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Chapter 1

Introduction

This course deals with the analysis of categorical data. An important consideration in
determining the appropriate analysis of categorical variables is the scale of measurement
and their distributions. Hence, we begin the course by revising variable classifications and
common discrete probability distributions that you have seen in your previous study years.

1.1 Categorical Response Data

Categorical variables are variables that can take on one of a limited, and usually fixed,
number of possible values. That is, they have measurement scales consisting of a set of
categories. Such scales occur frequently in the health sciences (e.g., whether a patient
survives an operation: yes, no), social sciences (for measuring attitudes and opinions),
behavioral sciences (e.g., diagnosis of type of mental illness: schizophrenia, depression,
neurosis), public health (e.g., whether awareness of AIDS has led to increased use of con-
doms: yes, no), zoology (e.g., alligators’ primary food choice: fish, invertebrate, reptile),
education (e.g., examination result: pass, fail) and marketing (e.g., consumers’ preference
among brands of a product: Brand A, Brand B, Brand C). They even are pervasive in
highly quantitative fields such as engineering sciences and industrial quality control, when
items are classified according to whether or not they conform to certain standards.

There are two common kinds of categorical variables: nominal and ordinal variables. The
first kind, nominal variables, have a set of mutually exclusive categories which cannot
be ordered. The number of occurrences in each category is referred to as the frequency
(count) for that category. When nominal variables have two categories, they are termed
as binary (dichotomous). For example, gender (male or female) and patient outcomes
(dead or alive) are binary variables. A nominal variable which has multiple categories, is
referred to a multinomial variable. For example, blood type (A, B, AB or O), teaching
method (lecturing, using slides, discussion or other), favorite Ethiopian music (tizita, am-
basel, anchihoye or bati), marital status (single, married, widowed, divorced), preference
of soft drink (coca, fanta, sprite, pepsi, mirinda or 7up) and party affiliation (Republi-
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can, Democrat, Independent) are all multinomial variables. The second kind of variables,
ordinal variables, are where the categories are ordered. For example, clinical stage of a
disease (none, mild or severe) and academic qualifications (B.Sc, MSc or PhD) are ordinal
variables. Ordinal variables generally indicate that some subjects are better than others
but then, we can not say by how much better, because the intervals between categories are
not equal.

In addition to nominal or ordinal variables, categorical data also consists of variables with
a finite number of discrete values (really, a small number of discrete values). That is,
categorical data may arise in a form of simple counts, for example, number of children in
a family, CD4 counts in an HIV/AIDS patient, · · · . But continuous variables cannot be
considered as categorical.

The reason for distinguishing between variables is that the method of data analysis de-
pends on the scale of measurement and their distribution. Methods designed for ordinal
variables cannot be used with nominal variables. Though ordinal variables are qualitative,
they are treated in a quantitative manner in a statistical analysis by assigning ordered
scores to the categories. Thus, methods designed for ordinal variables utilize the order of
the category (low to high or high to low) unlike methods designed for nominal variables.
On the contrary, methods designed for nominal variables can be used with ordinal variables
as nominal variables are lower in the measurement scale. Since the methods designed for
nominal variables do not use the order of the categories, it can result serious loss of power
(Agresti, 2007, 2002). Hence, it is a must to apply appropriate methods for the actual scale.

The subject of this course is the analysis of categorical response variables. It is mainly
concerned with those statistical methods which are relevant when there is just one cate-
gorical response variable. There can be several explanatory variables which may be either
quantitative, categorical or both.

1.2 Discrete Probability Distributions

Inferential statistical analysis requires assumptions about the probability distribution of the
response variable. For regression and analysis of variance (ANOVA) models, the continuous
response variable is assumed to follow normal distribution. For a categorical response, there
are three common distributions; binomial, multinomial and poisson.

1.2.1 The Binomial Distribution

A binomial distribution is one of the most frequently used discrete distribution which is
very useful in many practical situations involving two types of outcomes. Recall that a
Bernoulli trial is a trial with only two mutually exclusive and exhaustive outcomes (out-
comes that can be reduced to two) which are labeled as ”success” and ”failure”.

2



Categorical Data Analysis - Stat 3062 E-mail: es.awol@gmail.com

Suppose there are n Bernoulli trials. Let Y denote the number of successes out of the n
trials.

Outcomes
Success Failure Total

Observed Frequency y n− y n
Probability π 1− π 1

Under the assumption of independent and identical trials, Y has the binomial distribution
with the number of trials n and probability of success π, Y ∼ Bin(n, π). Therefore, the
probability of y successes out of the n trials is:

P (Y = y) =
n!

(n− y)! y!
πy(1− π)n−y, y = 0, 1, 2, · · · , n

The mean µ and variance σ2 of the number of successes are E(Y ) = µ = nπ and
V (Y ) = σ2 = nπ(1− π), respectively.

The binomial distribution is always symmetric when π = 0.50. For fixed n, it becomes
more skewed as π moves toward 0 or 1. Specifically, the distribution is right-skewed when
π < 0.5 and it is left-skewed when π > 0.5.

For fixed π, it becomes more symmetric as n increases. When n is large, it can be approx-
imated by a normal distribution with µ = nπ and σ2 = nπ(1 − π). A guideline is that
the expected number of both outcomes, nπ and n(1 − π), should both be at least 5. For
π = 0.50, it requires only n ≥ 10. For π = 0.10 (or π = 0.90), it requires n ≥ 50. When π
gets nearer to 0 or 1, larger samples are needed to attain normality.

1.2.2 The Multinomial Distribution

The multinomial distribution is an extension of binomial distribution. In this case, each
trial has more than two mutually exclusive and exhaustive outcomes. Similar to Bernoulli
trials, the trials are independent with the same category probabilities.

Let J denote the number of outcomes in a multinomial experiment and let Yi; i =
1, 2, · · · , J denote the number of times that the ith outcome occurs among n trials. Let
πi; i = 1, 2, · · · , J be the probability that the ith outcome occurs on any trial, where
π1 + π2 + · · ·+ πJ = 1.

Outcomes Categories
1 2 · · · j · · · J Total

Observed Frequency n1 n2 · · · nj · · · nJ n
Probability π1 π2 · · · πj · · · πJ 1

3
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Thus, (Y1, Y2, · · · , YJ) has a multinomial distribution with parameters n; π1, π2, · · · , πJ and
write as (Y1, Y2, · · · , YJ) ∼Multi(n; π1, π2, · · · , πJ). Therefore, the probability of observing
n1 outcome 1’s, n2 outcome 2’s, · · · , nJ outcome J ’s among the n multinomial trials is:

P (Y1 = n1, Y2 = n2, · · · , YJ = nJ) =
n!

n1! n2! · · ·nJ !
πn1
1 π

n2
2 · · · π

nJ
J =

n!
J∏
i=1

ni!

J∏
i=1

πni
i

where n1 + n2 + · · · + nJ = n. For outcome j, the mean is E(Yj) = µj = nπj and the
variance is V (Yj) = σ2

j = nπj(1 − πj). If J = 2, the multinomial distribution reduces to
binomial distribution, (Y1, Y2) ∼Multi(n, π1, π2).

1.2.3 The Poisson Distribution

Poisson distribution is another theoretical discrete probability distribution, which is useful
for modeling the number of successes in a certain time, space,· · · . It differs from binomial
distribution in the sense that it is not possible to count the number of failures even though
the number of successes is known. For example, in the case of patients coming to hospital
for emergency treatment, only the number of patients arriving in a given hour is known
but it is not possible to count the number of patients not coming for emergency treatment
in that hour.

Accordingly, it is not possible to determine the number of trials ( total number of outcomes
- successes and failures) and hence binomial distribution cannot be applied as a decision
making tool. In such situation the poisson distribution should be used if the average num-
ber of successes is given.

Let Y be the number of successes in a specific time or space. Its probabilities depend on
a single parameter, µ which is the average number of successes in a certain time or space.
Thus, Y ∼ Poisson(µ). The probability of y successes in that specific time or space is:

P (Y = y) =
e−µµy

y!
, y = 0, 1, 2, · · ·

A key feature of the Poisson distribution is that its variance equals its mean, i.e., E(Y ) =
µ = Var(Y ). The counts vary more when their mean is higher. Also the distribution
approaches normality as µ increases and it approximates binomial if n is large and π is
small, with µ = nπ.

1.3 Statistical Inference for a Proportion

In practice, the parameter values for the binomial, multinomial and poisson distributions
are unknown. They can be estimated using sample data.
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1.3.1 Maximum Likelihood Estimation

A likelihood function is the probability of the observed data, expressed as a function of the
parameter. For a binomial distribution, with y = 0 successes in n = 5 trials, the likelihood
function is `(π) = (1−π)5 which is defined for π between 0 and 1. If π = 0.60 for instance,
the probability that y = 0 is `(0.60) = (1 − 0.60)5 = 0.0102. Likewise, if π = 0.40 then
`(0.40) = (1 − 0.40)5 = 0.0778, if π = 0.20 then `(0.20) = (1 − 0.20)5 = 0.3277 and if
π = 0.0 then `(0.0) = (1− 0.0)5 = 1.0.

The maximum likelihood estimate of a parameter is a value at which the likelihood func-
tion is maximized. Consider the previous example, the likelihood function `(π) = (1− π)5

is maximized at π = 0.0. Thus, when n = 5 trials have y = 0 successes, the maximum
likelihood estimate of π equals 0.0. This means that the result y = 0 in n = 5 trials is
more likely to occur when π = 0.00 than when π equals any other value.

In general, for the binomial outcome of y successes in n trials, the maximum likelihood
estimate of π is π̂ = p = y/n. This is the sample proportion of successes for n trials. For
observing y = 3 successes in n = 5 trials, the maximum likelihood estimate of π equals
p = 3/5 = 0.60. The result y = 3 in n = 5 trials is more likely to occur when π = 0.60
than when π equals any other value.

The expected value of the sample proportion p is E(p) = π and its variance is σ2(p) =

π(1− π)/n (standard error
√
π(1− π)/n ).

• Since E(p) = π, p is an unbiased estimator of π. But unbiasedness is not true for all
ML estimators.

• As the number of trials n increases, σ2(p) decreases toward zero; that is, the sample
proportion tends to be closer to the population proportion π. Thus, the estimator p
is consistent. Consistency is true for all ML estimators.

• The sampling distribution of p is approximately normal, that is, p ∼ N(π, π(1−π)/n),
for large n. This large-sample inferential method is also true for all ML estimators.

1.3.2 Wald, Score and Likelihood-Ratio Tests

Wald, Score and Likelihood-Ratio tests are three major ways of conducting significance
tests for any parameter in a statistical model.

Wald Test

Consider the null hypothesis H0 : π = π0 that the population proportion equals some fixed
value, π0. For large samples, under the assumption that the null hypothesis holds true, the

5
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test statistic

Z =
p− π0√
p(1− p)/n

∼ N(0, 1).

The z test statistic measures the number of standard errors that the sample proportion
falls from the null hypothesized proportion.

Equivalently, for a two-sided alternative hypothesis H1 : π 6= π0, the test statistic can be:

Z2 =
(p− π0)2

p(1− p)/n
∼ χ2(1)

These test statistics estimate the standard error of p by substituting the maximum like-
lihood estimate p for the unknown parameter π in the standard error of p. The Z or
chi-squared test using this test statistic is called a Wald test. As usual, the null hypothesis
should be rejected if |z| > zα/2 or if the P value is smaller than the specified level of
significance, α.

Example 1.1. Of 1464 HIV/AIDS patients under HAART treatment in Jimma Univer-
sity Specialized Hospital from 2007-2011, 331 defaulted while 1113 were active. Did the
proportion of defaulter patients different from one fourth?

Solution: Let π denote the proportion of defaulter patients. The hypothesis to be tested
is H0 : π = 0.25 vs H1 : π 6= 0.25.

The sample proportion of defaulters is p = 331/1614 = 0.226. For a sample of size
n = 1464, the estimated standard error of p is

√
(0.226)(1− 0.226)/1464 = 0.011. The

test statistic is

z =
0.226− 0.25

0.011
= −2.18

Since |z| > 1.96, H0 should be rejected. Or it is easy to find the two-sided P-value which
is the probability that the absolute value of a standard normal variate exceeds 2.18, that
is,

P = P (|Z| > 2.18) = P (Z < −2.18) + P (Z > 2.18)

= 2P (Z > 2.18)

= 2[0.5− P (0 < Z < 2.18)]

= 2(0.5− 0.4854)

= 2(0.0146)

= 0.0292

Since the p-value is less than α = 0.05, H0 should be rejected. There is a strong evidence
that, π < 0.25, that is, the proportion of defaulter patients is fewer than a quarter.

6
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Wald CI: A significance test merely indicates whether a particular value for a parameter
is plausible. The construction of a confidence interval determines the range of plausible
values for which H0 is ”not rejected”. The Wald confidence interval, like the test, uses its
estimated standard error. Hence, a (1− α)100% Wald confidence interval is given by(

p± zα/2
√
p(1− p)/n

)
.

This is a large sample confidence interval for π which uses the sample proportion p as
the mid-point of the interval. Unless π is close to 0.50, it does not work well if n is not
very large. That is, it works poorly to use the sample proportion as the mid-point of the
confidence interval when π is near 0 or 1.

Example 1.2. Recall example 1.1. Construct the 95% CI for the population proportion
of HIV/AIDS patients who were defaulted.

Solution: For n = 1464 observations p = 0.226 and zα/2 = z0.025 = 1.96. The 95%

confidence interval is (0.226± 1.96
√

(0.226)(0.774)/1464) = (0.204, 0.248). Therefore, the
proportion of HIV/AIDS patients who were defaulted is between 0.204 and 0.248 at 0.05
level of significance.

The Score Test

The Score test is an alternative possible test which uses a known standard error. This
known standard error is obtained by substituting the assumed value under the null hy-
pothesis. Hence, the Score test statistic for a binomial proportion is

Z =
p− π0√

π0(1− π0)/n
∼ N(0, 1)

In this test statistic, the standard error of p is evaluated at the null value. Unlike the Wald
test which estimates the standard error by using the maximum likelihood estimate, in the
Score test, the standard error is known.

Example 1.3. Recall example 1.1. Test the hypothesis using the Score test.

Solution: We have the hypothesis to be tested is H0 : π = 0.25 vs H1 : π 6= 0.25. Also the
sample of size is n = 1464 and the sample proportion of defaulters is p = 331/1464 = 0.226.
For Score test, the known standard error of p is

√
(0.25)(1− 0.25)/1464 = 0.0113. The

test statistic is

z =
0.226− 0.25

0.0113
= −2.12

Hence, the two-sided P-value is P = P (|Z| > 2.12) = 1− 2(0.4830) = 0.034 which leads to
the rejection of H0.

7
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Score CI: The Score confidence interval uses a duality with significance tests. It is con-
structed by inverting results of a significance test using the null standard error. This
confidence interval consists of all values (π0’s) for the null hypothesis parameter that are
’not rejected’ at a given significance level.

For a binomial proportion, given n and p with a critical value ±zα/2, the π0 solutions for
the equation:

|p− π0|√
π0(1− π0)/n

= ±zα/2

are the end points of the Score confidence interval for π. Squaring both sides gives an
equation which is quadratic in π0. This method does not require estimation of π in the
standard error, since the standard error in the test statistic uses the null value π0.

Example 1.4. A clinical trial is conducted to evaluate a new treatment. This experiment
has nine successes in the first 10 trials. Construct the 95% Score and Wald CIs.

Solution: The sample proportion of successes p = 0.90 based on n = 10 trials. The
solutions for n(p − π0)2 = π0(1 − π0)z2α/2 are 0.596 and 0.982. Thus, the 95% Score CI is
(0.596, 0.982). By contrast, using the estimated standard error gives confidence interval
0.90 ± 1.96

√
(0.90)(0.10)/10 = (0.714, 1.086) in which the upper limit is greater than 1.

That is why, it is said Wald CI works poorly when the parameter may fall near the bound-
ary values of 0 or 1.

There is a simple alternative interval that approximates the Score CI, but being a bit
wider, which is called the Agresti-Coull confidence interval. The procedure is to add 2 to
the number of successes and 2 to the number of failures (and thus 4 to n) and then to use
the ordinary formula with the estimated standard error. This simple method works well,
even for small samples.

Example 1.5. Recall example 1.4. Obtain the Agresti-Coull confidence interval.

Solution: With nine successes in 10 trials, p = (9 + 2)/(10 + 4) = 0.786. This implies the
CI equals (0.786± 1.96

√
0.786(0.214)/14) = (0.57, 1.00).

Example 1.6. Of n = 16 students, y = 0 answered ”yes” for the question ”Do you smoke
cigarette?”. Construct the 95% Wald and Score confidence intervals for the population
proportion of smoker students.

Solution: Let π be the population proportion of smoker students. Since y = 0 ⇒ p =
0/16 = 0. The 95% Wald CI is given by (p±zα/2

√
p(1− p)/n) = (0±1.96

√
0(1− 0)/16) =

8
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(0, 0). As said before when the number of successes is near 0 or near n, Wald methods do
not provide sensible results.

The 95% Score confidence interval is obtained by solving |0− π0| = ±1.96
√
π0(1− π0)/16

for π0. By contrast this provides the interval (0, 0.329) which is sensible than the Wald
interval (0, 0).

The Likelihood-Ratio Test

The likelihood-ratio test is based on the ratio of two maximizations of the likelihood func-
tion. The first is the maximized value of the likelihood function over the possible parameter
value(s) that the parameter assumes under the null hypothesis. The second is the maxi-
mized value of the likelihood function among all possible parameter values, permitting the
null or the alternative hypothesis to be true.

Let `0 denote the maximized value of the likelihood function under the null hypothesis,
and let `1 denote the maximized value in general. Note that `1 is always at least as large
as `0.

For a binomial proportion, `0 = `(π0) and `1 = `(p). Thus, the likelihood-ratio test statistic
is G2 = −2 log(`0/`1) ∼ χ2(1). Note that G2 ≥ 0. If `0 and `1 are approximately equal,
then G2 will approach to 0. This indicates that there is no sufficient evidence to reject H0

(not in favor of H0). If `0 is by far less than `1, then G2 will be very large indicating a
strong evidence against H0.

