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Chapter 1
Computer Facial Animation: A Survey

Zhigang Deng and Junyong Noh

1.1 Introduction

Since the pioneering work of Frederic I. Parke [1] in 1972, significant research
efforts have been attempted to generate realistic facial modeling and animation.
The most ambitious attempts perform the face modeling and rendering in real time.
Because of the complexity of human facial anatomy and our inherent sensitivity to
facial appearance, there is no real-time system that generates subtle facial expres-
sions and emotions realistically on an avatar. Although some recent work has pro-
duced realistic results with a relatively fast performance, the process for generating
facial animation entails extensive human intervention or tedious tuning. The ulti-
mate goal for research in facial modeling and animation is a system that (1) creates
realistic animation, (2) operates in real time, (3) is automated as much as possible,
and (4) adapts easily to individual faces.

Recent interest in facial modeling and animation has been spurred by the increas-
ing appearance of virtual characters in film and video, inexpensive desktop process-
ing power, and the potential for a new 3D immersive communication metaphor for
human-computer interaction. Much of the facial modeling and animation research
is published in specific venues that are relatively unknown to the general graph-
ics community. There are few surveys or detailed historical treatments of the sub-
ject [2]. This survey is intended as an accessible reference to the range of reported
facial modeling and animation techniques.

Strictly classifying facial modeling and animation techniques is a difficult task,
because exact classifications are complicated by the lack of exact boundaries
between methods and the fact that recent approaches often integrate several meth-
ods to produce better results. In this survey, we roughly classify facial modeling and
animation techniques into the following categories: blend shape or shape interpola-
tion (Section 1.2), parameterizations (Section 1.3), facial action coding system-
based approaches (Section 1.4), deformation-based approaches (Section 1.5),
physics-based muscle modeling (Section 1.6), 3D face modeling (Section 1.7),
performance-driven facial animation (Section 1.8), MPEG-4 facial animation
(Section 1.9), visual speech animation (Section 1.10), facial animation editing
(Section 1.11), facial animation transferring (Section 1.12), and facial gesture gen-
eration (Section 1.13). It should be noted that because the facial animation field
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2 Z. Deng, J. Noh

has grown into a complicated and broad subject, this survey chapter does not cover
every aspect of virtual human faces, such as hair modeling and animation, tongue
and neck modeling and animation, skin rendering, wrinkle modeling, etc.

1.2 Blend Shapes or Shape Interpolation

Shape interpolation (blend shapes, morph targets, and shape interpolation) is the
most intuitive and commonly used technique in facial animation practice. A blend-
shape model is simply the linear weighted sum of a number of topologically con-
forming shape primitives (Eq. 1.1):

v j =
∑

wkbkj . (1.1)

In Eq. 1.1, v j is the jth vertex of the resulting animated model, wk is blending
weight, and bkj is the jth vertex of the kth blendshape. The weighted sum can be
applied to the vertices of polygonal models or to the control vertices of spline mod-
els. The weights wk are manipulated by the animator in the form of sliders (with one
slider for each weight) or automatically determined by algorithms [3]. It continues
to be used in projects such as Stuart Little, Star Wars, and Lord of the Rings and
was adopted in many commercial animation software packages such as Maya and
3D Studio Max. The simplest case is an interpolation between two key frames at
extreme positions over a time interval (Fig. 1.1).

Linear interpolation is often employed for simplicity [4, 5], but a cosine inter-
polation function [6] or other variations such as spline can provide acceleration and
deceleration effects at the beginning and end of an animation. When four key frames
are involved, rather than two, bilinear interpolation generates a greater variety of
facial expressions than linear interpolation [7]. Bilinear interpolation, when com-
bined with simultaneous image morphing, creates a wide range of facial expression
changes [8].

Fig. 1.1 Linear interpolation is performed on blend shapes. Left: neutral pose; right: “A” mouth
shape; middle: interpolated shape.



1 Computer Facial Animation Survey 3

Interpolated images are generated by varying the parameters of the interpolation
functions. Geometric interpolation directly updates the 2D or 3D positions of the
face mesh vertices, while parameter interpolation controls functions that indirectly
move the vertices. For example, Sera et al. [9] perform a linear interpolation of the
spring muscle force parameters, rather than the positions of the vertices, to achieve
mouth animation.

Some recent efforts have attempted to improve the efficiency of producing mus-
cle actuation-based blendshape animations [10, 11]. The pose space deformation
(PSD) method presented by Lewis et al. [12] provides a general framework for
example-based interpolation that can be used for blendshape facial animations. In
their work, the deformation of a surface (face) is treated as a function of some set
of abstract parameters, such as {smile, raise-eyebrow, . . .}, and a new surface is
generated by scattered data interpolations.

Although interpolations are fast and they easily generate primitive facial ani-
mations, their ability to create a wide range of realistic facial configurations is
restricted. Combinations of independent face motions are difficult to produce and
non-orthogonal blend shapes often interfere each other, which cause animators to
have to go back and forth to readjust the weights of blend shapes. Lewis et al. [13]
present a user interface technique to automatically reduce blendshape interferences.
Deng et al. [3] present an automatic technique for mapping sparse facial motion
capture data to pre-designed 3D blendshape face models by learning a radial basis
function-based regression.

1.3 Parameterizations

Parameterization techniques for facial animation [7, 14–16] overcome some of the
limitations and restrictions of simple interpolations. Ideal parameterizations specify
any possible face and expression by a combination of independent parameter val-
ues [2]. Unlike interpolation techniques, parameterizations allow explicit control of
specific facial configurations. Combinations of parameters provide a large range of
facial expressions with relatively low computational costs.

As indicated in [17], there is no systematic way to arbitrate between two con-
flicting parameters to blend expressions that affect the same vertices. Thus, param-
eterization produces unnatural human expressions or configurations when a con-
flict between parameters occurs. For this reason, parameterizations are designed
to only affect specific facial regions. However, it often introduces noticeable
motion boundaries. Another limitation of parameterization is that the choice of
the parameter set depends on the facial mesh topology and, therefore, a complete
generic parameterization is not possible. Furthermore, tedious manual tuning is
required to set parameter values. The limitations of parameterization led to the
development of diverse techniques such as morphing between images and geom-
etry, physically faithful/pseudo muscle-based animation, and performance-driven
animation.
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Table 1.1 Sample single facial action units.

AU FACS Name AU FACS Name AU FACS Name

1 Inner Brow Raiser 12 Lid Corner Puller 2 Outer Brow Raiser
14 Dimpler 4 Brow Lower 15 Lip Corner Depressor
5 Upper Lid Raiser 16 Lower Lip Depressor 6 Check Raiser

17 Chin Raiser 9 Nose Wrinkler 20 Lip Stretcher
23 Lip Tightener 10 Upper Lid Raiser 26 Jaw Drop

Table 1.2 Example sets of action units for basic expressions.

