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This coursebook is designed to include sufficient statistical concepts to allow students to make 
good sense of the statistical figures and numbers that they are exposed to in daily life. After 
reading the book, students should understand the basics of quantitative research and be able 
to critically review simple statistical analysis. The book is intended to be self-contained, but we 
do not include mathematical proofs. 
 
The examples are intended to be relevant in Hong Kong for a wide range of disciplines. 
 
Most of the following topics and questions will be covered in the course: 
 
1: Research Methods ....................................................................................................................... 14	

Learning objectives: understand theory, model, Occam’s law and types of random variable . 14	
What is research? ......................................................................................................................... 14	
Why use research methods to solve problems? .......................................................................... 14	
Research plan ............................................................................................................................... 16	
What is the scientific method? .................................................................................................... 17	
What are phenomena? ................................................................................................................. 17	
What is objective? ......................................................................................................................... 18	
What is a logical and systematic method? .................................................................................. 19	
What is analysis? ......................................................................................................................... 20	
Levels of quantitative analysis .................................................................................................... 20	
What is a theory? ......................................................................................................................... 21	
What is a model? .......................................................................................................................... 21	
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What is a hypothesis? .................................................................................................................. 23	
Occam’s principle (or law or razor) ............................................................................................. 24	
What is proof? ............................................................................................................................... 26	
What is verified? .......................................................................................................................... 26	
What is a constant? ...................................................................................................................... 27	
What is a random variable? ......................................................................................................... 27	
What is an explanatory variable? ............................................................................................... 27	
What is an independent variable? ............................................................................................... 28	
What is a dependent variable? .................................................................................................... 28	
What are extraneous variables? .................................................................................................. 28	
Mechanisms of control ................................................................................................................. 29	

2: Association and causation .......................................................................................................... 33	
Learning objectives: understand association & causation ......................................................... 33	
What is association? ..................................................................................................................... 33	
What is causation? ....................................................................................................................... 33	
What is Grainger causality? ........................................................................................................ 35	
Magnitude and consistency of association .................................................................................. 36	
Experiment versus observation ................................................................................................... 36	

3: Research design .......................................................................................................................... 37	
Learning objectives: understand representativeness, probability sampling & non-sampling 
error .............................................................................................................................................. 37	
What is a population? .................................................................................................................. 37	
What is a sample? ........................................................................................................................ 37	
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What are units of analysis? ......................................................................................................... 37	
What is representativeness? ........................................................................................................ 38	
What is a probability sample? ..................................................................................................... 38	
What is a simple random sample? .............................................................................................. 38	
What is a cluster sample? ............................................................................................................ 39	
What is a stratified sample? ........................................................................................................ 39	
What is a systematic sample? ..................................................................................................... 40	
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Observation versus participation: ............................................................................................... 44	
Qualitative versus quantitative: ................................................................................................. 44	

4: Basics of qualitative research .................................................................................................... 46	
Learning objectives: understand key concepts of qualitative research ..................................... 46	
Biography or narrative research ................................................................................................. 47	
Phenomenology ............................................................................................................................ 47	
Grounded theory .......................................................................................................................... 48	
Ethnography ................................................................................................................................. 49	
Case study .................................................................................................................................... 49	
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Qualitative sampling ................................................................................................................... 50	
Saturation ..................................................................................................................................... 50	
Theoretical or purposeful sampling ............................................................................................ 51	
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1: Research Methods 

Learning objectives: understand theory, model, Occam’s law and types of 
random variable 
 

What is research? 
‘A systematic and unbiased way of solving a problem (by answering questions or supporting 
hypotheses) through generating verifiable data.’ This is the fundamental definition we need, so 
we need to understand systematic, unbiased, hypotheses and verifiable, all of which we will 
examine later. 
 

Why use research methods to solve problems? 
This is the question that is so fundamental that we do not always ask it! 
  
Other possibilities: rely on authority (parents, supervisor, police, etc.), personal experience 
(what happened when I tried to do this before), common sense (apply simple logic), revelation 
(rely on my god to tell me) or intuition (rely on my instincts or feelings). 
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Let us examine some problems to understand how research compares with the alternatives: 
1) Should I cross the road at a specific place where there is no pedestrian crossing? 
2) What should the HK government do to improve air quality in the next 20 years? 
3) Who should I marry? 
4) Should I become a Christian (or Buddhist)? 

 
Conclusion: these other methods may all be useful at times, but not good ways to provide good 
long-term solutions to important problems. 
 
Key word: verifiable (testable?) 
 
In all research, it is important that other researchers can try to replicate your findings. 
 
Experimental scientists talk about repeatable experiments as researchers are expected to 
provide enough details that others can try to replicate their findings by repeating their 
experiment. 
 
However, some research cannot be repeated (e.g. effect of handover on Hong Kong) because the 
conditions of the data collection cannot be repeated.  May be able to reanalyse the data, but not 
collect a new set.   
 
Hence high quality data collection is a particularly important issue for social science (but also 
for others where data collection is very expensive or difficult to repeat, e.g. astronomers 
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studying creation of stars or geologists studying volcanoes). It also explains why in the US and 
Europe, research funded with public money must share the data and journals often require 
public access to any data analysed in a journal paper.  
 
The reality is that we all make mistakes and have false preconceptions.  Society (and the state 
of knowledge) can only advance if mistakes can be identified and corrected, which is possible 
with research, because people can check the findings for mistakes. 
 
Perhaps this is the key reason that democracy works better than the alternatives, because if 
the representative you choose is ineffective, you can try another one? 

Research plan 
After choosing a research topic, a research plan usually contains most of the following 
elements: 
 
Literature Review: what is already known 
Research Design: overview of methodological decisions taken 
Sample and Population: selection process and from what population 
Operationalization: description of the measuring instruments and pre-test, testing of reliability 
and validity 
Data Collection: how done 
Data Analysis: how to process using quantitative methods 
Presentation of Results: how to display data and results of analysis. 
Interpretation of Results: how to make sense of the findings 
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Work Schedule: timetable and allocation of tasks for study 
Dissemination of Results: how to publish 
Draft Instrument: 
Cover/Consent Letters: needed for ethical approval (NOTE: Ethical approval is REQUIRED for 
research using human or vertebrate animal subjects) <http://www.hku.hk/rss/HREC.htm> 
Bibliography: references to prior knowledge (Note: EndNote is free in HKU!) 
 
We will focus on research design, sample and population, operationalization and the basics of 
data analysis and presentation of results in this course (practical data analysis is a separate 
course). We will now discuss what is called the ‘scientific method’ of research, including both 
qualitative and quantitative methods, which are used in the social, biological and physical 
sciences. 
 

What is the scientific method? 
Defined as ‘an objective, logical and systematic method of analysis of phenomena devised to 
permit the accumulation of reliable knowledge’ 
 

What are phenomena?  
Phenomena are what were observed (often cannot measure directly, although brain 
measurements have the potential to change that in some cases) – which can be either 
subjective (e.g. attitudes, feelings) or objective (e.g. time, weight) measurements. 
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What is objective? 
Objective: evaluate phenomena from a dispassionate, apolitical, atheological, and 
nonideological viewpoint. 
 
That sounds difficult and boring! 
 
Can we really evaluate with no passion, no politics, no religion, and no ideology? 
 
Note: the key is objectivity in evaluation, i.e. when testing the ideas and reporting the findings, 
not when choosing the research problem (if you have no passion for your research topic, life 
will truly be boring!) 
 
Note: unethical evaluation which tries to distort the evaluation, clearly causes problems, here 
we focus on unintentional errors. 
 
Can a scientist truly be objective?  Can the process be objective? 
 
Note: asking questions can alter respondent views and even for quantum experiments, 
measurement affects reality. 
 
Example: survey that asks whether elderly people have discussed with family members the 
possibility of retiring in the Mainland – if the answer is no, what do you think they will do 
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after the survey is finished? This is an example of why survey design requires skill to avoid 
bias in the process. 
 
Example: during SARS, we did a repeated telephone survey for the government, asking people 
living in Amoy Gardens about their personal hygiene behaviour – this was interventional 
research, not observational research, as claimed. 
 
Example: there is known bias in the academic process (publication bias) where evidence that 
findings that are different to current mainstream thought, may be selected either for or 
against. For this reason, in many countries, clinical trials of drugs must now be pre-registered, 
so the results are all made public regardless of outcome. There are researchers who believe 
that all research should be pre-registered, to avoid this bias. 

 

What is a logical and systematic method? 
Logical reasoning: following the (rational) rules of induction and deduction: 
 
Deduction: general to specific (generate ways to test theories in new situations, looking for a 
situation where the theory fails) 
 
Induction: specific to general (generate theories from observations, creating a new theory, 
replacing any failed theories) 
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Amusing story: a former Physics chair professor in HK gave a public lecture just before he left 
HKU – he claimed that physicists are the only true scientists because they rely on deduction, 
not making the mistake of using induction! I wanted to ask him how he thought Einstein came 
up with the theory of relativity, if not by using induction? 
 
Systematic Method: a procedure for doing things that can be explained to others and is built on 
previously existing knowledge. If you cannot explain to others, how can they understand it or 
evaluate it? 
 

What is analysis?  
Analysis means both qualitative and quantitative methods (i.e. with and without numerical 
information) of processing and summarizing information. 
 

Levels of quantitative analysis 
Descriptive: simple statistics relate description of sample to description of population, how 
good is the description? This level of analysis can be of vital importance, e.g. population size 
and unemployment rate for the Hong Kong population, as done by the Census and Statistics 
Department, but most research published uses a higher level of analysis. 
 
Explanatory: understand why things happen as they do, how reliable is that understanding, or 
are there other explanations? For example, if the unemployment rate has risen, we want to 
understand why – is it because of young people entering the labour market, is it because 
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restaurants are sacking dishwashers and replacing them with machines? Statistical models 
can be invaluable in this situation. 
 
Predictive: need a model of future outcomes, how well does it work? For example, if we are 
looking at admissions to universities, can we predict which students will receive admission 
offers before they get their public exam results, if we know their performance in school exams? 
This is not hard for the group of all school students, but is very hard for individual students. 

What is a theory? 
A theory is a generalised synthetic explanatory statement, in other words, an abstract 
conceptual explanation of the world. Conceptual explanations are important in order to 
generalise our findings across a wide range of situations, but unless they lead to predictions, 
we cannot test our theories, so we need models. 
 

What is a model? 
A model is a way to generate verifiable predictions based on a theory, although there may be 
uncertainty (randomness) involved and also unknown parameters for the model, that need to 
be estimated in our research. For example, if our theory states that increased education leads 
to increased personal income and our model predicts that personal incomes increase 
proportional to the years of education, we still need to estimate the slope and intercept of that 
linear relationship before we can make predictions. We need statistical models to estimate 
these parameters, given that there is also uncertainty, as these are not exact models. Even 



 22 

when there is an exact relationship, there is always uncertainty in practice from measurement 
error. 
 
A theory is of little value until it is testable, in other words, we should be able to build a model 
that can be empirically tested.  If that model fails, then we will need to modify our theory.  If 
the model does not fail, it does not mean the theory is correct, but suggests the model may be 
useful, if and until we are able to find a test that the model fails. 
 
What do we mean by “a model fails”? We mean that there is some inconsistency between what 
the model predicts and what happens. We will examine later how to use statistical testing to 
identify a model failure. 
 
Clearly, a theory that leads to models that allow us to make good predictions is a useful theory, 
but we should not assume that it is necessarily a fundamental truth about the world.   
 
For many centuries, people thought that Newton’s laws were a fundamental truth, until 
Einstein showed that some of them fail under certain conditions (speeds close to the speed of 
light).  Note that we still use Newton’s laws every day, despite Einstein’s findings, because 
they are so close to true at everyday speeds! 
 
In short, while absolute truth may exist, we will never know whether we have found it yet 
using the scientific method! A famous statistician (George EP Box) said, “all models are wrong, 
but some are useful”. 
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What is a hypothesis?  
A hypothesis is a statement that can be empirically tested, i.e. translation of theory into a 
testable statement. Note that a research question may be as specific as “Do young people 
protest more than older people?”, which links to the hypothesis: “Young people protest more 
than older people” or may be a broader question, such as “Why do HK people protest?” which 
does not link clearly to any hypothesis. 
 
The research (or alternative) hypothesis is a positive statement about what the researcher 
expects to find, like “Young people protest more than older people” 
 
The null hypothesis is a statement that a relationship expected in the research hypothesis 
does not exist, i.e. that the world is simpler than predicted by theory, like “There is no 
difference in how much young and older people protest”. 
 
Example: Consider the proportion of males and females studying undergraduate degrees in the 
whole of HKU. The simplest explanation would be that there are equal proportions (50%), so 
this might be my null hypothesis, while I might expect the proportion to be unequal; hence this 
is my research hypothesis. 
Note: research papers do not always explicitly state the hypotheses, but if they are testing 
whether there is a relationship between education and income, the implicit null hypothesis is 
that there is no relationship and the implicit research hypothesis is that there is a 
relationship. 
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Question: why do I think my hypothesis of equal proportions is simpler? This yields two 
questions – what is simple and why do I care about simplicity? 
 

Occam’s principle (or law or razor) 
If we have two explanations of the world, which are equally good in predicting outcomes, we 
should prefer the simpler explanation.  
 
Question: why should we prefer simple explanations? 
 
Karl Popper: We prefer simpler theories to more complex ones because their empirical content 
is greater and because they are better testable 
 
Richard Swinburne: Either science is irrational in the way it judges theories and predictions 
probable or the principle of simplicity is a fundamental synthetic a priori truth. 
 
Ludwig Wittgenstein: Occam's principle is, of course, not an arbitrary rule, nor one justified by 
its practical success. It simply says that unnecessary elements in a symbolism mean nothing. 
Signs that serve one purpose are logically equivalent; signs that serve no purpose are logically 
meaningless. The procedure of induction consists in accepting as true the simplest law that can 
be reconciled with our experiences. 
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Example: the hypothesis that the world is pre-determined is unbelievably complex and of no 
use for predicting the future, so it will be a very low priority in our set of theories. 
 
If statistical models are used, we expect the null hypothesis to be rejected and hence the 
alternative (research) hypothesis to be tenable (believable). The null and the alternative are 
thus usually complementary. 
 
The null hypothesis is usually the simpler statement, such as there is no effect caused by 
something, while the research hypothesis would be that there is an effect, or that there is a 
positive effect or that there is a negative effect. If the paper uses statistical methods, there 
must be a null hypothesis and a research hypothesis, even if they are not clearly stated.  
 
We can only disprove, rather than prove hypotheses, hence we look for evidence to disprove the 
null hypothesis and if we cannot find sufficient evidence, we accept the null hypothesis. 
 
Strictly speaking, statistics cannot usually even disprove a hypothesis, it can at most show 
that the outcome we observed was (very) unlikely, if we assume that the null hypothesis is 
true. This is because statistics uses probability (chance) statements rather than absolute 
statements. Thus we are usually prepared to reject the null hypothesis as unlikely to be true if 
there is sufficient empirical evidence against it. We will come back to the question of what 
constitutes sufficient evidence. 
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Example: if I toss a coin 20 times and every time I get a head, would you believe this is a fair 
coin (i.e. has 1 head and 1 tail)? The chance is about 1 in a million of observing this outcome 
with a fair coin, but a certainty if my coin has 2 heads! 
 
How do we define simplicity? Often it is defined in terms of the number of parameters in our 
statistical model or the sample size minus the number of parameters in our statistical model, 
which we call the degrees of freedom (we will revisit this), where simplicity means the number 
of parameters is small or the degrees of freedom are large. 

What is proof? 
Proof means that you know the truth for certain. 
 

What is verified? 
Verified means that your tests did not disprove the truth. 
 
Example: if I compare your face to your picture in your identity card or passport and they 
match, I have verified your identity, but it is not proof because you might have an identical 
twin or have obtained a fake document. 
 
If you test many hypotheses resulting from a theory, and none of them are shown to be false, 
you may think the theory is true because of numerous verifications, but you still have not 
proved it. 
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It may be that the weaknesses in the theory have not been identified yet (e.g. theory of 
relativity and Newton’s laws). 
 

What is a constant? 
A constant is something that (it is assumed) does not vary over the study and hence cannot 
explain anything that does vary over the study. 
 

What is a random variable? 
A variable is something that varies over time or over subjects (in other words, varies within 
the study), also used to mean the operational definition of a concept (how do we measure 
something). 
 
Creating a good operational definition is a skill and it is important to look at previous work 
(hence the importance of a good literature review). We will discuss operational definitions 
later, including evaluation of operational definitions. 

What is an explanatory variable? 
Explanatory variables are random variables that are the object of research, i.e. they are 
included in the research hypothesis. 
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What is an independent variable? 
An independent variable is an explanatory variable that is a presumed cause of variation in 
another explanatory variable(s) 
 

What is a dependent variable? 
A dependent variable is an explanatory variable that is presumed to be affected by the 
independent variable(s). 
Note: If there are independent variables, the null and research hypotheses must be describable 
in terms of the dependent and independent variables (in most scenarios, the research 
hypothesis is that the independent variables affect the dependent variables and the null 
hypothesis is that the independent variables do not affect the dependent variables). If there 
are no independent variables, the hypotheses must be describable in terms of the dependent 
variables only. 
 

What are extraneous variables? 
Extraneous variables are random variables that are not objects of research 
 
Confounding: extraneous variables that are related to independent variables 
 



 29 

Controlled: extraneous variables that are either manipulated or included in a statistical 
model) so as to exclude their effect on the relationship between independent and dependent 
variables (for confounding variables) or to reduce the variability of the dependent variable. 
 
Uncontrolled: extraneous variables that have not been controlled 
 
Assumed irrelevant: extraneous variables believed not to play any role in the research 
 
Clearly, the research is at risk if there are important uncontrolled variables or if the variables 
assumed irrelevant are confounding variables. It is important that in stating our research 
problem that we give careful thought (and check the research literature) to allocate variables 
correctly.  In practice, there are limits to how many variables we can control for, so we need to 
ensure that we control for those with the largest potential effect on our explanatory variables. 
Controlling is an attempt to exclude the effects of variables that are not of interest. 
 

Mechanisms of control 
One category: fix all subjects to have the same value (category) of a controlling variable (e.g. 
only study males). Disadvantage is that the conclusions cannot be generalized to other values 
of the controlling variable. 
 
Block control: divide up subjects by value of controlling variable and study separately (e.g. 
study males and females separately). Good for simple situations with only a few blocks but 
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often impractical for multiple controlling variables as the block size gets too small (too few 
subjects per block). 
 
Randomisation: assign subjects to groups using chance (e.g. randomisation to treatments in 
a study of medical treatments) - assumes that assignment choice is possible. Randomisation is 
an invaluable approach because it means that the groups should be similar on all uncontrolled 
variables and on all variables assumed irrelevant. 
 
Paired control: pair subjects to be similar on several variables and randomly assign to 
groups from pair 
 
Statistical control: try to control using a statistical model - this assumes that the statistical 
model is good enough to completely remove the effect. 
 
Measurement error: In practice, none of these controlling mechanisms are perfect, because 
there may be errors in the measurement of the controlling variables. Example: early passive 
smoking studies looked at non-smoking women with smoking husbands, but did not account 
for the problem that some people lie about smoking (but not usually lie about not smoking) and 
that it is more likely for people to lie if you are married to a smoker, which together led to bias 
in estimate of passive smoking effects. This problem can be solved if we can eliminate or model 
the measurement errors (in our example, we can check urine or hair samples to check how 
much people smoke). 
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Note that controlling methods that rely on allocation are only feasible if the researcher can 
allocate subjects to groups, which may be infeasible or unethical (e.g. smoking for humans). 
The control variables may also interact (e.g. effect of income within males may differ from 
within females). 
 
Propensity scoring: when the allocation is non-random, we can look at possible bias by 
examining the conditional probability that a subject will be treated given the observed 
explanatory variables (the propensity score). If we stratify by propensity score, we obtain 
estimated treatment effects that are not biased by the measured explanatory variables - see 
Rosenbaum and Rubin’s 1983 Biometrika paper: “The central role of the propensity score in 
observational studies for causal effects”. 
 
Example: The classic 1950 paper by Doll and Bradford Hill in the British Medical Journal:  
“Smoking and Carcinoma of the Lung” examined frequency tables of lung cancer or control 
(other hospital patients matched by gender, age and hospital) by gender and smoking or not. 
The research hypothesis is that smoking is associated with lung cancer while the null 
hypothesis is that there is no association. Lung cancer or not is the dependent variable, 
smoking or not is the independent variable, while gender, age and hospital are control 
variables. Whether a random variable is an independent variable or control (cannot be both) 
may not be obvious without checking the research hypothesis (independent variable is 
included, control is not). 
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Mendelian randomization: Mendel discovered that when he crossed purebred white flower 
and purple flower pea plants, the result was not a blend. Rather than being a mix of the two, 
the offspring (known as the F1 generation) was purple-flowered. When Mendel self-fertilized 
the F1 generation pea plants, he obtained a purple flower to white flower ratio in the F2 
generation of 3 to 1, suggesting that separate genes for separate traits are passed 
independently of one another from parents to offspring. We can use the random assignment of 
an individual’s genotype from parental genotypes that occurs before conception to make causal 
inferences (assuming that the genotype is associated with the exposure of interest and 
independence of the genotype from confounding factors and from the outcome given the 
exposure and confounding factors). The strength of this is that it does not rely on allocation.  
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2: Association and causation 

Learning objectives: understand association & causation 

What is association? 
Association is observed linkage, i.e. two outcomes X and Y tend to both occur (positive 
association) or tend to occur separately (negative association). This is separate from the 
question of whether X causes Y, Y causes X or W causes both X and Y. 
 

What is causation? 
X is a cause of Y if when X occurs, Y must occur.  This is called X being a sufficient condition 
for Y (e.g. breaking your spinal cord is sufficient to cause paralysis). If Y only occurs if X 
occurs, then X is a necessary condition for Y (e.g. drinking alcohol is currently necessary to 
know if you are an alcoholic). If X is necessary and sufficient for Y, then X is the one and only 
true cause of Y.  These are stringent conditions that are not often met! 
 
Note: if X occurs (or not) after Y, X cannot be a cause of Y (unless you believe in time travel!), 
so let us consider situations where X occurs (or not) before Y occurs (or not). 
 
If X and Y sometimes both occur and sometimes only one of them occurs, we can only make 
probabilistic statements such as, when X occurs then Y is more likely to occur (than when X 
does not occur).  Clearly, this means that something else must also be determining whether Y 
occurs, so our model is incomplete.   
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What we seek in practice is a model that enables us to predict (with high probability) whether 
Y occurs, given X occurs (or not). 
 
Examples: Predict which 

1. Horse wins a race - this depends on the horse’s ability, the track, the weather, the jockey’s 
ability, the trainer’s ability, and on which horses and jockeys it is competing with 

2. Juvenile offender will reoffend depends on his background, family support and offending 
history 

3. Patients will respond positively to a specific treatment depends on the medical history of 
the patient, genetic profile. 

 
Strictly speaking, we cannot move from association to causation, but only work the other way, 
that is, causation implies association, but not necessarily the reverse.  This should be obvious, 
as association does not indicate the direction of causation. In short, causation can be tricky! 
 
Example: visibility and health outcomes – poor visibility is not a cause of poor health, but poor 
air quality is a cause of both poor visibility and poor health. 
 
Example: exercise and physical disability – newspaper article claiming that lack of physical 
exercise was a cause of physical disability – true in theory, but the association is mainly a 
consequence that exercise opportunities are restricted for the physically disabled 
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Example: juvenile crime and reading violent comics – social workers believed that reading 
violent comics was a cause of juvenile crime, but life histories showed the major linkage was 
that juvenile crime led to detention, which led to expulsion from school, which led to hanging 
out on the street reading comics with similar youth! 
 
Example: having breakfast and school performance – a newspaper reported that the researcher 
claimed that eating breakfast made almost one year’s difference in school performance, with no 
mention of other potential underlying causes. 

What is Grainger causality? 
Granger defined the causality relationship as meaning that the cause happens prior to its 
effect and the cause has unique information about the future values of its effect. We say that a 
variable X that evolves over time Granger-causes another evolving variable Y if predictions of 
the value of Y based on its own past values and on the past values of X are better than 
predictions of Y based only on its own past values. For example, if we want to predict whether 
it rains tomorrow (prediction means using any form of statistical model to make an estimate 
forward in time), we could check whether wind direction Grainger causes rain. This would 
mean that knowing the past wind directions as well as past rainfall helps us make better 
predictions of rainfall, than just knowing the past rainfall. For more discussion of prediction, 
please see the chapter on time series, later in the coursebook. 
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Magnitude and consistency of association 
If the magnitude of association is high, then causation is more reasonable, but it does not 
address the direction of causation and there may be other causal factors.  In general, though, 
stronger associations make causal relationships more plausible. If the consistency is high, this 
means that the association appears under a variety of different conditions, which also makes 
causation more plausible. 
 
Example: the original study of smoking and lung cancer in doctors by Sir Richard Doll was 
very persuasive because he showed that the risk increased with the amount smoked and later 
showed that doctors who stopped smoking had decreased cancer risk, closer to non-smokers. 