Likelihood-ratio CI: The (1 − α)100% likelihood-ratio confidence interval is obtained by
solving −2 log(`0/`1) ≤ χ2

α(1) for π0.

Example 1.7. Recall example 1.6. Test H0 : π = 0.50 using likelihood-ratio and construct
its confidence interval.

Solution: Since n = 16 and y = 0, the Binomial likelihood function is ` = `(π) = (1−π)16.

Under H0 : π = 0.50, the binomial probability of the observed result of y = 0 suc-
cesses is `0 = `(0.5) = 0.516. The likelihood-ratio test compares this to the value of
the likelihood function at the ML estimate of p = 0, which is, `1 = `(0) = 1. Thus,
the likelihood-ratio test statistic is G2 = −2 log(0.5016) = −32 log(0.50) = 22.18. Since
G2 = 22.18 > χ2

0.05(1) = 3.84, H0 should be rejected.

The likelihood-ratio CI is −2[log(`0/`1)] ≤ χ2
α(1). Here, `0 = `(π0) = (1 − π0)

16 and
`1 = `(0) = 1.

−2 log[(1− π0)16] ≤ 3.84

⇒ π0 ≤ 0.113

9
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This implies that the 95% likelihood-ratio confidence interval is (0.0, 0.113) which is nar-
rower than the Score CI.

Example 1.8. Recall example 1.4: a clinical trial that has nine successes in the first 10
trials. Test the hypothesis of H0 : π = 0.5 using the three methods and construct the
corresponding confidence intervals.

Solution: The Wald test is z =
0.90− 0.50√

0.90(1− 0.90)/10
= 4.22. The corresponding chi-

squared statistic is z2 = (4.22)2 = 17.8 (df = 1). Since z = 4.22 > z0.025 = 1.96 or
z2 = 17.8 > χ2

0.05(1) = 3.84, there is sufficient evidence to reject H0.

The score test is z =
0.90− 0.50√

0.5(1− 0.5)/10
= 2.53. The corresponding chi-squared statistic is

z2 = (2.53)2 = 6.4 (df = 1). Again using the Score test, since z = 2.53 > z0.025 = 1.96 or
z2 = 6.4 > χ2

0.05(1) = 3.84, H0 should be rejected.

For the likelihood-ratio test, when H0 : π = 0.50 is true, `0 = [10!/9!1!](0.50)9(0.50)1 =
0.00977. Also, `1 = [10!/9!1!](0.90)9(0.10)1 = 0.3874. Thus, the likelihood-ratio test
statistic is G2 = −2 log(`0/`1) = −2 log(0.00977/0.3874) = −2 log(0.0252) = 7.36. From
the chi-squared distribution with df = 1 at 5% level of significance, this statistic has a
larger value which results the rejection of H0.

1.3.3 Small Sample Binomial Inference

When the sample size is small to moderate, the Wald test is the least reliable of the three
tests. In other cases, for large samples they have similar behavior when H0 is true. For
ordinary regression models assuming a normal distribution, the three tests provide iden-
tical results. A marked divergence in the values of the three statistics indicates that the
distribution of the ML estimator may be far from normality. In that case, small-sample
methods are more appropriate than large-sample methods.

Exact p-Values

For small samples, it is safer to use the binomial distribution directly (rather than a normal
approximation) to calculate the p-values. For H0 : π = π0, the p-value is based on the
binomial distribution with parameters n and π0, Bin(n, π0).

For H1 : π > π0, the exact p-value is P (Y ≥ y) =
n∑
x=y

(
n

x

)
πx0 (1− π0)n−x.

For H1 : π < π0, the exact p-value is P (Y ≤ y) =

y∑
x=0

(
n

x

)
πx0 (1− π0)n−x.

10
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It is easy to calculate a two-sided p-value for a symmetric distribution centered at 0, such
as Z ∼ N(0, 1), which is p − value = P (|Z| > z) = 2 × P (Z ≥ |z|). In general, if the
distribution is symmetric but not necessary centered at 0, then the exact two-sided p-value
is p− value = 2×min[P (Y ≥ y), P (Y ≤ y)]

Example 1.9. Recall again example 1.4. Find the exact one sided and two-sided p-values.

Solution: The historical norm for the clinical trial is 50%. So we want to test if the
response rate of the new treatment is greater than 50%. For H1 : π > 0.50, p-value=P (Y ≥
9) = P (Y = 9) + P (Y = 10) = 0.0107. For H1 : π 6= 0.50, p-value=2 × P (Y ≥ 9) =
2× [P (Y = 9) + P (Y = 10)] = 2× 0.0107 = 0.0214. In both cases, H0 should be rejected
at 5% level of significance. That is, the treatment is effective.

Exact Confidence Interval

A (1− α)100% confidence interval for π is of the form P (πL ≤ π ≤ πU) = 1− α where πL
and πU are the lower and upper end points of the interval. Given the level of significance
α, observed number of successes y and number of trials n, the endpoints πL and πU ,
respectively, satisfy

α

2
= P (Y ≥ y/π = πL) =

n∑
x=y

(
n

x

)
πxL(1− πL)n−x

and

α

2
= P (Y ≤ y/π = πU) =

n∑
x=y

(
n

x

)
πxU(1− πU)n−x

except that the lower bound πL = 0 when y = 0 and the upper bound πU = 1 when y = n.
It can figure out πL and πU by plugging different values for πL and πU until values that

approximate
α

2
are obtained. In fact, this can be easily implemented using a computer, so

there is no need to do it by hand.

Example 1.10. If 4 successes are observed in 5 trials, find the 95% exact confidence
interval.

Solution: The lower bound πL of the exact confidence interval (πL, πU) is the value of

πL for which P (Y ≥ 4/π = πL) =
5∑
y=4

(
5

y

)
πyL(1 − πL)5−y approximates 0.025. Similarly,

the upper bound πU of the exact confidence interval (πL, πU) is the value of πU for which

P (Y ≤ 4/π = πU) =
4∑
y=0

(
5

y

)
πyU(1−πU)5−y approximates 0.025. Using trial and error, the

values of πL and πU can be determined as shown in the following table.

11
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πL P (Y ≥ 4/π = πL) πU P (Y ≤ 4/π = πU)
0.250 0.0156 0.800 0.6723
0.260 0.0181 0.900 0.4095
0.270 0.0208 0.950 0.2262
0.280 0.0238 0.990 0.0490
0.285 0.02547 ≈ 0.025 0.995 0.02475 ≈ 0.025

Thus, the 95% exact confidence interval for π is (0.285,0.995).

1.3.4 Test for Multinomial Proportions

Suppose a sample of n subjects are classified based on a multinomial variable having J
categories in which nj of them are in category j; j = 1, 2, · · · , J of the variable. Recall
that µj = nπj and the maximum likelihood estimator of πj is pj = nj/n.

Consider the null hypothesis H0 : πj = πj0; j = 1, 2, · · · , J provided that
J∑
i=1

πj = 1.

Under H0, the expected values of {nj} are µj = nπj0; j = 1, 2, · · · , J . The Pearson
chi-squared statistic is

X2 =
J∑
j=1

(nj − µj)2

µj
∼ χ2(J − 1).

An alternative test for multinomial parameters uses likelihood values. Recall that the
likelihood-ratio statistic is G2 = −2 log(`0/`1) where `0 is the maximized value of the
likelihood function under H0 and `1 is the maximized value of the likelihood function in
general. Therefore, the likelihood-ratio test statistic for a multinomial parameters can be
easily derived as

G2 = 2
J∑
j=1

nj log

(
nj
µj

)
∼ χ2(J − 1).

When H0 holds, the Pearson X2 and the likelihood-ratio G2 both have asymptotic chi-
squared distributions with J − 1 degrees of freedom. For fixed J , as n increases the
distribution of Pearson X2 usually converges to chi-squared more quickly than that of G2.
The chi-squared approximation is usually poor for G2 when n/J < 5. In general, large
values of both statistics indicate greater evidence against the null hypothesis.

Example 1.11. Among its many applications, Pearson’s test was used in genetics to test
Mendels theories of natural inheritance. Mendel crossed pea plants of pure yellow strain
with plants of pure green strain. He predicted that second-generation hybrid seeds would
be 75% yellow and 25% green, yellow being the dominant strain. One experiment produced
n = 8023 seeds, of which n1 = 6022 were yellow and n2 = 2001 were green. Test Mendels
hypothesis using both the Pearson and likelihood-ratio tests.

12
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Solution: The hypothesis to be tested is H0 : π10 = 0.75, π20 = 0.25. Thus, µ1 = nπ10 =
6017.25 and µ2 = nπ20 = 2005.75. Both the Pearson X2 and likelihood-ratio G2 tests have
values 0.015 which is less than χ0.05(1) = 3.84. Hence, the experiment does not contradict
Mendel’s hypothesis.

13



Chapter 2

Contingency Tables

For a single categorical variable, the data can summarized by counting the number of ob-
servations (frequency) in each category. The sample proportions in the categories estimate
the category probabilities. For two or more categorical variables, the data is summarized in
a tabular form in which the cells of the table contain number of observations (frequencies)
in the intersection categories of the variables. Such a table is called contingency table.

2.1 Two-Way Contingency Table

Let X and Y denote two categorical variables having I and J categories, respectively.
Classifications of subjects on both variables have IJ possible combinations and the con-
tingency table is called a two-way contingency table. A two-way table with I rows and J
columns is called an I × J (read as I-by-J) table.

Suppose N subjects are classified on both X and Y as shown in Table 2.1. Then Nij

represents the number of subjects belonging to the ith category of X and jth category of
Y .

14
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Table 2.1: Layout of an I × J Contingency Table

Y
X 1 2 · · · j · · · J Total
1 N11 N12 · · · N1j · · · N1J N1+

2 N21 N22 · · · N2j · · · N2J N2+
...

...
...

. . .
...

...
...

...
i Ni1 Ni2 · · · Nij · · · NiJ Ni+
...

...
...

...
...

. . .
...

...
I NI1 NI2 · · · NIj · · · NIJ NI+

Total N+1 N+2 · · · N+j · · · N+J N

Here, Ni+ and N+j are the marginal totals representing the number of subjects belonging

to the ith category of X and the jth category of Y , respectively. Note that Ni+ =
J∑
j=1

Nij

and N+j =
I∑
i=1

Nij. Also, the population size N =
I∑
i=1

Ni+ =
J∑
j=1

N+j =
I∑
i=1

J∑
j=1

Nij.

2.2 Probability Structures

The joint probability distribution of the responses (X, Y ) of a subject chosen randomly
from some population can be determined from the contingency table. This joint distri-
bution determines the relationship between the two categorical variables. Also, from this
distribution, the marginal and conditional distributions can be determined.

2.2.1 Joint and Marginal Probabilities

The (true) probability of a subject being in the ith category of X and jth category of Y is
defined as P (X = i, Y = j) = πij = Nij/N . The probability distribution {πij} is the joint
distribution of X and Y shown in Table 2.2.

15
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Table 2.2: Joint and Marginal Distributions X and Y

Y
X 1 2 · · · j · · · J Total
1 π11 π12 · · · π1j · · · π1J π1+
2 π21 π22 · · · π2j · · · π2J π2+
...

...
...

. . .
...

...
...

...
i πi1 πi2 · · · πij · · · πiJ πi+
...

...
...

...
...

. . .
...

...
I πI1 πI2 · · · πIj · · · πIJ πI+

Total π+1 π+2 · · · π+j · · · π+J 1

The marginal distribution of each variable is the sum of the joint probabilities over all the

categories of the other variable. That is, P (X = i) = πi+ =
J∑
j=1

πij and P (Y = j) =

π+j =
I∑
i=1

πij = N+j/N . Thus, {πi+} is the marginal distribution of X and {π+j} is the

marginal distribution of Y. The marginal distributions provide single-variable information.

Note also that
I∑
i=1

πi+ =
J∑
j=1

π+j =
I∑
i=1

J∑
j=1

πij = 1.

2.2.2 Conditional Probabilities and Independence

The joint distribution of X and Y is more useful if both variables are responses. But if one
of the variable is explanatory (fixed), the notion of the joint distribution is no longer useful.

If X is fixed, for each category of X, Y has a probability distribution. Hence, it is impor-
tant to study how the distribution of Y changes as the category of X changes.

Given that a subject is belong to the ith category of X, then P (Y = j|X = i) = πj|i =
πij/πi+ denotes the conditional probability of that subject belonging to the jth category of
Y . In other words, πj|i is the conditional probability of a subject being in the jth category
of Y if it is in the ith category of X. Thus, {πj|i; j = 1, 2, · · · , J} is the conditional

distribution of Y at the ith category of X. Note also that
J∑
j=1

πj|i = 1.
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Table 2.3: Conditional Distributions of Y Given X

Y
X 1 2 · · · j · · · J Total
1 π1|1 π2|1 · · · πj|1 · · · πJ |1 1
2 π1|2 π2|2 · · · πj|2 · · · πJ |2 1
...

...
...

. . .
...

...
...

...
i π1|i π2|i · · · πj|i · · · πJ |i 1
...

...
...

...
...

. . .
...

...
I π1|I π2|I · · · πj|I · · · πJ |I 1

The probabilities {π1|i, π2|i, · · · , πj|i, · · · , πJ |i} form the conditional distribution of Y at
the ith category of X. A principal aim in many studies is to compare the conditional
distribution of Y at various level of X.

Example 2.1. In the HAART Data used by Seid et al. (2014), there are 1464 patients.
Of these 63.52 % are females. 22.61% of these patients were defaulted including 142 males.

1. Construct the contingency table.

2. Find the joint and marginal distributions.

3. If a patient is selected at random, what is the probability that the patient is

(a) a female and defaulter?

(b) a male?

(c) defaulter if the member is female?

Solution:

1. The contingency table is

Defaulter
Gender Yes No Total
Female N11 = 189 N12 = 741 N1+ = 930
Male N21 = 142 N22 = 392 N2+ = 534
Total N+1 = 331 N+2 = 1133 N = 1464

2. The joint and marginal distributions are

Defaulter
Gender Yes No Total
Female π11 = 0.1291 π12 = 0.5061 π1+ = 0.6352
Male π21 = 0.0970 π22 = 0.2678 π2+ = 0.3648
Total π+1 = 0.2261 π+2 = 0.7739 1.0000
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3. If a patient is selected at random, the probability that the patient is

(a) a female and defaulter: P (Gender = 1,Defaulter = 1) = N11/N = 189/1464 =
0.1291

(b) a male: P (Gender = 2) = N2+/N = 534/1464 = 0.3648.

(c) defaulter if the member is female: P (Defaulter = 1|Gender = 1) = N11/N1+ =
189/930 = 0.2032

Two categorical response variables are defined to be independent if all joint probabilities
are the product of their marginal probabilities. That is, if X and Y are independent then
πij = πi+π+j for all i and j.

Also, when X and Y are independent, each conditional distribution of Y is identical to the
marginal distribution of Y . That is, πj|i = π+j for all i. Thus, two categorical variables
are independent when πj|1 = πj|2 = · · · = πj|I for j = 1, 2, · · · , J ; that is, the probability of
any category of Y is the same in each category of X which is often referred as homogeneity
of conditional distributions. This is a more better definition of independence than πij =
πi+π+j when one of the variables is explanatory.

Example 2.2. Recall example 2.2. Are the sex of the patient and defaulting statistically
independent?

Table 2.2 and 2.3 display population notations for joint (and marginal) and conditional
distributions for an I × J table, respectively. For sample data, the notation nij instead of
Nij and pij instead of πij are used.

2.2.3 Binomial, Multinomial and Poisson Sampling

The probability distributions introduced in Section 1.2 on page 2 can be extended to cell
counts in a contingency table.

Multinomial Sampling

If a sample of n subjects are classified based on two categorical variables (one having I
and the other having J categories), there will be IJ possible outcomes. Let Yij denote the
number of outcomes in cell (i, j) and let πij be its corresponding probability. Then the
probability mass function of the cell counts has the multinomial form

P (Y11 = n11, Y12 = n12, · · · , YIJ = nIJ) =
n!

I∏
i=1

J∏
j=1

nij!

I∏
i=1

J∏
j=1

π
nij

ij

such that
I∑
i=1

J∑
j=1

nij = n and
I∑
i=1

J∑
j=1

πij = 1.
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Example 2.3. Suppose we are interested to study the relationship between smoking
cigarette (yes, no) and occurrence of lung cancer. We want to summarize results in the
following format by classifying each according to these variables.

Lung Cancer
Smoking Yes No Total
Smoker n11 = n12 = n1+ =
Nonsmoker n21 = n22 = n2+ =
Total n+1 = n+2 = n =

If we randomly sample n = 300 individuals and classify each according to the two vari-
ables, the total sample size n will be fixed. Hence the four cells are treated as a multi-
nomial random variable outcomes with n = 300 trials and unknown joint probabilities
{π11, π12, π21, π22}. For example, if {π11, π12, π21, π22} = {0.10, 0.20, 0.40, 0.30}, then

P (n11, n12, n21, n22) =
200!

n11!n12!n21!n22!
0.10n110.20n120.40n210.30n22 .

Independent Multinomial (Binomial) Sampling

If one of the two variables is explanatory, the observations on the response variable occur
separately at each category of the explanatory variable. In such case, the marginal totals of
the explanatory variable are treated as fixed. Thus, for the ith category of the explanatory
variable, the cell counts {Yij; j = 1, 2, · · · , J} has a multinomial form with probabilities
{πj|i; j = 1, 2, · · · , J}. That is,

P (Yi1 = ni1, Yi2 = ni2, · · · , YiJ = niJ) =
ni+!
J∏
j=1

nij!

J∏
j=1

π
nij

j|i

provided that
J∑
j=1

nij = ni+ and
J∑
j=1

πj|i = 1. If J = 2, it will reduced to binomial distri-

bution.

When samples at different categories of the explanatory variable are independent, the joint
probability mass function for the entire cells of the contingency table is the product of the
multinomial functions at various categories. That is,

P (Y11 = n11, Y12 = n12, · · · , YIJ = nIJ) =
I∏
i=1

ni+!
J∏
j=1

nij!

