STA 4504 Categorical Data Analysis

Demetris Athienitis

UNIVERSITY OF FLORIDA DEPARTMENT OF STATISTICS

Contents -0.32 < Z < 1.2 P(Z < 1.2)

1	Introduction
1.1	Categorical Response Data 5
1.2	Probability Distributions for Categorical Data 6 1.2.1 Bernoulli distribution 6 1.2.2 Binomial distribution 6
1.3	Statistical Inference for a Proportion 8 1.3.1 Key facts 9 1.3.2 Inference Methodologies 9
2	Contingency Tables
2.1	Introduction 12 2.1.1 Key Points 12 2.1.2 Notation 13 2.1.3 Independence 14
2.2	Comparing Proportions in 2×2 Tables 15
2.3	Testing Independence182.3.1Pearson Test182.3.2Likelihood-Ratio Test192.3.3Partinioning Chi-squared222.3.4Exact Inference23
2.4	Three-Way Contingency Tables 25
	2.4.1 Odds Ratios 25 2.4.2 Cochran-Mantel-Haenszel Test 26

3	Generalized Linear Models			
3.1	Components of a Generalized Linear Model (GLM)			
3.2	GLM for Binary Data 3.2.1 Linear Probability Model 3.2.2 Logistic Regression Model	30 	30 30	
3.3	GLM for Count Data 3.3.1 Modeling Counts 3.3.2 Modeling Rates	34 	34 36	
3.4	Inference and Model Checking3.4.1Standard testing - Wald	40 	40 40	
3.5	Overdispersion	44		
4	Logistic Regression	49		
4.1	Interpretation	49		
4.2	Inference	52		
4.3	Multiple Logistic Regression4.3.1Qualitative predictors4.3.2Quantitative Treatment of Ordinal Factors	53 	56 58	
4.4	Summarizing Predictive Power	60		
4.5	Receiver Operating Characteristic Curve	62		
5	Building Logistic Regression Models	63		
5.1	Strategies 5.1.1 AIC and AICc 5.1.2 Multicollinearity 5.1.3 Stepwise Selection Algorithms	63 	63 64 65	
5.2	Model Checking	66		
5.3	Effects of Sparse Data	68		
6	Multicategory Logit Models	70		
6.1	Logit Models for Nominal Responses	70		
6.2	Cumulative Logit Models for Ordinal Responses	73		
8	Models for Matched Pairs	79		
8.1	McNemar's Test	79		
8.2	Rater Agreement8.2.1Cohen's Kappa (unweighted)8.2.2Cohen's Kappa (weighted)	82 	83 85	

9	Models for Correlated, Clustered Responses				
9.1	Introduction	86			
9.2	Generalized Estimating Equations	86			
10	Random Effects: GLMM	92			
10.1	Generalized Linear Mixed Models	92			
10.2	Comparison with GEE	94			
7	Loglinear Models	. 98			
7.1	Loglinear for 2-way $7.1.1$ $I \times J$ $7.1.2$ $I \times 2$	98 98 101			
7.2	Loglinear for 3-way	104			
7.3	Loglinear-Logit Connection	108			
7.4	Independence Graphs and Collapsibility7.4.1Independence Graphs for a 4-Way Table (Variables $W, X, Y, Z)$ 7.4.2Collapsibility Conditions for Three-Way Tables7.4.3Collapsibility Conditions for Multiway Tables	111 112 112 114			
	Literature	116			

1. Introduction

- (-0.	30	2	
	1.1	Categorical Response Data	5
Din	1.2	Probability Distributions for Categorical Data	6
1 (2 <	1.3	Statistical Inference for a Proportion	8
			(2

Methods for response variable whose measurement scale is a set of categories.

1.1 Categorical Response Data

The response variable will be categorical while the predictors/covariates can be either categorical/qualitative or quantitative as you have seen with regression models.

Definition 1.1 (Categorical) A categorical variable is one for which the measurement scale consists of a set of categories. Categorical variables can be

- Nominal: Unordered categories
- Ordinal: Ordered categories

Example 1.1 Categorical variables can be:

Nominal	– method of communication: text, call, phonetic, visual			
	– favorite music: rock, pop, country, indie, EDM, R&B, etc			
	– swipe: left, right			
Ordinal	- political philosophy: liberal, moderate, conservative			
	 patient condition (excellent, good, fair, poor) 			

Remark 1.1. *Methods designed for ordinal variables utilize category ordering and thus they cannot be used for nominal variables.*

1.2 Probability Distributions for Categorical Data

For categorical data a very important distribution is the multinomial distribution of which the binomial is a special case for situations with a a binary outcome.

1.2.1 Bernoulli distribution

Imagine an experiment where the r.v. Y can take only two possible outcomes,

- success (Y = 1) with some probability π
- failure (Y = 0) with probability 1π .

The p.m.f. of *Y* is

$$p(y) = \pi^{y} (1 - \pi)^{1 - y}$$
 $y = 0, 1$ $0 \le \pi \le 1$

and we denote this with $Y \sim \text{Bernoulli}(\pi)$ where $E(Y) = \pi$ and $V(Y) = \pi(1 - \pi)$.

Example 1.2 A die is rolled and we are interested in whether the outcome is a 6 or not. Let,

$$Y = \begin{cases} 1 & \text{if outcome is 6} \\ 0 & \text{otherwise} \end{cases}$$

Then, $Y \sim \text{Bernoulli}(1/6)$ with mean 1/6 and variance 5/36.

1.2.2 Binomial distribution

If Y_1, \ldots, Y_n correspond to *n* Bernoulli trials conducted where

- the trials are independent
- each trial has identical probability of success π
- the r.v. *Y* is the total number of successes

then $Y = \sum_{i=1}^{n} Y_i \sim Bin(n, \pi)$ with p.m.f.

$$p(y) = {n \choose y} \pi^y (1 - \pi)^{n-y}, \quad y = 0, 1, \dots, n$$

where $\binom{n}{y} = \frac{n!}{y!(n-y)!}$ with $E(Y) = n\pi$ and $V(Y) = n\pi(1-\pi)$. Note that ! is the "factorial" operator.

Example 1.3 The shape of 3 different binomials. Notice with $\pi = 0.5$ it is symmetric.

Example 1.4 A die is rolled 4 times and the number of 6s is observed (y).

y	P(y)		
0	0.4823		
1	0.3858		
2	0.1157		
3	0.0154		
4	0.0008		

In R, these were found using

dbinom(0:4,4,1/6)

Find the probability that there is at least one 6.

$$P(Y \ge 1) = 1 - P(X < 1)$$

= 1 - P(X = 0)
= 0.5177

In R, one would simple use

1-pbinom(0,4,1/6)

Also, E(Y) = 4(1/6) = 2/3 and V(Y) = 4(1/6)(5/6) = 5/9.

Remark 1.2. Another variable of interest concerning experiments with binary outcomes is the proportion of successes $\hat{\pi} = Y/n$. Note that $\hat{\pi}$ is simply the r.v. Y multiplied by a constant, 1/n. Hence,

$$E(\hat{\pi}) = E(Y/n) = \frac{n\pi}{n} = \pi$$

and

$$V(\hat{\pi}) = V(Y/n) = \frac{1}{n^2} V(Y) = \frac{\varkappa \pi (1-\pi)}{n^2} = \frac{\pi (1-\pi)}{n}$$

Remark 1.3. *Binomial distribution can be approximated by a normal distribution when n is large such that, n*(min{ $\pi, 1 - \pi$ }) \geq 5.

1.3 Statistical Inference for a Proportion

Parameters are often estimated using *maximum likelihood* (M.L.) That is, finding value of the parameters (of interest) that maximize the *likelihood function* or equivalently the log of the likelihood function.

Definition 1.2 (Likelihood Function) The probability of the observed data, expressed as a function of the parameter is called a likelihood function.

Definition 1.3 (MLE) The maximum likelihood estimator (MLE) is defined to be the parameter value, for which the likelihood function is maximized.

Example 1.5 Consider a widget that either works (success) or does not work (failure). Hence, if each attempt with the widget is identical and independent, the number of successes follows a $Bin(n, \pi)$.

Out of 10 attempts, 7 yielded a success. We use $\hat{\pi} = 7/10$.

Bin(10,?)	P(Y=7)
$\pi = 0.5$	0.1172
$\pi = 0.6$	0.2150
$\pi = 0.7$	0.2668
$\pi = 0.8$	0.2013

So by simple, but not thorough search, we saw that the outcome 7, was most "likely" if we had a Bin(10, 0.7). Now lets be thorough:

1. Take the binomial p.m.f. but now treat is a function where π is the argument.

$$L(\pi) := \frac{n!}{y!(n-y)!} \pi^y (1-\pi)^{n-y}, \qquad y = 7, n = 10, \pi \in [0,1]$$

2. To simplify lets take a look at the *log likehood*, where maximizing likehood is equivalent to maximizing log likehood.

$$l(\pi) := \log L(\pi) = \log\{n!\} - \log\{(n-y)!\} + y \log\{\pi\} + (n-y) \log\{1-\pi\}\}$$

3. Find maximum, take derivative and equate to 0.

$$\frac{dl(\pi)}{d\pi} = \frac{y}{\pi} - \frac{(n-y)}{1-\pi} = 0 \quad \Rightarrow \quad \hat{\pi} = \frac{y}{n} = \frac{7}{10}$$

1.3.1 Key facts

• If y_1, y_2, \dots, y_n are i.i.d. from a normal distribution, then

$$L(\mu,\sigma^2|\boldsymbol{y}) = \prod_{i=1}^n f(\mu,\sigma^2|\boldsymbol{y}_i)$$

where f(.) is the p.d.f. The MLEs are then $\hat{\mu} = \bar{y}$ and $\hat{\sigma}^2 = \frac{1}{n} \sum (y_i - \bar{y})^2$

- In ordinary linear regression with *Y* being normal, the least squares estimators of the regression coefficients are also the MLEs.
- For large sample size *n*, MLEs are optimal (no other estimator has smaller mean squared error: variance plus squared bias). This is true in fairly broad generality.
- For large *n*, the sampling distribution of the MLE is approximately normal. Again, this is true in fairly broad generality.
- Recall that $\hat{\pi}$ is *unbiased* with $E(\hat{\pi}) = \pi$ and *consistent* with $V(\hat{\pi}) \xrightarrow[n \to \infty]{} 0$. MLEs are generally consistent.
- $\hat{\pi}$ is a sample mean for 0-1 data, so by the Central Limit Theorem, the sampling distribution is approximately normal for large *n*. Again, this is generally true for MLEs.

1.3.2 Inference Methodologies

Various significance tests exist and inverting them yields corresponding confidence intervals, values for the null hypothesis for which would fail to reject the null. Without loss of generality consider

 $H_0: \pi = \pi_0$ vs $H_a: \pi \neq \pi_0$

Let $p = \hat{\pi}$

Wald

Under the null,

$$TS = \frac{p - \pi_0}{\sqrt{p(1 - p)/n}} \stackrel{\text{approx.}}{\sim} N(0, 1)$$

which inverting yields the $100(1 - \alpha)$ confidence interval (CI)

$$p \mp z_{1-\alpha/2} \sqrt{p(1-p)/n}$$

We fail to reject the null when

$$\left|\frac{p-\pi_0}{\sqrt{p(1-p)/n}}\right| < z_{1-\alpha/2}$$

Solving for π_0 we obtain the CI formula.

Remark 1.4. Consider cases such as p = 0 or 1. Then the CI collapses to a singularity such as (0,0) or (1,1) and the CI can generally perform quite badly when n is relatively small, so other methods are advisable.

R code 1.1 Within the "binom" package use:

binom.confint(y, n, conf.level = 0.95, methods = ``asymptotic'')

Score/Wilson

Being true to fully adopting the null hypothesis, π_0 is used in the standard error, so that under the null

$$TS = \frac{p - \pi_0}{\sqrt{\pi_0 (1 - \pi_0)/n}} \stackrel{\text{approx.}}{\sim} N(0, 1)$$

We fail to reject the null when

$$\left| \frac{p - \pi_0}{\sqrt{\pi_0 (1 - \pi_0)/n}} \right| < z_{1 - \alpha/2}$$

Solving for π_0 requires the use of the quadratic formula and is a bit more complex and generally we let software solve for us.

R code 1.2 Within the "binom" package use:

or with small adaptation (continuity correction) use

binom.confint(y, n, methods = ``prop.test'')

Other methods:

• Agresti-Coull, which has become the new norm.

```
R code 1.3 Use
binom.confint(y, n, methods = ``agresti-coull'')
```

• Clopper-Pearson a.k.a. "exact" which is recommended when *n* is small seeing how it is "exact".

```
R code 1.4 Use
binom.confint(y, n, methods = ``exact'')
```

2. Contingency Tables

1.1		
2.1	Introduction	12
2.2	Comparing Proportions in 2×2 Tables	15
		10
2.3	Testing Independence	18
2.4	Three-Way Contingency Tables	25

Analyzing tables involving frequency counts.

2.1 Introduction

2.1.1 Key Points

- *X* and *Y* are two categorical variables.
- X has I categories.
- Y has J categories.
- Display the *IJ* possible combinations of outcomes in a rectangular table having *I* rows for the categories of *X* and *J* columns for the categories of *Y*.

Definition 2.1 (Contingency table) A table of this form in which the cells contain frequency counts of outcomes is called a contingency table.

Example 2.1 (Physicians' Health Study) A study on Myocardial Infraction (MI) and treatment. We consider

- *Y* = heart attack: yes/no, response variable
- *X* = group: placebo/aspirin, explanatory variable

Group	MI		
	Yes	No	
Placebo	189	10845	
Aspirin	104	10933	

2.1.2 Notation

• Let $\pi_{ij} = P(X = i, Y = j)$ probability that (X, Y) falls in the cell in row *i* and column *j* so that $\{\pi_{ij}\}$ form the *joint distribution* of *X* and *Y* such that

$$\sum_{i=1}^{I} \sum_{j=1}^{J} \pi_{ij} = 1$$

- The marginal distribution of X is $\{\pi_{i+}\}$, which is obtained by $\pi_{i+} = \sum_{j=1}^{J} \pi_{ij}$. (Law of Total Probability)
- The marginal distribution of Y is $\{\pi_{+j}\}$, which is obtained by $\pi_{+j} = \sum_{i=1}^{I} \pi_{ij}$.

Example 2.2 In a 2×2 table.

$$\begin{array}{c|c} & Y \\ 1 & 2 \\ X & 1 & \pi_{11} & \pi_{12} & \pi_{1+} \\ \hline \pi_{21} & \pi_{22} & \pi_{2+} \\ \hline \pi_{+1} & \pi_{+2} & 1 \end{array}$$

• Similarly, let $\{n_{ij}\}, \{n_{i+}\}, \{n_{+j}\}$ denote the cell counts, row and column totals respectively.

Example 2.3 In a 2×2 table.

$$\begin{array}{c} & Y \\ 1 & 2 \\ X & 2 & \begin{array}{c} n_{11} & n_{12} & n_{1+} \\ n_{21} & n_{22} & n_{2+} \\ n_{+1} & n_{+2} & n \end{array}$$

• Let

$$p_{ij} = \frac{n_{ij}}{n}$$

and

$$p_{i+} = \frac{n_{i+}}{n}$$
, $p_{+j} = \frac{n_{+j}}{n}$

• It is informative to construct separate probability distributions for *Y* at each level of *X*. Such a distribution consists of conditional probabilities for *Y* given the level of *X* and is called a *conditional distribution*. That is,

$$\pi_{j|i} = \frac{\pi_{ij}}{\pi_{i+}}$$
 estimated by $p_{j|i} = \frac{n_{ij}}{n_{i+}}$

Example 2.4 (Physicians' Health Study ctd) Look at the probability of heart attack given the treatment group.

Group	Ν		
	Yes	No	Total
Placebo	0.017	0.983	1
Aspirin	0.009	0.991	1

Remark 2.1. *For many diseases there are tests to detect the disease but such tests are not fail proof.* $A \ 2 \times 2$ *contingency table helps explore the effectiveness of the test. Let*

- $Y = outcome \ of \ the \ test \ with \begin{cases} 1 & positive \\ 2 & negative \end{cases}$
- $X = actual \ condition \ with \begin{cases} 1 & diseased \\ 2 & not \ diseased \end{cases}$

The following two terms are important

- Sensitivity: P(Y = 1 | X = 1) (True positive)
- Specificity: P(Y = 2|X = 2) (True negative)

2.1.3 Independence

Definition 2.2 (Independence) Variables *X* and *Y* are statistically independent if the true conditional distribution of *Y* is the same at each level of *X*.

That is,

$$\pi_{j|i} = \pi_{j|i'} \qquad \forall i, i'$$

and as a consequence

Lemma 2.1 X and Y are independent if and only if

$$\pi_{ij} = \pi_{i+}\pi_{+j} \quad \forall i, j$$

Example 2.5 In a 2×2 table.

2.2 Comparing Proportions in 2×2 Tables

Consider the conditional distributions, as in example 2.4, simplifying notation by using $\pi_i = \pi_{1|i}$.

$$\begin{array}{c|c} & Y \\ 1 & 2 \\ X & 1 & \pi_1 & 1 - \pi_1 \\ 2 & \pi_2 & 1 - \pi_2 \end{array}$$

and interested in performing inference, on whether $\pi_1 = \pi_2$. Before we begin we need to use

Lemma 2.2 (Delta Method) Assume that T_n is a statistic based on the data and θ is the parameter which T_n is trying to target such that

$$\sqrt{n}(T_n - \theta) \xrightarrow{d} N(0, \sigma^2)$$

For a continuous function $g(\cdot)$, the asymptotic distribution of $g(T_n)$ is

$$\sqrt{n}(g(T_n) - g(\theta)) \xrightarrow{d} N(0, \sigma^2 [g'(\theta)]^2)$$

by Taylor series expansion where $\sqrt{n}(g(T_n) - g(\theta)) \approx \sqrt{n}(T_n - \theta)g'(\theta)$

1. We can use what we learned in an introductory statistics course assuming the two levels of *X* are independent

$$p_1 - p_2 \mp z_{1-\alpha/2} \sqrt{\frac{p_1(1-p_1)}{n_{1+}} + \frac{p_2(1-p_2)}{n_{2+}}}$$

Example 2.6 From example 2.4, a 95% C.I. for $\pi_1 - \pi_2$

$$0.017 - 0.009 \mp 1.96\sqrt{\frac{0.017(0.983)}{11034} + \frac{0.009(0.991)}{11037}} \rightarrow (0.005, 0.011)$$

Note that if 0 was in the C.I. that would imply independence.

2. Another concept is

Definition 2.3 (Relative Risk) Relative Risk (R.R.) is defined as

$$R.R. = \frac{\pi_1}{\pi_2}$$

Example 2.7 From example 2.4, R.R.=1.82. Hence, the sample proportion of heart attacks was 82% higher for placebo group.

Note that $\log(R.R.) = \log(\pi_1) - \log(\pi_2)$ and the Delta Method allows us to find an asymptotic normal distribution for each $\log(\pi_i)$, and the linear combination of two asymptotic normal is still a normal. Therefore, a $100(1 - \alpha)$ C.I. on $\log(\pi_1/\pi_2)$ is

$$\log\left(\frac{p_1}{p_2}\right) \mp z_{1-\alpha/2} \sqrt{\frac{1-p_1}{n_{1+}p_1} + \frac{1-p_2}{n_{2+}p_2}} \to (L, U)$$

and $100(1 - \alpha)$ C.I. on π_1/π_2 is (e^L, e^U) .

Example 2.8 From example 2.4, a 95% C.I. for $\log(\pi_1/\pi_2)$ ends up being (0.3571, 0.8406) and hence for π_1/π_2

$$\left(e^{0.3571}, e^{0.8406}\right) \rightarrow (1.43, 2.31)$$

Note that if 1 was in the C.I. that would imply independence.

3. If we let redefine Y = 1 as a success and Y = 2 as a failure, the odds of success are

odds(S) =
$$\begin{cases} \frac{\pi_1}{1-\pi_1} & X = 1\\ \frac{\pi_2}{1-\pi_2} & X = 2 \end{cases}$$

Definition 2.4 (Odds Ratio) The Odds Ratio (O.R.) is the ratio of the odds of Y = 1|X = 1 to that of Y = 1|X = 2.

$$\theta = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} = \frac{\pi_1(1-\pi_2)}{\pi_2(1-\pi_1)}$$

Example 2.9 From example 2.4,

$$\hat{\theta} = \frac{0.0171/0.9829}{0.0094/0.9906} = 1.83$$

The estimated odds of heart attack in placebo group are 1.83 times the odds of heart attack in the aspirin group.

Using the Delta Method the $100(1 - \alpha)$ C.I. on $log(\theta)$ is

$$\log(\hat{\theta}) \mp z_{1-\alpha/2} \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}} \to (L, U)$$

and $100(1 - \alpha)$ C.I. on θ is (e^L, e^U) .

Example 2.10 From example 2.4, a 95% C.I. for $\log(\theta)$

$$\log(1.83) \mp 1.96\sqrt{1/189} + 1/10845 + 1/104 + 1/10933 \rightarrow (0.365, 0.846)$$

and hence for θ , (1.44,2.33).

Properties:

- If $1 < \theta < \infty$, the odds of success are *higher* in row 1 than in row 2.
- If $0 < \theta < 1$, a success is *less* likely in row 1 than in row 2.
- $\theta = 1 \Leftrightarrow \log(\theta) = 0$. This also implies $\pi_1 = \pi_2$, hence independence.
- If rows are interchanged (or columns, but not both), $\theta \rightarrow 1/\theta$
- $\hat{\theta} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$
- O.R. is valid for retrospective studies while R.R. and differencing are not. In retrospective studies, sampling is done within levels of *Y*, not to *Y*, and we cannot estimate P(Y|X). We can estimate P(X|Y) and hence θ , as θ treats rows and columns symmetrically.

$$\theta = \frac{P(X = 1|Y = 1)/P(X = 2|Y = 1)}{P(X = 1|Y = 2)/P(X = 2|Y = 2)}$$

= ...
$$= \frac{P(Y = 1|X = 1)/P(Y = 2|X = 1)}{P(Y = 1|X = 2)/P(Y = 2|X = 2)}$$

X = smoked at least 1 cigarette per day for at least 1 year

Y = 1 for lung cancer, 0 otherwise

Smoked	Cancer		
	Yes	No	
Yes	688	650	
No	21	59	
Total	709	709	

This is a case-control study because the presence of lung cancer is considered "rare" so they found 709 individuals without lung cancer and then (using records) found 709 with lung cancer, and *then* looked at whether they smoked or not.

$$\hat{\theta} = \frac{(688/709)/(21/709)}{(650/709)/(59/709)} = \frac{688 \times 59}{21 \times 650} = 2.97$$

Odds of lung cancer for smokers is estimated to be about 3 times the odds for non smokers.