Experiment versus observation 
In an experiment, we can use a wider range of control mechanisms (including randomisation, 
and paired controls), however, often we can only observe and select subjects, not control 
allocation of subjects to groups.  Observation does not allow us to prove causation, but we can 
look for consistent patterns of association and identify lack of association. Designing good 
experiments is discussed later in this book. 
 
Further reading: http://www.stat.columbia.edu/~gelman/research/published/causalreview4.pdf 
This review by Andrew Gelman discusses 3 key books by Judea Pearl, Morgan & Winship, Steven Sloman on 
causal inference. 
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3: Research design 

Learning objectives: understand representativeness, probability sampling 
& non-sampling error 

What is a population? 
Population is the potential respondents of interest 
 
Example: adults aged 18 or above, resident in Hong Kong 
 
Example: air temperatures at the Hong Kong Observatory 

What is a sample? 
A sample is the respondents selected from population for study 
 
Example: 500 mobile phone users in Hong Kong, selected randomly using their phone number 
 
Example: 1000 average daily ozone levels recorded sequentially at the street level monitoring 
station in Causeway Bay 

What are units of analysis? 
Units of analysis are usually the sampling elements, often people or households (need to be 
clear which), but can be rats, words, and songs – any countable objects (although sometimes we 
can analyse at multiple levels, e.g. students and schools). 
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What is representativeness? 
Representativeness is the extent to which sample is similar to the population on 
characteristics of interest for research. This is essential if we wish to draw conclusions about 
the population based on a sample.  
 
Question: how can we ensure representativeness? Cannot unless we use probability samples 
(see below). 

What is a probability sample? 
A probability sample is a sample where all sampling units have a known non-zero probability 
of selection. Probability samples are a requirement for all hypothesis testing and statistical 
models. Below we discuss different mechanisms of probability sample. 

What is a simple random sample? 
A simple random sample means that all combinations of sampling units with the specified 
sample size have an equal chance of selection. This also means that all sampling units have an 
equal chance of selection. 
 
Example: a simple random sample of size 2 of students in a class with 10 students means that 
all 45 (10´9÷2) possible pairs are equally likely to be selected. 
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What is a cluster sample? 
Cluster sampling means sampling at two or more levels (e.g. school, class, student), usually 
require that each individual has the same chance of selection overall. 
 
Example: a sample of 500 secondary students is hard to draw without a list of all students. 
However, we can easily obtain a list of secondary schools. We sample schools, classes within 
schools and students within classes. In practice, we often sample all the students in a class, as 
the additional cost of sampling an extra student is low once we have disturbed a class. Cluster 
sampling requires disturbing many less schools than a simple random sample – which would 
require obtaining consent from nearly all schools. 
 
Disadvantage: students in the same class are likely to be more similar than students drawn at 
random (similar school philosophy, recruitment, teachers, social interaction). Intra-cluster 
correlation can be used to adjust the sample size (the effective sample size is smaller than a 
simple random sample). 
 

What is a stratified sample? 
Stratified sampling means sampling within subgroups of known size that are relatively 
homogenous, to yield more precise results than a simple random sample. 
Example: Sample children separately in year groups because we usually know the number of 
children in each year group and children within year group are often quite homogeneous (as 
opposed to across year groups). 
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What is a systematic sample? 
When the population can be placed in an ordered list, a systematic sample involves selecting a 
random start point and then selecting every kth individual where k=population size/sample 
size. This usually works well if the list order is associated with an important variable, but 
poorly if there are periodic patterns in the list. It is very efficient for sampling from large 
databases. 

What is a network sample? 
Network sampling is a sampling strategy that draws a sample through a random selection of 
links in a network. It makes assumptions about how people are linked in networks, which may 
not be valid, but has the advantage of sometimes being feasible when a simple random sample 
is impossible. It is important as it yields representative samples of difficult to sample 
populations, if the assumptions are valid. 
 
Example: it is very hard to sample drug addicts in general because they are not all easily 
identifiable, but they are usually connected in drug supply networks. A network sample can be 
drawn by asking an initial set of drug addicts for introductions to their drug-using friends and 
then asking a sample of those friends, etc. 
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What is a distance sample? 
Distance sampling involves randomly placing points or lines (transects) on a map and then 
measuring distances to objects. There are two main approaches – point transects and line 
transects. In both cases, we are trying to estimate the density of objects by counting how many 
we can see (from a point or line). The complication is that we need to account for the chance of 
detection being different at different distances. Examples would be estimating the number of 
people marching along Hennessy Road (usually count the number going under a bridge in 
random sample of time periods) or the number of people in Victoria Park (usually look at 
density in random sample of small areas). 
 
Note: In the rest of this course, we will assume simple random sampling, for simplicity. 
 

Sampling versus non-sampling errors:  
These errors indicate the difference between the sample and the population.  Sampling errors 
relate to the use of a sample rather than the whole population. For probabilistic sampling, the 
sampling errors can be easily quantified in a probabilistic way and related to the sample 
design and the sample size (sampling accuracy increases proportional to the square root of the 
sample size, or equivalently the sampling error decreases proportional to the inverse of the 
square root of the sample size).  The non-sampling errors include non-contacts, refusals, 
misunderstandings, lies, mistakes, coding errors etc.  Increasing the sample size reduces the 
sampling error, but increases the cost and may even increase non-sampling error as it gets 
harder to supervise the data collection process adequately.  It is essential that the research 
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design take into account non-sampling errors as well as sampling errors, as the non-sampling 
errors are particularly damaging to research, as they are hard to quantify or take into account.  
Note that even including all respondents does not help with non-sampling errors. We may be 
able to get some idea of the severity of non-response bias by seeing how responses differ by 
number of contact attempts. This is not just a problem with social research, although the 
problems are most often acute in that context. For example, if you fail to calibrate your 
equipment before use in a laboratory, there is a risk of bias affecting all observations and 
taking more measurements does not reduce this bias. Similarly, if you use equipment that is 
not fit for the proposed measurement purpose, this cannot be fixed at the statistical analysis 
stage. 
 
Example: any telephone survey that samples numbers directly from the Chinese language 
telephone directory in HK misses many Chinese writing families that prefer not to be easily 
found and all families that do not write Chinese so cannot claim to represent the Hong Kong 
population. 
 
Example: any household survey that fails to make repeated (at least 5) attempts to contact 
households will under-represent poor and single working households (who are often out at 
work) and young households without children (out at work or play).  
 
Example: a self-selected Internet survey omits most of the population who are not interested in 
the topic, do not see the survey or do not trust the website, so is likely to be of very limited 
research value. 
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Telephone versus face-to-face interviews:  
Most interviews now use telephone or face-to-face.  Telephone loses visual contact, gains on 
lower cost, better supervision, faster collection, ease of computer assistance (CATI stands for 
Computer Aided Telephone Interviewing, which automates question display, telephone 
number selection etc.).  In Hong Kong, fixed line telephone penetration is still high (80%+) and 
it can be difficult to gain entrance to private housing estates, although the compact geography 
makes face-to-face interviews in households possible.  For children, schools provide a context 
for face-to-face or self-report.  
 

Mobile versus fixed-line telephone surveys: 
Mobiles provide an alternative to fixed lines as coverage of fixed lines is starting to drop and be 
replaced by mobile. However mobile is linked to individuals, while fixed is linked to 
households, so the sampling unit is different. For mobile, coverage is still quite low for the 
elderly, while for fixed lines, the coverage is quite low for young households and the 
unemployed. 
 

Primary versus secondary data:  
Secondary data analysis means using data previously collected. Data collection is very 
expensive and usually not repeatable for social science data, so use of previously collected data 
or materials is a good idea, if feasible (e.g. use data archive). There are data archives in UK, 
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US, Norway etc. that mainly cover socio/economic/political data, but also geological, 
oceanographic etc. Critical value when data is expensive or impossible to collect again. 
 

Choosing sample size: 
When choosing the sample size for a study, we need to consider sampling error, non-sampling 
error and power (see later for an explanation of this). 
 

Observation versus participation:  
People and organisations may respond differently when they are aware of data collection, but 
observation may not provide some of the detail.  Conversely, observation may be essential to 
see how people behave, rather than how they think or tell others they behave! 
 
Example: study that drops envelopes (with or without stamps) in different cities and sees what 
proportion of them is posted as an assessment of social behaviour in different cities. 
 

Qualitative versus quantitative:  
The dividing line is sometimes not clear, but one distinction sometimes made is the type of 
data collected - directly measurable (quantitative) vs. recordable (text, audio, video etc.) 
(qualitative). However, measurement can often be applied to text etc. by counting events (e.g. 
word occurrence), so the same data may be used for different types of analysis. The qualitative 
paradigm is arguably more concerned with context than counts and provides richness not 
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easily achieved with quantitative measures.  Generalizability is much harder with qualitative 
analysis because it does not use probability samples (see below). Often use mixed methods 
(combination of qualitative and quantitative) by using qualitative first (identifying the issues) 
and then quantitative (measuring responses for the identified issues). 
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4: Basics of qualitative research 

Learning objectives: understand key concepts of qualitative research 
Table of Qualitative methodologies1  
Dimension Biography Phenomenology Grounded 

Theory 
Ethnography Case Study 

Focus Explore life of 
individual 

Understanding 
essence of 
experiences about a 
phenomenon 

Develop theory 
grounded in data 
from the field 

Describe and 
interpret a 
cultural or social 
group 

In-depth 
analysis of a 
single or 
multiple cases 

Disciplinary 
origin 

Anthropology Psychology Sociology Cultural 
anthropology 

Political science 

Data collection Interviews and 
documents 

Long interviews with 
up to 10 people 

Interviews with 
20-30 individuals 
to saturate 
categories and 
detail a theory 

Observations and 
interviews 
during extended 
fieldwork (e.g. 
6m-1yr) 

Multiple sources 
including 
documents, 
interviews, 
artefacts 

Data analysis Stories, 
epiphanies, 
historical context 

Statements, 
meanings, themes, 
general descriptions 

Open, axial, 
selective coding, 
conditional 
matrix 

Description, 
analysis, 
interpretation 

Description, 
themes, 
assertions 

Narrative form Detailed picture 
of individual’s 
life 

Description of 
essence of experience 

Theory or model Description of 
cultural 
behaviour of 
group or 
individual 

In-depth study of 
case or cases 

 
1 Taken from “Qualitative Inquiry and Research Design” by John Creswell 
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Qualitative research is an inquiry process of understanding based on a methodological 
tradition of inquiry that explores a problem, which enables construction of a complex, holistic 
picture, analyses words, reports detailed views of informants and conducts the study in a 
natural setting. Qualitative research usually involves many variables and few cases (versus 
many cases and few variables for quantitative research). 
 
There is a very wide range of methodologies (approaches to collecting and analysing qualitative 
data), which include: 
 

Biography or narrative research  
This refers to the collection of people’s stories about experiences that have a significant impact 
on their lives. 
 
Example:  Cancer patients reveal their own experiences of being treated for cancer, which offer 
insights into different aspects of the care and the people who provide it. 

Phenomenology  
This is observing what happens in order to gain understanding of what really happens rather 
than what people tell you happens.  It enables the researcher to gain some understanding of 
what it feels like for the subjects to be living a particular experience. 
 
Example: “If you want to know why athletes are willing to take steroids – you need to 
understand their lived reality of winning and losing.  If you want to help someone through 
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breast cancer – you need to know how they feel about their body, their self-esteem, and their 
future.  If you want to understand how you can help motivate struggling students – you need 
to know what it is really like for them at the bottom of the class.” (O’Leary, Z. (2010). The 
Essential Guide to Doing Your Research Project. London: SAGE, p.119) 

Grounded theory 
This is a form of analysis constructing new theories from the data, i.e. qualitative induction.  It 
generally consists of four stages (Glaser, B. & Strauss, A. (1967).  The Discovery of Grounded 
Theory:  Strategies for Qualitative Research. Chicago: Aldine): 
 
1. Observing the data to identify patterns that lead to the emergence of categories, then 

identifying the underlying properties of the categories.  
2. Integrating categories and their properties: Comparing an incident to the underlying 

properties of the category. 
3. Delimiting the theory:  Fewer and fewer modifications are needed as the categories are 

confirmed, then the number of categories can be reduced as further refinements take place.  
In this way, the theory begins to solidify. 

4. Writing theory:  Hypotheses and generalizations emerge from the analysis, as opposed to 
starting with and testing hypotheses. 

 
Example:  O’Reilly, Paper & Marx (O’Reilly, K., Paper, D. & Marx, S., Demystifying grounded 
theory for business research.  Organizational Research Methods.  15, 247, 2012) described a 
study of business segments that lack effective communication and cooperation.  They wanted 
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to understand the views, perceptions, and beliefs of front-line employees (FLEs) and how these 
perspectives might help improve customer-company interactions.  They examined differences 
in service levels, service outcomes, and service attitudes of the participant companies and 
FLEs who work there and, by comparing the participants’ stories they identified the 
constraints within the organizations and their impacts.  
 

Ethnography 
This is the anthropological approach of becoming part of the culture in order to understand it. 
 
Example: working in a factory in order to understand what it means to be a worker both from 
direct experience and asking/observing others. 
 

Case study 
This involves studying a small number of cases in great depth in the expectation that this 
gives deep insights into the process 
 
In all cases, the focus is on understanding the full scope of the problem, rather than 
quantifying the problem. Arguably, qualitative research is a necessary precursor for 
quantitative research unless the scope of the problem is already well understood (e.g. a study 
aiming to understand how sports participation has changed over time might not need 
qualitative research unless we think the underlying drivers of participation might have 
changed).  
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Example: Silverman (Silverman, D. (2006).  What is Qualitative Research?  
http://www.sagepub.com/upm-data/44074_Silverman_4e.pdf and http://www.sagepub.com/upm-
data/11254_Silverman_02.pdf) conducted a case study of British cancer clinics to form an 
impression of the differences in doctor-patient relationships when the treatment was private or 
public.  He cautioned that his data could not offer proof of the differences he identified, but 
that they provided strong evidence to support them. 
 

Qualitative sampling 
Probabilistic notions of sampling are not relevant for some methodologies.  It is not always 
possible to achieve representative sampling because of the exploratory nature of the research 
and the sheer logistics.  Depending on the nature of the research, it is sometimes necessary to 
select a sample that meets a particular need.  Usually, with this kind of sampling, it is not 
appropriate to generalize the data to wider populations.  The key ideas of qualitative sampling 
are: 
 

Saturation 
The idea is to collect data until no new perspectives are being obtained. This means that the 
sample size cannot always be predetermined. 
 
Example:  You are interested to find out how young children learn to write Chinese characters.  
You observe children engaged in writing tasks and analyze samples of children’s work.  



 51 

Eventually you become aware that the same patterns are being repeated and there is nothing 
new that has not arisen before.  There is no point to collect further data as no new perspectives 
are being obtained.  
 

Theoretical or purposeful sampling 
The idea is to select a sample with the intention of collecting a wide range of responses by 
sampling across all factors likely to influence outcomes. 
 
Example:  A mathematics department in a particular school has an excellent reputation for 
students achieving high scores on national tests.  The researcher chooses this particular 
department with a particular purpose in mind.  There would be no point investigating a 
random sample of mathematics department because they will not necessarily show the 
characteristics of interest for the research (Plowright, D., 2011.  Using Mixed Methods:  
Frameworks for an Integrated Methodology. London:  SAGE) 

Convenience sampling 
This is sampling driven by the feasibility and convenience of the selection process.  Some 
people criticize that it does not have a place in ‘credible research’ (O’Leary, 2010), but it may be 
the only option for a small, low-budget study or a pilot.   
Example:  A group of recent graduates is invited to volunteer to attend an interview about the 
impacts of their undergraduate programme on their professional lives.  Only a limited number 
of students are able to be contacted or willing to make themselves available, so the researchers 
need to utilize those who can be accessed and are willing to participate. 
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Snowball sampling 
Snowball sampling assumes relevant respondents are connected so that we can use those 
connections to construct a sample from a small initial sample. In other words, it involves 
building a sample through referrals, as each respondent recommends others.   
Example:  A population of homeless people might not be easy to identify, but a sample can be 
built by using referrals (O’Leary, 2010).  
 

Observation, interviewing and other means of collecting qualitative data 
Qualitative data collection does not usually follow such strict predetermined rules as in 
quantitative methods, but is more concerned with obtaining a complete picture within the 
agreed domain. This necessarily requires that the observer/interviewer is well trained in 
engaging in the data collection process and understands the domain well enough to ensure 
collection deep, relevant data. 
 

Observation 
Observation is the collection of existing data.  It usually takes place in a real situation, not a 
contrived context and captures first-hand what people actually do in the situation as opposed 
to telling the researcher about what they do. 
 
Example:  A school district introduces a child-centered learning approach and wants to collect 
authentic data about how the teachers are actually implementing this approach. 
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Interviewing 
Interviewing can be used to provide rich qualitative data and provides flexibility to explore 
tangents (O’Leary, 2010).  Good interview questions can elicit data about whom, when, why, 
where, what, how and with what results (Hutchison, A., Johnston, L. & Breckon, J. Using 
QSR-NVivo to facilitate the development of a grounded theory project:  An account of a worked 
example.  International Journal of Social Research Methodology.  13, 4, 283-302) Interviews 
can be structured, semi-structured or unstructured. 
Example:  What are the perceptions of carers living with people with disability, as regards 
their own health needs? (Lacey, A. & Luff, D. (2009).  Qualitative Data Analysis. The NIHR 
RDS for the East Midlands/Yorkshire & the Humber.  
http://hk.bing.com/search?q=the%20NIHR%20RDS%20for%20the%20East%20Midlands/Yorks
hire%20%26%20the%20Humber%202009%20Qualitative%20Data%20Analysis&FORM=AARB
LB&PC=MAAR&QS=n ) 
 

Recording and analyzing qualitative data 
Audio and video recording enable the raw data to be recorded for later review, and are often 
used to ensure that the full context is collected, such as the tone of voice, hand gestures etc.  
Note taking can range from highly structured (codes to represent common responses, concept 
maps) to open and interpretive (jotting down extensive notes during an interview or an 
observation). 
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Analysis does not usually start from pre-defined hypotheses, but instead tries to produce 
undistorted non-judgmental summaries of the issues, accepting that different 
people/organizations may frame issues in very different ways. 
 
Example:  In the research about the perceptions of carers living with people with learning 
disabilities about their own health needs, there are different ways in which the data could be 
analyzed depending on what the researcher is interested to explore (from Lacey & Luff, 2009): 
Content analysis:  Count the number of times a particular word or concept (e.g. loneliness) 
appears – categories these quantitatively and do statistical analyses. 
Thematic analysis:  Find all units of data (e.g. sentences or paragraphs) referring to loneliness, 
code them and look for patterns (e.g. certain times and conditions where carers feel lonely). 
Theoretical analysis (e.g. grounded theory):  This goes further to develop theories from the 
patterns in the data.  It may include data that contradict the theory.  Gradually the theory is 
built and tested.   

Computer-Assisted Qualitative Data Software  
Computer-Assisted Qualitative Data Software (CAQDS) can be used to help researchers to 
analyse their data but they cannot analyse the data for researchers.  The researcher also needs 
to exercise flexibility, creativity, insight and intuition (Denzin & Lincoln, 2005, Eds. Sage 
Handbook of Qualitative Research. (2nd Ed.)  Thousand Oaks, CA: Sage, p.578). Examples of 
CAQDS are NVivo by QSR International Pty Ltd; QDA Miner by Provalis Research.  Excel and 
SPSS can also be utilised for qualitative analysis, but they are not designed for that purpose.  
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5: Measuring instruments 

Learning objectives: understand three key criteria for a measuring 
instrument: reliability, validity & precision, and scales of measurement 
 

What is reliability? 
Reliability in this context (it has other meanings in statistics and in daily life) means 
consistency: do we get the same result if measured repeatedly - various types of reliability: 
 
Test-retest: ask respondents again, i.e. measure a second time using the same sample and 
same instrument. 
 
Split-half: compare the same sample using different parts of the same instrument (applies to 
survey instruments, where we often assess using a combination of questions) 
 
Inter-rater: compare the same sample across different interviewers/instruments 
 
Other more mathematical definitions: look for consistency across time, 
instruments/interviewers, items etc. 
 
Note that mathematical formulae should be perfectly reliable, as they always give the same 
answer. 
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What is validity? 
Validity is about whether our measurement really measures our concept (or something else)? 
Is it meaningful as a measurement tool for this concept? 
 
Face validity: does it even look like it is measuring the right thing (e.g. Assess weight by 
asking how much money in your pocket!) 
 
Criterion (predictive) validity: does it predict outcomes that we believe relate to the 
concept (e.g. If heavy people have more diabetes, does our measure of weight predict 
diabetes?)? 
 
Construct validity: does it relate to other variables in the way our theory predicts? (e.g. if we 
are measuring marital satisfaction and our theory says that it should be associated with 
marital fidelity, is that true?) 
 
Content validity: does it cover the range of meanings contained in the concept (e.g. the 
concept prejudice contains prejudice on grounds of race, minority, gender etc.) 
 
Note that the word validity is also used in evaluating a research design – does it have internal 
validity (are the conclusions about the independent variables causing the dependent variables 
correct, see the earlier discussion on association versus causation) and does it have external 
validity (can the findings be generalized outside the conditions of the study). 
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What is precision? 
How precise is the measurement - e.g. is age measured to the nearest decade, year, or month.  
There is little point in having precision that is not needed, but if the precision is too low, 
cannot fix it later.  Depends on situation, so age in months is too broad for newborn babies, too 
narrow for the elderly!  Often has little impact on cost, unless it is sensitive data which people 
are reluctant to reveal (e.g. exact age or income). However, very precise measurement may be 
impractical, e.g. exact income may be hard to calculate for people who do not have a fixed 
monthly income. 
 
Note that there may be some trade-off between reliability and validity.  Highly reliable 
measures are likely to be factual and give little insight and may not have high validity (they 
are often quantitative).  Measures that have high validity may be very personalised and have 
relatively low reliability (they are often qualitative). Personalised does not necessarily mean it 
is not objective, it can just mean that the measuring instrument does not work the same way 
for all sample elements. Objective assessment will almost always be more reliable, but we 
should not assume that it must be more valid than subjective assessment (consider measuring 
quality of culture or a user interface). A good strategy is often to use multiple measuring tools 
simultaneously to measure different dimensions.  
 

Making operational choices (how to measure something) 
Some examples of operational choices: 
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Research Question: Is the lecture room at a comfortable temperature? 
Concept: “comfort of the temperature in the lecture room”  
Possible operationalizations: 
use the thermometer in the room (which uses indirect physical measurement using the length 
of a metal strip based on how the metal expands as the temperature increase) Reliability is 
high but validity is questionable – this is measuring temperature, not comfort - one person 
may be wearing a T-shirt and another person is wearing a coat and may feel very differently 
about what is a comfortable temperature 
ask everyone in the room how they feel about the temperature on the scale: very cold, cold, 
about right, warm, very warm. The subjective scale would take into account how people feel, 
how they are dressed, whether they are sitting under the aircon vent, whether they are feeling 
unwell. Validity is high, but reliability is questionable – on another day, I may come in 
wearing more or less clothes 
 
Research Question: Is HK or Singapore a better place to live? 
Concept: “quality of life in a specified place” 
 
Possible operationalizations: 
Migration rates – reliability: in HK and Singapore we know population flows quite accurately, 
but when someone leaves, we do not know if is temporary or permanent, while in Europe, do 
not know population flows accurately because of weak national border controls, making the 
figures imprecise – validity: positive is that if it is a good place to live, we expect people to come 
and if it is a bad place, we expect people to leave, negative is that it can be hard to get approval 
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to move countries legally unless you have skills, money or family reunion so it may be 
measuring connections and abilities of the individual instead and also the US and parts of 
Europe have many uncounted illegal immigrants, so migration rates are consistently 
underestimated. 
 
Poll people in HK, Singapore and a 3rd place – reliability: depends heavily on media reports, if 
they change then the poll will change – validity: is it based on personal experience as a 
resident or tourist, family, friends or media reports, all of which may be biased 
 
Suicide rates – reliability: death rates are very reliable, but not all suicides leave notes – 
validity: suicide can be seen as only way to escape terrible life, but it also can be seen as 
untreated mental illness, so arguably both elements imply very poor quality of life for some 
people 
 
Air pollution levels – reliability: quite high as based on physical/chemical processes – validity: 
high for people who are asthmatic, but clearly this is only one element in quality of life 
 
Ask experts to rate each place on a set of living characteristics – reliability: probably high if 
they are experts on those characteristics – validity: how do we know if those characteristics are 
relevant to people considering living in that place?  
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Note: quality of life has a strong personal element, so it is possible that for so people Singapore 
gives higher quality of life (those who value air quality?) while for other people Hong Kong 
gives a higher quality of life (those who value freedom of speech?) 
 