J∏
j=1

π
nij

j|i .

This sampling scheme is called independent (product) multinomial sampling.
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Example 2.4. Recall example 2.3. Suppose we, instead, randomly sample 100 individuals
who are smokers and 200 individuals who are not smokers, and follow up both groups for
some years. Finally, we classify each group based on a clinical examination whether they
developed lung cancer or not. {It is like a prospective design ”looking in the future” which
is called a cohort study. In this case, the marginal totals for smoking status are fixed at
n1+ = 100 and n2+ = 200 (i.e., the marginal distribution of smoking status is fixed by
the sampling design). Such studies provide proportions for the conditional distribution of
developing lung cancer, given smoking status.} Thus, for each smoking status, the recoded
results will be independent binomial samples.

In another way, if we randomly sample 100 individuals who developed lung cancer and 200
individuals who do not develop lung cancer, and classify each sample based on the smoking
history of the individuals. Now, the marginal totals for lung cancer are fixed at 100 and 200.
{It is a retrospective design ”looking in the past” which is called a case-control study. In
this case, the marginal totals for lung cancer status are fixed at n+1 = 100 and n+2 = 200.
Using this retrospective sample, the probability of lung cancer at each category of smoking
habit can not be estimated.} Hence, for each lung cancer outcome, the recoded results are
independent binomial samples.

Poisson Sampling

A poisson sampling model treats the cell counts as independent poisson random variables

with parameters {µij}. That is, P (Yij = nij) =
e−µijµ

nij

ij

nij!
. The joint probability mass

function for all outcomes is, therefore, the product of the poisson probabilities for the IJ
cells;

P (Y11 = n11, Y12 = n12, · · · , YIJ = nIJ) =
I∏
i=1

J∏
j=1

e−µijµ
nij

ij

nij!
.

Example 2.5. Recall again example 2.3. If we do not take any sample, the total sample
size is a random variable. As a result, the number of observations at the four combinations
of the two variables are treated as independent poisson random variables with unknown
means {µ11, µ12, µ21, µ22}. If, for example, {µ11, µ12, µ21, µ22} = {10, 50, 60, 20}, we can
easily find P (n11, n12, n21, n22).

Example 2.6. Given the following data from a political science study concerning opinion
in a particular city of a new governmental policy affiliation.

Policy Opinion
Party Favor Policy Do not Favor Policy No Opinion Total
Democrats 200 200 100 500
Republicans 250 175 75 500
Total 450 375 175 1000
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1. What are the sampling techniques that could have produced these data?

2. Construct the probability structure.

3. Find the multinomial sampling and independent multinomial sampling models.

Solution:

1. Two distinct sampling procedures can be considered that could have produced the
data.

• A random sample of 1000 individuals in the city was selected and each individual
is asked his/her party affiliation (democrats or republicans) and his/her opinion
concerning the new policy (favor, do not favor or no opinion). This sampling
scheme is multinomial sampling which elicits two responses from each individual
and the total sample size is fixed at 1000. Hence, totally there are 2 × 3 = 6
response categories.

• A random sample of 500 democrats was selected from a list of registered democrats
in the city and each democrat was asked his or her opinion concerning the new
policy (favor, do not favor or no opinion) and a completely analogous procedure
was used on 500 republicans. This is an independent multinomial sampling
scheme which elicits only one response from each individual and both the polit-
ical party affiliation categories (marginal totals) are fixed at 500 a priori. Now,
there are 3 response categories for each party affiliation.

2. The probability structure is:

Policy Opinion
Party Favor Policy Do not Favor Policy No Opinion Total
Democrats 0.200 0.200 0.100 0.500
Republicans 0.250 0.175 0.075 0.500
Total 0.450 0.375 0.175 1.000

3. The multinomial sampling uses the above joint probability structure. For the in-
dependent multinomial sampling models, the conditional probability distribution of
each party, shown below, is used:

Policy Opinion
Party Favor Policy Do not Favor Policy No Opinion Total
Democrats 0.40 0.40 0.20 1.00
Republicans 0.50 0.35 0.15 1.00
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2.3 Tests of Independence

For a multinomial sampling with probabilities πij in an I × J contingency table, the null
hypothesis of statistical independence is H0 : πij = πi+π+j for all i and j. For independent
multinomial samples, independence corresponds to homogeneity of each outcome probabil-
ity among the categories of the fixed variable. The marginal probabilities then determine
the joint probabilities. Under H0, the expected values of cell counts are {µij = nπi+π+j}.
That is, µij is the expected number of subjects in the ith category of X and jth cate-
gory of Y. Usually, {πi+} and {π+j} are unknown. Their ML estimates are the sam-

ple marginal proportions {pi+ =
ni+
n
} and {p+j =

n+j

n
}, so expected frequencies are

{µ̂ij = npi+p+j =
ni+n+j

n
}.

Table 2.4: Observed and Expected Frequencies in an I × J Table

Y
X 1 2 · · · j · · · J Total
1 n11 (µ̂11) n12 (µ̂12) · · · n1j (µ̂1j) · · · n1J (µ̂1J) n1+

2 n21 (µ̂21) n22 (µ̂22) · · · n2j (µ̂2j) · · · n2J (µ̂2J) n2+
...

...
...

. . .
...

...
...

...
i ni1 (µ̂i1) ni2 (µ̂i2) · · · nij (µ̂ij) · · · niJ (µ̂iJ) ni+
...

...
...

...
...

. . .
...

...
I nI1 (µ̂I1) nI2 (µ̂I2) · · · nIj (µ̂Ij) · · · nIJ (µ̂IJ) nI+

Total n+1 n+2 · · · n+j · · · n+J n

Thus, the Pearson chi-squared and likelihood-ratio statistics for independence, respectively,
are

X2 =
I∑
i=1

J∑
j=1

(nij − µ̂ij)2

µ̂ij
∼ χ2[(I − 1)(J − 1)]

and

G2 = 2
I∑
i=1

J∑
j=1

nij log

(
nij
µ̂ij

)
∼ χ2[(I − 1)(J − 1)].

Example 2.7. The following cross classification shows the distribution of patients by the
survival outcome (active, dead, transferred to other hospital and loss-to-follow) and gender.
Test whether the survival outcome depends on gender or not using both the Pearson and
likelihood-ratio tests.
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Survival Outcome
Gender Active Dead Transferred Loss-to-follow Total
Female 741 25 63 101 930
Male 392 20 52 70 534
Total 1133 45 115 171 1464

Solution: First lets find the expected cell counts, µ̂ij =
ni+n+j

n
.

Survival Outcome
Gender Active Dead Transferred Loss-to-follow Total
Female 741 (719.7) 25 (28.6) 63 (73.1) 101 (108.6) 930
Male 392 (413.3) 20 (16.4) 52 (41.9) 70 (62.4) 534
Total 1133 45 115 171 1464

Thus, the Pearson chi-squared statistics is

X2 =
I∑
i=1

J∑
j=1

(nij − µ̂ij)2

µ̂ij
=

(741− 719.7)2

719.7
+

(25− 28.6)2

28.6
+ · · ·+ (70− 62.4)2

62.4

= 8.2172

and the likelihood-ratio statistic is

G2 = 2
I∑
i=1

J∑
j=1

nij log

(
nij
µ̂ij

)
= 2

[
741 log

(
741

719.7

)
+ 25 log

(
25

28.6

)
+ · · ·+ 70 log

(
70

62.4

)]
= 8.0720

Since both statistics have larger values than χ2
α[(2 − 1)(4 − 1)] = χ2

0.05(3), it can be con-
cluded that the survival outcome of patients depends on the gender.

Note: The chi-square statistic is only approximated by the chi-square distribution, and
that approximation worsens with small expected frequencies. When there are very small
expected frequencies, the possible values of the chi-square statistic are quite discrete. For
example, for a table with only 4 observations in each row and column, the only possible
values of chi-square are 8, 2, and 0. It should be clear that a continuous chi-square
distribution is not a good match for a discrete distribution having only 3 values. The
general rule is that the smallest expected frequency should be at least 5. However Cochran
(1952), who is generally considered the source of this rule, acknowledged that the number
”5” seems to be chosen arbitrarily. Yates proposed a correction to the formula for chi-
square to bring it more in line with the true probability. However, given modern computing
alternatives, Yates’ correction is much less necessary and should be replaced by more exact
methods.

23



Categorical Data Analysis - Stat 3062 E-mail: es.awol@gmail.com

2.4 Comparing Proportions in 2× 2 Tables

Let X and Y be binary variables. The data can be displayed in a 2× 2 contingency table
in which the rows are the levels of X and the columns are the levels of Y . Let us use the
generic terms success and failure for the outcome categories of Y .

Y
X 1 (Success) 2 (Failure) Total
1 N11 N12 N1+

2 N21 N22 N2+

Total N+1 N+2 N

For each category i; i = 1, 2 of X, P (Y = j|X = i) = πj|i; j = 1, 2. Then, the condi-
tional probability structure is as follows. When both variables are responses, conditional
distributions apply in either direction.

Y
X 1 (Success) 2 (Failure) Total
1 π1|1 π2|1 1
2 π1|2 π2|2 1

Here, π1|1 and π1|2 are the proportions of successes in category 1 and 2 of X, respectively. In
chi-square test, the question of interest is whether there is a statistical association between
the explanatory (X) and the response variable(Y ). The hypothesis to be tested is

H0 : π1|1 = π1|2 ⇔ π2|1 = π2|2 (There is no association between X and Y )

H1 : π1|1 6= π1|2 ⇔ π2|1 6= π2|2 (There is an association between X and Y )

A significant chi-squared test merely tells the existence of the association between the
variables. After identifying the association, the next task is identifying the category of X
which has a larger (smaller) proportion of successes. This can be done by calculating the
difference of proportions, the relative risk and odds ratio.

2.4.1 Difference of Proportions

The difference of proportions is a simple procedure which compares the probability of suc-
cess between two groups. It is calculated as δ = π1|1 − π1|2. (Similarly, the difference of
the proportions of failures is π2|1 − π2|2.) It is interesting that the difference in propor-
tions ranges between -1 and +1. If δ ≈ 0, the proportion of successes in both categories
of X are (almost) the same representing no (very little) association between X and Y .
That is, if δ ≈ 0, categories of X have identical conditional distributions. On the contrary,
if δ ≈ ±1, the association between X and Y is strong (indicates a high level of association).
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Let p1|1 and p1|2 be the sample proportion of successes in category 1 and 2 of X, respec-

tively. The difference of the sample proportion of successes δ̂ = p1|1 − p1|2 estimates the
difference of the population proportion of successes δ = π1|1 − π1|2.

Under H0 : π1|1 = π1|2, the counts in the two categories of X are independent binomial

samples. Hence, the sampling distributions of δ̂ has mean and variance π1|1 − π1|2 and
π1|1(1− π1|1)

n1+

+
π1|2(1− π1|2)

n2+

, respectively. Hence, the estimated standard error of the

difference of the sample proportion of successes is:

ŜE(δ̂) =

√
p1|1(1− p1|1)

n1+

+
p1|2(1− p1|2)

n2+

.

When H0 holds true, the test statistic is:

Z =
(p1|1 − p1|2)− (π1|1 − π1|2)√
p1|1(1− p1|1)

n1+

+
p1|2(1− p1|2)

n2+

∼ N(0, 1).

This is the Wald test as it uses the sample proportion of successes in the two categories.
Similarly, a large-sample (1− α)100% (Wald) confidence interval for π1|1 − π1|2 is[

(p1|1 − p1|2)± zα/2

√
p1|1(1− p1|1)

n1+

+
p1|2(1− p1|2)

n2+

]
.

As the sample sizes increase, the standard error decreases and hence the estimate p1|1−p1|2
improves.

Example 2.8. Consider the following table categorizing students by their academic per-
formance on a statistics course examination (pass or fail) to two different teaching methods
(teaching using slides or lecturing on the board).

Examination Result
Teaching Methods Pass Fail Total
Slide 45 20 65
Lecturing 32 3 35
Total 77 23 100

Find the difference of proportions and interpret. Also test the significance using the 95%
confidence interval.
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Solution: The conditional probabilities for each teaching method are shown in the follow-
ing table.

Examination Result
Teaching Methods Pass Fail Total
Slide p1|1 = 0.692 p2|1 = 0.308 1
Lecturing p1|2 = 0.914 p2|1 = 0.086 1

The δ̂ = p1|1 − p1|2 = 0.692− 0.914 = −0.222. The 95% confidence interval for π1/1 − π1/2
is: [

(0.692− 0.914)± 1.96

√
0.692(1− 0.692)

65
+

0.914(1− 0.914)

35

]
(−0.222±

√
0.0033 + 0.022)

(−0.222±
√

0.0055)

(−0.222± 0.0742)

(−0.2962,−0.1478)

Thus, since the confidence interval does not include 0, the difference of the pass proportions
in the two teaching methods is significant (lecturing on the board is better than using
slides). The probability of passing in the slide teaching method group is 0.222 lower than
that of the slide group. That is, the probability of passing in the lecturing group increases
by 0.222 as compared to the slide group.

2.4.2 Relative Risk

Relative risk is the ratio of the probability of successes in two groups. That is,

r =
π1|1
π1|2

=
N11N12

N1+N2+

.

Similarly, the relative risk for failures is
π2|1
π2|2

=
1− π1|1
1− π1|2

. The value of relative risk is

non-negative. If r ≈ 1, the proportion of successes in the two groups of X are the same
(corresponds to independence). On the other hand, values of the relative risk r farther
from 1 in a given direction represent stronger association. A relative risk of 4 is farther
from independence than a relative risk of 2, and a relative risk of 0.25 is farther from
independence than a relative risk of 0.50. Two values for relative risk (for example, 4 and
0.25) represent the same strength of association, but in opposite directions, when one value
is the inverse of the other.
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The sample relative risk r̂ =
p1|1
p1|2

estimates the population relative risk r. To infer about

r, the sampling distribution of the sample relative risk r̂ should be determined. Note that
the values of the relative risk are highly skewed to the right. As a result, it is easier to
work out the distribution of the natural logarithm of r̂. By taking the logarithm of r̂, it
turns out that log(r̂) is approximately normally distributed for large values of n. Using
statistical theory, the estimated standard error of log(r̂) is determined to be

ŜE[log(r̂)] =

√(
1

n11

+
1

n21

)
−
(

1

n1+

+
1

n2+

)
.

If the probability of successes are equal in the two groups being compared, then r = 1 or
log(r) = 0 indicating no association between the variables. Thus, under H0 : log(r) = 0,
for large values of n the test statistic:

Z =
log(r̂)− log(r)

ŜE[log(r̂)]
∼ N(0, 1).

Thus, the (1−α)100% confidence interval for log(r) is given by {log(r̂)± zα/2ŜE[log(r̂)]}.
Taking the exponentials of the end points this confidence interval provides the confidence
interval for r: exp{log(r̂)± zα/2ŜE[log(r̂)]}.

Example 2.9. Find the relative risk for the data given on example 2.8 and test its signif-
icance.

Solution: The estimate of the relative risk is r̂ =
p1|1
p1|2

=
0.692

0.914
= 0.757 which implies

log(r̂) = log(0.757) = −0.2784 and

ŜE[log(r̂)] =

√(
1

45
+

1

32

)
−
(

1

65
+

1

35

)
=
√

0.0095 = 0.0975.

The value of the test statistic z = −2.8554 is less than -1.96. Therefore, the relative risk is
significantly different from 1. Thus, it can be concluded that the proportion of passing in
the slide group is 0.757 times that of the lecturing group. Or by inverting, the probability
of passing in the lecturing group is 1.321 times that of the slide teaching method group.

2.4.3 Odds Ratio

Before defining odds ratio, let us define what an odds is? An odds (Ω) is the ratio of the
probability of success to the probability of failure in a particular group.

Ω =
p(success)

p(failure)
=

π

1− π
=

number of successes

number of failures
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Like relative risk, an odds is a nonnegative number (Ω ≥ 0). If Ω ≈ 1, a successes is as
likely as a failure. If 0 < Ω < 1, a success is less likely and if 1 < Ω <∞, a success is more

likely to occur than a failure. Inversely, π =
Ω

1 + Ω
.

Odds ratio is the ratio of two odds. For a 2 × 2 table, for each group i of X, the odds of

successes (instead of failures) is Ω1|i =
π1|i

1− π1|i
=
π1|i
π2|i

; i = 1, 2. Thus, the odds ratio is

θ =
Ω1|1

Ω1|2
=
π1|1π2|2
π1|2π2|1

=
N11N22

N12N21

=
π11π22
π12π21

.

Like relative risk and odds, the odds ratio is also non negative. An odds ratio of 1 implies
independence of X and Y which is a baseline for comparison. If it larger than 1, a success is
more likely to occur in category 1 of X than in category 2 (Ω1/1 > Ω1/2). If the odds ratio is
near zero, then a success is less likely to occur in category 1 than category 2 (Ω1/1 < Ω1/2).
Similar to relative risk, values of the odds ratio θ farther from 1 in a given direction repre-
sent stronger association, that is, an odds ratio of 6 is farther from independence than an
odds ratio of 2, and an odds ratio of 0.20 is farther from independence than an odds ratio
of 0.60. Also, two values for odds ratio, when one value is the inverse of the other (for
example, 5 and 0.20) represent the same strength of association, but in opposite directions.

The sample odds ratio θ̂ is used to estimate the population odds ratio θ which is given by

θ̂ =
Ω̂1|1

Ω̂1|2
=
n11n22

n12n21

=
p11p22
p12p21

.

Example 2.10. Again recall example 2.8. Find the odds ratio and interpret.

Solution: The probability of passing in the slide method group is p1|1 = 0.692. Then,

the odds of passing in this group is Ω̂1|1 = 0.692/(1 − 0.692) = 2.247 which means the
probability of passing in the slide method group is 2.247 times that of failing. Similarly,
the probability of passing in the lecturing group is p1|2 = 0.914. The odds of passing in

this group is Ω̂1|2 = 0.914/(1− 0.914) = 10.628 which means the probability of passing in
the lecturing group is 10.627 times that of failing.

