
$$

The commons odds-ratio is reflected in the fitted values for the model:

$$
\frac{(910)(1.38)}{(44.6)(3.62)}=7.8 \quad \frac{(539)(280)}{(455)(42.4)}=7.8
$$

Similar results hold for $A M$ and $C M$ conditional odds-ratios in this model.
In $(A M, C M)$ model, $\lambda_{i j}^{A C}=0$, and conditional $A C$ odds-ratio (given $M$ ) is $e^{0}=1$ at each level of $M$, i.e., $A$ and $C$ are conditionally independent given $M$. Again, this is reflected in the fitted values for this model.

$$
\frac{(909)(0.24)}{(45.8)(4.76)}=1 \quad \frac{(439)(180)}{(555)(142)}=1
$$

The $A M$ odds-ratio is not 1 , but it is the same at each level of $C$ :

$$
\frac{(909)(142)}{(439)(4.76)}=61.87 \quad \frac{(45.8)(180)}{(555)(0.24)}=61.87
$$

Similarly, the CM odds-ratio is the same at each level of $A$ :

$$
\frac{(909)(555)}{(439)(45.8)}=25.14 \quad \frac{(4.76)(180)}{(142)(0.24)}=25.14
$$

http://users.stat.ufl.edu/~athienit/STA4504/Examples/teens.R

## Remark 7.2.

- Loglinear models extend to any number of dimensions.
- Loglinear models treat all variables symmetrically. Logistic regression models treat Y as response and other variables as explanatory. More natural approach when there is a single response.
- For modeling ordinal associations consider a 2-way table with assigned
- row scores $u_{1} \leq u_{2} \leq \cdots \leq u_{I}$
- column scores $v_{1} \leq v_{2} \leq \cdots \leq v_{J}$
and model

$$
\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\beta u_{i} v_{j}
$$

where $\beta u_{i} v_{j}$ takes the role of $\lambda_{i j}^{X Y}$ but only 1 parameter is used, i.e. only 1 degree of freedom taken up, instead of $(I-1)(J-1)$

Checking residuals is always important and done in the usual way as with any GLM, however a new graphical visualization may also be useful

R code 7.1 In the vcdExtra package the function
mosaic(glm object,...)
is capable of a mosaic plot of the residuals, where the area of each tile is proportional to the corresponding cell entry, given the dimensions of previous splits.

Example 7.6 (Teen substance usage continued) Getting and visualizing the standardized deviance residuals

```
rstandard(teens.AC.AM.CM)
 1
 0.6332 -0.6334 -0.6347 0.6331 -0.6527 0.6317 0.5933-0.6335
> mosaic(teens.AC.AM.CM, ~mj+cigs+alc,residuals_type = "rstandard")
```



### 7.3 Loglinear-Logit Connection

We have already seen the connection in equation (7.1) which can be written as a logit model

$$
\begin{aligned}
\log \left(\frac{P(Y=1)}{1-P(Y=1)}\right) & =\underbrace{\left(\lambda_{1}^{Y}-\not \chi_{2}^{X^{0}}\right)}_{\alpha}+\underbrace{\left(\lambda_{i 1}^{X Y}-\lambda_{12}^{X Y^{0}}\right)}_{\beta_{i}^{X}} \\
& =\alpha+\beta_{i}^{X}
\end{aligned}
$$

Consider the loglinear homogeneous association model denoted ( $X Y, X Z, Y Z$ ).

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}+\lambda_{i j}^{Y Z}+\lambda_{i j}^{X Y}
$$

Suppose $Y$ is binary, treated as the response, and let

$$
\pi_{i k}=P(Y=1 \mid X=i, Z=k)
$$

then

$$
\begin{aligned}
& \operatorname{logit}\left(\pi_{i k}\right)=\log \left(\mu_{i 1 k}\right)-\log \left(\mu_{i 2 k}\right) \\
& =\cdots
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha+\beta_{i}^{X}+\beta_{k}^{Z}
\end{aligned}
$$

an additive model with no $X Z$ interaction.
When a "response" (say $Y$ ) exists and it has two levels then it is possible to fit a loglinear model and an equivalent logit model. We are not required to fit the equivalent model but we are exploring the special case.

Remark 7.3. The (XY, YZ) model also yields an additive logit model but for ML estimates, Deviances and degrees of freedom to match, the loglinear model must contain the most general interaction among variables that are explanatory in the logit model, those are $X$ and $Z$. Therefore, the equivalent loglinear model must include XY ( $X$ linked to $Y$ ), the $Y Z$ ( $Z$ linked to $Y$ ), and the $X Z$ ( XZ linked to Y).