There are many other important operational issues for questionnaires including clarity of 
questions, ensuring that respondents are competent to answer, questions should be relevant, 
keep questions short, avoid negative items, avoid biased items (wording is critical, positive vs. 
negative words). Questionnaire design is an art as much as a science and it is essential to do a 
pilot (pre-test) to check that the questionnaire works as designed (pre-tests usually involve 
qualitative analysis) 
 
(Questionnaire design is worthy of a course itself and the Faculty of Social Science runs a 
course each summer) 
 
Similarly, when choosing how to measure something in a laboratory, it is very important to 
choose the right equipment for the task, which may require considerable knowledge of the 
strengths and weaknesses of different pieces of equipment – accuracy, stability, ease of 
calibration, portability, sensitivity, robustness, let alone capital and recurrent costs! 

Operational choice considerations: 
Unipolar versus bipolar: e.g. neutral to positive or negative to positive (note that the 
midpoint of a bipolar scale can be tricky - neutral and indifferent may not be the same, in 
Chinese often use “neither agree nor disagree”). This can make it difficult to compare across 
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response scales  – consider the difference in asking how much you support something (from not 
at all to complete support) versus asking how much you agree with something (from completely 
disagree to completely agree) 
 
Detail: how much detail is useful and collectable, not just units (as in precision), but detail of 
categories 
 
Example: Single, married, others - do you need to break down others? Interesting study of 
mental health – for men, deterioration after divorce or widowhood, while for women, 
deterioration after widowhood, but not divorce! 
 
Dimensions: a concept may have many dimensions, which are of interest in the research? 
 
Example: corruption: how much, what causes it, what should be done, what would they do 
personally etc. 
 
Example: when assessing outcomes from medical treatment: life/death, survival time after 
treatment, quality of life, pain, blood pressure, white cell count etc. 
 

Levels/scales of measurement: 
Attributes must normally be mutually exclusive (no overlap) and exhaustive (cover all 
possibilities) 
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Example: underemployed, employed or unemployed, cannot fit into more than one category 
and must fit into at least one category if economically active. 
 

What is nominal scale? 
Nominal scale means that there is no ordering of attributes  
Examples: gender, religion, race 
 

What is ordinal scale? 
Ordinal scale means that attributes can be ranked (although the ranking may be arguable, 
consider education which can be hard to compare across systems) 
 

What is interval scale? 
Interval scale means that differences between attributes have consistent meaning 
Examples: temperature, net profit 
 

What is ratio scale? 
Ratio scale means that we have an interval scale, plus a meaningful zero reference point, so 
ratios and percentages have a consistent meaning. 
Examples: income, height, weight, age, no. of hospital visits, area of flat 
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These levels of measurements are ordered, where the later in the order, the wider range of 
statistical tools that are usable.  You need to ensure that you have used a level of 
measurement that allows the statistical analysis that you wish to use (or vice versa). 

Index versus scale measures 
They are both ordinal measures.  
 
Index counts the number of positive (or negative) responses, while a scale allows for 
intensities (levels of response).  When creating an index, we want the underlying items to be 
measuring the same thing - usually weight items equally (i.e. just add them up).  Often do item 
analysis (reliability check if each item is consistent with the rest of the items) and external 
validation of complete scale.  In Hong Kong, often take scale from other cultures/languages, 
but the translated scales may not work in HK (concepts may not translate or attitudes may be 
different). 
 

What is a Likert scale? 
Likert scale means using ordered response levels labelled to ensure clear ordering. Example: 
strongly disagree, disagree, agree, and strongly agree 
 
Note: Likert scale does not guarantee that the difference between strongly disagree and 
disagree is the same as between agree and strongly agree, so should not treat it as interval 
scale without checking if this is valid 
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What is semantic differential scale? 
Semantic differential scale means asking people to choose positions between two polar 
opposites. Examples: love to hate, simple to complex 

 

What is Guttman scaling? 
Guttman scaling looks for items of increasing extremity and see if people respond consistently. 
If the ordering is consistent, then use this to create a scale. 
 
Example: everyone who agrees to abortion on demand should logically also agree to abortion 
after rape 
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6: Probability  

Learning objectives: understand three laws of probability 

 

What is probability? 
Probability is the chance (long-run relative frequency) that something will happen. In other 
words, if you perform an experiment many times, what proportion of the time does a particular 
outcome occur? 
 
Example: toss a coin, if the coin is fair then heads and tails are equally likely, so after a large 
number of tosses the relative frequencies should be close to one half, meaning long-run relative 
frequency should be one half for heads and for tails.  
 
Notation:  Pr(H) means Probability of the outcome H(ead) 
 
While statistical formulae are largely irrelevant to users, the language of statistics 
(probability) is important and some knowledge is helpful.  Anyone who gambles or invests 
should know the basics of probability – it is easy to show that failure to follow the rules of 
probability guarantees that you will lose on average when gambling with someone who does 
follow the rules. 
 
What are the rules that help us work out the chances for combinations of outcomes? 
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Start with a set of outcomes that are mutually exclusive and exhaustive (i.e. they are unique 
and contain all possible outcomes) (e.g. if we toss a coin, 2 possible outcomes, Head or Tail), we 
call this set the sample space. 
 
All probabilities must be in the range between zero and one (obvious in terms of relative 
frequency). 
 

When do we add probabilities? 
Probabilities of mutually exclusive outcomes add (also obvious in terms of relative frequency). 
 
The sum of the probabilities of all the mutually exclusive and exhaustive outcomes must add 
up to 1, because one of the outcomes must happen. 
 
e.g. Pr(H)+Pr(T)=1 
 
Of course, for a “fair” coin, Pr(H)=1/2, because Pr(H)=Pr(T) 
 

When do we multiply probabilities? 
For independent events (no influence on each other), probabilities multiply. 
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So if we toss the coin twice, independently, and equal chances of a head each time (repeatable 
experiment), then 
 
Pr(HH)=Pr(H) ´ Pr(H) 
 
For this double experiment, there are 4 outcomes, HH, HT, TH, and TT 
 
Pr(HH)+Pr(HT)+Pr(TH)+Pr(TT) 
 
=Pr(H)Pr(H)+Pr(H)Pr(T)+Pr(T)Pr(H)+Pr(T)Pr(T)=Pr(H)(Pr(H)+Pr(T))+Pr(T)(Pr(H)+Pr(T))=1 
 
So, this is quite simple except for we usually are interested in the number of occurrences 
rather than the sequence. For this double experiment, we can get 0,1 or 2 heads in 2 tosses. So 
if p=chance of a head (and 1-p is then chance of tail), then 
 
Pr(2 Heads)=Pr(HH)=p2 
Pr(1 Head)=Pr(HT or TH)=2p(1-p) 
Pr(0 Heads)=(1-p)2 
 
This case is easy, but in general, we must calculate the number of combinations, e.g. if we toss 
a coin 10 times, what is the chance of 9 heads (and 1 tail)?  Need to be able to work out the 
number of different ways that this can happen (10, because the tail could occur on each of the 
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10 tosses).  Harder would be the chance of 8 heads (and 2 tails).  Now the number of ways is 10 
x 9 /2= 45, which is written mathematically as  
 
10C2=10!÷(8!´2!) 
 
where 10!=10´9´…´2´1 is the number of different possible sequences of 10 items. 
 
Pr(10 heads)= p10 
Pr(9 heads)=10p9(1-p) 
Pr(8 heads)=45p8(1-p)2 
 
and so on, but the formula is not important as we can use tables, calculator or a computer. 
 

Binomial distribution 
This set of probabilities for how many successes we get is called the binomial distribution and 
is very important in statistics.  The usual notation is B(n,p), where n is the number of trials 
(tosses) and p is the chance of a success in one trial. 
 
We will see how to use the Binomial distribution later on to check if a coin is “fair”. 
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What is conditional probability? 
The idea is to calculate the chance of an event A, if we already know that event B occurred. 
 
Example: if I tossed a coin 5 times and you happen to see that the last toss was a head, how 
should that affect your estimate of how likely it was that I got all 5 heads in 5 tosses? 
 
We write this as Pr(HHHHH|last toss is H) 
 
We can solve this using a rule known as Bayes’ Law 
 

What is Bayes’ Law? 
Bayes’ Law tells us that: 
 
 Pr(A|B)=Pr(A&B)/Pr(B)=Pr(B|A)Pr(A)/Pr(B) 
 
It is easier to remember as: 
 
Pr(A and B)=Pr(A|B)Pr(B)=Pr(B|A)Pr(A) 
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In the case where A and B are independent, we get: 
 
Pr(A and B)=Pr(A)Pr(B) 
 
In our example, we get: 
 
Pr(HHHHH|last is H) = Pr(HHHHH)/Pr(last is H) 
   
=p5/p=p4, which is obvious in this case. 
 
The important thing for this course is to “get” the idea of conditional probability and know of 
Bayes’ Law (even if you need to look it up!) 
 
Note: this law is very useful if you are a card player, whether bridge, poker, blackjack or the 
like as it lets you calculate the probability of an event given some indirect information. 
 
Example: if I have a pack of well-shuffled cards and the first card I deal is an Ace, what is the 
chance that the second card is also an Ace if use the same pack without shuffling? 
 
A1=First card is Ace 
A2=Second card is Ace 
 
Pr(A2|A1)=Pr(A2&A1)/Pr(A1) 
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=(4/52)´(3/51)÷(4/52) =3/51, versus 4/52 if the pack was reshuffled 
 
Bayes’ Law is also the key idea behind many spam filters. They look at the probability of an 
email having these characteristics if it is or is not spam and then calculate the probability of it 
being spam given these characteristics. They update the probabilities as new emails come in 
(this is called the training process). That is why they are often called Bayesian filters (see 
https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering for details) 
 

Bayesian updating of evidence 
Bayes’ Law can also be very useful in understanding how to update your evidence when 
collecting statistical information. 
 
When there are two possible outcomes (Head/Tails, Win/Lose etc.), it is often easier to think of 
odds instead of probabilities, where  
 
Odds (Heads/Tails)= Pr(Heads)/Pr(Tails) 
 
We will see that Bayes’ law is easier in terms of odds when there are 2 possible outcomes. 
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So if we are looking at A or not A given B 
 
Odds(A/not A|B) = Pr(A|B)/Pr(not A|B) = Pr(A&B)/Pr(not A&B)  
 
as the Pr(B) terms cancel out. 
 
Example: you are evaluating whether it is a good idea to implement urine drug screening on 
all secondary school students in Hong Kong (about 400k) (this is loosely based on the real 
situation in Hong Kong, although the HKSARG seemed unaware of the need for a quantitative 
assessment like this and was unaware of the need for obtaining performance data for the 
selected screening tool, which was a relatively cheap drug test that could be done in the school, 
rather than in a laboratory): 
 
Assume that before screening, the odds that someone has taken a specific drug are 1 in 1,000. 
 
If the person has taken the drug, the probability of a positive screen is 0.98  (false negatives of 
2%) and if they have not taken the drug, the probability of a positive screen is 0.02 (false 
positives of 2%) (these conditional probabilities were apparently not known by the HKSARG, 
so they are taken from data I found in an Australian study)  
 
What are the odds an individual student has taken the drug after a positive or a negative 
screen? 
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Pr(D)/Pr(not D)=10-3 
Pr(S|D)=0.98 
Pr(not S|D)=0.02 
Pr(S|not D)=0.02 
Pr(not S|not D)=0.98 
 
What we want is: 
Odds(D/not D|S) =Pr(D|S)/Pr(not D|S) and 
Odds(D/not D|not S) =Pr(D|not S)/Pr(not D|not S) 
 
Bayes’ law gives us: 
Pr(D|S)=Pr(S|D)Pr(D)/Pr(S) 
Pr(not D|S)=Pr(S|not D)Pr(not D)/Pr(S) 
 
so 
Pr(D|S)/Pr(not D|S) =Pr(S|D)/(Pr(S|not D) x Pr(D)/Pr(not D) =0.98/0.02 x 10-3 

(statistical jargon is posterior odds = likelihood ratio x prior odds) 
which is about 0.05 or 1 in 20 
Pr(D|not S)/Pr(not D|not S) = Pr(not S|D)/Pr(not S|not D) x prior odds = 0.02/0.98 x 10-3 
 
which is about 2 x 10-5 or 1 in 50,000 
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Is this a useful screen? Need to consider costs of wrong decisions and costs of data collection 
(i.e. each screening test), but unlikely to be useful here as the odds after a positive screen are 
still low (because of the high false positive rate).  
 
Note: The government defended their position on the basis that all positive would be double 
checked in the laboratory using much better tests. However, the testing scheme would all know 
that a student tested positive on the screen, which would do great damage to the school if a 
false positive was leaked to the media. 
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7: Statistical Computing 
 

Learning objectives: understand use of computers for statistical analysis 
 

Computer packages for statistical analysis 
There are many packages for personal computers that provide the methods needed for this 
course.  They include: 
 
IBM SPSS - very popular for desktop use, but expensive and not very flexible (in terms of 
adding new procedures). Free to use for current HKU staff and students: 
https://www.its.hku.hk/services/procurement/software/license#spss 
 
SAS - popular in finance sector, very flexible but less user-friendly than SPSS 
 
Stata - popular with epidemiologists and easy to add new procedures 
 
JMP - user-friendly, with a free demo version at http://www.jmp.com. You can purchase an 
educational license for the full version at http://www.onthehub.com/jmp/ for US$49.95 for a 12-
month license (US$29.95 for 6 months). 
 
R – open source, very popular with statisticians, but not so easy to use. 
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All of these have PC and Mac versions. 
 
Many other software tools can also be used to do statistical calculations, although statistics is 
not their primary focus (e.g. Excel, Matlab etc.) 
 
I teach practical (hands-on) statistical methods in my Applied Quantitative Research Methods 
course for the Graduate School using JMP and use JMP to generate the results in this book. 
 
I run a Graduate School workshop on how to use R. 
 
Please note that thanks to computers and statistical packages, we rarely need to do statistical 
computations by hand and hence the formulae are largely irrelevant.   
 

What do we need to understand when using statistical computing? 
1) Appropriateness: which methods to use? - depends on how data were collected and what type 
of data. 
2) Interpretation: how to interpret the results? - need to relate back to theory. 
3) Diagnostics: how to check whether the methods are appropriate - if not appropriate, want to 
find a better method. 
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8: Summarising data 

Learning objectives: understand how best to summarise data 

Graphical data summary: 
We can summarise data graphically or using numbers.  For graphs, we will examine the stem-
and-leaf display, bar chart, histogram and box plot. 
 
Stem-and-leaf: display sorted list of numbers, where for 2 digit numbers, the tens digit is the 
“stem” and the ones digit is the “leaf” to illustrate the data frequencies (the row length) 
without losing sight of the underlying data. Stem-and leaf can be used for any number of 
digits, but it is simplest with 2 digits. We need to divide up the digits into those used for the 
stem and those used for the leaves. We can scale the numbers and note the scale below (for 
example with 1 decimal place, multiply by 10 so that the numbers are integers). Easy to do by 
hand with paper and pencil! 
 
Example: we collect data on the size in cm of 10 objects (14,12,16,24,20,40,42,46,49,46), the 
display is: 
4|02669 
3| 
2|04 
1|246 
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This shows that there may be two distinct populations. 
 
Notes: stems and leaves must be sorted, must include duplicates, stems with no leaves must be 
included. 
Variations include splitting the stems into 2 stems if the number of stems is small, i.e. put 
leaves 0-4 on one stem, 5-9 on another, so the previous plot becomes 
4|669 
4|02 
3| 
3| 
2| 
2|04 
1|6 
1|24 
 
Bar chart: chart with height of bars proportional to frequency (standard chart in Excel) 
 
Histogram: bar chart with area of bar proportional to frequency (area is equivalent to height 
if we have equal widths) 
 
Example: We choose (equal) group widths of 5, so the bar chart and histogram are same: 
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Size 

 
 
Box Plot: box shows central half of the data, with a line showing the middle of the data and 
with whiskers and dots showing more extreme data. 
 
Size 

 
 
Note that this does not show the separation of the data. 
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Numerical summaries for center of a distribution: 

What is the mean? 
The mean is the average value (i.e. Add all the values up and divide by the number of values).  
We often use the Greek symbol mu: µ for the population mean, often write the sample mean as 
a X with a bar above it, X̄  and the formula for the sample mean as åxi/n, which means adding 
up all the values and dividing by n, the sample size, so sample mean=309/10=30.9 for our 
example. 

What is the median? 
The median is the value such that half the values are less and half the values are more. It is 
shown as a line in the box on the box plot. 
 
If n is the sample size and is odd, the median is the (n+1)/2 biggest (or smallest) value, if n is 
even number of values, the median is the average of the 2 middle values (the n/2 and n/2+1 
values). The median can easily be read from the stem-and-leaf plot, as the data points are 
already sorted. Hint: you can check your answer by counting up and counting down to check 
that you get the same answer, which is the average of the 5th and 6th values, i.e. (24+40)/2=32 
for our example. 

What is the mode? 
The mode is the most common value. 
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Comparing the mean, median and mode 
 
The mode is not always unique and is not robust (changing one data value slightly can cause a 
large change), so usually use the mean or median.   
 
Mean is easier to deal with mathematically, so most theory is based on the mean, but the 
median is more robust (reliable). 
 
Example:   
Size 
Median 32 
Mean 30.9 
Mode 46 
 
If we now change the largest value by a factor of 100, we get: 
 
Median 32 
Mean 75 
Mode 46 
 
The mean changes substantially, but in this case, the median does not change at all.  Also 
transforming the data usually transforms the median, so the median of log(income) is the log of 
the median of income (because log function does not change the order of the data values, the 
log of the middle value is the middle value of the log values), but this isn’t true for the mean. 
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Numerical summaries for spread/deviation of a distribution: 

What is the variance? 
 
The variance is the average squared distance of data values from the mean.  This seems 
complicated, but it gives a simpler theory. Population variance is denoted s2 (sigma squared) 
and sample variance is denoted as s2. The formula for the sample variance is written as å(xi-
mean)2/n. 
 
Note: if using sample mean instead of population mean, we adjust the divisor to be (n-1) 
because one data point is “used up” by the sample mean) 

What is the standard deviation? 
 
The standard deviation is the square root of the variance, i.e. measure of spread in the original 
units.  Often use Greek symbol sigma, s for the population standard deviation and s for the 
sample standard deviation. 
 

What is the interquartile range? 
The interquartile range is the distance between lower and upper quartile.  Quartiles are the 
data values that divide up the distribution into quarters in the same way that the median 
divides it into halves. (To get the quartiles: use the median to divide the ordered data set into 
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two halves - if there are an odd number of data points in the original data set, include the 
median in both halves, or if there are an even number of data points in the original data set, 
split this data set exactly in half. The lower quartile value is the median of the lower half of 
the data, while the upper quartile value is the median of the upper half of the data). The 
interquartile range is the size of the box in the boxplot. 
 
Example: 
 
Size: 
Standard deviation   15.0 
Variance    225 
Interquartile Range   30.5 
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9: Estimation and Hypothesis testing 

Learning objectives: understand how to test hypotheses and estimate 
population characteristics using statistics 
 

Estimating means or proportions 
If the sample is representative, then we can assume that our sample will on average be similar 
to the population, i.e. the sample proportion should be a good estimate of the population 
proportion, so that the sample proportion (of say males) times the population size should be a 
good estimate of the population size (of say males).   
 
Note: this idea only works if the sample is representative, i.e. all individuals have equal chance 
of selection.  If the individuals all have known (non-zero) chance, we can adjust (weight) 
respondents and still estimate population proportions.  
 
We can also provide an idea of how accurate our estimates are.  
 
We will look at an example before introducing the concepts formally. 
 
Example: Random sample of 1000 school children in HK. 
 
Say we observe 520 boys 
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What can we say about the proportion of school children in HK who are boys? 
 
Our best estimate is 520/1000=0.52, i.e. the sample proportion is our best estimate of the 
population proportion. 
 
How accurate do we think the estimate is? 
 
We will simplify things slightly for now, by assuming that the total no. of children in our 
population is much greater than 1000 (e.g., if only 1000 in the population, then our estimate 
would be exact).  It is rare that our sample size is more than 1% of the population size. 
 
Note: If the sample size is more than 1% of the population, we should make an adjustment to 
the following calculation, as the estimate will be more accurate than we estimate here. 
 
The jargon we use for describing the accuracy of our estimate is that we say that the 
approximate 95% Confidence Interval (C.I.) for the population proportion is: 
 
0.52 +/- 2 √(0.52 x (1-0.52) / 1000) 
 
The formula for this approximate answer is: 
 
p +/- 2 √( p x (1-p) / n) 
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where p is the sample proportion and n is the sample size. This approximation is good as long 
as the sample size is at least 30 and the sample proportion is not too close to either 0 or 1. 
Otherwise, we need to use statistical tables. 
 
This gives us 0.52 +/- 0.032 
 
In percentage terms, our interval contains values between 48.8% and 55.2% 
 
We call this interval the 95% C.I., which means that, on average, we would expect that in 95 
out of 100 samples, our confidence interval would contain the population proportion.  This is 
already a hard concept as it is not a probability statement about our specific interval, but 
instead what would happen if we repeat our sampling. 
 
We will come back to these ideas in a more careful way later and explain where the formula 
comes from. 
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Testing hypotheses about means or proportions 
If our concern was whether there was a sex imbalance in the schools, our hypotheses would be: 
 
Null: Males and females equal 
 
Alternative 1: males and females unequal 
 
or Alternative 2: males more than females 
 
or Alternative 3: females more than males 
 
We assume Alternative 1 for now 
 
Question: is there evidence that our null hypothesis is false (relative to our alternative)? 
 
Idea: find a good summary of the data (called our test statistic) that best summarizes the 
evidence for choosing between the hypotheses.  In this case, the sample proportion is the best 
test statistic.  If the test statistic has a value that is unlikely to occur if the null hypothesis is 
true, then we reject the null hypothesis (strictly speaking we mean that this value or more 
extreme values are unlikely, rather than that one value is unlikely). 
 
Implementation: find the probability of observing the test statistic (or a more extreme value) if 
the null hypothesis is true.  If this probability is below a cut-off value (the cut-off is called the 
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significance level), we reject the null hypothesis, on the grounds that what we observed is not 
consistent with the null hypothesis. 
 
In this case, the probability of observing a sample proportion of 0.52 or a more extreme value 
(i.e. More than 0.52 or less than 0.48) is about 0.2 if the population proportion is truly 0.5 (this 
probability will usually be given in the output from our statistical package). 
 
The usual significance levels used are 0.05 (5%) or 0.01 (1%).  This means that we choose to 
reject the null hypothesis when it is really true 5% (1 in 20) or 1% (1 in 100) of the time. Which 
significance level we use as cut-off values depends on what risk we accept for making the 
mistake of rejecting a true null hypothesis (we will return to this topic more carefully later as 
well). 
 

Population to sample 
Given some knowledge of a population, what can we say about samples from that population? 
   
The average of the sample means tends towards the population mean as the sample size 
increases as long as we have a probability sample.  In fact, the mean of all possible sample 
means is the population mean (we call this property unbiasedness, meaning that we get the 
correct answer on average). 
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The sample variance is a good estimator of the population variance for sample sizes greater 
than about 30.   
 
The standard error (the standard deviation of the distribution of the sample mean for repeated 
samples) is the population standard deviation divided by the square root of the sample size.  
Note: this assumes that the population size is much bigger than the sample size, otherwise we 
need to multiply by a correction factor = (1- sample size/population size). This is intuitive in 
that a random sample (without replacement) the same size as the population must have the 
same mean as the population! However, as long as the population size is much larger than the 
sample size, it does not have much effect on the accuracy of a random sample. 
 
The distribution of the sample mean is approximately Normal (a known distribution) for 
sample sizes greater than about 30, (almost) regardless of the original population distribution2. 
 
None of these statements require us to know the full distribution of values in the population – 
however, the population distribution is important if we deal with small sample sizes (less than 
30), when we cannot use some of our approximations without careful checking. 
 
Example: Simulation of tossing a coin. We will do 5000 simulations of different experiments. 
First, we consider a fair coin (i.e. Pr(H)=0.5). Let us compare the histogram and box plot for the 
proportion of Heads in 5000 simulations if we do 1, 10, 20 or 80 tosses in each experiment 

 
2 Independent, identically distributed data with finite variance is a sufficient condition.  
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Toss 1   Toss 10    Toss 20   Toss 80 

 
Even with 20 tosses, histogram is bell-shaped; as sample size increases, spread (width) 
decreases, centre of the distribution close to 0.5. Now unfair coin (Pr(H)=0.7) 
Toss 1   Toss 10   Toss 20   Toss 80 

  
As sample size increases, get symmetrical histogram, decreasing spread, centre close to 0.7. 
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Sample to population 
As the sample mean gets very close to the population mean for large samples, we say that the 
sample mean is a good estimator of the population mean.  
 
The sample mean can be used as: 
 
1) a point estimator for the population mean 
2) the centre of an interval estimator (confidence interval) for the population mean 
3) the basis for a hypothesis test of whether the population mean has a particular value. 
 
In all cases, we are using our knowledge about how the population relates to the sample to 
make reverse statements about the population from a selected sample. 
 