Therefore, the odds ratio of passing is the ratio of the odds of passing in the slide method
group to the odds of passing in the lecturing group, that is, θ̂ = Ω̂1|1/Ω̂1/2 = 0.211. This
value can be interpreted as follows.

• The odds of passing the exam in the slide group is 0.211 times the odds of passing
in the lecturing group. That is, the odds of passing in the slide group is 78.9% lower
than the odds of passing in the lecturing group. Or inversely, the odds of passing the
exam in the lecturing group is 4.739 times the odds of passing in the slide group.
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• Those in the slide teaching method group are 0.211 times less likely to pass the exam
as compared to those in the lecturing group. Or those in the lecturing group are
4.739 times more likely to pass the exam than those in the slide teaching method
group.

Lecturing seems to be a better way to improve the academic performance of students in
statistics course.

Example 2.11. Given the following contingency table for the variable ”death penalty for
crime”.

Race
Penalty Blacks Nonblacks Total
Death sentence 28 22 50
Life imprisonment 45 52 97
Total 73 74 147

1. Find the probability of receiving a death sentence?

2. Find the odds of receiving a death sentence and interpret.

3. Find the odds ratio for receiving a death penalty and interpret.

Solution:

1. The probability of receiving a death sentence is 50/147=0.34 (34%).

2. The odds of receiving a death sentence is 50/97=0.516. Receiving a death sentence
is half as likely as life imprisonment or receiving a life imprisonment sentence is twice
as likely as receiving a death penalty.

3. The odds ratio for receiving a death penalty is the ratio of the odds if black to the
odds if nonblack. It is estimated as 1.47 which means blacks are 1.47 times more likely
to receive a death sentence (instead of life imprisonment) as compared to nonblacks.
This means, a one unit increase in the independent variable race (nonblack to black)
increases the odds of receiving a death penalty by a factor of 1.47. Or the risk (odds)
of death sentence for blacks are 47% higher than that of the risk (odds) of a death
sentence for nonblacks.

To infer about the odds ratio θ, the sampling distribution of log(θ̂) is used due to the similar
reasons used for relative risk. The estimated standard error of log(θ̂) can be determined
using statistical theory as:

ŜE[log(θ̂)] =

√
1

n11

+
1

n12

+
1

n21

+
1

n22

.
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If the odds of successes are equal in the two groups being compared, then θ = 1 or log(θ) = 0
indicating independence (no association). Thus, under H0 : log(θ) = 0, for large values of
n the test statistic to be used is:

Z =
log(θ̂)

ŜE[log(θ̂)]
∼ N(0, 1).

Also, the (1−α)100% confidence interval for log(θ) is given by exp{log(θ̂)±zα/2ŜE[log(θ̂)]}.

Example 2.12. Test the significance of the odds ratio for the data given at example 2.11.

Solution: The null hypothesis to be tested is H0 : θ = 1⇒ log(θ) = 0. It is easily to see

that θ̂ = 1.47 ⇒ log(θ̂) = 0.385 and ŜE[log(θ̂)] = 0.349. Thus z = 1.103 < z0.025 = 1.96.
Therefore, there is not much evidence of association between penalty for crime and race.

Odds Ratios in I × J Tables

For 2×2 tables, a single number such as the odds ratio can summarize the association. For
I×J tables, it is rarely possible to summarize association by a single number without some
loss of information. However, a set of (I − 1)(J − 1) local odds ratios can describe certain
features of the association (the rest odds rations can be determined from these odds ratios).

For category i and i+ 1 of X, and category j and j + 1 of Y , the odds ratio is

θj/i =
NijNi+1,j+1

Ni,j+1Ni+1,j

=
πijπi+1,j+1

πi,j+1πi+1,j

; i = 1, 2, · · · , I − 1, j = 1, 2, · · · , J − 1.

Independence is equivalent to all odds ratios equal to 1 (that is, non-significance of all odds
ratios).

Example 2.13. Suppose 980 individuals are classified according to their favorite soft drink
preference (Fanta, Coca and Sprite) and gender.

Soft Drink Preference
Gender Fanta Coca Sprite Total
Females 279 225 73 577
Males 165 191 47 403
Total 444 416 120 980

Find all (local) odds ratios and test their significance.

Solution: Looking at the frequencies in the table, it seems that females tend to prefer
Fanta and males tend to prefer Coca. So it seems that there is an association between
gender and soft drink preference. To check this, the chi-square test can be used. The z
test for an odds ratio is used to identify a particular association.
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Fanta Fanta Sprite
versus versus versus
Coca Sprite Coca

θ̂
279(191)

225(165)
= 1.435

279(47)

73(165)
= 1.089

73(191)

225(47)
= 1.318

log(θ̂) log(1.435) = 0.361 log(1.089) = 0.085 log(1.318) = 0.276

ŜE[log(θ̂)] 0.139 0.211 0.211
z 2.597 0.402 1.308

Decision about H0 Reject Do not reject Do not reject

Therefore, the null hypothesis of no statistical association is rejected due to the significant
preference of Fanta (instead of Coca) by females as compared to males. The other two
odds ratios are not significant. Hence, from this analysis, it can be concluded that females
are 1.435 times more likely to prefer Fanta (instead of Coca) as compared to males. Or
it can be said that males are 0.697 times less likely to prefer Fanta (instead of Coca) as
compared to females.

2.4.4 Fisher’s Exact Inference

The inferential methods of Sections 2.4.1, 2.4.2 and 2.4.3 are large sample methods. When
n is small, alternative methods use exact small sample distributions rather than large sam-
ple approximations. In this section, small sample test of independence for 2 × 2 tables,
which is proposed by R. A. Fisher, is discussed.

As described in Section 2.2.3, in Poisson sampling – the sample size is not fixed unlike
multinomial sampling, and in independent multinomial (binomial) sampling only one set
of the marginal totals are fixed. In addition, in a 2× 2 table, if both sets of the marginal
total are fixed, it yields the hypergeometric distribution:

P (Y11 = n11) =

(
n1+

n11

)(
n2+

n+1 − n11

)
(
n

n+1

) .

Given the marginal totals, n11 determines the other three cell counts. The exact p-value is
determined using the hypergeometric distribution. The procedure to calculate the p-value
for testing H0 : θ = 1 is as follows. Of the four marginal totals, select the smallest one and
create ordered pair of integers with that sum. Next complete the 2 × 2 table for each of
the ordered pair. Then, the two-sided p-value is given by P (Y11 ≤ n11) where n11 is the
observed frequency in cell (1, 1). For a one sided test, the p-value is found by comparing
the observed frequency n11 to its expected value µ̂11. If n11 > µ̂11, then the onesided
(right-sided alternative: H1 : θ > 1) p-value is P (Y11 ≥ µ̂11) and if n11 < µ̂11, then the
onesided (left-sided alternative: H1 : θ < 1) p-value is P (Y11 ≤ n11).
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Example 2.14. Suppose A and B are two small colleges, the results of the beginning
Statistics course at each of the two colleges are given in the following table.

Statistics
Colleges Pass Fail Total
A 8 14 22
B 1 3 4
Total 9 17 26

Do the data provide sufficient evidence to indicate that the proportion of passing Statistics
differs for the two colleges?

Solution: The hypothesis to be tested is, H0 : π1|A = π1|B, the proportion of passing
Statistics do not differ for the two colleges. Since the sample sizes are small, Fisher’s
Exact test will be used. Since n2+ = 4 is the smallest marginal total, the following ordered
pairs for (n21, n22) can be determined: (0, 4), (1, 3), (2, 2), (3, 1) and (4,0). For each pair,
the 2× 2 table is completed and the corresponding probability is computed using:

P (Y11 = n11) =
n1+! n2+! n+1! n+2!

n! n11! n12! n21! n22!
.

For (n21, n22)=(0, 4):

9 13
P (Y11 = 9) =

22! 4! 9! 17!

26! 9! 13! 0! 4!
= 0.159197

0 4

For (n21, n22)=(1, 3):

8 14
P (Y11 = 8) =

22! 4! 9! 17!

26! 8! 14! 1! 3!
= 0.409365

1 3

For (n21, n22)=(2, 2):

7 15
P (Y11 = 7) =

22! 4! 9! 17!

26! 7! 15! 2! 2!
= 0.327492

2 2

For (n21, n22)=(3, 1):

6 16
P (Y11 = 6) =

22! 4! 9! 17!

26! 6! 16! 3! 1!
= 0.095518

3 1

For (n21, n22)=(4, 0):

5 17
P (Y11 = 5) =

22! 4! 9! 17!

26! 5! 17! 4! 0!
= 0.008428

4 0
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Since the observed frequency n11 = 8, the two sided p-value is P (Y11 ≤ 8) = P (Y11 =
5) + P (Y11 = 6) + P (Y11 = 7) + P (Y11 = 8) = 1. Hence, there is not enough evidence to
conclude that the proportion of passing Statistics differs for the two colleges.

Since the observed frequency n11 = 8 > µ̂11 = 7.6, the alternative hypothesis is (H1 :
π1|A > π1|B). Then the onesided p-value is P (Y11 ≥ 7.6) = P (Y11 = 8) + P (Y11 = 9) =
0.159197 + 0.409365 = 0.568562. Again, there is not enough evidence to indicate that the
probability of passing Statistics is higher at college A than at college B.

2.5 Testing for Independence for Ordinal Data

The X2 and G2 tests ignore some information when used to test independence between
ordinal classifications.

2.5.1 The Gamma Measure of Linear Association

When both variables are ordinal, analytical techniques based on concordant and discor-
dant pairs are useful. A pair of observations is concordant if a subject who is higher on
one variable is also higher on the other variable. A pair of observations is discordant if a
subject who is higher on one variable is lower on the other. If a pair observations is in the
same category of a variable, then it is neither concordant nor discordant and is said to be
tied on that variable.

Consider the following table

Income Level
Education Level Low High Total
High School N11 N12

College N21 N22

Total

Looking at the above table, it is easy to observe that income category is ordered by low
and high. Similarly education category is ordered, with education ending at high school
being the low category and education ending at college being the high category. All N11

observations represent individuals in low income and low education category and all N22

observations represent individuals in high income and high education category. Thus, there
are C = N11N22 concordant pairs. On the other hand, all N12 observations are higher on the
income variable and lower on the education variable, while all N21 observations are lower
on the income variable and higher on the education variable. Thus, there are D = N12N21

discordant pairs.

The strength of the association can be measured by calculating the difference in the propor-
tions of concordant and discordant pairs. This measure, which is called gamma (Goodman

33



Categorical Data Analysis - Stat 3062 E-mail: es.awol@gmail.com

and Kruskal 1954) and is denoted by γ, is defined as

γ =
C

C +D
− D

C +D
=
C −D
C +D

=
N11N22 −N12N21

N11N22 +N12N21

.

Since γ represents the difference in proportions, its value is between -1 and 1. A positive
value of gamma indicates a positive association while a negative value of gamma indicates
a negative association. A value close to zero indicate no or weak association.

Let us consider again the above 2×2 table. Let n11 = 25, n12 = 12, n21 = 11 and n22 = 14.
The number of concordant pais is Ĉ = n11n22 = 25(14) = 350; the number of discordant

pairs is D̂ = n12n21 = 12(11) = 132. Therefore, γ̂ = 0.45 which indicates that the associa-
tion between education level and income is medium-positive.

For an I × J table, the number of concordant pairs is

C =
I∑
i

J∑
j

Nij(
I∑

h=i+1

J∑
k=j+1

Nhk)

and the number of discordant pairs is

D =
I∑
i

J∑
j

Nij(
I∑

h=i+1

j−1∑
k=1

Nhk).

Example 2.15. Find the gamma measure of association for the following cross-classification
of HIV/AIDS patients by Clinical Stage and Functional Status.

Functional Status
Clinical Stage Bedridden Ambulatory Working Total
Stage I 0 23 324 347
Stage II 11 96 407 514
Stage III 28 233 235 496
Stage IV 18 52 37 107
Total 57 404 1003 1464

Solution: The total number of concordant pairs is

Ĉ =0(96 + 407 + 233 + 235 + 52 + 37) + 23(407 + 235 + 37)

+ 11(233 + 235 + 52 + 37) + 96(235 + 37) + 28(52 + 37) + 233(37)

=58969

The total number of discordant pairs is

D̂ =23(11 + 28 + 18) + 324(11 + 96 + 28 + 233 + 18 + 52) + 96(28 + 18)

+ 407(28 + 233 + 18 + 52) + 233(18) + 235(18 + 52)

=303000
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In this example, Ĉ < D̂, suggesting a tendency for low clinical stage to occur with high
functional status of patients and higher clinical stages with lower functional status.

γ̂ =
Ĉ − D̂
Ĉ + D̂

=
58969− 303000

58969 + 303000
= −0.674

Of the untied pairs, the proportion of concordant pairs is 0.674 lower than the proportion
of discordant pairs. This indicates that there is a medium negative linear association be-
tween clinical stage and functional status of HIV/AIDS patients. That is, as the clinical
stage (severity) of the patient increases, the functional status of the patient decreases and
vice versa.

There is also a more sensitive measure of association between two ordinal variables which
is called Kendall’s tau-b, denoted τb. This measure is more complicated to compute, but
it has the advantage of adjusting for ties. The result of adjusting for ties is that the value
of τb is always a little closer to 0 than the corresponding value of gamma.

2.5.2 The Linear Trend Measure

A more popular approach to examine association between ordinal variables is to assign
arbitrary values (called scores) to the categories and then measure the degree linear trend.
Under the assumption of a monotonic trend, the correlation information between the scores
can be examined.

Let u1, u2, · · · , uI where u1 < u2 < · · · < uI be the scores for the categories of X and let
v1, v2, · · · , vI where v1 < v2 < · · · < vI categories of Y .

The sample mean of the X scores is ū =
1

n

I∑
i=1

J∑
j=1

uinij =
1

n

I∑
i=1

uini+ =
I∑
i=1

uipi+ while

the sample mean of the Y scores is v̄ =
1

n

I∑
i=1

J∑
j=1

vjnij =
1

n

J∑
j=1

vjn+j =
J∑
j=1

vip+j.

The variances of u and v, respectively, are approximated by var(u) =
I∑
i=1

J∑
j=1

(ui− ū)2nij =

I∑
i=1

(ui − ū)2ni+ and var(v) =
I∑
i=1

J∑
j=1

(vi − v̄)2nij =
J∑
j=1

(vj − v̄)2n+j. Consequently, the

covariance of u and v is cov(u, v) =
I∑
i=1

J∑
j=1

(ui − ū)(vj − v̄)nij.
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Then, the correlation coefficient is obtained as

ρ̂ =

I∑
i=1

J∑
j=1

(ui − ū)(vj − v̄)nij√√√√( I∑
i=1

(ui − ū)2ni+

)(
J∑
j=1

(vj − v̄)2n+j

)

A zero correlation coefficient corresponds to no (linear) relationship between the categorical
variables. The null hypothesis of independence is H0 : ρ = 0. A valid test statistic is
the usual test statistic (T if n is small, otherwise Z) for testing the significance of the
correlation coefficient.

T =
√
n− 2

ρ̂√
1− ρ̂2

∼ t(n− 2)

For a two sided alternative of non-independence

T 2 = (n− 2)
ρ̂2

1− ρ̂2
∼ χ2(1)

A variant of this test statistic sets ρ equal to its value under the null of independence in
the denominator of the chi-squared statistic is

X2 = (n− 2)ρ̂2 ∼ χ2(1).

In fact, the ’Mantel-Haenszel’ (MH) chi-square statistic for testing for no association be-
tween the two categorical variables is

M2 =
n− 1

n− 2
X2

= (n− 1)ρ̂2 ∼ χ2(1)

For large n, there is practically no difference between X2 and M2. For one-sided alternative
(positive or negative trend), use the test statistic Z =

√
n− 2ρ̂ ∼ (0, 1).

Often, it is unclear how to assign scores for the categories of the variable. Different scoring
systems can give quite different results. Scores that are linear transforms of each other,
such as (1, 2, 3, 4) and (0, 2, 4, 6), have the same absolute correlation and hence have the
same M2. The common scores are to use the actual values if the variable is quantitative
having a small number of values (e.g., dose level 1, 10, 40, 100), the midpoint of the in-
terval if the variable is grouped quantitative variable (e.g., age with three levels [20, 30),
[30, 40), [40, 50), in which scores 25, 35, 45 are assigned), if the variable is ordinal but
not numerical, such as (low, medium, high), just use (1, 2, 3) or scores that capture the
relative weight such as (1, 2, 5) or use the ranks of the observations (which is similar to
the Wilcoxon rank sum test).
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Example 2.16. Recall example 2.15. Test the correlation coefficient for the linear trend.

Solution: Let us use 1, 2, 3 and 4 as the scores for clinical stage and let the scores 1, 2 and
3 be for functional status. These scores result ū = 2.248 and v̄ = 2.646, var(u) = 1180.994
and var(v) = 448.719, cov(u, v) = −313.561. Thus, ρ̂ = −0.431. The MH statistic is
M2 = (n− 1)ρ̂2 = (1464− 1)× (−0.431)2 = 271.768 > χ2

0.05(1) = 3.14. It shows that there
is a linear trend. For a one sided alternative of negative linear trend, H1 : ρ < 0, the test
statistic value becomes z =

√
n− 1ρ̂ =

√
(1464− 1) × (−0.431) = −16.485 < −z0.025 =

−1.96. Hence, like the gamma measure, the correlation coefficient assures the existence
of negative linear association between clinical stage and functional status of HIV/AIDS
patients.

2.6 Association in Three-way Tables
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Chapter 3

Logistic Regression

In a linear regression model, it is implicitly assumed that the response variable is contin-
uous, whereas the explanatory variables are either continuous, categorical or a mixture of
both. In this and coming chapters, we consider different models in which the response
variable itself is categorical in nature.

This chapter deals with the case where the response variable is binary with outcomes,
say, success and failure. Here, the response variable Y takes the value 1 for success with
probability π and it takes the value 0 for failure with probability 1− π. Hence, the basic
random variable has a point-binomial or bernoulli probability distribution P (Y = y) =
πy(1 − π)1−y; y = 0, 1. Logistic regression is a statistical modeling approach used to
describe the relationship of such a binary response variable to one or more explanatory
variable(s).