- When any values $n_{ij} \approx 0$, it is best to use $\{n_{ij} + 0.5\}$
- When π_1 and π_2 are close to zero then O.R. \approx R.R.

2.3 Testing Independence

To test whether *X* and *Y* we refer back to Lemma 2.1 that $\pi_{ij} = \pi_{i+}\pi_{+j}$. With any multinomial we have that the expected frequency of a cell is

$$\mu_{ij} = n\pi_{ij}$$
$$= n\pi_{i+}\pi_{+j}$$
 by ind.

The MLEs under the null of the expected frequencies are

$$\hat{u}_{ij} = n\hat{\pi}_{i+}\hat{\pi}_{+j}$$
$$= \mathcal{H}\frac{n_{i+}}{\mathcal{H}}\frac{n_{+j}}{n}$$

2.3.1 Pearson Test

Testing

$$H_0: \mu_{ij} = \mu_{ij}^0 \stackrel{\text{ind.}}{=} \frac{n_{i+}n_{+j}}{n}, \quad \forall i, j$$

The *Pearson chi-square test statistic* under the assumption that $\hat{\mu}_{ij} > 5 \forall i, j$ is asymptotically

$$X^{2} = \sum_{ij} \frac{(n_{ij} - \hat{\mu}_{ij})^{2}}{\hat{\mu}_{ij}} \stackrel{\mathrm{H}_{0}}{\underset{\mathrm{approx.}}{\overset{\mathrm{H}_{0}}{\longrightarrow}}} \chi^{2}_{(I-1)(J-1)}$$
(2.1)

with p-value $P(\chi^2_{(I-1)(J-1)} \ge X^2) < \alpha$ (the area to the right of the test statistic is less that α). More on the degrees of freedom later in equation (2.3).

Example 2.12 (Job Satisfaction) Data from General Social Survey (1991)

Income	Job Satisfaction				
	Dissat	Little	Moderate	Very	Total
< 5k	2	4	13	3	22
5k - 15k	2	6	22	4	34
15k - 25k	0	1	15	8	24
> 25k	0	3	13	8	24
Total	4	14	63	23	104

http://users.stat.ufl.edu/~athienit/STA4504/Examples/job_sat.R

```
> job_test=chisq.test(job)
```

>job_test

<5	0.85	2.96	13.33 4.87
5k-15k	1.31	4.58	20.60 7.52
15k-25k	0.92	3.23	14.54 5.31
>25k	0.92	3.23	14.54 5.31

2.3.2 Likelihood-Ratio Test

The likelihood-ratio

 $\Lambda = \frac{\text{maximum likelihood when } H_0 \text{ is true}}{\text{maximum likelihood when parameters are unrestricted}}$

Consider

```
H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_1: \theta \in \Theta_1
```

the likelihood ratio is given by

$$\Lambda = \frac{\sup_{\theta \in \Theta_0} L(\theta)}{\sup_{\theta \in (\Theta_0 \cup \Theta_1)} L(\theta)}$$

So if the ratio is close to 1 it implies that the estimated parameter(s) under the null are close in proximity to the unrestricted MLEs and hence null is plausible.

For example, assume we wish to test $H_0: \theta = \theta_0$. To determine if the null value θ_0 is plausible we will compare it to the maximum likelihood estimate $\hat{\theta}_{MLE}$, by seeing how close the likelihood functions are at θ_0 and $\hat{\theta}_{MLE}$.

The likelihood ratio test (LRT) statistic is asymptotically

$$G^{2} = -2\log\Lambda \underset{\text{approx.}}{\overset{\text{H}_{0}}{\sim}} \chi_{df}^{2}$$
(2.2)

and

degrees of freedom = no. of parameters in general – no. of parameters under H_0 (2.3) Recall that multinomial pdf/likelihood function for an $I \times J$ table is

$$L(\pi_{ij}; n_{ij}) = \frac{n!}{n_{11}! \cdots n_{IJ}!} \pi_{11}^{n_{11}} \cdots \pi_{IJ}^{n_{IJ}}$$

Hence for a two-way contingency table and working with multinomials we have

$$\Lambda = \frac{\left(\frac{n_{i+}n_{+j}}{n^2}\right)^{n_{ij}}}{\left(\frac{n_{ij}}{n}\right)^{n_{ij}}}$$

We can ignore the constants up from since the play no role when maximizing. Recall $\hat{\mu}_{ij} = (n_{i+}n_{+j})/n$, so equation (2.2) becomes

$$G^2 = 2\sum_{ij} n_{ij} \log\left(\frac{n_{ij}}{\hat{\mu}_{ij}}\right)$$

and the df in equation (2.3)

- In general, there are *IJ* groupings in the multinomial with IJ, π_{ij} 's, hence IJ 1 free parameters in general.
- Under H₀, I 1 free π_{i+} 's and J 1 free π_{+j} 's

and hence

$$df = (IJ - 1) - [(I - 1) + (J - 1)]$$
$$= (I - 1)(J - 1)$$

Example 2.13 (Job Satisfaction continued) Performing the likelihood ratio test http://users.stat.ufl.edu/~athienit/STA4504/Examples/job sat.R

```
> library(DescTools)
> GTest(job)
data: job
G = 13.467, X-squared df = 9, p-value = 0.1426
```

Remark 2.3.

- As $n \to \infty$, $X^2 \xrightarrow{d} \chi^2$ faster than $G^2 \xrightarrow{d} \chi^2$, but they are usually similar and asymptotically equivalent, i.e. $X^2 G^2 \xrightarrow{d} 0$
- These tests treat X and Y as nominal and reordering rows or columns has no effect. Methods for ordinal tests (section 2.5 of textbook) do exist.

Once dependence is established, of interest is to determine which cells in the contingency table have higher or lower frequencies than expected (under independence). This is usually determined by observing the *standardized residuals* (deviations) of the observed counts, n_{ij} , to the expected counts $\hat{\mu}_{ij}$

Definition 2.5 (Standardized/Adjusted Residuals)

$$r_{ij} = \frac{n_{ij} - \hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}(1 - p_{i+})(1 - p_{+j})}}$$

which under H_0 behaves similar to N(0,1). Hence, values exceeding 2 are indication of a lack of fit of H_0 . Also, note the sign of the residual which describes the nature of the association.

Example 2.14 (Job Satisfaction continued) Residuals are: http://users.stat.ufl.edu/~athienit/STA4504/Examples/job_sat.R

> round	<pre>> round(job_test\$stdres,4)</pre>							
	Dissat	Little	Moderate	Very				
<5	1.4406	0.7305	-0.1606	-1.0792				
5k-15k	0.7525	0.8716	0.6005	-1.7726				
15k-25k	-1.1171	-1.5211	0.2198	1.5098				
>25k	-1.1171	-0.1574	-0.7327	1.5098				

Remark 2.4. The unstandardized (Pearson) residual is

$$e_{ij} = \frac{n_{ij} - \hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}}}$$

tends to have a variance that is smaller than 1. Note that,

$$X^2 = \sum_{ij} e_{ij}^2$$

The deviance residual that corresponds to G^2 is not discussed in this class.

2.3.3 Partitioning Chi-squared

The sum of two independent chi-squared random variables has a chi-squared distribution with degrees of freedom equal to the sum of the df of the two components.

Lemma 2.3 Let $\chi^2_{\nu_1}$ and $\chi^2_{\nu_2}$ be independent. Then, $\chi^2_{\nu_1} + \chi^2_{\nu_2} \sim \chi^2_{\nu_1 + \nu_2}$

The G^2 statistic for testing independence can be partitioned into components representing certain aspects of the association. We refer the reader to the textbook for specifics.

Example 2.15 Consider the following data from a survey.

	Democrat	Independent	Republican
F	279	73	225
Μ	165	47	191

We have $G^2 = 7$ with df = 2. However the table can be partitioned into two tables

	Democrat	Independent		Dem. and Ind.	Republican
F	279	73	F	352	225
Μ	165	47	Μ	212	191
W	$G^2 = 0.10$	6 and $df = 1$.	,	With $G^2 = 6.84$ as	nd $df = 1$.

Example 2.16 Consider example 2.12, with $G^2 = 13.47$ with df = 9 but partinioned as

Income		Job Satisfaction				
	Dissat	Little	Moderate	Very	G^2	df
Low					0.30	3
< 5k	2	4	13	3		
5k - 15k	2	6	22	4		
High					1.19	3
15k - 25k	0	1	15	8		
> 25k	0	3	13	8		
Low vs High					11.98	3
<15k	4	10	35	7		
> 15 <i>k</i>	0	4	28	16		
					13.47	9

2.3.4 Exact Inference

In this section we take a look at *Fisher's Exact Test* that does not implement an asymptotic distribution. It is exact for any sample size. It was first created and used for 2×2 tables but has since been extended.

With H_0 : *X*, *Y* independent $\Leftrightarrow \theta = 1$ (odds ratio =1)

$$\begin{array}{c|cccc} & Y \\ 1 & 2 \\ X & 1 & \hline n_{11} & n_{12} & n_{1+} \\ \hline n_{21} & n_{22} & n_{2+} \\ \hline n_{+1} & n_{+2} & n \end{array}$$

and treating the row and column totals as fixed, the exact null distribution of $\{n_{ij}|n_{1+}, n_{2+}, n_{+1}, n_{+2}\}$ is the *hypergeometric distribution*. In the 2×2 case the value of n_{11} completely determines the other 3 cells (since marginals are fixed).

$$p(n_{11}) = \frac{\binom{n_{1+}}{n_{11}}\binom{n_{2+}}{n_{+1}-n_{11}}}{\binom{n}{n_{+1}}}, \qquad n_{11} \in \{\max(0, n_{+1}+n_{1+}-n), \dots, \min(n_{+1}, n_{1+})\}$$

The p-value is the sum of the hypergeometric probabilities for outcomes at least as favorable to the alternative hypothesis as the observed outcome.

Example 2.17 (Tea Testing) The lady is told that milk was poured first in 4 cups and tea first in the other 4. Order of tasting is randomized. Asked to identify the 4 cups with milk poured first.

		Guess				
		Milk	Tea			
Pourod	Milk	3	1	4		
rouieu	Tea	1	3	4		
		4	4	8		

Based on the marginals it is possible for $n_{11} = 0, 1, 2, 3, 4$ (not always the case).

R code 2.1 With software,

> cbind(0:4,dhyper(0:4,4,4,4))
 [,1] [,2]
[1,] 0 0.01428571
[2,] 1 0.22857143
[3,] 2 0.51428571
[4,] 3 0.22857143
[5,] 4 0.01428571

To test

$$H_0: \theta \le 1$$
 vs. $H_a: \theta > 1$

where the alternative is indicating that the lady can correctly guess better than simply guessing by chance, the p-value is thus

$$P(n_{11} \ge 3) = 0.243$$

With software,

> TeaTasting=matrix(c(3,1,1,3),2,2,byrow=T, + dimnames=list(Truth=c("Milk","Tea"),Guess=c("Milk","Tea"))) > TeaTasting Guess Truth Milk Tea Milk 3 1 Tea 1 3 > fisher.test(TeaTasting,alternative="greater") data: TeaTasting p-value = 0.2429 alternative hypothesis: true odds ratio is greater than 1 95 percent confidence interval: 0.3135693 Inf sample estimates:

6.408309 The odds ratio in fisher.test is the ML odds ratio, not the unconditional one tradi-

```
tionally taught (\hat{\theta} = 9)
```

odds ratio

```
Example 2.18 (Job Satisfaction continued) For larger than 2 × 2 tables, In R
> fisher.test(job)
Fisher's Exact Test for Count Data
data: job
p-value = 0.2315
alternative hypothesis: two.sided
```

Remark 2.5. *For tables with ordinal variables please refer to "Analysis of Ordinal Data" by Alan Agresti. In addition, some methods you can review are:*

- section 2.5.1 of our textbook
- Goodman's gamma
- Kendall's tau b

2.4 Three-Way Contingency Tables

2.4.1 Odds Ratios

Extending to three variables the goal is to examine the relationship between X and Y controlling (if significant) for a third variable Z.

Example 2.19 (Death Penalty) A $2 \times 2 \times 2$ table from data from Florida 1976-1987.

		Death Penalty		
Victim's Race	Defendant's Race	Yes	No	Percentage Yes
White	White	53	414	11.3
	Black	11	37	22.9
Black	White	0	16	0.0
	Black	4	139	2.8
Total	White	53	430	11.0
	Black	15	176	7.9

Let

- *Y* be the response whether they receive death penalty
- *X* be the defendant's race
- *Z* be the victim's race

The eastimated conditional odds ratios are

- Z = white, $\hat{\theta}_{XY(1)} = \frac{53 \times 37}{414 \times 11} = 0.43$ (0.42 after adding 0.5 to each cell)
- Z = black, $\hat{\theta}_{XY(2)} = \frac{0 \times 139}{16 \times 4} = 0$ (0.94 after adding 0.5 to each cell)

Controlling for victim's race, odds of receiving death penalty were lower for white defendants than for black defendants.

Ignoring victim's race, odds of death penalty higher for white defendants as

$$\hat{\theta}_{XY} = \frac{53 \times 176}{15 \times 430} = 1.45$$

This is an example of *Simpson's Paradox*.

Definition 2.6 (Simpson's paradox) When a marginal association can have different direction from the conditional associations is this is called *Simpson's paradox*.

Definition 2.7 (Conditional Independence) Variables *X* and *Y* are conditionally independent given *Z* if they are independent in each conditional table.

In a $2 \times 2 \times K$ table this means

$$\theta_{XY(1)} = \cdots = \theta_{XY(K)} = 1.0$$

The converse however does not apply, as shown in the following example

Example 2.20 Data from clinical treatment yield

		Resp	onse	
Clinic	Treatment	Success	Failure	$\hat{\theta}$
1	А	18	12	1.0
1	В	12	8	1.0
2	А	2	8	1.0
2	В	8	32	1.0
Total	А	20	20	2.0
10141	В	20	40	2.0

This also acts as an example of a symmetric property know as

Definition 2.8 (Homogeneous Association) A *homogeneous association* exists if the conditional odds ratios between *X* and *Y* are identical at all levels of *Z*.

2.4.2 Cochran-Mantel-Haenszel Test

The Cochran-Mantel-Haenszel (CMH) Test is used on $2 \times 2 \times K$ tables to test

H₀: *X* and *Y* are conditionally independent given *Z*, i.e. $\theta_{XY(1)} = \cdots = \theta_{XY(K)} = 1$

Similar to Fisher's Exact Test, in the *k*-th partial table, the row totals are n_{1+k} , n_{2+k} and column totals are n_{+1k} , n_{+2k} . Given both these totals, n_{11k} has a hypergeometric distribution and that determines all other cell counts in the *k*-th partial table.

$$CMH = \frac{\left[\sum_{k=1}^{K} (n_{11k} - E(n_{11k}))\right]^2}{\sum_{k=1}^{K} V(n_{11k})} \xrightarrow{H_0}_{\text{approx.}} \chi_1^2$$

where under independence,

$$E(n_{11k}) = \frac{n_{1+k}n_{+1k}}{n}$$
$$V(n_{11k}) = \frac{n_{1+k}n_{2+k}n_{+1k}n_{+2k}}{n_{++k}^2(n_{++k}-1)}$$

The Mantel-Haenszel estimator of that common value equals

$$\hat{\theta}_{MH} = \frac{\sum\limits_{k=1}^{K} (n_{11k} n_{22k}/n_{++k})}{\sum\limits_{k=1}^{K} (n_{12k} n_{21k}/n_{++k})}$$

The Delta Method can implemented to obtain the standard error of the $\log(\hat{\theta}_{MH})$ but those calculations are ommitted here.

Remark 2.6.

- This test is inappropriate when the association varies widely among the partial tables.
- If the true odds ratios are not identical but do not vary drastically, $\hat{\theta}_{MH}$ still provides a useful summary of the K conditional associations, i.e. the K conditional odds ratios.

```
Example 2.21 Consider a 2 \times 2 \times 5 table
> MIOC
, , Agegrp = 1
         OCuse
Status
          Yes No
  Case
           4 2
  Control 62 224
, , Agegrp = 2
         OCuse
          Yes No
Status
  Case
            9 12
  Control 33 390
, , Agegrp = 3
```

```
OCuse
          Yes No
Status
  Case
            4
               33
  Control 26 330
, , Agegrp = 4
         OCuse
          Yes No
Status
            6 65
  Case
  Control
            9 362
, , Agegrp = 5
         OCuse
          Yes No
Status
            6 93
  Case
  Control
            5 301
> OR=function(matrix,adjust=TRUE){
    if(adjust==TRUE){mat=matrix+0.5}
+
    OR=(mat[1,1]*mat[2,2])/(mat[1,2]*mat[2,1])
+
+
    return(OR)
+ }
> apply(MIOC,3,0R)
                2
                         3
                                  4
                                            5
      1
6.465600 8.859104 1.675303 3.786661 3.810890
```

Since the five sample odds ratios do not very "drastically" we can proceed with the CMH test

```
> mantelhaen.test(MIOC)
```

Mantel-Haenszel chi-squared test with continuity correction

http://users.stat.ufl.edu/~athienit/STA4504/Examples/CMH.R

Remark 2.7. *The Breslow-Day Test also exists for testing homogeneity of odds ratios, not just for conditional independence.*

3. Generalized Linear Models

 _		
3.1	Components of a Generalized Linear Mode	el (GLM) 29
3.2	GLM for Binary Data	30
3.3	GLM for Count Data	34
3.4	Inference and Model Checking	40
3.5	Overdispersion	44

Using models as the basis for analyzing associations, which can describe effects in more informative ways.

3.1 Components of a Generalized Linear Model (GLM)

- 1. **Random component**: Identifies the response variable *Y* and assumes a probability distribution for it. We will assume independent observations from the *exponential family* of distributions. We will primarily be looking at binomial and Poisson, but note that the Gaussian also falls in this family as do most of the "common" distributions.
- 2. Systematic component: Specifies the explanatory variables $(x_1,...,x_k)$ used as predictors in the model using a linear function of coefficients known as the *linear predictors*

$$\alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

3. Link: Describes the functional relation between the systematic component and expected value of the random component. It specifies how $\mu = E(Y)$ relates to explanatory variables in the linear predictor.

$$g(\mu) = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

The function $g(\cdot)$ is called the *link* function.

More about link functions

- Each potential probability distribution has one special function of the mean that is called its *natural parameter*. The link function that uses the natural parameter as $g(\mu)$ in the GLM is called the *canonical link*. (The benefit of using the canonical link is that the expected fisher-information matrix is the same as the observed matrix.)
- For the normal distribution, it is mean itself, i.e. identity link.

$$g(\mu) = \mu = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

• For the Poisson, the natural parameter is the log of the mean. (Recall $\mu = \lambda$.)

$$g(\mu) = \log(\mu) = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

• For the Bernoulli, the natural parameter is the logit of the mean. (Recall $\mu = \pi$.)

$$g(\mu) = \log\left[\frac{\mu}{1-\mu}\right] = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

3.2 GLM for Binary Data

The distribution of a binary response is specified by probabilities

$$P(Y = 1) = \pi$$
 and $P(Y = 0) = 1 - \pi$

and for n independent and identical trails we end up with a binomial distribution.

3.2.1 Linear Probability Model

For simplicity, consider a single predictor *x*. Using an identity link,

$$\pi(x) = \alpha + \beta x$$

For such a model probabilities may fall between 0 and 1 but for large or small enough values of *x*, the model may predict $\pi(x) < 0$ or $\pi(x) > 1$. Hence, this model is valid only for a finite range of predictor values. As such other links shall be used, such as *logit* and *probit*.

Figure 3.1: An example of a model with identity, logit and probit links

3.2.2 Logistic Regression Model

Using the logit link,

$$\log\left(\frac{\pi(x)}{1-\pi(x)}\right) = \alpha + \beta x \quad \Rightarrow \quad \pi(x) = \frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}} \tag{3.1}$$

That is,

$$\pi(x) = F_0(\alpha + \beta x) \quad \Rightarrow \quad F_0^{-1}(\pi(x)) = \alpha + \beta x$$

where

$$F_0(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

is the (standard) cdf of the *logistic* distribution. That is, the link function is the logistic's distribution quantile function (which is also the canonical link)

$$g(\cdot) \equiv F_0^{-1}(\cdot)$$

guaranteeing that $0 \le \pi(x) \le 1$. Although logistic regression will be covered more in depth in the next chapter some key points are:

- The parameter *β* determines the rate of increase or decrease of the curve and the magnitude of *β* determines how fast the curve increases or decreases.
- When $\beta > 0$, $\pi(x)$ increases as *x* increases.
- When $\beta < 0$, $\pi(x)$ decreases as *x* increases.

In the next chapter we will see that the $100(1 - \alpha)$ % C.I. on β is

$$\hat{\beta} \mp z_{1-\alpha/2}(s_{\hat{\beta}})$$

where the estimate and standard error are provided by the software.

R code 3.1 A GLM is fitted using the

```
model=glm(formula,data,family)
```

where the family argument will specify the random component as well as the link function. Basic output is provided with summary(model) and CI created on the coefficients via confint(model).

For a logistic regression, take for example

• When the response column is y is 0 or 1, use

glm(y~x,family=binomial,data=mydata)

• When there is a column grouping successes and one grouping failures, use

glm(cbind(Successes,Failures)~x,family=binomial,data=mydata)

Please see the help(glm) help file.

Alternative link: Probit Just as the logistic regression model utilized the logistic's distribution quantile function, an alternative is quantile function of the (standard) normal distribution

31

 $g(\cdot) \equiv \Phi^{-1}(\cdot)$

which implies

$$\pi(x) = \Phi(\alpha + \beta x)$$

The probit transform maps $\pi(x)$ so that the regression curve for $\pi(x)$ (or $1 - \pi(x)$, when $\beta < 0$) has the appearance of the normal cdf with mean $\mu = -\alpha/\beta$ and standard deviation $\sigma = 1/|\beta|$.

Example 3.1 (Infant Malformation) A study was conducted about infant sex organ malformation and pregnant mother's alcohol consumption.