Basic Expressions Involved Action Units

Surprise AU1, 2, 5, 15, 16, 20, 26
Fear AU1, 2, 4, 5, 15, 20, 26
Anger AU2, 4, 7, 9, 10, 20, 26
Happiness AU1, 6, 12, 14
Sadness AU1, 4, 15, 23

1.4 Facial Action Coding System

The Facial Action Coding System (FACS) is a description of the movements of
the facial muscles and jaw/tongue derived from an analysis of facial anatomy [18].
FACS includes 44 basic action units (AUs). Combinations of independent action
units generate facial expressions. For example, combining the AU1 (Inner Brow
Raiser), AU4 (Brow Raiser), AU15 (Lip Corner Depressor), and AU23 (Lip Tight-
ener) creates a sad expression. A table of the sample action units and the basic
expressions generated by the actions units are presented in Tables 1.1 and 1.2.

Due to its simplicity, the FACS is widely utilized with muscle or simulated
(pseudo) muscle-based approaches. Animation methods using muscle models over-
come the limitation of interpolation and provide a wide variety of facial expressions.
Physical muscle modeling mathematically describes the properties and the behavior
of human skin, bone, and muscle systems. In contrast, pseudo muscle models mimic
the dynamics of human tissue with heuristic geometric deformations. Despite its
popularity, there are some drawbacks of using the FACS [19]. First, AUs are purely
local patterns while actual facial motion is rarely completely localized. Second, the
FACS offers spatial motion descriptions but not temporal components. In the tem-
poral domain, co-articulation effects are lost in the FACS system.

1.5 Deformation-based Approaches

Direct deformation defined on the facial mesh surface often produces quality ani-
mation. It ignores underlying facial anatomy or true muscle structures. Instead, the
focus is on creating various facial expressions by the manipulation of the thin shell
mesh. This category includes morphing between different models and simulated
pseudo muscles in the form of splines [20–22], wires [23], or free-form deforma-
tions [24, 25].
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1.5.1 2D and 3D Morphing

Morphing effects a metamorphosis between two target images or models. A 2D
image morph consists of a warp between corresponding points in the target images
and a simultaneous cross dissolve.1 Typically, the correspondences are manually
selected to suit the needs of the application. Morphs between carefully acquired and
corresponded images produce very realistic facial animations. Beier and Neely [26]
demonstrate 2D morphing between two images with manually specified correspond-
ing features (line segments). The warp function is based upon a field of influence
surrounding the corresponding features. Realism, with this approach, requires exten-
sive manual interaction for color balancing, correspondence selection, and tuning
of the warp and dissolve parameters. Variations in the target image viewpoints or
features complicate the selection of correspondences. Realistic head motions are
difficult to synthesize since target features become occluded or revealed during the
animation.

To overcome the limitations of 2D morphs, Pighin et al. [27] combine 2D morph-
ing with 3D transformations of a geometric model. They animate key facial expres-
sions with 3D geometric interpolation while image morphing is performed between
corresponding texture maps. This approach achieves viewpoint independent real-
ism; however, animations are still limited to interpolations between predefined key
facial expressions.

The 2D and 3D morphing methods can produce quality facial expressions, but
they share similar limitations with the interpolation approaches. Selecting corre-
sponding points in target images is manually intensive, dependent on viewpoint, and
not generalizable to different faces. Also, the animation viewpoint is constrained to
approximately that of the target images.

1.5.2 Free-Form Deformation

Free-form deformation (FFD) deforms volumetric objects by manipulating control
points arranged in a three-dimensional cubic lattice [28]. Conceptually, a flexible
object is embedded in an imaginary, clear, and flexible control box containing a
3D grid of control points. As the control box is squashed, bent, or twisted into
arbitrary shapes, the embedded object deforms accordingly (Fig. 1.2). The basis
for the control points is a trivariate tensor product Bernstein polynomial. FFDs can
deform many types of surface primitives, including polygons; quadric, parametric,
and implicit surfaces; and solid models.

Extended free-form deformation (EFFD) [24] allows the extension of the con-
trol point lattice into a cylindrical structure. A cylindrical lattice provides additional
flexibility for shape deformation compared to regular cubic lattices. Rational free-
form deformation (RFFD) incorporates weight factors for each control point, adding

1 In cross dissolving, one image is faded out while another is simultaneously faded in.
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Fig. 1.2 Free-form deformation. The controlling box and embedded object are shown. When the
controlling box is deformed by manipulating control points, so is the embedded object.

another degree of freedom in specifying deformations. Hence, deformations are pos-
sible by changing the weight factors instead of changing the control point positions.
When all weights are equal to one, then the RFFD becomes an FFD. A main advan-
tage of using the FFD (EFFD, RFFD) to abstract deformation control from that of
the actual surface description is that the transition of form is no longer dependent
on the specifics of the surface itself [29].

Displacing a control point is analogous to actuating a physically modeled mus-
cle. Compared to Waters’ physically based model [30], manipulating the positions
or the weights of the control points is more intuitive and simpler than manipulat-
ing muscle vectors with a delineated zone of influence. However, the FFD (EFFD,
RFFD) does not provide a precise simulation of the actual muscle and skin behav-
ior. Furthermore, since the FFD (EFFD, RFFD) is based upon surface deformation,
volumetric changes occurring in the physical muscle are not accounted for.

1.5.3 Spline Pseudo-Muscles

Although polygonal models of the face are widely used, they often fail to ade-
quately approximate the smoothness or flexibility of the human face. Fixed polygo-
nal models do not deform smoothly in arbitrary regions, and planar vertices cannot
be twisted into curved surfaces without subdivision.

An ideal facial model has a surface representation that supports smooth and flex-
ible deformations. Spline muscle models offer a plausible solution. Splines are usu-
ally up to C2 continuous; hence, a surface patch is guaranteed to be smooth, and
they allow localized deformation on the surface. Furthermore, affine transforma-
tions are defined by the transformation of a small set of control points instead of all
the vertices of the mesh reducing the computational complexity.

Some spline-based animation can be found in [20, 21]. Pixar used bicubic
Catmull–Rom spline2 patches to model Billy, the baby in animation Tin Toy, and
used a variant of Catmull–Clark [31] subdivision surfaces to model Geri, a human

2 A distinguishing property of Catmull–Rom splines is that the piecewise cubic polynomial seg-
ments pass through all the control points except the first and last when used for interpolation.
Another is that the convex hull property is not observed in Catmull–Rom splines.
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character in the short film Geri’s game. This technique is mainly adapted to model
sharp creases on a surface or discontinuities between surfaces [32]. For a detailed
description of Catmull–Rom splines and Catmull–Clark subdivision surfaces, refer
to [31,33]. Eisert and Girod [34] use triangular B-splines to overcome the drawback
that conventional B-splines do not refine curved areas locally since they are defined
on a rectangular topology.