3.1 The Linear Probability Model

Consider the following regression model with a binary response variable yi = α + βxi + εi
where xi is the study hours per day of a student, and yi = 1 if the student passed Statistics
course and yi = 0 if the student failed the course. This model looks like a typical linear re-
gression model and called linear probability model (LPM) as the response variable is binary.

Let π(xi) denote the conditional probability that the student will pass Statistics course
given the study hours, that is, P (Yi = 1|Xi = xi). Then [1−π(xi)] denotes the conditional
probability that the student will not pass the course given the study hours, that is, P (Yi =
0|Xi = xi). Thus, the response variable Yi has the Bernoulli (probability) distribution:

yi Probability
1 π(xi)
0 1− π(xi)
Total 1
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It would seem that OLS can be easily extended to the above linear probability model.
Unfortunately, it poses several problems.

• The errors are not normally distributed. Obviously, the assumption of normality for
εi is not tenable for the LPMs because, like yi, the disturbances εi also take only two
values; that is, they also follow the Bernoulli distribution as εi = yi − α− βxi. That
is, the probability distribution of εi for the above model is:

yi εi Probability
1 1− α− βxi π(xi)
0 −α− βxi 1− π(xi)
Total 1

In fact, the nonfulfillment of the normality assumption may not be so critical because
OLS does not require the disturbances to be normally distributed, OLS point esti-
mates still remain unbiased. The errors are assumed to be normally distributed for
the purpose of statistical inference, but this assumption is not necessary if the objec-
tive is point estimation. Besides, as the sample size increases indefinitely, statistical
theory shows that the OLS estimators tend to be normally distributed generally.

• The errors are not homoscedastic. This is, however, not surprising. (As statistical
theory shows, for a Bernoulli distribution the theoretical mean and variance are π and
π(1 − π), respectively, where π is the probability of success.) For the distribution
of the error term, applying the definition of variance, var(εi) = π(xi)[1 − π(xi)].
Therefore, the variance of εi ultimately depends on the values of xi. Hence, the
error variance is heteroscedastic (not homoscedastic). It is known, in the presence of
heteroscedasticity, OLS estimators, although unbiased, they are not efficient, that is,
they do not have minimum variance. But the problem of heteroscedasticity, like the
problem of nonnormality, is not insurmountable.

• OLS may well predict impossible values (negative counts or values larger than 1).
Since the probability π(xi) must lie between 0 and 1, there is a restriction 0 ≤ π(xi) ≤
1. But there is no guarantee that ŷi, the estimator of π(xi), will necessarily fulfill
this restriction, and this is the real problem with the OLS estimation of the LPM.

Due to such problems, the LPM is not a good probability model.

3.2 The Logistic Function

For any real number z, the logistic function is f(z) =
1

1 + exp(−z)
; −∞ < z < ∞. The

range of f(z) is in between 0 and 1. That is, when z = −∞ ⇒ f(−∞) = 0 and when
z =∞⇒ f(∞) = 0. Note also that f(0) = 1/2. Therefore, 0 ≤ f(z) ≤ 1.
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Thus, as the figure describes the range of f(z) is between 0 and 1, regardless of the value
of z. Therefore, it is suitable for use as a probability model, representing individual risk. It
has also an ’S’ shape with a threshold that makes it suitable for use as a biological model,
representing risk due to exposure.

3.3 Simple Logistic Regression

In a simple logistic regression, there is a single explanatory variable to be considered. To
obtain the model from the logistic function, z is expressed as a function (mostly linear
function) of the explanatory variable. That is, zi = g(xi) = α + βxi. As a result, the
logistic model is

f(xi) =
1

1 + exp[−(α + βxi)]
.

Note that 0 ≤ f(xi) ≤ 1. Hence, to indicate that it is a probability value, the notation
π(xi) can be used instead. That is,

π(xi) =
1

1 + exp[−(α + βxi)]

where π(xi) = P (Yi = 1|Xi = xi) = 1− P (Yi = 0|Xi = xi). It can also be written as

π(xi) =
exp(α + βxi)

1 + exp(α + βxi)
.

As can be seen from this model, the relationship between the response variable (probability
of success) and the explanatory variable is not linear. However, it can be linearized by
using different transformations of the probability of success and the most common one is
called the logit transformation.

3.3.1 The Logit Transformation

In the previous chapter, odds is defined as the ratio of the probability of success to the prob-
ability of failure. Hence, the odds of successes at a particular value xi of the explanatory
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variable is Ω(xi) =
π(xi)

1− π(xi)
. Thus, the odds of successes for a simple logistic regression

model is Ω(xi) = exp(α + βxi). If Ω(xi) = 1, then a success is as likely as a failure at the
particular value xi of the explanatory variable. If Ω(xi) > 1 ⇒ log [Ω(xi)] > 0, a success
is more likely to occur than a failure. On the other hand, if Ω(xi) < 1 ⇒ log [Ω(xi)] < 0,
a success is less likely than a failure.

The logit of the probability of success is given by the natural logarithm of the odds of
successes. Therefore, the logit of the probability of success is a linear function of the
explanatory variable. Thus, the simple logistic model is

logit [π(xi)] = log

[
π(xi)

1− π(xi)

]
= α + βxi.

This is particulary called the logit model as it uses the logit transformation. The parame-
ters, α and β, are the intercept and slope of the logit model respectively.

There are also other binary response models that are used in practice. The probit model
or the complementary log-log model might be appropriate when the logit model does not
fit the data well.

3.3.2 Interpretation of the Parameters

The logit model is monotone depending on the sign of β. Its sign determines whether the
probability of success is increasing or decreasing as the value of the explanatory variable
increases.
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Thus, the sign of β indicates whether the curve is increasing or deceasing. When β is zero,

Y is independent of X. Then, π(xi) =
exp(α)

1 + exp(α)
which is identical for all xi, so the curve

becomes a straight line.

The parameters of the logit model can be interpreted in terms of odds ratios. From
logit [π(xi)] = α + βxi, an odds is an exponential function of xi. This provides a basic
interpretation for the magnitude of β.

The odds at xi is Ω(xi) = exp(α+βxi) and the odds at xi+1 is Ω(xi+1) = exp[α+β(xi+1)].

Thus, the odds ratio is θ =
Ω(xi + 1)

Ω(xi)
= exp(β). This value is the multiplicative effect

of the odds of successes due to a unit change in the explanatory variable. That is, for
every one unit increase in xi, the odds changes by a factor of exp(β). Similarly, for an
m units increase in xi, say xi+m versus xi, the corresponding odds ratio becomes exp(mβ).

Also the parameter β determines the slope (rate of change) of the probability of success
at a certain value of the explanatory variable. This rate of change at a particular xi value
is described by drawing a straight line tangent to the curve at that point. That line will
have a slope of βπ(xi)[1− π(xi)]. That is,

∂π(xi)

∂xi
=

∂

∂xi

[
exp(α + βxi)

1 + exp(α + βxi)

]

=

∂

∂xi
exp(α + βxi)[1 + exp(α + βxi)]− exp(α + βxi)

∂

∂xi
[1 + exp(α + βxi)]

[1 + exp(α + βxi)]
2

=
β exp(α + βxi)

[1 + exp(α + βxi)]
2

= β
exp(α + βxi)

1 + exp(α + βxi)

1

1 + exp(α + βxi)

= βπ(xi)[1− π(xi)]

This is the rate of change of π(xi) at a particular value of xi. For example, the line tan-
gent to the curve at xi for which π(xi) = 0.5 has a slope β(0.5)(1 − 0.5) = 0.25β. If
π(xi) is 0.9 or 0.1, it has slope 0.09β. As the probability of success approaches either 0
or 1, the rate of increment (decrement) of the curve approaches to 0. The steepest slope
of the curve is attained at xi for which the probability of success is 0.5. Thus, solving
{1 + exp[−(α + βxi)]}−1 = 0.5 for xi implies xi = −α/β. This xi value is called medial
effective level (EL50). At this value, each outcome has a 50% chance of occurring.

The intercept α is, not usually of particular interest, used to obtain the odds at xi = 0.
Also, by centering the explanatory variable at 0 (that is, replacing xi by (xi − x̄)), α be-
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comes the logit at that mean, and thus π(x̄) =
exp(α)

1 + exp(α)
.

The estimated logistic regression model is written as

logit [π̂(xi)] = log

[
π̂(xi)

1− π̂(xi)

]
= α̂ + β̂xi.

Example 3.1. For studying the effect of age (continuous variable) on the occurrence of
hypertension (coded as 1 for presence and 0 for absence), a sample of 10 individuals were
examined. The ages (in years) of persons having hypertension are 50, 40, 51, 48 and those
who do not have hypertension are 54, 60, 25, 46, 35, 22. For these data, the following
parameter estimates were obtained.

Variable Parameter Estimate
Intercept -2.828
AGE 0.055

1. Write the model that allows the prediction of the probability of having hypertension
at a given age. Also write out the estimated logit model.

2. What is the probability of having hypertension at the age of 35. Also find the odds
of having hypertension at this age.

3. What is the estimated odds ratio of having hypertension and interpret.

4. Find the median effective level (EL50) and interpret.

5. If the mean age is 36.3, find the probability of success at the sample mean and
determine the incremental change at this point.

Solution: Let Y= hypertension and X= age. Then π̂(xi) = P̂ (Y = 1|xi) is the estimated
probability of having hypertension, Y = 1, given the age xi of an individual i.

1. Thus, π̂(xi) =
exp(−2.828 + 0.055xi)

1 + exp(−2.828 + 0.055xi)
. Also, the estimated logit model is written

as logit [π̂(xi)] = log

[
π̂(xi)

1− π̂(xi)

]
= −2.828 + 0.055xi.

2. The probability of having hypertension at the age of 35 years is π̂(35) = 0.2887 and
its odds is Ω̂(35) = 0.4059.

3. The odds (risk) of having hypertension is exp(β̂) = exp(0.055) = 1.0565 times larger
for every year older an individual is. In other words, as the age of an individual
increases by one year, the odds (risk) of developing hypertension increases by a
factor of 1.0565. Or it can be said the odds (risk) of having hypertension increases
by [exp(0.055)− 1]× 100% = 5.65%.
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4. The median effective level, the age at which an individual has a 50% chance of having
hypertension, is EL50 = −α̂/β̂ = −(−2.828)/(0.055) = 51.418 years.

5. The probability of having hypertension at the mean age of 36.3 years is π̂(36.3) =
0.4354 and the rate of change at this mean value is β̂π̂(36.3)[1−π̂(36.3)] = 0.055(0.4354)(1−
0.4354) = 0.0135.

3.4 Logit Models with Categorical Predictors

Like ordinary regression, logistic regression extends to include qualitative explanatory vari-
ables, often called factors.

3.4.1 Binary Predictors

For simplicity, let us consider a binary predictor, X, representing an exposure which refers
to a risk factor such as smoking (smoker, non-smoker), race (white, black) or sex (male,
female). The simple logit model is:

log

[
π(xi)

1− π(xi)

]
= α + βxi where xi =

{
1, exposed group;
0, unexposed group.

From this model, the odds in the exposed group is given by Ω(1) = exp(α + β) and the
odds in the unexposed group is Ω(0) = exp(α). This implies, exp(β) as the odds ratio
associated with an exposure (exposed xi = 1 versus unexposed xi = 0).

The odds ratio, exp(β), of the logit model is equivalent to odds ratio in a 2× 2 table. In
other words, the estimates of the parameters of the logit model for a 2 × 2 table can be
easily determined from the cell counts. Consider the 2× 2 table below.

Response
Exposure Successes (1) Failures (0) Total
Exposed (1) n11 n10 n1+

Unexposed (0) n01 n00 n0+

Total n+1 n+0 n

Setting xi = 0 for the unexposed group and then solving for α gives the estimated intercept
of the logit model in terms of the natural logarithm of the odds of successes in the unexposed
group. That is,

α̂ = log

[
π̂(0)

1− π̂(0)

]
= log

(
n01

n00

)
.
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Similarly, the estimate of the slope of the logit model is derived as the natural logarithm
of the odds ratio associated with an exposure by setting xi = 1 for the exposed group,

β̂ = log

[
π̂(1)

1− π̂(1)

]
− α̂

= log

[
π̂(1)

1− π̂(1)

]
−
[

π̂(0)

1− π̂(0)

]
= log

(
n11n00

n10n01

)
.

Example 3.2. In a study of cigarette smoking and risk of lung cancer, we wish to use
logistic regression analysis to determine how much greater the odds are finding cases of the
diseases among subjects who have ever smoked than among those who have never smoked.

SMK Cases (1) Controls (0) Total
Yes (1) 77 123 200
No (0) 54 171 225
Total 131 294 425

Obtain the estimated logit model and interpret.

Solution: Let Y= lung cancer and X= smoking status. Thus, π̂(xi) is the estimated
probability of developing lung cancer, Y = 1, given the smoking status, xi; xi = 1 for

smokers and xi = 0 for non-smokers. The estimates are: α̂ = log

(
n01

n00

)
= log

(
54

171

)
=

−1.1527 and β̂ = log

(
n11n00

n10n01

)
= log

(
77(171)

123(54)

)
= 0.6843. Thus, the estimated model is

logit [π̂(xi)] = log

[
π̂(xi)

1− π̂(xi)

]
= −1.1527 + 0.6843xi.

Smokers are exp(0.6843) = 1.9824 times more likely to have lung cancer as compared to
non-smokers. Or the odds (risk) of developing lung cancer among smokers is 98.24% higher
than the odds (risk) of developing lung cancer among nonsmokers.

Example 3.3. The following table presents the cross-classification of 1464 HIV/AIDS
patients involved in Seid et al. (2014) study by outcome (defaulter and active) and gender
(male and female).

Defaulter
Gender Yes(1) No (0) Total
Female (1) 189 741 930
Male (0) 142 392 534
Total 331 1133 1464
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Obtain the parameter estimates of the logit model.

Solution: Let Y= outcome of the patient where

yi =

{
1, if the patient was defaulted from the HAART treatment;
0, otherwise (if the patient was active on the treatment).

For the explanatory variable, let X= gender of the patient where

xi =

{
1, if the patient is female;
0, otherwise (if the patient is male).

Then π̂(xi) is the estimated probability of the patient being defaulted from the HAART
treatment. The estimated model is

logit [π̂(xi)] = log

[
π̂(xi)

1− π̂(xi)

]
= −1.0154− 0.3508xi.

The odds ratio is exp(−0.3508) = 0.7041. This means that female patients are 0.7041
times less likely to default from HAART treatment as compared to male patients. Or, it
can be concluded that the risk of being defaulted for female patients is 29.59% lower than
the risk of being defaulted for male patients (the risk of being defaulted for male patients
is 42.02% higher than the risk of being defaulted for male patients).

3.4.2 Polytomous Explanatory Variables

If there is a categorical explanatory variable with more than two categories, then it is inap-
propriate to include it in the model as if it was quantitative. This is because the codes used
to represent the various categories are merely identifiers and have no numeric significance.
In such case, a set of binary variables, called design (dummy, indicator) variables, should
be created to represent such a polytomuous variable.

Suppose, for example, that one of the explanatory variable is marital status with three
categories: ”Single”, ”Married”, ”Other”. In this case, taking one of the categories as a
reference (comparison group), two design variables (d1 and d2) are required to represent
marital status in a regression model. For example, if the category ”single” is taken as a
reference, the two design variables, d1 and d2 are set to 0; when the subject is ”Married”,
d1 is set to 1 while d2 is still 0; when the marital status of the subject is ”other”, d1 = 0
and d2 = 1 are used. The following table shows this example of design variables for marital
status:

Design Variables
Marital Status d1 d2
Single 0 0
Married 1 0
Other 0 1
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In general, if a polytomuous variable X has m categories, then m− 1 design variables are
needed. The m− 1 design variables are denoted as du and the coefficients of those design
variables are denoted as βu, u = 1, 2, · · · ,m− 1. Thus, the logit model would be:

logit [π(xi)] = β0 + β1di1 + β2di2 + · · ·+ βm−1di,m−1.

Note when there is a binary response variable and a polytomous explanatory variable, the
data can be presented using a 2×m table. Taking one of the category of the explanatory
variable as a reference, m−1 stratified 2×2 tables can be constructed. Then the parameter
estimates corresponding to each design variable can be easily determined from each table.

If category m is taken as a reference, then β̂0 = log

(
nm1

nm2

)
and β̂u = log

(
nu1nm2

nu2nm1

)
; u =

1, 2, · · · ,m− 1.

Example 3.4. Given the following cross-classified data on race and coronary heart disease
for 100 subjects.

Race
CHD White Black Hispanic Other Total
Present 5 20 15 10 50
Absent 20 10 10 10 50
Total 25 30 25 20 100

Software provides the following parameter estimates.

Variable Parameter Estimate
Intercept -1.386
Black (d1) 2.079
Hispanic (d2) 1.792
Other (d3) 1.386

Specify the design variables for race using ’white’ as a reference group. Calculate the
parameter estimates manually from the cell counts of the contingency table and compare
them with the software estimates. Write out the estimated model and interpret.

Solution: Since the variable ”Race” has four categories, three design variables are needed.

Design Variables
Race d1 d2 d3
White 0 0 0
Black 1 0 0
Hispanic 0 1 0
Other 0 0 1
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Let π̂(xi) be the estimated probability of developing coronary heart disease given the race
of an individual. Hence, logit [π̂(xi)] = β̂0 + β̂1di1 + β̂2di2 + β̂3di3. Thus,

logit [π̂(xi)] = −1.386 + 2.079di1 + 1.792di2 + 1.386di3.

Blacks are about 8 {exp(2.079) = 7.996} times more likely to develop coronary heart disease
as compared to whites. Similarly, the odds (risk) of coronary heart disease for hispanics
is about 6 {exp(1.792) = 6.001} times that of whites. The odds (risk) of coronary heart
disease for other (neither black nor white) races is about 4 {exp(1.386) = 3.999} times
that of whites.