- *Y* = infant sex organ malformation (1 = present, 0 = absent)
- *x* = mother's alcohol consumption (avg drinks per day)

Consump	otion	Malformation		
Measured	Score	Absent	Present	
0	0.0	17066	48	
< 1	0.5	14464	38	
1-2	1.5	788	5	
3-5	4.0	126	1	
≥ 6	7.0	37	1	

> malform.logit=glm(cbind(Present,Absent)~Alcohol,

```
+ family=binomial(link=logit))
```

```
> summary(malform.logit)
```

Coefficients:

Estimate Std. Error z value Pr(>|z|)(Intercept) -5.9605 0.1154 -51.637 <2e-16 *** Alcohol 0.3166 0.1254 2.523 0.0116 * ---Null deviance: 6.2020 on 4 degrees of freedom Residual deviance: 1.9487 on 3 degrees of freedom

AIC: 24.576

The logistic regression model is

 $logit[\hat{\pi}(x)] = -5.9605 + 0.3166(Score)$

Note that in this example both the logistic and the linear model appear to be good fits. This is because whenever you "zoom" into to a part of a curve a linear relationship is adequate.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/malformation.R

Remark 3.1. *If a logistic regression model is deemed an adequate fit then so will a probit model be deemed, i.e. when one is a good fit then so will the other, as seen in figure 3.1*

Example 3.2 (Challenger disaster) For the 23 space shuttle flights that occurred before the Challenger mission disaster in 1986, the data shows the temperature at the time of flight and whether at least one primary O-ring suffered thermal distress.

Flight	Temp	Failure
1	66	0
2	70	1
3	69	0
4	68	0
5	67	0
6	72	0
7	73	0
8	70	0
9	57	1
10	63	1
11	70	1
12	78	0
13	67	0
14	53	1
15	67	0
16	75	0
17	70	0
18	81	0
19	76	0
20	79	0
21	75	1
22	76	0
23	58	1

The logistic regression model is

logit $[\hat{\pi}(x)] = 15.0329 - 0.2322$ (Temp.)

According to the report, the air temperature at the time of launch, 11:38 a.m. EST, was 36 degrees. This temperature was 15 degrees colder than any previous launch and the O-ring suffered catastrophic failure.

> predict.glm(preC.logit,newdata=data.frame(Temp=36),type="response")

0.9987521

http://users.stat.ufl.edu/~athienit/STA4504/Examples/oring.R

3.3 GLM for Count Data

3.3.1 Modeling Counts

Many discrete response variables have counts as possible outcomes. The Poisson distribution is often used as a sampling model for counts.

Example 3.3 Data examples:

• For a sample of cities worldwide, each observation might be the number of automobile thefts in 2003.

• For a sample of silicon wafers used in computer chips, each observation might be the number of imperfections on wafer.

The Poisson probability mass function is

$$p(y) = \frac{\mu^y e^{-\mu}}{y!}, \quad y = 0, 1, \dots, \mu > 0$$

with $E(Y) = V(Y) = \mu$.

The (simple) Poisson log-linear is

$$\log(\mu) = \alpha + \beta x \implies \mu = e^{(\alpha + \beta x)} = e^{\alpha} (e^{\beta})^x$$

R code 3.2 For a poisson regression, take for example

glm(y~x,family=poisson,data=mydata)

Please see the help(glm) help file.

Example 3.4 (Silicon Wafers) Let,

- *Y* = number of defects os silicon wafer.
- x = 0 if type A, 1 if type B.

А	8	7	6	6	3	4	7	2	3	4
В	9	9	8	14	8	13	11	5	7	6

```
> wafers.log=glm(defects~trt,family=poisson(link="log"),data=wafers)
> summary(wafers.log)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                          0.1414 11.380 < 2e-16 ***
(Intercept)
              1.6094
trtB
              0.5878
                          0.1764
                                   3.332 0.000861 ***
_ _ _
    Null deviance: 27.857 on 19 degrees of freedom
Residual deviance: 16.268 on 18 degrees of freedom
AIC: 94.349
> confint(wafers.log)
                2.5 %
                          97.5 %
(Intercept) 1.3188383 1.8743819
trtB
            0.2469096 0.9400962
The log-linear model is
                         \log[\mu(x)] = 1.6094 + 0.5878x
giving us
  A: \mu(0) = \exp(1.6094) = 5
```

B: $\mu(1) = \exp(1.6094)\exp(0.5878) = 5 + 4 = 9$

http://users.stat.ufl.edu/~athienit/STA4504/Examples/wafers.R

3.3.2 Modeling Rates

There are situations when the counts have different bases and so an adjustment is necessary, that is we model the rate at which an event occurs.

Example 3.5 Consider two individuals given fishing nets and told they have 5 minutes to catch as many fish as possible. After, 5 minutes

- Person A catches 11
- Person B catches 20

That is a trick question, because what if the sizes of the nets where different, then we need to account on how many fish per square inch of net, i.e. a rate. Also, if person A got 11 fish with that net that's amazing!

Let *y* be the count and *t* be the base

$$E\left(\frac{Y}{t}\right) = \frac{\mu}{t}$$

Hence,

$$\log\left(\frac{\mu}{t}\right) = \log(\mu) - \log(t) = \alpha + \beta x$$
$$\Rightarrow \log(\mu) = \alpha + \beta x + \log(t)$$
$$\Rightarrow \log(\mu) = \alpha + \beta x + \underbrace{\beta_2}_{=1} \underbrace{x_2}_{\log(t)}$$

All that is required is to add another "predictor" whose coefficient is set to 1, and the solve using *restricted maximum likelihood*. The term log(t) is called the *offset*.
R code 3.3 Here when we fit the model we use offset argument

```
glm(y~x+offset(log(base)),...)
```

Example 3.6 (British Train Accidents) The first stationary gasoline engine developed by Carl Benz was a one-cylinder two-stroke unit which ran for the first time on New Year's Eve 1879. So consider the number of automobile accidents in 1879 compared to 2019. We need to adjust for the fact that there are more automobiles on the road and that they travel larger distances.

The same is true for the following Train-Road collision data, where an *offset* is needed. Have collisions between trains and road vehicles become more prevalent over time? Total number of train-km (in millions) varies from year to year. Model annual rate of train-road collisions per million train-km with t = annual no. of train-km and x =no. of years since 1975.

traincollisions

	Year	КM	Train	TrRd
1	2003	518	0	3
2	2002	516	1	3
3	2001	508	0	4
4	2000	503	1	3
5	1999	505	1	2
6	1998	487	0	4
7	1997	463	1	1
8	1996	437	2	2
9	1995	423	1	2
10	1994	415	2	4
11	1993	425	0	4
12	1992	430	1	4
13	1991	439	2	6
14	1990	431	1	2
15	1989	436	4	4
16	1988	443	2	4
17	1987	397	1	6
18	1986	414	2	13
19	1985	418	0	5
20	1984	389	5	3
21	1983	401	2	7
22	1982	372	2	3
23	1981	417	2	2
24	1980	430	2	2
25	1979	426	3	3
26	1978	430	2	4
27	1977	425	1	8
28	1976	426	2	12
29	1975	436	5	2

> trains.log=glm(TrRd~I(Year-1975)+offset(log(KM)),family=poisson(link=log),

+ data=traincollisions) > summary(trains.log) Coefficients: Estimate Std. Error z value Pr(>|z|)(Intercept) -4.21142 0.15892 -26.50 < 2e-16 *** I(Year - 1975) -0.03292 0.01076 -3.06 0.00222 ** _ _ _ Null deviance: 47.376 on 28 degrees of freedom Residual deviance: 37.853 on 27 degrees of freedom AIC: 133.52 > sum(resid(trains.log,type="pearson")^2) [1] 42.19178

The model is

$$\log\left(\frac{\hat{\mu}}{t}\right) = -4.21142 - 0.03292x$$
$$\frac{\hat{\mu}}{t} = e^{-4.21142}e^{-0.03292x}$$
$$= (0.0148)(0.968)^{x}$$

Rate estimated to decrease by 1 - 0.968 = 0.032 = 3.2% per year from from 1975 to 2003, i.e. the rate is 0.968 times the rate of the previous year.

- Est. rate for 1975 (*x* = 0) is 0.0148 per million km
- Est. rate for 2003 (*x* = 28) is 0.0059 per million km

http://users.stat.ufl.edu/~athienit/STA4504/Examples/trains.R

> ai	r_deaths				
F	atalities	ASM	Year		
1	1828	829581	1995		
2	2796	862621	1996		
3	1768	884192	1997		
4	1721	898359	1998		
5	1150	945245	1999		
6	1586	980769	2000		
7	1539	953875	2001		
8	1418	914901	2002		
9	1233	922277	2003		
10	767	998868	2004		
11	1463	1028621	2005		
12	1298	1027553	2006		
13	981	1060116	2007		
14	952	1040840	2008		
15	1108	975307	2009		
16	1130	991934	2010		
17	828	1012597	2011		
18	800	1012261	2012		
19	459	1025616	2013		
20	1328	1048107	2014		
21	898	1090198	2015		
22	629	1131694	2016		
23	399	1168055	2017		
Fittir	ng a Poisson	log-linea	r mode	l with off	set

Example 3.7 (Airline Fatalities) Data obtained from MIT Airline Data Project and Wikipedia, provides information on fatalities, Available Seat Miles (ASM) and year

3.4 Inference and Model Checking

3.4.1 Standard testing - Wald

Display 3.1 (Inference on parameters) Since parameter estimation is done via ML, and MLE's are asymptotically normal, inference is done in the traditional way. Let $\theta = (\alpha, \beta)$ denote the parameter vector

$$\sqrt{n} \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 \right) \stackrel{d}{\rightarrow} N \left(0, \frac{1}{I(\boldsymbol{\theta}_0)} \right)$$

where (θ_0) is the *Fisher information* evaluated at θ_0 (not covered in this class). Therefore, hypotheses tests and confidence intervals for the parameter's are done accordingly.

To test $H_0: \beta = \beta_0$ you can create the test statistic

$$TS = \frac{\hat{\beta} - \beta_0}{s_{\hat{\beta}}} \stackrel{\mathrm{H}_0}{\sim} N(0, 1)$$

and obtain p-value in traditional way. A $100(1 - \alpha)$ % CI on β can also be created

$$\hat{\beta} \mp z_{1-\alpha/2} \left(s_{\hat{\beta}} \right) \tag{3.2}$$

These methods can be extended to one-sided tests.

Example 3.8 (Infant malformatrion continued) From the output

```
> summary(malform.logit)
```

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) -5.9605 0.1154 -51.637 <2e-16 *** Alcohol 0.3166 0.1254 2.523 0.0116 *

we can create a 95% C.I.

```
0.3166 \mp 1.96(0.1254) \longrightarrow (0.070816, 0.562384)
```

We will see functions that create C.I.'s but their default is not the Wald method.

3.4.2 Likelihood Ratio Test - Deviance

Goodness of Fit

Deviance is actually the likelihood ratio test for *goodness of model fit*, that is, equation (2.2) for

H₀: model adequately fits

$$D(y;\hat{\mu}) := G^2 = -2[L(\hat{\mu};y) - L(y;y)] \xrightarrow{d}_{H_0} \chi^2_{df}$$
(3.3)

with p-value being $P(\chi^2_{df} \ge G^2)$ and where

- $L(\hat{\mu}; y)$ is the log-likelihood of the fitted model
- *L*(*y*;*y*) is the log-likelihood of the *saturated* model, that is the model that has a separate parameter for each observation giving a perfect fit but with 0 degrees of freedom (so no inference can be done within that model).
- *df* as in equation (2.3)

Display 3.2 (Goodness of fit) A *goodness of fit* can be used only in the number of predictor levels is fixed and relatively small to the overall sample size. Either, X^2 or G^2 can be used since to compare the observed counts to the values predicted by the fitted model.

Remark 3.2. Goodness of fit can also be performed - preferred even - by using X^2 , instead of G^2 .

Example 3.9 Revisiting some examples

(Infant Malformation) For example 3.1 a goodness of fit can be used (with either X^2 or G^2) as there are only 5 binomials and as more women are surveyed/sampled the number of binomials (rows of data) remains fixed.

Residual deviance: 1.9487 on 3 degrees of freedom > sum(resid(malform.logit,type=``pearson'')^2)
[1] 2.20523

 $G^2 = 1.9487 (X^2 = 2.0523)$ with $df = 3 \longrightarrow$ p-value = 0.5831

(Challenger disaster) A goodness of fit is not adequate as each row corresponds to a Bernoulli trial, that is a 0 or 1. As sample size increases so will the number of rows in the data.

Remark 3.3. If the data is not grouped you may still perform a goodness of fit by

- grouping your predictor(s). For example, for temperature you could create groups 31-40, 41-50, ... and then create scores such as 35, 45, ... ensuring that the number of predictor levels remains relatively fixed.
- comparing current model to a "fuller" model rather than to a saturated model (fullest). A fuller model could be one with polynomial terms, interactions, etc.

Parameter testing

Likelihood ratio test can be used to test H_0 : $\beta = \beta_0$ using deviances. To be specific the difference of two goodness of fit tests.

$$G^{2} = D(y; \hat{\mu}_{0}) - D(y; \hat{\mu}_{1})$$

$$= -2[L(\hat{\mu}_{0}; y) - L(y; y)] - (-2)[L(\hat{\mu}_{1}; y) - L(y; y)]$$

$$= -2[L(\hat{\mu}_{0}; y) - L(\hat{\mu}_{1}; y)]$$

$$\xrightarrow{d}_{H_{0}} \chi^{2}_{df}$$
(3.4)

where

- $L(\hat{\mu}_0; y)$ is the log-likelihood of the reduced (under the null) model
- $L(\hat{\mu}_1; y)$ is the log-likelihood of the fitted model
- df is the difference in degrees of freedom of the two models which corresponds to the dimension reduction of our coefficient parameter vector, in this case 1 as we are restricting one parameter $\beta = \beta_0$.

model fit/no. of parameters

Figure 3.2: Illustration of how Deviances are used in LRTs

Remark 3.4. The "Null Deviance" that is usually provided in R output is the deviance for the null

$$H_0: \beta = 0$$
 ($\beta_i = 0 \forall i$ for models with more than one predictor)

So that

Null Deviance – Residual Deviance =
$$D(y; \hat{\mu}_0) - D(y; \hat{\mu}_1)$$

= G^2

which is the likelihood ratio test statistic.

For binomial and Poisson models

$$D(y;\hat{\mu}) = 2\sum_{i=1}^{n} y_i \log(y_i/\hat{\mu}_i)$$

The likelihood ratio test can be used to create a $100(1 - \alpha)$ confidence interval on β . That is, finding all the null values β_0 for which would yield a test statistics with a large p-value. It is a bit more complicated than equation (3.2) so we use software.

R code 3.4 Use confint(.) to obtain the likelihood ratio confidence intervals.

Example 3.10 (Infant Malformation continued) We focus on testing H_0 : $\beta = 0$ via deviances.

```
> summary(malform.logit)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.9605
                         0.1154 -51.637
                                          <2e-16 ***
Alcohol
              0.3166
                         0.1254
                                  2.523
                                          0.0116 *
    Null deviance: 6.2020 on 4 degrees of freedom
Residual deviance: 1.9487 on 3 degrees of freedom
AIC: 24.576
> confint(malform.logit)
                  2.5 %
                            97.5 %
(Intercept) -6.19302366 -5.7396968
Alcohol
             0.01868149 0.5234947
```

Note that this CI is different from the Wald CI done earlier of (0.070816, 0.562384). The test statistic from equation (3.4)

Null deviance – Residual deviance = 6.2020 - 1.9487 = 4.2533

with p-value

> 1-pchisq(4.2533,1)
[1] 0.03917414

and we reject the null.

Exercise 3.1 Do the same for the "Challenger" disaster and "Silicon wafers" examples.

3.5 Overdispersion

We know that

 $E(\chi_{\nu}^2) = \nu$

so for a well fitting model we expect

$$X^2 \approx \text{Residual d.f.}$$

However, cases where

 $X^2 \gg \text{Residual d.f.}$

are of concern. Could use G^2 (Residual Deviance) as an alternative but not as efficient in detecting overdispersion.

Reasons

- 1. Badly fitting model
 - omitted terms/variables
 - incorrect relationship (link)
 - outliers
- 2. Variation greater than predicted by model that leads to overdispersion
 - count data: $V(Y) > \mu$
 - binomial data: $V(Y) > n\pi(1-\pi)$

Causes of Overdispersion

- variability of experimental material individual level variability
- correlation between individual responses, e.g. litters of rats
- cluster sampling, e.g. areas; schools; classes; children
- aggregate level data
- omitted unobserved variables
- excess zero counts (structural and sampling zeros)

Consequences With correct mean model we have consistent estimates of β but:

- incorrect standard errors
- selection of overly complex models

Remark 3.5. *Overdispersion is much more common for count data, especially due to the restriction by the Poisson model* E(Y) = V(Y).

The two most popular methods for checking overdispersion are;

- Check whether $X^2 \gg df$, or $X^2/df \gg 1$,
- Fit a different model with additional parameters that allow variance to be greater and test the significance of those parameters
 - count data: Negative Binomial, parameter θ is introduced and estimated via MLE

$$V(Y) = \mu + \left(\frac{1}{\theta}\right)\mu^2 \tag{3.5}$$

– binomial data: Beta-Binomial, parameter ρ is introduced and estimated via MLE

$$V(Y) = n\pi(1 - \pi)[1 + (n - 1)\rho]$$

R code 3.5 Most common ways of fitting these models are

- Negative Binomial: glm.nb(.) in the MASS package
- Beta-Binomial: betabinomial(.) in the VGAM package

Example 3.11 (Homicide) 1308 individuals who where classified as "Black" or "White" were asked: "How many people have you known personally that were victims of homicide?"

	Number of victims										
				Race	0	1	2	3	4	5	6
				Black	119	16	12	7	3	2	0
				White	1070	60	14	4	0	0	1
>	head(homi	cic	le) #	data en	tered	in `	`shoi	rtei	r''	for	rmat
	nvics ra	ce	Freq								
1	0 B1a	ck	119								
2	1 Bla	ck	16								
3	2 B1a	ck	12								
4	3 Bla	ck	7								
5	4 Bla	ck	3								
6	5 Bla	ck	2								
>	<pre>> homicide=transform(homicide,race=relevel(race,"White"))</pre>										

```
> hom.poi=glm(nvics race, family=poisson(link="log"),
+ weights=Freq,data=homicide)
> summary(hom.poi)
    Null deviance: 962.80 on 10 degrees of freedom
Residual deviance: 844.71 on 9
                                   degrees of freedom
Checking for overdispersion via X^2/(df) \gg 1 we first notice that the way the data was
entered, the degrees of freedom is not 9 but actually 1308-2=1306
> sum(resid(hom.poi,type="pearson")^2)/
+ (sum(homicide$Freq)-length(hom.poi$coefficients))
[1] 1.745692
So some evidence of overdispersion is apparent. Now to find the negative binomial
> library(MASS)
> hom.nb=glm.nb(nvics~race,weights=Freq,data=homicide)
> summary(hom.nb)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
                          0.1172 -20.335 < 2e-16 ***
(Intercept) -2.3832
raceBlack
              1.7331
                           0.2385 7.268 3.66e-13 ***
    Null deviance: 471.57 on 10 degrees of freedom
Residual deviance: 412.60 on 9 degrees of freedom
AIC: 1001.8
               Theta: 0.2023
           Std. Err.: 0.0409
 2 x log-likelihood: -995.7980
and the estimate of
                                   \left(\frac{1}{\hat{A}}\right) \approx 5
seems substantial in equation (3.5). Much better now,
> sum(resid(hom.nb,type="pearson")^2)/
+ (sum(homicide$Freq)-length(hom.nb$coefficients))
[1] 1.090373
http://users.stat.ufl.edu/~athienit/STA4504/Examples/homicide.R
Example 3.12 (British Train Accidents continued) Checking for potential overdisper-
sion, we are not quite sure if X^2/df \gg 1
> sum(resid(trains.log,type="pearson")^2)
```

[1] 42.19178

```
> sum(resid(trains.log,type="pearson")^2)/trains.log$df.residual
[1] 1.562658
So we fit a negative binomial,
> library(MASS)
> trains.nb=glm.nb(TrRd ~ I(Year-1975) + offset(log(KM)),
+ data=traincollisions)
> summary(trains.nb)
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
(Intercept)
               -4.19999
                             0.19584 -21.446 < 2e-16 ***
I(Year - 1975) -0.03367
                             0.01288 -2.615 0.00893 **
    Null deviance: 32.045 on 28 degrees of freedom
Residual deviance: 25.264 on 27 degrees of freedom
AIC: 132.69
               Theta: 10.12
          Std. Err.: 8.00
 2 x log-likelihood: -126.69
Since, \hat{\theta} + 2se(\hat{\theta}) \approx 26 and hence 1/26 \approx 0.0385 is close to 0. Therefore the second term
in equation (3.5) does not seem to be that significant and conclude no strong evidence
of overdispersion.
http://users.stat.ufl.edu/~athienit/STA4504/Examples/trains.R
```

Example 3.13 (Airline Fatalities continued) Fit a negative binomial model due to potential overdispersion...why is there potential overdispersion?

we conclude that the rate is decreasing. As an exercise, interpret the magnitude of $\hat{\beta}$ per 1 year increase.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/airline.R

Exercise 3.2 Check for overdispersion with the "Silicon wafers" example

Remark 3.6. The Beta-Binomial is omitted here but an alternative method that does not use a likelihood approach but merely the structure between the mean and variance are the

- count data: Pseudo-Poisson
- binomial data: Pseudo-Binomial

but as result likelihood ratio tests are not possible.

4. Logistic Regression

30)	
4.1	Interpretation	49
4.2	Inference	52
4.3	Multiple Logistic Regression	53
4.4	Summarizing Predictive Power	60
4.5	Receiver Operating Characteristic Curve	62
	4.1 4.2 4.3 4.4 4.5	 4.1 Interpretation 4.2 Inference 4.3 Multiple Logistic Regression 4.4 Summarizing Predictive Power 4.5 Receiver Operating Characteristic Curve

Closer look at logistic regression and reviewing the model fitting process.

4.1 Interpretation

We have seen the simple logistic regression model as in equation (3.1). That is

logit
$$[\pi(x)] = \alpha + \beta x \implies \pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

- $\beta > 0$, then $\pi(x) \uparrow$ as $x \uparrow$
- $\beta < 0$, then $\pi(x) \downarrow$ as $x \uparrow$
- $\beta = 0$, then $\pi(x) = e^{\alpha}/(1 + e^{\alpha})$ which is a constant, with $\pi(x) > 0.5$ when $\alpha > 0$
- The rate of change in $\pi(x)$ (but taking derivatives) is $\beta \pi(x)[1 \pi(x)]$.

Figure 4.1: Rate of change

Note that the rate of change is maximized when $\pi(x) = 0.5$. This implies

max rate of change is
$$\frac{\beta}{4}$$
 when $x = \frac{-\alpha}{\beta}$

This value of x is sometimes called the *median effective level* and it represents the level at which each outcome has a 50% chance.

