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1. Introduction

1.1 Categorical Response Data 5

1.2 Probability Distributions for Categorical Data 6

1.3 Statistical Inference for a Proportion 8

Methods for response variable whose measurement scale is a set of categories.

1.1 Categorical Response Data

The response variable will be categorical while the predictors/covariates can be either cate-
gorical/qualitative or quantitative as you have seen with regression models.

Definition 1.1 (Categorical) A categorical variable is one for which the measurement
scale consists of a set of categories. Categorical variables can be

• Nominal: Unordered categories

• Ordinal: Ordered categories

Example 1.1 Categorical variables can be:

Nominal – method of communication: text, call, phonetic, visual

– favorite music: rock, pop, country, indie, EDM, R&B, etc

– swipe: left, right

Ordinal – political philosophy: liberal, moderate, conservative

– patient condition (excellent, good, fair, poor)

Remark 1.1. Methods designed for ordinal variables utilize category ordering and thus they cannot
be used for nominal variables.
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6 1.2. Probability Distributions for Categorical Data

1.2 Probability Distributions for Categorical Data

For categorical data a very important distribution is the multinomial distribution of which
the binomial is a special case for situations with a a binary outcome.

1.2.1 Bernoulli distribution

Imagine an experiment where the r.v. Y can take only two possible outcomes,

• success (Y = 1) with some probability π

• failure (Y = 0) with probability 1−π.

The p.m.f. of Y is

p(y) = πy(1−π)1−y y = 0,1 0 ≤ π ≤ 1

and we denote this with Y ∼ Bernoulli(π) where E(Y ) = π and V (Y ) = π(1−π).

Example 1.2 A die is rolled and we are interested in whether the outcome is a 6 or
not. Let,

Y =

1 if outcome is 6

0 otherwise

Then, Y ∼ Bernoulli(1/6) with mean 1/6 and variance 5/36.

1.2.2 Binomial distribution

If Y1, . . . ,Yn correspond to n Bernoulli trials conducted where

• the trials are independent

• each trial has identical probability of success π

• the r.v. Y is the total number of successes

then Y =
∑n
i=1Yi ∼ Bin(n,π) with p.m.f.

p(y) =
(
n
y

)
πy(1−π)n−y , y = 0,1, . . . ,n

where
(n
y

)
= n!
y!(n−y)! with E(Y ) = nπ and V (Y ) = nπ(1−π). Note that ! is the “factorial” opera-

tor.

Example 1.3 The shape of 3 different binomials. Notice with π = 0.5 it is symmetric.

https://en.wikipedia.org/wiki/Multinomial_distribution
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Example 1.4 A die is rolled 4 times and the number of 6s is observed (y).

y P (y)
0 0.4823
1 0.3858
2 0.1157
3 0.0154
4 0.0008

In R, these were found using

dbinom(0:4,4,1/6)

Find the probability that there is at least one 6.

P (Y ≥ 1) = 1− P (X < 1)

= 1− P (X = 0)

= 0.5177

In R, one would simple use

1-pbinom(0,4,1/6)

Also, E(Y ) = 4(1/6) = 2/3 and V (Y ) = 4(1/6)(5/6) = 5/9.

Remark 1.2. Another variable of interest concerning experiments with binary outcomes is the
proportion of successes π̂ = Y /n. Note that π̂ is simply the r.v. Y multiplied by a constant, 1/n.
Hence,

E(π̂) = E(Y /n) =
nπ
n

= π

and

V (π̂) = V (Y /n) =
1
n2V (Y ) = �

nπ(1−π)

n�2
=
π(1−π)

n
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Remark 1.3. Binomial distribution can be approximated by a normal distribution when n is large
such that, n(min{π,1−π}) ≥ 5.

1.3 Statistical Inference for a Proportion

Parameters are often estimated using maximum likelihood (M.L.) That is, finding value of the
parameters (of interest) that maximize the likelihood function or equivalently the log of the
likelihood function.

Definition 1.2 (Likelihood Function) The probability of the observed data, expressed as
a function of the parameter is called a likelihood function.

Definition 1.3 (MLE) The maximum likelihood estimator (MLE) is defined to be the
parameter value, for which the likelihood function is maximized.

Example 1.5 Consider a widget that either works (success) or does not work (failure).
Hence, if each attempt with the widget is identical and independent, the number of
successes follows a Bin(n,π).
Out of 10 attempts, 7 yielded a success. We use π̂ = 7/10.

Bin(10,?) P (Y = 7)
π = 0.5 0.1172
π = 0.6 0.2150
π = 0.7 0.2668
π = 0.8 0.2013

So by simple, but not thorough search, we saw that the outcome 7, was most “likely”
if we had a Bin(10,0.7). Now lets be thorough:

1. Take the binomial p.m.f. but now treat is a function where π is the argument.

L(π) :=
n!

y!(n− y)!
πy(1−π)n−y , y = 7,n = 10,π ∈ [0,1]

2. To simplify lets take a look at the log likehood, where maximizing likehood is
equivalent to maximizing log likehood.

l(π) := logL(π) = log{n!} − log{(n− y)!}+ y log{π}+ (n− y) log{1−π}

3. Find maximum, take derivative and equate to 0.

dl(π)
dπ

=
y

π
−

(n− y)
1−π

= 0 ⇒ π̂ =
y

n
=

7
10
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1.3.1 Key facts

• If y1, y2, . . . , yn are i.i.d. from a normal distribution, then

L(µ,σ2|y) =
n∏
i=1

f (µ,σ2|yi)

where f (.) is the p.d.f. The MLEs are then µ̂ = ȳ and σ̂2 = 1
n

∑
(yi − ȳ)2

• In ordinary linear regression with Y being normal, the least squares estimators of the
regression coefficients are also the MLEs.

• For large sample size n, MLEs are optimal (no other estimator has smaller mean squared
error: variance plus squared bias). This is true in fairly broad generality.

• For large n, the sampling distribution of the MLE is approximately normal. Again, this
is true in fairly broad generality.

• Recall that π̂ is unbiased with E(π̂) = π and consistent with V (π̂) −→
n→∞

0. MLEs are

generally consistent.

• π̂ is a sample mean for 0-1 data, so by the Central Limit Theorem, the sampling distri-
bution is approximately normal for large n. Again, this is generally true for MLEs.

1.3.2 Inference Methodologies

Various significance tests exist and inverting them yields corresponding confidence inter-
vals, values for the null hypothesis for which would fail to reject the null. Without loss of
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generality consider
H0 : π = π0 vs Ha : π , π0

Let p = π̂

Wald

Under the null,
T S =

p −π0√
p(1− p)/n

approx.∼ N (0,1)

which inverting yields the 100(1−α) confidence interval (CI)

p∓ z1−α/2
√
p(1− p)/n

We fail to reject the null when ∣∣∣∣∣∣ p −π0√
p(1− p)/n

∣∣∣∣∣∣ < z1−α/2

Solving for π0 we obtain the CI formula.

Remark 1.4. Consider cases such as p = 0 or 1. Then the CI collapses to a singularity such as (0,0)
or (1,1) and the CI can generally perform quite badly when n is relatively small, so other methods
are advisable.

R code 1.1 Within the “binom” package use:

binom.confint(y, n, conf.level = 0.95, methods = ‘‘asymptotic’’)

Score/Wilson

Being true to fully adopting the null hypothesis, π0 is used in the standard error, so that
under the null

T S =
p −π0√

π0(1−π0)/n

approx.∼ N (0,1)

We fail to reject the null when ∣∣∣∣∣∣ p −π0√
π0(1−π0)/n

∣∣∣∣∣∣ < z1−α/2

Solving for π0 requires the use of the quadratic formula and is a bit more complex and
generally we let software solve for us.

R code 1.2 Within the “binom” package use:

binom.confint(y, n, methods = ‘‘wilson’’)

or with small adaptation (continuity correction) use

binom.confint(y, n, methods = ‘‘prop.test’’)
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Other methods:

• Agresti-Coull, which has become the new norm.

R code 1.3 Use
binom.confint(y, n, methods = ‘‘agresti-coull’’)

• Clopper-Pearson a.k.a. “exact” which is recommended when n is small seeing how it is
“exact”.

R code 1.4 Use
binom.confint(y, n, methods = ‘‘exact’’)
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2.1 Introduction 12

2.2 Comparing Proportions in 2× 2 Tables 15

2.3 Testing Independence 18

2.4 Three-Way Contingency Tables 25

Analyzing tables involving frequency counts.

2.1 Introduction

2.1.1 Key Points

• X and Y are two categorical variables.

• X has I categories.

• Y has J categories.

• Display the IJ possible combinations of outcomes in a rectangular table having I rows
for the categories of X and J columns for the categories of Y .

Definition 2.1 (Contingency table) A table of this form in which the cells contain fre-
quency counts of outcomes is called a contingency table.

Example 2.1 (Physicians’ Health Study) A study on Myocardial Infraction (MI) and
treatment. We consider

• Y= heart attack: yes/no, response variable

• X= group: placebo/aspirin, explanatory variable

Group MI
Yes No

Placebo 189 10845
Aspirin 104 10933

12
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2.1.2 Notation

• Let πij = P (X = i,Y = j) probability that (X,Y ) falls in the cell in row i and column j so
that {πij} form the joint distribution of X and Y such that

I∑
i=1

J∑
j=1

πij = 1

• The marginal distribution of X is {πi+}, which is obtained by πi+ =
∑J
j=1πij . (Law of

Total Probability)

• The marginal distribution of Y is {π+j}, which is obtained by π+j =
∑I
i=1πij .

Example 2.2 In a 2× 2 table.

Y
1 2

X
1 π11 π12 π1+
2 π21 π22 π2+

π+1 π+2 1

• Similarly, let {nij}, {ni+}, {n+j} denote the cell counts, row and column totals respectively.

Example 2.3 In a 2× 2 table.

Y
1 2

X
1 n11 n12 n1+
2 n21 n22 n2+

n+1 n+2 n

• Let
pij =

nij
n

and
pi+ =

ni+
n
, p+j =

n+j

n

• It is informative to construct separate probability distributions for Y at each level of
X. Such a distribution consists of conditional probabilities for Y given the level of X
and is called a conditional distribution. That is,

πj |i =
πij
πi+

estimated by pj |i =
nij
ni+

Example 2.4 (Physicians’ Health Study ctd) Look at the probability of heart at-
tack given the treatment group.
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Group MI
Yes No Total

Placebo 0.017 0.983 1
Aspirin 0.009 0.991 1

Remark 2.1. For many diseases there are tests to detect the disease but such tests are not fail proof.
A 2× 2 contingency table helps explore the effectiveness of the test. Let

• Y = outcome of the test with

1 positive
2 negative

.

• X = actual condition with

1 diseased
2 not diseased

.

The following two terms are important

• Sensitivity: P (Y = 1|X = 1) (True positive)

• Specificity: P (Y = 2|X = 2) (True negative)

2.1.3 Independence

Definition 2.2 (Independence) Variables X and Y are statistically independent if the
true conditional distribution of Y is the same at each level of X.

That is,
πj |i = πj |i′ ∀i, i′

and as a consequence

Lemma 2.1 X and Y are independent if and only if

πij = πi+π+j ∀i, j

Example 2.5 In a 2× 2 table.

Y
1 2

X
1 .42 .28 .7
2 .18 .12 .3

.6 .4 1
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2.2 Comparing Proportions in 2× 2 Tables

Consider the conditional distributions, as in example 2.4, simplifying notation by using
πi = π1|i .

Y
1 2

X
1 π1 1−π1
2 π2 1−π2

and interested in performing inference, on whether π1 = π2.
Before we begin we need to use

Lemma 2.2 (Delta Method) Assume that Tn is a statistic based on the data and θ is the
parameter which Tn is trying to target such that

√
n(Tn −θ)

d→N (0,σ2)

For a continuous function g(·), the asymptotic distribution of g(Tn) is

√
n (g(Tn)− g(θ))

d→N
(
0,σ2 [g ′(θ)

]2
)

by Taylor series expansion where
√
n (g(Tn)− g(θ)) ≈

√
n(Tn −θ)g ′(θ)

1. We can use what we learned in an introductory statistics course assuming the two
levels of X are independent

p1 − p2 ∓ z1−α/2

√
p1(1− p1)
n1+

+
p2(1− p2)
n2+

Example 2.6 From example 2.4, a 95% C.I. for π1 −π2

0.017− 0.009∓ 1.96

√
0.017(0.983)

11034
+

0.009(0.991)
11037

→ (0.005,0.011)

Note that if 0 was in the C.I. that would imply independence.

2. Another concept is

Definition 2.3 (Relative Risk) Relative Risk (R.R.) is defined as

R.R. =
π1

π2

Example 2.7 From example 2.4, R.R.=1.82. Hence, the sample proportion of
heart attacks was 82% higher for placebo group.
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Note that log(R.R.) = log(π1)−log(π2) and the Delta Method allows us to find an asymp-
totic normal distribution for each log(πi), and the linear combination of two asymp-
totic normal is still a normal. Therefore, a 100(1−α) C.I. on log(π1/π2) is

log
(
p1

p2

)
∓ z1−α/2

√
1− p1

n1+p1
+

1− p2

n2+p2
→ (L,U )

and 100(1−α) C.I. on π1/π2 is (eL, eU ).

Example 2.8 From example 2.4, a 95% C.I. for log(π1/π2) ends up being
(0.3571,0.8406) and hence for π1/π2(

e0.3571, e0.8406
)
→ (1.43,2.31)

Note that if 1 was in the C.I. that would imply independence.

3. If we let redefine Y = 1 as a success and Y = 2 as a failure, the odds of success are

odds(S) =

 π1
1−π1

X = 1
π2

1−π2
X = 2

Definition 2.4 (Odds Ratio) The Odds Ratio (O.R.) is the ratio of the odds of
Y = 1|X = 1 to that of Y = 1|X = 2.

θ =
π1/(1−π1)
π2/(1−π2)

=
π1(1−π2)
π2(1−π1)

Example 2.9 From example 2.4,

θ̂ =
0.0171/0.9829
0.0094/0.9906

= 1.83

The estimated odds of heart attack in placebo group are 1.83 times the odds of
heart attack in the aspirin group.

Using the Delta Method the 100(1−α) C.I. on log(θ) is

log
(
θ̂
)
∓ z1−α/2

√
1
n11

+
1
n12

+
1
n21

+
1
n22
→ (L,U )

and 100(1−α) C.I. on θ is (eL, eU ).

Example 2.10 From example 2.4, a 95% C.I. for log(θ)

log(1.83)∓ 1.96
√

1/189 + 1/10845 + 1/104 + 1/10933 → (0.365,0.846)

and hence for θ, (1.44,2.33).
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Properties:

• If 1 < θ <∞, the odds of success are higher in row 1 than in row 2.

• If 0 < θ < 1, a success is less likely in row 1 than in row 2.

• θ = 1⇔ log(θ) = 0. This also implies π1 = π2, hence independence.

• If rows are interchanged (or columns, but not both), θ→ 1/θ

• θ̂ = n11n22
n12n21

• O.R. is valid for retrospective studies while R.R. and differencing are not. In retro-
spective studies, sampling is done within levels of Y , not to Y , and we cannot es-
timate P (Y |X). We can estimate P (X |Y ) and hence θ, as θ treats rows and columns
symmetrically.

θ =
P (X = 1|Y = 1)/P (X = 2|Y = 1)
P (X = 1|Y = 2)/P (X = 2|Y = 2)

= · · ·

=
P (Y = 1|X = 1)/P (Y = 2|X = 1)
P (Y = 1|X = 2)/P (Y = 2|X = 2)

Example 2.11 (Case-control study in London Hospitals (Doll and Hill 1950))

Let,

X = smoked at least 1 cigarette per day for at least 1 year

Y = 1 for lung cancer, 0 otherwise

Smoked Cancer
Yes No

Yes 688 650
No 21 59
Total 709 709

This is a case-control study because the presence of lung cancer is consid-
ered “rare” so they found 709 individuals without lung cancer and then (us-
ing records) found 709 with lung cancer, and then looked at whether they
smoked or not.

θ̂ =
(688/709)/(21/709)
(650/709)/(59/709)

=
688× 59
21× 650

= 2.97

Odds of lung cancer for smokers is estimated to be about 3 times the odds
for non smokers.

Remark 2.2.
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– When any values nij ≈ 0, it is best to use {nij + 0.5}
– When π1 and π2 are close to zero then O.R. ≈ R.R.

2.3 Testing Independence

To test whetherX and Y we refer back to Lemma 2.1 that πij = πi+π+j . With any multinomial
we have that the expected frequency of a cell is

µij = nπij
= nπi+π+j by ind.

The MLEs under the null of the expected frequencies are

µ̂ij = nπ̂i+π̂+j

=Zn
ni+
Zn

n+j

n

2.3.1 Pearson Test

Testing

H0 : µij = µ0
ij

ind.=
ni+n+j

n
, ∀i, j

The Pearson chi-square test statistic under the assumption that µ̂ij > 5∀i, j is asymptotically

X2 =
∑
ij

(nij − µ̂ij )2

µ̂ij

H0∼
approx.

χ2
(I−1)(J−1) (2.1)

with p-value P
(
χ2

(I−1)(J−1) ≥ X
2
)
< α (the area to the right of the test statistic is less that α).

More on the degrees of freedom later in equation (2.3).

Example 2.12 (Job Satisfaction) Data from General Social Survey (1991)

Income Job Satisfaction
Dissat Little Moderate Very Total

< 5k 2 4 13 3 22
5k - 15k 2 6 22 4 34
15k - 25k 0 1 15 8 24
> 25k 0 3 13 8 24

Total 4 14 63 23 104

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/job_sat.R

> job_test=chisq.test(job)

>job_test

http://users.stat.ufl.edu/~athienit/STA4504/Examples/job_sat.R
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data: job

X-squared = 11.524, df = 9, p-value = 0.2415

Warning message:

In chisq.test(job) : Chi-squared approximation may be incorrect

Note that when we run the test we obtain a warning because many expected frequen-
cies are < 5.

> round(job_test$expected,2)

Dissat Little Moderate Very

<5 0.85 2.96 13.33 4.87

5k-15k 1.31 4.58 20.60 7.52

15k-25k 0.92 3.23 14.54 5.31

>25k 0.92 3.23 14.54 5.31

2.3.2 Likelihood-Ratio Test

The likelihood-ratio

Λ =
maximum likelihood when H0 is true

maximum likelihood when parameters are unrestricted

Consider

H0 : θ ∈Θ0 vs H1 : θ ∈Θ1

the likelihood ratio is given by

Λ =
supθ∈Θ0

L(θ)

supθ∈(Θ0∪Θ1)L(θ)

So if the ratio is close to 1 it implies that the estimated parameter(s) under the null are close
in proximity to the unrestricted MLEs and hence null is plausible.

For example, assume we wish to test H0 : θ = θ0. To determine if the null value θ0
is plausible we will compare it to the maximum likelihood estimate θ̂MLE, by seeing how
close the likelihood functions are at θ0 and θ̂MLE.
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L(θ)

θθ0θ̂MLE

L
(
θ̂MLE

)
L(θ0)

Λ = L(θ0)
L(θ̂MLE)

The likelihood ratio test (LRT) statistic is asymptotically

G2 = −2logΛ
H0∼

approx.
χ2
df (2.2)

and

degrees of freedom = no. of parameters in general−no. of parameters under H0 (2.3)

Recall that multinomial pdf/likelihood function for an I × J table is

L(πij ;nij ) =
n!

n11! · · ·nIJ !
πn11

11 · · ·π
nIJ
IJ

Hence for a two-way contingency table and working with multinomials we have

Λ =

(ni+n+j

n2

)nij(nij
n

)nij
We can ignore the constants up from since the play no role when maximizing. Recall µ̂ij =
(ni+n+j )/n, so equation (2.2) becomes

G2 = 2
∑
ij

nij log
(
nij
µ̂ij

)
and the df in equation (2.3)

• In general, there are IJ groupings in the multinomial with IJ,πij ’s, hence IJ − 1 free
parameters in general.