Sample theory 
The 95% Confidence Interval (C.I.) for the population mean using the Normal distribution for 
the sample mean is: 
 
Sample mean +/- 1.96 x standard error (often round 1.96 to 2) 
 
The 99% C.I. is: Sample mean +/- 2.65 x standard error 
 
We will explain where the 1.96 and 2.65 come from later 
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To test hypotheses about the population mean, we use the sample mean as an estimate of the 
population mean, where we know how reliable an estimate we have by looking at the standard 
error (small standard error means little spread in our estimates, i.e. good estimate). 
 
If our sample is big enough that we can assume the Normal approximation (i.e. sample size of 
at least 30), then we can find the chance of observing this data or more extreme data, if the 
null hypothesis is true. For example, to test whether the population mean has a particular 
value against the two-sided alternative (i.e. the population mean does not have that value), our 
test statistic, assuming a sample size of at least 30 is: 
 
(Sample mean-hypothesized population mean)/standard error 
 
which we call the z-statistic and compare against the standard Normal distribution (mean=0, 
standard deviation=1), i.e. we reject at significance level 5% if the value is less than -1.96 or 
greater than +1.96, we reject at level 1% if the value is less than -2.65 or greater than +2.65. In 
other words, for a two-tailed test, we reject if the confidence interval does NOT contain the 
hypothesized population mean. 
 
The complication is that we need to know the standard error, which is equal to the population 
standard deviation divided by the square root of the sample size.  This means we need to know 
the population standard deviation.  In practice, we often do not know this, so we have to 
estimate this from the sample, using the sample standard deviation. In order for this estimate 
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of the population standard deviation to be good, the sample size needs to be at least 30; 
otherwise we need to account for this using the Student’s T-distribution instead of the Normal 
distribution (we’ll look at how this is different later) 
 
For example, if we toss a coin and the thing we are measuring is the proportion of heads, then: 
 
The sample mean is the sample proportion of heads 
 
The standard error is the population standard deviation divided by the square root of the 
sample size.   
 
In the special case of a proportion, the population standard deviation has a simple formula: 
 
Population SD=√(p x (1-p)) 
Standard Error=√(p x (1-p)/n) 
 
As p x (1-p) is always less or equal to 1/4, then the standard error will always be less than 1/√(4 
x sample size). 
 
In fact, as we do not know p, we often use this simple limit for the standard error when 
calculating CIs for sample proportions, except when the sample size is large, when we can 
substitute the sample proportion in the formula.  For hypothesis testing, we usually will know 
p, so we can use the exact formula. For small samples or p very close to 0 or 1, we should use 
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Binomial tables, otherwise, the Normal approximation is easier to use and good enough as an 
approximation. 
 
The Normal approximation to the binomial gives 
approximate 95% C.I. of: Sample proportion +- 1 / √(sample size) 
 
and a 99% C.I. of:  Sample proportion of +- 1.32/√(sample size) 

Making mistakes/errors 
When doing a hypothesis test, we can make 2 types of mistake (error).  We can reject the null, 
when it is true (called Type I error). We know that the chance of this type of error depends on 
the significance level we use to reject the null hypothesis.  If we reject at p=0.01, this means 
that we have a 1% chance of rejecting a null hypothesis that is really true. 
 
The other type of error is to fail to reject the null hypothesis when it is false (called Type II 
error).  This is harder to work out, because it depends on the alternative, which often is not 
specific. 
 
Example: if we have an unfair coin, this means that the chance of heads, p is not 1/2, but does 
not tell us the value of p 
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How easy it is to detect that it is not fair depends on 2 things: 
 
1) How unfair the coin is 
2) How big a sample we take (how many tosses) 
 
Consider the most extreme case of a 2-headed coin: the sample proportion is 1, so we need only 
8 tosses to reject fair coin hypothesis at p= 0.01 using a 2-tailed test (2/256=0.0078<0.01) 
 
However, if the population proportion is closer to 1/2, then we need more tosses (bigger sample 
size). 
 
Example: This is a simulation that illustrates the effect of changing how fair the coin is and 
how big the sample is. We will look at the results for sample size from 1 to 200 and with 
Pr(H)=0.1,0.2..0.5 and show the sample proportion for each sample and the 99% C.I. if the coin 
is fair, so we can see if we would reject the null hypothesis (fair) for each sample. This means 
that if the marker is outside the confidence interval, we would reject the null hypothesis of a 
fair coin. The graph shows that it is easier to detect an unfair coin if the sample size is larger 
or the coin is more unfair.  
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For Pr(H)=0.1 (red circles), a sample of 15 is plenty, for Pr(H)=0.2 (green +), need a sample of 
about 30, for Pr(H)=0.3 (blue diamond), need a sample of about 100, while for Pr(H)=0.4 (brown 
x), even 200 is barely sufficient. Note that for the fair coin (green triangle), there are 2 or 3 
cases where we would reject the null hypothesis, which is reasonable as we have a chance of 
0.01 of making this mistake and 200 experiments, so expect about 2 mistakes on average. 
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The related question is how likely are we to reject the null when it is false?   
 
This is called the power of our test and is 1 - the chance of a Type II error.   
 
This depends on what the true population mean is, but doing this calculation for an assumed 
true population mean allows us to check whether our sample is likely to be useful or not. If our 
sample size will not allow us to reject the null, even when the true value is quite different, then 
our sample is of little use.   
 
If you are seeking funding for a piece of research where the cost of doing the research is high, it 
is likely that the funding agency would expect you to show that your sample size is such that 
the chance of being able to reject the null is reasonable (usually require at least 80%) given the 
likely value of the population mean and variance (based on a pilot study or a literature review). 
 
Remember our coin example – we can choose a sample size that is likely to reject if the coin 
has at least a given bias. 
 
For power calculations, use tables or specialized software (webpages for simple cases can be 
found on the Internet): free software called GPower for example. 
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More precise statistical formulae 
In general, we may not know the population variance, so we may not be able to do confidence 
intervals or hypothesis tests directly.  However, for large sample sizes, we can just use the 
sample variance as a replacement, while for smaller sample sizes, we need to also replace the 
normal distribution (bell-shape) coefficients with ones using the Student’s T distribution.  That 
allows for the fact that we are using the sample variance instead of the population variance, so 
we cannot make such precise statements about the mean (i.e. the confidence interval will be 
wider). 
 
For large samples (n>30), the 95% Confidence Interval for the population mean is: 
 
sample mean +/- 1.96 x standard error of sample mean 
where: standard error = population standard deviation/√(sample size) 
 
and we substitute the sample standard deviation for the population standard deviation, if 
necessary.  
 
1.96 is called the Z-value.  To be more precise it is Z0.025 because it is the value such that there 
is a 2.5%=0.025 chance of a bigger value (the other 2.5% is the chance of a value below -Z).  For 
a 99% C.I., we replace it by 2.65 which is Z0.005 (we can get these values from statistical tables 
or calculator). Z is what we call a quantile for the standardized Normal distribution, where 
standardized means a Normal distribution with zero mean and unit variance. 
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The way the formula above works is that the sample mean approximately follows a Normal 
distribution with mean equal to the population mean and variance equal to the population 
variance divided by the sample size. 
 
Equivalently, 
 
(sample mean-population mean)/standard error  
 
follows a standard Normal distribution with mean 0 and variance 1. 
 
This is why 95% of the time, it will be between +/- 1.96 
 
Or the sample mean will be between: 
population mean +/-1.96 x standard error 
 
Hence, we get our confidence interval formula – the coverage of the confidence interval in this 
case is 95%. 
 
For hypothesis testing, we are essentially doing the opposite.  Instead of asking what are the 
likely values for the population mean, we ask whether the hypothesised value for the 
population mean is reasonable, or in other words, does it lie inside a confidence interval.  If it 
does not lie in the 95% C.I., we say that we reject the null hypothesis at significance level of 5% 
(i.e. 100%-95%). 
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An equivalent way of expressing the hypothesis test is that we reject the null at 5% if: 
 
(sample mean-hypothesised population mean)/standard error > +1.96 or < -1.96.  
 
In this version, we assume that values on either side of the hypothesised value are equally 
strong evidence against the null hypothesis.  This is called a two-sided test. 
 

One-tailed or two-tailed tests? 
What we have described above is what is called the 2-tailed hypothesis test, i.e. our alternative 
allows that the coin may be biased towards either heads or tails.   
 
If we were sure that only values on one side of the hypothesised value were evidence against 
the null hypothesis, our confidence interval and hypothesis test would be one-sided. 
 
For example, if we believed that only population means greater than our hypothesised value 
were plausible, our 95% C.I. would cover all values up to the sample mean + 1.645 x standard 
error, where 1.645=Z0.05  
 
Again, if this interval does not include the hypothesised value for the population mean, we 
would reject at 5% using a one-sided test. Note that it is easier to reject the null hypothesis 
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with a one-sided test, in that the upper limit of the interval is lower.  However, the decision to 
choose one tail should be a priori (beforehand), not after looking at the results! 
 

Observed significance level 
When using statistical packages, they normally calculate what is called the observed 
significance level, which means the probability of rejecting the null incorrectly for this 
particular value of the test statistic. This means we do not need to use statistical tables at all, 
but simply decide whether the observed significance level is sufficiently small that we reject 
the null hypothesis. This way, we know exactly how strong is the evidence against the null 
hypothesis for this data set, which is much more useful than just knowing whether we reject at 
5% or 1%. 

 

What if the population variance is unknown? 
When the population variance is not known and we need to estimate the population variance 
from the sample variance, we replace the Z-value by the t-value, which is slightly larger to 
take into account the fact that we have less information (by not knowing the population 
variance). The t-value also depends on the sample size (as it affects the accuracy of the 
variance estimate) through what is called the degrees of freedom (sample size -1). As long as 
the sample size is at least 30, the t-value is very similar to the Z-value, because there is little 
extra uncertainty from estimating the variance. 
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Note that if the standard error is estimated because the population variance is not known, 
then  the formula is:  
 
(sample mean-population mean)/estimated standard error  
 
follows a standard t distribution with (n-1) degrees of freedom where n is the sample size  
 
So, instead of +/-1.96 as interval, we will get a slightly larger number and hence a wider 
interval than when using the Z-value, unless the sample size is large. 
 
Note that we can apply all this theory to proportions in just the same way, using the sample 
proportion as our estimate for the population proportion and using either the exact formula for 
the population variance (=p x (1-p)) or the conservative limit (=1/4). For small samples, we can 
use the exact tables for the Binomial distribution to find the confidence interval and do the 
hypothesis test, instead of using the Normal approximation. 
  
Example: We have a sample of the heights of 63 12-year old children and show the 95% C.I. 
and the test all 3 alternatives against a null hypothesis that the mean population height is 60 
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The problem of multiple tests 
Note that if you are doing many significance tests, which are independent, the chance of 
making at least one false rejection of a null increases proportional to the number of tests you 
do (known as p-hacking if you fail to adjust). This can be adjusted for using the Bonferroni 
correction - the effective significance level is the stated significance level multiplied by the 
number of hypotheses tested. However, it is then very hard to detect effects when the number 
of tests (m) is large (the power is low, meaning we are unlikely to detect that the null 
hypothesis is false). However, we can instead control the false discovery rate (proportion of 
discoveries which are false, where discovery means the null hypothesis is rejected) – this 
assumes that we care about the proportion of false rejections, rather than the number of false 
rejections. 
 

Benjamini–Hochberg procedure  
The Benjamini–Hochberg procedure (BH step-up procedure) controls the False Discovery Rate 
at level alpha. It works as follows: 
 

1. We have m null hypotheses tested and we list the m p-values in ascending order and 
denote them by P(1)-P(m).  

2. For a given alpha, find the largest k such that P(k) is less than k x alpha/m 
3. Reject the null hypothesis (i.e., declare discoveries) for i=1 to k 
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Geometrically, this corresponds to plotting P(k) vs. k/m (on the y and x axes respectively), 
drawing the line through the origin with slope alpha, and declaring discoveries for all points on 
the left up to and including the last point that is below the line. This procedure is valid when 
the m tests are independent, and also in various scenarios of dependence, but is not 
universally valid. 
 
We examine a simple example below with 9 tests and alpha =0.05. Bonferroni would suggest 
the unadjusted p-value should be 0.0055, while BH looks at the line with slope 0.05 and 
rejecting all tests until there is one above the line (i.e. reject the first 3). 
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Extension of hypothesis testing and confidence intervals to other 
situations 
These ideas can be extended to other situations.  The most common is testing for change in 
population mean.  In other words, is the mean of population 1 the same as the mean of 
population 2 (i.e. the null hypothesis is that the difference between the means is zero)? 
 
It is important to distinguish between two situations: namely whether the two samples contain 
the same individuals or not.  If they do contain the same individuals, then we can analyse the 
change in measurements on the same individuals and get much more sensitive results.  For 
example, to assess the effect of training, testing the same individuals before and after is a 
much more sensitive way of finding a change than testing a different set of individuals.  This is 
because we are able to exclude the variability across individuals and focus on variability within 
individuals. 
 

Paired T-test 
Consider 64 individuals with average score of 50 and standard deviation of 8. 
 
If we improve the score of half the individuals by 1 and half by 2, then we now have a new 
average score of 51.5.  If we match individuals and look at the change, we have 64 differences 
with mean 1.5 and standard deviation 0.5, so the 99% confidence interval for the mean change 
is (1.33,1.67), so we are quite certain that there is a positive change (even if it is not big enough 
to be useful!). 
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In other words, by looking at the differences for each individual, we are just treating the 
change as our variable, and then applying the same statistical procedures to the changes to get 
confidence intervals and hypothesis tests for the difference in the population means. We call 
this a paired t-test (t-test, because we almost always do not know the population standard 
deviation for change and need to estimate it from the sample). 
 
Example: we have 24 measurements of the temperature inside and outside a box. We create a 
new variable, diff, which is the difference between inside and outside temperature. We show 
the 95% C.I. and the test of the (obvious) null hypothesis of no difference, i.e. the mean 
difference is zero. 
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Two-sample T-test 
If the populations are different, or we do not use the same sample, what then? 
 
Not surprisingly, the difference in sample means is still the best estimator of the difference in 
population means, while the standard error of the difference is √(population variance 1/sample 
size 1+population variance 2/sample size2), so we can use similar ideas for producing 
confidence intervals and hypothesis tests for the difference in the population means. This is 
called the two-sample t-test because the population standard deviations are not usually known 
and need to be estimated from the samples  
 
Note: If we assume that population variance 1 = population variance 2, we can use a pooled 
(combined) estimate of the variability, based on both samples, which simplifies the statistical 
calculations, but that is more complex in that we need first to check whether the variances are 
equal using Levene’s test, so this is approach is not recommended. Instead use Welch’s two-
sample t-test, which does not assume equal variances, for which the degrees of freedom 
calculation is more complex, but this is handled by the statistical package automatically. 
 
Reference: Welch, B. L. (1947). "The generalization of "Student's" problem when several 
different population variances are involved". Biometrika. 34 (1–2): 28–
35. doi:10.1093/biomet/34.1-2.28. 
 
For a large sample, the 95% confidence interval for the difference in means is: 
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(Sample mean1-sample mean2)+/-1.96 x standard error 
 
Where the standard error is: 
 
√(pop variance 1/sample size 1+pop variance 2/sample size2) 
 
Note: the means subtract, but the variances add. 
 
Hence, for our example above, if we do not match individuals (treat them as a new sample), 
then the mean difference is 1, but the standard error is 
 
√(pop var1/sample size 1+pop var 2/sample size 2) 
=√(64/64+64/64) =√2 
 
so our 95% C.I. is 1.5 +/- 1.96 x √2 and 99% C.I. is now 1.5 +/- 2.65 x √2, which includes 0, so we 
fail to reject the null (i.e. no change). 
 
Example: we look again at the heights of the 63 children, this time we examine whether the 
boys and girls have different heights. The results are shown twice for the difference in heights, 
with and without the assumption that the variance is the same in the two populations. 
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Effect size 
The (standardized) effect size is a standardized measure of the strength of a relationship. In 
this case, it is just the standardized mean difference between the two groups. This is important 
if we are trying to calculate the power for a two-sample case with different sample sizes for an 
assumed effect size. 
 
The effect size for a two-sample t-test is: 
 
(pop mean 1- pop mean 2)/standard deviation. 
Note that this does not depend on the sample size and has no units. 
 

Categorical data with more than 2 categories 
We have already looked at the case of proportions when there are only 2 categories.  In that 
case, the count follows a Binomial distribution, and for moderately large samples (n>10), the 
count and proportion approximately follow a Normal distribution.  The obvious extension is to 
the situation with more than 2 categories.  In this case, we usually apply a different concept 
known as Goodness of Fit.  
 
The Goodness of Fit test can be applied to all situations where we have count data and the 
alternative hypothesis is the 2-tailed form (e.g. for 3 categories, the null hypothesis is that the 
population proportions are specified (for example, that they are equal) and the alternative is 
that at least one of the proportions is something different).   
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Example: if we have data for how many people in our sample live in HK Island, Kowloon or 
NT, we can test the hypothesis that the proportions are consistent with the proportions in the 
2011 census data. 
 
The usual test statistic is called the (Pearson’s) Chi-squared (or X2) Goodness of Fit statistic. 
 

What is the Pearson’s Chi-squared Goodness of Fit statistic? 
X2= Σ (Observed count for each category-Expected count for that category)2/Expected count for 
that category 
 
Where Observed means the actual count for that category and Expected means the count we 
would expect for that category if the null hypothesis is true. X2 sums over all categories. 
 
You can see that this measure is a way of summarizing how close the observed data is to the 
data that is most likely if the null hypothesis is true, hence the name goodness of fit. 
 
If k is the number of categories, then we compare X2 against tables for the Chi-squared 
distribution with k-1 degrees of freedom (This is the distribution for the sum of k-1 
independent squared standard Normal variables) 
 
The calculation of X2 and of the probability of observing this value of X2 or a value more 
extreme (observed significance level) can be easily found using a computer package. 
 



 115 

Strictly speaking, this assumes the Normal distribution, so the probability distribution for X2 
is only approximate, but this is a good approximation as long as the expected count is at least 5 
for each category. 
 
There is another statistic used in this situation, called the G2 Likelihood ratio statistic, which 
is essentially just another approximation to a chi-squared statistic. 
 
G2=2 x Sum (Observed x log(expected/observed)). 
 
Note: we are assuming that the data is nominal scale, not ordinal.  If the data is ordinal scale, 
then there are more sensitive statistical methods that should be used. 
 
Example: We have simulated data for the mother tongue of students in an international school: 
English, Cantonese or Putonghua with Pr(E)=1/3, Pr(C)=1/2,Pr(P)=1/6. The first simulation of 
1000 experiments uses a sample size of 30, the second uses a sample size of 60. We test a null 
hypothesis that the proportions are equal. If the counts are E=18,C=31,P=11 for a sample size 
of 60, then under the null, the expected values are all 20, so X2 = ((18-20)2+(31-20)2+(11-
20)2)/20 = (4+121+81)/20=10.3. 
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Sample of 30     Sample of 60 

  
If we use statistical tables for Chi-squared with 2 degrees of freedom, Pr(X2>5.99) = 0.05, so 
the power for a sample of 30 is about 50%, sample of 60 is about 85% (based on the proportion 
of values greater than 5.99). 
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10: Relationships between pairs of variables 
 

Learning objectives: understand statistical tools for relationships  
 
If we do not know what type of relationship there is between a pair of variables, the best 
starting point is usually a graphical display or a table.  For variables that are categorical, we 
usually use a table of counts (can use mosaic plot); otherwise we use a graphical display called 
a scatterplot. 
 
Let’s look at an example with two nominal scale variables and then another example with two 
interval scale variables. 
 
Car poll: This shows that there is association between preferred car type and marital status 
and the mosaic plot shows the key difference is Singles prefer a Sporty car to a Family car. 
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Car poll: This shows that there is association between preferred car type and marital status 
and the mosaic plot shows the key difference is Singles prefer a Sporty car to a Family car. 
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Testing for independence of categorical variables 
A common situation with categorical data is that we have 2 nominal scale variables with a 
research hypothesis of association between the variables while the null hypothesis is 
independence (which means that probabilities multiply). 
 
In the example above, the question would be whether we can reject the hypothesis that the 
preferred car type and marital status are independent in our population.  The alternative 
hypothesis is that there is some (unstated) association between them. 
  
It turns out that we can use the same concept (GoF) and formula as we used for 1 variable with 
multiple categories above. 
 
In the case of our example, the null hypothesis implies that the proportion of married people 
who prefer family cars should be the same as the proportion of singles who prefer family cars 
or equivalently, the proportion of those preferring family cars who are single should be the 
same as the proportion of those preferring sporty cars who are single. In other words the 
probability of preferring a type of car is independent of the probability of being married. Given 
that independent probabilities multiply, this means that the expected number of married 
people preferring a family car is the total sample size times the sample proportion of married 
people overall times the sample proportion of those preferring family cars overall; similarly for 
the other five combinations of marital status and car preference. 
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We can then use these expected and observed counts in the X2 statistic and the degrees of 
freedom will be (k-1) x (m-1) where k is the number of categories for one variable and m is the 
number of categories for the other variable, so in this 3 x 2 case, the degrees of freedom are 2. 
The expected count for the first cell (i.e. married man prefers family car) is: 303 x (196/303) x 
(155/303) = 100.3 so the X2 contribution for the first cell is (119-100.3)2/100.3 = 3.5. Similarly 
for the other 5 cells. Note: Need expected count of at least 5 in each cell. 
 
Note: there are more powerful methods if the variables are not both nominal scale, such as 
Spearman rank correlation if both are ordinal scale and Kruskal-Wallis test if one is ordinal 
scale and one is nominal scale.  
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Growth of babies: This plot shows a strong non-linear pattern to the relationship between 
growth ratio and age. 
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Once we log transform both growth ratio and age, we see an approximate linear relationship 
 

 
 
Those examples show that the relationships can have many forms, but they often are 
approximately linear (possibly after simple transformation, e.g. taking logs), which allows us to 
build simple models. 
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Use of correlation 
We can summarize the linear relationship using correlation (r).  Correlation measures 
association in terms of how strong the linear relationship is, where a correlation of: 
 
+1 means a perfect positive linear relationship 
-1 means a perfect negative linear relationship 
0 means no linear relationship, although there may still be a non-linear relationship. 
Between 0 and +1 means a positive linear relationship that does not fit a line perfectly 
Between –1 and 0 means a negative linear relationship that does not fit a line perfectly 
 
Note that if r is not equal to +/-1, this can be because  
 
a) relationship is not linear (curve?) 
b) (random) errors in either x or y 
 
r by definition is: 
 
Covariance(X,Y)/√(Var(X)xVar(Y)) 
 
Where: 
 
Covariance(X,Y)=E((X-Mean(X))(Y-Mean(Y));  Var(X)=E((X-Mean(X))2) 
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i.e. correlation is the joint variability of X and Y scaled by the variability of each of X and Y. 
 
Note: no need to memorize these formulae 
 
Estimation of correlation, r, based on a sample is: 
 
r=∑((Y-Mean(Y))(X-Mean(X))/√(∑ (X-Mean(X))2x∑(Y-Mean(Y))2) 
 
It is straightforward then to show that if Y=X, r=1 and if Y=-X, then r=-1   
 
If Y=A+BX, then r=+/-1, depending on the sign of B 
 
Obvious hypothesis test is if the population correlation is zero, but this test requires us to 
assume that both variables (X and Y) follow a Normal distribution.  
 
The test relies on the fact that if X and Y follow a Normal distribution with zero correlation, 
then: 
 
r/√((1-r2)/(n-2)) follows a Student’s t distribution with (n-2) degrees of freedom.  If the sample 
size is at least 30, the t distribution is very close to a Standard Normal distribution (otherwise 
the tails of the distribution are “thicker” to account for our estimating the population variance 
using the sample variance) 
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If X and Y both follow a Normal distribution, then it turns out that independence is identical to 
zero correlation, but this is not necessarily true in other situations (zero correlation just means 
no linear relationship, remember, while independence means no relationship at all, linear or 
non-linear). 
 
We sometimes use r2 as a way of summarizing the proportion of variability of one variable 
“explained” by the other variable.   
 
However, note that r2 does not tell us about the direction of causation.  It is possible that 
 
X  => Y 
 
Y => X 
 
Or that W causes both X and Y (W is a common cause). 
 
There is a whole field of statistical methodology that looks at correlations for large sets of 
variables (factor analysis or principal component analysis), but the mainstream approach is to 
build models for linear relationships. 
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Simple (bivariate) linear model 
We write the simple linear model as: 
 
Y=A + B X + ε 
 
where ε is the random error, A is the intercept, B is the slope, X is the independent variable, Y 
is the dependent variable and we assume that random errors from different observations are 
independent and have constant variance.  
 
This is like elementary algebra for a line, except for the random error term. 
 
Key question: 
 
How do we estimate A and B?  Clearly we want the “best fitting” model. 
 