• The term e^{β} is odds ratio for a 1 unit increase in *x*. The odds os success are

- at x- at x + 1Hence the odds ratio for x + 1 versus x is

$$OR = \frac{\pi(x+1)/[1-\pi(x+1)]}{\pi(x)/[1-\pi(x)]} = e^{\beta}$$

• Parameters estimated via MLE are asymptotically normal.

Example 4.1 (Horseshoe crab) There are 173 female crabs for which we wish to model the presence or absence of male "satellites" dependent upon characteristics of the female horseshoe crabs.

$$Y_i = \begin{cases} 1 & \text{satellite present} \\ 0 & \text{otherwise} \end{cases}$$

Explanatory variables are: weight (in kg), width of shell, color (medium light, medium, medium dark, dark), and condition of spine (bad, good, excellent).

```
> fit=glm(y ~ weight, family=binomial(link=logit))
> summary(fit)
```

Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -3.6947 0.8802 -4.198 2.70e-05 *** weight 1.8151 0.3767 4.819 1.45e-06 *** ----Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 195.74 on 171 degrees of freedom AIC: 199.74

The maximum likelihood fit is then $logit[\hat{\pi}(x)] = -3.6947 + 1.8151x$. Note that β is positive, implying that $\hat{\pi}(x) \uparrow$ as $x \uparrow$.

$$\hat{\pi}(x) = \frac{\exp(-3.6947 + 1.8151x)}{1 + \exp(-3.6947 + 1.8151x)}$$

- At the average weight of $x = \bar{x} = 2.44$, $\hat{\pi}(2.44) = 0.676$.
- The rate of change at x = 2.44 is $\hat{\beta}\hat{\pi}(1-\hat{\pi}) = 1.8151(0.676)(0.324) = 0.398$.
- The estimated change in π per 1 kg increase is about 0.398 (in the neighborhood of the sample mean). However, the standard deviation of weight is $s_x = 0.58$ and hence talking about a 1 unit increase, i.e. 1 kg, may be too much of an increase and so the estimated change in π per 0.1 kg increase is about 0.0398.

•
$$\hat{\pi}(x) = 1/2$$
 when $x = \frac{-(-3.6947)}{1.8151} = 2.036$

• For a 1 kg increase in weight, the estimated odds of the presence of a satellite are multiplied by exp(1.8151) = 6.14169. Consequently, for a 0.1 kg increase in weight, the estimated odds of the presence of a satellite are multiplied by exp(0.1(1.8151)) = 1.2, i.e. the odds increase by 20%.

4.2 Inference

We refer the reader to review Section 3.4 and we will expand from there. We have covered how to create confidence intervals on individual (coefficient) parameters, e.g. β , but now we expand to *linear combinations of parameters*.

Goal: Create a CI for $\pi(x)$.

1. First work with logit $[\hat{\pi}(x)] = \hat{\alpha} + \hat{\beta}x$, where we know (via MLE)

$$\hat{\alpha} \sim N\left(\alpha, \sigma_{\alpha}^{2}\right) \text{ and } \hat{\beta} \sim N\left(\beta, \sigma_{\beta}^{2}\right) \implies \underbrace{\hat{\alpha} + \hat{\beta}x}_{\text{logit}[\hat{\pi}(x)]} \sim N\left(\alpha + \beta x, \sigma_{\alpha}^{2} + x^{2}\sigma_{\beta}^{2} + 2x\sigma_{\alpha\beta}\right)$$

2. The $100(1 - \alpha)$ % CI for logit $[\pi(x)] = \alpha + \beta x$ is

$$\hat{\alpha} + \hat{\beta}x \mp z_{1-\alpha/2}\sqrt{s_{\alpha}^2 + x^2 s_{\beta}^2 + 2x s_{\alpha\beta}} \quad \to \quad (L, U)$$

$$(4.1)$$

where s_{α}^2 and s_{β}^2 are the estimated variances, and $s_{\alpha\beta}$ is the estimated covariance.

$$V(\hat{\alpha} + \hat{\beta}x) = V(\hat{\alpha}) + x^2 V(\hat{\beta}) + 2x \text{Cov}(\hat{\alpha}, \hat{\beta})$$

R code 4.1 Using software

- The variance-covariance matrix for all parameters can be found for glm objects by using vcov(model)
- The estimate and the standard error for $logit[\hat{\pi}(x)] = \hat{\alpha} + \hat{\beta}x$ can obtained using

predict.glm(model,newdata,type=``link'',...)

3. The $100(1 - \alpha)$ % CI for $\pi(x)$, using equation (4.1) is then

$$\left(\frac{e^L}{1+e^L}, \frac{e^U}{1+e^U}\right)$$

Remark 4.1. We looked at CI for $\alpha + \beta x$, a linear combination of two parameters but this method can be extended to linear combinations of any length of parameters.

Example 4.2 (Horseshoe crab continued) Test $H_0: \beta = 0$ via

- Wald test given in the summary output (and CI could be derived)
- Likelihhod ratio test *G*² and prerrably corresponding CI

2.5 % 97.5 % 1.113790 2.597305

There are 6 female crabs with a weight of 2.4 kg (or 2400 g), of whom only 4 have at least one satellite. Using the model we construct a 95% CI for $\hat{\pi}(2.4)$, by first constructing the CI for logit[$\hat{\pi}(2.4)$]

```
> eta=predict(fit,newdata=data.frame(weight=2.4),type="link",se.fit=TRUE)
> eta
$fit
[1] 0.6616206
$se.fit
[1] 0.1780615
Note that the standard error is the same as if we directly use equation (4.1)
```

```
> sqrt(vcov(fit)[1,1]+2.4^2*vcov(fit)[2,2]+2*2.4*vcov(fit)[1,2])
[1] 0.1780615
> eta.ci=eta$fit+c(-1,1)*qnorm(0.975)*eta$se.fit
> eta.ci # This is (1,u) interval
[1] 0.3126265 1.0106148
> plogis(eta.ci) # This is (exp(1)/(1+exp(1)),exp(u)/(1+exp(u)))
[1] 0.5775262 0.7331404
```

 $Part \ (I) \ of \ http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R$

4.3 Multiple Logistic Regression

Just as in OLS regression, multiple regression can be used when multiple predictors $x_1, x_2, ..., x_k$ are available, yielding

$$\operatorname{logit}[\pi(x)] = \alpha + \sum_{i=1}^{k} \beta_i x_i \quad \Leftrightarrow \quad \pi(x) = \frac{e^{\alpha + \sum_{i=1}^{k} \beta_i x_i}}{1 + e^{\alpha + \sum_{i=1}^{k} \beta_i x_i}}$$

Example 4.3 (Horseshoe crab continued) Next we introduce the color variable into the model by creating 3 indicator variables for the 4 levels of color. Let,

$$c_1 = \begin{cases} 1 & \text{medium light} \\ 0 & \text{o/w} \end{cases} \quad c_2 = \begin{cases} 1 & \text{medium} \\ 0 & \text{o/w} \end{cases} \quad c_3 = \begin{cases} 1 & \text{medium dark} \\ 0 & \text{o/w} \end{cases}$$

and hence $c_1 = c_2 = c_3 = 0$ indicates whether a female crab is dark (i.e. base group). The model is then

$$logit[\pi(x)] = \alpha + \beta_1 x + \beta_2 c_1 + \beta_3 c_2 + \beta_4 c_3$$

with

Color	$\log it[\pi(x)]$
medium light medium medium dark dark	$ \begin{vmatrix} (\alpha + \beta_2) + \beta_1 x \\ (\alpha + \beta_3) + \beta_1 x \\ (\alpha + \beta_4) + \beta_1 x \\ \alpha + \beta_1 x \end{vmatrix} $

```
> color=color - 1 # color now takes values 1,2,3,4
> color=factor(color) # treat color as a factor
> fit2.1=glm(y ~ weight + color, family=binomial(link=logit),
+ contrasts=list(color=contr.treatment(4,base=4,contrasts=TRUE)))
> summary(fit2.1)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)
            -4.5266
                         1.0038 -4.510 6.50e-06 ***
weight
              1.6928
                         0.3888
                                  4.354 1.34e-05 ***
color1
              1.2694
                         0.8488
                                  1.495 0.13479
color2
              1.4143
                         0.5449
                                  2.595 0.00945 **
```

Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 188.54 on 168 degrees of freedom

0.5884

1.0833

AIC: 198.54

color3

Color as Categories, probability

1.841 0.06561 .

Figure 4.2: Probability curves

Part (II) subpart II1 of http://users.stat.ufl.edu/~athienit/STA4504/Examples/ crab_u.R In Section 3.4 we saw how to perform inference on a single parameter $H_0: \beta = \beta_0$ via

• Using standard normal test

$$\frac{\hat{\beta} - \beta_0}{s_{\hat{\beta}}} \stackrel{\mathrm{H}_0}{\sim} N(0, 1)$$

• Using the likelihood ratio test G^2 in equation (3.4).

Now we extend the methodology in equation (3.4) to testing multiple parameters simultaneously. In the Horseshoe crab data there were 3 parameters for fitting color as a qualitative predictor, β_2 , β_3 and β_4 . If we wished to test if color at all was significant one would test

$$H_0: \beta_2 = \beta_3 = \beta_4 = 0$$
 vs $H_1:$ at least one $\beta \neq 0$

which yields the *reduced model* (under null), μ_0 and the *full model*, μ_1

$$g(\mu_0) = \alpha + \beta_1 x g(\mu_1) = \alpha + \beta_1 x + \beta_2 c_1 + \beta_3 c_2 + \beta_4 c_3$$

and by obtaining the deviances we can create the likelihood ratio test

$$G^2 = D(y;\hat{\mu}_0) - D(y;\hat{\mu}_1) \xrightarrow[H_0]{d} \chi^2_{df}$$

where df is the difference in degrees of freedom of the two models which corresponds to the dimension reduction of our coefficient parameter vector, in this case df = 3 as we are restricting 3 parameter under the null.

Example 4.4 (Horseshoe crab continued) To test the significance of color, controlling for weight we must test $H_0: \beta_2 = \beta_3 = \beta_4 = 0$. The likelihood-ratio test (LRT) statistic is

$$G^{2} = D(y; \hat{\mu}_{0}) - D(y; \hat{\mu}_{1})$$

= 195.74 - 188.54 = 7.2

which when compared to a χ_3^2 produces a p-value of 0.06578905 \approx 0.07 which at the 0.05 significance level might let us conclude that color is not significant.

However, looking at the individual test statistic values as well as the figure of probability curves we see that there is a more this problem that we will be addressing in the next chapter.

Part (II), subpart A of http://users.stat.ufl.edu/~athienit/STA4504/Examples/ crab_u.R

Example 4.5 (Horseshoe crab continued) From figure 4.2 we notice than there are may be in fact be only two groups: dark and not dark.

```
> dark=ifelse(unclass(color)==4,1,0)
> fit2.2=glm(y ~ weight + dark, family=binomial(link=logit))
> summary(fit2.2)
Coefficients:
```

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-3.3134	0.8984	-3.688	0.000226	***
weight	1.7292	0.3825	4.520	6.18e-06	***
dark	-1.2954	0.5222	-2.481	0.013110	*

Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 189.17 on 170 degrees of freedom AIC: 195.17

Figure 4.3: Probability curves

In example 4.4 the LRT for color yielded a p-value of 0.07. However, now testing dark vs non dark via $H_0: \beta_2 = 0$ for this model

- Via normal test, p-value = 0.013110
- Via LRT, $G^2 = 195.74 189.17$ with 1 degree of freedom yields, p-value = 0.01039651

Part (II), subpart B of http://users.stat.ufl.edu/~athienit/STA4504/Examples/ crab_u.R

Why did the p-value drop from 0.07 to about 0.01? Because we tested using a method that uses less degrees of freedom (1 instead of 3) and hence has more power in detecting significance.

4.3.1 Qualitative predictors

If a qualitative predictor is deemed significant, the next step is an investigation into the different levels. This yields situations where one might we to test linear combinations of parameters.

$$H_0: \sum_{i=1}^k c_i \beta_i = \Delta_0 \tag{4.2}$$

for constants c_i .

Example 4.6 (Horseshoe crad continued) Testing $\beta_2 = 0$, $\beta_3 = 0$ and $\beta_4 = 0$ individually amounts to testing differences between each group to the base group

Color	$logit[\pi(x)]$
medium light	$(\alpha + \beta_2) + \beta_1 x$
medium	$(\alpha + \beta_3) + \beta_1 x$
medium dark	$(\alpha + \beta_4) + \beta_1 x$
dark	$\alpha + \beta_1 x$

In example 4.3, we note that there appear to be differences between medium and dark, and between medium dark and dark based on those tests. In addition, the estimated odds ratio comparing the following groups to dark at any fixed level of weight are

Comparison	OR
medium light vs dark	$\exp(\hat{\beta}_2) = \exp(1.2694) = 3.56$
medium vs dark	$\exp(\hat{\beta}_3) = \exp(1.4143) = 4.11$
medium dark vs dark	$\exp(\hat{\beta}_4) = \exp(1.0833) = 2.95$

To motivate the next section consider comparing two groups such as medium light vs. medium. We could always refit the model making one of these groups the new base group. Keeping with this model we this comparisons amounts to testing:

$$H_0: \beta_2 - \beta_3 = 0$$

a linear combination of the parameters

To test the null in (4.2), an option is to create a CI for $\sum c_i \beta_i$ using the asymptotic normality property and see whether Δ_0 is a plausible value or not.

$$\sum_{i=1}^{k} c_i \hat{\beta}_i \mp z_{1-\alpha/2} \sqrt{\hat{V}\left(\sum_{i=1}^{k} c_i \hat{\beta}_i\right)}$$
(4.3)

with the estimated variance obtained by the sum of the estimated pairwise covariances using the property that

$$V\left(\sum_{i=1}^{k} c_i \hat{\beta}_i\right) = \sum_{i=1}^{k} \sum_{j=1}^{k} c_i c_j \operatorname{Cov}(\hat{\beta}_i, \hat{\beta}_j)$$
$$= \sum_{i=1}^{k} c_i^2 V(\hat{\beta}_i) + 2 \sum_{i < j} \sum_{i < j} c_i c_j \operatorname{Cov}(\hat{\beta}_i, \hat{\beta}_j)$$

This concept was used in equation (4.1) where c = (1, x) and the parameter vector was (α, β) , such that

$$(1,x)\binom{\alpha}{\beta} = \alpha + \beta x$$

Example 4.7 (Horseshoe crab continued) The log odds ratio for comparing medium light vs medium at fixed levels of weight is $\beta_2 - \beta_3$. Using equation (4.3) with c = (0, 0, 1, -1, 0)

$$(0,0,1,-1,0)\begin{pmatrix}\alpha\\\beta_1\\\beta_2\\\beta_3\\\beta_4\end{pmatrix} = \beta_2 - \beta_3$$

we have that

:

$$\hat{\beta}_2 - \hat{\beta}_3 \mp z_{0.975} \sqrt{s_{\beta_2}^2 + s_{\beta_3}^2 - 2s_{\beta_2\beta_3}}$$

To be thorough though all 6 comparisons need to be made and the critical value adjusted via Bonferroni using $z_{1-\alpha/(2\times 6)}$.

Comparison	CI on
medium light vs dark	β_2
medium vs dark	β_3
medium dark vs dark	β_4
medium light vs medium	$\beta_2 - \beta_3$
medium light vs medium dark	$\beta_2 - \beta_4$
medium vs medium dark	$\beta_3 - \beta_4$

• Comparing medium light vs dark, the 95% CI on β_2 , the log odds ratio, is

 $1.2694 \mp 1.96(0.8488) \longrightarrow (-0.3943, 2.9331)$

which includes 0, hence CI on odds ratio will include 1.

Exercise 4.1 Perform all the CI's mentioned in the previous example.

Example 4.8 For the sake of practice let us compare dark vs non-dark using current model, for a fixed level of weight. Hence a CI on

$$\frac{(\alpha + \beta_2 + \beta_1 x) + (\alpha + \beta_3 + \beta_1 x) + (\alpha + \beta_4 + \beta_1 x)}{3} - (\alpha + \beta_1 x) = \frac{1}{3}\beta_2 + \frac{1}{3}\beta_3 + \frac{1}{3}\beta_4$$

is needed. DO IN CLASS.

Example 4.9 (Florida Death Penalty) http://users.stat.ufl.edu/~athienit/ STA4504/Examples/FL_death.R

4.3.2 Quantitative Treatment of Ordinal Factors

Qualitative variables can be

- nominal no order
- ordinal order

where ordinal variables can be treated as qualitative or quantitative.

Example 4.10 (Horseshoe crab continued) Consider example 4.3 where 3 dummy variables were created to distinguish the 4 levels of color: medium light, medium, medium dark and dark.

In the context of this problem "darkness" is of interest and hence color is ordinal, so a score can be created to reflect this

Color	Score
Medium Light	1
Medium	2
Medium dark	3
Dark	4

$$logit[\pi(x)] = \alpha + \beta_1 x + \beta_2 c$$

Referring to the (qualitative) model of example 4.3,

	logit $[\pi(x)]$			
Color	Qualitative	Quantitative		
medium light	$(\alpha + \beta_2) + \beta_1 x$	$(\alpha + \beta_2) + \beta_1 x$		
medium	$(\alpha + \beta_3) + \beta_1 x$	$(\alpha + 2\beta_2) + \beta_1 x$		
medium dark	$(\alpha + \beta_4) + \beta_1 x$	$(\alpha + 3\beta_2) + \beta_1 x$		
dark	$\alpha + \beta_1 x$	$(\alpha + 4\beta_2) + \beta_1 x$		

Note that the qualitative model is a lot more flexible (as it has more parameters) in differentiating between groups, while the quantitative model assumes a systematic change between groups.

```
> linear=unclass(color) # convert back to integer levels
> fit2.3=glm(y ~ weight + linear, family=binomial(link=logit))
> summary(fit2.3)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.0316
                        1.1161 -1.820
                                         0.0687 .
            1.6531
                        0.3825
                                 4.322 1.55e-05 ***
weight
linear
            -0.5142
                        0.2234 -2.302
                                         0.0213 *
_ _ _
    Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 190.27 on 170 degrees of freedom
AIC: 196.27
```

Testing the significance of color via H_0 : $\beta_2 = 0$ for this model

- Via normal test, p-value = 0.0213
- Via LRT, $G^2 = 195.74 190.27$ with 1 degree of freedom yields, p-value = 0.0193637

Part (II), subpart C of http://users.stat.ufl.edu/~athienit/STA4504/Examples/ crab_u.R

To summarize in terms of the LRT for color

Color	df	LRT p-value
Qualitative	3	0.07
Binary (dark vs. non-dark)	1	0.01
Quantitative	1	0.02

Figure 4.4: Probability curves

Remark 4.2. To achieve more power in testing factors, it is best to use methodology, i.e. tests, that use fewer degrees of freedom.

Exercise 4.2 Try to fit a quantitative model with a more representative score than 1, 2, 3, 4, in order to obtain a p-value (for a LRT less) than 0.0193637

4.4 Summarizing Predictive Power

A naive way of summarizing predictive power is to calculate the correlation between observed responses and fitted responses. **Example 4.11** (Horseshoe crab continued) We look at the correlation between the observed values of y = 0, 1 and the fitted probabilities of the logistic regression models.

```
> cor(y,fitted(fit)) # weight
[1] 0.3955277
> cor(y,fitted(fit2)) # weight and color
[1] 0.4476282
> cor(y,fitted(fit2.2)) # weight and binary dark
[1] 0.3958138
> cor(y,fitted(fit2.3)) # weight and linear color
[1] 0.4385387
```

A more sophisticated method, similar to methods learned in other courses, is the (approximate) *leave-one-out cross-validation*, and producing classification tables

- 1. Fit the model to the data leaving out ith observation
- 2. Use fitted model and the predictor settings of the ith observation to compute response $\hat{\pi}(\mathbf{x}_i)$
- 3. Predict

$$\hat{y}_i = \begin{cases} 1 & \hat{\pi}(\mathbf{x}_i) > 0.50 =: \pi_0 \quad \text{(cutoff probability)} \\ 0 & \hat{\pi}(\mathbf{x}_i) \le 0.50 \end{cases}$$

where the cutoff of 0.50 can be altered.

Example 4.12 (Horseshoe crab continued) Using the model with weight and (qualitative) color we obtain

	Pred		
Actual	$\hat{y} = 0$	$\hat{y} = 1$	Total
y = 0	27	35	62
<i>y</i> = 1	17	94	111

Sensitivity =
$$P(\hat{Y} = 1 | Y = 1) = \frac{94}{111} \approx 0.847$$

Specificity = $P(\hat{Y} = 0 | Y = 0) = \frac{27}{62} \approx 0.435$

and

$$P(\text{correct classification}) = \frac{94 + 27}{173} \approx 0.699$$

Part (III) of http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R

4.5 Receiver Operating Characteristic Curve

The *receiver operating characteristic* (ROC) curve plots the true positive rate, sensitivity, against false positive rate, 1-specificity, as the cutoff value π_0 varies from 0 to 1. It can also be thought of as a plot of the Power as a function of the Type I Error of the decision rule.

- The higher the sensitivity for a given specificity, the better, so a model with a higher ROC curve is preferred to one with a lower ROC curve.
- The area under the ROC curve is a measure of predictive power, called the concordance index, *c*.
 - Models with larger *c* have better predictive power.
 - When c = 1/2 it is no better than random guessing.
- If feasible, use cross-validation.
- ROC curves should not be used with random predictors.

Example 4.13 (Horseshoe crab continued) The concordance indexes for some of the fitted models are

Model	Concordance
Weight	0.738
Weight and Color	0.769
Weight and Dark	0.738
Weight and Linear Color	0.761

5. Building Logistic Regression Models

Strategies in model selection and model checking.

5.1 Strategies

5.1.1 AIC and AICc

The Akaike information criterion (AIC) is an estimator of the relative quality of statistical models for a given set of data. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models. Thus, AIC provides a means for model selection.

$$AIC = 2(k+1) - 2\log(\hat{L})$$

It is comprised of a "*penalizing*" function 2(k+1) that penalizes for complicated models with a large k value, and the maximum value of the likelihood function for the model. Hence, smaller values are desirable when comparing models.

When the sample size is small, there is a substantial probability that AIC will select models that have too many parameters. AICc was developed that includes a correction for small sample sizes. The formula for AICc depends upon the statistical model. Assuming that the model is univariate, is linear in its parameters, and has normally-distributed residuals (conditional upon regressors), then the formula for AICc is as follows.

AICc = AIC +
$$\frac{2(k+1)^2 + 2(k+1)}{n-k-2}$$

Thus, AICc is essentially AIC with an extra penalty term for the number of parameters.