• Under H0, I − 1 free πi+’s and J − 1 free π+j ’s

and hence

df = (IJ − 1)− [(I − 1) + (J − 1)]

= (I − 1)(J − 1)
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Example 2.13 (Job Satisfaction continued) Performing the likelihood ratio test
http://users.stat.ufl.edu/˜athienit/STA4504/Examples/job_sat.R

> library(DescTools)

> GTest(job)

data: job

G = 13.467, X-squared df = 9, p-value = 0.1426

Remark 2.3.

• As n→∞,X2 d→ χ2 faster than G2 d→ χ2, but they are usually similar and asymptotically

equivalent, i.e. X2 −G2 d→ 0

• These tests treat X and Y as nominal and reordering rows or columns has no effect. Methods
for ordinal tests (section 2.5 of textbook) do exist.

Once dependence is established, of interest is to determine which cells in the contingency
table have higher or lower frequencies than expected (under independence). This is usually
determined by observing the standardized residuals (deviations) of the observed counts, nij ,
to the expected counts µ̂ij

Definition 2.5 (Standardized/Adjusted Residuals)

rij =
nij − µ̂ij√

µ̂ij(1− pi+)(1− p+j )

which under H0 behaves similar to N (0,1). Hence, values exceeding 2 are indication of
a lack of fit of H0. Also, note the sign of the residual which describes the nature of the
association.

Example 2.14 (Job Satisfaction continued) Residuals are:
http://users.stat.ufl.edu/˜athienit/STA4504/Examples/job_sat.R

> round(job_test$stdres,4)

Dissat Little Moderate Very

<5 1.4406 0.7305 -0.1606 -1.0792

5k-15k 0.7525 0.8716 0.6005 -1.7726

15k-25k -1.1171 -1.5211 0.2198 1.5098

>25k -1.1171 -0.1574 -0.7327 1.5098

Remark 2.4. The unstandardized (Pearson) residual is

eij =
nij − µ̂ij√

µ̂ij

http://users.stat.ufl.edu/~athienit/STA4504/Examples/job_sat.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/job_sat.R
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tends to have a variance that is smaller than 1. Note that,

X2 =
∑
ij

e2
ij

The deviance residual that corresponds to G2 is not discussed in this class.

2.3.3 Partitioning Chi-squared

The sum of two independent chi-squared random variables has a chi-squared distribution
with degrees of freedom equal to the sum of the df of the two components.

Lemma 2.3 Let χ2
ν1

and χ2
ν2

be independent. Then,

χ2
ν1

+χ2
ν2
∼ χ2

ν1+ν2

The G2 statistic for testing independence can be partitioned into components represent-
ing certain aspects of the association. We refer the reader to the textbook for specifics.

Example 2.15 Consider the following data from a survey.

Democrat Independent Republican
F 279 73 225
M 165 47 191

We have G2 = 7 with df = 2. However the table can be partitioned into two tables

Democrat Independent
F 279 73
M 165 47

With G2 = 0.16 and df = 1.

Dem. and Ind. Republican
F 352 225
M 212 191

With G2 = 6.84 and df = 1.

Example 2.16 Consider example 2.12, with G2 = 13.47 with df = 9 but partinioned
as
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Income Job Satisfaction
Dissat Little Moderate Very G2 df

Low 0.30 3
< 5k 2 4 13 3
5k - 15k 2 6 22 4

High 1.19 3
15k - 25k 0 1 15 8
> 25k 0 3 13 8

Low vs High 11.98 3
< 15k 4 10 35 7
> 15k 0 4 28 16

13.47 9

2.3.4 Exact Inference

In this section we take a look at Fisher’s Exact Test that does not implement an asymptotic
distribution. It is exact for any sample size. It was first created and used for 2× 2 tables but
has since been extended.

With H0 : X,Y independent⇔ θ = 1 (odds ratio =1)

Y
1 2

X
1 n11 n12 n1+
2 n21 n22 n2+

n+1 n+2 n

and treating the row and column totals as fixed, the exact null distribution of {nij |n1+,n2+,n+1,n+2}
is the hypergeometric distribution. In the 2×2 case the value of n11 completely determines the
other 3 cells (since marginals are fixed).

p(n11) =

(
n1+

n11

)(
n2+

n+1 −n11

)
(
n
n+1

) , n11 ∈ {max(0,n+1 +n1+ −n), . . . ,min(n+1,n1+)}

The p-value is the sum of the hypergeometric probabilities for outcomes at least as favorable
to the alternative hypothesis as the observed outcome.

Example 2.17 (Tea Testing) The lady is told that milk was poured first in 4 cups and
tea first in the other 4. Order of tasting is randomized. Asked to identify the 4 cups
with milk poured first.
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Guess
Milk Tea

Poured
Milk 3 1 4
Tea 1 3 4

4 4 8

Based on the marginals it is possible for n11 = 0,1,2,3,4 (not always the case).

R code 2.1 With software,

> cbind(0:4,dhyper(0:4,4,4,4))

[,1] [,2]

[1,] 0 0.01428571

[2,] 1 0.22857143

[3,] 2 0.51428571

[4,] 3 0.22857143

[5,] 4 0.01428571

To test
H0 : θ ≤ 1 vs. Ha : θ > 1

where the alternative is indicating that the lady can correctly guess better than simply
guessing by chance, the p-value is thus

P (n11 ≥ 3) = 0.243

With software,

> TeaTasting=matrix(c(3,1,1,3),2,2,byrow=T,

+ dimnames=list(Truth=c("Milk","Tea"),Guess=c("Milk","Tea")))

> TeaTasting

Guess

Truth Milk Tea

Milk 3 1

Tea 1 3

> fisher.test(TeaTasting,alternative="greater")

data: TeaTasting

p-value = 0.2429

alternative hypothesis: true odds ratio is greater than 1

95 percent confidence interval:

0.3135693 Inf

sample estimates:

odds ratio

6.408309

The odds ratio in fisher.test is the ML odds ratio, not the unconditional one tradi-
tionally taught (θ̂ = 9)
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Example 2.18 (Job Satisfaction continued) For larger than 2× 2 tables, In R

> fisher.test(job)

Fisher’s Exact Test for Count Data

data: job

p-value = 0.2315

alternative hypothesis: two.sided

Remark 2.5. For tables with ordinal variables please refer to “Analysis of Ordinal Data” by Alan
Agresti. In addition, some methods you can review are:

• section 2.5.1 of our textbook

• Goodman’s gamma

• Kendall’s tau b

2.4 Three-Way Contingency Tables

2.4.1 Odds Ratios

Extending to three variables the goal is to examine the relationship between X and Y con-
trolling (if significant) for a third variable Z.

Example 2.19 (Death Penalty) A 2× 2× 2 table from data from Florida 1976-1987.

Death Penalty

Victim’s Defendant’s Percentage
Race Race Yes No Yes

White White 53 414 11.3
Black 11 37 22.9

Black White 0 16 0.0
Black 4 139 2.8

Total White 53 430 11.0
Black 15 176 7.9

Let

• Y be the response whether they receive death penalty

• X be the defendant’s race

• Z be the victim’s race
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The eastimated conditional odds ratios are

• Z = white, θ̂XY (1) = 53×37
414×11 = 0.43 (0.42 after adding 0.5 to each cell)

• Z = black, θ̂XY (2) = 0×139
16×4 = 0 (0.94 after adding 0.5 to each cell)

Controlling for victim’s race, odds of receiving death penalty were lower for white de-
fendants than for black defendants.
Ignoring victim’s race, odds of death penalty higher for white defendants as

θ̂XY =
53× 176
15× 430

= 1.45

This is an example of Simpson’s Paradox.

Definition 2.6 (Simpson’s paradox) When a marginal association can have different
direction from the conditional associations is this is called Simpson’s paradox.

Definition 2.7 (Conditional Independence) Variables X and Y are conditionally inde-
pendent given Z if they are independent in each conditional table.

In a 2× 2×K table this means

θXY (1) = · · · = θXY (K) = 1.0

The converse however does not apply, as shown in the following example

Example 2.20 Data from clinical treatment yield

Response

Clinic Treatment Success Failure θ̂

1
A 18 12

1.0
B 12 8

2
A 2 8

1.0
B 8 32

Total
A 20 20

2.0
B 20 40

This also acts as an example of a symmetric property know as

Definition 2.8 (Homogeneous Association) A homogeneous association exists if the con-
ditional odds ratios between X and Y are identical at all levels of Z.

2.4.2 Cochran-Mantel-Haenszel Test

The Cochran-Mantel-Haenszel (CMH) Test is used on 2× 2×K tables to test

H0: X and Y are conditionally independent given Z, i.e. θXY (1) = · · · = θXY (K) = 1
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Similar to Fisher’s Exact Test, in the k-th partial table, the row totals are n1+k ,n2+k and
column totals are n+1k ,n+2k . Given both these totals, n11k has a hypergeometric distribution
and that determines all other cell counts in the k-th partial table.

CMH =

[
K∑
k=1

(n11k −E(n11k))
]2

K∑
k=1

V (n11k)

H0∼
approx.

χ2
1

where under independence,

E(n11k) =
n1+kn+1k

n

V (n11k) =
n1+kn2+kn+1kn+2k

n++k
2(n++k − 1)

The Mantel-Haenszel estimator of that common value equals

θ̂MH =

K∑
k=1

(n11kn22k/n++k)

K∑
k=1

(n12kn21k/n++k)

The Delta Method can implemented to obtain the standard error of the log
(
θ̂MH

)
but those

calculations are ommitted here.

Remark 2.6.

• This test is inappropriate when the association varies widely among the partial tables.

• If the true odds ratios are not identical but do not vary drastically, θ̂MH still provides a
useful summary of the K conditional associations, i.e. the K conditional odds ratios.

Example 2.21 Consider a 2× 2× 5 table

> MIOC

, , Agegrp = 1

OCuse

Status Yes No

Case 4 2

Control 62 224

, , Agegrp = 2

OCuse

Status Yes No

Case 9 12

Control 33 390

, , Agegrp = 3
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OCuse

Status Yes No

Case 4 33

Control 26 330

, , Agegrp = 4

OCuse

Status Yes No

Case 6 65

Control 9 362

, , Agegrp = 5

OCuse

Status Yes No

Case 6 93

Control 5 301

> OR=function(matrix,adjust=TRUE){

+ if(adjust==TRUE){mat=matrix+0.5}

+ OR=(mat[1,1]*mat[2,2])/(mat[1,2]*mat[2,1])

+ return(OR)

+ }

> apply(MIOC,3,OR)

1 2 3 4 5

6.465600 8.859104 1.675303 3.786661 3.810890

Since the five sample odds ratios do not very “drastically” we can proceed with the
CMH test

> mantelhaen.test(MIOC)

Mantel-Haenszel chi-squared test with continuity correction

data: MIOC

Mantel-Haenszel X-squared = 32.793, df = 1, p-value = 1.025e-08

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

2.426983 6.493688

sample estimates:

common odds ratio

3.969895

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/CMH.R

Remark 2.7. The Breslow-Day Test also exists for testing homogeneity of odds ratios, not just for
conditional independence.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/CMH.R
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Using models as the basis for analyzing associations, which can describe effects in more infor-
mative ways.

3.1 Components of a Generalized Linear Model (GLM)

1. Random component: Identifies the response variable Y and assumes a probability dis-
tribution for it. We will assume independent observations from the exponential family
of distributions. We will primarily be looking at binomial and Poisson, but note that
the Gaussian also falls in this family as do most of the “common” distributions.

2. Systematic component: Specifies the explanatory variables (x1, . . . ,xk) used as predic-
tors in the model using a linear function of coefficients known as the linear predictors

α + β1x1 + · · ·+ βkxk

3. Link: Describes the functional relation between the systematic component and ex-
pected value of the random component. It specifies how µ = E(Y ) relates to explanatory
variables in the linear predictor.

g(µ) = α + β1x1 + · · ·+ βkxk

The function g(·) is called the link function.

More about link functions

• Each potential probability distribution has one special function of the mean that is
called its natural parameter. The link function that uses the natural parameter as g(µ)
in the GLM is called the canonical link. (The benefit of using the canonical link is that
the expected fisher-information matrix is the same as the observed matrix.)

• For the normal distribution, it is mean itself, i.e. identity link.

g(µ) = µ = α + β1x1 + · · ·+ βkxk

29
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• For the Poisson, the natural parameter is the log of the mean. (Recall µ = λ.)

g(µ) = log(µ) = α + β1x1 + · · ·+ βkxk

• For the Bernoulli, the natural parameter is the logit of the mean. (Recall µ = π.)

g(µ) = log
[
µ

1−µ

]
= α + β1x1 + · · ·+ βkxk

3.2 GLM for Binary Data

The distribution of a binary response is specified by probabilities

P (Y = 1) = π and P (Y = 0) = 1−π

and for n independent and identical trails we end up with a binomial distribution.

3.2.1 Linear Probability Model

For simplicity, consider a single predictor x. Using an identity link,

π(x) = α + βx

For such a model probabilities may fall between 0 and 1 but for large or small enough values
of x, the model may predict π(x) < 0 or π(x) > 1. Hence, this model is valid only for a finite
range of predictor values. As such other links shall be used, such as logit and probit.

Figure 3.1: An example of a model with identity, logit and probit links

3.2.2 Logistic Regression Model

Using the logit link,

log
(
π(x)

1−π(x)

)
= α + βx ⇒ π(x) =

eα+βx

1 + eα+βx (3.1)
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That is,
π(x) = F0(α + βx) ⇒ F−1

0 (π(x)) = α + βx

where

F0(x) =
ex

1 + ex
=

1
1 + e−x

is the (standard) cdf of the logistic distribution. That is, the link function is the logistic’s
distribution quantile function (which is also the canonical link)

g(·) ≡ F−1
0 (·)

guaranteeing that 0 ≤ π(x) ≤ 1. Although logistic regression will be covered more in depth
in the next chapter some key points are:

• The parameter β determines the rate of increase or decrease of the curve and the mag-
nitude of β determines how fast the curve increases or decreases.

• When β > 0, π(x) increases as x increases.

• When β < 0, π(x) decreases as x increases.

In the next chapter we will see that the 100(1−α)% C.I. on β is

β̂ ∓ z1−α/2
(
sβ̂

)
where the estimate and standard error are provided by the software.

R code 3.1 A GLM is fitted using the

model=glm(formula,data,family)

where the family argument will specify the random component as well as the link
function. Basic output is provided with summary(model) and CI created on the coeffi-
cients via confint(model).
For a logistic regression, take for example

• When the response column is y is 0 or 1, use

glm(y∼x,family=binomial,data=mydata)

• When there is a column grouping successes and one grouping failures, use

glm(cbind(Successes,Failures)∼x,family=binomial,data=mydata)

Please see the help(glm) help file.

Alternative link: Probit Just as the logistic regression model utilized the logistic’s distri-
bution quantile function, an alternative is quantile function of the (standard) normal distri-
bution

g(·) ≡ Φ−1(·)
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which implies
π(x) = Φ(α + βx)

The probit transform maps π(x) so that the regression curve for π(x) (or 1−π(x), when β < 0)
has the appearance of the normal cdf with mean µ = −α/β and standard deviation σ = 1/ |β|.

Example 3.1 (Infant Malformation) A study was conducted about infant sex organ
malformation and pregnant mother’s alcohol consumption.

• Y = infant sex organ malformation (1 = present, 0 = absent)

• x = mother’s alcohol consumption (avg drinks per day)

Consumption Malformation

Measured Score Absent Present

0 0.0 17066 48
< 1 0.5 14464 38
1-2 1.5 788 5
3-5 4.0 126 1
≥ 6 7.0 37 1

> malform.logit=glm(cbind(Present,Absent)˜Alcohol,

+ family=binomial(link=logit))

> summary(malform.logit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.9605 0.1154 -51.637 <2e-16 ***

Alcohol 0.3166 0.1254 2.523 0.0116 *

---

Null deviance: 6.2020 on 4 degrees of freedom

Residual deviance: 1.9487 on 3 degrees of freedom

AIC: 24.576

The logistic regression model is

logit [π̂(x)] = −5.9605 + 0.3166(Score)
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Note that in this example both the logistic and the linear model appear to be good fits.
This is because whenever you “zoom” into to a part of a curve a linear relationship is
adequate.
http://users.stat.ufl.edu/˜athienit/STA4504/Examples/malformation.R

Remark 3.1. If a logistic regression model is deemed an adequate fit then so will a probit model be
deemed, i.e. when one is a good fit then so will the other, as seen in figure 3.1

Example 3.2 (Challenger disaster) For the 23 space shuttle flights that occurred before
the Challenger mission disaster in 1986, the data shows the temperature at the time of
flight and whether at least one primary O-ring suffered thermal distress.

Flight Temp Failure
1 66 0
2 70 1
3 69 0
4 68 0
5 67 0
6 72 0
7 73 0
8 70 0
9 57 1

10 63 1
11 70 1
12 78 0
13 67 0
14 53 1
15 67 0
16 75 0
17 70 0
18 81 0
19 76 0
20 79 0
21 75 1
22 76 0
23 58 1

> preC.logit=glm(Failure˜Temp,family=binomial(link=logit),data=preC)

> summary(preC.logit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 15.0429 7.3786 2.039 0.0415 *

Temp -0.2322 0.1082 -2.145 0.0320 *

---

Null deviance: 28.267 on 22 degrees of freedom

http://users.stat.ufl.edu/~athienit/STA4504/Examples/malformation.R
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Residual deviance: 20.315 on 21 degrees of freedom

AIC: 24.315

> confint(preC.logit)

2.5 % 97.5 %

(Intercept) 3.3305848 34.34215133

Temp -0.5154718 -0.06082076

The logistic regression model is

logit [π̂(x)] = 15.0329− 0.2322(Temp.)

According to the report, the air temperature at the time of launch, 11:38 a.m. EST, was
36 degrees. This temperature was 15 degrees colder than any previous launch and the
O-ring suffered catastrophic failure.

> predict.glm(preC.logit,newdata=data.frame(Temp=36),type="response")

1

0.9987521
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http://users.stat.ufl.edu/˜athienit/STA4504/Examples/oring.R

3.3 GLM for Count Data

3.3.1 Modeling Counts

Many discrete response variables have counts as possible outcomes. The Poisson distribution
is often used as a sampling model for counts.

Example 3.3 Data examples:

• For a sample of cities worldwide, each observation might be the number of auto-
mobile thefts in 2003.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/oring.R


Chapter 3. Generalized Linear Models 35

• For a sample of silicon wafers used in computer chips, each observation might
be the number of imperfections on wafer.

The Poisson probability mass function is

p(y) =
µye−µ

y!
, y = 0,1, . . . µ > 0

with E(Y ) = V (Y ) = µ.
The (simple) Poisson log-linear is

log(µ) = α + βx ⇒ µ = e(α+βx) = eα(eβ)x

R code 3.2 For a poisson regression, take for example

glm(y∼x,family=poisson,data=mydata)

Please see the help(glm) help file.