A hierarchical spline model reduces the number of unnecessary control points.
Wang et al. [22] showed a system that integrated hierarchical spline models with
simulated muscles based on local surface deformations. Bicubic B-splines offer
both smoothness and flexibility, which are hard to achieve with conventional polyg-
onal models. The drawback of using naive B-splines for complex surfaces becomes
clear, however, when a deformation is required to be finer than the patch resolu-
tion. To produce finer patch resolution, an entire row or column of the surface is
subdivided. Thus, more detail (and control points) is added where none are needed.
In contrast, hierarchical splines provide the local refinements of B-spline surfaces,
and new patches are only added within a specified region. Hierarchical B-splines
are an economical and compact way to represent a spline surface and achieve a high
rendering speed. Muscles coupled with hierarchical spline surfaces are capable of
creating bulging skin surfaces and a variety of facial expressions.

1.6 Physics-based Muscle Modeling

Physics-based muscle models fall into three categories: mass-spring systems, vector
representations, and layered spring meshes. Mass-spring methods propagate muscle
forces in an elastic spring mesh that models skin deformation. The vector approach
deforms a facial mesh using motion fields in delineated regions of influence. A lay-
ered spring mesh extends a mass-spring structure into three connected mesh layers
to model anatomical facial behavior more faithfully.

1.6.1 Spring Mesh Muscle

The work by Platt and Badler [35] is a forerunner of the research focused on
muscle modeling and the structure of the human face. Forces applied to elas-
tic meshes through muscle arcs generate various facial expressions. Platt’s later
work [36] presents a facial model with muscles represented as collections of func-
tional blocks in defined regions of the facial structure. Platt’s model consists of 38
regional muscle blocks interconnected by a spring network. Action units are created
by applying muscle forces to deform the spring network. There are some recent
developments using mass-spring muscles for facial animation [37, 38]. For exam-
ple, Kahler et al. [38] proposed a convenient editing tool to interactively specify
mass-spring muscles into 3D face geometry.
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1.6.2 Vector Muscle

A very successful muscle model was proposed by Waters [30]. A delineated defor-
mation field models the action of muscles upon skin. A muscle definition includes
the vector field direction, an origin, and an insertion point (the left panel of Fig. 1.3).
The field extent is defined by cosine functions and falls off factors that produce a
cone shape when visualized as a height field. Waters also models the mouth sphinc-
ter muscles as a simplified parametric ellipsoid. The sphincter muscle contracts
around the center of the ellipsoid and is primarily responsible for the deformation
of the mouth region. Waters animates human emotions such as anger, fear, surprise,
disgust, joy, and happiness using vector-based linear and orbicularis oris muscles
utilizing the FACS. The right panel of Figure 1.3 shows the Waters’ muscles embed-
ded in a facial mesh.

The positioning of vector muscles into anatomically correct positions can be a
daunting task. The process involves manual trial and error with no guarantee of
efficient or optimal placement. Incorrect placement results in unnatural or undesir-
able animation of the mesh. Nevertheless, the vector muscle model is widely used
because of its compact representation and independence of the facial mesh struc-
ture. An example of vector muscles is seen in Billy, the baby in the movie Tin Toy,
who has 47 Waters’ muscles on his face.

1.6.3 Layered Spring Mesh Muscles

Terzopoulos and Waters [39] proposed a facial model that models detailed anatomi-
cal structure and dynamics of the human face. Their three layers of deformable mesh
correspond to skin, fatty tissue, and muscle tied to bone. Elastic spring elements

Fig. 1.3 The left panel shows the zone of influence of Waters’ linear muscle model. The right
panel shows muscle placement in Waters’s work [30].
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connect each mesh node and each layer. Muscle forces propagate through the mesh
systems to create animation. This model is faithful to facial anatomy. Simulating
volumetric deformations with three-dimensional lattices, however, requires exten-
sive computation. A simplified mesh system reduces the computation time while
still maintaining similar quality [40].

Lee et al. [41,42] present face models composed of physics-based synthetic skin
and muscle layers based on earlier work [39]. The face model consists of three com-
ponents: a biological tissue layer with nonlinear deformation properties, a muscle
layer knit together under the skin, and an impenetrable skull structure beneath the
muscle layer. The synthetic tissue is modeled as triangular prism elements that are
divided into the epidermal surface, the fascia surface, and the skull surface. Spring
elements connecting the epidermal and fascia layers simulate skin elasticity. Spring
elements that affect muscle forces connect the fascia and skull layers. The model
achieves better fidelity. Tremendous computation is required, however, and exten-
sive tuning is needed to model a specific face or characteristic.

1.7 3D Face Modeling

An important problem in facial animation is to model a specific person, i.e., mod-
eling the 3D geometry of an individual face. A range scanner, digitizer probe, or
stereo disparity can measure three-dimensional coordinates. The models obtained
by those processes are often poorly suited for facial animation. Information about
the facial structures is missing; measurement noise produces distracting artifacts;
and model vertices are poorly distributed. Also, many measurement methods pro-
duce incomplete models, lacking hair, ears, eyes, etc. Therefore, post-processing on
the measured data is often necessary.

1.7.1 Person-Specific Model Creation

An approach to person-specific modeling is to painstakingly prepare a generic
animation mesh with all the necessary structure and animation information. This
generic model is fitted or deformed to a measured geometric mesh of a specific
person to create a personalized animation model. The geometric fit also facilitates
the transfer of texture if it is captured with the measured mesh. If the generic model
has fewer polygons than the measured mesh, deformation is implicit in the fitting
process.

Person-specific modeling and fitting processes use various approaches such as
scattered data interpolations [5, 43, 44] and projections onto the cylindrical coor-
dinates incorporated with a positive Laplacian field function [42]. Some methods
attempt an automated fitting process, but most require manual interventions.

Radial basis functions are capable of closely approximated or interpolated
smooth hypersurfaces [45] such as human facial shapes. Some approaches morph
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a generic mesh into specific shapes with scattered data interpolation techniques
based on radial basis functions. The advantages of this approach are as follows.
First, the morph does not require equal numbers of nodes in the involved meshes
since missing points are interpolated [43]. Second, mathematical support ensures
that a morphed mesh approaches the target mesh if appropriate correspondences are
selected [45, 46].

A typical process of 3D volume morphing is as follows. First, biologically
meaningful landmark points are manually selected around the eyes, nose, lips, and
perimeters of both face models. Second, the landmark points define the coefficients
of the kernel of the radial basis function used to morph the volume. Finally, points
in the generic mesh are interpolated using the coefficients computed from the land-
mark points. The success of the morphing depends strongly on the selection of the
landmark points [27, 43].

