Ανάλυση Κατηγορικών Δεδομένων

Στέλιος Ζήμερας Τμήμα Στατιστικής και Αναλογιστικών – Χρηματοοικονομικών Μαθηματικών Σάμος 2020

Y-Party Identification

		Democrat	Independent	Republican	Total
X — $Gender$	Female	762	327	468	1557
	Male	484	239	477	1200
		1246	566	945	n = 2757

Then
$$\widehat{\mu}_{11}=1557\times 1246/2757=703.7,$$
 $\widehat{\mu}_{12}=1557\times 566/2757=319.6,$ etc.

$$\Rightarrow \chi^2 = \frac{(762 - 703.7)^2}{703.7} + \frac{(327 - 319.6)^2}{319.6} + \dots = 30.1$$

$$G^2 = 2(762 \log(762/703.7) + 327 \log(327/319.6) + \dots) = 30.0$$

$$\chi^2_{2,0.05} = 5.99$$

Both Pearson test and LRT reject $H_0: X \perp Y$ at level 0.05.

Example 1: Suppose that X is a discrete random variable with the following probability mass function: where $0 \le \theta \le 1$ is a parameter. The following 10 independent observations

X	0	1	2	3
P(X)	$2\theta/3$	$\theta/3$	$2(1-\theta)/3$	$(1-\theta)/3$

were taken from such a distribution: (3,0,2,1,3,2,1,0,2,1). What is the maximum likelihood estimate of θ .

Solution: Since the sample is (3,0,2,1,3,2,1,0,2,1), the likelihood is

$$L(\theta) = P(X = 3)P(X = 0)P(X = 2)P(X = 1)P(X = 3)$$
× $P(X = 2)P(X = 1)P(X = 0)P(X = 2)P(X = 1)$

Substituting from the probability distribution given above, we have

$$L(\theta) = \prod_{i=1}^{n} P(X_i | \theta) = \left(\frac{2\theta}{3}\right)^2 \left(\frac{\theta}{3}\right)^3 \left(\frac{2(1-\theta)}{3}\right)^3 \left(\frac{1-\theta}{3}\right)^2$$

Let us look at the log likelihood function

$$l(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log P(X_i | \theta)$$

$$= 2\left(\log \frac{2}{3} + \log \theta\right) + 3\left(\log \frac{1}{3} + \log \theta\right) + 3\left(\log \frac{2}{3} + \log(1 - \theta)\right) + 2\left(\log \frac{1}{3} + \log(1 - \theta)\right)$$

$$= C + 5\log \theta + 5\log(1 - \theta)$$

where C is a constant which does not depend on θ . It can be seen that the log likelihood function is easier to maximize compared to the likelihood function.

Let the derivative of $l(\theta)$ with respect to θ be zero:

$$\frac{dl(\theta)}{d\theta} = \frac{5}{\theta} - \frac{5}{1-\theta} = 0$$

and the solution gives us the MLE, which is $\hat{\theta} = 0.5$. We remember that the method of moment estimation is $\hat{\theta} = 5/12$, which is different from MLE.

Example 2.7. The following cross classification shows the distribution of patients by the survival outcome (active, dead, transferred to other hospital and loss-to-follow) and gender. Test whether the survival outcome depends on gender or not using both the Pearson and likelihood-ratio tests.

Survival Outcome					
Gender	Active	Dead	Transferred	Loss-to-follow	Total
Female	741	25	63	101	930
Male	392	20	52	70	534
Total	1133	45	115	171	1464

Solution: First lets find the expected cell counts, $\hat{\mu}_{ij} = \frac{n_{i+}n_{+j}}{n}$.

Survival Outcome					
Gender	Active	Dead	Transferred	Loss-to-follow	Total
Female	741 (719.7)	25 (28.6)	63 (73.1)	101 (108.6)	930
Male	392 (413.3)	20(16.4)	52 (41.9)	70(62.4)	534
Total	1133	45	115	171	1464

Thus, the Pearson chi-squared statistics is

$$X^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - \hat{\mu}_{ij})^{2}}{\hat{\mu}_{ij}} = \frac{(741 - 719.7)^{2}}{719.7} + \frac{(25 - 28.6)^{2}}{28.6} + \dots + \frac{(70 - 62.4)^{2}}{62.4}$$
$$= 8.2172$$

and the likelihood-ratio statistic is

$$G^{2} = 2\sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} \log \left(\frac{n_{ij}}{\hat{\mu}_{ij}}\right) = 2\left[741 \log \left(\frac{741}{719.7}\right) + 25 \log \left(\frac{25}{28.6}\right) + \dots + 70 \log \left(\frac{70}{62.4}\right)\right]$$
$$= 8.0720$$

Since both statistics have larger values than $\chi^2_{\alpha}[(2-1)(4-1)] = \chi^2_{0.05}(3)$, it can be concluded that the survival outcome of patients depends on the gender.