Example 3.4 (Silicon Wafers) Let,

• Y = number of defects os silicon wafer.

• x = 0 if type A, 1 if type B.

A 8 7 6 6 3 4 7 2 3 4
B 9 9 8 14 8 13 11 5 7 6

> wafers.log=glm(defects˜trt,family=poisson(link="log"),data=wafers)

> summary(wafers.log)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.6094 0.1414 11.380 < 2e-16 ***

trtB 0.5878 0.1764 3.332 0.000861 ***

---

Null deviance: 27.857 on 19 degrees of freedom

Residual deviance: 16.268 on 18 degrees of freedom

AIC: 94.349

> confint(wafers.log)

2.5 % 97.5 %

(Intercept) 1.3188383 1.8743819

trtB 0.2469096 0.9400962

The log-linear model is
log[µ(x)] = 1.6094 + 0.5878x

giving us

A: µ(0) = exp(1.6094) = 5
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B: µ(1) = exp(1.6094)exp(0.5878) = 5 + 4 = 9

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/wafers.R

3.3.2 Modeling Rates

There are situations when the counts have different bases and so an adjustment is necessary,
that is we model the rate at which an event occurs.

Example 3.5 Consider two individuals given fishing nets and told they have 5 minutes
to catch as many fish as possible. After, 5 minutes

• Person A catches 11

• Person B catches 20

Who “perfomed” better?
Person A Person B

That is a trick question, because what if the sizes of the nets where different, then we
need to account on how many fish per square inch of net, i.e. a rate. Also, if person A
got 11 fish with that net that’s amazing!

Let y be the count and t be the base

E
(Y
t

)
=
µ

t

Hence,

log
(µ
t

)
= log(µ)− log(t) = α + βx

⇒ log(µ) = α + βx+ log(t)

⇒ log(µ) = α + βx+ β2︸︷︷︸
=1

x2︸︷︷︸
log(t)

All that is required is to add another “predictor” whose coefficient is set to 1, and the solve
using restricted maximum likelihood. The term log(t) is called the offset.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/wafers.R
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R code 3.3 Here when we fit the model we use offset argument

glm(y∼x+offset(log(base)),...)

Example 3.6 (British Train Accidents) The first stationary gasoline engine developed
by Carl Benz was a one-cylinder two-stroke unit which ran for the first time on New
Year’s Eve 1879. So consider the number of automobile accidents in 1879 compared to
2019. We need to adjust for the fact that there are more automobiles on the road and
that they travel larger distances.
The same is true for the following Train-Road collision data, where an offset is needed.
Have collisions between trains and road vehicles become more prevalent over time?
Total number of train-km (in millions) varies from year to year. Model annual rate of
train-road collisions per million train-km with t = annual no. of train-km and x =no.
of years since 1975.

traincollisions

Year KM Train TrRd

1 2003 518 0 3

2 2002 516 1 3

3 2001 508 0 4

4 2000 503 1 3

5 1999 505 1 2

6 1998 487 0 4

7 1997 463 1 1

8 1996 437 2 2

9 1995 423 1 2

10 1994 415 2 4

11 1993 425 0 4

12 1992 430 1 4

13 1991 439 2 6

14 1990 431 1 2

15 1989 436 4 4

16 1988 443 2 4

17 1987 397 1 6

18 1986 414 2 13

19 1985 418 0 5

20 1984 389 5 3

21 1983 401 2 7

22 1982 372 2 3

23 1981 417 2 2

24 1980 430 2 2

25 1979 426 3 3

26 1978 430 2 4

27 1977 425 1 8

28 1976 426 2 12

29 1975 436 5 2

> trains.log=glm(TrRd˜I(Year-1975)+offset(log(KM)),family=poisson(link=log),
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+ data=traincollisions)

> summary(trains.log)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.21142 0.15892 -26.50 < 2e-16 ***

I(Year - 1975) -0.03292 0.01076 -3.06 0.00222 **

---

Null deviance: 47.376 on 28 degrees of freedom

Residual deviance: 37.853 on 27 degrees of freedom

AIC: 133.52

> sum(resid(trains.log,type="pearson")ˆ2)

[1] 42.19178
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The model is

log
(
µ̂

t

)
= −4.21142− 0.03292x

µ̂

t
= e−4.21142e−0.03292x

= (0.0148)(0.968)x

Rate estimated to decrease by 1 − 0.968 = 0.032 = 3.2% per year from from 1975 to
2003, i.e. the rate is 0.968 times the rate of the previous year.

• Est. rate for 1975 (x = 0) is 0.0148 per million km

• Est. rate for 2003 (x = 28) is 0.0059 per million km

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/trains.R

http://users.stat.ufl.edu/~athienit/STA4504/Examples/trains.R
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Example 3.7 (Airline Fatalities) Data obtained from MIT Airline Data Project and
Wikipedia, provides information on fatalities, Available Seat Miles (ASM) and year

> air_deaths

Fatalities ASM Year

1 1828 829581 1995

2 2796 862621 1996

3 1768 884192 1997

4 1721 898359 1998

5 1150 945245 1999

6 1586 980769 2000

7 1539 953875 2001

8 1418 914901 2002

9 1233 922277 2003

10 767 998868 2004

11 1463 1028621 2005

12 1298 1027553 2006

13 981 1060116 2007

14 952 1040840 2008

15 1108 975307 2009

16 1130 991934 2010

17 828 1012597 2011

18 800 1012261 2012

19 459 1025616 2013

20 1328 1048107 2014

21 898 1090198 2015

22 629 1131694 2016

23 399 1168055 2017

Fitting a Poisson log-linear model with offset

> air.poisson=glm(Fatalities˜I(Year-1995),family=poisson,data=air_deaths,

+ offset=log(ASM))

> summary(air.poisson)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.0541485 0.0101474 -596.62 <2e-16 ***

I(Year - 1995) -0.0638961 0.0009377 -68.14 <2e-16 ***

---

Null deviance: 6595.9 on 22 degrees of freedom

Residual deviance: 1751.8 on 21 degrees of freedom

AIC: 1959.4

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/airline.R

http://users.stat.ufl.edu/~athienit/STA4504/Examples/airline.R
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3.4 Inference and Model Checking

3.4.1 Standard testing - Wald

Display 3.1 (Inference on parameters) Since parameter estimation is done via ML,
and MLE’s are asymptotically normal, inference is done in the traditional way. Let
θ = (α,β) denote the parameter vector

√
n
(
θ̂ −θ0

) d→N

(
0,

1
I(θ0)

)
where (θ0) is the Fisher information evaluated at θ0 (not covered in this class).
Therefore, hypotheses tests and confidence intervals for the parameter’s are done ac-
cordingly.

To test H0 : β = β0 you can create the test statistic

T S =
β̂ − β0

sβ̂

H0∼ N (0,1)

and obtain p-value in traditional way. A 100(1−α)% CI on β can also be created

β̂ ∓ z1−α/2
(
sβ̂

)
(3.2)

These methods can be extended to one-sided tests.

Example 3.8 (Infant malformatrion continued) From the output

> summary(malform.logit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.9605 0.1154 -51.637 <2e-16 ***

Alcohol 0.3166 0.1254 2.523 0.0116 *

we can create a 95% C.I.

0.3166∓ 1.96(0.1254) −→ (0.070816,0.562384)

We will see functions that create C.I.’s but their default is not the Wald method.

3.4.2 Likelihood Ratio Test - Deviance

Goodness of Fit

Deviance is actually the likelihood ratio test for goodness of model fit, that is, equation (2.2)
for

H0: model adequately fits
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D(y; µ̂) := G2 = −2[L(µ̂;y)−L(y;y)]
d−→

H0
χ2
df (3.3)

with p-value being P
(
χ2
df ≥ G

2
)

and where

• L(µ̂;y) is the log-likelihood of the fitted model

• L(y;y) is the log-likelihood of the saturated model, that is the model that has a separate
parameter for each observation giving a perfect fit but with 0 degrees of freedom (so
no inference can be done within that model).

• df as in equation (2.3)

Display 3.2 (Goodness of fit) A goodness of fit can be used only in the number of pre-
dictor levels is fixed and relatively small to the overall sample size. Either, X2 or G2

can be used since to compare the observed counts to the values predicted by the fitted
model.

Remark 3.2. Goodness of fit can also be performed - preferred even - by using X2, instead of G2.

Example 3.9 Revisiting some examples

(Infant Malformation) For example 3.1 a goodness of fit can be used (with either X2 or
G2) as there are only 5 binomials and as more women are sur-
veyed/sampled the number of binomials (rows of data) remains
fixed.

...

Residual deviance: 1.9487 on 3 degrees of freedom

> sum(resid(malform.logit,type=‘‘pearson’’)ˆ2)

[1] 2.20523

0

χ3
2 distribution

TS=1.9487

pval=0.5831

G2 = 1.9487 (X2 = 2.0523) with df = 3 −→ p-value = 0.5831

(Challenger disaster) A goodness of fit is not adequate as each row corresponds to a
Bernoulli trial, that is a 0 or 1. As sample size increases so will
the number of rows in the data.
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Remark 3.3. If the data is not grouped you may still perform a goodness of fit by

• grouping your predictor(s). For example, for temperature you could create groups 31-40,
41-50, . . . and then create scores such as 35, 45, . . . ensuring that the number of predictor
levels remains relatively fixed.

• comparing current model to a “fuller” model rather than to a saturated model (fullest). A
fuller model could be one with polynomial terms, interactions, etc.

Parameter testing

Likelihood ratio test can be used to test H0 : β = β0 using deviances. To be specific the
difference of two goodness of fit tests.

G2 =D(y; µ̂0)−D(y; µ̂1) (3.4)

= −2[L(µ̂0;y)−L(y;y)]− (−2)[L(µ̂1;y)−L(y;y)]

= −2[L(µ̂0;y)−L(µ̂1;y)]
d−→

H0
χ2
df

where

• L(µ̂0;y) is the log-likelihood of the reduced (under the null) model

• L(µ̂1;y) is the log-likelihood of the fitted model

• df is the difference in degrees of freedom of the two models which corresponds to
the dimension reduction of our coefficient parameter vector, in this case 1 as we are
restricting one parameter β = β0.

L(y;y)

model fit/no. of parameters

L (µ̂1;y)

L (µ̂0;y)

D (y; µ̂1)

D (y; µ̂0)

Best fit with df =0

Fit of “full” model

Fit of “reduced” model D (y; µ̂0)−D (y; µ̂1)

Figure 3.2: Illustration of how Deviances are used in LRTs
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Remark 3.4. The “Null Deviance” that is usually provided in R output is the deviance for the null

H0 : β = 0 (βi = 0 ∀i for models with more than one predictor)

So that

Null Deviance−Residual Deviance =D(y; µ̂0)−D(y; µ̂1)

= G2

which is the likelihood ratio test statistic.

For binomial and Poisson models

D(y; µ̂) = 2
n∑
i=1

yi log(yi/µ̂i)

The likelihood ratio test can be used to create a 100(1−α) confidence interval on β. That
is, finding all the null values β0 for which would yield a test statistics with a large p-value.
It is a bit more complicated than equation (3.2) so we use software.

R code 3.4 Use confint(.) to obtain the likelihood ratio confidence intervals.

Example 3.10 (Infant Malformation continued) We focus on testing H0 : β = 0 via
deviances.

> summary(malform.logit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.9605 0.1154 -51.637 <2e-16 ***

Alcohol 0.3166 0.1254 2.523 0.0116 *

---

Null deviance: 6.2020 on 4 degrees of freedom

Residual deviance: 1.9487 on 3 degrees of freedom

AIC: 24.576

> confint(malform.logit)

2.5 % 97.5 %

(Intercept) -6.19302366 -5.7396968

Alcohol 0.01868149 0.5234947

Note that this CI is different from the Wald CI done earlier of (0.070816, 0.562384).
The test statistic from equation (3.4)

Null deviance − Residual deviance = 6.2020− 1.9487 = 4.2533

with p-value

> 1-pchisq(4.2533,1)

[1] 0.03917414
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and we reject the null.

Exercise 3.1 Do the same for the “Challenger” disaster and “Silicon wafers” examples.

3.5 Overdispersion

We know that
E(χ2

ν) = ν

so for a well fitting model we expect

X2 ≈ Residual d.f.

However, cases where
X2� Residual d.f.

are of concern. Could use G2 (Residual Deviance) as an alternative but not as efficient in
detecting overdispersion.

Reasons

1. Badly fitting model

• omitted terms/variables

• incorrect relationship (link)

• outliers

2. Variation greater than predicted by model that leads to overdispersion

• count data: V (Y ) > µ

• binomial data: V (Y ) > nπ(1−π)

Causes of Overdispersion

• variability of experimental material - individual level variability

• correlation between individual responses, e.g. litters of rats

• cluster sampling, e.g. areas; schools; classes; children

• aggregate level data

• omitted unobserved variables

• excess zero counts (structural and sampling zeros)
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Consequences With correct mean model we have consistent estimates of β but:

• incorrect standard errors

• selection of overly complex models

Remark 3.5. Overdispersion is much more common for count data, especially due to the restriction
by the Poisson model E(Y ) = V (Y ).

The two most popular methods for checking overdispersion are;

• Check whether X2� df , or X2/df � 1,

• Fit a different model with additional parameters that allow variance to be greater and
test the significance of those parameters

– count data: Negative Binomial, parameter θ is introduced and estimated via MLE

V (Y ) = µ+
(1
θ

)
µ2 (3.5)

– binomial data: Beta-Binomial, parameter ρ is introduced and estimated via MLE

V (Y ) = nπ(1−π)[1 + (n− 1)ρ]

R code 3.5 Most common ways of fitting these models are

• Negative Binomial: glm.nb(.) in the MASS package

• Beta-Binomial: betabinomial(.) in the VGAM package

Example 3.11 (Homicide) 1308 individuals who where classified as “Black” or “White”
were asked: ”How many people have you known personally that were victims of homi-
cide?”

Number of victims
Race 0 1 2 3 4 5 6
Black 119 16 12 7 3 2 0
White 1070 60 14 4 0 0 1

> head(homicide) #data entered in ‘‘shorter’’ format

nvics race Freq

1 0 Black 119

2 1 Black 16

3 2 Black 12

4 3 Black 7

5 4 Black 3

6 5 Black 2

> homicide=transform(homicide,race=relevel(race,"White"))
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> hom.poi=glm(nvics˜race,family=poisson(link="log"),

+ weights=Freq,data=homicide)

> summary(hom.poi)

.

.

Null deviance: 962.80 on 10 degrees of freedom

Residual deviance: 844.71 on 9 degrees of freedom

Checking for overdispersion via X2/(df )� 1 we first notice that the way the data was
entered, the degrees of freedom is not 9 but actually 1308-2=1306

> sum(resid(hom.poi,type="pearson")ˆ2)/

+ (sum(homicide$Freq)-length(hom.poi$coefficients))

[1] 1.745692

So some evidence of overdispersion is apparent. Now to find the negative binomial

> library(MASS)

> hom.nb=glm.nb(nvics˜race,weights=Freq,data=homicide)

> summary(hom.nb)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3832 0.1172 -20.335 < 2e-16 ***

raceBlack 1.7331 0.2385 7.268 3.66e-13 ***

---

Null deviance: 471.57 on 10 degrees of freedom

Residual deviance: 412.60 on 9 degrees of freedom

AIC: 1001.8

Theta: 0.2023

Std. Err.: 0.0409

2 x log-likelihood: -995.7980

and the estimate of (1

θ̂

)
≈ 5

seems substantial in equation (3.5). Much better now,

> sum(resid(hom.nb,type="pearson")ˆ2)/

+ (sum(homicide$Freq)-length(hom.nb$coefficients))

[1] 1.090373

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/homicide.R

Example 3.12 (British Train Accidents continued) Checking for potential overdisper-
sion, we are not quite sure if X2/df � 1

> sum(resid(trains.log,type="pearson")ˆ2)

[1] 42.19178

http://users.stat.ufl.edu/~athienit/STA4504/Examples/homicide.R
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> sum(resid(trains.log,type="pearson")ˆ2)/trains.log$df.residual

[1] 1.562658

So we fit a negative binomial,

> library(MASS)

> trains.nb=glm.nb(TrRd ˜ I(Year-1975) + offset(log(KM)),

+ data=traincollisions)

> summary(trains.nb)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.19999 0.19584 -21.446 < 2e-16 ***

I(Year - 1975) -0.03367 0.01288 -2.615 0.00893 **

---

Null deviance: 32.045 on 28 degrees of freedom

Residual deviance: 25.264 on 27 degrees of freedom

AIC: 132.69

Theta: 10.12

Std. Err.: 8.00

2 x log-likelihood: -126.69

Since, θ̂+ 2se(θ̂) ≈ 26 and hence 1/26 ≈ 0.0385 is close to 0. Therefore the second term
in equation (3.5) does not seem to be that significant and conclude no strong evidence
of overdispersion.
http://users.stat.ufl.edu/˜athienit/STA4504/Examples/trains.R

Example 3.13 (Airline Fatalities continued) Fit a negative binomial model due to po-
tential overdispersion...why is there potential overdispersion?

> air.nb=glm.nb(Fatalities˜I(Year-1995)+offset(log(ASM)),data=air_deaths)

> summary(air.nb)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.06375 0.10807 -56.110 < 2e-16 ***

I(Year - 1995) -0.06256 0.00843 -7.421 1.16e-13 ***

---

Null deviance: 78.655 on 22 degrees of freedom

Residual deviance: 23.319 on 21 degrees of freedom

AIC: 334.03

Theta: 14.09

Std. Err.: 4.17

2 x log-likelihood: -328.03

we conclude that the rate is decreasing. As an exercise, interpret the magnitude of β̂
per 1 year increase.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/trains.R
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http://users.stat.ufl.edu/˜athienit/STA4504/Examples/airline.R

Exercise 3.2 Check for overdispersion with the “Silicon wafers” example

Remark 3.6. The Beta-Binomial is omitted here but an alternative method that does not use a
likelihood approach but merely the structure between the mean and variance are the

• count data: Pseudo-Poisson

• binomial data: Pseudo-Binomial

but as result likelihood ratio tests are not possible.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/airline.R
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Closer look at logistic regression and reviewing the model fitting process.

4.1 Interpretation

We have seen the simple logistic regression model as in equation (3.1). That is

logit [π(x)] = α + βx ⇒ π(x) =
eα+βx

1 + eα+βx

• β > 0, then π(x) ↑ as x ↑

• β < 0, then π(x) ↓ as x ↑

• β = 0, then π(x) = eα/(1 + eα) which is a constant, with π(x) > 0.5 when α > 0

• The rate of change in π(x) (but taking derivatives) is βπ(x) [1−π(x)].

Figure 4.1: Rate of change

49
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Note that the rate of change is maximized when π(x) = 0.5. This implies

max rate of change is
β

4
when x =

−α
β

This value of x is sometimes called the median effective level and it represents the level
at which each outcome has a 50% chance.

• The term eβ is odds ratio for a 1 unit increase in x. The odds os success are

– at x
π(x)

1−π(x)
= eα+βx

– at x+ 1
π(x+ 1)

1−π(x+ 1)
= eα+βxeβ

Hence the odds ratio for x+ 1 versus x is

OR =
π(x+ 1)/ [1−π(x+ 1)]

π(x)/ [1−π(x)]
= eβ

• Parameters estimated via MLE are asymptotically normal.