Instead of morphing a face model, a morphable model exploits a pre-constructed
set of face databases to create a person-specific model [47]. First, a scanning pro-
cess collects a large number of faces to compile a database. This example 3D
face models spans the space of any possible human faces in terms of geometry
and texture. New faces and expressions can be represented as a linear combina-
tion of the examples. Typically, an image of a new person is provided to the sys-
tem; then the system outputs a 3D model of the person that closely matches the
image.

1.7.2 Anthropometry

The generation of individual models using anthropometry3 attempts to produce
facial variations where absolute appearance is not important. Kuo et al. [48] pro-
poses a method to synthesize a lateral face from one 2D gray-level image of a frontal
face. A database is first constructed, containing facial parameters measured accord-
ing to anthropomorphic definitions. This database serves as priori knowledge. The
lateral facial parameters are estimated from frontal facial parameters by using min-
imum mean square error (MMSE) estimation rules applied to the database. Specifi-
cally, the depth of one lateral facial parameter is determined by the linear combina-
tion of several frontal facial parameters. The 3D generic facial model is then adapted
according to both the frontal plane coordinates extracted from the image and their
estimated depths. Finally, the lateral face is synthesized from the feature data and
texture-mapped.

DeCarlo et al. [49] construct various facial models purely based on anthropom-
etry without assistance from images. This system constructs a new face model in
two steps. The first step generates a random set of measurements that character-
ize the face. The form and values of these measurements are computed accord-
ing to face anthropometry (Fig. 1.4). The second step constructs the best surface

3 The science dedicated to the measurements of the human face.
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Fig. 1.4 Some of the anthropometric
landmarks on the face. The selected
landmarks are widely used as measure-
ments for describing the human face.

that satisfies the geometric constraints using a variational constrained optimization
technique [50, 51]. In this technique, one imposes a variety of constraints on the
surface and then tries to create a smooth and fair surface while minimizing the
deviation from a specified rest shape, subject to the constrains. For a face model-
ing, anthropometric measurements are the constraints, and the remainder of the face
is determined by minimizing the deviation from the given surface objective function.
Variational modeling enables the system to capture the shape similarities of faces,
while allowing anthropometric differences. Although anthropometry has potential
for rapidly generating plausible facial geometric variations, the approach does not
model realistic variations in color, wrinkling, expressions, or hair.

1.8 Performance-Driven Facial Animation

The difficulties in controlling facial animations led to the performance-driven
approach where tracked human actors/actress drive the animation. Real-time video
processing allows interactive animations where the actors observe the animations
they create with their motions and expressions. Accurate tracking of feature points
or edges is important to maintain a consistent and high-quality animation. Often
the tracked 2D or 3D feature motions are filtered or transformed to generate the
motion data needed for driving a specific animation system. Motion data can be
used to directly generate facial animation [19] or to infer AUs of the FACS in
generating facial expressions. Figure 1.5 shows animation driven from a real-time
feature tracking system.
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Fig. 1.5 Real-time tracking is performed without markups on the face using Eyematic Inc.’s face
tracking system. Real-time animation of the synthesized avatar is achieved based on the 11 tracked
features. Here (a) shows the initial tracking of the face features, (b) shows features are tracked
in real time while the subject is moving, and (c) shows an avatar that mimics the behavior of the
subject.

1.8.1 Snakes and Markings

Snakes, or deformable minimum-energy curves, are used to track intentionally
marked facial features [52]. The recognition of facial features with snakes is pri-
marily based on color samples and edge detection. Many systems couple tracked
snakes to underlying muscles mechanisms to drive facial animation [39, 53–56].
Muscle contraction parameters are estimated from the tracked facial displacements
in video sequences.

Tracking errors accumulate over long image sequences. Consequently, a snake
may lose the contour it is attempting to track. In [57], tracking from frame to frame
is done for the features that are relatively easy to track. A reliability test enables a
reinitialization of a snake when error accumulations occur.

1.8.2 Optical Flow Tracking

Colored markers painted on the face or lips [9,58–64] are extensively used to aid in
tracking facial expressions or recognizing speech from video sequences. However,
markings on the face are intrusive. Also, reliance on markings restricts the scope of
acquired geometric information to the marked features. Optical flow [65] and spatio-
temporal normalized correlation measurements [66] perform natural feature track-
ing and therefore obviate the need for intentional markings on the face [19,67]. Chai
et al. [68] propose a data-driven technique to translate noisy, low-quality 2D track-
ing signals from video to high-quality 3D facial animations based on a preprocessed
facial motion database. One limitation of this approach is that a preprocessed facial
motion database is required, and its performance may depend on the match between
prerecorded persons in the database and target face models. Zhang et al. [69] pro-
pose a space-time stereo tracking algorithm to build 3D face models from video



1 Computer Facial Animation Survey 13

sequences that maintain point correspondences across the entire sequence without
using any marker.

1.8.3 Facial Motion Capture Data

A more recent trend to produce quality animation is to use 3D motion capture data.
Motion capture data have successfully been used in recent movies such as Polar
Express and Monster House. Typically, motion data are captured and filtered prior
to the animation. An array of high-performance cameras is utilized to reconstruct the
3D maker locations on the face. Although this optical system is difficult to set up
and is expensive, the reconstructed data provide accurate timing and motion infor-
mation. Once the data are available, facial animation can be created by employing
underlying muscle structure [70] or blend shapes [3, 71, 72].

1.9 MPEG-4 Facial Animation

Due to its increased applications, facial animation was adopted into the MPEG-4
standard, an object-based multimedia compression standard [73]. MPEG-4 speci-
fies and animates 3D face models by defining face definition parameters (FDP) and
facial animation parameters (FAP). FDPs enclose information for constructing spe-
cific 3D face geometry, and FAPs encode motion parameters of key feature points
on the face over time. Face Animation Parameter Units (FAPU) that scale FAPs for
fitting any face model are defined as the fractions of key facial features, such as the
distance between the two eyes.

In MPEG-4 facial animation standard, 84 feature points (FPs) are specified.
Figure 1.6 approximately illustrates part of the MPEG-4 feature points in a front
face. After excluding the feature points that are not affected by FAPs, 68 FAPs
are categorized into groups (Table 1.3). Most of the FAP groups are low-level
parameters since they specify how much a given FP is moved. One FAP group
(visemes and expressions) is considered as a high-level parameter group, because
these parameters are not precisely specified. For example, textual descriptions are
used to describe expressions. As such, reconstructed facial animation depends on
the implementation of individual MPEG-4 facial animation decoder.