3.5 Multiple Logistic Regression

Suppose there are k explanatory variables (categorical, continuous or both) to be considered
simultaneously. To obtain the multiple logistic regression model, in the logistic function,
z should be expressed as a function (mostly linear sum) of the explanatory variables:
zi = β0 + β1xi1 + β2xi2 + · · · + βpxik. Consequently, the logistic probability of success for
subject i given the values of the explanatory variables xi = (xi1, xi2, · · · , xik) is

π(xi) =
1

1 + exp[−(β0 + β1xi1 + β2xi2 + · · ·+ βpxik)]
.

where π(xi) = P (Yi = 1|xi1, xi2, · · · , xik). Equivalently, the logit model is

logit [π(xi)] = log

[
π(xi)

1− π(xi)

]
= β0 + β1xi1 + β2xi2 + · · ·+ βpxik.

Similar to the simple logistic regression, exp(βj) represents the odds ratio associated with
an exposure if Xj is binary (exposed xij = 1 versus unexposed xij = 0); or it is the odds
ratio due to a unit increase if Xj is continuous (xij = xij + 1 versus xij = xij).

If the jth explanatory variable, Xj, has mj levels, then the multiple logit model with k
variables would be

logit [π(xi)] = β0 + β1xi1 + · · ·+ βj−1xi,j−1 +

mj−1∑
u=1

βjudiju + βj+1xi,j+1 + · · ·+ βkxik

where the dju’s are the mj − 1 design variables and βju, u = 1, 2, · · · ,mj − 1 are their
corresponding parameters.

Example 3.5. To determine the effect of vision status (vision problem or no vision prob-
lem) and driver education (took driver education or not) of a driver on car accident (did the
subject had an accident in the past year?), the following parameter estimates are obtained.
Interpret the results.
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Variable Parameter Estimate
Intercept 0.1110
Vision 1.7139
Education -1.5001

Solution: Let Y= car accident where

yi =

{
1, if the subject had an accident in the past year;
0, otherwise (if the subject had not an accident in the past year).

Let X1= vision problem (xi1 = 1 if the subject has a vision problem, xi1 = 0 if the subject
has not a vision problem) and X2= driver education (xi2 = 1 if the subject took driver
education, xi2 = 0 if the subject did not take driver education). Thus,

log

[
π̂(xi)

1− π̂(xi)

]
= 0.1110 + 1.7139xi1 − 1.5001xi2

⇒ Ω̂(xi) = exp(0.1110 + 1.7139x1 − 1.5001x2)

⇒ π̂(xi) =
exp(0.1110 + 1.7139xi1 − 1.5001xi2)

1 + exp(0.1110 + 1.7139xi1 − 1.5001xi2)

For a person with no vision problem (xi1 = 0) and who never took a driver education
(xi2 = 0), the odds of having accident is 1.1174. And the probability of having accident is
π̂(xi) = π̂(xi1 = 0, xi2 = 0) = 0.5277.

For a person with a vision problem (xi1 = 1) and who never took a driver education
(xi2 = 0), the odds of having an accident is 6.2022 and the probability of having accident
is π̂(xi) = π̂(xi1 = 1, xi2 = 0) = 0.8612.

The odds of having an accident increases dramatically (from 1.1174 to 6.2022) when a
person has vision problem. The odds ratio is OR = 6.2022/1.1174 = 5.5506. The odds
of having accident for a person with vision problem is 5.5506 times that of a person with
no vision problem assuming driver education the same. In other words, drivers who have
vision problem are 5.5506 times more likely to have an accident as compared to those with
no vision problem. Drivers who took driving education are 0.223 times less likely to have
an accident as compared to those who did not take a driving education assuming the same
vision status, that is, the risk of having an accident for those who took a driving education
is 77.7% lower than those who did not take a driving education.
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3.6 Inference for Logistic Regression

Recall the binary response probability given the values of the explanatory variables is

π(xi) =

exp(
k∑
j=0

βjxij)

1 + exp(
k∑
j=0

βjxij)

(3.1)

where xi0 = 1 for all i = 1, 2, · · · , n. Equivalently using the logit transformation, it can be
written as

log

[
π(xi)

1− π(xi)

]
=

k∑
j=0

βjxij. (3.2)

3.6.1 Parameter Estimation

The goal of logistic regression model is to estimate the k + 1 unknown parameters of the
model. This is done with maximum likelihood estimation which entails finding the set of
parameters for which the probability of the observed data is largest.

Given a data set with n independent observations. Suppose these responses are grouped
into m unique covariate patterns (called populations). Then each binary response Yi; i =
1, 2, · · · ,m has an independent Binomial distribution with parameter ni and π(xi), that
is,

P (Yi = yi) =
ni!

(ni − yi)!yi!
π(xi)

yi [1− π(xi)]
ni−yi ; yi = 0, 1, 2, · · · , ni

where xi = (xi1, xi2, · · · , xik) for population i and
m∑
i=1

ni = n. Then, the joint probability

mass function of the vector of m Binomial random variables, Y = (Y1, Y2, · · · , Ym), is the
product of the m Binomial distributions:

P (y|β) =
m∏
i=1

ni!

(ni − yi)!yi!
π(xi)

yi [1− π(xi)]
ni−yi . (3.3)

The joint probability mass function in equation (3.3) expresses the values of y as a function
of known, fixed values for β = (β0, β1, β2, · · · , βk)t. The likelihood function has the same
form as the probability mass function, except that it expresses the values of β in terms of
known, fixed values for y. Thus,

`(β|y) =
m∏
i=1

ni!

(ni − yi)!yi!
π(xi)

yi [1− π(xi)]
ni−yi (3.4)
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Note that the factorial terms do not contain any of the π(xi). As a result, they are
essentially constants that can be ignored: maximizing the equation without the factorial
terms will come to the same result as if they were included. Therefore, equation (3.4) can
be written as:

`(β|y) =
m∏
i=1

π(xi)
yi [1− π(xi)]

ni−yi (3.5)

and it can be re-arranged as:

`(β|y) =
m∏
i=1

[
π(xi)

1− π(xi)

]yi
[1− π(xi)]

ni (3.6)

By substituting the odds of successes and probability of failure in equation (3.6), the
likelihood function becomes

`(β|y) =
m∏
i=1

[
exp(yi

k∑
j=0

βjxij)

][
1 + exp(

k∑
j=0

βjxij)

]−ni

(3.7)

Since the logarithm is a monotonic function, any maximum of the likelihood function will
also be a maximum of the log-likelihood function and vice versa. Thus, taking the natural
logarithm of equation (3.7) gives the log-likelihood function:

L(β|y) =
m∑
i=1

[
yi

k∑
j=0

βjxij − ni log[1 + exp(
k∑
j=0

βjxij)]

]
(3.8)

To find the critical points of the log-likelihood function, first, equation (3.8) should be
partially differentiated with respect to each βj; j = 0, 1, · · · , k which results in a system of
k + 1 nonlinear equations with the k + 1 unknown parameters as shown in equation (3.9)
below:

∂L(β|y)

∂βj
=

m∑
i=1

[yixij − niπ(xi)xij]

=
m∑
i=1

[yi − niπ(xi)]xij; j = 0, 1, 2, · · · , k.
(3.9)

The maximum likelihood estimates for β can be, then, found by setting each of the k + 1
equation equal to zero and solving for each βj. Since the second partial derivatives of the
log-likelihood function:

∂2L(β|y)

∂βj∂βh
= −

m∑
i=1

niπ(xi)[1− π(xi)]xijxih; j, h = 0, 1, 2, · · · , k (3.10)

is negative semidefinite, the log-likelihood is a concave function of the parameter β. In
addition, equation (3.10) represents the variance-covariance matrix of the parameter esti-
mates which is a function of var(Yi) = niπ(xi)[1− π(xi)].
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Several optimization techniques are available for finding the maximizing estimates of the
parameters. Of these, the Newton-Raphson method is the one which is commonly used.

3.6.2 Likelihood-Ratio Test of Model Fit

Once a logistic regression model is estimated, the next task is to answer the question ”Does
the entire set of explanatory variables contribute significantly to the prediction of the re-
sponse?”. In this case, two models are to be fitted; one with all explanatory variables (full
model) and the other with no explanatory variable (null model).

If the model has k explanatory variables, the null hypothesis of no contribution of all the
k explanatory variables is H0 : β1 = β2 = · · · = βk = 0. Let `0 denote the maximized value
of the likelihood function of the null model which has only one parameter, that is, the
intercept. That is, `0 = `(β̂0). Also let `M denote the maximized value of the likelihood
function of the model M with all explanatory variables (having k + 1 parameters). Here,
`M = `(β̂0, β̂1, β̂2, · · · , β̂k).

Then, the likelihood-ratio test statistic is G2 = −2 log(`0/`M) = −2(log `0 − log `M) ∼
χ2(k). Rejection of the null hypothesis, has an interpretation analogous to that in multiple
linear regression using F test, indicates at least one of the k parameters is significantly
different from zero.

Example 3.6. Suppose, a study was conducted with the objective of identifying the risk
factors associated with HIV/AIDS HAART treatment defaulter patients. Of 1464 patients,
331 were defaulted and the remaining 1133 were actively following the treatment. Four
variables which were considered as explanatory variables are age in years (Age), weight in
kilograms (Weight), Gender (0=Female, 1=Male), Functional Status (0=Working, 1=Am-
bulatory, 2=Bedridden) and number of baseline CD4 counts (CD4). The parameter esti-
mates and their corresponding standard errors are presented in the following table.

Variable Parameter Estimate Standard Error
Intercept -0.3120 0.4299
Age -0.0282 0.0080
Weight -0.0051 0.0071
Gender 0.5372 0.1438
Ambulatory 0.4959 0.1448
Bedridden 1.2610 0.2882
CD4 -0.0007 0.0004

The log-likelihood value of the null model is -782.5257 and the log-likelihood value of the
full model is -753.2892. Test the significance of the entire five variables altogether using
likelihood-ratio test.
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Solution: The response variable is

yi =

{
1, if the patient was defaulted;
0, otherwise (if the patient was on the treatment).

The design variables for Functional Status are:

Design Variables
Functional Status d41 d42
Working 0 0
Ambulatory 1 0
Bedridden 0 1

Now the model can be written as

logit [π(xi)] = β0 + β1 Agei + β2 Weighti + β3 Genderi

+ β41 Ambulatoryi + β42 Bedriddeni + β5 CD4i

The null hypothesis to be tested is H0 : β1 = β2 = β3 = β41 = β42 = β5 = 0. The test
statistic value is G2 = −2(log `0− log `M) = −2[−782.5257− (−753.2892)] = 58.473 which
is greater than χ2

0.05(6) = 12.592. Therefore, H0 should be rejected. At least one of the
parameter is significantly different from zero.

The likelihood-ratio test for the overall significance of a model is also called deviance test
as it is the difference between deviances of the null and the full models. Let model S be
the most complex model possible called saturated model which has a separate parameter
for each observation. The saturated model provides a perfect fit to the data, but it is not
a helpful model as it does not smooth the data. Nonetheless, it serves as a baseline for
other models, such as for checking model fit.

Let `S denote the maximized likelihood value for the saturated model S. Because the sat-
urated model has additional parameters, `S is at least as large as the maximized likelihood
`M for model M . Note here that model M is nested under the saturated model S. Thus,
deviance of a certain model is the likelihood-ratio test for comparing a model M of interest
with the saturated model S, that is, DM = −2 log(`M/`S). Similarly, deviance of the null
model is D0 = −2 log(`0/`S) which compares the null model with the saturated model.
In both cases, deviance is a test statistic for testing all the additional parameters in the
saturated model S are zero or not.

Therefore, the likelihood-ratio statistic for testing H0 : β1 = β2 = · · · = βk = 0 can be
derived as the difference between deviances of the two models; the null and the model M
of interest. That is,

G2 = −2 log

(
`0/`S
`M/`S

)
= −2 log(`0/`S)− [−2 log(`M/`S)] = D0 −DM .

Hence, the deviance is -2 times the log-likelihood value of a model.
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3.6.3 Wald Test for Parameters

Once the null hypothesis of no contribution of all the explanatory variables to the model
is rejected, then before concluding that any or all of the parameters are nonzero, there is a
need to look at which of the variables are significant and which are not. The Wald test is
used to identify the statistical significance of each coefficient (βj) of the logit model. That
is, it is used to test the null hypothesis H0 : βj = 0 which states that factor Xj does not
have significant value added to the prediction of the response given that other factors are
already included in the model.

The Wald statistic calculates a Z statistic in which

Zj =
β̂j

SE(β̂j)
∼ N(0, 1)

for large sample size. Note also that

Z2
j =

[
β̂j

SE(β̂j)

]2
∼ χ2(1).

Also, a likelihood-ratio test can be performed to test the hypothesis H0 : βj = 0. As
before, two models should be fitted; one with all explanatory variables (full model M) and
the other without the jth explanatory variable (reduced model R). Hence, here the model
under H0 is not null, rather, it includes all except the jth explanatory variable. Then, the
likelihood-ratio test statistic, of no contribution of the jth explanatory variable, is now G2 =
−2(log `R − log `M) = DR − DM ∼ χ2(1) where `M = `(β̂0, β̂1, · · · , β̂j−1, β̂j, β̂j+1, · · · , β̂k)
and `R = `(β̂0, β̂1, · · · , β̂j−1, β̂j+1, · · · , β̂k).

Example 3.7. Recall example 3.6. Write out the estimated model and identify the sig-
nificant explanatory variables using Wald test, and interpret the results.

Solution: We have that the estimated model is:

logit [π̂(xi)] =− 0.3120− 0.0282 Agei − 0.0051 Weighti + 0.5372 Genderi

+ 0.4959 Ambulatoryi + 1.2610 Bedriddeni − 0.0007 CD4i

The Wald test help us to identify those parameters which are responsible for rejection of
the null hypothesis of all the parameters are zero. The value of the Wald test for each
parameter which is obtained by dividing each parameter estimate by the corresponding
standard error is given in the following table.
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Variable Parameter Estimate Standard Error Wald Test
Intercept -0.3120 0.4299 -0.7258
Age -0.0282 0.0080 -3.5250
Weight -0.0051 0.0071 -0.7183
Gender 0.5372 0.1438 3.7357
Ambulatory 0.4959 0.1448 3.4247
Bedridden 1.2610 0.2882 4.3754
CD4 -0.0007 0.0004 -1.7500

As it can be seen from this table, only Age, Gender and Functional Status (since both
of the design variables are significant) are significant at 5% level of significance. When
the age of the patient increases by one year, the odds of being defaulted decreases by a
factor of exp(−0.0282) = 0.9723 assuming all other variables are same. Also, males are
exp(0.5372) = 1.7112 times more likely to default than females, that is, the odds of being
defaulted for males is 71.12% higher than that of females. Assuming all other variables
constant, ambulatory and bedridden patients are 1.6420 and 3.5290 times more likely to
be defaulted than working patients, respectively.

3.6.4 Significance of a Polytomous Predictor

The Wald test considered above is used to identify the statistical significance of a binary or
continuous explanatory variable. Whenever a multinomial explanatory variable is included
(excluded) in (from) the model, all of its design variables should be included (excluded);
to do otherwise implies the variables are recorded. By just looking at the Wald statistics
of the design variables, the contribution of the variable could not be determined. Hence,
the Wald test can be not used to check the significance of such a variable, rather the
likelihood-ratio test should be used.

If Xj has m categories, then the null hypothesis of no contribution of this multinomial
variable is H0 : βj1 = βj2 = · · · = βj,m−1 = 0. The likelihood-ratio test statistic is
G2 = −2(log `R − log `M) ∼ χ2(m − 1) where `R is the maximized likelihood value under
H0 (excluding the multinomial variable Xj) and `M is the maximized likelihood value of
the full model.

Example 3.8. Again recall example 3.6. Test the significance of functional status.

Solution: Since functional status is a multinomial variable with m = 3 categories, wald
test cannot be used for checking its significance. The null hypothesis is H0 : β41 = β42 = 0.
Here, β41 and β42 are the parameters associated with the two design variables of functional
status; ambulatory and bedridden, respectively. Therefore, the model in example 3.6 is
re-fitted without the two design variables of marital status. When fitted, the log-likelihood
value becomes -765.7410.
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The likelihood-ratio test statistic isG2 = −2(log `R−log `M) = −2[−765.7410−(−753.2892)] =
24.9036. Since this value is greater than χ2

0.05(2), functional status has a significant contri-
bution to the model.

3.6.5 Confidence Intervals

Confidence intervals are more informative than tests. A confidence interval for βj results
from inverting a test of H0 : βj = βj0. The interval is the set of βj0’s for which the z test
statistic is not greater than zα/2. For the Wald approach, this means∣∣∣∣∣ β̂j − βj0ŜE(β̂j)

∣∣∣∣∣ ≤ zα/2.

This yields the confidence interval β̂j ± zα/2ŜE(β̂j) for βj; j = 1, 2, · · · , k. As the

point estimate of the odds ratio associated to Xj is exp(β̂j) and its confidence interval

is exp[β̂j ± zα/2ŜE(β̂j)].

For summarizing the relationship, other characteristics may have greater importance such
as π(xi) at various xi values. Consider the simple logistic model, logit [π̂(xi)] = α̂ +
β̂xi. For a fixed xi = x0, logit [π̂(x0)] = α̂ + β̂x0 has a large standard error given by√

var(α̂) + x20 var(β̂) + 2x0 cov(α̂, β̂).

A (1−α)100% confidence interval for logit [π(x0)] is (α̂+ β̂x0)± zα/2
√

var(α̂ + β̂x0). Sub-

stituting each end point into the inverse transformation π(x0) =
exp{logit[π̂(x0)]}

1 + exp{logit[π̂(x0)]}
gives the corresponding interval for π(x0).

Example 3.9. Recall example 3.1, in which the estimated model is logit [π̂(xi)] = −2.828+
0.055xi. The variance-covariance matrix of the estimated parameters is:(

8.509 −0.179
0.004

)
Find the 95% confidence interval for the odds ratio and for the probability of success at
the age of 36.3 years (xi = 36.3).

Solution: We have β̂ = 0.055, v̂ar(α̂) = 8.509, v̂ar(β̂) = 0.004 and ĉov(α̂, β̂) = −0.179.