Example 4.1 (Horseshoe crab) There are 173 female crabs for which we wish to model
the presence or absence of male “satellites” dependent upon characteristics of the fe-
male horseshoe crabs.

Yi =

1 satellite present

0 otherwise

Explanatory variables are: weight (in kg), width of shell, color (medium light, medium,
medium dark, dark), and condition of spine (bad, good, excellent).

> fit=glm(y ˜ weight, family=binomial(link=logit))

> summary(fit)
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.6947 0.8802 -4.198 2.70e-05 ***

weight 1.8151 0.3767 4.819 1.45e-06 ***

---

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 195.74 on 171 degrees of freedom

AIC: 199.74

The maximum likelihood fit is then logit[π̂(x)] = −3.6947 + 1.8151x. Note that β is
positive, implying that π̂(x) ↑ as x ↑.

π̂(x) =
exp(−3.6947 + 1.8151x)

1 + exp(−3.6947 + 1.8151x)

• At the average weight of x = x̄ = 2.44, π̂(2.44) = 0.676.

• The rate of change at x = 2.44 is β̂π̂(1− π̂) = 1.8151(0.676)(0.324) = 0.398.

• The estimated change in π per 1 kg increase is about 0.398 (in the neighborhood
of the sample mean). However, the standard deviation of weight is sx = 0.58 and
hence talking about a 1 unit increase, i.e. 1 kg, may be too much of an increase
and so the estimated change in π per 0.1 kg increase is about 0.0398.

• π̂(x) = 1/2 when x = −(−3.6947)
1.8151 = 2.036

• For a 1 kg increase in weight, the estimated odds of the presence of a satellite
are multiplied by exp(1.8151) = 6.14169. Consequently, for a 0.1 kg increase
in weight, the estimated odds of the presence of a satellite are multiplied by
exp(0.1(1.8151)) = 1.2, i.e. the odds increase by 20%.
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Part (I) of http://users.stat.ufl.edu/˜athienit/STA4504/Examples/crab_u.R

http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
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4.2 Inference

We refer the reader to review Section 3.4 and we will expand from there. We have covered
how to create confidence intervals on individual (coefficient) parameters, e.g. β, but now we
expand to linear combinations of parameters.

Goal: Create a CI for π(x).

1. First work with logit [π̂(x)] = α̂ + β̂x, where we know (via MLE)

α̂ ∼N
(
α,σ2

α

)
and β̂ ∼N

(
β,σ2

β

)
⇒ α̂ + β̂x︸ ︷︷ ︸

logit[π̂(x)]

∼N
(
α + βx,σ2

α + x2σ2
β + 2xσαβ

)

2. The 100(1−α)% CI for logit [π(x)] = α + βx is

α̂ + β̂x∓ z1−α/2

√
s2α + x2s2β + 2xsαβ → (L,U ) (4.1)

where s2α and s2β are the estimated variances, and sαβ is the estimated covariance.

V
(
α̂ + β̂x

)
= V (α̂) + x2V (β̂) + 2xCov(α̂, β̂)

R code 4.1 Using software

• The variance-covariance matrix for all parameters can be found for glm

objects by using vcov(model)

• The estimate and the standard error for logit [π̂(x)] = α̂ + β̂x can obtained
using

predict.glm(model,newdata,type=‘‘link’’,...)

3. The 100(1−α)% CI for π(x), using equation (4.1) is then(
eL

1 + eL
,
eU

1 + eU

)

Remark 4.1. We looked at CI for α + βx, a linear combination of two parameters but this method
can be extended to linear combinations of any length of parameters.

Example 4.2 (Horseshoe crab continued) Test H0 : β = 0 via

• Wald test given in the summary output (and CI could be derived)

• Likelihhod ratio test G2 and prerrably corresponding CI

> confint(fit,"weight")
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2.5 % 97.5 %

1.113790 2.597305

There are 6 female crabs with a weight of 2.4 kg (or 2400 g), of whom only 4 have
at least one satellite. Using the model we construct a 95% CI for π̂(2.4), by first con-
structing the CI for logit[π̂(2.4)]

> eta=predict(fit,newdata=data.frame(weight=2.4),type="link",se.fit=TRUE)

> eta

$fit

[1] 0.6616206

$se.fit

[1] 0.1780615

Note that the standard error is the same as if we directly use equation (4.1)

> sqrt(vcov(fit)[1,1]+2.4ˆ2*vcov(fit)[2,2]+2*2.4*vcov(fit)[1,2])

[1] 0.1780615

> eta.ci=eta$fit+c(-1,1)*qnorm(0.975)*eta$se.fit

> eta.ci # This is (l,u) interval

[1] 0.3126265 1.0106148

> plogis(eta.ci) # This is (exp(l)/(1+exp(l)),exp(u)/(1+exp(u)))

[1] 0.5775262 0.7331404

Part (I) of http://users.stat.ufl.edu/˜athienit/STA4504/Examples/crab_u.R

4.3 Multiple Logistic Regression

Just as in OLS regression, multiple regression can be used when multiple predictors x1,x2, . . . ,xk
are available, yielding

logit [π(x)] = α +
k∑
i=1

βixi ⇔ π(x) =
eα+

∑k
i=1 βixi

1 + eα+
∑k
i=1 βixi

Example 4.3 (Horseshoe crab continued) Next we introduce the color variable into the
model by creating 3 indicator variables for the 4 levels of color. Let,

c1 =

1 medium light

0 o/w
c2 =

1 medium

0 o/w
c3 =

1 medium dark

0 o/w

and hence c1 = c2 = c3 = 0 indicates whether a female crab is dark (i.e. base group).
The model is then

logit[π(x)] = α + β1x+ β2c1 + β3c2 + β4c3

with

http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
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Color logit [π(x)]

medium light (α + β2) + β1x
medium (α + β3) + β1x
medium dark (α + β4) + β1x
dark α + β1x

> color=color - 1 # color now takes values 1,2,3,4

> color=factor(color) # treat color as a factor

> fit2.1=glm(y ˜ weight + color, family=binomial(link=logit),

+ contrasts=list(color=contr.treatment(4,base=4,contrasts=TRUE)))

> summary(fit2.1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.5266 1.0038 -4.510 6.50e-06 ***

weight 1.6928 0.3888 4.354 1.34e-05 ***

color1 1.2694 0.8488 1.495 0.13479

color2 1.4143 0.5449 2.595 0.00945 **

color3 1.0833 0.5884 1.841 0.06561 .

---

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 188.54 on 168 degrees of freedom

AIC: 198.54

1 2 3 4 5

0.
2

0.
4

0.
6

0.
8

1.
0

Color as Categories, probability

weight

pr
ob

ab
ili

ty

Medium Light
Medium
Medium Dark
Dark

Figure 4.2: Probability curves

Part (II) subpart II1 of http://users.stat.ufl.edu/˜athienit/STA4504/Examples/
crab_u.R

http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
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In Section 3.4 we saw how to perform inference on a single parameter H0 : β = β0 via

• Using standard normal test
β̂ − β0

sβ̂

H0∼ N (0,1)

• Using the likelihood ratio test G2 in equation (3.4).

Now we extend the methodology in equation (3.4) to testing multiple parameters simulta-
neously. In the Horseshoe crab data there were 3 parameters for fitting color as a qualitative
predictor, β2,β3 and β4. If we wished to test if color at all was significant one would test

H0 : β2 = β3 = β4 = 0 vs H1 : at least one β , 0

which yields the reduced model (under null), µ0 and the full model, µ1

g(µ0) = α + β1x

g(µ1) = α + β1x+ β2c1 + β3c2 + β4c3

and by obtaining the deviances we can create the likelihood ratio test

G2 =D(y; µ̂0)−D(y; µ̂1)
d−→

H0
χ2
df

where df is the difference in degrees of freedom of the two models which corresponds to
the dimension reduction of our coefficient parameter vector, in this case df = 3 as we are
restricting 3 parameter under the null.

Example 4.4 (Horseshoe crab continued) To test the significance of color, controlling
for weight we must test H0 : β2 = β3 = β4 = 0. The likelihood-ratio test (LRT) statistic
is

G2 =D(y; µ̂0)−D(y; µ̂1)

= 195.74− 188.54 = 7.2

which when compared to a χ2
3 produces a p-value of 0.06578905 ≈ 0.07 which at the

0.05 significance level might let us conclude that color is not significant.
However, looking at the individual test statistic values as well as the figure of proba-
bility curves we see that there is a more this problem that we will be addressing in the
next chapter.
Part (II), subpart A of http://users.stat.ufl.edu/˜athienit/STA4504/Examples/
crab_u.R

Example 4.5 (Horseshoe crab continued) From figure 4.2 we notice than there are may
be in fact be only two groups: dark and not dark.

> dark=ifelse(unclass(color)==4,1,0)

> fit2.2=glm(y ˜ weight + dark, family=binomial(link=logit))

> summary(fit2.2)

Coefficients:

http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
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Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.3134 0.8984 -3.688 0.000226 ***

weight 1.7292 0.3825 4.520 6.18e-06 ***

dark -1.2954 0.5222 -2.481 0.013110 *

---

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 189.17 on 170 degrees of freedom

AIC: 195.17
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Figure 4.3: Probability curves

In example 4.4 the LRT for color yielded a p-value of 0.07. However, now testing dark
vs non dark via H0 : β2 = 0 for this model

• Via normal test, p-value = 0.013110

• Via LRT, G2 = 195.74 − 189.17 with 1 degree of freedom yields, p-value =
0.01039651

Part (II), subpart B of http://users.stat.ufl.edu/˜athienit/STA4504/Examples/
crab_u.R

Why did the p-value drop from 0.07 to about 0.01? Because we tested using a method
that uses less degrees of freedom (1 instead of 3) and hence has more power in detect-
ing significance.

4.3.1 Qualitative predictors

If a qualitative predictor is deemed significant, the next step is an investigation into the
different levels. This yields situations where one might we to test linear combinations of
parameters.

H0 :
k∑
i=1

ciβi = ∆0 (4.2)

http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
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for constants ci .

Example 4.6 (Horseshoe crad continued) Testing β2 = 0,β3 = 0 and β4 = 0 individually
amounts to testing differences between each group to the base group

Color logit [π(x)]

medium light (α + β2) + β1x
medium (α + β3) + β1x
medium dark (α + β4) + β1x
dark α + β1x

In example 4.3, we note that there appear to be differences between medium and dark,
and between medium dark and dark based on those tests. In addition, the estimated
odds ratio comparing the following groups to dark at any fixed level of weight are

Comparison OR

medium light vs dark exp(β̂2) = exp(1.2694) = 3.56
medium vs dark exp(β̂3) = exp(1.4143) = 4.11
medium dark vs dark exp(β̂4) = exp(1.0833) = 2.95

To motivate the next section consider comparing two groups such as medium light vs.
medium. We could always refit the model making one of these groups the new base
group. Keeping with this model we this comparisons amounts to testing:

H0 : β2 − β3 = 0

a linear combination of the parameters

To test the null in (4.2), an option is to create a CI for
∑
ciβi using the asymptotic nor-

mality property and see whether ∆0 is a plausible value or not.

k∑
i=1

ci β̂i ∓ z1−α/2

√√√
V̂

 k∑
i=1

ci β̂i

 (4.3)

with the estimated variance obtained by the sum of the estimated pairwise covariances using
the property that

V

 k∑
i=1

ci β̂i

 =
k∑
i=1

k∑
j=1

cicjCov(β̂i , β̂j )

=
k∑
i=1

c2
i V (β̂i) + 2

∑∑
i<j

cicjCov(β̂i , β̂j )

This concept was used in equation (4.1) where c = (1,x) and the parameter vector was (α,β),
such that

(1,x)
(
α
β

)
= α + βx
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Example 4.7 (Horseshoe crab continued) The log odds ratio for comparing medium
light vs medium at fixed levels of weight is β2 − β3. Using equation (4.3) with c =
(0,0,1,−1,0)

(0,0,1,−1,0)


α
β1
β2
β3
β4

 = β2 − β3

we have that
β̂2 − β̂3 ∓ z0.975

√
s2β2

+ s2β3
− 2sβ2β3

To be thorough though all 6 comparisons need to be made and the critical value ad-
justed via Bonferroni using z1−α/(2×6).

Comparison CI on

medium light vs dark β2
medium vs dark β3
medium dark vs dark β4
medium light vs medium β2 − β3
medium light vs medium dark β2 − β4
medium vs medium dark β3 − β4

• Comparing medium light vs dark, the 95% CI on β2, the log odds ratio, is

1.2694∓ 1.96(0.8488) −→ (−0.3943,2.9331)

which includes 0, hence CI on odds ratio will include 1.
...

Exercise 4.1 Perform all the CI’s mentioned in the previous example.

Example 4.8 For the sake of practice let us compare dark vs non-dark using current
model, for a fixed level of weight. Hence a CI on

(α + β2 + β1x) + (α + β3 + β1x) + (α + β4 + β1x)
3

− (α + β1x) =
1
3
β2 +

1
3
β3 +

1
3
β4

is needed. DO IN CLASS.

Example 4.9 (Florida Death Penalty) http://users.stat.ufl.edu/˜athienit/

STA4504/Examples/FL_death.R

4.3.2 Quantitative Treatment of Ordinal Factors

Qualitative variables can be

http://users.stat.ufl.edu/~athienit/STA4504/Examples/FL_death.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/FL_death.R
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• nominal - no order

• ordinal - order

where ordinal variables can be treated as qualitative or quantitative.

Example 4.10 (Horseshoe crab continued) Consider example 4.3 where 3 dummy vari-
ables were created to distinguish the 4 levels of color: medium light, medium, medium
dark and dark.
In the context of this problem “darkness” is of interest and hence color is ordinal, so a
score can be created to reflect this

Color Score

Medium Light 1
Medium 2
Medium dark 3
Dark 4

logit[π(x)] = α + β1x+ β2c

Referring to the (qualitative) model of example 4.3,

logit [π(x)]
Color Qualitative Quantitative

medium light (α + β2) + β1x (α + β2) + β1x
medium (α + β3) + β1x (α + 2β2) + β1x
medium dark (α + β4) + β1x (α + 3β2) + β1x
dark α + β1x (α + 4β2) + β1x

Note that the qualitative model is a lot more flexible (as it has more parameters) in
differentiating between groups, while the quantitative model assumes a systematic
change between groups.

> linear=unclass(color) # convert back to integer levels

> fit2.3=glm(y ˜ weight + linear, family=binomial(link=logit))

> summary(fit2.3)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.0316 1.1161 -1.820 0.0687 .

weight 1.6531 0.3825 4.322 1.55e-05 ***

linear -0.5142 0.2234 -2.302 0.0213 *

---

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 190.27 on 170 degrees of freedom

AIC: 196.27

Testing the significance of color via H0 : β2 = 0 for this model
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• Via normal test, p-value = 0.0213

• Via LRT, G2 = 195.74 − 190.27 with 1 degree of freedom yields, p-value =
0.0193637

Part (II), subpart C of http://users.stat.ufl.edu/˜athienit/STA4504/Examples/
crab_u.R

To summarize in terms of the LRT for color

Color df LRT p-value

Qualitative 3 0.07
Binary (dark vs. non-dark) 1 0.01
Quantitative 1 0.02
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Figure 4.4: Probability curves

Remark 4.2. To achieve more power in testing factors, it is best to use methodology, i.e. tests, that
use fewer degrees of freedom.

Exercise 4.2 Try to fit a quantitative model with a more representative score than
1,2,3,4, in order to obtain a p-value (for a LRT less) than 0.0193637

4.4 Summarizing Predictive Power

A naive way of summarizing predictive power is to calculate the correlation between ob-
served responses and fitted responses.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
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Example 4.11 (Horseshoe crab continued) We look at the correlation between the
observed values of y = 0,1 and the fitted probabilities of the logistic regression models.

> cor(y,fitted(fit)) # weight

[1] 0.3955277

> cor(y,fitted(fit2)) # weight and color

[1] 0.4476282

> cor(y,fitted(fit2.2)) # weight and binary dark

[1] 0.3958138

> cor(y,fitted(fit2.3)) # weight and linear color

[1] 0.4385387

A more sophisticated method, similar to methods learned in other courses, is the (ap-
proximate) leave-one-out cross-validation, and producing classification tables

1. Fit the model to the data leaving out ith observation

2. Use fitted model and the predictor settings of the ith observation to compute response
π̂(xi)

3. Predict

ŷi =

1 π̂(xi) > 0.50 =: π0 (cutoff probability)

0 π̂(xi) ≤ 0.50

where the cutoff of 0.50 can be altered.

Example 4.12 (Horseshoe crab continued) Using the model with weight and (qualita-
tive) color we obtain

Predicted
Actual ŷ = 0 ŷ = 1 Total

y = 0 27 35 62
y = 1 17 94 111

Sensitivity = P (Ŷ = 1|Y = 1) =
94

111
≈ 0.847

Specificity = P (Ŷ = 0|Y = 0) =
27
62
≈ 0.435

and
P (correct classification) =

94 + 27
173

≈ 0.699

Part (III) of http://users.stat.ufl.edu/˜athienit/STA4504/Examples/crab_u.R

http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
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4.5 Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve plots the true positive rate, sensitivity, against
false positive rate, 1-specificity, as the cutoff value π0 varies from 0 to 1. It can also be
thought of as a plot of the Power as a function of the Type I Error of the decision rule.

• The higher the sensitivity for a given specificity, the better, so a model with a higher
ROC curve is preferred to one with a lower ROC curve.

• The area under the ROC curve is a measure of predictive power, called the concordance
index, c.

– Models with larger c have better predictive power.
– When c = 1/2 it is no better than random guessing.

• If feasible, use cross-validation.

• ROC curves should not be used with random predictors.

Example 4.13 (Horseshoe crab continued) The concordance indexes for some of the
fitted models are

Model Concordance

Weight 0.738
Weight and Color 0.769
Weight and Dark 0.738
Weight and Linear Color 0.761
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Part (IV) of http://users.stat.ufl.edu/˜athienit/STA4504/Examples/crab_u.R

http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
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5.1 Strategies 63

5.2 Model Checking 66

5.3 Effects of Sparse Data 68

Strategies in model selection and model checking.

5.1 Strategies

5.1.1 AIC and AICc

The Akaike information criterion (AIC) is an estimator of the relative quality of statistical
models for a given set of data. Given a collection of models for the data, AIC estimates the
quality of each model, relative to each of the other models. Thus, AIC provides a means for
model selection.

AIC = 2(k + 1)− 2log(L̂)

It is comprised of a “penalizing” function 2(k+1) that penalizes for complicated models with
a large k value, and the maximum value of the likelihood function for the model. Hence,
smaller values are desirable when comparing models.

When the sample size is small, there is a substantial probability that AIC will select
models that have too many parameters. AICc was developed that includes a correction for
small sample sizes. The formula for AICc depends upon the statistical model. Assuming that
the model is univariate, is linear in its parameters, and has normally-distributed residuals
(conditional upon regressors), then the formula for AICc is as follows.

AICc = AIC +
2(k + 1)2 + 2(k + 1)

n− k − 2

Thus, AICc is essentially AIC with an extra penalty term for the number of parameters.