Example 5.1 (Horseshoe crab continued) Results best illustrated via

5.1.2 Multicollinearity

Multicollinearity is a phenomenon in which one predictor variable can be linearly predicted from the other predictors with a substantial degree of accuracy.

Effects:

- Coefficient estimates may change erratically in response to small changes in the model or the data.
- Coefficient standard errors are inflated.

Multicollinearity does not reduce the predictive power or reliability of the model as a whole, at least within the sample data set; it only affects calculations regarding individual predictors.

Example 5.2 (Horseshoe crab continued) Consider the weight and width of a crab that are likely to be correlated

```
> cor(weight,width)
[1] 0.8868715
```


and we could use either variable. However, we will see in this example it is best to use width.

```
> fit.we=glm(y ~ weight, family=binomial(link=logit))
> summary(fit.we)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                         0.8802 -4.198 2.70e-05 ***
(Intercept) -3.6947
              1.8151
                         0.3767 4.819 1.45e-06 ***
weight
___
AIC: 199.74
> fit.wi=glm(y ~ width, family=binomial(link=logit))
> summary(fit.wi)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.3508
                         2.6287 -4.698 2.62e-06 ***
width
              0.4972
                         0.1017 4.887 1.02e-06 ***
_ _ _ _
AIC: 198.45
> fit.wewi=glm(y ~ weight+width, family=binomial(link=logit))
> summary(fit.wewi)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
                         3.5280 -2.652 0.00801 **
(Intercept) -9.3547
              0.8338
                         0.6716 1.241 0.21445
weight
width
              0.3068
                         0.1819 1.686 0.09177 .
_ _ _
AIC: 198.89
```

5.1.3 Stepwise Selection Algorithms

There are 3 common types of algorithms

- **Backward** Start with a full model and *remove* 1 factor/predictor at a time, based on a criterion, until a stopping is reached.
- Forward Start with a reduced simple model and *add* 1 factor/predictor at a time, based on a criterion, until a stopping is reached.
- **Both** Start with any model (of varying complexity) and at each step add or remove a variable.

Common criteria include (but not limited to)

- AIC
- LRT p-values

Example 5.3 (Horseshoe crab continued) DONE IN CLASS. Part (V) of http://users. stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R

Remark 5.1. *There is a study that suggests* \geq 10 *outcomes of each type per model predictor (where dummy variables for qualitative predictors are considered individual predictors).*

Example 5.4 (Horseshoe crab) In this example there were 173 crabs, 111 had a male satellite while 62 did not. Hence, choosing the smaller count of the two

$$\frac{62}{10} \approx 6$$
 predictors

We noticed that a model with the 3-way interaction term was not estimable. In fact, based on this guideline, we probably should be attempting to fit some (if not all) of the 2-way interactions.

5.2 Model Checking

There 3 main ways of checking model fit

- Goodness of fit test. Using deviance G^2 and Pearson's chi-square X^2 are generally limited to "non-sparse" contingency tables.
- Check whether fit improves by adding other predictors or interactions between predictors.
- Residuals.

Example 5.5 (Florida Death Penalty continued) In this example we will look at the first two points. In example 4.9 you were asked to perform a goodness of fit test as an exercise. Summarizing fit over 8 cells of table:

$$X^{2} = \sum \frac{(\text{observed} - \text{fitted})^{2}}{\text{fitted}} = 0.20$$

$$G^{2} = 2\sum (\text{observed}) \log \left(\frac{\text{observed}}{\text{fitted}}\right) = 0.38 \longleftarrow (\text{Residual Deviance})$$

$$df = \text{num, binomials} - \text{num, model params} = 4 - 3$$

For H₀: "model correctly specified", $G^2 = 0.38$, df = 1, p-value = 0.54. Hence, no evidence of lack of fit.

The model assumes lack of interaction between d and v in effects on Y (homogeneous association). Adding interaction term gives saturated model, so goodness-of-fit test in this example is a test of H₀: "no interaction". (Try it and look at df).

Remark 5.2.

- X^2 usually recommended over G^2 for testing goodness of fit. Why?
- These tests only appropriate for grouped binary data with most ($\geq 80\%$) of fitted cell counts being "large" (e.g., $\hat{\mu}_i > 5$). In example 4.9 there were a two cells with fitted values of 0.18 and 3.82.
- For continuous predictors or many predictors with small fitted values, distributions of X^2 and G^2 are not well approximated by χ^2 . For better approximations, try grouping data before applying X^2 , G^2 .
 - Hosmer-Lemeshow test forms groups using ranges of $\hat{\pi}$ values.
 - Or can try to group predictor values (if only 1 or 2 predictors).

For obtaining residuals, notate at setting i of explanatory variables

- y_i = number of successes
- *n_i* = number of trials (preferably "large")
- $\hat{\pi}_i$ = estimated probability of success based on ML fit of model

Definition 5.1 (Pearson residuals) For a binomial GLM, the Pearson residuals are

$$e_i = \frac{y_i - n_i \hat{\pi}_i}{\sqrt{n_i \hat{\pi}_i (1 - \hat{\pi}_i)}} \qquad \left(X^2 = \sum_i^n e_i^2 \right)$$

The distribution of $e_i \stackrel{\text{approx}}{\sim} N(0, \nu)$ when model holds (and n_i large), but $\nu < 1$.

R code 5.1 Recall we use

residuals(model,type=``pearson'')

Definition 5.2 (Standardized Pearson residual) For a binomial GLM, the *standardized* Pearson residuals are

$$r_{i} = \frac{y_{i} - n_{i}\hat{\pi}_{i}}{\sqrt{n_{i}\hat{\pi}_{i}(1 - \hat{\pi}_{i})(1 - h_{i})}} = \frac{e_{i}}{\sqrt{1 - h_{i}}}$$

which correct for standard error so that $r_i \stackrel{\text{approx}}{\sim} N(0,1)$ and h_i is the i-th diagonal element of the "Hat" matrix (not covered here).

Therefore, values of $|r_i| > 2$ suggest a lack of fit.

R code 5.2 The function rstandard() provides standardized deviance residuals by default.

• For standardized Pearson residuals specify

rstandard(model,type=``pearson'')

• Standardized Deviance residuals are the default option

rstandard(model)

Example 5.6 (Berkeley Graduate Admissions) http://users.stat.ufl.edu/ ~athienit/STA4504/Examples/admissions.R

5.3 Effects of Sparse Data

As the term suggests, *sparse data* are when certain combinations of variables have no actual data or "limited" information. This can lead to parameter estimates being infinite (in value).

Example 5.7 Consider,

Fitting a simple logistic regression will yield the estimates odds ratio

$$e^{\hat{\beta}} = \frac{8 \times 0}{2 \times 10} = 0 \quad \Rightarrow \quad \hat{\beta} = \log(0) = -\infty$$

Infinite estimates exist when predictor values (x values) where y = 1 can be *separated* from predictor values where y = 0. This extends to multidimensional predictor space.

Example 5.8 Let

$$y = \begin{cases} 0 & x < 50\\ 1 & x > 50 \end{cases}$$

```
with no values at x = 50.
Data were simulated at
http://users.stat.ufl.edu/~athienit/STA4504/Examples/sparse.R
> fit=glm(y<sup>x</sup>,family=binomial)
Warning messages:
1: glm.fit: algorithm did not converge
2: glm.fit: fitted probabilities numerically 0 or 1 occurred
> summary(fit)
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept)
              -297.566 174094.706 -0.002
                                                0.999
                  6.051
                           3542.717
                                      0.002
                                                0.999
х
_ _ _
    Null deviance: 4.1054e+01 on 29
                                         degrees of freedom
Residual deviance: 5.0225e-09 on 28
                                         degrees of freedom
AIC: 4
where although \hat{\beta} = 6.051 the standard error is 3542.717.
```


This is because the likelihood function has no point of inflection, that is, it keeps increasing as $\beta \uparrow$.

6. Multicategory Logit Models

Extensions of logistic regression for nominal and ordinal responses.

6.1 Logit Models for Nominal Responses

Let

$$\pi_{j} = P(Y = j), \quad j = 1, 2, \dots, J$$

Conisder a binomial with two groups and two probabilities, $\pi_1, \pi_2 \ni \pi_1 + \pi_2 = 1$. A simple logistic model was

$$\log\left(\frac{\pi_1}{1-\pi_1}\right) = \log\left(\frac{\pi_1}{\pi_2}\right) = \alpha + \beta x$$

Baseline-category logits are similar but have the form

$$\log\left(\frac{\pi_j}{\pi_J}\right) = \alpha_j + \beta_j x, \quad j = 1, \dots, J - 1$$

There is separate set of parameters (α_j, β_j) for each logit. We compare the probability of being in group *j*, versus the baseline group *J*.

Hence,

$$\pi_{j} = \frac{e^{\alpha_{j} + \beta_{j}x}}{1 + \sum_{i=1}^{J-1} e^{\alpha_{i} + \beta_{i}x}}, \qquad \pi_{J} = \frac{1}{1 + \sum_{i=1}^{J-1} e^{\alpha_{i} + \beta_{i}x}}$$

but we can compare any two groups that where one group is not the baseline

$$\log\left(\frac{\pi_j}{\pi_{j'}}\right) = \log\left(\frac{\pi_j/\pi_J}{\pi_{j'}/\pi_J}\right)$$
$$= \log\left(\frac{\pi_j}{\pi_J}\right) - \log\left(\frac{\pi_{j'}}{\pi_J}\right)$$
$$= (\alpha_j - \alpha_{j'}) + (\beta_j - \beta_{j'})x$$

- Category used as baseline (i.e., category *J*) is arbitrary and does not affect model fit, since categories are nominal.
- The term e^{β_j} is the multiplicative effect of a 1-unit increase in *x* on the conditional odds of response *j* given that response is one of *j* or *J*.
- Could also use this model with ordinal response variables, but this would ignore information about ordering.

Income	Job Satisfaction			
	Dissat	Little	Moderate	Very
< 5k	2	4	13	3
5k-15k	2	6	22	4
15k-25k	0	1	15	8
> 25k	0	3	13	8

Example 6.1 (Job Satisfaction) Data from 1991 GSS

Consider *x* = income scores (3, 10, 20, 30) and define VD=1, LD=2, MS=3, VS=4

```
> fit.blogit=vglm(cbind(VD,LD,MS,VS)~income,family=multinomial,data=dat)
> summary(fit.blogit)
Coefficients:
```

	Estimate	Std. Error	z value
(Intercept):1	0.563824	0.960138	0.58723
(Intercept):2	0.645091	0.668771	0.96459
(Intercept):3	1.818698	0.528955	3.43828
income:1	-0.198773	0.102096	-1.94693
income:2	-0.070502	0.036954	-1.90785
income:3	-0.046918	0.025519	-1.83858

Residual deviance: 4.17662 on 6 degrees of freedom Log-likelihood: -16.71316 on 6 degrees of freedom

The prediction equations are

$$\log\left(\frac{\hat{\pi}_{1}}{\hat{\pi}_{4}}\right) = 0.564 - 0.199x$$
$$\log\left(\frac{\hat{\pi}_{2}}{\hat{\pi}_{4}}\right) = 0.645 - 0.071x$$
$$\log\left(\frac{\hat{\pi}_{3}}{\hat{\pi}_{4}}\right) = 1.819 - 0.047x$$

For each logit, the odds of being in a less satisfied category (instead of "very satisfied") decreases as income increases. ML estimates determine the effects for all pairs of categories. For example, comparing group 1 and 2, i.e. "dissatisfied" to "little dissatisfied"

$$\log\left(\frac{\hat{\pi}_{1}}{\hat{\pi}_{2}}\right) = \log\left(\frac{\hat{\pi}_{1}}{\hat{\pi}_{4}}\right) - \log\left(\frac{\hat{\pi}_{2}}{\hat{\pi}_{4}}\right) = -0.081 - 0.128x$$

A global test of income effect is $H_0: \beta_1 = \beta_2 = \beta_3 = 0$.

> vglm(cbind(VD,LD,MS,VS)~1,family=multinomial,data=dat)

. . .

Degrees of Freedom: 12 Total; 9 Residual

Residual deviance: 13.4673

and hence

$$G^2 = 13.4673 - 4.17662$$
 $df = 3$ p-value of 0.0257

http://users.stat.ufl.edu/~athienit/STA4504/Examples/jobsatis.R

Exercise 6.1 For the job satisfaction example, we obtained the logit for comparing "dissatisfied" to "little dissatisfied" to be

$$\log\left(\frac{\hat{\pi}_1}{\hat{\pi}_2}\right) = -0.081 - 0.128x$$

where $\hat{\beta}_1 - \hat{\beta}_2 = -0.128$. Create a 95% confidence interval around $\beta_1 - \beta_2$ and interpret.
6.2 Cumulative Logit Models for Ordinal Responses

The cumulative logit probabilities are

$$P(Y \le j) = \sum_{i=1}^{j} \pi_j, \quad j = 1, \dots, J$$

and the *cumulative logit* model is

$$logit [P(Y \le j)] = log \left(\frac{P(Y \le j)}{1 - P(Y \le j)}\right)$$
$$= log \left(\frac{P(Y \le j)}{P(Y > j)}\right)$$
$$= \alpha_j + \beta x, \quad j = 1, \dots, J - 1$$

$$P(Y \le j) = \frac{e^{\alpha_j + \beta x}}{1 + e^{\alpha_j + \beta x}}, \quad j = 1, 2, \dots J - 1$$

- Separate intercept α_i for each cumulative logit
- Same (slope) coefficient β for each cumulative logit.
- The term e^{β} = multiplicative effect of 1-unit increase in *x* on odds that $(Y \le j)$ instead of (Y > j).

$$\frac{\text{odds}(Y \le j | x_2)}{\text{odds}(Y \le j | x_1)} = \frac{e^{\alpha_j + \beta x_2}}{e^{\alpha_j + \beta x_1}}$$
$$= e^{\beta(x_2 - x_1)}$$
$$= e^{\beta}, \text{ when } x_2 = x_1 + 1$$

Also called *proportional odds* model.

Example 6.2 (Job Satisfaction continued) The model has form

logit $[P(Y \le j|x)] = \alpha_j + \beta x \quad j = 1, 2, 3$

Residual deviance: 5.9527 on 8 degrees of freedom Log-likelihood: -17.60121 on 8 degrees of freedom

The fitted model is

logit $[\hat{P}(Y \le j|x)] = \hat{\alpha}_j - 0.056x \quad j = 1, 2, 3.$

Hence the odds of response at low end of job satisfaction scale decrease as *x* increases, i.e. $\exp(-0.056) = 0.95$. Estimated odds of job satisfaction below any given level (instead of above it) multiply by 0.95 for a 1-unit increase in *x* (1-unit=\$1000). For a \$10,000 increase in income, the estimated odds multiply by $\exp(10(-0.056)) = 0.57$. (If we were to reverse the order of the responses, then $\hat{\beta} = +0.056$).

Odds ratio is the same between *same* two categories of x irrespective of cutoff region for response categories (to make response binary) as shown in the diagrams in the class notes.

In addition, the odds ratio is the same between categories x = 10 and x = 20, and x = 20 and x = 30 due to the same increment in x.

A goodness of fit test yields a p-value of

```
> 1-pchisq(deviance(fit.clogit1),df.residual(fit.clogit1))
[1] 0.6525305
```

so we conclude that the model is a good fit.

A test of H_0 : job satisfaction independent of income (i.e. $\beta = 0$ in cumulative logit model) yields

- A Wald z-stat of -2.6998 (or χ^2 of 7.17) and a p-value of 0.007.
- A LR statistic of 13.4673 5.9527 = 7.5146 on 1 df and a p-value of 0.006. The null deviance was computed using

```
> vglm(cbind(VD,LD,MS,VS)~1,
+ family=cumulative(parallel=TRUE),data=dat)
Coefficients:
(Intercept):1 (Intercept):2 (Intercept):3
-3.218876 -1.563976 1.258955
```

Degrees of Freedom: 12 Total; 9 Residual Residual deviance: 13.4673 Log-likelihood: -21.35851

A model with nonparallel lines, i.e. different β_j for j = 1, 2, 3 instead of one common slope, if fit but it does not differ from the parallel lines model (conclusion via LR test stat).

	0	0.001010	1.0000
income:2	-0.05356	0.029750	-1.8003
income:3	-0.05603	0.024771	-2.2619

Residual deviance: 4.37717 on 6 degrees of freedom Log-likelihood: -16.81344 on 6 degrees of freedom

• To test $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ via LRT, we use

```
> 1-pchisq(13.4673-4.37717,3)
[1] 0.02811625
```

and conclude that at least one of the β 's is significant.

• To test $H_0: \beta_1 = \beta_2 = \beta_3$ via LRT, that is comparing the "parallel" model to the "non-parallel", we use

> 1-pchisq(5.9527-4.37717,2)
[1] 0.4548603

and conclude that at wwe should be using one common β , i.e. the "parallel" model.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/jobsatis.R

Exercise 6.2 Instead of testing $H_0: \beta_1 = \beta_2 = \beta_3$ via LRT, to determine whether to use the "non-parallel" model, obtain the AIC for each model, compare and conclude.

Example 6.3 (Political Ideology) An example with the following data yields

```
> ideow
```

	Gender	Party	VLib	SLib	Mod	SCon	VCon			
1	Female	Democrat	44	47	118	23	32			
2	Female F	Republican	18	28	86	39	48			
3	Male	Democrat	36	34	53	18	23			
4	Male F	Republican	12	18	62	45	51			
>	library	(VGAM)								_
>	ideo.cl ²	1=vglm(cbir	nd(VLi	ib,SLi	ib,Mc	od,SCo	on,VCor	n)~G	ender ·	+ Party,
+	f	family=cumu	lativ	ve(pai	ralle	e1=TRU	JE), da	ata=id	eow)	
>	summary	(ideo.cl1)								
Сс	pefficier	nts:								
		Esti	mate	Std.	Erro	r ī	z value	e		
(]	[ntercept	t):1 -1.4	15177	0	. 1228	34 - 17	1.81819	9		
(]	[ntercept	t):2 -0.4	15834	0	. 1057	7 -4	1.33337	7		
(]	[ntercept	t):3 1.2	25499	0	. 1145	5 10).95598	3		
(]	[ntercept	t):4 2.0)8904	0	. 1291	6 16	6.17374	1		
Ge	enderMale	e -0.1	1686	0	. 1268	81 -().92147	7		
Pa	artyRepub	olican -0.9	96362	0	. 1293	86 -7	7.44917	7		

Residual deviance: 15.05557 on 10 degrees of freedom Log-likelihood: -47.41497 on 10 degrees of freedom

- First we perform a goodness of fit test with $G^2 = 15.056$ and 10 degrees of freedom to obtain a p-value of 0.13
- Testing for party effect (controlling for gender) we have
 - Wald: z = -7.449
 - LR: 71.902 15.056 = 56.846 with df = 1. (Deviance of 71.902 was obtained by fitting model with only gender effect)

Strong evidence that Republicans tend to be less liberal (more conservative) than Democrats (for each gender).

Controlling for gender, estimated odds that a Republican's response (i.e. going from $x_2 = 0$ to $x_2 = 1$, a 1-unit increase) is in liberal direction ($Y \le j$) rather than conservative (Y > j) are exp(-0.964) = 0.38 times estimated odds for a Democrat.

(Equivalently, controlling for gender, estimated odds that a Democrat's response is in liberal direction rather than conservative exp(0.964) = 2.62 times estimated odds for a Republican.) The 95% CI for the odds ratio is (but best to use confint)

 $\exp(-0.964 \pm 1.96(0.129)) \rightarrow (0.30, 0.49)$

• Testing for gender effect (controlling for party) we have a Wald statistic -0.921 indicating a lack of evidence.

However, before we simply drop the gender effect, we know from a previous example that there is a relationship between gender and party affiliation (see party affiliation example). It makes sense that an interaction may be present.

```
> ideo.cl2=vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender*Party,
              family=cumulative(parallel=TRUE), data=ideow)
+
> summary(ideo.cl2)
Coefficients:
                        Estimate Std. Error z value
(Intercept):1
                        -1.55209 0.13353 -11.62339
(Intercept):2
                       -0.55499 0.11703 -4.74225
                        1.16465 0.12337 9.44006
(Intercept):3
                        2.00121
(Intercept):4
                                   0.13682 14.62633
GenderMale
                        0.14308
                                   0.17936 0.79772
PartyRepublican -0.75621
                                   0.16691
                                           -4.53062
GenderMale:PartyRepublican -0.50913
                                   0.25408
                                           -2.00381
```

Residual deviance: 11.06338 on 9 degrees of freedom Log-likelihood: -45.41887 on 9 degrees of freedom

Notice that the interaction term appears significant.

- Wald: *z* = -2.004 with p-value=0.04507
- LR: 15.056 11.063 = 3.993 with df=1 and p-value=0.0457.

The goodness of fit test with $G^2 = 11.063$ residual deviance and df=9 wields a p-value of 0.2714153, a big improvement from 0.13 for the additive model. This is because the interaction takes into account the relationship between gender and party affiliation and how they affect political ideology.

Interpretation:

- Odds ratio
 - Estimated odds ratio for party effect (x_2) , (allowing gender to differ) is

$$\exp(b_2) = \exp(-0.756) = 0.47$$
 when $x_1 = 0$ (F)
 $\exp(b_2 + b_3) = \exp(-0.756 - 0.509) = 0.28$ when $x_1 = 1$ (M)

* Estimated odds that a female Republican's response is in liberal direction rather than conservative are 0.47 times estimated odds for a female Democrat.

- * Estimated odds that a male Republican's response is in liberal direction rather than conservative are 0.28 times estimated odds for a male Democrat.
- Estimated odds ratio for gender effect (x_1) is

$$\exp(b_1) = \exp(0.143) = 1.15$$
 when $x_2 = 0$ (Dem)
 $\exp(b_1 + b_3) = \exp(0.143 - 0.509) = 0.69$ when $x_2 = 1$ (Rep)

- * Estimated odds that a male Democrat's response is in liberal direction rather than conservative are 1.15 times estimated odds for a female Democrat.
- * Estimated odds that a male Republican's response is in liberal direction rather than conservative are 0.69 times estimated odds for a female Republican.
- Probabilities

$$\hat{P}(Y \le j) = \frac{\exp(\hat{\alpha}_j + 0.143x_1 - 0.756x_2 - 0.509x_1x_2)}{1 + \exp(\hat{\alpha}_j + 0.143x_1 - 0.756x_2 - 0.509x_1x_2)}$$

− $\hat{P}(Y = 1) = \hat{P}(Y \le 1)$. For j = 1 (very liberal) the probability for a male republican ($\hat{\alpha}_1 = -1.55, x_1 = 1, x_2 = 1$):

$$\hat{P}(Y=1) = \frac{e^{-2.67}}{1+e^{2.67}} = 0.065$$

- Similarly, $\hat{P}(Y = 2) = \hat{P}(Y \le 2) - \hat{P}(Y \le 1)$, etc. Note $\hat{P}(Y = 5) = \hat{P}(Y \le 5) - \hat{P}(Y \le 4) = 1 - \hat{P}(Y \le 4)$.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/pol_ideology.R

Exercise 6.3 Check the (cumulative probability conditions) whether a model with "non-parallel" systematic component is feasible.