The 95% CI for β is β̂ ± zα/2

√
v̂ar(β̂) = 0.055 ± 1.96

√
0.004 = (−0.069, 0.179). This

implies, the CI for the odds ratio is exp[(−0.069, 0.179)] = [exp(−0.069), exp(0.179)] =
(0.933, 1.196)
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The CI for the proportion of having hypertension at the age of 36.3 years, we have
logit [π̂(36.3)] = −2.828 + 0.055(36.3) = −0.832

v̂ar{logit [π̂(36.3)]} = v̂ar(α̂) + 36.32 v̂ar(β̂) + 2(36.3) ĉov(α̂, β̂)

= 8.509 + 36.32(0.004) + 2(36.3)(−0.179)

= 0.784

The 95% confidence interval for logit π(36.3) is (−0.832± 1.96
√

0.784) = (−2.567, 0.903).
Thus, the confidence interval for the probability of hypertension at the age of 36.3 years is[

exp(−2.567)

1 + exp(−2.567)
,

exp(0.903)

1 + exp(0.903)

]
= (0.0712, 0.712).

This confidence interval is very wide which may be due to the small sample size, n = 10.
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Chapter 4

Model Selection and Diagnostics

4.1 Model Selection

With several explanatory variables, there are many potential models. The model selection
process becomes harder as the number of explanatory variables increases, because of the
rapid increase in possible effects and interactions. There are two competing goals of model
selection. The model should be complex enough to fit the data well. On the other hand, it
should be simple to interpret, smoothing rather than over fitting the data. Then, a search
among many models may provide clues about which explanatory variables are associated
with the response and suggest questions for future research.

4.1.1 Likelihood-Ratio Model Comparison Test

Sometimes, determining the contribution of a group of variables may be an interest. As
usual, two models; one with all explanatory variables (full model) and the other without
the explanatory variables to be tested (reduced model) are to be fitted. Thus, the reduced
model is a special case of the full model. According to the alternative, at least one of the
extra parameters in the full model is nonzero.

Let `M denote the maximized value of the likelihood function for the model of interest M
with pM = k+1 parameters and let `R denote the maximized value of the likelihood function
for the reduced model R with pR = k + 1 − q parameters. Note that model R is nested
under model M . Thus, the null hypothesis H0 : β1 = β2 = · · · = βq = 0 of no contribution
of all the q predictors in model M is tested using G2 = −2(log `R − log `M) ∼ χ2(q) where
`M = `(β̂0, β̂1, β̂2, · · · , β̂k) and `R = `(β̂0, β̂q+1, β̂q+2, · · · , β̂k).

Example 4.1. Recall example 3.6. Obtain the best fitting model.

Solution: Considering that the over all goal is to obtain the best fitting model, the logical
step is to fit a reduced model containing only those significant variables and compare it to
the model containing all the variables.
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For our case, the model is of the form

logit [π(xi)] = β0 + β1 Agei + β2 Weighti + β3 Genderi

+ β41 Ambulatoryi + β42 Bedriddeni + β5 CD4i.

Note that the variables Weight and CD4 are not significant. As a result, a new model is
fitted excluding these insignificant variables. This new model has a log-likelihood value of
-754.9283, and the parameter estimates and standard errors are in the following table.

Variable Parameter Estimate Standard Error Wald Test
Intercept -0.6858 0.2623 -2.6146
Age -0.0295 0.0079 -3.7342
Gender 0.5305 0.1372 3.8666
Ambulatory 0.5679 0.1375 4.1302
Bedridden 1.3571 0.2827 4.8005

The difference in this model is the exclusion of the Weight and CD4 variables. Thus, this
reduced model is

logit [π(xi)] = β0 + β1 Agei + β3 Genderi

+ β41 Ambulatoryi + β42 Bedriddeni.

Therefore, to determine whether the two variables should be included or not, the null
hypothesis is H0 : β2 = β5 = 0. The likelihood-ratio test statistic value is G2 = −2(log `R−
log `M) = −2[−754.9283− (−753.2892)] = 3.2782 which is less than χ2

0.05(2). Hence, there
is no advantage of including Weight and CD4 in the model. Thus, the best estimated
model is

logit π̂(xi) = −0.6858− 0.0295 Agei + 0.5305 Genderi

+ 0.5679 Ambulatoryi + 1.3571 Bedriddeni.

However, CD4 is known to be a ”biologically important” variable. In this case, the decision
to include or exclude the CD4 variable should be made in conjunction with subject matter
experts.

4.1.2 Akaike and Bayesian Information Criteria

Deviance or likelihood-ratio tests are used for comparing nested models. When there are
non nested models, information criteria can help to select the good model. The best known
ones are the Akaike Information Criterion (AIC) and Bayesian Information Criteria (BIC).
Both judge a model by how close its fitted values tend to be to the true expected values.
Also, both are calculated based on the likelihood value of a particular model M as

AIC = −2 log `M + 2pM

and
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BIC = −2 log `M + pM log(n)

where pM is number of parameters in the model and n is the sample size. A model having
smaller AIC or BIC is better.

Example 4.2. Find the AIC and BIC values for the model given on example 4.1.

Solution: It is already given log `M = −754.9283, pM = 5 and n = 1464. This implies the
AIC = 1519.8566 and BIC = 1546.3012.

4.2 Measures of Predictive Power

4.2.1 Pseudo R2 Measures

In ordinary regression, the coefficient of determination R2 and the multiple correlation R
describe the power of the explanatory variables to predict the response, with R = 1 for
perfect prediction. Despite the various attempts to define analogs for categorical response
models, there is no proposed measure as widely useful as R and R2. Some of the proposed
measures which directly use the likelihood function are presented here.
Let the maximized likelihood be denoted by `M for a given model, `S for the saturated
model and `0 for the null model containing only an intercept term. These probabilities
are not greater than 1, thus log-likelihoods are non positive. As the model complexity
increases, the parameter space expands, so the maximized log-likelihood increases. Thus,
`0 ≤ `M ≤ `S ≤ 1 or log `0 ≤ log `M ≤ log `S ≤ 0. The measure

R2 =
log `M − log `0
log `S − log `0

lies in between 0 and 1. It is zero when the model provides no improvement in fit over the
null model and it will be 1 when the model fits as well as the saturated model.

The McFadden R2

Since the saturated model has a parameter for each subject, the log `S approaches to zero.
Thus, log `S = 0 simplifies

R2
McFadden =

log `M − log `0
− log `0

= 1−
[

log `M
log `0

]
.

The Cox & Snell R2

The Cox & Snell modified R2 is:

R2
Cox-Snell = 1−

[
`0
`M

]2/n
= 1− [exp(log `0 − log `M)]2/n.
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The Nagelkerke R2

Because the R2
Cox-Snell value cannot reach 1.0, Nagelkerke modified it. The correction

increases the Cox & Snell version to make 1.0 a possible value for R2.

R2
Nagelkerke =

1−
[
`0
`M

]2/n
1− (`0)2/n

=
1− [exp(log `0 − log `M)]2/n

1− [exp(log `0)]2/n

Example 4.3. Obtain the McFadden, Cox & Snell, and Nagelkerke pseudo R2s for the
model fitted on example 4.1.

Solution: Note that log `M = −754.9283 which is given on example 4.1. Also log `0 =
−782.5257 and n = 1464 as given on example 3.6. Therefore,

R2
McFadden = 1−

[
−754.9283

−782.5257

]
= 0.035

R2
Cox-Snell = 1− [exp(−782.5257 + 754.9283)]2/1464 = 0.037

R2
Nagelkerke =

1− [exp(−782.5257 + 754.9283]2/1464

1− [exp(−782.5257)]2/1464
= 0.056.

4.2.2 Classification Tables

A classification table is also useful to summarize the predictive power of a binary logistic
model. The table cross-classifies the binary response with a prediction of whether y = 0
or y = 1. The prediction is ŷ = 1 when π̂ > π0 and ŷ = 0 when π̂ ≤ π0, for some cutoff π0.
Most classification tables use π0 = 0.5. However, if a low (high) proportion of observations
have y = 1, the model fit may never (always) have π̂ > 0.50, in which case one never (al-
ways) predicts ŷ = 1. Another possibility takes π0 as the sample proportion of successes,
which is π̂ for the model containing only an intercept term.

Summary of prediction power from the classification table is the overall proportion of
correct classifications. This estimates

P (correct classification) = P (y = 1 and ŷ = 1) + P (y = 0 and ŷ = 0)

= P (y = 1) · P (ŷ = 1|y = 1) + P (y = 0) · P (ŷ = 0|y = 0).

Limitations of this table are that it collapses continuous predictive values π̂ into binary
ones, the choice of π0 is arbitrary, and it is highly sensitive to the relative numbers of times
y = 1 and y = 0.

Example 4.4. Recall example 3.1. The fitted probabilities of having hypertension for
each individual is given in the following table. Using the cutoff value π̂0 = 0.50, find the
proportion of correct classification.
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Age (xi) Hypertension (yi) Probability [π̂(xi)]
50 1 0.48
40 1 0.35
51 1 0.49
48 1 0.45
54 0 0.54
60 0 0.62
25 0 0.19
46 0 0.43
35 0 0.29
22 0 0.17

Solution: Based of the cutoff value 0.5, the probabilities above 0.5 are taken as 1 and those
probabilities less than or equal to 0.5 are taken as 0. Hence, ŷi = (0, 0, 0, 0, 1, 1, 0, 0, 0, 0).
Thus:

P (correct classification) = P (y = 1) · P (ŷ = 1|y = 1) + P (y = 0) · P (ŷ = 0|y = 0)

=
4

10
· 0

4
+

6

10
· 4

6
= 0.40

4.3 Model Checking

For any particular logistic regression model, there is no guarantee that the model fits the
data well. One way to detect lack of fit uses a likelihood-ratio test, Section ??, to compare
the model with more complex ones. A more complex model might contain a nonlinear
effect, such as a quadratic term to allow the effect of a predictor to change directions as
its value increases. Models with multiple predictors would consider interaction terms. If
more complex models do not fit better, this provides some assurance that a chosen model
is adequate.

4.3.1 Pearson Chi-squared Statistic

Suppose the observed responses are grouped intom covariate patterns (populations). Then,
the raw residual is the difference between the observed number of successes yi and expected
number of successes niπ̂(xi) for each value of the covariate xi. The Pearson residual is the
standardized difference. That is,

ri =
yi − niπ̂(xi)√

niπ̂(xi)[1− π̂(xi)]
; i = 1, 2, · · · ,m

where (
m∑
i=1

ni = n). Thus, the Pearson chi-squared statistic is the sum of the square of

standardized residuals:

X2 =
m∑
i=1

[yi − niπ̂(xi)]
2

niπ̂(xi)[1− π̂(xi)]
∼ χ2(m− k).

62



Categorical Data Analysis - Stat 3062 E-mail: es.awol@gmail.com

When this statistic is close to zero, it indicates a good model fit to the data. When it is
large, it is an indication of lack of fit. Often the Pearson residuals ri are used to determine
exactly where the lack of fit occurs.

Example 4.5. Recall again example 3.1. Test the adequacy of the model using the Pearson
chi-squared test.

Solution: The fitted probabilities are given above in example 4.3. Note that in this
particular example, each value of the explanatory variable is unique (ni = 1), that is,
the number of populations (aggregate values of the explanatory variable) is equal to the
number of observations (m = n = 10). Thus,

ri =
yi − π̂(xi)√

π̂(xi)[1− π̂(xi)]
; i = 1, 2, · · · , 10.

Age (xi) Hypertension (yi) Probability [π̂(xi)] ri r2i
50 1 0.48 1.04 1.0816
40 1 0.35 1.36 1.8496
51 1 0.49 1.02 1.0404
48 1 0.45 1.11 1.2321
54 0 0.54 -1.08 1.1664
60 0 0.62 -1.28 1.6384
25 0 0.19 -0.48 0.2304
46 0 0.43 -0.87 0.7569
35 0 0.29 -0.64 0.4096
22 0 0.17 -0.45 0.2025

Total 9.6079

The test Pearson chi-squared statistic becomes X2 =
m∑
i=1

r2i = 9.6079 which is larger than

χ2
0.05(10− 2) = χ2

0.05(8) = 2.7326, indicating that the model is not a good fit to the data.

4.3.2 The Deviance Function

The deviance, like the Pearson chi-squared, is used to test the adequacy of the logistic
model. As shown before, the maximum likelihood estimates of the parameters of the
logistic regression are estimated iteratively by maximizing the Binomial likelihood function.
Maximizing the likelihood function is equivalent to minimizing the deviance function. The
choices for β̂j; j = 0, 1, · · · , k that minimize the deviance are the parameter values that
make the observed and fitted proportions as close together as possible in a likelihood sense.
The deviance is given by:

D = 2
m∑
i=1

[
yi log

(
yi

niπ̂(xi)

)
+ (ni − yi) log

(
ni − yi

ni − niπ̂(xi)

)]
∼ χ2(m− k)
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where the fitted probabilities π̂(xi) satisfy logit [π̂(xi)] =
k∑
j=0

β̂jxij and xi0 = 1. The

deviance is small when the model fits the data, that is, when the observed and fitted
proportions are close together. Large values ofD (small p-values) indicate that the observed
and fitted proportions are far apart, which suggests that the model is not good.
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Chapter 5

Multicategory Logit Models

In this chapter, the standard logistic model is extended to handle outcome variables that
have more than two categories. Multinomial logistic regression is used when the categories
of the outcome variable are nominal, that is, they do not have any natural order. When
the categories of the outcome variable do have a natural order, ordinal logistic regression
may also be appropriate.

5.1 Multinomial Logit Model

Let Y be a categorical response with J categories. Multinomial (also called polytomous)

logit models for nominal response variables simultaneously describe log odds for all

(
J

2

)
pairs of categories. Of these, a certain choice of J − 1 are enough to determine all, the rest
are redundant.

Let P (Y = j|xi) = πj(xi) at a fixed setting xi for explanatory variables with
J∑
j=1

π(xi) = 1.

Thus, Y has a multinomial distribution with probabilities {π1(xi), π2(xi), · · · , πJ(xi)}.

5.1.1 Baseline Category Logit Models

Logit models pair each response category with a baseline category, often the last category
or the most common one. Taking the last category as a reference, the model

log

[
πj(xi)

πJ(xi)

]
= βj0 + βj1xi1 + βj2xi2 + · · ·+ βjkxik; j = 1, 2, · · · , J − 1

simultaneously describes the effects of the explanatory variables on these J−1 logit models.
The intercepts and effects vary according to the response paired with the baseline. That
is, each model has its own intercept and slope.
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The J − 1 equations determine parameters for logit models with other pairs of response
categories, since

log

[
π1(xi)

π2(xi)

]
= log

[
π1(xi)/πJ(xi)

π2(xi)/πJ(xi)

]
= log

[
π1(xi)

πJ(xi)

]
− log

[
π2(xi)

πJ(xi)

]
Example 5.1. Based on the survival outcome of HAART treatment, HIV/AIDS patients
were classified into four categories (0= Active, 1= Dead, 2= Transferred to other hos-
pital, 3= Loss-to-follow). To identify factors associated with these survival outcomes, a
multinomial logit model was fitted. Three explanatory variables that were considered are
Age, Gender (0= Female, 1= Male) and Functional Status (0= Working, 1= Ambulatory,
2= Bedridden). The parameter estimates are presented as follows (values in brackets are
standard errors).

Functional Status
logit Intercept Age Gender Ambulatory Bedridden

log(π̂D/π̂A) -3.271 (0.624) -0.020 (0.018) 0.564 (0.325) 0.940 (0.333) 2.280 (0.479)
log(π̂T/π̂A) -1.882 (0.413) -0.030 (0.012) 0.635 (0.211) 0.833 (0.209) 1.584 (0.393)
log(π̂L/π̂A) -1.116 (0.343) -0.031 (0.010) 0.455 (0.178) 0.292 (0.183) 0.828 (0.395)

Obtain the estimated model for the log odds of dead instead of active. Also, find the
estimated model for the log odds of dead instead of transferred to other hospital.

Solution: Let Y = survival outcome, X1 = age of the patient, X2 = gender and X3=
functional status.

Each model is written as:

log

[
π̂j(xi)

π̂A(xi)

]
= β̂j0 + β̂j1xi1 + β̂j2xi2 + β̂j31di31 + β̂j32di32; j = D,T, L.

For example, the estimated model for the log odds of being dead instead of active is

log

[
π̂D(xi)

π̂A(xi)

]
= −3.271− 0.020xi1 + 0.564xi2 + 0.940di31 + 2.280di32.

The odds that male patients being dead (instead of active) is exp(0.565) = 1.759 times
that of females, or the odds of being dead (instead of active) among males is 75.9% higher
than that of among females. In other words, male patients are 1.759 times more likely
to be dead (instead of active) than female patients. Also, those ambulatory patients are
exp(0.941) = 2.563 times more likely to be dead (instead of active) than those working
patients. Similarly, those bedridden patients are exp(2.280) = 9.777 times more likely to
be dead (instead of active) than those working patients. In addition, the functional status
effects indicate that the odds of being dead (instead of active) are relatively higher for

66



Categorical Data Analysis - Stat 3062 E-mail: es.awol@gmail.com

those bedridden patients than those ambulatory patients.

The estimated model for being dead instead of transferred to other hospital is

log

[
π̂D(xi)

π̂T (xi)

]
= log

[
π̂D(xi)

π̂A(xi)

]
− log

[
π̂T (xi)

π̂A(xi)

]
=− 3.271− 0.020xi1 + 0.564xi2 + 0.940di31 + 2.280di32

− (−1.882− 0.030xi1 + 0.635xi2 + 0.833di31 + 1.584di32)

Therefore,

log

[
π̂D(xi)

π̂T (xi)

]
= −1.389 + 0.010xi1 − 0.071xi2 + 0.107di31 + 0.696di32.

5.1.2 Multinomial Response Probabilities

The equation that expresses multinomial logit models directly in terms of response prob-
abilities {π̂j(xi)} is

π̂j(xi) =

exp(
k∑
p=0

β̂jpxip)

J∑
h=1

exp(
k∑
p=0

β̂hpxip)

where xi0 = 1 and β̂Jp = 0 for all p = 0, 1, 2, · · · , k. If J = 2, it simplifies to binary logistic
regression model.