Example 5.1 (Horseshoe crab continued) Results best illustrated via

63
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Model

Quantitative

p-value=0.02
AIC=196.27

restrictive fit

1 parameter
more power

Binary

p-value=0.01
AIC=195.17

simple fit1 parameter

more power

Qualitative

p-value=0.07
AIC=198.54

best fit

3 parameters

least power

5.1.2 Multicollinearity

Multicollinearity is a phenomenon in which one predictor variable can be linearly predicted
from the other predictors with a substantial degree of accuracy.

Effects:

• Coefficient estimates may change erratically in response to small changes in the model
or the data.

• Coefficient standard errors are inflated.

Multicollinearity does not reduce the predictive power or reliability of the model as a whole,
at least within the sample data set; it only affects calculations regarding individual predic-
tors.

Example 5.2 (Horseshoe crab continued) Consider the weight and width of a crab that
are likely to be correlated

> cor(weight,width)

[1] 0.8868715
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and we could use either variable. However, we will see in this example it is best to use
width.

> fit.we=glm(y ˜ weight, family=binomial(link=logit))

> summary(fit.we)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.6947 0.8802 -4.198 2.70e-05 ***

weight 1.8151 0.3767 4.819 1.45e-06 ***

---

AIC: 199.74

> fit.wi=glm(y ˜ width, family=binomial(link=logit))

> summary(fit.wi)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.3508 2.6287 -4.698 2.62e-06 ***

width 0.4972 0.1017 4.887 1.02e-06 ***

---

AIC: 198.45

> fit.wewi=glm(y ˜ weight+width, family=binomial(link=logit))

> summary(fit.wewi)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.3547 3.5280 -2.652 0.00801 **

weight 0.8338 0.6716 1.241 0.21445

width 0.3068 0.1819 1.686 0.09177 .

---

AIC: 198.89

5.1.3 Stepwise Selection Algorithms

There are 3 common types of algorithms

• Backward - Start with a full model and remove 1 factor/predictor at a time, based on a
criterion, until a stopping is reached.

• Forward - Start with a reduced simple model and add 1 factor/predictor at a time,
based on a criterion, until a stopping is reached.

• Both - Start with any model (of varying complexity) and at each step add or remove a
variable.

Common criteria include (but not limited to)

• AIC

• LRT p-values
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Example 5.3 (Horseshoe crab continued) DONE IN CLASS. Part (V) of http://users.
stat.ufl.edu/˜athienit/STA4504/Examples/crab_u.R

Remark 5.1. There is a study that suggests ≥ 10 outcomes of each type per model predictor (where
dummy variables for qualitative predictors are considered individual predictors).

Example 5.4 (Horseshoe crab) In this example there were 173 crabs, 111 had a male
satellite while 62 did not. Hence, choosing the smaller count of the two

62
10
≈ 6 predictors

We noticed that a model with the 3-way interaction term was not estimable. In fact,
based on this guideline, we probably should be attempting to fit some (if not all) of the
2-way interactions.

5.2 Model Checking

There 3 main ways of checking model fit

• Goodness of fit test. Using deviance G2 and Pearson’s chi-square X2 are generally
limited to “non-sparse” contingency tables.

• Check whether fit improves by adding other predictors or interactions between pre-
dictors.

• Residuals.

Example 5.5 (Florida Death Penalty continued) In this example we will look at the
first two points. In example 4.9 you were asked to perform a goodness of fit test as an
exercise. Summarizing fit over 8 cells of table:

X2 =
∑ (observed−fitted)2

fitted
= 0.20

G2 = 2
∑

(observed)log
(

observed
fitted

)
= 0.38←− (Residual Deviance)

df = num. binomials−num. model params = 4− 3

For H0: “model correctly specified”, G2 = 0.38,df = 1, p-value = 0.54. Hence, no
evidence of lack of fit.
The model assumes lack of interaction between d and v in effects on Y (homogeneous
association). Adding interaction term gives saturated model, so goodness-of-fit test in
this example is a test of H0: “no interaction”. (Try it and look at df).

http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/crab_u.R
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Remark 5.2.

• X2 usually recommended over G2 for testing goodness of fit. Why?

• These tests only appropriate for grouped binary data with most (≥ 80%) of fitted cell counts
being “large” (e.g., µ̂i > 5). In example 4.9 there were a two cells with fitted values of 0.18
and 3.82.

• For continuous predictors or many predictors with small fitted values, distributions of X2

and G2 are not well approximated by χ2. For better approximations, try grouping data
before applying X2,G2.

– Hosmer-Lemeshow test forms groups using ranges of π̂ values.

– Or can try to group predictor values (if only 1 or 2 predictors).

For obtaining residuals, notate at setting i of explanatory variables

• yi = number of successes

• ni = number of trials (preferably “large”)

• π̂i = estimated probability of success based on ML fit of model

Definition 5.1 (Pearson residuals) For a binomial GLM, the Pearson residuals are

ei =
yi −niπ̂i√
niπ̂i(1− π̂i)

X2 =
n∑
i

e2
i


The distribution of ei

approx∼ N (0,ν) when model holds (and ni large), but ν < 1.

R code 5.1 Recall we use

residuals(model,type=‘‘pearson’’)

Definition 5.2 (Standardized Pearson residual) For a binomial GLM, the standardized
Pearson residuals are

ri =
yi −niπ̂i√

niπ̂i(1− π̂i)(1− hi)
=

ei√
1− hi

which correct for standard error so that ri
approx∼ N (0,1) and hi is the i-th diagonal

element of the “Hat” matrix (not covered here).

Therefore, values of |ri | > 2 suggest a lack of fit.

R code 5.2 The function rstandard() provides standardized deviance residuals by
default.

• For standardized Pearson residuals specify

rstandard(model,type=‘‘pearson’’)
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• Standardized Deviance residuals are the default option

rstandard(model)

Example 5.6 (Berkeley Graduate Admissions) http://users.stat.ufl.edu/

˜athienit/STA4504/Examples/admissions.R

5.3 Effects of Sparse Data

As the term suggests, sparse data are when certain combinations of variables have no actual
data or “limited” information. This can lead to parameter estimates being infinite (in value).

Example 5.7 Consider,

S F

X
1 8 2
0 10 0

Fitting a simple logistic regression will yield the estimates odds ratio

eβ̂ =
8× 0

2× 10
= 0 ⇒ β̂ = log(0) = −∞

Infinite estimates exist when predictor values (x values) where y = 1 can be separated
from predictor values where y = 0. This extends to multidimensional predictor space.

Example 5.8 Let

y =

0 x < 50

1 x > 50

with no values at x = 50.
Data were simulated at
http://users.stat.ufl.edu/˜athienit/STA4504/Examples/sparse.R

> fit=glm(y˜x,family=binomial)

Warning messages:

1: glm.fit: algorithm did not converge

2: glm.fit: fitted probabilities numerically 0 or 1 occurred

> summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -297.566 174094.706 -0.002 0.999

x 6.051 3542.717 0.002 0.999

---

Null deviance: 4.1054e+01 on 29 degrees of freedom

Residual deviance: 5.0225e-09 on 28 degrees of freedom

AIC: 4

where although β̂ = 6.051 the standard error is 3542.717.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/admissions.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/admissions.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/sparse.R
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This is because the likelihood function has no point of inflection, that is, it keeps in-
creasing as β ↑.
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6.1 Logit Models for Nominal Responses 70

6.2 Cumulative Logit Models for Ordinal Responses 73

Extensions of logistic regression for nominal and ordinal responses.

6.1 Logit Models for Nominal Responses

Let
πj = P (Y = j), j = 1,2, . . . , J

Conisder a binomial with two groups and two probabilities, π1,π2 3 π1 +π2 = 1. A simple
logistic model was

log
(
π1

1−π1

)
= log

(
π1

π2

)
= α + βx

Baseline-category logits are similar but have the form

log
(
πj
πJ

)
= αj + βjx, j = 1, . . . , J − 1

There is seperate set of parameters (αj ,βj ) for each logit. We compare the probability of
being in group j, versus the baseline group J .

· · · · · ·

1 j J-1 J

70
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Hence,

πj =
eαj+βjx

1 +
∑J−1
i=1 e

αi+βix
, πJ =

1

1 +
∑J−1
i=1 e

αi+βix

but we can compare any two groups that where one group is not the baseline

· · · · · ·

1 j j’ J

· · ·

log
(
πj
πj ′

)
= log

(
πj /πJ
πj ′ /πJ

)
= log

(
πj
πJ

)
− log

(
πj ′

πJ

)
= (αj −αj ′ ) + (βj − βj ′ )x

• Category used as baseline (i.e., category J) is arbitrary and does not affect model fit,
since categories are nominal.

• The term eβj is the multiplicative effect of a 1-unit increase in x on the conditional odds
of response j given that response is one of j or J .

• Could also use this model with ordinal response variables, but this would ignore infor-
mation about ordering.

Example 6.1 (Job Satisfaction) Data from 1991 GSS

Income Job Satisfaction
Dissat Little Moderate Very

< 5k 2 4 13 3
5k-15k 2 6 22 4
15k-25k 0 1 15 8
> 25k 0 3 13 8

Consider x = income scores (3,10,20,30) and define VD=1, LD=2, MS=3, VS=4

> fit.blogit=vglm(cbind(VD,LD,MS,VS)˜income,family=multinomial,data=dat)

> summary(fit.blogit)

Coefficients:
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Estimate Std. Error z value

(Intercept):1 0.563824 0.960138 0.58723

(Intercept):2 0.645091 0.668771 0.96459

(Intercept):3 1.818698 0.528955 3.43828

income:1 -0.198773 0.102096 -1.94693

income:2 -0.070502 0.036954 -1.90785

income:3 -0.046918 0.025519 -1.83858

Residual deviance: 4.17662 on 6 degrees of freedom

Log-likelihood: -16.71316 on 6 degrees of freedom

The prediction equations are

log
(
π̂1

π̂4

)
=0.564− 0.199x

log
(
π̂2

π̂4

)
=0.645− 0.071x

log
(
π̂3

π̂4

)
=1.819− 0.047x

For each logit, the odds of being in a less satisfied category (instead of “very satisfied”)
decreases as income increases. ML estimates determine the effects for all pairs of cate-
gories. For example, comparing group 1 and 2, i.e. “dissatisfied” to “little dissatisfied”

log
(
π̂1

π̂2

)
= log

(
π̂1

π̂4

)
− log

(
π̂2

π̂4

)
= −0.081− 0.128x

A global test of income effect is H0 : β1 = β2 = β3 = 0.

> vglm(cbind(VD,LD,MS,VS)˜1,family=multinomial,data=dat)

...

Degrees of Freedom: 12 Total; 9 Residual

Residual deviance: 13.4673

and hence
G2 = 13.4673− 4.17662 df = 3 p-value of0.0257

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/jobsatis.R

Exercise 6.1 For the job satisfaction example, we obtained the logit for comparing
“dissatisfied” to “little dissatisfied” to be

log
(
π̂1

π̂2

)
= −0.081− 0.128x

where β̂1 − β̂2=-0.128. Create a 95% confidence interval around β1 − β2 and interpret.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/jobsatis.R
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6.2 Cumulative Logit Models for Ordinal Responses

The cumulative logit probabilities are

P (Y ≤ j) =
j∑
i=1

πj , j = 1, . . . , J

and the cumulative logit model is

logit [P (Y ≤ j)] = log
(
P (Y ≤ j)

1− P (Y ≤ j)

)
= log

(
P (Y ≤ j)
P (Y > j)

)
= αj + βx, j = 1, . . . , J − 1

· · ·

1 j j+1 J

· · ·

P (Y ≤ j) =
eαj+βx

1 + eαj+βx
, j = 1,2, . . . J − 1

• Separate intercept αj for each cumulative logit

• Same (slope) coefficient β for each cumulative logit.

• The term eβ = multiplicative effect of 1-unit increase in x on odds that (Y ≤ j) instead
of (Y > j).

odds(Y ≤ j |x2)
odds(Y ≤ j |x1)

=
eαj+βx2

eαj+βx1

= eβ(x2−x1)

= eβ , when x2 = x1 + 1

Also called proportional odds model.

Example 6.2 (Job Satisfaction continued) The model has form

logit [P (Y ≤ j |x)] = αj + βx j = 1,2,3
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> fit.clogit1=vglm(cbind(VD,LD,MS,VS)˜income,

+ family=cumulative(parallel=TRUE),data=dat)

> summary(fit.clogit1)

Coefficients:

Estimate Std. Error z value

(Intercept):1 -2.473156 0.568376 -4.3513

(Intercept):2 -0.781728 0.373724 -2.0917

(Intercept):3 2.211091 0.445123 4.9674

income -0.056347 0.020871 -2.6998

Residual deviance: 5.9527 on 8 degrees of freedom

Log-likelihood: -17.60121 on 8 degrees of freedom

The fitted model is

logit
[
P̂ (Y ≤ j |x)

]
= α̂j − 0.056x j = 1,2,3.

Hence the odds of response at low end of job satisfaction scale decrease as x increases,
i.e. exp(−0.056) = 0.95. Estimated odds of job satisfaction below any given level
(instead of above it) multiply by 0.95 for a 1-unit increase in x (1-unit=$1000). For a
$10,000 increase in income, the estimated odds multiply by exp(10(−0.056)) = 0.57.
(If we were to reverse the order of the responses, then β̂ = +0.056).

Odds ratio is the same between same two categories of x irrespective of cutoff region
for response categories (to make response binary) as shown in the diagrams in the
class notes.

In addition, the odds ratio is the same between categories x = 10 and x = 20, and
x = 20 and x = 30 due to the same increment in x.

A goodness of fit test yields a p-value of

> 1-pchisq(deviance(fit.clogit1),df.residual(fit.clogit1))

[1] 0.6525305

so we conclude that the model is a good fit.
A test of H0 : job satisfaction independent of income (i.e. β = 0 in cumulative logit
model) yields

• A Wald z-stat of -2.6998 (or χ2 of 7.17) and a p-value of 0.007.

• A LR statistic of 13.4673 − 5.9527 = 7.5146 on 1 df and a p-value of 0.006. The
null deviance was computed using

> vglm(cbind(VD,LD,MS,VS)˜1,

+ family=cumulative(parallel=TRUE),data=dat)

Coefficients:

(Intercept):1 (Intercept):2 (Intercept):3

-3.218876 -1.563976 1.258955
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Degrees of Freedom: 12 Total; 9 Residual

Residual deviance: 13.4673

Log-likelihood: -21.35851
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A model with nonparallel lines, i.e. different βj for j = 1,2,3 instead of one common
slope, if fit but it does not differ from the parallel lines model (conclusion via LR test
stat).

> fit.clogit2=vglm(cbind(VD,LD,MS,VS)˜income,

+ family=cumulative(parallel=FALSE),data=dat)

> summary(fit.clogit2)

Coefficients:

Estimate Std. Error z value

(Intercept):1 -1.74105 0.816828 -2.1315

(Intercept):2 -0.82432 0.449753 -1.8328

(Intercept):3 2.20524 0.515114 4.2811

income:1 -0.14443 0.091070 -1.5860

income:2 -0.05356 0.029750 -1.8003

income:3 -0.05603 0.024771 -2.2619

Residual deviance: 4.37717 on 6 degrees of freedom

Log-likelihood: -16.81344 on 6 degrees of freedom

• To test H0 : β1 = β2 = β3 = 0 via LRT, we use

> 1-pchisq(13.4673-4.37717,3)

[1] 0.02811625

and conclude that at least one of the β’s is significant.

• To test H0 : β1 = β2 = β3 via LRT, that is comparing the “parallel” model to the
“non-parallel”, we use

> 1-pchisq(5.9527-4.37717,2)

[1] 0.4548603
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and conclude that at wwe should be using one common β, i.e. the “parallel”
model.

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/jobsatis.R

Exercise 6.2 Instead of testing H0 : β1 = β2 = β3 via LRT, to determine whether
to use the “non-parallel” model, obtain the AIC for each model, compare and
conclude.

Example 6.3 (Political Ideology) An example with the following data yields

> ideow

Gender Party VLib SLib Mod SCon VCon

1 Female Democrat 44 47 118 23 32

2 Female Republican 18 28 86 39 48

3 Male Democrat 36 34 53 18 23

4 Male Republican 12 18 62 45 51

> library(VGAM)

> ideo.cl1=vglm(cbind(VLib,SLib,Mod,SCon,VCon) ˜ Gender + Party,

+ family=cumulative(parallel=TRUE), data=ideow)

> summary(ideo.cl1)

Coefficients:

Estimate Std. Error z value

(Intercept):1 -1.45177 0.12284 -11.81819

(Intercept):2 -0.45834 0.10577 -4.33337

(Intercept):3 1.25499 0.11455 10.95598

(Intercept):4 2.08904 0.12916 16.17374

GenderMale -0.11686 0.12681 -0.92147

PartyRepublican -0.96362 0.12936 -7.44917

Residual deviance: 15.05557 on 10 degrees of freedom

Log-likelihood: -47.41497 on 10 degrees of freedom

• First we perform a goodness of fit test with G2 = 15.056 and 10 degrees of free-
dom to obtain a p-value of 0.13

• Testing for party effect (controlling for gender) we have

– Wald: z = −7.449

– LR: 71.902− 15.056 = 56.846 with df= 1. (Deviance of 71.902 was obtained
by fitting model with only gender effect)

Strong evidence that Republicans tend to be less liberal (more conservative) than
Democrats (for each gender).

Controlling for gender, estimated odds that a Republican’s response (i.e. going
from x2 = 0 to x2 = 1, a 1-unit increase) is in liberal direction (Y ≤ j) rather than
conservative (Y > j) are exp(−0.964) = 0.38 times estimated odds for a Democrat.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/jobsatis.R
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(Equivalently, controlling for gender, estimated odds that a Democrat’s response
is in liberal direction rather than conservative exp(0.964) = 2.62 times estimated
odds for a Republican.) The 95% CI for the odds ratio is (but best to use confint)

exp(−0.964± 1.96(0.129))→ (0.30,0.49)

• Testing for gender effect (controlling for party) we have a Wald statistic -0.921
indicating a lack of evidence.

However, before we simply drop the gender effect, we know from a previous example
that there is a relationship between gender and party affiliation (see party affiliation
example). It makes sense that an interaction may be present.

> ideo.cl2=vglm(cbind(VLib,SLib,Mod,SCon,VCon) ˜ Gender*Party,

+ family=cumulative(parallel=TRUE), data=ideow)

> summary(ideo.cl2)

Coefficients:

Estimate Std. Error z value

(Intercept):1 -1.55209 0.13353 -11.62339

(Intercept):2 -0.55499 0.11703 -4.74225

(Intercept):3 1.16465 0.12337 9.44006

(Intercept):4 2.00121 0.13682 14.62633

GenderMale 0.14308 0.17936 0.79772

PartyRepublican -0.75621 0.16691 -4.53062

GenderMale:PartyRepublican -0.50913 0.25408 -2.00381

Residual deviance: 11.06338 on 9 degrees of freedom

Log-likelihood: -45.41887 on 9 degrees of freedom

Notice that the interaction term appears significant.

• Wald: z = −2.004 with p-value=0.04507

• LR: 15.056− 11.063 = 3.993 with df=1 and p-value=0.0457.

The goodness of fit test with G2 = 11.063 residual deviance and df=9 wields a p-value
of 0.2714153, a big improvement from 0.13 for the additive model. This is because the
interaction takes into account the relationship between gender and party affiliation
and how they affect political ideology.