8. Models for Matched Pairs

Methods for comparing categorical responses for two samples that have a natural pairing between each subject in one sample and a subject in the other sample.

8.1 McNemar's Test

Methods so far (e.g., X^2 and G^2 test of independence, CI for odds ratio, logistic regression) assume independent samples. Inappropriate for dependent samples (e.g., same subjects in each sample yielding matched pairs of responses).

Example 8.1 (Crossover Study: Drug vs Placebo) Consider 86 subjects. Randomly assign each to either "drug then placebo" or "placebo then drug". Binary response (S,F) for each.

Treatment	S	F	Total
Drug	61	25	86
Placebo	22	64	86

To reflect the dependence and looking at the full information

		Plac	cebo	
		S	F	
Drug	S	12	49	61
Drug	F	10	15	25
		22	64	86

Definition 8.1 (Marginal Homogeneity) There is marginal homogeneity if

$$\pi_{1+} = \pi_{+1} \Leftrightarrow \pi_{12} = \pi_{21}$$

since

$$\pi_{1+} - \pi_{+1} = (\pi_{11} + \pi_{12}) - (\pi_{11} + \pi_{21}) = \pi_{12} - \pi_{21}$$

Under H₀: marginal homogeneity

$$\frac{\pi_{12}}{\pi_{12} + \pi_{21}} = \frac{1}{2}$$

and each of $n^* = n_{12} + n_{21}$ observations has probability 1/2 of contributed to n_{12} and 1/2 of contributing to n_{21}

$$n_{12} \sim \text{Bin}(n^*, 0.5) \implies z = \frac{n_{12} - n^*/2}{\sqrt{n^*(\frac{1}{2})(\frac{1}{2})}} = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}} \stackrel{\text{approx.}}{\sim} N(0, 1)$$

and finding the two sided p-value as usual. However, using the normal approximation to the binomial we are assuming that $n^*(1/2) > 5$. Some authors suggest > 10 or even > 25. Equivalent to a z-test you may see

$$z^{2} = \frac{(n_{12} - n_{21})^{2}}{n_{12} + n_{21}} \sim \chi_{1}^{2} \equiv [N(0, 1)]^{2}$$

and the p-value being the area to the right (because we squared, only nonnegative values possible). To create a $100(1 - \alpha)$ % confidence interval for $\pi_{1+} - \pi_{+1}$ use

$$\underbrace{p_{1+} - p_{+1}}_{\frac{n_{12} - n_{21}}{n}} \mp z_{1-\alpha/2} \frac{1}{n} \sqrt{n_{12} + n_{21} - \frac{(n_{12} - n_{21})^2}{n}}$$

Remark 8.1. Depending on the situation, such as, if it is desirable n_{12} to be large then a 1-sided test of CI might yield some gain in power.

- Hypothesis $H_a: \pi_{12} > \pi_{21}$, p-value= $P(Z \ge z)$ area to the right (using normal distribution).
- CI, use $+z_{1-\alpha}$

R code 8.1 Use

mcnemar.test(x, y = NULL, correct = TRUE)

The continuity correction for using a continuous distribution to approximate the discrete binomial, is the default setting. Also recommended to use mcnemar.exact{exact2x2} which uses the exact Binomial test and does not require $n^*(1/2) > 5$.

Example 8.2 (Crossover Study: Drug vs Placebo continued) Looking at the data again,

and

$$z = \frac{49 - 10}{\sqrt{49 + 10}} = 5.1$$
 and p-value < 0.0001

Extremely strong evidence that probability of success is higher for drug than placebo. The 95% CI for $\pi_{1+} - \pi_{+1}$ is

$$\frac{49}{86} - \frac{10}{86} \mp 1.96 \frac{1}{86} \sqrt{49 + 10 - \frac{(49 - 10)^2}{86}} \longrightarrow (0.31, 0.60)$$

and hence the probability of success under drug is larger than that under placebo.

```
> mcnemar.test(crossover,correct=FALSE)
McNemar's Chi-squared test
data: crossover
McNemar's chi-squared = 25.78, df = 1, p-value = 3.827e-07
> require(exact2x2)
> mcnemar.exact(crossover)
Exact McNemar test (with central confidence intervals)
data: crossover
b = 49, c = 10, p-value = 2.706e-07
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
  2.451984 10.849724
sample estimates:
odds ratio
       4.9
Part
       (A)
             of
                  http://users.stat.ufl.edu/~athienit/STA4504/Examples/
crossover gee.R
```

Remark 8.2. The derivation of the standard error for the CI is derived by the fact that

 $(n_{11}, n_{12}, n_{21}, n_{22}) \sim MN(n, \{\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}\})$

and hence

$$V(n_{ij}) = n\pi_{ij}(1 - \pi_{ij})$$

$$Cov(n_{ij}, n_{i'j'}) = -n\pi_{ij}\pi_{i'j'} \quad (i \neq i' \text{ or } j \neq j')$$

Therefore,

$$V(p_{1+} - p_{+1}) = V\left(\frac{n_{12} - n_{21}}{n}\right) = \frac{1}{n^2}V(n_{12} - n_{21})$$

= $\frac{1}{n^2}[V(n_{12}) + V(n_{21}) - 2\text{Cov}(n_{12}, n_{21})]$
= \cdots
= $\frac{1}{n}[\pi_{12} + \pi_{21} - (\pi_{12} - \pi_{21})^2]$

and hence

$$\hat{V}(p_{1+}-p_{+1}) = \dots = \frac{1}{n^2} \left[n_{12} + n_{21} - \frac{(n_{12}-n_{21})^2}{n} \right]$$

Remark 8.3. [McNemarBowker tests.] For larger than 2×2 tables, $k \times k$ tables, McNemar's test is generalized as the McNemar-Bowker symmetry test for testing

$$H_0: \pi_{ij} = \pi_{ji}$$
, for all pairs.

However, it may fail if there are 0's in certain locations in the matrix.

R code 8.2 Use nominalSymmetryTest{rcompapion}

nominalSymmetryTest(x, method = "fdr", digits = 3, ...)

For examples see https://rcompanion.org/handbook/H_05.html

8.2 Rater Agreement

In this section we wish to determine if two raters/reviewers are in agreement or not.

Example 8.3 (Movie reviews) Two movie reviewers give their opinion on 160 movies

	R	leviewer	2	
Reviewer 1	Con	Mixed	Pro	Total
Con	24	8	13	45
Mixed	8	13	11	32
Pro	10	9	64	83
Total	42	30	88	160

8.2.1 Cohen's Kappa (unweighted)

Let $\pi_{ij} = P(R1 = i, R2 = j)$,

$$P(agree) = \sum_{i} \pi_{ii}$$
general case
= $\sum_{i} \pi_{i+} \pi_{+i}$ if independence

Definition 8.2 (Cohen's Kappa)

$$\kappa = \frac{\sum_i \pi_{ii} - \sum_i \pi_{i+} \pi_{+i}}{1 - \sum_i \pi_{i+} \pi_{+i}}$$

where

- $\kappa = 0$ if agreement only equals that expected under independence.
- $\kappa = 1$ if perfect agreement.
- Denominator = maximum difference for numerator, attained if agreement is perfect, since perfect agreement implies $\sum_{i} \pi_{ii} = 1$.
- It is possible for the statistic to be negative, which implies that there is no effective agreement between the two raters or the agreement is worse than random.

Asymptotic normality can be established

$$\hat{\kappa} \stackrel{\mathrm{H}_0}{\sim} N(0, V(\hat{\kappa}))$$

and hence the standard error must first be found. Let,

- $\hat{\pi}_0 = \sum_i \hat{\pi}_{ii}$
- $\hat{\pi}_c = \sum_i \hat{\pi}_{i+} \hat{\pi}_{+i}$

$$\hat{V}(\hat{\kappa}) = \frac{1}{n(1-\hat{\pi}_c)^4} \left\{ \sum_i \hat{\pi}_{ii} \left[(1-\hat{\pi}_0) - (\hat{\pi}_{+i} + \hat{\pi}_{i+})(1-\hat{\pi}_0) \right]^2 + (1-\hat{\pi}_0)^2 \sum_{i\neq j} \hat{\pi}_{ij} (\hat{\pi}_{+i} + \hat{\pi}_{i+})^2 - (\hat{\pi}_0 \hat{\pi}_c - 2\hat{\pi}_c + \hat{\pi}_0)^2 \right\}$$

R code 8.3 In R there are multiple packages such as irr, psych, concord that have their own functions and their own *weight* scheme. We will use cohen.kappa{psych}. Example 8.4 (Movie reviews continued) From the data,

• $\sum_{i} \hat{\pi}_{ii} = \frac{24+13+64}{160} = 0.63$ • $\sum_{i} \hat{\pi}_{i+} \hat{\pi}_{+i} = \frac{1}{160^2} (45 \times 42 + 32 \times 30 + 83 \times 88) = 0.40$ $\hat{\kappa} = \frac{0.63 - 0.40}{1 - 0.40} = 0.39$

Moderate agreement: difference between observed agreement and agreement expected under independence is about 40% of the maximum possible difference.

Inference To test $H_0: \kappa = 0$

• Create test statistic

$$\frac{\hat{\kappa} - 0}{0.06} = 6.49$$

with a small p-value when finding the two tails on a N(0, 1).

• Create 95% CI

 $\hat{\kappa} \mp (1.96)(0.06) \longrightarrow (0.27, 0.51)$

Calculation of standard error is left to software

```
> movie=matrix(c(24,8,10,8,13,9,13,11,64),3,3)
> dimnames(movie)=list(c("Con", "Mixed", "Pro"), c("Con", "Mixed", "Pro"))
> print(movie)
      Con Mixed Pro
Con
       24
              8 13
Mixed
        8
             13
                11
Pro
       10
              9 64
>
> library(psych)
> cohen.kappa(movie)
Cohen Kappa and Weighted Kappa correlation coefficients
and confidence boundaries
                 lower estimate upper
unweighted kappa 0.27
                           0.39 0.51
weighted kappa
                  0.32
                           0.46 0.60
 Number of subjects = 160
> sqrt(cohen.kappa(movie)$var.kappa)
[1] 0.05979313
http://users.stat.ufl.edu/~athienit/STA4504/Examples/cohen_kappa.R
```

8.2.2 Cohen's Kappa (weighted)

Weighted kappa lets you count disagreements differently and is especially useful when codes are ordered. Three matrices are involved

- the matrix of observed scores, *n*_{ii}
- the matrix of expected scores based on independence, $m_{ij} = n_{i+}n_{+j}$,
- the weight matrix w_{ij}

Derivations of weighted kappa are sometimes expressed in terms of similarities, and sometimes in terms of dissimilarities. In the latter case, the weights on the diagonal are 1 and the weights off the diagonal are less than one. We omit the calculation and use software.

Example 8.5 (Movie reviews continued) Performing both unweighted and weighted versions

Con1.000.750.00Mixed0.751.000.75Pro0.000.751.00

Notice that cells with 0.75 although they represent disagreement it is not as severe as disagreements with 0 weight.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/cohen_kappa.R

Exercise 8.1 In cohen.kappa{psych} you can also create your own custom weights as an argument to the function. Repeat the previous example but use 0.5 instead on 0.75 in the weight matrix.

9. Models for Correlated, Clustered Responses

Expanding matched pairs to multiple matched sets, i.e. repeated measures.

9.1 Introduction

Correlated responses occur in several ways, including:

- Repeated measures/longitudinal studies: repeated observations on each subject.
- Multiple, matched sets of subjects.
 - Children in the same family.
 - Children in the same elementary school class (children within class, class within school, school within district, etc).
 - Fetuses from the same litter.

Usual model forms apply (e.g., logistic regression for binary response, cumulative logit for ordinal response), but model fitting must account for dependence (e.g., from repeated measures on subjects) in order to get appropriate standard errors and valid inferences.

We will use two approaches to such data: Observations $(Y_1, Y_2, ..., Y_T)$

- (In this chapter) Generalized Estimating Equations (GEE) to simultaneously fit marginal models on each (marginal) $E(Y_t)$, t = 0, ..., T.
- (in the next chapter) Generalized Linear Mixed Models (GLMM) to find random effect for the subject/block effect.

9.2 Generalized Estimating Equations

Focusing on GEE for Repeated Measures.

• Specify model in usual way by deciding what the random, component, link function and systematic components are.

• Select a *working correlation* matrix for best guess about correlation pattern between pairs of observations. That is the within-cluster correlation.

Example 9.1 For *T* repeated responses, *exchangeable* correlation matrix is

Time	1	2	•••	Т
1	1	ρ	•••	ρ
2	ρ	1	•••	ρ
÷	÷	÷	·	÷
Т	ρ	ρ	•••	1

When there is positive within-cluster correlation (as often is the case):

- The standard errors for *between-cluster* effects (such as different treatment groups) and standard errors of estimated means within clusters tends to be larger than when independent.
- The standard errors for *within-cluster* effects, such as a slope for a trend in the repeated measurements in a subject, tend to be smaller than when observations are independent.

Fitting method gives estimates that are consistent even if correlation structure is missspecified. Adjusts standard errors to reflect actual observed dependence. Therefore, overly complicated structures are not encouraged. For other structures the reader is encouraged to review the literature.

Example 9.2 (Crossover Study: Drug vs Placebo continued) Going back to example 8.1

$$\begin{array}{c|c} Placebo\\ S & F\\ \hline \\ Drug & F & \hline \\ F & 10 & 15 & 25\\ \hline \\ 22 & 64 & 86\\ \hline \end{array}$$

Fit the model

$$logit[P(Y_t = 1)] = \alpha + \beta d, \qquad d = \begin{cases} 1 & drug \\ 0 & placebox \end{cases}$$

where t = 1, 2 represents the two time points, the two observations on each subject.

```
> head(crossm1)
             Treat Resp
  Subject
1
         1
              Drug
                       1
2
         1 Placebo
                       1
3
        2
              Drua
                       1
4
        2 Placebo
                       1
5
              Drug
                       1
         3
         3 Placebo
6
                       1
> tail(crossm1)
```

```
Subject
               Treat Resp
167
         84
                         0
                Drug
168
         84 Placebo
                         0
169
         85
                Drug
                         0
170
         85 Placebo
                         0
171
                         0
         86
                Drug
172
         86 Placebo
                         0
> cross.gee1=gee(Resp ~ Treat, id=Subject, data=crossm1,family=binomial,
+ corstr="exchangeable")
> summary(cross.gee1)
 GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
Model:
 link:
                              Logit
 Variance to Mean Relation: Binomial
 Correlation Structure:
                              Exchangeable
Coefficients:
              Estimate Naive S.E.
                                      Naive z Robust S.E.
                                                             Robust z
(Intercept) -1.067841 0.2485923 -4.295550
                                                 0.2471428 -4.320744
             1.959839 0.3798402 5.159639
                                                 0.3772338 5.195289
TreatDrug
Estimated Scale Parameter: 1.011765
Working Correlation
                        [,2]
            [,1]
[1,] 1.0000000 -0.2140746
[2,] -0.2140746 1.0000000
Therefore, odds of Success with drug is estimated to be e^{1.96} = 7.1 times odds with
placebo. The 95% CI for odds ratio (for marginal probabilities) is
                    e^{1.96\mp(1.96)(0.377)} \rightarrow (e^{1.22}, e^{2.70}) = (3.4, 14.9)
Part
                    http://users.stat.ufl.edu/~athienit/STA4504/Examples/
        (B)
              of
crossover_gee.R
```

Remark 9.1. With $\hat{\rho} \approx 0$ it implies that there is no significant correlation between the "clustered" responses.

Remark 9.2. With cross-over designs it is important to allow enough time for the effects of the previous treatment not influence the results of the next treatment the unit will cross-over to.

the Drug vs Placebo, d was a variable monitored "within-subject" but we could have monitored "between-subject" gender and even order of treatment, e.g.

 $sequence = \begin{cases} 1 & placebo \ then \ drug \\ 2 & drug \ then \ placebo \end{cases}$

GEE is a known as *quasi-likelihood* method.

- No particular form assumed for joint distribution of $(Y_1, Y_2, ..., Y_T)$.
- Hence, no likelihood function, no LR inference (LR test, LR CI).
- For responses $(Y_1, Y_2, ..., Y_T)$ at *T* times, we consider *marginal model* that describes each Y_t in terms of explanatory variables.

Example 9.3 (Depression) Consider the response on mental depression (normal, abnormal) measured three times (after 1, 2, and 4 weeks of treatment) with two drug treatments (standard, new) and two severity of initial diagnosis groups (mild, severe). Of interest is to find out if the rate of improvement better with the new drug?

	Time			Resp	onse	Pat	tern		
	0	А	А	А	А	Ν	Ν	Ν	Ν
	1	А	Α	Ν	Ν	А	А	Ν	Ν
	2	А	Ν	А	Ν	А	Ν	А	Ν
Severity	Drug								
Mild	Std	6	15	4	14	3	9	13	16
	New	0	9	2	22	0	6	0	31
Severe	Std	28	27	15	9	9	8	2	2
	New	6	32	5	31	2	5	2	7

Let

 Y_t = response of randomly selected subject at time t (1 = normal, 0 = abnormal)

- s = severity of initial diagnosis (1 = severe, 0 = mild)
- $d = \operatorname{drug} (1 = \operatorname{new}, 0 = \operatorname{std})$
- t = time (0, 1, 2), which is log2(weeks of trt)

Model:

$$\log\left[\frac{P(Y_t=1)}{P(Y_t=0)}\right] = \alpha + \beta_1 s + \beta_2 d + \beta_3 t + \beta_4 (dt)$$

so that

$$\log\left[\frac{P(Y_t=1)}{P(Y_t=0)}\right] = \begin{cases} \alpha + \beta_1 s + \beta_3 t & \text{if } d = 0 \text{(standard drug)} \\ \alpha + \beta_2 + \beta_1 s + (\beta_3 + \beta_4) t & \text{if } d = 1 \text{(new drug)} \end{cases}$$

> dep.gee1=gee((response == "normal") ~ severity + drug*time, + id=subject, data=depression, family=binomial, corstr="exchangeable",

```
+ contrasts=list(drug=contr.treatment(2,base=2,contrasts=TRUE)))
> summary(dep.gee1)
Model:
 Link:
                            Logit
 Variance to Mean Relation: Binomial
 Correlation Structure:
                            Exchangeable
Coefficients:
                  Estimate Naive S.E.
                                        Naive z Robust S.E.
                                                              Robust z
(Intercept)
               -0.02809866 0.1625499 -0.1728617
                                                  0.1741791 -0.1613205
severitysevere -1.31391033 0.1448627 -9.0700417
                                                  0.1459630 -9.0016667
drug1
              -0.05926689 0.2205340 -0.2687427
                                                  0.2285569 -0.2593091
time
               0.48246420 0.1141154 4.2278625
                                                  0.1199383 4.0226037
                1.01719312 0.1877051 5.4191018
                                                  0.1877014 5.4192084
drug1:time
Estimated Scale Parameter:
                           0.985392
Number of Iterations: 5
Working Correlation
             [,1]
                          [,2]
                                      [,3]
[1,] 1.00000000 -0.003432729 -0.003432729
[2,] -0.003432729 1.00000000 -0.003432729
[3,] -0.003432729 -0.003432729 1.00000000
```

Notice that β_4 is significant indicating very strong evidence of faster improvement for new drug.

Remarks:

- When initial diagnosis is severe, estimated odds of normal response are $e^{-1.31} = 0.27$ times estimated odds when initial diagnosis is mild, at each $d \times t$ combination.
- $\hat{\beta}_2 = -0.06$ is drug effect only at t = 0. $e^{-0.06} = 0.94 \approx 1$, so essentially no drug effect at t = 0 (after 1 week). However, drug effect at end of study (t = 2) estimated to be $e^{\hat{\beta}_2 + 2\hat{\beta}_4} = 7.2$.
- Estimated time effects are:
 - standard drug (d = 0): $\hat{\beta}_3 = 0.48$
 - new drug (d = 1): $\hat{\beta}_3 + \hat{\beta}_4 = 1.50$
- Examined $s \times d$ and $s \times t$ interactions, but they were not statistically significant.
- Started with exchangeable working correlation, but estimated $\rho \approx 0$.

Note that the working correlation matrix can be "independence" (default), "exchangeable", "AR-M", "stat M dep", "non stat M dep", "unstructured", and "fixed". See the help for gee for details.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/depression.R

Remark 9.4. Missing data is not uncommon and can be very problematic unless missing completely at random (MCAR): missingness unrelated to response or any explanatory variables. Missing at random (MAR) means missingness unrelated to response after controlling for ex-

planatory variables. Methods exist to handle this and some other forms of missingness . Ignoring missing data leads to biased estimates.

10. Random Effects: GLMM

Unlike marginal modeling, this chapter presents an alternative model type that has a term in the model for each cluster.

10.1 Generalized Linear Mixed Models

A GLMM with a random effects is able to account for having multiple responses per subject (or "cluster") by putting a subject term in model.

Binary response $Y_t = 0$ or 1. Let Y_{it} = response by subject *i* at time *t*. Model:

$$logit [P(Y_{it} = 1)] = \alpha_i + \beta x_{it}, \quad t = 1, \dots, T$$

The intercept α_i varies by subject so that a heterogeneous population implies a highly variable $\{\alpha_i\}$.

Treating α_i as fixed is not possible because this model would yield at least *n* parameters, so the solution is to treat it as random, i.e. $\alpha_i \stackrel{\text{ind.}}{\sim} N(\alpha, \sigma^2)$ or equivalently

$$\alpha_i = \alpha + u_i, \quad u_i \sim N(0, \sigma^2)$$

Model:

$$logit[P(Y_{it} = 1)] = \alpha + u_i + \beta x_{it}, \quad t = 1, ..., T$$

Parameters α and β are fixed effects and $\{u_i\}$ are random effects.

 $Y_{i1}, Y_{i2}, \dots, Y_{iT}$ are conditionally independent given u_i , but marginally dependent. That is, responses within subject more alike than between subjects.

Remark 10.1. Note that random effects $\{u_i\}$ are unobserved (not data), so software must "integrate out" $\{u_i\}$ to get likelihood function.