Previous research efforts on MPEG-4 facial animation were focused on deform-
ing 3D face models based on MPEG-4 feature points [75,76] and building MPEG-4
facial animation decoder systems [77–80]. For example, Escher et al. [75] deform
a generic face model using a free-form deformation-based approach to generate
MPEG-4 facial animations. Kshirsagar et al. [76] propose an efficient feature point
based face deformation technique given MPEG-4 feature point inputs. In their
approach, the motion of each MPEG-4 feature point is propagated to neighbor-
ing vertices of the face model, and the motion of each vertex (non-feature point)
is the summation of these motion propagations. Various MPEG-4 facial animation



14 Z. Deng, J. Noh

Fig. 1.6 Part of the facial feature points defined in the MPEG-4 standard. A complete description
of the MPEG-4 feature points can be found in [74].

Table 1.3 FAP groups in MPEG-4.

Group Number of FAPs

Viseme and expressions 2
Lip, chin, and jaw 26
Eyes (including pupils and eyelids) 12
Eyebrow 8
Cheeks 4
Tongue 5
Head movement 3
Nose 4
Ears 4

decoder systems [77,78] and frameworks that are targeted for Web and mobile appli-
cations [79, 80] are also proposed. For more details of MPEG-4 facial animation
standard, implementations, and applications, please refer to the MPEG-4 facial ani-
mation book [81].

1.10 Visual Speech Animation

Visual speech animation can be regarded as visual motions of the face (especially
the mouth part) when humans are speaking. Synthesizing realistic visual speech ani-
mations corresponding to novel text or prerecorded acoustic speech input has been a
difficult task for decades, because human languages, such as English, generally have
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not only a large vocabulary and a large number of phonemes (the theoretical repre-
sentation of an utterance/sound), but also the phenomena of speech co-articulation
that complicates the mappings between acoustic speech signals (or phonemes) and
visual speech motions. In linguistics literature, speech co-articulation is defined as
follows: phonemes are not pronounced as an independent sequence of sounds, but
rather that the sound of a particular phoneme is affected by adjacent phonemes.
Visual speech co-articulation is analogous.

Previous research efforts in visual speech animation generation can be roughly
classified into two different categories: viseme-driven approaches and data-driven
approaches. Viseme-driven approaches require animators to design key mouth
shapes for phonemes (termed visemes) in order to generate novel speech anima-
tions. On the contrary, data-driven approaches do not need predesigned key shapes,
but generally require a prerecorded facial motion database for synthesis purposes.

1.10.1 Viseme-Driven Approaches

A viseme is defined as a basic visual unit that corresponds to a phoneme in speech.
Viseme-driven approaches typically require animators to design visemes (key
mouth shapes), and then empirical smooth functions [14, 82–86] or co-articulation
rules [87–89] are used to synthesize novel speech animations.

Given a novel sound track and a small number of visemes, J.P. Lewis [83] pro-
poses an efficient lip-sync technique based on a linear prediction model. Cohen
and Massaro [14] propose the Cohen–Massaro co-articulation model for gener-
ating speech animations. In their approach, a viseme shape is defined via dom-
inance functions that are defined in terms of each facial measurement, such as
the lips, tongue tip, etc., and the weighted sum of dominance values determines
the final mouth shapes. Figure 1.7 schematically illustrates the essential idea of
the Cohen–Massaro model. Its recent extensions [84–86, 89] further improved the

Fig. 1.7 Schematic illustration of the Cohen–Massaro co-articulation model [14]. Dominance
functions of three consecutive phonemes are plotted, and the weighted sum of dominance curves
is plotted as a blue curve.
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Cohen–Massaro co-articulation model. For example, Cosi et al. [85] add a tem-
poral resistance function and a shape function for more general cases, such as
fast/slow speaking rates. The approach proposed by Goff and Benoît [84] cal-
culates the model parameter values of the Cohen–Massaro model by analyzing
parameter trajectories measured from a French speaker. The approach proposed by
King and Parent [86] extends the Cohen–Massaro model by using viseme curves
to replace a single viseme target. Bevacqua and Pelachaud [89] propose an expres-
sive qualifier modeled from recorded speech motion data to make expressive speech
animations.

Rule-based co-articulation models [87, 88] leave some visemes undefined based
on their co-articulation importance and phoneme contexts. These approaches are
based on the important observation that phonemes have different sensitivity to their
phoneme context: some phonemes (and their visemes) are strongly affected by
neighboring phonemes (and visemes), while some others are less affected. Deng
et al. [90–92] propose a motion capture mining technique that “learns” speech co-
articulation models for diphones (a phoneme pair) and triphones from the prere-
corded facial motion data, and then generates novel speech animations by blending
pre-designed visemes (key mouth shapes) using the learned co-articulation models.

Animation realism generated by the above viseme-driven approaches largely
depends on the hand-crafted smoothing (co-articulation) functions and a hidden
assumption that a viseme can be represented by one or several pre-designed key
shapes. However, in practice, constructing accurate co-articulation functions and
phoneme-viseme mappings requires challenging and painstaking manual efforts. As
a new trend for speech animation generation, data-driven approaches were proposed
to alleviate the painstaking manual efforts.

1.10.2 Data-Driven Approaches

Data-driven approaches synthesize new speech animations by concatenating pre-
recorded facial motion data or sampling from statistical models learned from the
data. Their general pipeline is as follows. First, facial motion data (2D facial
images or 3D facial motion capture data) are pre-recorded. Second, there are two
different ways to deal with the constructed facial motion database: either statis-
tical models for facial motion control are trained from the data (learning-based
approaches), or the facial motion database is further organized and processed
(sample-based approaches). Finally, given a novel sound track or text input, cor-
responding visual speech animations are generated by sampling from the trained
statistical models, or recombining motion frames optimally chosen from the facial
motion database. Figure 1.8 shows a schematic view of the data-driven speech ani-
mation approaches.

Data-driven approaches typically generate realistic speech animation results, but
it is hard to predict how much motion data are enough to train statistical models or
construct a balanced facial motion database. In other words, the connection from
the amount of pre-recorded facial motion data to the visual realism of synthesized
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Fig. 1.8 Sketched general pipeline of data-driven speech animation generation approaches. The
sample-based approaches go with the blue path, and the learning-based approaches go with the
red path.

speech animations is not clear. Furthermore, these approaches often do not provide
intuitive process controls for animators.