There is a very general mechanism for fitting statistical models with constant error variability.  
This method is called “least squares”.  It minimizes the squared error, or in other words, it 
finds estimates for A and B (we will call them a and b) that minimize the squared error for Y: 
 
∑(observed y-fitted y)2 
 
This can also be written as ∑ri2, where ri is called the residual for the ith data point, being the 
difference between the observed and fitted y for that point. 
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Hence the name least squares.  It is possible to prove that this is the best way to fit a linear 
model if the error variance is constant. 
 
Also, the error variance can be estimated from the sample as: 
 
s2 =∑ri2/(n-2) 
 
where n is the sample size. 
 
(we divide by n-2 because we “use up” 2 observations to account for the 2 parameters we 
estimate – remember that we can always fit a line perfectly to any 2 points) 
 
The formulae for a and b are: 
 
b=∑(Y-Mean(Y))(X-Mean(X))/ ∑(X-Mean(X))(X-Mean(X)) 
 =Cov(X,Y)/Var(X) 
 
a=Mean(Y)-b x Mean(X) 
 
(because Mean (Y)= a + b x Mean(X)) 
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In practice, we do not do the calculations by hand – even simple calculators can do the 
calculations for us, or a spreadsheet. 
 
For those of you with good mathematical skills, it is easy to show that these estimates are 
optimal by using calculus to find the values of a and b that minimize s2 
 
However, an important word of warning: 
 
Numbers (such as a,b and s2) alone (without graphics) may not be a good summary of what is 
going on. 
 
Examples: three samples, each with a sample size of 11. 
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Moderate linear relationship   Quadratic relationship here 
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The third example shows a different pattern: 
 

 
Clearly, there is one data point inconsistent with our model. 
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Note that (unlike correlation) the linear model is not symmetrical – if you reverse the roles of X 
and Y, you get a different model.  This is because this model assumes that all the 
(measurement) error is in Y, not X.  
 
If we can also assume that the errors follow a Normal (bell-shaped distribution) (in addition to 
our assumption of independent errors with constant (unknown) variability), then we can 
develop statistical inference for the slope.  The key hypothesis to test is whether B=0 as this 
simplifies our model to mean that X and Y are independent. This turns out to be the same test 
as testing r=0, even though here we are only assuming that the errors for Y given X are 
Normal, not that X and Y are both Normal. 
 
Essentially, we are asking what values of b we might expect if there is really no linear 
relationship between X and Y, and the errors follow a Normal distribution with constant 
variance, and rejecting B=0 if the value we observe for b is too far away from 0 to be likely 
under the null. 
 
The test for B=0 is based on the fact that, 
 
(b-B)/sb  follows a Student’s t distribution with n-2 degrees of freedom, where 
 
sb=s/√(∑(X-Mean(X))2) is the standard error of b. 
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Note that sb decreases if the variance of X increases. 
 
This, of course, also provides the basis for finding a 100(1-α)% confidence interval for B of 
 
b+/-sb x tα/2(n-2), where tα/2(n-2) is the cutoff value of a t distribution with (n-2) degrees of 
freedom 
 
If the sample size is above 30, then the t distribution is very close to a Standard Normal 
distribution. 
 
(We could also test separately for A=0 in a similar way, which would mean we are testing if Y 
is proportional to X, which is rarely meaningful). 
 

Residuals 
As with any tool, diagnostics are important.  The simplest diagnostics for regression are the 
residuals. 
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2 key ideas: look for particular data points that look to fit badly (possible error?) and for 
patterns that suggest model errors 
 
No obvious pattern       Can see quadratic pattern so clearly! 
 

  
 
 
Here the growth example shows the strong non-linear relationship 
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Meaning for r2 
r2 summarizes how good the linear fit is on a scale from 0 to 1 
 
r2 can be written as: 
 
1-∑ri2/∑(y-Mean(y))2 
 
This shows clearly that a perfect fit will give r2=1 and if the fitted line is no better than a 
straight horizontal line through the Mean of y (i.e. yfit=Mean(y)), then r2=0 
 
r2 is often interpreted loosely as the proportion of variability “explained” by x. This is loose in 
that this assumes that x causes y, which may not be true. 

Prediction 
How can we predict y for a value of x? 
 
We can just substitute into our equation, using our estimates, a and b: 
 
Y predicted=a + b × X predictor 
 
We can also estimate the prediction variability, given that the distribution of Y predicted, 
given an X predictor is: 
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(Y predicted-true Y)/spred follows a t distribution with n-2 degrees of freedom, where  
 
spred=s √(1/n+(Xpred-Mean(X))2)/ ∑(X-Mean(X))2) 
 
This can be used for hypothesis testing or constructing confidence intervals for the mean of Y 
given X. 
 
Note that spred is smallest for Xpred=Mean(X) and increases as Xpred moves away from 
Mean(X) 
 
Similarly for predicting y for a new individual 
 
spredi= s √(1+1/n+(Xpred-Mean(X))2)/ ∑(X-Mean(X))2) 
 
(look at example of confidence intervals in JMP – show mean confidence interval versus 
individual confidence interval, which is the prediction for a new individual measured) 
 
However, note that this assumes that our linear model is correct for that value of x.  This may 
be safe if x is within the range of data we observed, but what if x is much greater (or smaller) 
than our dataset?  In that case, we have no real support from the data for believing that we 
can extrapolate like this. It should be obvious that a wider range of x values will produce more 
precise results both for estimating B and for prediction. 
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11: Multiple Regression 
 

Learning objectives: understand statistical models for multiple continuous 
variables 
 
All the ideas we have used can be easily extended to handle more than 1 independent variable. 
 
Now our equation can be written as: 
 
Y=B0 x 1 + B1 x X1 + B2 x X2….+B(p-1) x X(p-1) + e 
 
where B0 is now the intercept (previously=A for simple regression) and B1 to B(p-1) are the 
slopes (previously=B) 
 
The advantage of writing it this way is that we can also write this in matrix and vector 
notation as: 
 
Y=X B + E 
 
where Y is an n x 1 vector and X is an n x p matrix (first column is all ones) and B is a p x 1 
vector and E is the n x 1 vector of errors. 
 



 138 

Note: a matrix is a table of numbers, while a vector is a column of numbers. 
 
One reason for writing it in matrix notation is that we can show via calculus that the least 
squares solution has a very simple form in matrix notation: 
 
b=(XTX)-1XTY, where XT is the transpose of X, meaning we swap rows and columns 
 
Yfitted = Xb = HY 
 
where H=X(XTX)-1XT is a projection matrix (called the Hat matrix) that “projects” from n 
dimensional space onto p dimensional space to obtain the closest fit to Y (in terms of squared 
errors), where n is the sample size and p is the number of parameters in the model. 
 
For example, the null model which has p=1 (i.e. Yfitted =Mean(Y)) has H that projects Y onto the 
Mean(Y) 
The simple linear model with p=2 has H that projects Y onto a 2 dimensional space, i.e. the 
plane that goes through Mean(Y) and X, because we already saw that the fitted line goes 
through Mean(Y) and has equation =a+bX 
 
For projection, you can consider the analogy of a video projector, which casts a 2D shadow 
(projection) on the screen of a 3D object (e.g. your hand). This is a projection from 3D onto 2D 
(like a data set of 3 points when we fit a simple regression line with just one X variable) 
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We can show using calculus that this is the optimal solution under quite general conditions.  
You do not need to know this formula, it is just provided to assist understanding of what we 
are doing when fitting a multiple regression model using least squares. 
 
The calculations can always be done using a spreadsheet or a statistical package. 
 
The estimate of the error variance is: s2=∑(y-yfitted)2/(n-p)= ∑ri2/(n-p) 
 
The divisor is n-p to account for the p parameters that we have fitted – we can fit p points 
exactly (compare to 2 points fit exactly for the simple regression) 
 
For testing Bi=0 or finding a confidence interval for Bi, the idea is similar to simple linear 
regression: 
 
95% CI for Bi is: Bi=bi+/-t.025 SEBi 
 
And reject Bi=0 at 5% (two-tailed test) if bi is > t.025 SEBi or bi<- t.025 SEBi, where SEBi=√(XTX)-
1ii s 
 
but again, we rely on the computer to calculate t and SEB. 
 
This example is about predicting the auction price of grandfather clocks, given the age and 
numbers of bidders – clearly both independent variables are important. 
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This example is predicting the oxygen update for runners, given their age, weight, run time, 
resting pulse, running pulse and maximum pulse. Clearly run time is very important and age 
and running pulse matter. 

  
 
This leads to the obvious question: how to select the optimal set of independent variables in a 
regression? 
 
We need to think carefully first - variables may be included in a model for 2 reasons: 

a) theoretically they are important or statistical controls 
b) they can be shown statistically to be important (i.e. B=0 is rejected) 
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Theoretically important variables that we need to statistically control for (by including them in 
the model) are called confounders.  In this case, we need to include variables even if they are 
not statistically significant. 
 
Ideally, we would randomize our experiment and avoid the problem of confounders, but this is 
often not possible unless we have a designed experiment (we often have observational data or 
retrospective data). 
 
First, how do we test our complete model (vs. testing individual variables)? 
 
We use a concept called Analysis of Variance (ANOVA) 
The idea is to partition variability into different parts with different explanations that add up 
to a total that is related to overall variance. 
 
The variability is measured in terms of sums of squared deviations (SS is the abbreviation for 
Sums of Squares, which means the sums of squared deviations). We try to partition (split up) 
the variability into different components due to different variables. 
 
The total variability is essentially just the variance for Y times (n-1): Total SS=∑(Y-Mean(Y))2 
 

We then divide this up - what is left after fitting the model is called the residual: 
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Residual SS=∑(Y-Yfitted)2=∑ri2, (i.e. the remaining part that is assumed to be random error). 
 
This is just (n-p) times s2 

 
The difference (meaning the part “explained” by our model) is: Model SS= ∑(Y-Mean(Y))2-∑(Y-
Yfitted)2 
 
For each SS, we also have the degrees of freedom (d.o.f.), which is the dimension of the space 
spanned by this part, so d.o.f. for the Total SS is (n-1) as we have n data points, but have 
subtracted off the mean. 
For the simple linear model, the Model d.o.f. is 1 (1 independent variable) and the Residual 
d.o.f. is the difference, i.e. n-2 
 
In the multiple regression model the Model d.o.f. is p-1 (the number of independent variables) 
and the Residual d.o.f. is the difference, i.e. n-p 
 
We create an intermediate stage called the Mean Square (MS), which is the SS divided by the 
d.o.f. 
 
Model MS=(Model SS/Model d.o.f.) 
Residual MS=(Residual SS/Residual d.o.f) (=s2) 
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If the null hypothesis is true, then the Model SS should be just random variation, so that both 
the Model MS and Residual MS become estimates of the same variance, so the ratio will be 
around 1. However, if the null is false, the ratio should be large. 
 
So this explains why our test statistic is: F=Model MS/Residual MS,  
 
which is called the F statistic, with Model d.o.f. and Residual d.o.f. degrees of freedom and we 
reject the null hypothesis if F is large enough. 
 
We can easily look up the distribution of F under the null hypothesis (i.e. that all the Bi=0) 
 
For the simple linear model, the F statistic is mathematically equivalent to the t statistic (it is 
actually the square of the t statistic) for the slope of X, so it yields the same p value as the two-
tailed t-test in that case. 
 
For the multiple regression model, the F statistic is the overall test that combines all the 
individual t tests into one omnibus test. If we cannot reject the omnibus test, we do not need to 
spend time trying to identify the best model as it means that all the variables combined do not 
provide a better fit than just using the mean for Y. 
 
We can also try to divide up the Model SS amongst the variables, but this is tricky, unless the 
Xs are uncorrelated (possible in designed experiments), as otherwise, the SS for each variable 
depends on the order we add it in. 
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We can also expand the idea of r2 to what is sometimes often called R2 (with a capital R) to 
distinguish that it is the proportion of variation “explained” by a set of variables (versus just 
one variable for r2). 
 
It relates simply to the A.o.V. table as: R2=Model SS/Total SS  
 
At first glance, it looks sensible to choose the model with the largest R2.  However, this is 
flawed, because each time you add a new variable, R2 will increase, even if the new variable is 
unrelated to Y.  This means R2 is only useful in comparing models with the same number of 
variables.  For comparing models with different numbers of variables, we should use what is 
called adjusted R2 
 
We can write R2 and adjusted R2 as: 
 
R2  = 1-(Residual SS)/(Total SS) =1-(Residual SS/(n-1))/(Total SS/(n-1)) 
 
Adjusted R2 = 1-(Residual SS/(n-p))/(Total SS/(n-1)) = 1-s2/s02,  
 
where s02 = Total SS/(n-1) is the variance of Y. 
 
This adjusts for the bias in R2 towards models with more variables – maximizing Adjusted R2 
is equivalent to minimizing s2. 
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In fact, adjusted R2 is close to R2 if p is small compared to n, so (n-p)/(n-1) is close to 1, i.e. if 
the number of parameters is small compared to the sample size. 
 

 
 
So, how do we find and select the best model (i.e. best combination of the independent (x) 
variables)? 
 
It used to be popular to do stepwise regression.  The idea was that you started with a null 
model, then added in the one variable that yielded the highest t statistic, then choose the 
variable that gave the highest t statistic when added to the first variable and so on, until there 
were no more variables to add that have a significant slope. This is called forwards stepwise 
regression. 
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The problem is that this process has 2 flaws: 
1) it tends to yield models that are too large because you are doing many tests, and 

choosing the most significant from a range of tests. This means that the true 
significance level of the model is much higher than claimed, based on the significance of 
each test (i.e. the risk of falsely rejecting the null is much higher than claimed) 

2) it also may exclude some good models because some variables may only be good if 
included together with another variable, but we are only adding one at a time. 

 
Another approach is to include all the possible variables to start, check if that model is 
significant, and then drop the least significant variables one at a time, until they are all 
significant (the t statistic checks for significance conditional on all the other variables already 
in the model).  This is called backwards stepwise regression.  This approach has similar 
problems, plus it may also have an additional problem that we call collinearity. 
 
Collinearity means that different sets of independent variables provide almost the same 
information.  Collinear means - in a line.  It means we can predict at least one of the 
independent variables well from the others.  This is quite common if there are a large number 
of variables.  In the case of collinearity, there are many possible coefficients for the Xs that are 
very close to the best.  This is often a problem with observational data.  For an experiment, we 
can ensure that the x values are chosen such that this will not happen (we will return to this 
when we consider experimental designs). 
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Collinearity is a problem in two senses: 
 

1) It may be hard to estimate the coefficients accurately 
2) We need to decide which variables are more important theoretically, and which we can 

exclude. 
 
We look at a famous dataset due to Longley – we first look at predicting y individually from X1 
to X6 
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However, when we try to predict from X1-X6 together, we find something strange – some of the 
coefficients that are statistically significant change sign and some variables (X1,X2,X5) are not 
useful. 
 

 
Why does this happen? We need to look at the correlation between the X’s 
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As can be seen, X1,X2,X5 and X6 are all very strongly positively correlated – this is collinearity 
– it means that these 4 variables have a lot of common information about Y and it turns out 
that once we know X6 (which is the year), the other 3 variables do not add anything useful 
about Y. 
 
Another alternative is mixed stepwise, which combines backwards and forwards steps. 
 
One of the reasons stepwise methods were popular was that the computer power available was 
small, which used to be an issue for large models.  Nowadays, that is usually not a problem, so 
we may use what is called best subsets regression.  This means finding the best models for 
each value of the dimension of our model, i.e. for any given number of variables. We can then 
review the models to see which ones make sense in terms of our theory. 
 
To decide which model to choose, there are many different approaches.  One approach is to 
start by comparing the simplest and the most complex model.   
 
If this is not significant, then stop, as that suggests that everything we observe, other than the 
variability linked to variables in the simplest model, is just random, so we should just use that 
simplest model, which is usually the null model with no independent variables. 
 
If it is significant, then add variables in to the simplest model and choose the simplest model 
such that the F statistic comparing that model against the most complex model is not 
significant. This is called the lattice approach (construct a tree of all possible models). 
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Arguably, this applies the philosophy of Occam’s razor.  This philosophical principle (prefer 
simple explanations when explanations predict equally well) says that you should choose the 
simplest explanation that is adequate. 
 
Mixed stepwise regression is still a useful tool, as long as we are aware of the risks, 
particularly of wrongly rejecting the null, so we should reduce the apparent significance level if 
we have a large number of tests.   
 
Minimizing AIC or BIC are more sophisticated criteria, which are more trustworthy than 
repeated significance tests (the detailed statistical argument is too complex to explain here) 
which means choosing s and p to be small together. Note that these criteria need adjustment if 
we consider models with different transformations, while adjusted R2 can still be used.  
 
For independent Normal errors (ignoring additive constants): 
AIC = 2 n Loge(s) + 2 p 
BIC = 2 n Loge(s) + p Loge(n) 
 
Stepwise regression does not always yield sensible answers using the default settings. We 
show here the results when we try to predict the oxygen uptake in the previous example from 
30 randomly generated variables (so they have NO relationship with the dependent variable). 
This is an extreme example as the number of variables is almost as large as the sample size. 
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This happens because the default p-value for adding/dropping a variable is very high (0.25/0.1). 
If we reduce this down to 0.01/0.01 we get a null model as the most significant variable has a 
p-value of about 0.03, which is about 1/30 where 30 is the number of variables, so this is what 
we would expect by chance if no variables are associated with oxygen update. 



 156 

Diagnostics 
The 2 core diagnostic tools are the residuals and influence or leverage.  The residuals tell us 
what the fitting error is for each point.  Influence or leverage values tell us how much the 
model depends on each point.  They actually depend on the H hat matrix we mentioned before.  
If a diagonal coefficient of H is large, then this data point has a large influence on the fitted 
model. This is because the diagonal element of H is the coefficient of the value of yi in 
estimating the predictor for yi: 
 
Yfitted=H times Y, so Yfittedi = Hii x Yi + other terms 
 
The residuals can be used in different ways.  They can be plotted in sequence to see if there is a 
pattern in the sequence.  They can be plotted against the fitted values to see if there is some 
non-linearity in the overall responses or they can be plotted against each independent variable 
to see if there is non-linearity for each variable.  We can also look at the distribution of the 
residuals to see if they look like they follow a Normal distribution (bell-shaped curve) (see 
later). 
 
Leverage plots show the influence of data points on the model, either overall, or in terms of 
each independent variable. 
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Polynomial Regression 
A special type of multiple regression is polynomial regression.  In this case, the question is 
what order of polynomial in X do we use to fit the model. Only in special situations would we 
use high order polynomials, because the models usually give very extreme predictions outside 
(or even inside) the data range.  This is one reason why we would often prefer looking at 
transformations instead, particularly if we can interpret the transformation sensibly. The 
growth example below shows that a fifth order polynomial is statistically significant but is very 
hard to interpret and yields an adjusted R2 value that is not that much better than the simple 
log-log transformation (or as we will see, rank transformation). 
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Transformations 
The most common transformation is the power transform  
 
z=(ya-1)/a, where a=0 is the special limiting case of z=log(y)  
 
log makes special sense when dealing with product or ratio variables, because it turns them 
into linear relationships: 
 
Log(y1 x y2) = Log(y1) + Log(y2) 
 
Log(y1/y2) = Log(y1) – Log(y2) 
 
We already looked at this for the growth example, which explicitly involves ratios. 
 
Note that transformations may simplify the model, e.g. if weight is proportional to some power 
of height, then log(weight) is linear in log(height).  It is important to consider models that 
‘make sense’, which often means they have a sound theoretical basis.  Another nice example is 
predicting the volume of trees given the diameter and height. We compare regression models 
using the raw data and log transformed. The log model not only fits better (compare R2), but 
also has a very simple interpretation: V is proportional to D2H, which makes sense if we think 
of the formula for volume of a cone or cylinder. 
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The other very useful transformation is ranking, i.e., we replace the data by their ranks 1 to n.   
Replacing the data by their ranks is usually equivalent to what we call a non-parametric 
procedure.  This is usually a less powerful procedure, but it is based on weaker assumptions, so 
it is more robust. The tricky part is how to handle ties (values with the same rank). “Proper” 
non-parametric procedures account for the fact that ties reduce the variability and reflect less 
information. 
 
We can visit the growth example using ranks. The simple linear model using ranks means that 
the ratio increases (but perhaps at a non-constant rate) with age. 
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Normality Tests 
The statistical inference we do for linear models assumes that the errors independently follow 
a Normal distribution. Note: unlike the distribution of the sample mean when testing the 
population mean, a large sample does NOT make this assumption correct!  
 
There are several different formal tests of Normality, but one useful graphical method plots 
residuals in order of increasing value against Normal quantiles (i.e. plot residuals against 
their expected values if they come from a Normal distribution).  If the distribution of the 
residuals is Normal, the plot should be roughly linear – JMP provides confidence bounds to 
allow an informal test of Normality. The growth example shows a failure below. 
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12: Analysis of Variance for categories (Factors or Groups) 
 

Learning objectives: understand how to model effect of categorical 
variables on a continuous variable 
 
What if we have more than two populations, how can we test if they have the same population 
mean?  Analysis of Variance is also a way to simultaneously test for any difference in the 
means of a set of populations, assuming that they have the same population variance.  There is 
no simple Confidence Interval idea any more, but we can still do a significance test.  This time, 
the thing we use to test for a difference (the test statistic) is a bit more complex.  The idea is as 
follows: 
 
If the populations have the same mean, the sample means should be similar and hence the 
sample means should be close to the overall mean.  We look at the ratio of the squared 
deviations of the sample means from the overall mean to the deviations of the individual data 
points from their respective sample means.  If the ratio is large, then we do not believe that the 
sample means are similar and hence that the population means can be the same.   
 
This should sound familiar. The idea is exactly the same ANOVA idea we used for multiple 
regression. For a one-way classification (one-way ANOVA), the table looks like: 
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Source of Variation  SS  d.o.f.  Mean Square  F Ratio 
Between Groups  SSB  k-1  MSB=SSB/(k-1)  F=MSB/MSW 
Within Groups  SSw  n-k  MSw=SSW/(n-k) 
Total    SST  n-1 
 
where F=MSB/MSW and k is the number of groups. The Within Groups part is the same idea as 
the Residual for the multiple regression model, i.e. the part that our model does not “explain” 
 
The precise formulae are not important, but the relative simplicity is attractive and has lead to 
the extension of this idea to much more complex situations, in particular where there are 
multiple simultaneous groupings. 
 
For example, if there are 2 classifications, the sources become Factor 1, Factor 2, Residual and 
Total.  This makes it relatively easy to identify the important sources (causes) of variability.  If 
the groups are very different, then SSB will be large. If the difference is large relative to the 
number of groups, MSB will be large. If the variability left is small, then SSW will be small. If 
SSW is small given the sample size, then MSW will be small. 
Overall then, we can see why large values of F indicate that there is evidence of group 
differences, i.e. we reject the null hypothesis of no group differences.  
 
Statistical software tells us whether the F value is big enough to reject the null hypothesis.  
Usually, it tells us the significance level at which we should reject the null - this is called the 
observed significance level. If there are only 2 groups, we can use the T-test, which is 
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equivalent to F-test in this case (k=2, means k-1=1) with the F statistic equal to the square of 
the t statistic. 
 
Again, we sometimes use R2 (R squared) as a summary of the usefulness of the grouping, 
where 
 
R2=SSB/SST, i.e., the proportion of variability ‘explained’ by the grouping. 
 
Note that R2 is scale independent, which allows easy comparisons.  Again, there is a problem 
with R2 in that adding an extra group will always increase it.  As in the multiple regression 
case, we use adjusted R2, allowing comparison of models with different numbers of groups. 
 
R2 =1-SSW/SST =1-(SSW/(n-1))/(SST/(n-1)), while Adjusted R2 =1-(SSW/(n-k))/(SST/(n-1)) 
 
General strategy is to find model that is simple (few terms), good explanation (high R2) and 
easy to interpret (theoretical basis and/or consistent inclusion pattern of variables and 
interactions). The example below illustrates a simple randomized controlled trial where f is a 
placebo and d,f are the active drugs. 
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Multiple Comparisons 
What if we want to compare the individual groups? For example, we might want to compare 
pairs of groups and see if they are significantly different. The simple approach is just to use a 
t-test for those two groups, but the problem is like the one for multiple regression, where there 
are many possible tests.  One approach is to only look at pairs if the overall F test is 
significant.  This approach is quite simple, particularly if the numbers in each group are the 
same (we call this a balanced design). The other better, but more complex, approach is to use a 
modification of the t test that takes into account the multiple comparisons being done (e.g. the 
Tukey-Kramer Honestly Significant Difference (HSD)). The drug example illustrates that the 
result is less significant once we take the multiple comparisons into account: 
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Contrasts 
Contrasts are linear combinations of group effects – the simplest example would be the 
difference between any pair of groups. A more complex example is where we have 2 treatments 
and 1 control group and we want to test whether the treatment groups are different from the 
control group. In other words, this is a situation where we are testing for zero differences in 
specific known combinations of the groups. The drug example below tests whether the average 
effect of a and d is better than placebo, even if we are unclear as to which drug is better. 
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Nested vs. Crossed 
What if there is more than one classification, e.g. Sex and Marital Status?  In general, if there 
is more than one classification, it can work two ways: nested (hierarchical) and crossed.  
Nested means that the second classification works inside (nested) the first classification, 
whereas crossed means that both classifications are generally applicable.  Sex and Marital 
Status will usually be crossed, whereas for School and Class Number, Class Number usually is 
a within school classification, i.e. it is nested inside School. 
 