Interpretation:

• Odds ratio

– Estimated odds ratio for party effect (x2), (allowing gender to differ) is

exp(b2) = exp(−0.756) = 0.47 whenx1 = 0 (F)

exp(b2 + b3) = exp(−0.756− 0.509) = 0.28 whenx1 = 1 (M)

* Estimated odds that a female Republican’s response is in liberal direc-
tion rather than conservative are 0.47 times estimated odds for a female
Democrat.
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* Estimated odds that a male Republican’s response is in liberal direc-
tion rather than conservative are 0.28 times estimated odds for a male
Democrat.

– Estimated odds ratio for gender effect (x1) is

exp(b1) = exp(0.143) = 1.15 whenx2 = 0 (Dem)

exp(b1 + b3) = exp(0.143− 0.509) = 0.69 whenx2 = 1 (Rep)

* Estimated odds that a male Democrat’s response is in liberal direction
rather than conservative are 1.15 times estimated odds for a female
Democrat.
* Estimated odds that a male Republican’s response is in liberal direction

rather than conservative are 0.69 times estimated odds for a female Re-
publican.

• Probabilities

P̂ (Y ≤ j) =
exp(α̂j + 0.143x1 − 0.756x2 − 0.509x1x2)

1 + exp(α̂j + 0.143x1 − 0.756x2 − 0.509x1x2)

– P̂ (Y = 1) = P̂ (Y ≤ 1). For j = 1 (very liberal) the probability for a male
republican (α̂1 = −1.55,x1 = 1,x2 = 1):

P̂ (Y = 1) =
e−2.67

1 + e2.67 = 0.065

– Similarly, P̂ (Y = 2) = P̂ (Y ≤ 2)− P̂ (Y ≤ 1), etc.
Note P̂ (Y = 5) = P̂ (Y ≤ 5)− P̂ (Y ≤ 4) = 1− P̂ (Y ≤ 4).

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/pol_ideology.R

Exercise 6.3 Check the (cumulative probability conditions) whether a model
with “non-parallel” systematic component is feasible.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/pol_ideology.R
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8.1 McNemar’s Test 79

8.2 Rater Agreement 82

Methods for comparing categorical responses for two samples that have a natural pairing
between each subject in one sample and a subject in the other sample.

8.1 McNemar’s Test

Methods so far (e.g., X2 and G2 test of independence, CI for odds ratio, logistic regression)
assume independent samples. Inappropriate for dependent samples (e.g., same subjects in
each sample yielding matched pairs of responses).

Example 8.1 (Crossover Study: Drug vs Placebo) Consider 86 subjects. Randomly
assign each to either “drug then placebo” or “placebo then drug”. Binary response
(S,F) for each.

Treatment S F Total
Drug 61 25 86
Placebo 22 64 86

To reflect the dependence and looking at the full information

Placebo
S F

Drug
S 12 49 61
F 10 15 25

22 64 86

Placebo
S F

Drug
S π11 π12 π1+
F π21 π22 π2+

π+1 π+2 1

79
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Definition 8.1 (Marginal Homogeneity) There is marginal homogeneity if

π1+ = π+1⇔ π12 = π21

since
π1+ −π+1 = (π11 +π12)− (π11 +π21) = π12 −π21

Under H0: marginal homogeneity

π12

π12 +π21
=

1
2

and each of n? = n12 + n21 observations has probability 1/2 of contributed to n12 and 1/2 of
contributing to n21

n12 ∼ Bin(n? ,0.5) ⇒ z =
n12 −n?/2√
n?

(
1
2

)(
1
2

) =
n12 −n21√
n12 +n21

approx.∼ N (0,1)

and finding the two sided p-value as usual. However, using the normal approximation to
the binomial we are assuming that n?(1/2) > 5. Some authors suggest > 10 or even > 25.
Equivalent to a z-test you may see

z2 =
(n12 −n21)2

n12 +n21
∼ χ2

1 ≡ [N (0,1)]2

and the p-value being the area to the right (because we squared, only nonnegative values
possible). To create a 100(1−α)% confidence interval for π1+ −π+1 use

p1+ − p+1︸    ︷︷    ︸
n12−n21

n

∓z1−α/2
1
n

√
n12 +n21 −

(n12 −n21)2

n

Remark 8.1. Depending on the situation, such as, if it is desirable n12 to be large then a 1-sided
test of CI might yield some gain in power.

• Hypothesis Ha : π12 > π21, p-value=P (Z ≥ z) area to the right (using normal distribution).

• CI, use +z1−α

R code 8.1 Use

mcnemar.test(x, y = NULL, correct = TRUE)

The continuity correction for using a continuous distribution to approximate
the discrete binomial, is the default setting. Also recommended to use
mcnemar.exact{exact2x2} which uses the exact Binomial test and does not require
n?(1/2) > 5.
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Example 8.2 (Crossover Study: Drug vs Placebo continued) Looking at the data again,

Placebo
S F

Drug
S 12 49 61
F 10 15 25

22 64 86

and
z =

49− 10
√

49 + 10
= 5.1 and p-value < 0.0001

Extremely strong evidence that probability of success is higher for drug than placebo.
The 95% CI for π1+ −π+1 is

49
86
− 10

86
∓ 1.96

1
86

√
49 + 10− (49− 10)2

86
−→ (0.31,0.60)

and hence the probability of success under drug is larger than that under placebo.

> mcnemar.test(crossover,correct=FALSE)

McNemar’s Chi-squared test

data: crossover

McNemar’s chi-squared = 25.78, df = 1, p-value = 3.827e-07

> require(exact2x2)

> mcnemar.exact(crossover)

Exact McNemar test (with central confidence intervals)

data: crossover

b = 49, c = 10, p-value = 2.706e-07

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

2.451984 10.849724

sample estimates:

odds ratio

4.9

Part (A) of http://users.stat.ufl.edu/˜athienit/STA4504/Examples/

crossover_gee.R

Remark 8.2. The derivation of the standard error for the CI is derived by the fact that

(n11,n12,n21,n22) ∼MN (n, {π11,π12,π21,π22})

http://users.stat.ufl.edu/~athienit/STA4504/Examples/crossover_gee.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/crossover_gee.R


82 8.2. Rater Agreement

and hence

V (nij ) = nπij(1−πij )
Cov(nij ,ni′j ′ ) = −nπijπi′j ′ (i , i′ or j , j ′)

Therefore,

V (p1+ − p+1) = V
(n12 −n21

n

)
=

1
n2V (n12 −n21)

=
1
n2 [V (n12) +V (n21)− 2Cov(n12,n21)]

= · · ·

=
1
n

[
π12 +π21 − (π12 −π21)2

]
and hence

V̂ (p1+ − p+1) = · · · = 1
n2

[
n12 +n21 −

(n12 −n21)2

n

]

Remark 8.3. [McNemarBowker tests.] For larger than 2× 2 tables, k × k tables, McNemar’s test is
generalized as the McNemar-Bowker symmetry test for testing

H0 : πij = πji , for all pairs.

However, it may fail if there are 0’s in certain locations in the matrix.

R code 8.2 Use nominalSymmetryTest{rcompapion}

nominalSymmetryTest(x, method = "fdr", digits = 3, ...)

For examples see https://rcompanion.org/handbook/H_05.html

8.2 Rater Agreement

In this section we wish to determine if two raters/reviewers are in agreement or not.

Example 8.3 (Movie reviews) Two movie reviewers give their opinion on 160 movies

Reviewer 2
Reviewer 1 Con Mixed Pro Total
Con 24 8 13 45
Mixed 8 13 11 32
Pro 10 9 64 83
Total 42 30 88 160

https://rcompanion.org/handbook/H_05.html
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8.2.1 Cohen’s Kappa (unweighted)

Let πij = P (R1 = i,R2 = j),

P (agree) =
∑
i

πii general case

=
∑
i

πi+π+i if independence

Definition 8.2 (Cohen’s Kappa)

κ =
∑
i πii −

∑
i πi+π+i

1−
∑
i πi+π+i

where

• κ = 0 if agreement only equals that expected under independence.

• κ = 1 if perfect agreement.

• Denominator = maximum difference for numerator, attained if agreement is perfect,
since perfect agreement implies

∑
i πii = 1.

• It is possible for the statistic to be negative, which implies that there is no effective
agreement between the two raters or the agreement is worse than random.

Asymptotic normality can be established

κ̂
H0∼ N (0,V (κ̂))

and hence the standard error must first be found. Let,

• π̂0 =
∑
i π̂ii

• π̂c =
∑
i π̂i+π̂+i

V̂ (κ̂) =
1

n(1− π̂c)4

∑
i

π̂ii [(1− π̂0)− (π̂+i + π̂i+)(1− π̂0)]2

+(1− π̂0)2
∑∑

i,j

π̂ij(π̂+i + π̂i+)2 − (π̂0π̂c − 2π̂c + π̂0)2


R code 8.3 In R there are multiple packages such as irr, psych, concord that have
their own functions and their own weight scheme.
We will use cohen.kappa{psych}.
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Example 8.4 (Movie reviews continued) From the data,

•
∑
i π̂ii = 24+13+64

160 = 0.63

•
∑
i π̂i+π̂+i = 1

1602 (45× 42 + 32× 30 + 83× 88) = 0.40

κ̂ =
0.63− 0.40

1− 0.40
= 0.39

Moderate agreement: difference between observed agreement and agreement expected
under independence is about 40% of the maximum possible difference.

Inference To test H0 : κ = 0

• Create test statistic
κ̂ − 0
0.06

= 6.49

with a small p-value when finding the two tails on a N (0,1).

• Create 95% CI
κ̂∓ (1.96)(0.06) −→ (0.27,0.51)

Calculation of standard error is left to software

> movie=matrix(c(24,8,10,8,13,9,13,11,64),3,3)

> dimnames(movie)=list(c("Con","Mixed","Pro"),c("Con","Mixed","Pro"))

> print(movie)

Con Mixed Pro

Con 24 8 13

Mixed 8 13 11

Pro 10 9 64

>

> library(psych)

> cohen.kappa(movie)

Cohen Kappa and Weighted Kappa correlation coefficients

and confidence boundaries

lower estimate upper

unweighted kappa 0.27 0.39 0.51

weighted kappa 0.32 0.46 0.60

Number of subjects = 160

> sqrt(cohen.kappa(movie)$var.kappa)

[1] 0.05979313

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/cohen_kappa.R

http://users.stat.ufl.edu/~athienit/STA4504/Examples/cohen_kappa.R
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8.2.2 Cohen’s Kappa (weighted)

Weighted kappa lets you count disagreements differently and is especially useful when codes
are ordered. Three matrices are involved

• the matrix of observed scores, nij

• the matrix of expected scores based on independence, mij = ni+n+j ,

• the weight matrix wij

Derivations of weighted kappa are sometimes expressed in terms of similarities, and some-
times in terms of dissimilarities. In the latter case, the weights on the diagonal are 1 and the
weights off the diagonal are less than one. We omit the calculation and use software.

Example 8.5 (Movie reviews continued) Performing both unweighted and weighted
versions

> cohen.kappa(movie)

Cohen Kappa and Weighted Kappa correlation coefficients

and confidence boundaries

lower estimate upper

unweighted kappa 0.27 0.39 0.51

weighted kappa 0.32 0.46 0.60

Number of subjects = 160

with weight matrix

> cohen.kappa(movie)$weight

Con Mixed Pro

Con 1.00 0.75 0.00

Mixed 0.75 1.00 0.75

Pro 0.00 0.75 1.00

Notice that cells with 0.75 although they represent disagreement it is not as severe as
disagreements with 0 weight.
http://users.stat.ufl.edu/˜athienit/STA4504/Examples/cohen_kappa.R

Exercise 8.1 In cohen.kappa{psych} you can also create your own custom weights as
an argument to the function. Repeat the previous example but use 0.5 instead on 0.75
in the weight matrix.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/cohen_kappa.R
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Expanding matched pairs to multiple matched sets, i.e. repeated measures.

9.1 Introduction

Correlated responses occur in several ways, including:

• Repeated measures/longitudinal studies: repeated observations on each subject.

• Multiple, matched sets of subjects.

– Children in the same family.

– Children in the same elementary school class (children within class, class within
school, school within district, etc).

– Fetuses from the same litter.

Usual model forms apply (e.g., logistic regression for binary response, cumulative logit for
ordinal response), but model fitting must account for dependence (e.g., from repeated mea-
sures on subjects) in order to get appropriate standard errors and valid inferences.

We will use two approaches to such data: Observations (Y1,Y2, . . . ,YT )

• (In this chapter) Generalized Estimating Equations (GEE) to simultaneously fit marginal
models on each (marginal) E(Yt), t = 0, . . .T .

• (in the next chapter) Generalized Linear Mixed Models (GLMM) to find random effect
for the subject/block effect.

9.2 Generalized Estimating Equations

Focusing on GEE for Repeated Measures.

• Specify model in usual way by deciding what the random, component, link function
and systematic components are.

86
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• Select a working correlation matrix for best guess about correlation pattern between
pairs of observations. That is the within-cluster correlation.

Example 9.1 For T repeated responses, exchangeable correlation matrix is

Time 1 2 · · · T
1 1 ρ · · · ρ
2 ρ 1 · · · ρ
...

...
...

. . .
...

T ρ ρ · · · 1

When there is positive within-cluster correlation (as often is the case):

– The standard errors for between-cluster effects (such as different treatment groups)
and standard errors of estimated means within clusters tends to be larger than
when independent.

– The standard errors for within-cluster effects, such as a slope for a trend in the
repeated measurements in a subject, tend to be smaller than when observations
are independent.

Fitting method gives estimates that are consistent even if correlation structure is miss-
specified. Adjusts standard errors to reflect actual observed dependence. Therefore,
overly complicated structures are not encouraged. For other structures the reader is
encouraged to review the literature.

Example 9.2 (Crossover Study: Drug vs Placebo continued) Going back to example 8.1

Placebo
S F

Drug
S 12 49 61
F 10 15 25

22 64 86

Fit the model

logit [P (Yt = 1)] = α + βd, d =

1 drug

0 placebo

where t = 1,2 represents the two time points, the two observations on each subject.

> head(crossm1)

Subject Treat Resp

1 1 Drug 1

2 1 Placebo 1

3 2 Drug 1

4 2 Placebo 1

5 3 Drug 1

6 3 Placebo 1

> tail(crossm1)
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Subject Treat Resp

167 84 Drug 0

168 84 Placebo 0

169 85 Drug 0

170 85 Placebo 0

171 86 Drug 0

172 86 Placebo 0

> cross.gee1=gee(Resp ˜ Treat, id=Subject, data=crossm1,family=binomial,

+ corstr="exchangeable")

> summary(cross.gee1)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

Model:

Link: Logit

Variance to Mean Relation: Binomial

Correlation Structure: Exchangeable

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -1.067841 0.2485923 -4.295550 0.2471428 -4.320744

TreatDrug 1.959839 0.3798402 5.159639 0.3772338 5.195289

Estimated Scale Parameter: 1.011765

Working Correlation

[,1] [,2]

[1,] 1.0000000 -0.2140746

[2,] -0.2140746 1.0000000

Therefore, odds of Success with drug is estimated to be e1.96 = 7.1 times odds with
placebo. The 95% CI for odds ratio (for marginal probabilities) is

e1.96∓(1.96)(0.377)→ (e1.22, e2.70) = (3.4,14.9)

Part (B) of http://users.stat.ufl.edu/˜athienit/STA4504/Examples/

crossover_gee.R

Remark 9.1. With ρ̂ ≈ 0 it implies that there is no significant correlation between the “clustered”
responses.

Remark 9.2. With cross-over designs it is important to allow enough time for the effects of the
previous treatment not influence the results of the next treatment the unit will cross-over to.

Remark 9.3. With GEE approach, can also have “between-subject” explanatory variables. In

http://users.stat.ufl.edu/~athienit/STA4504/Examples/crossover_gee.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/crossover_gee.R


Chapter 9. Models for Correlated, Clustered Responses 89

the Drug vs Placebo, d was a variable monitored “within-subject” but we could have monitored
“between-subject” gender and even order of treatment, e.g.

sequence =

1 placebo then drug
2 drug then placebo

GEE is a known as quasi-likelihood method.

• No particular form assumed for joint distribution of (Y1,Y2, . . . ,YT ).

• Hence, no likelihood function, no LR inference (LR test, LR CI).

• For responses (Y1,Y2, . . . ,YT ) at T times, we consider marginal model that describes each
Yt in terms of explanatory variables.

Example 9.3 (Depression) Consider the response on mental depression (normal, ab-
normal) measured three times (after 1, 2, and 4 weeks of treatment) with two drug
treatments (standard, new) and two severity of initial diagnosis groups (mild, severe).
Of interest is to find out if the rate of improvement better with the new drug?

Time Response Pattern
0 A A A A N N N N
1 A A N N A A N N
2 A N A N A N A N

Severity Drug
Mild Std 6 15 4 14 3 9 13 16

New 0 9 2 22 0 6 0 31
Severe Std 28 27 15 9 9 8 2 2

New 6 32 5 31 2 5 2 7

Let

Yt = response of randomly selected subject at time t (1 = normal, 0 = abnormal)

s = severity of initial diagnosis (1 = severe, 0 = mild)

d = drug (1 = new, 0 = std)

t = time (0, 1, 2), which is log2(weeks of trt)

Model:

log
[
P (Yt = 1)
P (Yt = 0)

]
= α + β1s+ β2d + β3t + β4(dt)

so that

log
[
P (Yt = 1)
P (Yt = 0)

]
=

α + β1s+ β3t if d = 0(standard drug)

α + β2 + β1s+ (β3 + β4)t if d = 1(new drug)

> dep.gee1=gee((response == "normal") ˜ severity + drug*time,

+ id=subject, data=depression, family=binomial, corstr="exchangeable",
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+ contrasts=list(drug=contr.treatment(2,base=2,contrasts=TRUE)))

> summary(dep.gee1)

Model:

Link: Logit

Variance to Mean Relation: Binomial

Correlation Structure: Exchangeable

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.02809866 0.1625499 -0.1728617 0.1741791 -0.1613205

severitysevere -1.31391033 0.1448627 -9.0700417 0.1459630 -9.0016667

drug1 -0.05926689 0.2205340 -0.2687427 0.2285569 -0.2593091

time 0.48246420 0.1141154 4.2278625 0.1199383 4.0226037

drug1:time 1.01719312 0.1877051 5.4191018 0.1877014 5.4192084

Estimated Scale Parameter: 0.985392

Number of Iterations: 5

Working Correlation

[,1] [,2] [,3]

[1,] 1.000000000 -0.003432729 -0.003432729

[2,] -0.003432729 1.000000000 -0.003432729

[3,] -0.003432729 -0.003432729 1.000000000

Notice that β4 is significant indicating very strong evidence of faster improvement for
new drug.

Remarks:

• When initial diagnosis is severe, estimated odds of normal response are e−1.31 =
0.27 times estimated odds when initial diagnosis is mild, at each d × t combina-
tion.

• β̂2 = −0.06 is drug effect only at t = 0. e−0.06 = 0.94 ≈ 1, so essentially no drug ef-
fect at t = 0 (after 1 week). However, drug effect at end of study (t = 2) estimated
to be eβ̂2+2β̂4 = 7.2.

• Estimated time effects are:

– standard drug (d = 0): β̂3 = 0.48

– new drug (d = 1): β̂3 + β̂4 = 1.50

• Examined s × d and s × t interactions, but they were not statistically significant.

• Started with exchangeable working correlation, but estimated ρ ≈ 0.