1.10.2.1 Sample-based Approaches

Bregler et al. [93] present the “video rewrite” method for synthesizing 2D talking
faces given novel speech input, based on the collected “triphone video segments.”
Instead of using ad hoc co-articulation models and ignoring dynamics factors in
speech, this approach models the co-articulation effect with “triphone video seg-
ments,” but it is not generative (i.e., the co-articulation cannot be applied to other
faces without retraining). The work of [94, 95] further extends “the triphone com-
bination idea” [93] to longer phoneme segments. For example, Cao et al. [95, 96]
propose a greedy search algorithm to look for longer pre-recorded facial motion
sequences (≥ 3 phonemes) in the database. The work of [97–100] searches for the
optimal combination of pre-recorded motion frame sequences by introducing var-
ious cost functions, based on dynamic programming-based search algorithms. In
the work of [100], a phoneme-Isomap interface is introduced to provide high-level
controls for animators, and phoneme-level emotion specifiers are enforced as search
constraints.

Instead of constructing a phoneme segment database [93–95, 97–101], Kshir-
sagar and Thalmann [102] propose a syllable motion-based approach to syn-
thesize novel speech animations. In their approach, captured facial motions are



18 Z. Deng, J. Noh

segmented into syllable motions, and then new speech animations are achieved
by concatenating syllable motion segments optimally chosen from the sylla-
ble motion database. Sifakis et al. [103] propose a physics-based approach to
generate novel speech animations by first computing muscle activation sig-
nals for each phoneme (termed physemes) enclosed in the pre-recorded facial
motion data and then concatenating corresponding physemes given novel speech
input.

1.10.2.2 Learning-based Approaches

Learning-based approaches model speech co-articulations as implicit functions in
statistical models. Brand [104] learns an HMM-based facial control model by
an entropy minimization learning algorithm from voice and video training data
and then effectively synthesizes full facial motions for a novel audio track. This
approach models co-articulations using the Viterbi algorithm through vocal HMMs
to search for the most likely facial state sequence that is used for predicting
facial configuration sequences. Ezzat et al. [105] learn a multidimensional mor-
phable model from a recorded face video database that requires a limited set of
mouth image prototypes and use the magnitude of diagonal covariance matrices
of phoneme clusters to represent co-articulation effects: the larger covariance of
a phoneme cluster means this phoneme has a smaller co-articulation, and vice
versa.

Blanz et al. [106] reanimate 2D faces in images and video by reconstructing a
3D face model using the morphable face model framework [47] and learning an
expression and viseme space from scanned 3D faces. This approach addresses both
speech and expressions. Deng et al. [91,92] propose an expressive speech animation
system that learn speech co-articulation models and expression eigenspaces from
recorded facial motion capture data. Some other approaches [107, 108] were also
proposed for generating expressive speech animations.

Generally, these approaches construct economical and compact representations
for human facial motions and synthesize human-like facial motions. However, how
much data are minimally required to guarantee satisfied synthesis results is an unre-
solved issue in these approaches, and creating explicit correlations between training
data and the visual realism of final animations would be a critical need. Further-
more, model and feature selections residing in many machine learning algorithms
are still far away from being resolved.

1.11 Facial Animation Editing

Editing facial animations by posing key faces is a widely-used practice. Instead of
moving individual vertices of 3D face geometry, various deformation approaches
(Section 1.1.5) and the blendshape methods (Section 1.1.2) can be regarded to
simultaneously move and edit a group of relevant vertices, which greatly improve
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the efficiency of facial animation editing. However, different facial regions are
essentially correlated each other, and the above deformation approaches typi-
cally operate a local facial region at one time. The animators need to switch
editing operations on different facial regions in order to sculpt 3D realistic faces
with fine details, which creates a large amount of additional work for the ani-
mators. In addition, even for skilled animators, it is difficult to judge which
facial pose (configuration) is closer to a real human face. Some recent work
in facial animation editing [13, 72, 109–112] has been proposed to address this
issue.

The ICA-based facial motion editing technique [109] applies independent com-
ponent analysis (ICA) onto pre-recorded expressive facial motion capture data and
interprets certain ICA components as expression and speech-related components.
Further editing operations, e.g., scaling, are performed on these ICA components in
their approach. Chang and Jenkins [112] propose a 2D sketch interface for posing
3D faces. In their work, users can intuitively draw 2D strokes in 2D face spaces that
are used to search for the optimal pose of the face.

Editing a local facial region while preserving the naturalness of the whole face
is another intriguing idea. The geometry-driven editing technique [110] gener-
ates expression details on 2D face images by constructing a PCA-based hierar-
chical face representation from a selected number of training 2D face images.
When users move one or several points on the 2D face image, the movements
of other facial control points are automatically computed by a motion propa-
gation algorithm. Based on a blendshape representation for 3D face models,
Joshi et al. [72] propose an interactive tool to edit 3D face geometry by learn-
ing controls through a physicall motivated face segmentation. A rendering algo-
rithm for preserving visual realism in this editing was also proposed in their
approach.

Besides the above approaches, the morphable face model framework [47] and
the multilinear face model [111] can be used for facial animation editing: once these
statistical models are constructed from training face data, users can manipulate high-
level attributes of the face, such as gender and expression, to achieve the purpose of
facial animation editing.

1.12 Facial Animation Transferring

Automatically transferring facial motions from an existing (source) model to a
new (target) model can significantly save painstaking and model-specific anima-
tion tuning for the new face model. The source facial motions can have various
formats, including 2D video faces, 3D facial motion capture data, and animated
face meshes, while the target models typically are a static 3D face mesh or a blend-
shape face model. In this regard, the performance-driven facial animation described
in Section 1.8 can be conceptually regarded as one specific way of transferring facial
motions from 2D video faces to 3D face models. In this section, we will review other
facial animation transferring techniques.
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Transferring facial motions between two 3D face meshes can be performed
through geometric deformations. Noh and Neumann [113] propose an “expression
cloning” technique to transfer vertex displacements from a source 3D face model to
target 3D face models that may have different geometric proportions and mesh struc-
ture. Its basic idea is to construct vertex motion mappings between models through
the radial basis functions (RBF) morphing. Sumner and Popović [114] propose a
general framework that automatically transfers geometric deformations between
two triangle meshes, which can be directly applied to retarget facial motions from
one source face mesh to a target face mesh. Both approaches need a number of initial
face landmark correspondences either through heuristic rules [113] or by manually
specifying.

A number of approaches were proposed to transfer source facial motions to
blendshape face models [3, 11, 70, 98, 115] due to the popularized use of blend-
shape methods in industry practice. Choe and Ko [70] transfer tracked facial
motions to target blendshape face models composed of hand-generated muscle
actuation base, by iteratively adjusting muscle actuation base and analyzed weights
through an optimization procedure. The work of [98, 115] transfers facial ani-
mations using example-based approaches. Essentially these approaches require
animators to sculpt proper blendshape face models based on a set of key facial
poses, delicately chosen from source facial animation sequences. Hence, it is
difficult to apply these techniques to pre-designed blendshape models without
considerable efforts. Sifakis et al. [11] first create an anatomically accurate face
model composed of facial musculature, passive tissue, and underlying skele-
ton structure, and then use nonlinear finite element methods to determine accu-
rate muscle actuations from the motions of sparse facial markers. Anatomically
accurate 3D face models are needed for this approach, which is another chal-
lenging task itself in computer animation. Deng et al. [3] propose an automatic
technique to directly map 3D facial motion capture data to pre-designed blend-
shape face models. In their approach, Radial Basis Function (RBF) networks
are trained to map a new motion capture frame to its corresponding blendshape
weights, based on chosen training pairs between mocap frames and blendshape
weights.