For two crossed classifications (2 way ANOVA), we have 4 possible sources of variability: 
 
Classification 1 
Classification 2 
Class 1 x Class 2 
Residual 
 
where Class 1 x Class 2 (sometimes denoted Class 1.Class 2).   This effect means that the Class 
2 differences are not the same for different values of Class 1.  In our example, it might mean 
that the differences between single and married people may be different for males and females.  
If this is not the case, we would say that Sex and Marital Status have independent effects and 
merge this source back into the Residual. 
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Lack of Fit & Replicates 
 
For models of this sort, we usually check for lack of fit.  This means we hope to not reject this 
hypothesis. This analysis is possible if we have what we call replicates.  This means that for 
some combinations of the factors, we have multiple data points, giving us a way to estimate the 
“pure error” (i.e. differences between respondents with identical factor combinations) which 
excludes any possibility that our model does not include necessary interaction terms between 
the factors. We divide up the residual error into “pure error” and “lack of fit” to check whether 
our model looks OK (assuming we have not completely ignored important factors). Replicates 
are a very good idea when designing an experiment as they allow a diagnostic check that does 
not depend on whether the model is correct. 
 
We look at an example of making popcorn and looking at which factors of popcorn type, oil 
amount and batch size and their interactions predict high yield. The results show that popcorn 
type, batch size and their interaction seem to matter.  
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However, it turns out that it is specifically the combination of small batches of gourmet 
popcorn that performs better, so we have a good simple explanation: 
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Nested 
For two nested classifications, we have 3 sources: 
 
Classification 1 
Classification 2 (inside Classification 1) 
Residual 
 
We would normally check whether the Class 2 differences (within Class 1) are important.  In 
our example, this would mean checking whether classes within schools are different.  The 
nested situation may be more complex, because Class 2 can be a sample from Class 1.  In this 
case we say that Class 2 is a random effect, which alters the error term in our F test (too 
complex to explain fully here) and makes the correct statistical analysis more complex, because 
we need to adjust the denominator in our F tests to account for the random effects part. 
 

Model choice objective 
There is no limit to the number of classifications that we can consider in theory, although in 
practice, it only works well if the sample size is much bigger than the total number of groups 
across all classifications. We aim to find groupings such that individuals within the groups are 
similar, while the groups are very different.  This helps us to understand what characteristics 
relate to our measured outcome variable.  Remember that this does not prove causation, but 
suggests a possible causation, in other words, we use “variability explained” in a rather loose 
manner that does not imply causation.  Also, there are often alternative explanations, so that 
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we can have several different groupings, each of which are useful, but where once we have 
used one of the groupings, the other groupings provide no further explanatory power. 

Assumptions  
The analysis makes 3 important assumptions:  

1) Independent errors for different data points 
2) The variability within groups is the same (across different values of X for regression 

models) 
3) errors follow a Normal (bell-shaped) distribution. 

 
In practice, ANOVA is quite robust (not too sensitive to these assumptions), but sometimes we 
can reduce divergence from these assumptions by transforming the data.   

Transformations again 
For one-way ANOVA, we can remove the assumption of equal variance using Welch’s ANOVA.  
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If the data look approximately linear, we can use statistical software to fit a range of models 
and see how well they fit (again use R2, F test and ANOVA tables). 
 

Random effects 
 
If we have random effects, such as when we have repeated measurements or hierarchical 
effects (see student example above or animals example), we need to use ANOVA methods that 
account for the random effects, which generally means that the denominator needs changing 
for the F-tests. These methods may be labelled as random effects ANOVA or repeated 
measures ANOVA. 
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13: General Linear Model 

Learning objectives: understand how to model effect of categorical and 
continuous variables on a continuous variable 
 
Can integrate multiple regression with ANOVA for factors to get what is called General Linear 
Model or Analysis of Covariance (ANACOVA).  This allows investigation of which factors 
(groups) and covariates (linear relations) are useful in ‘explaining’ the variability in the data.  
For individual covariates, can use T-test, but this is statistically equivalent to F-test.  The T-
test is a test of a null hypothesis that the slope coefficient is zero. We can also allow for 
interactions between Factors and Covariates (i.e. different slopes for different groups). 
Interactions between Covariates are cross products of covariates. 
 
In all cases we can use diagnostic checks of the assumptions: 
1) save residuals and test if they are Normal (NOT whether the dependent variable is Normal) 
2) plot residuals against the predictors and look for a pattern in the center 
3) plot residuals against the predictors and look for pattern in the spread 
4) plot leverage for each predictor to see if certain data points are very influential 
 
We illustrate GLM using the drug data with a covariate, x which is the baseline measurement 
of y (i.e. before taking the drug). This shows that there is no significant drug effect, once we 
control for the baseline measurement. There is also no evidence of an interaction between the 
drug and the baseline measurement. 
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14: Model selection criteria 
 

Learning objectives: understand how to identify the best model 
 
For all linear models, the two common criteria are R2 and F-test.  
 
R2 without adjustment is a very bad criterion because it will always choose the most complex 
model. Adjusted R2 is better, but still tends to choose overly complex models. 
 
The F-test is equivalent to the Log Likelihood ratio test for linear models, i.e. looking at the 2 x 
the difference in the maximum Log Likelihood of the 2 models being compared. However, this 
criterion has also been criticized for choosing models that are too complex. 
 
The main competitors are AIC (Akaike Information Criterion) and BIC (Bayesian Information 
Criterion) 
 
The objective is to choose the model with lowest AIC or BIC, which both choose the highest Log 
Likelihood after a penalty for the number of parameters (k). AIC is based on information 
theory arguments, while BIC relies on Bayesian analysis arguments, although arguably BIC is 
inconsistent with Bayesian inference as it takes no account of any prior information. 
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AIC = 2k -2 Loge(Lik),  AIC has a variant called AICc which corrects for finite sample sizes. 
 
AICc=AIC + 2k(k+1)/(n-k-1) 
 
BIC=k x log(n) – 2 Loge(Lik) 
 
For linear models with independent Gaussian errors, Loge(Lik) can be written as 
–n/2 Loge(RSS) if we ignore constants that cancel for comparisons, so we can write 
 
AIC=2k + n Loge(RSS) 
BIC= k log(n) + n Loge(RSS) 
  
BIC penalizes complexity more than AIC in all practical situations, as log(n) is usually much 
more than 2. 
 
These criteria are not restricted to linear models. The only real limitation is that we need to be 
able to calculate the log likelihood and the number of parameters. 
 
These criteria do not involve a statistical test, but generally differences of less than 2 in AIC or 
BIC are considered to be meaningless (i.e. we cannot distinguish between the models). All of 
these criteria except (adjusted) R2 assume that we have the same dependent variable values. 
AIC and BIC do not require that the models are nested (i.e. all models are special cases of the 
most complex model), unlike the F-test.  
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15: Experimental Design  
 

Learning objectives: understand how best to design an experiment 
 
We are often concerned with the analysis of data generated from an experiment. It is wise to 
take time and effort to organize the experiment properly to ensure that the right type of data, 
and enough of it, is available to answer the questions of interest as clearly and efficiently as 
possible. This process is called experimental design. 
 
The specific questions that the experiment is intended to answer must be clearly identified 
before carrying out the experiment. We should also attempt to identify known or expected 
sources of variability in the experimental units since one of the main aims of a designed 
experiment is to reduce the effect of these sources of variability on the answers to questions of 
interest. That is, we design the experiment in order to improve the precision of our answers. 
 
It is important to understand that optimizing the experiment in some ways may make it less 
useful in others (e.g. minimizing the prediction error may not allow us to fit polynomial or 
other non-linear models) 
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Main Effect  
This is the simple effect of a factor on a dependent variable. It is the effect of the factor alone 
averaged across the levels of other factors. 
 

Interaction  
An interaction is the variation among the differences between means for different levels of one 
factor over different levels of the other factor. 
Example  
A cholesterol reduction clinic has two diets and one exercise regime. It was found that exercise 
alone was effective, and diet alone was effective in reducing cholesterol levels (main effect of 
exercise and main effect of diet). Also, for those patients who didn't exercise, the two diets 
worked equally well (main effect of diet); those who followed diet A and exercised got the 
benefits of both (main effect of diet A and main effect of exercise). However, it was found that 
those patients who followed diet B and exercised got the benefits of both plus a bonus, an 
interaction effect (main effect of diet B, main effect of exercise plus an interaction effect). 
 

Blocking  
This is the procedure by which experimental units are grouped into homogeneous (similar) 
clusters in an attempt to improve the comparison of treatments by randomly allocating the 
treatments within each cluster or 'block'. 
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Randomization  
Randomization is the process by which experimental units (the basic objects upon which the 
study or experiment is carried out) are allocated to treatments; that is, by a random process 
and not by any subjective and hence possibly biased approach. The treatments should be 
allocated to units in such a way that each treatment is equally likely to be applied to each unit. 
 
Randomization is generally preferred because the alternatives may lead to biased results. The 
logic is similar to why we need random samples in order to have samples that are 
representative (unbiased) of the population. 
 
The main point is that randomization tends to produce groups for study that are comparable in 
unknown as well as known factors likely to influence the outcome, apart from the actual 
treatment under study. This is critical, as in most situations there are unknown factors, 
certainly when dealing with social or biological experiments. 
 
The standard analysis of variance F tests assume that the treatments are fixed, but have been 
allocated randomly to subjects. 

Blinding  
In a medical experiment, the comparison of treatments may be distorted if the patient, the 
person administering the treatment and those evaluating it know which treatment is being 
allocated. It is therefore necessary to ensure that the patient and/or the person administering 
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the treatment and/or the trial evaluators are 'blind to' (don't know) which treatment is 
allocated to whom. 
 
Sometimes the experimental set-up of a clinical trial is referred to as double blind, that is, 
neither the patient nor those treating and evaluating their condition are aware (they are 'blind' 
as to) which treatment a particular patient is allocated. A double-blind study is the most 
scientifically acceptable option. 
 
Sometimes however, a double-blind study is impossible, for example in surgery. It might still 
be important though to have a single blind trial in which the patient only is unaware of the 
treatment received, or in other instances, it may be important to have blinded evaluation. 

Placebo  
A placebo is an inactive treatment or procedure. It literally means 'I do nothing'. The 'placebo 
effect' (usually a positive or beneficial response) is attributable to the patient's expectation that 
the treatment will have an effect. This is sometimes linked with the Hawthorne effect, which is 
the effect due to attention being paid to people, i.e. people respond positively to being assessed 
or measured. Clearly the Hawthorne effect should occur equally for all study participants as 
long as the level of interaction is similar. 
 

Ethical concerns 
Clearly, it is unethical to randomize the allocation of treatments to humans, if we know that 
one treatment is better than another (or than the placebo), so we sometimes have to use the 
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current best treatment for comparison instead. This can be complex when there are risks (e.g. 
side effects) as well as benefits of treatments. When it is unethical to not provide the one 
treatment being considered, one possibility is a wait control study where we compare before 
(waiting), during and after treatment (to see if the effect persists) for each individual. 
 
It may also be important to look at cost-effectiveness, which requires collecting data about the 
full costs of each treatment (and control). 
  
Note that all studies that involve treatment of or personal data collection from human or 
animal subjects require ethical approval. For clinical human studies, this involves the 
Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West 
Cluster (IRB), for live animals it involves the Committee for the Use of Live Animals in 
Teaching and Research (CULATR) while for other studies with personal data or human 
subjects, it is the Human Research Ethics Committee for Non-Clinical Faculties (HRECNCF).  

Completely Randomized Design  
The structure of the experiment in a completely randomized design is assumed to be such that 
the factor combinations are allocated to the subjects completely at random. 

Randomized Complete Block Design  
The randomized complete block design is a design in which the subjects are matched according 
to a variable that the experimenter wishes to control. The subjects are put into groups (blocks) 
of the same size as the number of treatments. The members of each block are then randomly 
assigned to different treatment groups. 
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Example  
A researcher is carrying out a study of the effectiveness of four different skin creams for the 
treatment of a certain skin disease. He has eighty subjects and plans to divide them into 4 
treatment groups of twenty subjects each. Using a randomized blocks design, the subjects are 
assessed and put in blocks of four according to how severe their skin condition is; the four most 
severe cases are the first block, the next four most severe cases are the second block, and so on 
to the twentieth block. The four members of each block are then randomly assigned, one to 
each of the four treatment groups. 

Factorial Design  
A factorial design is used to evaluate two or more factors simultaneously. The treatments are 
combinations of levels of the factors. The advantages of factorial designs over one-factor-at-a-
time experiments are that they are more efficient and they allow interactions to be detected. 

Full Factorial Design 
A full factorial design is a factorial design that covers all combinations of the factor levels an 
equal number of times (more than one times, means we have replicates). 

Fractional Factorial Design  
A fractional factorial design, means a design that only covers a simple fraction of a factorial 
design and is a full factorial design for a subset of the factors (e.g. for any pair of factors). 
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Principles of Optimal Design 
Overall, the idea is that when the data collection can be fully (or partially controlled), we can 
“design” an experiment in an optimal way to answer our questions.  These questions can be of 
different types: 

a) Which factors affect the response and how? 
b) What is the optimal combination of factors to maximize (or minimize) the response? 
c) Which factors look like they have the greatest influence on the response? 
d) What type of relationship do the factors have on the response (linear, quadratic etc.) 

 
For a), we usually want a full factorial design, which means generating all possible 
combinations of the levels of the factors, which can be a large number as the number of factors 
and/or levels increases. 
 
For b) we usually assume a quadratic response and then choose data points to help us find the 
maximum or minimum – this is called a response surface design 
 
For c) we are interested in a screening design, which usually means assuming only 2 levels for 
each factor and also using a fractional factorial design. In this case, we are usually assuming 
that all the interactions are small (or at least that all higher order interactions are small) and 
we focus on the main effects of each factor, e.g. 10 factors with 2 levels each = 1024 
possibilities, one eighth fraction would be 128, a sixteenth would be 64, a thirty-second would 
be 32, a sixty-fourth would be 16, while 5 factors with 3 levels each=243 possibilities, one third 
fraction would 81, one ninth would be 27 
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For d) we need data spread out over different levels for the factors in order to identify any non-
linearity. This is only feasible for a small number of factors. We need at least 3 levels in order 
to have any chance of identifying non-linearity at all. 
 
There are some general principles in choosing a design: 

1) Keep the design balanced (i.e. equal number of data points for each factor level) 
2) Take values at extremes 
3) Take values at combinations of extremes 
4) Put some points near the center to check for curvature (more for d)) 
5) Randomize the assignments of the data points to minimize any uncontrolled for effects 

and interactions. 
We start with an example of a fractional factorial experiment to see which of 7 binary factors 
affect the speed when riding a bike: gear, dynamo, seat, tires, handlebars, breakfast and 
raincoat. There are only 8 observations, which is 23 compared to 27 observations needed for a 
full factorial experiment. This means that even for main effects, we cannot estimate the 
residual, so we can only order the effects, not test their significance. 
 



 190 

 
Next we have a full factorial experiment with 5 binary factors (catalyst, temperature, 
concentration, stir rate, feed rate) but no replicates where we are trying to identify what 
affects reactor output, so we try fitting the main effects and 2 way interactions. The results 
suggest that catalyst, temperature, concentration and their interactions matter: 
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16: Time Series 
 

Learning objectives: understand how to model when the residuals are 
correlated over time sequence 
 
When data are collected in a series over time, we call this a time series. Standard methods 
require that the data are collected at equally spaced time points (e.g. hourly, daily, monthly or 
yearly). The key difference from simple linear models is that the assumption that the errors 
are independent is usually no longer valid – the simplest generalization is that the errors are 
autocorrelated – in other words 
 
Correlation of the errors for yt and yt+k = rk, where yt is the observed value at time t and yt+k is 
the observed value at time k units later. 
 
You can see that this says that errors that are closer together in time have a stronger 
correlation. If r is small, then the usual linear models will be appropriate, so we can test 
whether r is zero in order to decide whether we need to use this generalization. This test is 
called the Durbin-Watson test and is wise if our data has an obvious ordering. We examine this 
test for the Longley dataset, where it shows marginal significance for a small autocorrelation: 
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This situation (of r<>0) requires a relatively simple generalization of the linear models we 
have been discussing. Autocorrelation means that we may have less information than we think 
(i.e. the effective sample size is smaller). 
 
Another type of time series model is a seasonal model. This means that we include an 
independent variable that denotes which season (e.g. spring, summer, autumn and winter). 
Clearly, this is just a particular factor, so it can be included in the linear models we already 
know how to handle, if we know the length of the cycle. “Seasons” are not necessarily seasons 
in the usual sense of the word, but can be hours of day or stages of any cycle. Note that finding 
the length of the cycle may be an important part of the analysis for some data sets. Special 
cases are where the seasonal pattern follows a sinusoidal curve (e.g. tide heights and other 
lunar/solar patterns). 
 
The next stage of sophistication in time series models is differencing, moving averages and 
autoregressive models. The basic idea of these generalizations (usually considered together) is 
that by using differences of the observed y (autoregressive models) or of the errors (moving 
averages), possibly after initial differencing to remove trends, we can get a simple linear 
model. These models are known as ARIMA models (autoregressive integrated moving average) 
 
In other words: Autoregressive (AR) models: forecasts are based on a linear combination of 
previous values 
Moving Average (MA) models: forecasts are based on a linear combination of previous errors 
(i.e. a linear combination of residuals) 
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ARIMA models: combine differencing, AR and MA. 
 
Differencing on yt means= yt- yt-1 
 
In other words, we calculate the difference between an observation and the one before it in 
time. This can be used to remove trends, as standard methods assume stationarity (the mean 
and variance are stable over time) 
 
A simple example: if you have a simple linear trend 
yt=a +b t + error, then (yt- yt-1)=b + error, i.e. a trend becomes a constant. 
 
If you apply differencing again, you get:  
(yt- yt-1)-(yt-1- yt-2) =0 + error, so the constant disappears. 
 
General ARIMA models are hard to identify, but special cases are easier: 
 
For pure MA with k terms, the autocorrelation function is zero after the kth term, where 
autocorrelation is simply the sample correlation of yt with yt-k for different values of k. 
 
For pure AR with k terms, the partial autocorrelation function (pacf) is zero after the kth term, 
where the pacf is the sample correlation between yt with yt-k for different values of k, after first 
removing the effects of the intervening y, i.e. yt-1 to yt-k+1 on both variables by using linear 
regression, i.e. pacf is the autocorrelation of the residuals from the regressions. 
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The first example is looking at monthly Ozone concentrations, which show a strong seasonal 
pattern and a downward trend.  
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The second example looks at the yearly numbers of lynx (a wild cat) caught in Canada and 
shows a strong cycle of 9.5 years. 
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This example shows the pattern for passenger numbers – we can see that log transformation is 
helpful here 
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Finally, this time series plot for CO2 shows a strong trend and seasonal pattern. 
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17: Generalized Linear Model 

 

Learning objectives: understand how to model when the dependent 
variable follows a distribution other than the Normal distribution. 

 
In the General Linear Model, we have that: 
E(y)=A+B x and Y=E(y)+ error term 
Where the error term is from the Normal distribution with zero mean and constant variance. 
 
For the Generalized Linear Model, we have that: 
g(E(y))=A+B x, where g is called the link function and Y follows a specified distribution with 
mean E(y) 
 
If Y is count data, then the distribution is Poisson with parameter λ, E(y)=λ and g(y) is log(y) 
If Y is binary outcomes, i.e. success=1/failure=0 then the distribution is Binomial(1,p), E(y) is 
p, the probability of success and g(y) is log(y/(1-y)) = logit (y) 
Can also model ordinal Y, using ordinal logistic model. 
 
We can apply similar ideas to identify a good model that explains the variation in y 
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Please see the book “Generalized Linear Models” by Nelder and McCullagh for more technical 
details and examples. 
 
For logistic models, i.e. for 2 levels, 
 
Log(Pr(level 2)/Pr(level 1))= linear model+error, 
 
i.e. expected log odds is linear in the factors and covariates (vs expected value for y is linear for 
general linear models). 
 
As the linear model moves from large negative to large positive, we shift from 
 
Pr(level 1) close to 1 and Pr(level 2) close to 0  
 
to Pr(level 2) close to 1 and Pr(level 1) close to 0. 
 
These models need to be solved iteratively, but the computer shields us from this. 
 
Can extend these models for ordinal data to what is called ordinal logistic regression, which 
assumes a series of logistic regressions, which have the same slope but different intercepts. 
 
As this model only adds one parameter per level, it is still feasible for large numbers of levels. 
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There is also an extension for nominal variables, but we usually use an alternative formulation 
called log-linear models. 
 
These models assume a null hypothesis of: 
 
Pr(Row i and Col j)=Pr(Row i) x Pr(Col j) (i.e. row and column independence) 
 
or equivalently  
 
Log(Pr(i,j))=Log(Pr(i))+Log(Pr(j)) 
 
Which is why they are called log-linear. 
 
Note that this is symmetric in the variables (does not distinguish between independent and 
dependent variables). 
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18: JMP Basics 

Learning objectives: understand basics of using JMP 

Data Tables 
We will assume that we can represent data as cases=rows and variables=columns, i.e. basic 
spreadsheet concept.  The main variation on this is that we may use one column as a count or 
frequency column.  This allows us to avoid entering every case, when some of the cases are 
identical. (Illustrate simple 2x2 table in JMP) 

Variable Type 
One key issue when doing statistics is the type of variables that we have, in particular, 
whether they are nominal, ordinal or continuous.  In JMP, we have to select the type for each 
column and this helps in that JMP can be smart in identifying appropriate analysis as long as 
the type is correct. (Illustrate in JMP) 

Entering Data 
Data can come from multiple sources, including import from Excel or a text table, keyboard 
entry or randomly generated. For importing, you need to know what the delimiter is and 
whether the names of variables are in the first row. JMP tables can also be exported similarly. 
(Illustrate import/export of animals from Sample Import folder and keyboard entry of new 
data) 
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Row Selection 
One of the beauties of an interactive package is that we can select rows in one place and they 
will be highlighted in other places. 
The rows can be selected manually (by selecting in the spreadsheet view), programmatically 
(will show), or by lassoing points in a graph (will show).  Selected rows can then be coloured, 
hidden or excluded. This is invaluable if trying to understand whether there is a problem with 
some data points. More detailed selections can be made using repeated use of row selection to 
narrow down or expand the selected rows. (illustrate different ways of selecting rows and then 
excluding or coloring using students) 

Graphs and Reports 
To keep results, you need to either (Mac: export, Windows: save as) the output as a pdf, rtf, 
text or html file or copy and paste results into another file (e.g. Word) (illustrate) 

Manipulating Tables 
Sometimes you need to reorganize tables, using sorting, summarizing or stacking.  You can 
also join tables together. (summarise Companies, stack Cheese taste, subset(rows), sort(rows), 
transpose(swap rows and columns), concatenate(rows), join (columns), split(reverse of stack)) 
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Formulae for creating variables or generating random data 
If we want to adjust data (e.g. standardize by subtracting the mean and dividing by the S.D), 
recode or create random data, the formula editor is our friend (like a more sophisticated 
formula in Excel applied to columns rather than cells). (illustrate using students to 
standardize, hotdogs to recode, pendulum to transform and create randdist to generate) 
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19: Data display with JMP 

Learning objectives: understand how to display data in JMP 
 

Univariate distributions 
We start by looking at what JMP does when we ask for distributions for different types of 
variable. 
Key questions include whether the data is unimodal (if not, perhaps there is more than one 
process generating the data) and whether it might follow a Normal distribution (possibly after 
transformation).  We can use alternative plots that may offer advantages in some situations 
(e.g. box plots and stem-and-leaf) and Normal quantile plots (which plots the data against 
what we would expect if the data came from a Normal distribution with matching mean and 
variance and provides confidence limits to illustrate if the data is non-Normal). 
It is important to remember that statistical significance may be different to practical 
significance 
Graphics can help us identify when the data is truncated or there are atypical points. 
Sometimes, the test of normality is rejected for very minor deviations from normality, because 
there is a very large dataset.  We also need to be careful to look at data within each group, 
rather than the overall dataset. 
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Non-normal data   
Sometimes a power transformation turns the data into Normal data (i.e. the residuals are 
Normal). We can write this as: 
Z=(ya-1)/ a 
So that the limiting case of a goes to zero becomes Z=Ln(y) (which is the natural logarithm). 
Log transforms often make sense because they turn multiplicative or ratio processes in 
additive and subtractive ones (which underlie the Normal distribution). They can work as long 
as y is always positive (examples later). If data includes zeros, may add a small amount before 
doing log transform to account for rounding (add ¼ if rounded to integer) or truncation (add ½ 
if truncated to integer) 
If power transform does not work, can use non-parametric methods – simplest idea is to use 
ranks as a transformation – i.e. analyse ranks rather than raw data – t-test and F-test become 
Mann-Whitney and Kruskal-Wallis tests. Only difference is that proper nonparametric 
analysis takes accounts of ties (equal values) when calculating significance levels, which is 
missed if just using ranks in standard analysis. Without accounting for ties, we think we have 
more information than we really do. (Ranks can be added through the save option in 
Distribution) 
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Multivariate data 
Can do multiple bivariate plots or use principal component approach 
Bivariate plots means plotting all the pairs of dependent variables, which does not always 
reveal all the structure of the data. 
Principal components is based on the idea that linear combinations of the dependent variables 
may be able to summarise most of the variability in a relatively small number of dimensions. 
The extreme case would be where all the variables are perfectly correlated (+1 or -1), when one 
variable can summarise all the variability. The disadvantage is that the linear combinations 
are not always easy to interpret. 
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20: Model Building with JMP 

Learning objectives: understand how to build models in JMP 
 

Two groups 
Testing for 2 groups is easy, as it is still based on the t-test.  
We need to distinguish between paired and unpaired data - paired data turns back into 1 
group data by looking at differences. 