Example 10.1 (Depression continued) Using the same data from example 9.3

$$\log\left[\frac{P(Y_t=1)}{P(Y_t=0)}\right] = u_i + \alpha + \beta_1 s + \beta_2 d + \beta_3 t + \beta_4 (dt)$$

```
> dep.lme=glmer((response == "normal") ~ severity+drug*time+(1|subject),
+ data=depression, family=binomial,
+ contrasts=list(drug=contr.treatment(2,base=2,contrasts=TRUE)))
> summary(dep.lme)
    AIC
             BIC
                   logLik deviance df.resid
  1173.9
           1203.5
                   -581.0
                            1161.9
                                       1014
Scaled residuals:
    Min
            10 Median
                            30
                                   Max
-4.2849 -0.8268 0.2326 0.7964 2.0181
Random effects:
Groups Name
                    Variance Std.Dev.
 subject (Intercept) 0.003231 0.05684
Number of obs: 1020, groups: subject, 340
Fixed effects:
              Estimate Std. Error z value Pr(>|z|)
                          0.16406 -0.170
                                            0.865
(Intercept)
              -0.02797
severitysevere -1.31488
                          0.15261 -8.616 < 2e-16 ***
              -0.05967
                          0.22239 -0.268
                                             0.788
drug1
                          0.11566 4.174 3.00e-05 ***
time
               0.48274
drug1:time
               1.01817
                          0.19150 5.317 1.06e-07 ***
_ _ _
Correlation of Fixed Effects:
            (Intr) svrtys drug1 time
severitysvr -0.389
drug1
          -0.614 -0.005
time
           -0.673 -0.123 0.524
drug1:time 0.462 -0.121 -0.742 -0.562
http://users.stat.ufl.edu/~athienit/STA4504/Examples/depression2.R
```

In this example, GLMM and GEE estimates and standard errors for fixed effects are nearly identical:

	GLMM		GEE		
	Est	SE	Est	SE	
alpha	-0.03	0.16	-0.03	0.17	
beta.1	-1.31	0.15	-1.31	0.15	
beta.2	-0.06	0.22	-0.06	0.23	
beta.3	0.48	0.11	0.48	0.12	
beta.4	1.02	0.19	1.02	0.19	

There appears to be little correlation between repeated measurements on subjects:

• $\hat{\rho} = -0.003 \approx 0$ in GEE with exchangeable working correlation.

• $\hat{\sigma} = 0.057 \approx 0$ in GLMM. According to model, 95% of all individuals will have u_i between $\pm 1.96\sigma \approx \pm 0.11$. But $e^{\pm 0.11} \rightarrow (0.89, 1.12)$, so effect of u_i on odds is estimated to be small for most subjects.

10.2 Comparison with GEE

- When $\hat{\sigma} = 0$, estimates and standard errors same as treating repeated observations as independent.
- When $\hat{\sigma}$ is large, estimated β 's from random effects logit model usually larger than from marginal model. They are estimating different things.

Example 10.2 (Teratology Overdispersions) Female rats on iron-deficient diets assigned to four groups:

- 1. placebo
- 2. iron injections on days 7 and 10
- 3. iron injections on days 0 and 7
- 4. iron injections weekly

Then they are made pregnant and sacrificed after 3 weeks. The response is whether fetus is dead or alive and the *cluster* is the litter.

Notation:

- GRP = group,
- LS = litter size,
- ND = number dead in litter

logit [*P*(fetus *t* in litter *i* dead)] = $\alpha + \beta_2 z_{i2} + \beta_3 z_{i3} + \beta_4 z_{i4}$

where

$$z_{ij} = \begin{cases} 1 & \text{if litter } i \text{ in group } j \\ 0 & \text{otherwise} \end{cases}$$

```
> terat$GRP=factor(terat$GRP)
> terat.binom=glm(cbind(ND,N-ND)~GRP, family=binomial, data=terat)
> summary(terat.binom)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.1440
                         0.1292
                                  8.855 < 2e-16 ***
GRP2
             -3.3225
                         0.3308 - 10.043 < 2e - 16 * * *
GRP3
             -4.4762
                         0.7311 -6.122 9.22e-10 ***
GRP4
                         0.4762 -8.672 < 2e-16 ***
             -4.1297
    Null deviance: 509.43 on 57
                                  degrees of freedom
Residual deviance: 173.45 on 54
                                 degrees of freedom
AIC: 252.92
> 1-pchisq(173.45,df.residual(terat.binom)) # Gooodness of fit via LRT
[1] 1.876277e-14
> X2=sum(resid(terat.binom,type="pearson")^2);X2
[1] 154.707
> 1-pchisq(X2,df.residual(terat.binom)) # Gooodness of fit via Pearson
[1] 1.187217e-11
```

> X2/df.residual(terat.binom) # Evidence of overdispersion
[1] 2.864945

Results:

- Binomial model fits poorly ($X^2 = 154.7, G^2 = 173.5, df = 54, p$ -value ≈ 0).
- There is inter-litter variability that cannot be accounted for in a binomial model by treatment group alone. Fetuses are more alike within litters than across litters, even within the same treatment group.
- Standard errors invalid (too small) due to overdispersion.
- Possible solutions:
 - GEE: models marginal (population averaged) effect of treatment.
 - GLMM: models litter-specific effect.
 - At least two other approaches not discussed (thoroughly) in this class:
 - * Quasi-binomial: simplified version of GEE.
 - * Beta-binomial: parametric mixture model, analogous to negativebinomial for count data. Motivation similar to GLMM

```
> terat.gee <- gee((Resp == "Dead") ~ GRP, id = Litter,
+ data = teratbnry, family = binomial, corstr = "exchangeable")
> summary(terat.gee)
Summary of Residuals:
    Min 10 Median 30 Max
```

```
-0.7881637 - 0.3568763 0.2118363 0.3420839 0.6431237
Coefficients:
              Estimate Naive S.E.
                                    Naive z Robust S.E.
                                                         Robust z
(Intercept) -0.5889477 0.2317694 -2.541093
                                            0.2966943 -1.985032
GRP2
             1.2429690 0.4469084 2.781261
                                              0.5612748 2.214546
GRP3
             1.6997950 0.7248173 2.345136
                                              0.8877114 1.914806
GRP4
             1.9028396 0.5776533 3.294086
                                              0.7226377 2.633186
Estimated Scale Parameter: 0.709622
> # Big working correlation matrix (17 x 17), but
> # all correlations equal with exchangeable struc:
> terat.gee$working.correlation[1,2]
[1] 0.8051211
> library(lme4)
> # Using grouped data
> terat.glmm <- glmer(cbind(ND, N-ND) ~ GRP + (1|Litter),</pre>
          data = terat, family = binomial)
+
> # Using ungrouped binary data
> terat.glmm <- glmer((Resp == "Dead") ~ GRP + (1|Litter),</pre>
          data = teratbnry, family = binomial)
+
> summary(terat.glmm)
     AIC
              BIC
                    logLik deviance df.resid
   445.9
            468.0 -218.0
                              435.9
                                         602
Scaled residuals:
    Min
             10 Median
                             30
                                    Max
-4.7821 -0.2431 0.1158 0.2673 2.8214
Random effects:
Groups Name
                    Variance Std.Dev.
 Litter (Intercept) 2.284
                            1.511
Number of obs: 607, groups: Litter, 58
Fixed effects:
            Estimate Std. Error z value Pr(>|z|)
                         0.3616 -5.004 5.62e-07 ***
(Intercept) -1.8094
GRP2
                         0.7345 6.181 6.39e-10 ***
              4.5396
GRP3
              5.8833
                         1.1754 5.005 5.58e-07 ***
GRP4
              5.6062
                         0.9076 6.177 6.54e-10 ***
_ _ _
Correlation of Fixed Effects:
     (Intr) GRP2
                   GRP3
GRP2 -0.562
```

GRP3 -0.373 0.235 GRP4 -0.496 0.316 0.221

http://users.stat.ufl.edu/~athienit/STA4504/Examples/teratology.R

	Binomial ML	GEE	GLMM
(Intercept)	1.14 (0.13)	1.21 (0.27)	1.81 (0.33)
GRP2	-3.32 (0.33)	-3.37 (0.43)	-4.54(0.68)
GRP3	-4.48(0.73)	-4.58 (0.62)	-5.88 (1.18)
GRP4	-4.13 (0.48)	-4.25 (0.6)	-5.61 (0.86)

- SEs for binomial ML fit invalid (because of lack of fit)
- GEE estimates are similar to binomial but with larger SEs. Estimate marginal (population averaged) effects.
- GLMM estimates are larger in magnitude. Estimate conditional (within litter) effects.

As a final note it seems that there are differences between groups 2,3,4 with the base group 1. As an exercise compare groups 2 and 3 for the GLMM model.

7. Loglinear Models

7.1 Loglinear for 2-way 7.2 Loglinear for 3-way 1 7.3 Loglinear-Logit Connection 1 7.4 Loglinear for 2-way 1	98 104 108	PZ		
7.2 Loglinear for 3-way 1 7.3 Loglinear-Logit Connection 1 7.4 Loglinear-Logit Connection 1	104 nection 108	7.1	Loglinear for 2-way	98
7.3 Loglinear-Logit Connection 1	nection 108	7.2	Loglinear for 3-way	104
7.4 1.5 5.6 1.10 1.00 1.00		7.3	Loglinear-Logit Connection	108
7.4 Independence Graphs and Collapsibility	hs and Collapsibility 111	7.4	Independence Graphs and Collapsibility	111

Loglinear models for contingency tables treat all variables as response variables, like multivariate analysis.

7.1 Loglinear for 2-way

7.1.1 *I* × *J*

All variables are treated as responses, in that a set of variables is not used to model another variable but are interested in patterns of dependence and independence among the variables:

- Are the variables independent?
- The strength of associations
- Are there any interactions?

			Y	,	
		1	2	•••	J
	1	n_{11}	<i>n</i> ₁₂	•••	n_{1J}
x	2	n_{21}	<i>n</i> ₂₂	•••	n_{2J}
Λ	÷	÷	÷	·	:
	Ι	n_{I1}	n_{I2}	•••	n _{IJ}

Loglinear models treat cell counts as Poisson and use log link function. From Lemma 2.1 we have that

$$\mu_{ij} = n\pi_{ij} \stackrel{\text{ind.}}{=} n\pi_{i+}\pi_{+j} \Rightarrow \log(\mu_{ij}) = \underbrace{\log(n)}_{\lambda} + \underbrace{\log\pi_{i+}}_{\lambda_i^X} + \underbrace{\log\pi_{+j}}_{\lambda_i^Y}$$

• λ_i^X : effect of classification in row *i* (*I*-1 non-redundant parameters with the restriction of $\lambda_1^X = 0$ for base group)

• λ_j^Y : effect of classification in column j (J - 1 non-redundant parameters with the re-striction of $\lambda_1^Y = 0$ for base group))

The degrees of freedom are

df = number of Poisson counts – number of parameters number of cells in table

• For the independence model

$$\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_j^Y$$

v

and hence

$$df = \underbrace{IJ}_{\text{no. of cells}} - \underbrace{\left[\underbrace{\begin{matrix}\lambda & \lambda_i^X & \lambda_j^Y \\ 1 & +(I-1) + (J-1)\end{matrix}\right]}_{\text{no. of cells}} = (I-1)(J-1)$$

no. of parameters

• For the saturated model

$$\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_{ij}^{XY}$$

and hence

$$df = \underbrace{IJ}_{\text{no. of cells}} - \underbrace{\left[\overbrace{1}^{\lambda} + \overbrace{(I-1)}^{\lambda_i^X} + \overbrace{(J-1)}^{\lambda_j^Y} + \overbrace{(I-1)(J-1)}^{\lambda_{ij}^{XY}} \right]}_{\text{no. of cells}} = 0$$

no. of parameters

Log-odds-ratio comparing levels i and i' of X and j and j' of Y is

$$\log\left(\frac{\mu_{ij}\mu_{i'j'}}{\mu_{ij'}\mu_{i'j}}\right) = \log(\mu_{ij}) + \log(\mu_{i'j'}) - \log(\mu_{ij'}) - \log(\mu_{i'j})$$
$$= (\lambda + \lambda_i^X + \lambda_j^Y + \lambda_{ij}^{XY}) + (\lambda + \lambda_{i'}^X + \lambda_{j'}^Y + \lambda_{i'j'}^{XY})$$
$$- (\lambda + \lambda_i^X + \lambda_{j'}^Y + \lambda_{ij'}^{XY}) - (\lambda + \lambda_{i'}^X + \lambda_j^Y + \lambda_{i'j}^{XY})$$
$$= \lambda_{ij}^{XY} + \lambda_{i'j'}^{XY} - \lambda_{ij'}^{XY} - \lambda_{i'j}^{XY}$$

• For the independence model, since all $\lambda_{ij}^{XY} = 0$ (they do not even exist), this is 0 and the odds-ratio is $e^0 = 1$.

• For the saturated model, the odds-ratio, expressed in terms of of the parameters of the loglinear model, is

$$\exp\left(\lambda_{ij}^{XY} + \lambda_{i'j'}^{XY} - \lambda_{ij'}^{XY} - \lambda_{i'j}^{XY}\right)$$

Substituting the MLEs of the saturated model (perfect fit) just reproduces the empirical odds ratio

$$\frac{n_{ij}n_{i'j'}}{n_{ij'}n_{i'j}}$$

Example 7.1 (Job Satisfaction) We are revisiting

- Example 2.12 where we tested independence via Pearson's X^2
- Example 6.1 where we fitted a baseline logit model
- Example 6.2 where we fitted a cumulative logit model

to fit

$$\log(\mu_{ij}) = \lambda + \lambda_i^I + \lambda_j^S \quad i = 1, 2, 3, 4 \ j = 1, 2, 3, 4$$

which can be expressed as

$$\log(\mu_{ij}) = \lambda + \lambda_1^I z_{(10)} + \lambda_2^I z_{(20)} + \lambda_3^I z_{(30)} + \lambda_1^S w_{(LD)} + \lambda_2^S w_{(MS)} + \lambda_3^S w_{(VS)}$$

where

$$z_{(10)} = \begin{cases} 1 & \text{income score } = 10 \\ 0 & \text{otherwise} \end{cases}$$

and

$$w_{(LD)} = \begin{cases} 1 & \text{little dissatisfaction} \\ 0 & \text{otherwise} \end{cases}$$

and similarly for the rest. The independence model is

2

```
> jobsat.ind=glm(count<sup>factor(income)+jobsat,</sup>
+ family=poisson(link=log),data=table.sat)
> summary(jobsat.ind)
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
(Intercept)
                 -0.16705
                             0.53464 -0.312 0.75469
factor(income)10 0.43532
                             0.27362
                                       1.591 0.11162
factor(income)20 0.08701
                             0.29516
                                       0.295 0.76815
factor(income)30 0.08701
                             0.29516
                                       0.295 0.76815
jobsatLD
                  1.25276
                             0.56694
                                       2.210 0.02713 *
jobsatMS
                  2.75684
                             0.51563
                                       5.347 8.96e-08 ***
jobsatVS
                  1.74920
                             0.54173
                                       3.229 0.00124 **
    Null deviance: 90.242 on 15
                                  degrees of freedom
Residual deviance: 13.467
                           on 9
                                  degrees of freedom
AIC: 77.068
```

and performing a goodness of fit test is comparing this (independence) model to the saturated one, so hence the goodness of fit is the test of independence. That is, the goodness of fit tests

$$H_0: \lambda_{ii}^{IS} = 0 \quad \forall i, j$$

> jobsat.sat=update(jobsat.ind,.~.+factor(income)*jobsat)
> anova(jobsat.ind,jobsat.sat,test="Chisq")
Analysis of Deviance Table
Model 1: count ~ factor(income) + jobsat
Model 2: count ~ factor(income) + jobsat + factor(income):jobsat
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 9 13.467
2 0 0.000 9 13.467 0.1426

and hence we conclude independence. Using the Independence model we can also obtain expected values under independence.

• Under example 2.12 with

$$- \hat{\mu}_{(3,D)} = \frac{22 \times 4}{104} = 0.846$$
$$- \hat{\mu}_{(10,LD)} = \frac{34 \times 14}{104} = 4.5769$$

• Under the independence model with

$$- \hat{\mu}_{(3,D)} = e^{-0.16705} = 0.846$$

- $\hat{\mu}_{(10,LD)} = e^{-0.16705 + 0.43532 + 1.25276} = 4.5769$

http://users.stat.ufl.edu/~athienit/STA4504/Examples/jobsatis_ loglinear.R

7.1.2 *I* × 2

Let *J* = 2, that is, *Y* = 1, 2 to only have two levels. Then, with $\pi_i := P(Y = i)$

$$\log\left(\frac{\pi_{1}}{1-\pi_{1}}\right) = \log\left(\frac{n\pi_{1}}{n\pi_{2}}\right) = \log\left(\frac{\mu_{i1}}{\mu_{i2}}\right) = \log(\mu_{i1}) - \log(\mu_{i2})$$
$$= (\lambda + \lambda_{i}^{X} + \lambda_{1}^{Y} + \lambda_{i1}^{XY}) - (\lambda + \lambda_{i}^{X} + \lambda_{2}^{Y} + \lambda_{i2}^{XY})$$
$$= (\lambda_{1}^{Y} - \lambda_{2}^{Y^{*}}) + (\lambda_{i1}^{XY} - \lambda_{i2}^{XY^{*}})$$
(7.1)

if we chose group 2 to be the base group then $\lambda_2^Y = \lambda_{i2}^{XY} = 0$.

Remark 7.1.

- If group 1 was chosen as the base group then its corresponding parameters would be 0.
- If the independence model is used then all $\lambda^{XY} = 0$ and the formula simplifies.

Example 7.2 (Belief in afterlife) Reconsider

	Beli	ief
Race	Yes	No
White	1339	300
Black	260	55
Other	88	22

Independence model

$$\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_j^Y \quad i = 1, 2, 3 \ j = 1, 2$$

```
> Race=rep(c("White","Black","Other"),each=2)
> Belief=rep(c("Yes","No"),3)
> count=c(1339,300,260,55,88,22)
> after=data.frame(Race,Belief,count)
> after=transform(after,Race=relevel(Race,"Other"))
> B_R=glm(count~Belief+Race,family=poisson(link=log),data=after)
> summary(B R)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
                                 28.28
                                         <2e-16 ***
(Intercept) 3.00032
                       0.10611
BeliefYes
                                 26.30 <2e-16 ***
            1.49846
                       0.05697
RaceBlack
            1.05209
                       0.11075
                                 9.50 <2e-16 ***
RaceWhite
            2.70136
                       0.09849
                                 27.43
                                         <2e-16 ***
_ _ _
```

Null deviance: 2849.21758 on 5 degrees of freedom Residual deviance: 0.35649 on 2 degrees of freedom AIC: 49.437

Note that the estimated odds (not odds ratio) of belief in the afterlife was $\exp(\hat{\lambda}_1^Y - 0) = \exp(1.49846) = 4.474793$ for each race.

Saturated model/Dependence model

$$\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_{ij}^{XY} \quad i = 1, 2, 3 \ j = 1, 2$$

with

> BR=glm(count~Belief*Race,family=poisson(link=log),data=after)

> summary(BR)

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	3.0910	0.2132	14.498	< 2e-16	***
BeliefYes	1.3863	0.2384	5.816	6.03e-09	***
RaceBlack	0.9163	0.2523	3.632	0.000281	***
RaceWhite	2.6127	0.2209	11.829	< 2e-16	***

BeliefYes:RaceBlack 0.1671 0.2808 0.595 0.551889 BeliefYes:RaceWhite 0.1096 0.2468 0.444 0.656946 _ _ _ Null deviance: 2.8492e+03 on 5 degrees of freedom Residual deviance: -8.7930e-14 on 0 degrees of freedom AIC: 53.081

We can test for independence by $H_0: \lambda_{ij}^{XY} = 0 \ \forall i, j$ by a likelihood ratio test using the difference of deviances. Notice that the model with the interaction is a saturated model, so the LR test is in fact a goodness of fit test for the independence model with

 $D_0 - D_1 = 0.35649 - 0$

on df=2 and p-value= 0.8367, so we fail to reject H_0 and conclude independence between belief and race.

```
> anova(B_R,BR,test="Chisq")
Analysis of Deviance Table
Model 1: count ~ Belief + Race
Model 2: count ~ Belief * Race
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 2 0.35649
2 0 0.00000 2 0.35649 0.8367
http://users.stat.ufl.edu/~athienit/STA4504/Examples/afterlife.R
```

7.2 Loglinear for 3-way

Definition 7.1 (Associations) We review 5 types of associations

• X, Y, Z are mutual independent, (X, Y, Z) if $\pi_{ijk} = \pi_{i++}\pi_{+j+}\pi_{++k}$

$$\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z$$

• *Y* is *jointly independent* of *X* and *Z*, (*XZ*, *Y*) if $\pi_{ijk} = \pi_{+j+}\pi_{i+k}$

$$\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ}$$

• X and Y are conditionally independent given Z, (XZ, YZ) if $\pi_{ij|k} = \pi_{i+|k}\pi_{+j|k}$

$$\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ}$$

 Homogeneous association, (XZ, XY, YZ) if two variables have the same association for all levels of the third, e.g. π_{ij|k} = π_{ij|k'} same ∀k, k'

$$\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ij}^{XY}$$

• Non restricted association, (saturated model) (XYZ)

$$\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ij}^{XY} + \lambda_{ijk}^{XYZ}$$

Example 7.3 Consider a $2 \times 2 \times 2$ with *X*, *Y* conditional independence (*XZ*, *YZ*)

$$\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ}$$

Hence,

• *X* and *Y* are conditionally independent given *Z*:

$$\log\left(\theta_{XY(k)}\right) = \log\left(\frac{\mu_{ijk}\mu_{i'j'k}}{\mu_{i'jk}\mu_{ij'k}}\right) = \dots = 0 \Longrightarrow \theta_{XY(k)} = 1$$

• The X - Z odds ratio is the same at all levels of Y:

$$\log\left(\theta_{X(j)Z}\right) = \log\left(\frac{\mu_{ijk}\mu_{i'jk'}}{\mu_{i'jk}\mu_{ijk'}}\right) = \dots = \lambda_{11}^{XZ} + \lambda_{22}^{XZ} - \lambda_{12}^{XZ} - \lambda_{21}^{XZ}$$

which does not depend on *j*.

• Similarly, Y - Z odds ratio same at all levels of X. Model has no three-factor interaction.

Example 7.4 Consider the loglinear homogeneous association model denoted (XY, XZ, YZ).

$$\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ij}^{XY}$$

Each pair of variables is conditionally dependent, but association (as measured by odds ratios) is the same at all levels of third variable.