The above approaches faithfully “copy” facial motions between models, but
they provide little transformation function, for example, change affective mode
during transferring. Bilinear models and multilinear models were proposed
to transform facial motions [111, 116, 117]. Chuang and Bregler [116, 117]
learn a facial expression mapping/transformation function from training video
footage using the bilinear models [118], and then this learned mapping is
used to transform input video of neutral talking to expressive talking. Vlasic
et al. [111] propose a framework to transfer facial motion in video to other 2D
or 3D faces by learning statistical multilinear models from scanned 3D face
meshes. In their work, the learned multilinear models are controlled via intu-
itive attribute parameters, such as identity and expression. Varying one attribute
parameter (e.g., identity) while keeping other attributes intact can transfer the
facial motions from one model to another. Both approaches interpret expres-
sions as dynamic processes, but the expressive face frames retain the same
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timing as the original neutral speech, which does not seem plausible in all
cases.

1.13 Facial Gesture Generation

A facial gesture is typically interpreted as a gesture executed with the facial muscles
and facial movement, enclosing various visual components, such as facial expres-
sions, head movement, etc. In this section, we focus on reviewing previous research
efforts in eye motion synthesis and head movement generation. As for generating
facial expressions on virtual characters, refer to the state-of-the-art report written
by Vinayagamoorthy et al. [119].

As “windows to the soul,” the eyes are particularly scrutinized and subtle, since
eye gaze is one of the strongest cues to the mental state of human beings; when
someone is talking, he/she looks into our eyes to judge our interest and attentive-
ness, and we look into his/her eyes to signal our intent to talk. Chopra-Khullar
et al. [120] propose a framework for computing gestures including eye gaze and
head motions of virtual agents in dynamic environments, given high-level scripts.
Vertegaal et al. [121, 122] studied whether eye-gaze direction clues can be used as
a reliable signal for determining who is talking to whom in multiparty conversa-
tions. Lee et al. [123] treat “textural” aspects of gaze movement using statistical
approaches and demonstrate the necessity of the gaze details for achieving realism
and conveying an appropriate mental state. In their approach, signals from an eye
tracker are analyzed to produce a statistical model of eye saccades. However, only
first-order statistics are used, and gaze-eyelid coupling and vergence are not consid-
ered in their work. Deng et al. [124,125] propose a texture synthesis-based technique
to simultaneously synthesize realistic eye gaze and blink motion, accounting for any
possible correlation between the two.

Fig. 1.9 Schematic overview of the HMM-based expressive head motion synthesis frame-
work [126, 127].
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Natural head motion is an indispensable part of realistic facial animation and
engaging human-computer interface. A number of approaches were proposed to
generate head motions for talking avatars [126–133]. Rule-based approaches [128,
129] generate head motions from labeled text by pre-defined rules, but their focus
was only the “nodding.” Graf et al. [130] estimate the conditional probability dis-
tribution of major head movements (e.g., nodding) given the occurrences of pitch
accents, based on their collected head motion data. Chuang and Bregler [132] gener-
ate head motions corresponding to novel acoustic speech input, by combining best-
matched recorded head motion segments in the constructed pitch-indexed database.
Deng et al. [133] synthesize appropriate head motions with key-framing controls,
where a constrained dynamic programming algorithm was used to generate an opti-
mal head motion sequence that maximally satisfies both acoustic speech and key-
frame constraints (e.g., specified key head poses). Busso et al. [126] presented a
hidden Markov models (HMMs)-based framework to generate natural head motions
directly from acoustic prosodic features. This framework was further extended to
generate expressive head motions [127]. Figure 1.9 shows a schematic overview of
the HMM-based head motion synthesis framework [127].

1.14 Summary

We surveyed various computer facial animation techniques and classified them
into the following categories: blendshape method (shape interpolation), parame-
terizations, Facial Action Coding Systems-based approaches, deformation-based
approaches, physics-based muscle modeling, 3D face modeling, performance-
driven facial animation, MPEG-4 facial animation, visual speech animation, facial
animation editing, facial animation transferring, and facial gesture generation.
Within each category, we described the main ideas of its approaches and compared
their strength and weakness.
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Chapter 2
Expressive Visual Speech Generation

Thomas Di Giacomo, Stephane Garchery, and Nadia
Magnenat-Thalmann

2.1 Introduction

With the emergence of 3D graphics, we are now able to create very realistic 3D
characters that can move and talk. Multimodal interaction with such characters is
also possible, as various technologies have matured for speech and video analy-
sis, natural language dialogues, and animation. However, the behavior expressed by
these characters is far from believable in most systems. We feel that this problem
arises due to their lack of individuality on various levels: perception, dialogue, and
expression. In this chapter, we describe results of research that tries to realistically
connect personality and 3D characters, not only on an expressive level (for example,
generating individualized expressions on a 3D face), but also with real-time video
tracking, on a dialogue level (generating responses that actually correspond to what
a certain personality in a certain emotional state would say) and on a perceptive level
(having a virtual character that uses expression user data to create corresponding
behavior). The idea of linking personality with agent behavior has been discussed
by Marsella et al. [33], with the influence of emotion on behavior in general, and
Johns et al. [21] with how personality and emotion can affect decision making.

Traditionally, any text or voice-driven speech animation system uses the
phonemes as the basic units of speech, and visemes as the basic units of animation.
Though text-to-speech synthesizers and phoneme recognizers often use biphone-
based techniques, the end user seldom has access to this information, except for
dedicated systems. Most commercially and freely available software applications
allow access to only time-stamped phoneme streams along with audio. Thus, in
order to generate animation from this information, an extra level of processing,
namely co-articulation, is required. This process takes care of the influence of the
neighboring visemes for fluent speech production. This processing stage can be
eliminated by using the syllable as a basic unit of speech rather than the phoneme.