Some example with $\pi=P(Y=1)$, predictors $A, B, C$ (4-way table).:

- $\operatorname{logit}(\pi)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C} \longleftrightarrow(A Y, B Y, C Y)$
- $\operatorname{logit}(\pi)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{j k}^{B C} \longleftrightarrow(A Y, B Y, C Y, B C Y)$ a.k.a. $(A Y, B C Y)$

Remark 7.4.

- When there is a single binary response, it is simpler to approach data directly using logit models.
- Similar remarks hold for a multi-category response Y:
- Baseline-category logit model has a matching loglinear model.
- With a single response, it is simpler to use the baseline-category logit model.
- Loglinear models have advantage of generality - can handle multiple responses, some of which may have more than two outcome categories.

Example 7.7 (Berkeley Graduate Admissions) Earlier we had fit a logit model for the probability of admission

$$
\operatorname{logit}\left(\pi_{i k}\right)=\alpha+\beta_{i}^{G}+\beta_{k}^{D}
$$

with 12 binomial variates and 7 parameters, hence $\mathrm{df}=5$. Now we will take a look at the equivalent loglinear model ( $A G, A D, D G$ )

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{A}+\lambda_{j}^{G}+\lambda_{k}^{D}+\lambda_{i j}^{A G}+\lambda_{i k}^{A D}+\lambda_{j k}^{D G}
$$

with 24 independent Poisson variates and 19 parameters, hence $\mathrm{df}=5$.
Once we create the appropriate data frame

| > | head(berk2) |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Dept Gender | Admit | Freq |  |  |
| 1 | A | Male | Yes | 512 |
| 2 | A Female | Yes | 89 |  |
| 3 | B | Male | Yes | 353 |
| 4 | B Female | Yes | 17 |  |
| 5 | C | Male | Yes | 120 |
| 6 | C Female | Yes | 202 |  |

> UCB.loglin=glm(Freq~Admit*Gender+Admit*Dept+Gender*Dept,family=poisson, + data=berk2)
> summary(UCB.loglin)
Coefficients:

|  | Estimate | Std. Error | z value | $\operatorname{Pr}(>\|z\|)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ( Intercept) | 3.59099 | 0.11659 | 30.801 | < 2e-16 |  |
| AdmitYes | 0.68192 | 0.09911 | 6.880 | 5.97e-12 |  |
| GenderMale | 2.09846 | 0.11548 | 18.172 | < 2e-16 |  |
| DeptB | -1.43464 | 0.23341 | -6.146 | 7.93e-10 |  |
| DeptC | 2.34983 | 0.12262 | 19.163 | < 2e-16 |  |
| DeptD | 1.90293 | 0.12557 | 15.154 | $<2 e-16$ |  |
| DeptE | 2.08467 | 0.12711 | 16.400 | < 2e-16 |  |
| DeptF | 2.17093 | 0.12798 | 16.963 | < 2e-16 |  |
| AdmitYes:GenderMale | -0.09987 | 0.08085 | -1.235 | 0.217 |  |
| AdmitYes:DeptB | -0.04340 | 0.10984 | -0.395 | 0.693 |  |
| AdmitYes:DeptC | -1.26260 | 0.10663 | -11.841 | < 2e-16 |  |
| AdmitYes:DeptD | -1.29461 | 0.10582 | -12.234 | $<2 \mathrm{e}-16$ |  |
| AdmitYes:DeptE | -1.73931 | 0.12611 | -13.792 | $<2 \mathrm{e}-16$ |  |
| AdmitYes:DeptF | -3.30648 | 0.16998 | -19.452 | < 2e-16 | *** |
| GenderMale:DeptB | 1.07482 | 0.22861 | 4.701 | 2.58e-06 |  |
| GenderMale:DeptC | -2.66513 | 0.12609 | -21.137 | $<2 \mathrm{e}-16$ | *** |
| GenderMale:DeptD | -1.95832 | 0.12734 | -15.379 | $<2 \mathrm{e}-16$ |  |
| GenderMale:DeptE | -2.79519 | 0.13925 | -20.073 | $<2 \mathrm{e}-16$ |  |
| GenderMale:DeptF | -2.00232 | 0.13571 | -14.754 | $<2 \mathrm{e}-16$ |  |

Null deviance: 2650.095 on 23 degrees of freedom
Residual deviance: 20.204 on 5 degrees of freedom
AIC: 217.26
We note that $G^{2}=20.204$ is the same for both models and that the estimated odds (controlling for department) of admission for males compared to that of females is

- Logit model: $\exp \left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)=\exp (-0.09987)=0.905$
- Loglinear model: $\exp \left(\hat{\lambda}_{11}^{A G}+\hat{\lambda}_{22}^{A G}-\hat{\lambda}_{12}^{A G}-\hat{\lambda}_{21}^{A G}\right)=\exp (-0.09987)=0.905$
http://users.stat.ufl.edu/~athienit/STA4504/Examples/admissions_ loglinear.R


### 7.4 Independence Graphs and Collapsibility

Independence graph is a graphical representation for conditional independence.