Example 7.5 (Teen substance usage) A survey of 2276 high school seniors

```
> ftable(teens, row.vars=c("alc","cigs"))
        mjyes no
alc cigs
yes yes
           911 538
            44 456
    no
             3 43
no yes
             2 279
    no
> teens.df=as.data.frame(teens)
> teens.df=transform(teens.df,
             cigs = relevel(cigs, "no"),
+
             alc = relevel(alc, "no"),
+
             mj = relevel(mj, "no"))
+
> teens.AC.AM.CM = glm(Freq ~ alc*cigs + alc*mj + cigs*mj,
       family=poisson, data=teens.df)
+
> summary(teens.AC.AM.CM)
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)
              5.63342
                          0.05970 94.361 < 2e-16 ***
alcyes
               0.48772
                          0.07577 6.437 1.22e-10 ***
              -1.88667
                          0.16270 -11.596 < 2e-16 ***
cigsyes
mjyes
             -5.30904
                          0.47520 -11.172 < 2e-16 ***
alcyes:cigsyes 2.05453
                          0.17406 11.803 < 2e-16 ***
alcyes:mjyes 2.98601
                          0.46468 6.426 1.31e-10 ***
                          0.16384 17.382 < 2e-16 ***
cigsyes:mjyes 2.84789
    Null deviance: 2851.46098 on 7 degrees of freedom
Residual deviance:
                    0.37399 on 1 degrees of freedom
AIC: 63.417
> deviance(teens.AC.AM.CM)
[1] 0.3739859
> X2=sum(residuals(teens.AC.AM.CM,type="pearson")^2);X2
[1] 0.4011005
> 1-pchisq(X2,1)
[1] 0.5265215
```

The (*AC*, *AM*, *CM*) model fits well with $G^2 = 0.37$ (and $X^2 = 0.4$) on 1 df. Equivalently

```
done via,
```

```
> teens.ACM <- update(teens.AC.AM.CM, . ~ alc*cigs*mj)</pre>
> anova(teens.AC.AM.CM, teens.ACM, test="Chisq")
Analysis of Deviance Table
Model 1: Freq<sup>~</sup>alc * cigs + alc * mj + cigs * mj
Model 2: Freq<sup>~</sup>alc + ciqs + mj + alc:ciqs + alc:mj + ciqs:mj + alc:ciqs:mj
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
          1
               0.37399
               0.00000 1 0.37399
          0
                                       0.5408
2
Next we check if any 2-way interactions can be removed
> drop1(teens.AC.AM.CM, test="Chisq")
Single term deletions
Model:
Freq ~ alc * cigs + alc * mj + cigs * mj
         Df Deviance
                         AIC
                                LRT Pr(>Chi)
                 0.37 63.42
<none>
              187.75 248.80 187.38 < 2.2e-16 ***
alc:cigs
         1
               92.02 153.06 91.64 < 2.2e-16 ***
alc:mj
          1
          1
              497.37 558.41 497.00 < 2.2e-16 ***
cigs:mj
To test for conditional independence of A and C given M
> teens.AM.CM <- update(teens.AC.AM.CM, . ~ alc*mj + cigs*mj)</pre>
> anova(teens.AM.CM, teens.AC.AM.CM, test="Chisq")
Analysis of Deviance Table
Model 1: Freq ~ alc + mj + cigs + alc:mj + mj:cigs
Model 2: Freq ~ alc * cigs + alc * mj + cigs * mj
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
          2
               187.754
2
          1
                  0.374 1
                             187.38 < 2.2e-16 ***
We can also get predicted counts under a variety of models and compare them to the
actual data/saturated model
> table.7.4
  alc cigs mj (A,C,M) (AC,M) (AM,CM) (AC,AM,CM) (ACM)
1 yes yes yes
                  540.0 611.0
                               909.00
                                            910.00
                                                     911
2 yes
                  740.0 838.0
                                439.00
                                            539.00
                                                     538
      yes
            no
                  282.0 211.0
                                 45.80
                                             44.60
                                                      44
3 yes
        no yes
                  387.0 289.0
                                555.00
                                            455.00
                                                     456
4 yes
        no
           no
                  90.6
                        19.4
                                  4.76
                                              3.62
                                                       3
5
  no
      yes yes
6
   no
       yes
           no
                  124.0
                          26.6
                                142.00
                                             42.40
                                                      43
                  47.3 119.0
                                              1.38
                                                       2
7
                                0.24
   no
        no yes
                  64.9 162.0 180.00
                                            280.00
                                                     279
8 no
        no no
```

In (AC, AM, CM) model, AC odds-ratio is the same at each level of M. With 1 = yes and 2 = no for each variable, the estimated conditional AC odds ratio is

$$\frac{\hat{\mu}_{11k}\hat{\mu}_{22k}}{\hat{\mu}_{12k}\hat{\mu}_{21k}} = \exp(\hat{\lambda}_{11}^{AC} + \hat{\lambda}_{22}^{AC} - \hat{\lambda}_{12}^{AC} - \hat{\lambda}_{21}^{AC}) = e^{2.0545} = 7.8$$

A 95% CI is

$$e^{2.05\mp(1.96)(0.174)} \longrightarrow (5.5, 11.0)$$

The commons odds-ratio is reflected in the fitted values for the model:

$$\frac{(910)(1.38)}{(44.6)(3.62)} = 7.8 \qquad \frac{(539)(280)}{(455)(42.4)} = 7.8$$

Similar results hold for *AM* and *CM* conditional odds-ratios in this model. In (*AM*, *CM*) model, $\lambda_{ij}^{AC} = 0$, and conditional *AC* odds-ratio (given *M*) is $e^0 = 1$ at each level of *M*, i.e., *A* and *C* are conditionally independent given *M*. Again, this is reflected in the fitted values for this model.

$$\frac{(909)(0.24)}{(45.8)(4.76)} = 1 \qquad \frac{(439)(180)}{(555)(142)} = 1$$

The AM odds-ratio is not 1, but it is the same at each level of C:

$$\frac{(909)(142)}{(439)(4.76)} = 61.87 \qquad \frac{(45.8)(180)}{(555)(0.24)} = 61.87$$

Similarly, the *CM* odds-ratio is the same at each level of *A*:

$$\frac{(909)(555)}{439)(45.8)} = 25.14 \qquad \frac{(4.76)(180)}{(142)(0.24)} = 25.14$$

http://users.stat.ufl.edu/~athienit/STA4504/Examples/teens.R

Remark 7.2.

- Loglinear models extend to any number of dimensions.
- Loglinear models treat all variables symmetrically. Logistic regression models treat Y as response and other variables as explanatory. More natural approach when there is a single response.
- For modeling ordinal associations consider a 2-way table with assigned
 - row scores $u_1 \le u_2 \le \cdots \le u_I$
 - column scores $v_1 \leq v_2 \leq \cdots \leq v_J$

and model

$$\log(\mu_{ij}) = \lambda + \lambda_i^X + \lambda_j^Y + \beta u_i v_j$$

where $\beta u_i v_j$ takes the role of λ_{ij}^{XY} but only 1 parameter is used, i.e. only 1 degree of freedom taken up, instead of (I-1)(J-1)

Checking residuals is always important and done in the usual way as with any GLM, however a new graphical visualization may also be useful

R code 7.1 In the vcdExtra package the function

mosaic(glm object,...)

is capable of a mosaic plot of the residuals, where the area of each tile is proportional to the corresponding cell entry, given the dimensions of previous splits.

Example 7.6 (Teen substance usage continued) Getting and visualizing the standard-ized deviance residuals

7.3 Loglinear-Logit Connection

We have already seen the connection in equation (7.1) which can be written as a logit model

$$\log\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = \underbrace{(\lambda_1^Y - \lambda_2^{Y^{*}})}_{\alpha} + \underbrace{(\lambda_{i1}^{XY} - \lambda_{i2}^{XY^{*}})}_{\beta_i^X}_{\beta_i^X}$$
$$= \alpha + \beta_i^X$$

Consider the loglinear homogeneous association model denoted (*XY*, *XZ*, *YZ*).

 $\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{ij}^{YZ} + \lambda_{ij}^{XY}$
Suppose *Y* is binary, treated as the response, and let

$$\pi_{ik} = P(Y = 1 | X = i, Z = k)$$

then

$$\log \operatorname{it}(\pi_{ik}) = \log(\mu_{i1k}) - \log(\mu_{i2k})$$

$$= \cdots$$

$$= \underbrace{(\lambda_1^Y - \lambda_2^{Y^{*}})}_{\alpha} + \underbrace{(\lambda_{i1}^{XY} - \lambda_{i2}^{XY^{*}})}_{\beta_i^X} + \underbrace{(\lambda_{1k}^{YZ} - \lambda_{2k}^{YZ^{*}})}_{\beta_k^Z}$$

$$= \alpha + \beta_i^X + \beta_k^Z$$

an additive model with no XZ interaction.

When a "response" (say *Y*) exists and it has two levels then it is possible to fit a loglinear model and an *equivalent* logit model. We are not required to fit the equivalent model but we are exploring the special case.

Remark 7.3. The (XY, YZ) model also yields an additive logit model but for ML estimates, Deviances and degrees of freedom to match, the loglinear model must contain the most general interaction among variables that are explanatory in the logit model, those are X and Z. Therefore, the equivalent loglinear model must include XY (X linked to Y), the YZ (Z linked to Y), and the XZ (XZ linked to Y).

Some example with $\pi = P(Y = 1)$, predictors A, B, C (4-way table).:

•
$$\operatorname{logit}(\pi) = \alpha + \beta_i^A + \beta_i^B + \beta_k^C \longleftrightarrow (AY, BY, CY)$$

• $\text{logit}(\pi) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{jk}^{BC} \longleftrightarrow (AY, BY, CY, BCY) a.k.a. (AY, BCY)$

Remark 7.4.

- When there is a single binary response, it is simpler to approach data directly using logit models.
- Similar remarks hold for a multi-category response Y:
 - Baseline-category logit model has a matching loglinear model.
 - With a single response, it is simpler to use the baseline-category logit model.
- Loglinear models have advantage of generality can handle multiple responses, some of which may have more than two outcome categories.

Example 7.7 (Berkeley Graduate Admissions) Earlier we had fit a logit model for the probability of admission

 $logit(\pi_{ik}) = \alpha + \beta_i^G + \beta_k^D$

with 12 binomial variates and 7 parameters, hence df = 5. Now we will take a look at the equivalent loglinear model (*AG*, *AD*, *DG*)

$$\log(\mu_{ijk}) = \lambda + \lambda_i^A + \lambda_j^G + \lambda_k^D + \lambda_{ij}^{AG} + \lambda_{ik}^{AD} + \lambda_{jk}^{DG}$$

with 24 independent Poisson variates and 19 parameters, hence df = 5. Once we create the appropriate data frame

> head(berk2)

Dept	${\tt Gender}$	Admit	Freq
Α	Male	Yes	512
Α	Female	Yes	89
В	Male	Yes	353
В	Female	Yes	17
С	Male	Yes	120
С	Female	Yes	202
	Dept A A B C C C	Dept Gender A Male A Female B Male B Female C Male C Female	<pre>Dept Gender Admit A Male Yes A Female Yes B Male Yes C Male Yes C Male Yes</pre>

(Intercept)	3.59099		0.11	659	30.801	< 2e-16) ***
AdmitYes	0.68192		0.09	911	6.880	5.97e-12	2 ***
GenderMale	2.09846		0.11	548	18.172	< 2e-16	; ***
DeptB	-1.43464		0.23	341	-6.146	7.93e-10) ***
DeptC	2.34983		0.12	262	19.163	< 2e-16) ***
DeptD	1.90293		0.12	557	15.154	< 2e-16) ***
DeptE	2.08467		0.12	711	16.400	< 2e-16	; ***
DeptF	2.17093		0.12	798	16.963	< 2e-16	; ***
AdmitYes:GenderMale	e -0.09987		0.08	085	-1.235	0.217	7
AdmitYes:DeptB	-0.04340		0.10	984	-0.395	0.693	}
AdmitYes:DeptC	-1.26260		0.10	663	-11.841	< 2e-16	; ***
AdmitYes:DeptD	-1.29461		0.10	582	-12.234	< 2e-16) ***
AdmitYes:DeptE	-1.73931		0.12	611	-13.792	< 2e-16) ***
AdmitYes:DeptF	-3.30648		0.16	998	-19.452	< 2e-16) ***
GenderMale:DeptB	1.07482		0.22	861	4.701	2.58e-06	; ***
GenderMale:DeptC	-2.66513		0.12	609	-21.137	< 2e-16	; ***
GenderMale:DeptD	-1.95832		0.12	734	-15.379	< 2e-16	; ***
GenderMale:DeptE	-2.79519		0.13	925	-20.073	< 2e-16	; ***
GenderMale:DeptF	-2.00232		0.13	571	-14.754	< 2e-16	; ***
Null deviance:	2650.095	on	23	degr	rees of	freedom	
Residual deviance:	20.204	on	5	degr	rees of	freedom	
AIC: 217.26							

We note that $G^2 = 20.204$ is the same for both models and that the estimated odds (controlling for department) of admission for males compared to that of females is

• Logit model: $\exp(\hat{\beta}_1 - \hat{\beta}_2) = \exp(-0.09987) = 0.905$

• Loglinear model: $\exp(\hat{\lambda}_{11}^{AG} + \hat{\lambda}_{22}^{AG} - \hat{\lambda}_{12}^{AG} - \hat{\lambda}_{21}^{AG}) = \exp(-0.09987) = 0.905$

http://users.stat.ufl.edu/~athienit/STA4504/Examples/admissions_ loglinear.R

7.4 Independence Graphs and Collapsibility

Independence graph is a graphical representation for conditional independence.

- Vertices (or nodes) represent variables.
- Connected by edges: a missing edge between two variables represents a conditional independence between the variables.
- Different models may produce the same graph.
- Graphical models: subclass of loglinear models
 - Within this class there is a unique model for each independence graph.
 - For any group of variables having no missing edges, graphical model contains the highest order interaction term for those variables.

Model(s)	Graph				
(WX,WY,WZ,YZ) (WX,WYZ)*	$x - w \leq \frac{Y}{Z}$				
(WX,WY,WZ,XZ,YZ) (WX,XZ,WYZ) (WXZ,WY,YZ) (WXZ,WYZ)*	x < Z > Y				
(WX,WY,WZ)*	$x - w \leq \frac{Y}{Z}$				
(WX,XY,YZ)★	W — X — Y — Z				
(X,WY,WZ,YZ) (X,WYZ)*	$x w \leq \frac{Y}{Z}$				
(WX,YZ)*	W — X Y — Z				
(WX,WY,WZ,XY,XZ,YZ) (WX,WY,WZ,XYZ) (WX,WYZ,XYZ) many others (WXYZ)*	$\left \begin{array}{c} x & & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				

7.4.1 Independence Graphs for a 4-Way Table (Variables *W*, *X*, *Y*, *Z*)

* Graphical model

7.4.2 Collapsibility Conditions for Three-Way Tables

For a three-way table, the XY marginal and conditional odds ratios are identical if either Z and X are conditionally independent or if Z and Y are conditionally independent.

- Conditions say control variable *Z* is either:
 - conditionally independent of *X* given *Y*, as in model (*XY*, *YZ*);
 - or conditionally independent of *Y* given *X*, as in (*XY*, *XZ*).
- I.e., *XY* association is identical in the partial tables and the marginal table for models with independence graphs

$$X - Y - Z$$
 $Y - X - Z$

or even simpler models.

Example 7.8 (Teen substance usage) See example 7.5 where

- *A* = alcohol use
- *C* = cigarette use
- *M* = marijuana use

The model of AC conditional independence, (AM, CM), has independence graph

$$A - M - C$$

Consider *AM* association, treating *C* as control variable. Since *C* is conditionally independent of *A*, the AM conditional odds ratios are the same as the *AM* marginal odds ratio collapsed over *C*.

$$\frac{(909.24)(142.16)}{(438.84)(4.76)} = \frac{(45.76)(179.84)}{(555.16)(0.24)} = \frac{(955)(322)}{(994)(5)} = 61.9$$

```
> exp(coef(teens.AM.CM)[5])
alcyes:mjyes
    61.87324
> AM.CM.fitted <- teens</pre>
> AM.CM.fitted[,,] <- predict(teens.AM.CM, type="response")</pre>
> AM.CM.fitted[,"yes",]
     alc
тj
             yes
                          no
  yes 909.239583
                  4.760417
  no 438.840426 142.159574
> AM.CM.fitted[,"no",]
     alc
тj
              yes
                            no
  yes 45.7604167 0.2395833
  no 555.1595745 179.8404255
> AM.CM.fitted[,"yes",] + AM.CM.fitted[,"no",]
     alc
      yes no
тj
  yes 955
          5
  no 994 322
```

- Similarly, CM association is collapsible over A
- The *AC* association is not collapsible, because *M* is conditionally dependent with both *A* and *C* in model (*AM*, *CM*). Thus, *A* and *C* may be marginally dependent, even though conditionally independent.

 $\frac{(909.24)(0.24)}{(45.76)(4.76)} = \frac{(438.84)(179.84)}{(555.16)(142.16)} = 1$ $\frac{(1348.08)(180.08)}{(600.92)(146.92)} = 2.75 \neq 1$

```
> AM.CM.fitted["yes",,]
     alc
cigs
              yes
                           no
  yes 909.2395833
                    4.7604167
     45.7604167
                    0.2395833
  no
> AM.CM.fitted["no",,]
     alc
cigs
           yes
                     no
  yes 438.8404 142.1596
  no 555.1596 179.8404
> AM.CM.fitted["yes",,] + AM.CM.fitted["no",,]
     alc
cigs
          yes
                   no
  yes 1348.08 146.92
      600.92 180.08
  no
```

See Part II of http://users.stat.ufl.edu/~athienit/STA4504/Examples/teens.R

7.4.3 Collapsibility Conditions for Multiway Tables

If the variables in a model for a multiway table partition into three mutually exclusive subsets, A, B, C, such that B separates A and C (that is, if the model does not contain parameters linking variables from A directly to variables from C), then when the table is collapsed over the variables in C, model parameters relating variables in A and model parameters relating variables in A with variables in B are unchanged.

A — B — C

Example 7.9 Consider the (WX, XY, YZ) model (drawn slightly differently)

Then collapsing over *Z*:

- WX and XY associations are unchanged
- W and Y are still conditionally independent given X

Example 7.10 (Teen substance usage continued) In addition to the variables seen so far data exists on the race and gender of each teen.

ata(†	tee	ens)							
> ftable($R + G + M \sim A + C$, data = teens)									
	R	White				0ther			
	G	Female		Male		Female		Male	
	М	Yes	No	Yes	No	Yes	No	Yes	No
С									
Yes		405	268	453	228	23	23	30	19
No		13	218	28	201	2	19	1	18
Yes		1	17	1	17	0	1	1	8
No		1	117	1	133	0	12	0	17
	ata(† table Yes No Yes No	ata(tee table(F G G Yes No Yes No	ata(teens) table(R + G + R White G Female M Yes C Yes 405 No 13 Yes 1 No 1	ata(teens) table(R + G + M ~ R White G Female M Yes No C Yes 405 268 No 13 218 Yes 1 17 No 1 117	ata(teens) table(R + G + M ~ A + C R White G Female Male M Yes No Yes C Yes 405 268 453 No 13 218 28 Yes 1 17 1 No 1 117 1	ata(teens) table(R + G + M ~ A + C, da R White G Female Male M Yes No Yes No C Yes 405 268 453 228 No 13 218 28 201 Yes 1 17 1 17 No 1 117 1 133	ata(teens) table(R + G + M ~ A + C, data = te R White Other G Female Male Female M Yes No Yes No Yes C Yes 405 268 453 228 23 No 13 218 28 201 2 Yes 1 17 1 17 0 No 1 117 1 133 0	ata(teens) table(R + G + M ~ A + C, data = teens) R White Other G Female Male Female M Yes No Yes No Yes No C Yes 405 268 453 228 23 23 No 13 218 28 201 2 19 Yes 1 17 1 17 0 1 No 1 117 1 133 0 12	ata(teens) table(R + G + M ~ A + C, data = teens) R White Other G Female Male Female Male M Yes No Yes No Yes No Yes C Yes 405 268 453 228 23 23 30 No 13 218 28 201 2 19 1 Yes 1 17 1 17 0 1 1 No 1 117 1 133 0 12 0

Text suggests loglinear model (AC, AM, CM, AG, AR, GM, GR).

The set $\{A, M\}$ separates sets $\{C\}$ and $\{G, R\}$, i.e. *C* is conditionally independent of *G* and *R* given *M* and *A*. Thus, collapsing over *G* and *R*, the conditional associations between *C* and *M* and between *C* and *A* are the same as with the model (*AC*, *AM*, *CM*) fitted earlier.

```
> teens.df <- as.data.frame(teens)</pre>
> ACM <- margin.table(teens, 1:3)</pre>
> ACM.df <- as.data.frame(ACM)</pre>
>
> teens.m6 <-</pre>
    glm(Freq ~ A*C + A*M + C*M + A*G + A*R + G*M + G*R,
+
         family = poisson, data = teens.df)
+
> AC.AM.CM <- glm(Freq ~ A*C + A*M + C*M,</pre>
                      family = poisson, data = ACM.df)
+
> coef(teens.m6)
 (Intercept)
                        ANo
                                      CNo
                                                    MNo
                                                                GMale
                -5.7507310
   5.9784142
                              -3.0157544
                                             -0.3895472
                                                            0.1358363
                   ANo: CNo
                                  ANo: MNo
                                                CNo:MNo
                                                            ANo:GMale
      ROther
                                              2.8478892
                                                            0.2922863
  -2.6630477
                 2.0545341
                                3.0059195
  ANo:ROther
                 MNo:GMale GMale:ROther
   0.5934604
                -0.2692945
                                0.1261850
> coef(AC.AM.CM)
(Intercept)
                      ANo
                                   CNo
                                                MNo
                                                         ANo: CNo
                                                                      ANo: MNo
  6.8138656
              -5.5282675 -3.0157544 -0.5248611
                                                       2.0545341
                                                                    2.9860144
    CNo: MNo
  2.8478892
```

http://users.stat.ufl.edu/~athienit/STA4504/Examples/teens2.R

- [1] A. Agresti. An Introduction to Categorical Data Analysis. Wiley Series in Probability and Statistics. Wiley, 2018. ISBN: 9781119405269. URL: https://books.google.com/books?id=ukNxDwAAQBAJ.
- [2] Brett Presnell. Lecture notes for Introduction to Categorical Data Analysis. Jan. 2012.
- [3] Jin-Ting Zhang. Lecture notes for to Categorical Data Analysis. Jan. 2012.

Bibliography