Example 5.2. Consider the previous example. Find the estimated probability of each
outcome for a 40 years old female patient who were working.

Solution: The estimated probability of each outcome with xi1 = 40, xi2 = 0 and di31 =
di32 = 0:

π̂D(xi) =
exp[−3.271− 0.020(40)]

1 + exp[−3.271− 0.020(40)] + exp[−1.882− 0.030(40)] + exp[−1.116− 0.031(40)]

= 0.0147

π̂T (xi) =
exp[−1.882− 0.030(40)]

1 + exp[−3.271− 0.020(40)] + exp[−1.882− 0.030(40)] + exp[−1.116− 0.031(40)]

= 0.0396

π̂L(xi) =
exp[−1.116− 0.031(40)]

1 + exp[−3.271− 0.020(40)] + exp[−1.882− 0.030(40)] + exp[−1.116− 0.031(40)]

= 0.0819

π̂A(xi) =
1

1 + exp[−3.271− 0.020(40)] + exp[−1.882− 0.030(40)] + exp[−1.116− 0.031(40)]

= 0.8638
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The value 1 in each denominator and in the numerator of π̂A(xi) represents exp(0) for
which β̂0 = β̂1 = · · · = β̂k = 0 with the baseline category.

5.2 Ordinal Logit Model

Let Y is an ordinal response with J categories. Then there are J − 1 ways to dichotomize
these outcomes. These are Yi ≤ 1 (Yi = 1) versus Yi > 2, Yi ≤ 2 versus Yi > 2, · · · ,
Yi ≤ J − 1 versus Yi > J − 1 (Yi = J).

5.2.1 Cumulative Logit Models

With the above categorization of Yi, P (Yi ≤ j) is the cumulative probability that Yi falls
at or below category j. That is, for outcome j, the cumulative probability is:

P (Yi ≤ j|xi) = π1(xi) + π2(xi) + · · ·+ πj(xi); j = 1, 2, · · · , J.

Thus, the cumulative logit of P (Yi ≤ j) (log odds of outcomes ≤ j) is:

logit [P (Yi ≤ j)] = log

[
P (Yi ≤ j)

1− P (Yi ≤ j)

]
= log

[
P (Yi ≤ j)

P (Yi > j)

]
= log

[
π1(xi) + π2(xi) + · · ·+ πj(xi)

πj+1(xi) + πj+2(xi) + · · ·+ πJ(xi)

]
; j = 1, 2, · · · , J − 1.

Each cumulative logit model uses all the J response categories. A model for logit [P (Y ≤
j|xi)] alone is an ordinary logit model for a binary response in which categories from 1 to
j form one outcome and categories from j + 1 to J form the second.

5.2.2 Proportional Odds Model

A model that simultaneously uses all cumulative logits is

logit [P (Yi ≤ j|xi)] = βj0 + β1xi1 + β2xi2 + · · ·+ βkxik; j = 1, 2, · · · , J − 1.

Each cumulative logit has its own intercept but the same effect (its associated odds ratio
called cumulative odds ratio) associated with the explanatory variables. Each intercept
increases in j since logit [P (Yi ≤ j|xi)] increases in j for a fixed xi, and the logit is an
increasing function of this probability. Usually, the intercepts are not of interest except for
computing response probabilities.

An ordinal logit model has a proportionality assumption which means the distance be-
tween each category is equivalent (proportional odds). That is, the cumulative logit model
satisfies

logit [P (Yi ≤ j|xip1)]− logit [P (Yi ≤ j|xip2)] = βp(xip1 − xip2).
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The odds of making response ≤ j at Xp = xp1 are exp[βp(xp1 − xp2)] times the odds at
Xp = xp2. The log odds ratio is proportional to the distance between xp1 and xp2. With a
single predictor, the cumulative odds ratio equals exp(β) whenever x1 − x2 = 1.

5.2.3 Cumulative Response Probabilities

The cumulative response probabilities of an ordinal logit model is determined similar to
the multinomial response probabilities.

P (Yi ≤ j|xi) =
exp(βj0 + β1xi1 + β2xi2 + · · ·+ βkxik)

1 + exp(βj0 + β1xi1 + β2xi2 + · · ·+ βkxik)
; j = 1, 2, · · · , J − 1.

Hence, an ordinal logit model estimates the cumulative probability of being in one category
versus all lower or higher categories.

Example 5.3. To determine the effect of Age and Gender (0= Female, 1=Male) on the
Clinical Stage of HIV/AIDS patients (1= Stage I, 2= Stage II, 3= Stage III and 4= Stage
IV), the following parameter estimates of ordinal logistic regression are obtained.

Variable Parameter Estimate Standard Error
Intercept 1 -0.9905 0.1884
Intercept 2 0.5383 0.1870
Intercept 3 2.7246 0.2066
Age 0.0034 0.0055
Gender 0.1789 0.1028

Obtain the cumulative logit model and interpret. Also find the estimated probabilities of
each clinical stage for a female patient at the mean age 34.01 years.

Solution: Let Y= Clinical Stage of patients (1= Stage I, 2= Stage II, 3= Stage III and
4= Stage IV), X1= Age and X2= Gender (0= Female, 1=Male).

Hence, the model has the form logit [P̂ (Yi ≤ j|xi)] = β̂j0 + β̂1xi1 + β̂2xi2; j = 1, 2, 3. With
J = 4 categories, the model has three cumulative logits. These are:

logit [P̂ (Yi ≤ 1|xi)] = −0.9905 + 0.0034xi1 + 0.1789xi2

logit [P̂ (Yi ≤ 2|xi)] = 0.5383 + 0.0034xi1 + 0.1789xi2

logit [P̂ (Yi ≤ 3|xi)] = 2.7246 + 0.0034xi1 + 0.1789xi2.

The cumulative estimates β̂1 = 0.0034 suggests that the cumulative probability starting
at the clinical stage IV end of the scale increases as the age of the patient increases (an
increase in the age of the patient leads to be in higher clinical stages) given the gender.
Also, the estimate β̂2 = 0.1789 indicates the estimated odds of being in the clinical stage
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below any fixed level for males are exp(0.179) = 1.1960 times the estimated odds for female
patients (males are more likely to be in higher clinical stages as compared to females) given
the age of the patient.

The estimated probability of response clinical stage j or below is:

P (Y ≤ j|xi) =
exp(β̂j0 + 0.0034xi1 + 0.1789xi2)

1 + exp(β̂j0 + 0.0034xi1 + 0.1789xi2)
; j = 1, 2, 3.

Thus, the cumulative response probability of a female patient at the age of 34.01 years
being in clinical stage I, clinical stages I or II, clinical stages I, II or III, respectively, are:

P̂ (Yi ≤ 1|xi) =
exp[−0.9905 + 0.0034(34.01) + 0.1789(0)]

1 + exp[−0.9905 + 0.0034(34.01) + 0.1789(0)]

= 0.2942

P̂ (Yi ≤ 2|xi) =
exp[0.5383 + 0.0034(34.01) + 0.1789(0)]

1 + exp[0.5383 + 0.0034(34.01) + 0.1789(0)]

= 0.6579

P̂ (Yi ≤ 3|xi) =
exp[2.7246 + 0.0034(34.01) + 0.1789(0)]

1 + exp[2.7246 + 0.0034(34.01) + 0.1789(0)]

= 0.9448

Note also that P̂ (Yi ≤ 4|xi) = 1.

The actual response probability of a female patient of 34.01 years old at each clinical stage
is calculated as follows:

P̂ (Yi = 1|xi) = P̂ (Yi ≤ 1|xi)
= 0.2942

P̂ (Yi = 2|xi) = P̂ (Yi ≤ 2|xi)− P̂ (Yi = 1|xi)
= 0.6579− 0.2942

= 0.3637

P̂ (Yi = 3|xi) = P̂ (Yi ≤ 3|xi)− P̂ (Yi ≤ 2|xi)
= 0.9448− 0.6579

= 0.2869

P̂ (Yi = 4|xi) = 1− P̂ (Yi = 3|xi)
= 1− 0.9448

= 0.0552
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Chapter 6

Poisson and Negative Binomial
Regressions

Poisson and negative binomial regressions are other statistical modeling scenarios where
the response variable represent non-negative integer values (counts or frequencies).

6.1 The Exponential Function

For any real number z, the exponential function is f(z) = exp(z); z ∈ R. This function
is nonnegative for all values of z. That is, when z = −∞ ⇒ f(−∞) = 0, when z = 0 ⇒
f(0) = 1 and when z =∞⇒ f(∞) =∞.

The figure also shows that the range of f is in between 0 and ∞ for all z ∈ (−∞,∞).
Therefore, 0 ≤ f(z) <∞.
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6.2 Poisson Regression

To obtain the poisson regression model from the exponential function, z should be expressed
as a function (mostly linear function) of the explanatory variable(s). That is, zi = g(xi) =
α + βxi for a single explanatory variable X. As a result, the simple poisson regression
model can be written as

f(xi) = exp(α + βxi).

Here, since f(xi) represents the mean response, let use the notation µ(xi). That is,

µ(xi) = exp(α + βxi).

This model can be linearized using the natural logarithm transformation as:

log [µ(xi)] = α + βxi.

The parameters of poisson regression models are commonly interpreted in terms of inci-
dence rate ratio (IRR). A one-unit increase in xi has a multiplicative impact of exp(β) on
the mean response, that is, the mean of Yi at xi + 1 is the mean of Yi at xi multiplied by
exp(β). If β = 0, then the multiplicative factor is 1. Then, the mean of Yi does not change
as xi changes. If β > 0, then exp(β) > 1, and the mean of Yi increases as xi increases. If
β < 0, the mean decreases as xi increases.

Similarly, if there are k explanatory variables, the multiple poisson regression model is
written as:

log µ(xi) = β0 + β1xi1 + β2xi2 + · · ·+ βkxik

=
k∑
j=0

βjxij
(6.1)

where xi0 = 1 for all i = 1, 2, · · · , n. Here, µ(xi) is the conditional mean of Yi given xi
where xi = (xi1, xi2, · · · , xik).

Example 6.1. Suppose a study is conducted in identifying factors associated with CD4
counts of HIV/AIDS patients at the start of HAART treatment. Here the response variable
is CD4 count of a patient and the explanatory variables are Age in years (Age), Gender
(0=Female, 1=Male) and Functional Status (0=Working, 1=Ambulatory, 2=Bedridden).
The parameter estimates and their corresponding standard errors of the poisson regression
model are given in the following table.

Variable Parameter Estimate Standard Error
Intercept 5.4625 0.0079
Age 0.0060 0.0002
Gender -0.1982 0.0041
Ambulatory -0.3783 0.0046
Bedridden -0.6296 0.0123
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Obtain the estimated model and interpret the estimates.

Solution: Let Y= CD4 count, X1= Age, X2= Gender (0=Female, 1=Male) and X3=
Functional Status (0=Working, 1=Ambulatory, 2=Bedridden). The estimated model is:

log µ̂(xi) = 5.4625 + 0.0060xi1 − 0.1982xi2 − 0.3783di31 − 0.6296di32.

As the age of the patient increases by one year, the mean CD4 count increases by 0.60%
[exp(0.0060) − 1 = 0.60%]. The mean CD4 count of male patients decreases by 17.98%
[1 − exp(−0.1982) = 17.98%] than female patients. Similarly the mean CD4 counts of
ambulatory and bedridden patients decreases by 31.50% and 46.72% than working patients.

6.2.1 Estimation

Inference on the model and its parameters follows exactly the same approach as used for
logistic regression. Like other regression modeling, the goal of poisson regression is to es-
timate the k + 1 unknown parameters of the model. The method of maximum likelihood
is used to estimate the parameters which follows closely the approach used for logistic
regression.

Consider a random variable Y that can take on a set of count values. Given a dataset with
a sample size of n where each observation is independent. Thus, Y can be considered as
a vector of n poisson random variables. That is, each individual count response Yi; i =
1, 2, · · · , n has an independent poisson distribution with parameter µ(xi), that is,

P (Yi = yi) =
µ(xi)

yi exp[−µ(xi)]

yi!
; yi = 0, 1, 2, · · · .

Then, the joint probability mass function of Y = (Y1, Y2, · · · , Yn) is the product of the n
poisson distributions. Thus, the likelihood function is:

`(β|y) =
n∏
i=1

µ(xi)
yi exp[−µ(xi)]

yi!
(6.2)

where µ(xi) = exp(
k∑
j=0

βjxij). Also, the log-likelihood function becomes:

L(β|y) =
n∑
i=1

yi log [µ(xi)]−
n∑
i=1

µ(xi)−
n∑
i=1

log (yi!). (6.3)

Then, partially differentiating the log-likelihood with respect to βj; j = 0, 1, 2, · · · , k and
setting it equal to zero results k + 1 equations with k + 1 unknown parameters. That is,

∂L(β|y)

∂βj
=

n∑
i=1

[yi − µ(xi)]xij = 0; j = 0, 1, 2, · · · , k. (6.4)
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which is usually solved with some numerical method like the Newton-Raphson algorithm.
Also, the second partial derivative of the log-likelihood function yields the variance-covarince
matrix of the estimated parameters:

∂2L(β|y)

∂βjβh
= −

n∑
i=1

µ(xi)xijxih; j = h = 0, 1, 2, · · · , k. (6.5)

6.2.2 Inference for Poisson Regression

Let `M denote the maximized value of the likelihood function for the fitted model M
with all the k explanatory variables. Let `0 denote the maximized value of the likelihood
function for the fitted model with no explanatory variables (having only one parameter,
that is, the intercept). The likelihood-ratio test statistic is

G2 = −2(log `0 − log `M) = D0 −DM ∼ χ2(k).

Rejection of the null hypothesis implies at least one of the parameter is significantly dif-
ferent from zero. Then, Wald test can be used to look at the significance of each variable
(H0 : βj = 0) using a Z statistic in which

Zj =
β̂j

SE(β̂j)
∼ N(0, 1)

for large sample size.

Example 6.2. The log-likelihood value of the model given in example 6.1 is -85956.40 and
the corresponding null model is -92061.31. Test the overall significance of the model and
also identify the significant variables using wald test.

Solution: The model is of the form:

log µ(xi) = β0 + β1xi1 + β2xi2 + β31di31 + β32di32.

For testing the significance of the model, the hypothesis to be tested is H0 : β1 =
β2 = β31 = β32 = 0. Thus, the likelihood-ratio statistic is G2 = −2(log `0 − log `M) =
−2[−92061.31−(−85956.40)] = 12209.82 which is very larger than χ2

0.05(4) = 1.145. There-
fore, at least one of the explanatory variable is significant.

To identify the significant explanatory variables one by one, the Wald statistics are calcu-
lated as shown in the following table.

Variable Parameter Estimate Standard Error Wald Statistic
Intercept 5.4625 0.0079 691.4557
Age 0.0060 0.0002 30.0000
Gender -0.1982 0.0041 -48.3415
Ambulatory -0.3783 0.0046 -82.2391
Bedridden -0.6296 0.0123 -51.1870

As can be seen, all the explanatory variables are significantly associated with the CD4
counts of HIV/AIDS patients.
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6.2.3 Model Diagnostics

Just as in any model fitting procedure, analysis of residuals is important in fitting poisson
regression. Residuals can provide guidance concerning the overall adequacy of the model,
assist in verifying assumptions, and can give an indication concerning the appropriateness
of the selected link function.

The ordinary or raw residuals are just the differences between the observations and the
fitted values, ei = yi− µ̂(xi), which have limited usefulness. The Pearson residuals are the
standardized differences

ri =
yi − µ̂(xi)√

µ̂(xi)
.

These residuals fluctuate around zero, following approximately a normal distribution when
µ(xi) is large. When the model holds, these residuals are less variable than standard nor-
mal, however, because the numerator must use the fitted value µ̂(xi) rather than the true
mean µ(xi). Since the sample data determine the fitted value, [yi − µ̂(xi)] tends to be
smaller than [yi − µ(xi)].

Since, the standardized residual takes [yi− µ̂(xi)] and divides it by its estimated standard
error

√
µ̂(xi), it does have an approximate standard normal distribution when µ(xi) is

large. With standardized residuals, it is easier to tell when a deviation [yi − µ̂(xi)] is
”large”.

Components of the deviance are alternative measures of lack of fit. The deviance residuals
are:

di = ±
[
yi log

(
yi

µ̂(xi)

)
− [yi − µ̂(xi)]

]1/2
; i = 1, 2, · · · , n

where the sign is the sign of the ordinary residual. The deviance residuals approach zero
when the observed values of the response and the fitted values are closer to each other.

6.3 Negative Binomial Regression

For poisson distributions, the variance equals the mean. Often count data vary more
than the expected. The phenomenon of the data having greater variability than expected
is called overdispersion which is common in applying Poisson models to counts. But,
overdispersion is not an issue in ordinary regression models assuming normally distributed
response, because the normal distribution has a separate parameter to describe the vari-
ability.

Like poisson models, negative binomial models express the log mean response in terms ex-
planatory variables. But the negative binomial model has an additional parameter called
a dispersion parameter. That is, because, the negative binomial distribution has mean
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E(Y ) = µ and variance Var(Y ) = µ + ψµ2 where ψ > 0. The index ψ is a dispersion
parameter. As ψ approaches 0, V ar(Y ) goes to µ and the negative binomial distribution
converges to the poisson distribution. The farther ψ falls above 0, the greater the overdis-
persion relative to poisson variability.

Example 6.3. Consider example 6.1. The parameter estimates and their corresponding
standard errors of the negative binomial regression are given below.

Variable Parameter Estimate Standard Error
Intercept 5.4202 0.0867
Age 0.0067 0.0023
Gender -0.1841 0.0443
Ambulatory -0.3743 0.0460
Bedridden -0.6332 0.1066

ψ̂ 0.6022 [CI: (0.5628,0.6443)] 0.0208

The log-likelihood value of this model is -9083.73 and that of the null model is -9135.30.
Compare and contrast the estimates with that of the poisson regression. In addition,
compare both models by finding their corresponding AIC values.

Solution: As the dispersion parameter ψ is significantly larger than 0, it assures that the
negative binomial regression model is appropriate than the poisson regression model.
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