Multiple Groups (One-way ANOVA) 
Simplest case is balanced design (equal sample size for each level, i.e. each group) with 
constant variance (same for different groups), but can adjust for both of these. 
Multiple comparisons: often interested in comparisons between levels, e.g. which pairs are 
significant or best versus rest.  Need to adjust significance level for multiple tests.  Usually 
start by requiring that overall F-test is significant. 

Multiple Regression 
Model selection – dangers of “data mining” leading to models that are too complex (linnerand 
example) (average number of variables added by chance will be significance level times the 
number of variables tested, if we ignore correlations). 
Diagnostics – residuals and leverage 
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Residuals help us identify model deficiencies (are the residuals Normal, is the variance 
constant, is there are a missing variable, do we need a transformation) 
Look for patterns in residuals against row, against covariates for mean or variance 
Row (sequence) pattern for residual suggests missing variable (time?) or a change over time. 
Pattern for residual against covariate suggests need for products or powers of covariates. 
Pattern in variance suggests need for transformation to stabilize variance (assumed constant 
in standard models) 
Transformation – can try log, rank etc.  
Leverage helps us identify high dependence of model fit on a few key data points (model not 
necessarily “wrong”, but some risk and need to check).  
Collinearity – problem with covariates that are collinear (i.e. can predict one covariate from 
others), so parameter estimates not well defined, or may change considerably depending on 
which other variables included. 
 

General Linear Models with JMP (Multiple Regression + Multi-way ANOVA 
combined) (Analysis of Covariance) 
Model selection is now much more complex as we need to select from a wide range of models. 
Aim at simple answers (small degrees of freedom for model) that fit well and that can be 
explained in terms of a sensible theory. 
Notation: 
Y=A,X,A*X 
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Means Factor A, Covariate X (A and X are both called Main Effects) and the Interaction 
between the 2, where Factor means a categorical independent variable and Covariate is a 
continuous independent variables. (Factor: ANOVA, Covariate: Regression model) 
For multiple factors, can have many interactions, but we often assume that higher level 
interactions are likely to be (relatively) unimportant. 
Look at lack of fit to check whether interactions are missing – only useful if we have replicates 
(i.e. multiple data points with same factor levels and covariate values).  Replicates are very 
useful as they enable us to estimate the error variance independent of any model errors (at 
least for those factors and covariates included) 
Least Square Means – adjusted means for levels of a factor, after adjusting for covariates (e.g. 
if looking at lung cancer rates for smokers and non-smokers of different ages, then we can 
adjust the means of smokers and non-smokers so as to remove any differences due to the 
different average ages of smokers and non-smokers). 
Nested (hierarchical) classification 

Multivariate Linear Model with JMP 
 
The difference from the general linear model is that we have multiple dependent variables, 
which are correlated (If uncorrelated, can look at them separately). Generally assume that the 
same independent variables for all the dependent variables (i.e. they have similar causal 
processes). In order to choose the appropriate tests, need to know whether the measurements 
are all repeated measurements of the same construct (repeated measures) or not. If not, 
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usually use identity matrix formulation, which means focus primarily on the separate 
variables, rather than some specific combination of them. 
 

Generalized Linear Model with JMP 
 
Extend to data that does not follow the Normal distribution, but some other distribution. 
 
In the General Linear Model, we have that: 
E(y)=A+B x and Y=E(y)+ error term 
Where the error term is from the Normal distribution with zero mean and constant variance. 
 
For the Generalized Linear Model, we have that: 
g(E(y))=A+B x, where g is called the link function and Y follows a specified distribution with 
mean E(y) 
e.g. Y is count data, then the distribution is Poisson with parameter λ, E(y)=λ and g(y) is log(y) 
e.g. Y is binary outcomes, i.e. success=1/failure=0 then the distribution is Binomial(1,p), E(y) is 
p, the probability of success and g(y) is log(y/(1-y)) = logit (y) 
 
We can apply similar ideas to identify a good model that explains the variation in y 
 
Please see the book “Generalized Linear Models” by Nelder and McCullagh for more technical 
details and examples. 
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Ordinal Data with JMP 
 
Use logistic models, i.e. for 2 levels, 
Log(Pr(level 2)/Pr(level 1))= linear model+error, 
Instead of y=linear model+error 
i.e. expected log odds is linear in the factors and covariates (vs expected value for y is linear for 
general linear models). 
 
As the linear model moves from large negative to large positive, we shift from 
Pr(level 1) close to 1 and Pr(level 2) close to 0 to Pr(level 2) close to 1 and Pr(level 1) close to 0. 
These models need to be solved iteratively, but the computer shields us from this. 
Can extend these models for ordinal data to what is called ordinal logistic regression, which 
assumes a series of logistic regressions, which have the same slope but different intercepts. 
As this model only adds one parameter per level, it is still feasible for large numbers of levels. 
There is also an extension for nominal variables, but we usually use an alternative formulation 
called log-linear models. 
These models assume a null hypothesis of: 
Pr(Row i and Col j)=Pr(Row i) x Pr(Col j) 
Or Log(Pr(i,j))=Log(Pr(i))+Log(Pr(j)) 
Which is why they are called log-linear. 
Note that this is symmetric in the variables (does not distinguish between independent and 
dependent variables) and corresponds to independence of row and column in Chisquared 
goodness of fit. 
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Compositional data with JMP 
This is data where non-negative variables sum to a known constant – usually 100% or 1, such 
as when we have a set of proportions. In this case, correlations do not have the usual meaning 
because of the constraint. If the variables are all within the range (0,1), i.e. there are no zeroes 
or ones, we can use a log ratio transformation that is meaningful if we believe that relative 
ratios are what matter. For example, if we have 3 components: (x1, x2, x3) that sum to 1, then 
we can look at y1=log(x1/x3), and  y2=log(x2/x3) using the standard General Linear Model 
approach. 
 
Note that we can map these log-ratios back to the original x space and that it does not matter 
which of the x’s we use as a divisor for General Linear models.  Please see John Aitchison’s 
book: “The Statistical Analysis of Compositional Data” for more details of this approach. 

 

Time Series with JMP 
For time series data, we need to account for dependence of data on data collected at previous 
time points. The basic theory is introduced in XV. The key practical skill is to identify the 
structure of time dependence (combinations of autocorrelation, moving average, seasonality, 
time trends on different time scales). 
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21: R Basics 

Learning objectives: understand basics of using R 

Installation 
 
How to install R depends on which operating system you use and even on which version of that 
operating system. As R is open source, you can install it from scratch, i.e. compiling the source 
code, but that is not recommended unless you are already familiar with compiling code from 
scratch on your system, as it can be hard to get it to work properly.  Instead, visit the following 
repository where the latest version of R can always be downloaded, together with installation 
instructions.  
 
https://cran.r-project.org 
 
There are pre-built installers for 
Windows (one installer that installs 32bit or 64bit versions as appropriate) 
OSX (different installers for 10.11+, 10.9+ and 10.6+) -.  
If you want English messages, change your region in Language and Region in System 
Preferences to UK or US. If you want Simplified Chinese, choose China or if you want 
Traditional Chinese, choose Hong Kong. 
Linux (installers for Debian, Redhat, Suse and Ubuntu) 
 
Important Notes:  
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1) On OSX, you must install XQuartz first, which provides a UNIX based windowing system known as X11, and you must log out 
and log in again before installing R. 

2) You need to turn off anti-virus software, which otherwise may block R from moving files and hence completing the 
installation of packages. 

3) On Windows, you need access rights to the folder you have installed R in, or you can right click the R icon and 
select "Run as administrator." 

4) On Windows, please choose the "single-document "R interface (SDI). In the Startup options screen of the R 
installer, select Yes (customized startup). Then select the SDI (single-document interface) in preference to the 
default MDI (multiple-document interface). 

5) It seems that packages installation may have problems if you have not set your location/region to an English 
language location (e.g. Australia, Canada, UK, USA) so I strongly encourage making this change before installing R 
Commander - you can change it back after installation.  

6) If you get warnings like: Setting LC_CTYPE failed, using "C", then switch to US or British locale, or type into R:  
On OSX: system("defaults write org.R-project.R force.LANG en_US.UTF-8").  
On Windows/LINUX: Sys.setlocale("LC_ALL","English") 

7) For OSX, if you have problems, you can try to run R from Terminal instead of double clicking on the R.app 
8) If the files do not download, check if your firewall is blocking the download  
9) Check that all dependencies are installed, if not install them manually until there are no errors when loading the 

library. 
10) R is case sensitive for variable names, so be careful. 

 
There is a free 100 page R manual called Introduction to R, in the repository. 
 
However, these installations provide command line interfaces rather than menu-based 
systems. So, we will also install R Commander, which provides menus for many common 
statistical procedures. Details can be found here: 
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https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/index.html 
 
 
R Commander is an add-on to R called a package, so we can install it from inside R, with this 
instruction: 
 
install.packages("Rcmdr") 
 
(allow R to install any dependencies, meaning other software needed to make it work, if 
it asks which mirror to use, select the first choice) 
 
and then load it using this instruction: 
 
library(Rcmdr) 
 
On the Mac, you can either start R by double-clicking the R GUI program installed, or by 
typing R in the Terminal (which can be found in the Utilities folder). Using Terminal may 
work better if you intend to use R Commander, which sometimes conflicts with the R GUI.  
 
One good thing about R Commander is that it shows you which R commands it used in the R 
Script window. 
 
A more advanced system than R Commander, called R Studio, which includes a debugger and 
visualisation tools and can operate as a browser interface to a server, can be found here (the 
basic version is free): 
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https://www.rstudio.com 

Data Tables 
We will assume that we can represent data as cases=rows and variables=columns, i.e. basic 
spreadsheet concept.  Note that weights in R usually mean precision weights, not frequency 
weights as in SPSS and will usually give different results as precision weights do not affect 
degrees of freedom calculations. 
 

Variable Type 
One key issue when doing statistics is the type of variables that we have, in particular, 
whether they are nominal, ordinal, interval or ratio scale.  R only knows categorical (caused by 
entering anything non-numeric as data, which it then assumes is nominal scale) and numeric 
data. It is your responsibility to know whether your numeric data are nominal, ordinal, 
interval or ratio scale and hence whether the analysis is appropriate. R Commander assumes 
that all numeric data is interval scale, so if you have numeric coding of any categorical 
variables, it is wise to use R Commander to create new factors to use instead and hence reduce 
the risk of mistakes (illustrate creating a factor from a numeric variable). 

Entering Data 
Data can come from multiple sources, including import direct from Excel, SPSS, SAS, Minitab, 
STAT, URL or a text table, keyboard entry or randomly generated. Some R packages already 
include datasets, which can easily be loaded. 
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For importing from text, you need to know what the delimiter (field separator) is and whether 
the names of variables are in the first row. R data tables (known as data frames in R) can also 
be exported similarly. (Illustrate import and keyboard entry of new data). R uses NA to mean 
missing and if you enter anything that is not a number or NA, it assumes the variable is a 
categorical variable (factor). 
 

Saving Data 
Saving data means that the data is saved as an R data frame and can be easily reloaded. 
 

Manipulating Tables 
Sometimes you need to reorganize tables (Data/Active data set), using sorting, aggregating, 
subsetting or stacking.   

Creating variables or generating random data 
If we want to create new variables (e.g. standardize by subtracting the mean and dividing by 
the S.D), recode, create random data, convert numeric variables to factors, the data editor 
(Data/Manage variables in active data set) is our friend (like a more sophisticated formula in 
Excel applied to columns rather than cells).  
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22: Data display with R 

Learning objectives: understand how to display data in R 
 

Univariate distributions 
We start by looking at what R Commander does when we ask for (statistics) summaries for 
different types of variable. 
 
For numeric, it offers: min, max, median, mean, SD, quartiles. 
For factors it offers: frequency distributions 
 
It also offers graphs such as stem and leaf plots, histograms, box plots for numeric data 
 
Illustrate using data from package datasets 
 
iris(interval and factor), trees(interval), airquality (create factors) 
 
Key questions for interval scale data include whether the data is unimodal (if not, perhaps 
there is more than one process generating the data) and whether it might follow a Normal 
distribution (possibly after transformation).  We can also use Normal quantile plots (which 
plots the data against what we would expect if the data came from a Normal distribution with 
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matching mean and variance and provides confidence limits to illustrate if the data is non-
Normal). 
 
It is important to remember that statistical significance may be different to practical 
significance. Graphics can help us identify when the data is truncated or there are atypical 
points. Sometimes, the test of normality is rejected for very minor deviations from normality, 
because there is a very large dataset.  We also need to be careful to look at data within each 
group, rather than the overall dataset. 
 
Sometimes a power transformation can turn the data into Normal distributed data (i.e. the 
residuals are Normal, not the raw data). We can write this as: 
 
Z=(ya-1)/ a 
So that the limiting case of a goes to zero becomes Z=log(y) (which is the natural logarithm in 
R, use log10 for log base 10). 
 
Log transforms often make sense because they turn multiplicative or ratio processes into 
additive and subtractive ones (which underlie the Normal distribution). They can work as long 
as y is always positive (examples later). If data includes zeros, may add a small amount before 
doing log transform to account for rounding (add ¼ if rounded to integer) or truncation (add ½ 
if truncated to integer) 
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If power transform does not work, can use non-parametric methods – simplest idea is to use 
ranks as a transformation – i.e. analyse ranks rather than raw data – t-test and F-test become 
Mann-Whitney/Wilcoxon and Kruskal-Wallis tests. Only difference is that proper 
nonparametric analysis takes accounts of ties (equal values) when calculating significance 
levels, which is missed if just using ranks in standard analysis. Without accounting for ties, we 
think we have more information than we really do. (Ranks can be added through the rank 
function) 

Multivariate data 
Can do scatterplot matrix (under Graphs) or use principal component approach (under 
Statistics: dimensional analysis in R commander). 
 
Scatterplot matrix means plotting all the pairs of dependent variables, which does not always 
reveal all the structure of the data. Principal components is based on the idea that linear 
combinations of the dependent variables may be able to summarise most of the variability in a 
relatively small number of dimensions. The extreme case would be where all the variables are 
perfectly correlated (+1 or -1), when one variable can summarise all the variability. The 
disadvantage is that the linear combinations are not always easy to interpret. 
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23: Model Building with R 

Learning objectives: understand how to build models in R 

Two groups 
Testing for 2 groups is easy, as it is based on the t-test.  
We need to distinguish between paired and unpaired data - paired data turns back into 1 
group data by looking at differences. 

Multiple Groups (One-way ANOVA) 
Simplest case is balanced design (equal sample size for each level, i.e. each group) with 
constant variance (same for different groups), but can adjust for both of these. 
Multiple comparisons: often interested in comparisons between levels, e.g. which pairs are 
significant or best versus rest.  Need to adjust significance level for multiple tests.  Usually 
start by requiring that overall F-test is significant. 

Multiple Regression 
Model selection – dangers of “data mining” leading to models that are too complex (linnerand 
example) (average number of variables added by chance will be significance level times the 
number of variables tested, if we ignore correlations). 
 
Diagnostics – residuals and leverage 
Residuals help us identify model deficiencies (are the residuals Normal, is the variance 
constant, is there are a missing variable, do we need a transformation) 
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Look for patterns in residuals against row, against covariates for mean or variance 
Row (sequence) pattern for residual suggests missing variable (time?) or a change over time. 
Pattern for residual against covariate suggests need for products or powers of covariates. 
Pattern in variance suggests need for transformation to stabilize variance (assumed constant 
in standard models) 
Transformation – can try log, sqrt etc.  
 
Leverage helps us identify high dependence of model fit on a few key data points (model not 
necessarily “wrong”, but some risk and need to check).  
 
Collinearity – problem with covariates that are collinear (i.e. can predict one covariate from 
others), so parameter estimates not well defined, or may change considerably depending on 
which other variables included. 
 
R commander allows us to include polynomials and splines (smoothed polynomials) and offers 
numerical diagnostics and graphs to help check model assumptions. 
 
Can use best subset to help identify which is the best model, given different criteria (AIC, BIC, 
Mallows Cp are good criteria that penalise complexity in different ways, adjusted R2 is not as 
good, R2 is terrible unless all models have same complexity). Do not use stepwise, always 
prefer best subset, because stepwise may miss the best fitting models. 
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General Linear Models with R 
 
GLM means Multiple Regression + Multi-way ANOVA combined, sometimes called Analysis of 
Covariance 
 
Model selection is now much more complex as we need to select from a wide range of models. 
Aim at simple answers (small degrees of freedom for model) that fit well and that can be 
explained in terms of a sensible theory. 
 
For multiple factors, can have many interactions, but we often assume that higher level 
interactions are likely to be (relatively) unimportant.  
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Generalized Linear Model with R 
 
Sometimes called GLIM, to distinguish from GLM. 
 
Extend GLM to data that does not follow the Normal distribution, but some other distribution, 
like Poisson, Gamma, Binomial 
 
In the General Linear Model, we have that: 
E(y)=A+B x and Y=E(y)+ error term 
Where the error term is from the Normal distribution with zero mean and constant variance. 
 
For the Generalized Linear Model, we have that: 
g(E(y))=A+B x, where g is called the link function and Y follows a specified distribution with 
mean E(y) 
 
e.g. Y is count data, then the distribution is Poisson with parameter λ, E(y)=λ and g(y) is log(y) 
e.g. Y is binary outcomes, i.e. success=1/failure=0 then the distribution is Binomial(1,p), E(y) is 
p, the probability of success and g(y) is log(y/(1-y)) = logit (y) or can use probit. 
 
We can apply similar ideas to identify a good model that explains the variation in y 
 
Please see the book “Generalized Linear Models” by Nelder and McCullagh for more technical 
details and examples.  
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Binary, Ordinal and Multinomial Data with R 
 
Use logistic models, i.e. for 2 levels, 
 
Log(Pr(level 2)/Pr(level 1))= linear model+error, 
 
Instead of y=linear model+error 
 
i.e. expected log odds is linear in the factors and covariates (vs expected value for y is linear for 
general linear models). 
 
As the linear model moves from large negative to large positive, we shift from 
Pr(level 1) close to 1 and Pr(level 2) close to 0 to Pr(level 2) close to 1 and Pr(level 1) close to 0. 
These models need to be solved iteratively, but the computer shields us from this. 
 
We can extend these models for ordinal data to what is called ordinal logistic regression, which 
assumes a series of logistic regressions, which have the same slope but different intercepts. 
As this model only adds one parameter per level, it is still feasible for large numbers of levels. 
 
There is also an extension for nominal data called multinomial logit, which has many more 
parameters, because the slope is no longer assumed to be common across levels.  
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Compositional data with R 
This is data where non-negative variables sum to a known constant – usually 100% or 1, such 
as when we have a set of proportions. In this case, correlations do not have the usual meaning 
because of the constraint (in the trivial case, if p and q add to 1, they must have a correlation 
of -1). If the variables are all within the range (0,1), i.e. there are no zeroes or ones, we can use 
a log ratio transformation that is meaningful as relative ratios are what matter. For example, 
if we have 3 components: (x1, x2, x3) that sum to 1, then we can look at  
 
y1=log(x1/x3), and y2=log(x2/x3)  
 
using the standard General Linear Model approach. 
 
Note that we can map these log-ratios back to the original x space and that it does not matter 
which of the x’s we use as a divisor for General Linear models.  Please see John Aitchison’s 
book: “The Statistical Analysis of Compositional Data” for more details of this approach. 
 

Beyond R Commander 
R offers many packages beyond those included in R Commander. They can be installed just 
like R Commander, inside R. However, some caution is advised as not all packages are well 
maintained. Usually, if there is an up-to-date package at the R repository, that is a good sign 
that this package is well maintained, but the documentation may not always be very clear. 
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24: Hierarchical Linear Models 
 

Why HLM: 
 
Hierarchical Linear Models (HLM), otherwise known as multilevel models, mixed models or 
random-effects models are used to model data that vary at more than one level.  
 
For example, data from cluster sampling, such as students in classes in schools, where 
students, classes and schools would be the three levels. These models allow us to understand 
variation at the different levels and model the impact of factors and covariates at the different 
levels.  
 
Simple linear models assume that all observations are independent and have fixed variance, 
which is not true in our school example, as students in the same class or in the same school 
share common effects. Using simple linear models on the students is flawed because it does not 
account for the common variation and will be biased. Using simple linear models on school 
averages does not allow us to account for characteristics of the students, such as age and 
parental characteristics, which may vary greatly across students and schools, distorting the 
school level relationships. 
 
HLM means that the expected value may have factors and covariates at each level (which is 
simple to account for) and the error term in our model may have elements from each level of 
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our hierarchy, which is more complex to account for in the estimation and hypothesis testing 
process. 
 
HLM can also be used for longitudinal data, where we have repeated measurements on the 
same individuals, so those repeated measurements are not independent because of common 
individual variation, so we again distinguish between the individual level and the 
measurement occasion for that individual level. 
 
For example, a simple linear regression model assuming Gaussian errors and repeated 
measurements on individuals (a two level model) where the regression coefficients may be 
different for different individuals, would look like this: 
 
Yij = beta0j + beta1j Xij + ej + eij 
j is the jth individual and ij means the ith measurement on the jth individual 
ej and eij both follow a Normal distribution with different variances 
ej is the error due to variation across individuals 
eij is the error due to variation across measurements of an individual 
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Statistical inference approaches for linear hierarchical models: 
 
Traditional statistical approaches (with a focus on unbiased minimum variance statistical 
estimators) are problematic as they model variance components (from different sources) and 
the estimated variance components can be negative, which is clearly impossible. 
 
The two approaches we will consider are 
 
Maximum Likelihood (ML) and Bayesian 
 
In both cases, we need first to be able to state what the probability density function is (if our 
dependent variable is categorical, this changes to needing the probability mass function). 
 
We will start with a simple model with constant mean and independent Gaussian errors: 
 
The probability density for each data point (Gaussian density) is proportional to 
 
exp(-1/2((y-theta)/sigma)2) 
   sigma 
where theta is the mean and sigma is the standard deviation 
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Maximum Likelihood (ML) 
 
Likelihood is the overall probability for the whole data set, so 
 
L(theta|data) is proportional to exp(-1/2å((y-theta)/sigma)2) 
        sigman 
 
We prefer to look at the log likelihood, which is quadratic in theta for Gaussian errors.  
 
LogL(theta|data) = constant -n log(sigma) -1/2å((y-theta)/sigma)2 
 
ML requires finding the maximum, often found using simple calculus, by setting the first 
derivative to zero and solve: 
 
d LogL = å(y-theta)/sigma2 = 0, means the estimate of theta must be the mean of y. 
d theta 
 

We can also find the approximate variance of the estimate by looking at the inverse of minus 
the second derivative of LogL: 
 
d2 LogL = -n/sigma2  
d2 theta 
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so the estimated variance = sigma2/n 
 
which is exact for this case. 
 
Unfortunately, for small samples, ML can be highly biased, especially if the number of 
parameters is large. This can be improved using the bootstrap adjustment, but that is beyond 
our scope here. 
 
Also, for hierarchical models, ML does not work very well, as shown by the James-Stein 
estimator: 
 
In the simple case of Y following a Normal distribution with constant variance and n 
measurements from each of m groups. 
 
ML would suggest using the group sample means as the best estimate of the group population 
means. 
 
However, shrinkage of the group estimates towards the overall mean is superior, i.e. 
 
group mean estimate = overall sample mean + k (group sample mean - overall sample mean) 
 
where k = 1-      (m-3) sigma2                 
  ||group mean-overall mean|| 
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and ||x-y|| means the Euclidean distance between x and y 
 
is provably superior to the group sample mean if m>4! 
 
This is called a shrinkage estimator. 
 