- Vertices (or nodes) represent variables.
- Connected by edges: a missing edge between two variables represents a conditional independence between the variables.
- Different models may produce the same graph.
- Graphical models: subclass of loglinear models
- Within this class there is a unique model for each independence graph.
- For any group of variables having no missing edges, graphical model contains the highest order interaction term for those variables.


### 7.4.1 Independence Graphs for a 4-Way Table (Variables $W, X, Y, Z$ )

| Model(s) | Graph |
| :---: | :---: |
| (WX,WY,WZ,YZ) (WX,WYZ) |  |
| $\begin{gathered} \text { (WX,WY,WZ,XZ,YZ) } \\ \text { (WX,XZ,WYZ) } \\ (W X Z, W Y, Y Z) \\ (W X Z, W Y Z)^{\star} \end{gathered}$ |  |
| (WX,WY,WZ) ${ }^{\star}$ | $\mathrm{x}-\mathrm{W}<\frac{\mathrm{Z}}{\mathrm{Y}}$ |
| (WX,XY,YZ) ${ }^{\star}$ | $\mathrm{W}-\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ |
| $\begin{gathered} (\mathrm{X}, \mathrm{WY}, \mathrm{WZ}, \mathrm{YZ}) \\ (\mathrm{X}, \mathrm{WYZ})^{\star} \end{gathered}$ | X |
| (WX,YZ) ${ }^{\star}$ | $\mathrm{W}-\mathrm{X} \quad \mathrm{Y}-\mathrm{Z}$ |
| (WX,WY,WZ,XY,XZ,YZ) <br> (WX,WY,WZ,XYZ) <br> (WX,WYZ,XYZ) <br> ...many others... <br> (WXYZ) ${ }^{\star}$ |  |

### 7.4.2 Collapsibility Conditions for Three-Way Tables

For a three-way table, the $X Y$ marginal and conditional odds ratios are identical if either $Z$ and $X$ are conditionally independent or if $Z$ and $Y$ are conditionally independent.

- Conditions say control variable $Z$ is either:
- conditionally independent of $X$ given $Y$, as in model ( $X Y, Y Z$ );
- or conditionally independent of $Y$ given $X$, as in ( $X Y, X Z$ ).
- I.e., $X Y$ association is identical in the partial tables and the marginal table for models with independence graphs

$$
X-Y-Z \quad Y-X-Z
$$

or even simpler models.

Example 7.8 (Teen substance usage) See example 7.5 where

- $A=$ alcohol use
- $C=$ cigarette use
- $M=$ marijuana use

The model of $A C$ conditional independence, $(A M, C M)$, has independence graph

$$
A-M-C
$$

Consider $A M$ association, treating $C$ as control variable. Since $C$ is conditionally independent of $A$, the AM conditional odds ratios are the same as the $A M$ marginal odds ratio collapsed over $C$.

$$
\frac{(909.24)(142.16)}{(438.84)(4.76)}=\frac{(45.76)(179.84)}{(555.16)(0.24)}=\frac{(955)(322)}{(994)(5)}=61.9
$$

> $\exp ($ coef(teens.AM.CM)[5])
alcyes:mjyes
61.87324
> AM.CM.fitted <- teens
> AM.CM.fitted[,,] <- predict(teens.AM.CM, type="response")
> AM.CM.fitted[,"yes",] alc
mj
$\begin{array}{lrr}\text { j } & \text { yes } & \text { no } \\ \text { yes } & 909.239583 & 4.760417\end{array}$
no 438.840426 142.159574
> AM.CM.fitted[,"no",]
alc

```
mj yes no
```

yes $45.7604167 \quad 0.2395833$
no 555.1595745 179.8404255
> AM.CM.fitted[,"yes",] + AM.CM.fitted[,"no",]
alc
mj yes no
yes $955 \quad 5$
no 994322

- Similarly, CM association is collapsible over $A$
- The $A C$ association is not collapsible, because $M$ is conditionally dependent with both $A$ and $C$ in model ( $A M, C M$ ). Thus, $A$ and $C$ may be marginally dependent, even though conditionally independent.