Note that the working correlation matrix can be “independence” (default),
“exchangeable”, “AR-M”, “stat M dep”, “non stat M dep”, “unstructured”, and
“fixed”. See the help for gee for details.
http://users.stat.ufl.edu/˜athienit/STA4504/Examples/depression.R

http://users.stat.ufl.edu/~athienit/STA4504/Examples/depression.R
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Remark 9.4. Missing data is not uncommon and can be very problematic unless missing com-
pletely at random (MCAR): missingness unrelated to response or any explanatory variables.

Missing at random (MAR) means missingness unrelated to response after controlling for ex-
planatory variables. Methods exist to handle this and some other forms of missingness .

Ignoring missing data leads to biased estimates.
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10.1 Generalized Linear Mixed Models 92

10.2 Comparison with GEE 94

Unlike marginal modeling, this chapter presents an alternative model type that has a term in
the model for each cluster.

10.1 Generalized Linear Mixed Models

A GLMM with a random effects is able to account for having multiple responses per subject
(or “cluster”) by putting a subject term in model.

Binary response Yt = 0 or 1. Let Yit = response by subject i at time t. Model:

logit [P (Yit = 1)] = αi + βxit , t = 1, . . . ,T

The intercept αi varies by subject so that a heterogeneous population implies a highly vari-
able {αi}.

Treating αi as fixed is not possible because this model would yield at least n parameters,

so the solution is to treat it as random, i.e. αi
ind.∼ N (α,σ2) or equivalently

αi = α +ui , ui ∼N (0,σ2)

Model:
logit [P (Yit = 1)] = α +ui + βxit , t = 1, . . . ,T

Parameters α and β are fixed effects and {ui} are random effects.
Yi1,Yi2, . . . ,YiT are conditionally independent given ui , but marginally dependent. That

is, responses within subject more alike than between subjects.

Remark 10.1. Note that random effects {ui} are unobserved (not data), so software must “integrate
out” {ui} to get likelihood function.

Example 10.1 (Depression continued) Using the same data from example 9.3

log
[
P (Yt = 1)
P (Yt = 0)

]
= ui +α + β1s+ β2d + β3t + β4(dt)
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> dep.lme=glmer((response == "normal") ˜ severity+drug*time+(1|subject),

+ data=depression, family=binomial,

+ contrasts=list(drug=contr.treatment(2,base=2,contrasts=TRUE)))

> summary(dep.lme)

AIC BIC logLik deviance df.resid

1173.9 1203.5 -581.0 1161.9 1014

Scaled residuals:

Min 1Q Median 3Q Max

-4.2849 -0.8268 0.2326 0.7964 2.0181

Random effects:

Groups Name Variance Std.Dev.

subject (Intercept) 0.003231 0.05684

Number of obs: 1020, groups: subject, 340

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.02797 0.16406 -0.170 0.865

severitysevere -1.31488 0.15261 -8.616 < 2e-16 ***

drug1 -0.05967 0.22239 -0.268 0.788

time 0.48274 0.11566 4.174 3.00e-05 ***

drug1:time 1.01817 0.19150 5.317 1.06e-07 ***

---

Correlation of Fixed Effects:

(Intr) svrtys drug1 time

severitysvr -0.389

drug1 -0.614 -0.005

time -0.673 -0.123 0.524

drug1:time 0.462 -0.121 -0.742 -0.562

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/depression2.R

In this example, GLMM and GEE estimates and standard errors for fixed effects are
nearly identical:

GLMM GEE

Est SE Est SE

alpha -0.03 0.16 -0.03 0.17
beta.1 -1.31 0.15 -1.31 0.15
beta.2 -0.06 0.22 -0.06 0.23
beta.3 0.48 0.11 0.48 0.12
beta.4 1.02 0.19 1.02 0.19

There appears to be little correlation between repeated measurements on subjects:

• ρ̂ = −0.003 ≈ 0 in GEE with exchangeable working correlation.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/depression2.R
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• σ̂ = 0.057 ≈ 0 in GLMM. According to model, 95% of all individuals will have
ui between ±1.96σ ≈ ±0.11. But e±0.11 → (0.89,1.12), so effect of ui on odds is
estimated to be small for most subjects.

10.2 Comparison with GEE

• When σ̂ = 0, estimates and standard errors same as treating repeated observations as
independent.

• When σ̂ is large, estimated β’s from random effects logit model usually larger than
from marginal model. They are estimating different things.

Example 10.2 (Teratology Overdispersions) Female rats on iron-deficient diets as-
signed to four groups:

1. placebo

2. iron injections on days 7 and 10

3. iron injections on days 0 and 7

4. iron injections weekly

Then they are made pregnant and sacrificed after 3 weeks. The response is whether
fetus is dead or alive and the cluster is the litter.

Notation:

• GRP = group,

• LS = litter size,

• ND = number dead in litter

logit [P (fetus t in litter i dead)] = α + β2zi2 + β3zi3 + β4zi4

where

zij =

1 if litter i in group j

0 otherwise
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> terat$GRP=factor(terat$GRP)

> terat.binom=glm(cbind(ND,N-ND)˜GRP, family=binomial, data=terat)

> summary(terat.binom)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1440 0.1292 8.855 < 2e-16 ***

GRP2 -3.3225 0.3308 -10.043 < 2e-16 ***

GRP3 -4.4762 0.7311 -6.122 9.22e-10 ***

GRP4 -4.1297 0.4762 -8.672 < 2e-16 ***

---

Null deviance: 509.43 on 57 degrees of freedom

Residual deviance: 173.45 on 54 degrees of freedom

AIC: 252.92

> 1-pchisq(173.45,df.residual(terat.binom)) # Gooodness of fit via LRT

[1] 1.876277e-14

> X2=sum(resid(terat.binom,type="pearson")ˆ2);X2

[1] 154.707

> 1-pchisq(X2,df.residual(terat.binom)) # Gooodness of fit via Pearson

[1] 1.187217e-11

> X2/df.residual(terat.binom) # Evidence of overdispersion

[1] 2.864945

Results:

• Binomial model fits poorly (X2 = 154.7,G2 = 173.5,df = 54,p-value ≈ 0).

• There is inter-litter variability that cannot be accounted for in a binomial model
by treatment group alone. Fetuses are more alike within litters than across litters,
even within the same treatment group.

• Standard errors invalid (too small) due to overdispersion.

• Possible solutions:

– GEE: models marginal (population averaged) effect of treatment.

– GLMM: models litter-specific effect.

– At least two other approaches not discussed (thoroughly) in this class:

* Quasi-binomial: simplified version of GEE.
* Beta-binomial: parametric mixture model, analogous to negative-

binomial for count data. Motivation similar to GLMM

> terat.gee <- gee((Resp == "Dead") ˜ GRP, id = Litter,

+ data = teratbnry, family = binomial, corstr = "exchangeable")

> summary(terat.gee)

Summary of Residuals:

Min 1Q Median 3Q Max
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-0.7881637 -0.3568763 0.2118363 0.3420839 0.6431237

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.5889477 0.2317694 -2.541093 0.2966943 -1.985032

GRP2 1.2429690 0.4469084 2.781261 0.5612748 2.214546

GRP3 1.6997950 0.7248173 2.345136 0.8877114 1.914806

GRP4 1.9028396 0.5776533 3.294086 0.7226377 2.633186

Estimated Scale Parameter: 0.709622

> # Big working correlation matrix (17 x 17), but

> # all correlations equal with exchangeable struc:

> terat.gee$working.correlation[1,2]

[1] 0.8051211

> library(lme4)

> # Using grouped data

> terat.glmm <- glmer(cbind(ND, N-ND) ˜ GRP + (1|Litter),

+ data = terat, family = binomial)

> # Using ungrouped binary data

> terat.glmm <- glmer((Resp == "Dead") ˜ GRP + (1|Litter),

+ data = teratbnry, family = binomial)

> summary(terat.glmm)

AIC BIC logLik deviance df.resid

445.9 468.0 -218.0 435.9 602

Scaled residuals:

Min 1Q Median 3Q Max

-4.7821 -0.2431 0.1158 0.2673 2.8214

Random effects:

Groups Name Variance Std.Dev.

Litter (Intercept) 2.284 1.511

Number of obs: 607, groups: Litter, 58

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.8094 0.3616 -5.004 5.62e-07 ***

GRP2 4.5396 0.7345 6.181 6.39e-10 ***

GRP3 5.8833 1.1754 5.005 5.58e-07 ***

GRP4 5.6062 0.9076 6.177 6.54e-10 ***

---

Correlation of Fixed Effects:

(Intr) GRP2 GRP3

GRP2 -0.562
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GRP3 -0.373 0.235

GRP4 -0.496 0.316 0.221

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/teratology.R

Binomial ML GEE GLMM

(Intercept) 1.14 (0.13) 1.21 (0.27) 1.81 (0.33)
GRP2 -3.32 (0.33) -3.37 (0.43) -4.54 (0.68)
GRP3 -4.48 (0.73) -4.58 (0.62) -5.88 (1.18)
GRP4 -4.13 (0.48) -4.25 (0.6) -5.61 (0.86)

• SEs for binomial ML fit invalid (because of lack of fit)

• GEE estimates are similar to binomial but with larger SEs. Estimate marginal
(population averaged) effects.

• GLMM estimates are larger in magnitude. Estimate conditional (within litter)
effects.

As a final note it seems that there are differences between groups 2,3,4 with the base
group 1. As an exercise compare groups 2 and 3 for the GLMM model.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/teratology.R
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Loglinear models for contingency tables treat all variables as response variables, like multi-
variate analysis.

7.1 Loglinear for 2-way

7.1.1 I × J

All variables are treated as responses, in that a set of variables is not used to model another
variable but are interested in patterns of dependence and independence among the variables:

• Are the variables independent?

• The strength of associations

• Are there any interactions?

Y
1 2 · · · J

X

1 n11 n12 · · · n1J
2 n21 n22 · · · n2J
...

...
...

. . .
...

I nI1 nI2 · · · nIJ

Loglinear models treat cell counts as Poisson and use log link function. From Lemma 2.1
we have that

µij = nπij
ind.= nπi+π+j ⇒ log

(
µij

)
= log(n)︸︷︷︸

λ

+logπi+︸ ︷︷ ︸
λXi

+logπ+j︸ ︷︷ ︸
λYj

• λXi : effect of classification in row i (I−1 non-redundant parameters with the restriction
of λX1 = 0 for base group)

98
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• λYj : effect of classification in column j (J − 1 non-redundant parameters with the re-

striction of λY1 = 0 for base group))

The degrees of freedom are

df = number of Poisson counts︸                            ︷︷                            ︸
number of cells in table

−number of parameters

• For the independence model

log(µij ) = λ+λXi +λYj

and hence

df = IJ︸︷︷︸
no. of cells

−


λ︷︸︸︷
1 +

λXi︷︸︸︷
(I − 1)+

λYj︷︸︸︷
(J − 1)

︸                        ︷︷                        ︸
no. of parameters

= (I − 1)(J − 1)

• For the saturated model
log(µij ) = λ+λXi +λYj +λXYij

and hence

df = IJ︸︷︷︸
no. of cells

−


λ︷︸︸︷
1 +

λXi︷︸︸︷
(I − 1)+

λYj︷︸︸︷
(J − 1)+

λXYij︷         ︸︸         ︷
(I − 1)(J − 1)

︸                                            ︷︷                                            ︸
no. of parameters

= 0

Log-odds-ratio comparing levels i and i′ of X and j and j ′ of Y is

j j ′

i

i′

log
(
µijµi′j ′

µij ′µi′j

)
=log(µij ) + log(µi′j ′ )− log(µij ′ )− log(µi′j )

=(λ+λXi +λYj +λXYij ) + (λ+λXi′ +λYj ′ +λXYi′j ′ )

− (λ+λXi +λYj ′ +λXYij ′ )− (λ+λXi′ +λYj +λXYi′j )

=λXYij +λXYi′j ′ −λ
XY
ij ′ −λ

XY
i′j

• For the independence model, since all λXYij = 0 (they do not even exist), this is 0 and

the odds-ratio is e0 = 1.
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• For the saturated model, the odds-ratio, expressed in terms of of the parameters of the
loglinear model, is

exp
(
λXYij +λXYi′j ′ −λ

XY
ij ′ −λ

XY
i′j

)
Substituting the MLEs of the saturated model (perfect fit) just reproduces the empirical
odds ratio

nijni′j ′

nij ′ni′j

Example 7.1 (Job Satisfaction) We are revisiting

• Example 2.12 where we tested independence via Pearson’s X2

• Example 6.1 where we fitted a baseline logit model

• Example 6.2 where we fitted a cumulative logit model

to fit
log(µij ) = λ+λIi +λSj i = 1,2,3, �4 j = 1,2,3, �4

which can be expressed as

log(µij ) = λ+λI1z(10) +λI2z(20) +λI3z(30) +λS1w(LD) +λS2w(MS) +λS3w(V S)

where

z(10) =

1 income score = 10

0 otherwise

and

w(LD) =

1 little dissatisfaction

0 otherwise

and similarly for the rest. The independence model is

> jobsat.ind=glm(count˜factor(income)+jobsat,

+ family=poisson(link=log),data=table.sat)

> summary(jobsat.ind)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.16705 0.53464 -0.312 0.75469

factor(income)10 0.43532 0.27362 1.591 0.11162

factor(income)20 0.08701 0.29516 0.295 0.76815

factor(income)30 0.08701 0.29516 0.295 0.76815

jobsatLD 1.25276 0.56694 2.210 0.02713 *

jobsatMS 2.75684 0.51563 5.347 8.96e-08 ***

jobsatVS 1.74920 0.54173 3.229 0.00124 **

---

Null deviance: 90.242 on 15 degrees of freedom

Residual deviance: 13.467 on 9 degrees of freedom

AIC: 77.068
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and performing a goodness of fit test is comparing this (independence) model to the
saturated one, so hence the goodness of fit is the test of independence. That is, the
goodness of fit tests

H0 : λISij = 0 ∀i, j

> jobsat.sat=update(jobsat.ind,.˜.+factor(income)*jobsat)

> anova(jobsat.ind,jobsat.sat,test="Chisq")

Analysis of Deviance Table

Model 1: count ˜ factor(income) + jobsat

Model 2: count ˜ factor(income) + jobsat + factor(income):jobsat

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 9 13.467

2 0 0.000 9 13.467 0.1426

and hence we conclude independence. Using the Independence model we can also
obtain expected values under independence.

• Under example 2.12 with

– µ̂(3,D) = 22×4
104 = 0.846

– µ̂(10,LD) = 34×14
104 = 4.5769

• Under the independence model with

– µ̂(3,D) = e−0.16705 = 0.846

– µ̂(10,LD) = e−0.16705+0.43532+1.25276 = 4.5769

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/jobsatis_

loglinear.R

7.1.2 I × 2

Let J = 2, that is, Y = 1,2 to only have two levels. Then, with πi := P (Y = i)

log
(
π1

1−π1

)
= log

(
nπ1

nπ2

)
= log

(
µi1
µi2

)
= log(µi1)− log(µi2)

= (λ+λXi +λY1 +λXYi1 )− (λ+λXi +λY2 +λXYi2 )

= (λY1 −���
0

λY2 ) + (λXYi1 −�
��>

0
λXYi2 ) (7.1)

if we chose group 2 to be the base group then λY2 = λXYi2 = 0.

Remark 7.1.

• If group 1 was chosen as the base group then its corresponding parameters would be 0.

• If the independence model is used then all λXY = 0 and the formula simplifies.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/jobsatis_loglinear.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/jobsatis_loglinear.R
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Example 7.2 (Belief in afterlife) Reconsider

Belief
Race Yes No
White 1339 300
Black 260 55
Other 88 22

Independence model

log(µij ) = λ+λXi +λYj i = 1,2,3 j = 1,2

> Race=rep(c("White","Black","Other"),each=2)

> Belief=rep(c("Yes","No"),3)

> count=c(1339,300,260,55,88,22)

> after=data.frame(Race,Belief,count)

> after=transform(after,Race=relevel(Race,"Other"))

> B_R=glm(count˜Belief+Race,family=poisson(link=log),data=after)

> summary(B_R)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.00032 0.10611 28.28 <2e-16 ***

BeliefYes 1.49846 0.05697 26.30 <2e-16 ***

RaceBlack 1.05209 0.11075 9.50 <2e-16 ***

RaceWhite 2.70136 0.09849 27.43 <2e-16 ***

---

Null deviance: 2849.21758 on 5 degrees of freedom

Residual deviance: 0.35649 on 2 degrees of freedom

AIC: 49.437

Note that the estimated odds (not odds ratio) of belief in the afterlife was exp(λ̂Y1 −0) =
exp(1.49846) = 4.474793 for each race.

Saturated model/Dependence model

log(µij ) = λ+λXi +λYj +λXYij i = 1,2,3 j = 1,2

with

> BR=glm(count˜Belief*Race,family=poisson(link=log),data=after)

> summary(BR)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.0910 0.2132 14.498 < 2e-16 ***

BeliefYes 1.3863 0.2384 5.816 6.03e-09 ***

RaceBlack 0.9163 0.2523 3.632 0.000281 ***

RaceWhite 2.6127 0.2209 11.829 < 2e-16 ***
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BeliefYes:RaceBlack 0.1671 0.2808 0.595 0.551889

BeliefYes:RaceWhite 0.1096 0.2468 0.444 0.656946

---

Null deviance: 2.8492e+03 on 5 degrees of freedom

Residual deviance: -8.7930e-14 on 0 degrees of freedom

AIC: 53.081

We can test for independence by H0 : λXYij = 0 ∀i, j by a likelihood ratio test using
the difference of deviances. Notice that the model with the interaction is a saturated
model, so the LR test is in fact a goodness of fit test for the independence model with

D0 −D1 = 0.35649− 0

on df=2 and p-value= 0.8367, so we fail to reject H0 and conclude independence be-
tween belief and race.

> anova(B_R,BR,test="Chisq")

Analysis of Deviance Table

Model 1: count ˜ Belief + Race

Model 2: count ˜ Belief * Race

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2 0.35649

2 0 0.00000 2 0.35649 0.8367

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/afterlife.R

http://users.stat.ufl.edu/~athienit/STA4504/Examples/afterlife.R
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7.2 Loglinear for 3-way

Definition 7.1 (Associations) We review 5 types of associations

• X,Y ,Z are mutual independent, (X,Y ,Z) if πijk = πi++π+j+π++k

log(µijk) = λ+λXi +λYj +λZk

• Y is jointly independent of X and Z, (XZ,Y ) if πijk = π+j+πi+k

log(µijk) = λ+λXi +λYj +λZk +λXZik

• X and Y are conditionally independent given Z, (XZ,YZ) if πij |k = πi+|kπ+j |k

log(µijk) = λ+λXi +λYj +λZk +λXZik +λYZjk

• Homogeneous association, (XZ,XY ,YZ) if two variables have the same association
for all levels of the third, e.g. πij |k = πij |k′ same ∀k,k′

log(µijk) = λ+λXi +λYj +λZk +λXZik +λYZjk +λXYij

• Non restricted association, (saturated model) (XYZ)

log(µijk) = λ+λXi +λYj +λZk +λXZik +λYZjk +λXYij +λXYZijk

Example 7.3 Consider a 2× 2× 2 with X,Y conditional independence (XZ,YZ)

log(µijk) = λ+λXi +λYj +λZk +λXZik +λYZjk

Hence,

• X and Y are conditionally independent given Z:

log
(
θXY (k)

)
= log

(
µijkµi′j ′k
µi′jkµij ′k

)
= · · · = 0 =⇒ θXY (k) = 1

• The X −Z odds ratio is the same at all levels of Y :

log
(
θX(j)Z

)
= log

(
µijkµi′jk′

µi′jkµijk′

)
= · · · = λXZ11 +λXZ22 −λ

XZ
12 −λ

XZ
21

which does not depend on j.