Bayes 
 
Bayesian inference starts from Bayes rule: 
 
p(theta|data) = p(data|theta) p(theta) 
    p(data) 
 
as p(data) is a constant and p(data|theta) is the likelihood L(theta|data) (notice that we have 
switched from a function of the data conditional on theta to a function of theta conditional on 
the data, this depends on the Likelihood principle), we get 
 
p(theta|data) is proportional to L(theta|data) p(theta) 
 
Notice that this assumes we can make probability statements about theta, which cannot be 
interpreted as long-run relative frequencies, but as subjective degree of belief, which has been 
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criticized as unscientific, but this approach enables us to quantify all the elements of 
uncertainty. In other words, we can apply probabilities not only to observable outcomes, but 
also to parameters in a model, where there are no long-run relative frequencies. 
 
We talk about this as Bayesian updating from the prior distribution (before seeing the new 
evidence) using the likelihood to get the posterior distribution, which incorporates the new 
evidence. 
 
The conceptual challenge is how to construct the prior distribution before seeing any evidence, 
but in practice, we can use a widely spread out distribution, such as Gaussian with large 
variance. 
 
Go back to our simple model: 
 
LogL(theta|data) = constant -n log(sigma) -1/2å((y-theta)/sigma)2 
 
if our prior distribution for theta is Gaussian with mean theta0 and variance sigma02 
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If we use the term precision to mean the inverse of the variance, then the posterior distribution 
for theta is also Gaussian with  
 
posterior mean= P0 theta0 + Pn sample mean 
     P0 + Pn  
 
posterior precision=P0+Pn,  
 
where P0 is the prior precision (i.e. 1/sigma02) and Pn is the sample precision (i.e. n/sigma2)  
 
so if P0 is very small, the answer is similar to ML, but the sample mean is shrunk towards 
theta0 
 
If we build a Bayesian HLM for the group example above and assume that 
 
the group means are a Gaussian sample from the prior mean,  
 
thetaj ~ N(theta0, sigma02) 
 
then the group means are shrunk towards the overall sample mean and these estimates 
outperform ML estimates. 
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Bayesian methods are naturally hierarchical as regards the parameters, so we can have second 
order priors for theta0 and sigma02 
 
In short, there is a compelling empirical case that Bayes methods are superior for HLM in 
terms of providing better estimates (in fact, all admissible procedures are either Bayes 
methods or limits of Bayes methods, where admissible means I cannot find a procedure that is 
always better) 
 
As we shall see later, Bayesian methods also allow us to easily replace the Gaussian 
assumption with other distributions, including discrete distributions, allowing many different 
sensitivity analyses to be considered. 
 
Another simple example (not HLM yet) 
Binomial data – observe r successes out of n trials with chance theta of success 
 
LogL(theta|r,n) = constant + r log(theta) + (n-r) log(1-theta) 
 
If we have a prior for theta of Beta(a,b), then the posterior for theta is Beta(a+r,b+n-r) 
 
This is what we call a conjugate prior as the posterior is in the same class of distributions as 
the prior. This is simple and does not need any sophisticated software, but if I sample 
successes from k different individuals, who have different theta, then I have a hierarchical 
model and the analysis gets more complex. 
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Comparison of classical, ML and Bayes in simple situation 
 
If we just know that in n trials, there were r successes, what is our best estimator for theta, the 
chance of success? 
 
ML is clearly r/n, even though that may estimate theta as 0 or 1, which is impossible unless we 
have a 2 headed or 2 tailed coin 
 
Bayes is (a+r)/(n+a+b) if we use the Beta (a,b) prior for theta 
 
Classical (unbiased minimum variance) cannot answer the question without knowing what 
experiment we did! 
 
Binomial (r is random, n is fixed), the sufficient statistic is r and the best estimator is r/n 
 
Negative Binomial (r is fixed, n is random), the sufficient statistic is k (# of failures) and the 
best estimator is (r-1)/(n-1) 
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Marginal Posterior Distribution 
There is one practical problem with Bayesian methods that we have not yet discussed: 
 
Bayes formula provides the joint posterior distribution for all parameters that we are 
estimating. How do we obtain the marginal posterior distribution for specified parameters? 
 
In some simple cases, we can do exact symbolic integration. For example, if we use an inverse 
gamma prior distribution for the variance (i.e. gamma prior for the precision) and Gaussian 
prior for the mean, we can show that the marginal posterior for the mean is a Student-T 
distribution and the marginal posterior for the variance is an inverse gamma (i.e. gamma 
posterior for the precision).  
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Markov Chain Monte Carlo (MCMC) 
 
However, in many cases, we cannot do exact symbolic integration and must use numeric 
integration. Unfortunately, precise numerical integration takes a long time if the number of 
parameters is large (i.e. much greater than 10) as the amount of calculation increases in 
general exponentially with the number of parameters, so we need to rely on Monte Carlo 
integration (i.e. sampling). Monte Carlo sampling works by allowing us to calculate  
 
E(g(X)) = å g(xi), 
     N 
where xi is the ith sample out of N from g(x), and this is not very precise unless we generate a 
very large number of points to ensure that the sampling error is small. 
 
Fortunately, there was a major advance in the 1980s known as Markov Chain Monte Carlo, 
which uses sampling in a much more efficient way to generate marginal posterior distributions 
and any expectations we might be interested in. The key requirement is that we write the 
statistical model as a full joint probability distribution for all parameters and observable data. 
This is always possible for parametric models and distibutions, but often there is conditional 
independence between many elements of the model, which greatly simplifies the calculations. 
MCMC involves sampling in turn from each conditional distribution (this is called using the 
Gibbs sampler). 
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Sensitivity analysis is often simple to implement by generalizing the model, for example, if we 
replace a Gaussian by a T distribution, which includes Gaussian as a special case, where the 
degrees of freedom are large. 
   
This MCMC sampling takes advantage of the fact that if we know the conditional posterior 
densities for each parameter (this is the Markov Chain part) and use them to generate 
sequential samples, then we converge (under quite weak conditions) to the correct posterior 
density, yielding all the marginal posterior distributions as an outcome.  In many situations, 
we can easily find those conditional densities if we have a parametric model. 
 
The biggest challenge is arguably to confirm convergence – have we converged yet, or are we 
still moving very slowly across the parameter space? The technical term is that our Markov 
chain should be stationary.  One basic approach is to run parallel simulations (chains) starting 
from different initial values and see if they all converge to the same region and by comparing 
the variability within chains to variability across chains. This fits well with using a cluster of 
high performance computers. We can often improve convergence by parameterizing our model 
such that the parameters have low correlation. 
 
This was implemented in software called WinBUGS, which only runs under Windows and is no 
longer developed so we will use open source software called Just Another Gibbs Sampler 
(JAGS), that was completely rewritten but uses the same model description language (known 
as BUGS), so it can solve all the many examples developed for WinBUGS, including many 
hierarchical models. 
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The sampler needs to be run long enough to ensure that we have converged on the posterior 
distribution (so we have completed what is called "burn-in") first.  Each new iteration then 
produces a set of estimates for all the parameters, taken from the posterior distribution, so we 
will run for sufficient iterations to generate sufficient sampling precision in the posterior 
summaries of interest, such as posterior means, posterior standard deviations or marginal 
posterior distribution densities.   
 
JAGS has R interfaces called rjags, runjags, R2jags,jagsUI but to save time ensuring everyone 
has R correctly installed, we will instead work through some examples in JAGS directly. The R 
interfaces include a package called Coda to check convergence, which is probably the most 
challenging element of MCMC. 
 

References 
JAGS manuals: 
https://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x/ 
 
JAGS examples: 
https://sourceforge.net/projects/mcmc-jags/files/Examples/4.x/ 
 
JAGS software: 
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/ 
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BUGS book: 
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-the-bugs-book/ 

 
Windows installer hint: The path to the installer must contain only latin letters, no non-
English symbols, such as Chinese. 
 

BUGS language 
 
BUGS language understands scalars and arrays, including subsets of arrays and simple for 
loop structures 
 
~ is used for a stochastic (random) equation and <- for a deterministic equation 
 
Most distributions have a d prefix to their name 
 
Normal distributions are parameterised using mean and precision (=1/variance) 
 
There are 2 contexts, model and data 
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BUGS model 
 
A simple model example for simple linear regression is: 
 
model { 
 for (i in 1:N) {  
   Y[i] ~ dnorm(mu[i], tau)  
   mu[i] <- alpha + beta * (x[i] - x.bar) 
   }  
 x.bar <- mean(x)  
 alpha ~ dnorm(0.0, 1.0E-4)  
 beta ~ dnorm(0.0, 1.0E-4)  
 sigma <- 1.0/sqrt(tau)  
 tau ~ dgamma(1.0E-3, 1.0E-3) 
} 
 
Notes: 
x is centered to reduce the correlation in the estimates for alpha and beta 
sigma is there purely for understanding the results 
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BUGS data 
 
The data part can be very simple and data is stored in R dump format. 
 
This means that scalars are written as: 
 
theta <- 0.1243 
 
vectors are written as: 
 
x <- c(2, 3.5, 4.0e-3) 
 
matrices are more tricky as we need to tell BUGS the structure, such as for a 3 x 2 matrix A 
 
'A' <- structure(c(1,2,3,4,5,6), .Dim=c(3,2)) 
 
Our example of a simple linear model would need a data section like: 
 
N<- 8 
x<c(1,2,3,4,5,6,7,8) 
Y<-c(2,5,7,9,11,13,15,16) 
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It is also possible to simulate data inside BUGS like this: 
 
data { 
 for (i in 1:N) { 
  y[i] ~ dnorm(0,1)} 
} 
 
or transform data 
 
data {  
 for (i in 1:N) { 
   z[i] <- sqrt(y[i])} 
} 
 
Before running the examples, we first change our directory of the folder containing the 
example files (cd changes directory (use double quotes for the pathname, ls lists files (dir for 
Windows), pwd to show current directory) 
 
In my case: 
 
cd "/Volumes/Mac HD/Applications/JAGS/examples/classic-bugs/" 
 
is where JAGS installed my examples, so I can easily access the example files. 
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HLM Gaussian regression example 
 
This is the rats example originally used for WinBUGS in the Volume 1 set but now also 
included in JAGS, from Illustration of Bayesian Inference in Normal Data Models Using Gibbs 
Sampling by Alan E. Gelfand, Susan E. Hills, Amy Racine-Poon and Adrian F. M. Smith, in 
Journal of the American Statistical Association, Vol. 85, No. 412 (Dec., 1990), pp. 972-985. This 
example is taken from section 6 of the paper, and concerns 30 young rats whose weights were 
measured weekly for five weeks. 
 
The model is a random effects linear growth curve where the intercept and slope depend on the 
rat and xi is the day (8,15,22,29,36) of the measurement. 
 
Yij ~ Normal(αi + βi (xj - xbar ), τc ) 
αi ~ Normal(αc , τα )  
βi ~ Normal(βc , τβ ) 
 
where xbar = 22, and τ represents the precision (1/variance) of a normal distribution. 
 
  



 248 

In BUGS language, this is expressed as: 
 
model { 
    for (i in 1:N) { 
       for (j in 1:T) { 
          mu[i,j] <- alpha[i] + beta[i]*(x[j] - x.bar); 
          Y[i,j]   ~ dnorm(mu[i,j],tau.c) 
       } 
       alpha[i] ~ dnorm(alpha.c,tau.alpha); 
       beta[i]  ~ dnorm(beta.c,tau.beta); 
    } 
    alpha.c   ~ dnorm(0,1.0E-4); 
    beta.c    ~ dnorm(0,1.0E-4); 
    tau.c     ~ dgamma(1.0E-3,1.0E-3); 
    tau.alpha ~ dgamma(1.0E-3,1.0E-3); 
    tau.beta  ~ dgamma(1.0E-3,1.0E-3); 
    sigma    <- 1.0/sqrt(tau.c); 
    x.bar    <- mean(x[]); 
    alpha0   <- alpha.c - beta.c*x.bar; 
} 
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JAGS output in CODA format 
 
The standard CODA format for monitors that do not pool values over iterations is to create an  
index file and one or more output files.  
 
The index file is has three columns with, one each line: 
1. A string giving the name of the (scalar) value being recorded 
2. The first line in the output file(s) 
3. The last line in the output file(s) 
 
The output file(s) contain two columns: 
1. The iteration number 
2. The value at that iteration 
 
If we do not have R (and the package coda) we can easily look at these values in Excel to check 
for convergence. If we run at least 2 chains, we can check that they converge to the same 
values 
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JAGS script example 
 
We will run this for 1,000 updates to converge and then 10,000 more to yield estimates using 
this JAGS script: 
 
model in "rats.bug" 
data in "rats-data.R" 
compile, nchains(2) 
inits in "rats-init.R" 
initialize 
update 1000 
monitor alpha0  
monitor beta.c  
update 10000 
coda * 
 
 
HLM logistic regression example 
 
This is the seeds example from Volume 1, using data from Table 3 of  Crowder, M. J. 1978. 
Beta-binomial Anova for proportions, Journal of the Royal Statistical Society (C, Applied 
Statistics) 27(1), 34–37. 
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This example concerns the proportion of seeds that germinated on each of 21 plates arranged 
according to a 2 by 2 factorial layout by seed and type of root extract. 
 
The model is a random effects logistic, allowing for over-dispersion. If pi is the 
 
probability of germination on the ith plate, we assume 
 
ri ~ Binomial(pi , ni ) 
 
logit(pi) = α0 + α1 x1i + α2 x2i + α12 x1i x2i + bi 
 
where x1i , x2i are the seed type and root extract of the ith plate, and an interaction term 
 
α12 x1i x2i is included.  
 
bi ~ Normal(0, τ) is the random effect unrelated to the seed and root 
 
α0 , α1 , α2 , α12 , τ are given independent priors with small precision. 
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This yields this model in BUGS: 
 
model { 
   alpha0  ~ dnorm(0.0,1.0E-6);  # intercept 
   alpha1  ~ dnorm(0.0,1.0E-6);  # seed coeff 
   alpha2  ~ dnorm(0.0,1.0E-6);  # extract coeff 
   alpha12 ~ dnorm(0.0,1.0E-6); # interaction coeff 
   tau     ~ dgamma(1.0E-3,1.0E-3);    # 1/sigma^2 
   sigma  <- 1.0/sqrt(tau); 
   for (i in 1:N) { 
      b[i]  ~ dnorm(0.0,tau); 
      logit(p[i]) <- alpha0 + alpha1*x1[i] + alpha2*x2[i] + alpha12*x1[i]*x2[i] + b[i]; 
      r[i]  ~ dbin(p[i],n[i]); 
   } 
} 
 
Again we will run 1000 times to "burn-in", then 10,000 times to get estimates 
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School hierarchical model with pupil and school covariates 
 
This is the schools example from Volume 2, using data from “A Multilevel Analysis of School 
Examination Results”, by Harvey Goldstein; Jon Rasbash; Min Yang; Geoffrey Woodhouse; 
Huiqi Pan; Desmond Nuttall; Sally Thomas, Oxford Review of Education, Vol. 19, No. 4. 
(1993), pp. 425-433 (pdf in folder). 
 
They present an analysis of examination results from inner London schools. They use 
hierarchical or multilevel models to study the between-school variation and calculate school-
level residuals in an attempt to differentiate between 'good' and 'bad' schools. 
 
Data 
 
Standardized mean examination scores (Y) were available for 1978 pupils from 38 different 
schools. The median number of pupils per school was 48, with a range of 1--198. Pupil-level 
covariates included gender plus a standardized London Reading Test (LRT) score and a verbal 
reasoning (VR) test category (1, 2 or 3, where 1 represents the highest ability group) measured 
when each child was aged 11. Each school was classified by gender intake (all girls, all boys or 
mixed) and denomination (Church of England, Roman Catholic, State school or other); these 
were used as categorical school-level covariates. 
Model 
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We consider the following model, which essentially corresponds to Goldstein et al.'s model 1. 
 
Yij  ~ Normal(µij , τij )  
 
µij=α1j+α2j LRTij+α3jVR1ij+β1LRTij 2 + β2 VR2ij + β3 Girlij + β4 Girls'schoolj + β5 Boys'schoolj + β6 
CEschoolj + β7 RCschoolj + β8 other schoolj  
 
logτij = θ + φ LRT ij 
 
for the ith pupil in the jth school.  
 
We wish to specify a regression model for the variance components, and here we model the 
logarithm of τ ij (the inverse of the between-pupil variance) as a linear function of each pupil's 
LRT score. This differs from Goldstein et al.'s model which allows the variance σ 2 ij to depend 
linearly on LRT. However, such a parameterization may lead to negative estimates of σ2 ij . 
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This yields this model: 
 
model { 
 
for (p in 1 : N) {  
Y[p] ~ dnorm(mu[p], tau[p])  
mu[p] <- alpha[school[p], 1] + alpha[school[p], 2] * LRT[p] + alpha[school[p], 3] * VR[p, 1] + 
beta[1] * LRT2[p] + beta[2] * VR[p, 2] +  beta[3] * Gender[p] + beta[4] * School.gender[p, 1] 
+ beta[5] * School.gender[p, 2] + beta[6] * School.denom[p, 1] +  
 beta[7] * School.denom[p, 2] + beta[8] * School.denom[p, 3]  
log(tau[p]) <- theta + phi * LRT[p]  
sigma2[p] <- 1 / tau[p]  
LRT2[p] <- LRT[p] * LRT[p] 
 
} 
min.var <- exp(-(theta + phi * (-34.6193))) # lowest LRT score = -34.6193  
max.var <- exp(-(theta + phi * (37.3807))) # highest LRT score = 37.3807 
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# Priors for fixed effects: 
 
for (k in 1 : 8) { 
beta[k] ~ dnorm(0.0, 0.0001) } 
theta ~ dnorm(0.0, 0.0001)  
phi ~ dnorm(0.0, 0.0001) 
 
# Priors for random coefficients: 
for (j in 1 : M) {  
 alpha[j, 1 : 3] ~ dmnorm(gamma[1:3 ], T[1:3 ,1:3 ]);  
 alpha1[j] <- alpha[j,1] } 
 
# Hyper-priors: 
gamma[1 : 3] ~ dmnorm(mn[1:3 ], prec[1:3 ,1:3 ]);  
T[1 : 3, 1 : 3 ] ~ dwish(R[1:3 ,1:3 ], 3)} 
 
Note that alpha1[] measures the 'residual effect' for school j after adjusting for pupil- and 
school-level covariates. This might represent an appropriate quantity by which to rank schools' 
performance in terms of how good the results are after accounting for the language ability of 
the students. We can calculate the ranks for each complete iteration and hence find the mean 
and s.d. of the rank for each school. 
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Inhalers (ordered categorical repeated measures) 
 
This example is from Ezzet and Whitehead (1993), who analyse data from a two-treatment, 
two-period crossover trial to compare 2 inhalation devices for delivering the drug salbutamol in 
286 asthma patients. Patients were asked to rate the clarity of leaflet instructions 
accompanying each device, using a 4-point ordinal scale. 
 
The response Rit from the ith subject (i = 1 to 286) in the tth period ( t = 1,2) thus assumes 
integer values between 1 and 4. It may be expressed in terms of a continuous latent variable Y 
is taking values on (-inf, inf) as follows: 
 
   Rit = j if Y is in [aj-1 , aj ), j = 1,..,4 
 
where a0 = -inf and a4 = inf. Assuming a logistic distribution with mean mit for Y it , then the 
cumulative probability Qitj of subject i rating the treatment in period t as worse than category j 
(i.e. Prob( Y it >= a j ) is given by 
    
   logitQitj = -(aj + msit + bi ) 
    
where bi represents the random effect for subject i . Here, m s i t depends only on the period t 
and the sequence s i = 1,2 to which patient i belongs. It is defined as 
    
    m11 = b / 2 + p / 2 



 258 

    m12 = - b / 2 - p / 2 - k  
    m21 = - b / 2 + p / 2    
    m22 = b / 2 - p / 2 + k  
    
where b represents the treatment effect, p represents the period effect and k represents the 
carryover effect. The probability of subject i giving response j in period t is thus given by: 
 
pitj = Qitj - 1 - Qitj, where Qit0 = 1 and Qit4 = 0 
 
The BUGS language for this model is shown below. We assume the bi 's to be normally 
distributed with zero mean and common precision t. The fixed effects b, p and k are given 
vague normal priors, as are the unknown cut points a1, a2 and a3. We also impose order 
constraints on the latter using the I(,) notation in BUGS (T() in JAGS as this is truncation, not 
censoring), to ensure that a1 < a2 < a3.  
 
   model  
   { 
   # 
   # Construct individual response data from contingency table 
   # 
      for (i in 1 : Ncum[1, 1]) {  
         group[i] <- 1 
         for (t in 1 : T) { response[i, t] <- pattern[1, t] } 
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      } 
      for (i in (Ncum[1,1] + 1) : Ncum[1, 2]) {  
         group[i] <- 2 for (t in 1 : T) { response[i, t] <- pattern[1, t] } 
      } 
 
      for (k in 2 : Npattern) { 
         for(i in (Ncum[k - 1, 2] + 1) : Ncum[k, 1]) { 
            group[i] <- 1 for (t in 1 : T) { response[i, t] <- pattern[k, t] } 
         } 
         for(i in (Ncum[k, 1] + 1) : Ncum[k, 2]) { 
            group[i] <- 2 for (t in 1 : T) { response[i, t] <- pattern[k, t] } 
         } 
      } 
   # 
   # Model 
   # 
      for (i in 1 : N) { 
         for (t in 1 : T) { 
            for (j in 1 : Ncut) { 
   #  
   # Cumulative probability of worse response than j 
   # 
               logit(Q[i, t, j]) <- -(a[j] + mu[group[i], t] + b[i]) 
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            } 
   # 
   # Probability of response = j 
   # 
            p[i, t, 1] <- 1 - Q[i, t, 1] 
            for (j in 2 : Ncut) { p[i, t, j] <- Q[i, t, j - 1] - Q[i, t, j] } 
            p[i, t, (Ncut+1)] <- Q[i, t, Ncut] 
 
            response[i, t] ~ dcat(p[i, t, ]) 
            culmative.response[i, t] <- culmative(response[i, t], response[i, t]) 
         } 
   # 
   # Subject (random) effects 
   # 
         b[i] ~ dnorm(0.0, tau) 
   } 
 
   # 
   # Fixed effects 
   # 
      for (g in 1 : G) { 
         for(t in 1 : T) {  
   # logistic mean for group i in period t 
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            mu[g, t] <- beta * treat[g, t] / 2 + pi * period[g, t] / 2 + kappa * carry[g, t]  
         } 
      }  
      beta ~ dnorm(0, 1.0E-06) 
      pi ~ dnorm(0, 1.0E-06) 
      kappa ~ dnorm(0, 1.0E-06) 
 
   # ordered cut points for underlying continuous latent variable  
      a[1] ~ dflat()T(-1000, a[2]) 
      a[2] ~ dflat()T(a[1], a[3]) 
      a[3] ~ dflat()T(a[2], 1000)  
 
      tau ~ dgamma(0.001, 0.001) 
      sigma <- sqrt(1 / tau) 
      log.sigma <- log(sigma) 
 
   } 
 
Note that the data is read into BUGS in the original contigency table format to economize on 
space and effort. The indivdual responses for each of the 286 patients are then constructed 
within BUGS. 
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Other examples 
 
There are many other examples in the 3 volumes of WinBUGS example pdfs and full JAGS 
sample files for Volumes 1 and 2. 
 

Related tools 
 
Instead of using rjags, runjags or R2jags, you can also consider NIMBLE, which is like JAGS 
operating completely inside R 
  



 263 

Stan 
 
If you are trying to model something beyond what JAGS can manage (e.g. JAGS is too slow or 
you need a distribution not included in JAGS), the best tool is probably the open source 
software called Stan, which is more flexible, but requires stronger programming skills. Stan is 
more efficient as it uses automatic differentiation of the log density to use a more efficient 
sampler (Hamiltonian sampler instead of the Gibbs sampler), but cannot handle categorical or 
missing data easily. 
 
URL: http://mc-stan.org 
 
For example, my PhD student was modelling compositional data, i.e. p1+p2+p3=1 and 
p1,p2,p3>0.  This is modelled using log ratios, i.e. log(p1/p3) and log(p2/p3) follow a bivariate 
Gaussian distribution. She wanted to examine censoring of p1,p2,p3 and this cannot be done in 
JAGS as the censoring option in JAGS can only be applied to the sampled distributions (i.e. the 
log ratios), not on p1,p2,p3 directly. In Stan we could find the censored log-density by 
integrating numerically over the censoring regions. Convergence was slow, but this was the 
correctly formulated problem (versus censoring of the log-ratios). 
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Statistical Advice Centre for Students (STACS) 
 
All HKU research students are entitled to a maximum of 4 hours free statistical consulting 
(over their time as a graduate student), provided by me. 
 
Details can be found on the Graduate School website,  
 
https://www.gradsch.hku.hk/gradsch/current-students/courses-workshops-dialogues-career-
preparation/supporting-courses-services/statistical-advice-centre-for-students-stacs# 
 
 
where you can find the link to download the form for your supervisor to sign and return to the 
Graduate School for checking. The form is called a support services form. 
 



View publication statsView publication stats

https://www.researchgate.net/publication/265793712