$$
\begin{gathered}
\frac{(909.24)(0.24)}{(45.76)(4.76)}=\frac{(438.84)(179.84)}{(555.16)(142.16)}=1 \\
\frac{(1348.08)(180.08)}{(600.92)(146.92)}=2.75 \neq 1
\end{gathered}
$$

```
> AM.CM.fitted["yes",,]
 alc
cigs res yes rom
 yes 909.2395833 45.7604167 0.2395833
> AM.CM.fitted["no",,]
 alc
 cigs yes no
 yes 438.8404 142.1596
 no 555.1596 179.8404
> AM.CM.fitted["yes",,] + AM.CM.fitted["no",,]
 alc
cigs yes no
 yes 1348.08 146.92
 no 600.92 180.08
```

See Part II of http://users.stat.ufl.edu/~athienit/STA4504/Examples/teens.R

### 7.4.3 Collapsibility Conditions for Multiway Tables

If the variables in a model for a multiway table partition into three mutually exclusive subsets, $A, B, C$, such that $B$ separates $A$ and $C$ (that is, if the model does not contain parameters linking variables from $A$ directly to variables from $C$ ), then when the table is collapsed over the variables in $C$, model parameters relating variables in $A$ and model parameters relating variables in $A$ with variables in $B$ are unchanged.

$$
A-B-C
$$

Example 7.9 Consider the ( $W X, X Y, Y Z$ ) model (drawn slightly differently)


Then collapsing over $Z$ :

- $W X$ and $X Y$ associations are unchanged
- $W$ and $Y$ are still conditionally independent given $X$

Example 7.10 (Teen substance usage continued) In addition to the variables seen so far data exists on the race and gender of each teen.

```
> data(teens)
> ftable(R + G + M ~ A + C, data = teens)
 R White Other
 G Female Male Female Male
 M Yes No Yes No Yes No Yes No
A C
\begin{tabular}{llrrrrrrrr}
Yes & Yes & 405 & 268 & 453 & 228 & 23 & 23 & 30 & 19 \\
& No & 13 & 218 & 28 & 201 & 2 & 19 & 1 & 18 \\
No & Yes & 1 & 17 & 1 & 17 & 0 & 1 & 1 & 8 \\
& No & 1 & 117 & 1 & 133 & 0 & 12 & 0 & 17
\end{tabular}
```

Text suggests loglinear model ( $A C, A M, C M, A G, A R, G M, G R$ ).


The set $\{A, M\}$ separates sets $\{C\}$ and $\{G, R\}$, i.e. $C$ is conditionally independent of $G$ and $R$ given $M$ and $A$. Thus, collapsing over $G$ and $R$, the conditional associations between $C$ and $M$ and between $C$ and $A$ are the same as with the model (AC,AM,CM) fitted earlier.

```
> teens.df <- as.data.frame(teens)
> ACM <- margin.table(teens, 1:3)
> ACM.df <- as.data.frame(ACM)
>
> teens.m6 <-
+ glm(Freq ~ A*C + A*M + C*M + A*G + A*R + G*M + G*R,
+ family = poisson, data = teens.df)
> AC.AM.CM <- glm(Freq ~ A*C + A*M + C*M,
+ family = poisson, data = ACM.df)
> coef(teens.m6)
\begin{tabular}{rrrrr}
(Intercept) & ANo & CNo & MNo & GMale \\
5.9784142 & -5.7507310 & -3.0157544 & -0.3895472 & 0.1358363 \\
ROther & ANo:CNo & ANo:MNo & CNo:MNo & ANo:GMale \\
-2.6630477 & 2.0545341 & 3.0059195 & 2.8478892 & 0.2922863 \\
ANo: ROther & \multicolumn{2}{c}{ MNo:GMale GMale: ROther } & & \\
0.5934604 & -0.2692945 & 0.1261850 & &
\end{tabular}
> coef(AC.AM.CM)
\begin{tabular}{rrrrrr}
(Intercept) & ANo & CNo & MNo & ANo:CNo & ANo:MNo \\
6.8138656 & -5.5282675 & -3.0157544 & -0.5248611 & 2.0545341 & 2.9860144
\end{tabular}
 CNo:MNo
 2.8478892
```

http://users.stat.ufl.edu/~athienit/STA4504/Examples/teens2.R

## Bibliography

## 4 年


[1] A. Agresti. An Introduction to Categorical Data Analysis. Wiley Series in Probability and Statistics. Wiley, 2018. ISBN: 9781119405269 . URL: https: / /books.google.com/books? id=ukNxDwAAQBAJ.
[2] Brett Presnell. Lecture notes for Introduction to Categorical Data Analysis. Jan. 2012.
[3] Jin-Ting Zhang. Lecture notes for to Categorical Data Analysis. Jan. 2012.

Bibliography


[^0]:    > trains.log=glm(TrRd~I(Year-1975)+offset(log(KM)),family=poisson(link=log),