• Similarly, Y − Z odds ratio same at all levels of X. Model has no three-factor
interaction.
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Example 7.4 Consider the loglinear homogeneous association model denoted
(XY ,XZ,YZ).

log(µijk) = λ+λXi +λYj +λZk +λXZik +λYZjk +λXYij

Each pair of variables is conditionally dependent, but association (as measured by odds
ratios) is the same at all levels of third variable.

Example 7.5 (Teen substance usage) A survey of 2276 high school seniors

> ftable(teens, row.vars=c("alc","cigs"))

mj yes no

alc cigs

yes yes 911 538

no 44 456

no yes 3 43

no 2 279

> teens.df=as.data.frame(teens)

> teens.df=transform(teens.df,

+ cigs = relevel(cigs, "no"),

+ alc = relevel(alc, "no"),

+ mj = relevel(mj, "no"))

> teens.AC.AM.CM = glm(Freq ˜ alc*cigs + alc*mj + cigs*mj,

+ family=poisson, data=teens.df)

> summary(teens.AC.AM.CM)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.63342 0.05970 94.361 < 2e-16 ***

alcyes 0.48772 0.07577 6.437 1.22e-10 ***

cigsyes -1.88667 0.16270 -11.596 < 2e-16 ***

mjyes -5.30904 0.47520 -11.172 < 2e-16 ***

alcyes:cigsyes 2.05453 0.17406 11.803 < 2e-16 ***

alcyes:mjyes 2.98601 0.46468 6.426 1.31e-10 ***

cigsyes:mjyes 2.84789 0.16384 17.382 < 2e-16 ***

---

Null deviance: 2851.46098 on 7 degrees of freedom

Residual deviance: 0.37399 on 1 degrees of freedom

AIC: 63.417

> deviance(teens.AC.AM.CM)

[1] 0.3739859

> X2=sum(residuals(teens.AC.AM.CM,type="pearson")ˆ2);X2

[1] 0.4011005

> 1-pchisq(X2,1)

[1] 0.5265215

The (AC,AM,CM) model fits well with G2 = 0.37 (and X2 = 0.4) on 1 df. Equivalently
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done via,

> teens.ACM <- update(teens.AC.AM.CM, . ˜ alc*cigs*mj)

> anova(teens.AC.AM.CM, teens.ACM, test="Chisq")

Analysis of Deviance Table

Model 1: Freq˜alc * cigs + alc * mj + cigs * mj

Model 2: Freq˜alc + cigs + mj + alc:cigs + alc:mj + cigs:mj + alc:cigs:mj

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1 0.37399

2 0 0.00000 1 0.37399 0.5408

Next we check if any 2-way interactions can be removed

> drop1(teens.AC.AM.CM, test="Chisq")

Single term deletions

Model:

Freq ˜ alc * cigs + alc * mj + cigs * mj

Df Deviance AIC LRT Pr(>Chi)

<none> 0.37 63.42

alc:cigs 1 187.75 248.80 187.38 < 2.2e-16 ***

alc:mj 1 92.02 153.06 91.64 < 2.2e-16 ***

cigs:mj 1 497.37 558.41 497.00 < 2.2e-16 ***

To test for conditional independence of A and C given M

> teens.AM.CM <- update(teens.AC.AM.CM, . ˜ alc*mj + cigs*mj)

> anova(teens.AM.CM, teens.AC.AM.CM, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ˜ alc + mj + cigs + alc:mj + mj:cigs

Model 2: Freq ˜ alc * cigs + alc * mj + cigs * mj

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2 187.754

2 1 0.374 1 187.38 < 2.2e-16 ***

We can also get predicted counts under a variety of models and compare them to the
actual data/saturated model

> table.7.4

alc cigs mj (A,C,M) (AC,M) (AM,CM) (AC,AM,CM) (ACM)

1 yes yes yes 540.0 611.0 909.00 910.00 911

2 yes yes no 740.0 838.0 439.00 539.00 538

3 yes no yes 282.0 211.0 45.80 44.60 44

4 yes no no 387.0 289.0 555.00 455.00 456

5 no yes yes 90.6 19.4 4.76 3.62 3

6 no yes no 124.0 26.6 142.00 42.40 43

7 no no yes 47.3 119.0 0.24 1.38 2

8 no no no 64.9 162.0 180.00 280.00 279



Chapter 7. Loglinear Models 107

In (AC,AM,CM) model, AC odds-ratio is the same at each level of M. With 1 = yes
and 2 = no for each variable, the estimated conditional AC odds ratio is

µ̂11kµ̂22k

µ̂12kµ̂21k
= exp(λ̂AC11 +�

��>
0

λ̂AC22 −�
��>

0
λ̂AC12 −�

��>
0

λ̂AC21 ) = e2.0545 = 7.8

A 95% CI is
e2.05∓(1.96)(0.174) −→ (5.5,11.0)

The commons odds-ratio is reflected in the fitted values for the model:

(910)(1.38)
(44.6)(3.62)

= 7.8
(539)(280)
(455)(42.4)

= 7.8

Similar results hold for AM and CM conditional odds-ratios in this model.
In (AM,CM) model, λACij = 0, and conditional AC odds-ratio (given M) is e0 = 1 at
each level of M, i.e., A and C are conditionally independent given M. Again, this is
reflected in the fitted values for this model.

(909)(0.24)
(45.8)(4.76)

= 1
(439)(180)
(555)(142)

= 1

The AM odds-ratio is not 1, but it is the same at each level of C:

(909)(142)
(439)(4.76)

= 61.87
(45.8)(180)
(555)(0.24)

= 61.87

Similarly, the CM odds-ratio is the same at each level of A:

(909)(555)
(439)(45.8)

= 25.14
(4.76)(180)
(142)(0.24)

= 25.14

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/teens.R

Remark 7.2.

• Loglinear models extend to any number of dimensions.

• Loglinear models treat all variables symmetrically. Logistic regression models treat Y as
response and other variables as explanatory. More natural approach when there is a single
response.

• For modeling ordinal associations consider a 2-way table with assigned

– row scores u1 ≤ u2 ≤ · · · ≤ uI
– column scores v1 ≤ v2 ≤ · · · ≤ vJ

and model
log(µij ) = λ+λXi +λYj + βuivj

where βuivj takes the role of λXYij but only 1 parameter is used, i.e. only 1 degree of freedom
taken up, instead of (I − 1)(J − 1)

http://users.stat.ufl.edu/~athienit/STA4504/Examples/teens.R
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Checking residuals is always important and done in the usual way as with any GLM,
however a new graphical visualization may also be useful

R code 7.1 In the vcdExtra package the function

mosaic(glm object,...)

is capable of a mosaic plot of the residuals, where the area of each tile is proportional
to the corresponding cell entry, given the dimensions of previous splits.

Example 7.6 (Teen substance usage continued) Getting and visualizing the standard-
ized deviance residuals

rstandard(teens.AC.AM.CM)

1 2 3 4 5 6 7 8

0.6332 -0.6334 -0.6347 0.6331 -0.6527 0.6317 0.5933 -0.6335

> mosaic(teens.AC.AM.CM,˜mj+cigs+alc,residuals_type = "rstandard")

−0.65

 0.00

 0.63
rstandard

p−value =
0.074326

cigs

m
j

al
c

ye
s

ye
s

no

no

no yes

ye
s

no

7.3 Loglinear-Logit Connection

We have already seen the connection in equation (7.1) which can be written as a logit model

log
(
P (Y = 1)

1− P (Y = 1)

)
= (λY1 −���

0
λY2 )︸        ︷︷        ︸
α

+(λXYi1 −�
��>

0
λXYi2 )︸            ︷︷            ︸
βXi

= α + βXi

Consider the loglinear homogeneous association model denoted (XY ,XZ,YZ).

log(µijk) = λ+λXi +λYj +λZk +λXZik +λYZij +λXYij
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Suppose Y is binary, treated as the response, and let

πik = P (Y = 1|X = i,Z = k)

then

logit(πik) = log(µi1k)− log(µi2k)

= · · ·

= (λY1 −���
0

λY2 )︸        ︷︷        ︸
α

+(λXYi1 −�
��>

0
λXYi2 )︸            ︷︷            ︸
βXi

+(λYZ1k −�
��>

0
λYZ2k )︸            ︷︷            ︸
βZk

= α + βXi + βZk

an additive model with no XZ interaction.
When a “response” (say Y ) exists and it has two levels then it is possible to fit a loglinear

model and an equivalent logit model. We are not required to fit the equivalent model but we
are exploring the special case.

Remark 7.3. The (XY ,YZ) model also yields an additive logit model but for ML estimates, De-
viances and degrees of freedom to match, the loglinear model must contain the most general inter-
action among variables that are explanatory in the logit model, those are X and Z. Therefore, the
equivalent loglinear model must include XY (X linked to Y ), the YZ (Z linked to Y ), and the XZ
(XZ linked to Y ).

Some example with π = P (Y = 1), predictors A,B,C (4-way table).:

• logit(π) = α + βAi + βBj + βCk ←→ (AY ,BY ,CY )

• logit(π) = α + βAi + βBj + βCk + βBCjk ←→ (AY ,BY ,CY ,BCY ) a.k.a. (AY ,BCY )

Remark 7.4.

• When there is a single binary response, it is simpler to approach data directly using logit
models.

• Similar remarks hold for a multi-category response Y :

– Baseline-category logit model has a matching loglinear model.

– With a single response, it is simpler to use the baseline-category logit model.

• Loglinear models have advantage of generality - can handle multiple responses, some of
which may have more than two outcome categories.

Example 7.7 (Berkeley Graduate Admissions) Earlier we had fit a logit model for the
probability of admission

logit(πik) = α + βGi + βDk
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with 12 binomial variates and 7 parameters, hence df = 5. Now we will take a look at
the equivalent loglinear model (AG,AD,DG)

log(µijk) = λ+λAi +λGj +λDk +λAGij +λADik +λDGjk

with 24 independent Poisson variates and 19 parameters, hence df = 5.
Once we create the appropriate data frame

> head(berk2)

Dept Gender Admit Freq

1 A Male Yes 512

2 A Female Yes 89

3 B Male Yes 353

4 B Female Yes 17

5 C Male Yes 120

6 C Female Yes 202

> UCB.loglin=glm(Freq˜Admit*Gender+Admit*Dept+Gender*Dept,family=poisson,

+ data=berk2)

> summary(UCB.loglin)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.59099 0.11659 30.801 < 2e-16 ***

AdmitYes 0.68192 0.09911 6.880 5.97e-12 ***

GenderMale 2.09846 0.11548 18.172 < 2e-16 ***

DeptB -1.43464 0.23341 -6.146 7.93e-10 ***

DeptC 2.34983 0.12262 19.163 < 2e-16 ***

DeptD 1.90293 0.12557 15.154 < 2e-16 ***

DeptE 2.08467 0.12711 16.400 < 2e-16 ***

DeptF 2.17093 0.12798 16.963 < 2e-16 ***

AdmitYes:GenderMale -0.09987 0.08085 -1.235 0.217

AdmitYes:DeptB -0.04340 0.10984 -0.395 0.693

AdmitYes:DeptC -1.26260 0.10663 -11.841 < 2e-16 ***

AdmitYes:DeptD -1.29461 0.10582 -12.234 < 2e-16 ***

AdmitYes:DeptE -1.73931 0.12611 -13.792 < 2e-16 ***

AdmitYes:DeptF -3.30648 0.16998 -19.452 < 2e-16 ***

GenderMale:DeptB 1.07482 0.22861 4.701 2.58e-06 ***

GenderMale:DeptC -2.66513 0.12609 -21.137 < 2e-16 ***

GenderMale:DeptD -1.95832 0.12734 -15.379 < 2e-16 ***

GenderMale:DeptE -2.79519 0.13925 -20.073 < 2e-16 ***

GenderMale:DeptF -2.00232 0.13571 -14.754 < 2e-16 ***

---

Null deviance: 2650.095 on 23 degrees of freedom

Residual deviance: 20.204 on 5 degrees of freedom

AIC: 217.26

We note that G2 = 20.204 is the same for both models and that the estimated odds
(controlling for department) of admission for males compared to that of females is

• Logit model: exp(β̂1 − β̂2) = exp(−0.09987) = 0.905
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• Loglinear model: exp(λ̂AG11 + λ̂AG22 − λ̂
AG
12 − λ̂

AG
21 ) = exp(−0.09987) = 0.905

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/admissions_

loglinear.R

7.4 Independence Graphs and Collapsibility

Independence graph is a graphical representation for conditional independence.

• Vertices (or nodes) represent variables.

• Connected by edges: a missing edge between two variables represents a conditional
independence between the variables.

• Different models may produce the same graph.

• Graphical models: subclass of loglinear models

– Within this class there is a unique model for each independence graph.

– For any group of variables having no missing edges, graphical model contains the
highest order interaction term for those variables.

http://users.stat.ufl.edu/~athienit/STA4504/Examples/admissions_loglinear.R
http://users.stat.ufl.edu/~athienit/STA4504/Examples/admissions_loglinear.R
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7.4.1 Independence Graphs for a 4-Way Table (VariablesW,X,Y ,Z)

Model(s) Graph

(WX,WY,WZ,YZ)
(WX,WYZ)?

X W
Y

Z

(WX,WY,WZ,XZ,YZ)
(WX,XZ,WYZ)
(WXZ,WY,YZ)
(WXZ,WYZ)?

X
W

Y
Z

(WX,WY,WZ)? X W
Y

Z

(WX,XY,YZ)? XW Y Z

(X,WY,WZ,YZ)
(X,WYZ)?

X W
Y

Z

(WX,YZ)? XW Y Z

(WX,WY,WZ,XY,XZ,YZ)
(WX,WY,WZ,XYZ)

(WX,WYZ,XYZ)
...many others...

(WXYZ)?

X

W

Y

Z

? Graphical model

7.4.2 Collapsibility Conditions for Three-Way Tables

For a three-way table, the XY marginal and conditional odds ratios are identical if either Z
and X are conditionally independent or if Z and Y are conditionally independent.

• Conditions say control variable Z is either:

– conditionally independent of X given Y , as in model (XY ,YZ);

– or conditionally independent of Y given X, as in (XY ,XZ).

• I.e., XY association is identical in the partial tables and the marginal table for models
with independence graphs

X Y Z XY Z

or even simpler models.
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Example 7.8 (Teen substance usage) See example 7.5 where

• A = alcohol use

• C = cigarette use

• M = marijuana use

The model of AC conditional independence, (AM,CM), has independence graph

A M C

Consider AM association, treating C as control variable. Since C is conditionally inde-
pendent of A, the AM conditional odds ratios are the same as the AM marginal odds
ratio collapsed over C.

(909.24)(142.16)
(438.84)(4.76)

=
(45.76)(179.84)
(555.16)(0.24)

=
(955)(322)

(994)(5)
= 61.9

> exp(coef(teens.AM.CM)[5])

alcyes:mjyes

61.87324

> AM.CM.fitted <- teens

> AM.CM.fitted[,,] <- predict(teens.AM.CM, type="response")

> AM.CM.fitted[,"yes",]

alc

mj yes no

yes 909.239583 4.760417

no 438.840426 142.159574

> AM.CM.fitted[,"no",]

alc

mj yes no

yes 45.7604167 0.2395833

no 555.1595745 179.8404255

> AM.CM.fitted[,"yes",] + AM.CM.fitted[,"no",]

alc

mj yes no

yes 955 5

no 994 322

• Similarly, CM association is collapsible over A

• The AC association is not collapsible, becauseM is conditionally dependent with
both A and C in model (AM,CM). Thus, A and C may be marginally dependent,
even though conditionally independent.

(909.24)(0.24)
(45.76)(4.76)

=
(438.84)(179.84)
(555.16)(142.16)

= 1

(1348.08)(180.08)
(600.92)(146.92)

= 2.75 , 1
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> AM.CM.fitted["yes",,]

alc

cigs yes no

yes 909.2395833 4.7604167

no 45.7604167 0.2395833

> AM.CM.fitted["no",,]

alc

cigs yes no

yes 438.8404 142.1596

no 555.1596 179.8404

> AM.CM.fitted["yes",,] + AM.CM.fitted["no",,]

alc

cigs yes no

yes 1348.08 146.92

no 600.92 180.08

See Part II of http://users.stat.ufl.edu/˜athienit/STA4504/Examples/teens.R

7.4.3 Collapsibility Conditions for Multiway Tables

If the variables in a model for a multiway table partition into three mutually exclusive sub-
sets, A,B,C, such that B separates A and C (that is, if the model does not contain parameters
linking variables from A directly to variables from C), then when the table is collapsed over
the variables in C, model parameters relating variables in A and model parameters relating
variables in A with variables in B are unchanged.

A B C

Example 7.9 Consider the (WX,XY ,YZ) model (drawn slightly differently)

W

X

Y Z

A

B C

Then collapsing over Z:

• WX and XY associations are unchanged

• W and Y are still conditionally independent given X

http://users.stat.ufl.edu/~athienit/STA4504/Examples/teens.R
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Example 7.10 (Teen substance usage continued) In addition to the variables seen so
far data exists on the race and gender of each teen.

> data(teens)

> ftable(R + G + M ˜ A + C, data = teens)

R White Other

G Female Male Female Male

M Yes No Yes No Yes No Yes No

A C

Yes Yes 405 268 453 228 23 23 30 19

No 13 218 28 201 2 19 1 18

No Yes 1 17 1 17 0 1 1 8

No 1 117 1 133 0 12 0 17

Text suggests loglinear model (AC,AM,CM,AG,AR,GM,GR).

M G

C A R

The set {A,M} separates sets {C} and {G,R}, i.e. C is conditionally independent of G
and R given M and A. Thus, collapsing over G and R, the conditional associations
between C and M and between C and A are the same as with the model (AC,AM,CM)
fitted earlier.

> teens.df <- as.data.frame(teens)

> ACM <- margin.table(teens, 1:3)

> ACM.df <- as.data.frame(ACM)

>

> teens.m6 <-

+ glm(Freq ˜ A*C + A*M + C*M + A*G + A*R + G*M + G*R,

+ family = poisson, data = teens.df)

> AC.AM.CM <- glm(Freq ˜ A*C + A*M + C*M,

+ family = poisson, data = ACM.df)

> coef(teens.m6)

(Intercept) ANo CNo MNo GMale

5.9784142 -5.7507310 -3.0157544 -0.3895472 0.1358363

ROther ANo:CNo ANo:MNo CNo:MNo ANo:GMale

-2.6630477 2.0545341 3.0059195 2.8478892 0.2922863

ANo:ROther MNo:GMale GMale:ROther

0.5934604 -0.2692945 0.1261850

> coef(AC.AM.CM)

(Intercept) ANo CNo MNo ANo:CNo ANo:MNo

6.8138656 -5.5282675 -3.0157544 -0.5248611 2.0545341 2.9860144

CNo:MNo

2.8478892

http://users.stat.ufl.edu/˜athienit/STA4504/Examples/teens2.R

http://users.stat.ufl.edu/~athienit/STA4504/Examples/teens2.R
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