Overall, we do not intend to give a complete survey of ongoing research in
behavior, emotion, and personality. Our main goal is to create believable conver-
sational agents that can interact with many modalities. We thus concentrate on
emotion extraction of a real user (Section 2.3), visyllable-based speech animation
(Section 2.4), dialogue systems and emotions (Section 2.5).
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2.2 State-of-the-Art

2.2.1 Real-Time Video Tracking

In the last few years, the number of applications that require a multimodal interface
with the virtual environment has steadily increased. Within this field of research,
recognition of facial expressions is a very complex and interesting subject where
there have been numerous research efforts. For instance, DeCarlo et al. [7] have
applied optical flow and a generic face model-based algorithm. This method is
robust, but it takes a lot of time to recognize the face, and it is not in real time.
Cosatto et al. [6] use a sample-based method that needs to make a sample for each
person. Kouadi et al. [25] use a database and some face markers to process it effec-
tively in real time. However, the use of markers is not always practical, and it is
more attractive to recognize features without them. Pandzic et al. [36] use an algo-
rithm based on edge extraction in real time, without markers. The method presented
in Section 2.3.1 is inspired from this method.

2.2.2 Speech Animation

Co-articulation is a phenomenon observed during fluent speech, in which facial
movements corresponding to one phonetic or visemic segment are influenced by
those corresponding to the neighboring segments. In the process of articulating a
word or a sentence, our brain and mouth do some on-the-fly preprocessing in order
to generate fluent and continuous speech. Among these complex processings is the
mixing of lip/jaw movements to compose basic sounds or phonemes and their transi-
tions. There are several models to explain the co-articulation effect based on empir-
ical as well as experimental results supported by linguistic and phonetic rules. A
very good analysis of these models can be found in [5]. It is interesting that none of
these models can explain the effects of co-articulation in different languages or even
effects observed in English by speakers of different native languages. Furthermore,
it has also been suggested that in fact there may not be a single most general model
for co-articulation, since it is a highly context-dependent phenomenon.

For simulating co-articulation for speech animation on a synthetic face, two
main approaches were taken by Pelachaud et al. [38] and Cohen et al. [5]. Both
approaches are based on the classification of phoneme groups and their observed
interaction during speech pronunciation. Pelachaud arranged the phoneme groups
according to the deformability and context dependence in order to decide the influ-
ence of the visemes on each other. Forward and backward co-articulation rules are
applied such that a phoneme takes the lip shape of a less deformable phoneme for-
ward or backwards. Muscle contraction and relaxation times were also considered,
and the facial animation parameters were controlled accordingly. Cohen defined
nonlinear dominance functions for each phoneme segment or viseme. These domi-
nance functions have to be defined for the facial control parameters for each viseme.
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Subsequently, a weighted sum of the active parameters is obtained for co-articulated
speech animation. The algorithm proposed by Cohen is the one most widely used
as it is rather simple to implement and gives fairly good results. However, for better
results, several parameters need to be defined precisely. In most cases, these param-
eters are defined approximately and have to be fine-tuned by experimentation and
visual perception tests. Alternatively, they can be learned from the large corpus of
phoneme-aligned facial motion capture data.

Considering these limitations, we find a need to explore a radical shift in han-
dling the problem of co-articulation. The most logical way is to draw inspiration
from how we speak in reality. We thus turn our attention to the syllable. Each syl-
lable contains at least one vowel and one or more consonants. A syllable is the next
bigger unit of speech after a phoneme. More importantly, it is the smallest unit of
speech that we naturally break our words into for the purpose of easy pronuncia-
tion. Concatenating syllables seems the most natural way of producing meaningful
speech. This principle is the basis of many concatenative Text-To-Speech systems,
using either diphones or syllables from the prerecorded database to concatenate and
synthesize speech. Even speech recognition systems using syllable-based models
rather than biphone-based models have been reported to result in more accurate
recognitions [18, 20].

Some speech animation systems, especially the video-based systems, have used
triphone-based approaches for speech animation [4, 19]. This approach is not com-
monly followed in model-based talking head systems, mainly due to the huge num-
ber of possible biphones and triphones. Furthermore, in the model-based system it
is much easier to operate on the parameters to achieve co-articulation effects. Sylla-
ble as the basic unit allows the use of a biphone, a triphone, or even a quadraphone.
However, not all biphones or triphones form valid syllables. Moreover, each sylla-
ble can be divided into clusters or demi-syllables, reducing the number of required
units considerably. With the help of phonetic rules, the visyllable database can be
designed in a much neater way and handled with efficiency.

In Section 2.4, we also address the problem associated with visyllable-based
speech animation, which is syllabification. Syllabification means the segmentation
of the phoneme stream into syllables. It is a well-known problem addressed in
phonology. Previously reported syllabification algorithms range from simple pho-
netic rule-based systems [22] to more sophisticated multilingual syllabification [24].
Given a word or phoneme sequence, there could be several possible segmentations
resulting in a group of syllables.

2.2.3 Personality

Research in virtual humans has moved ahead from sculpting and animating human
figures toward imparting them autonomous behavior. Personification means attribu-
tion of personal qualities and representation of the qualities or ideas in the human
form. The personification of a virtual human contributes greatly to its believabil-
ity. We examine the problem of personification of virtual humans from a physical,
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expressional, logical, and emotional point of view, as illustrated by Fig. 2.1. It is
evident that each of these aspects is a complete research area in itself:

• Physical personification: This refers to the appearance of the virtual human. The
facial and body features can be carefully designed to make a virtual human look
like a real-life person and even impart a unique appearance.

• Expressional personification: The tough challenge of simulating a realistic vir-
tual human comes up while animating it. It is necessary to “design” how the
virtual humans express themselves with facial expressions and gestures. Expres-
sional personification means designing how the virtual human smiles, what is a
typical way in which it expresses its anger, or even how it blinks and nods, etc.

• Logical personification: This includes the way a virtual human actually analyzes
input, thinks, finds answers, and chooses the natural language responses. This is
probably the most tedious phenomenon to model. It requires a combination of
expertise from linguistics, natural language studies, artificial intelligence, and
cognitive science. This can be looked upon as the brain of the virtual human.

• Emotional personification: The mind controls the way the emotions of the vir-
tual human evolve over time and during a dialogue. We call this process emo-
tional personification. The ability to evolve emotions makes a virtual human
really different from an expert system using a knowledge database and able to
answer text queries. The emotional and logical aspects of personification are
closely linked.

Andre et al. [2] have given a detailed description of the work done for three
projects focused on personality and emotion modeling for computer-generated

Fig. 2.1 Aspects of personification of virtual humans [28].
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lifelike characters. They emphasize the use of such characters for applications such
as a virtual receptionist (or user guide), an inhabited marketplace, and a virtual pup-
pet theater. They use the Cognitive Structure of Emotions model [35] and the Five
Factor Model (FFM) of personality [34]. Ball et al. [3] use the Bayesian Belief
network to model emotion and personality. They discuss two dimensions of the per-
sonality; dominance and friendliness. El-Nasr et al. [12] use a fuzzy logic model
for simulating emotions in agents. Velasquez [41] proposes a model of emotions,
mood, and temperament that provides a flexible way of controlling the behavior of
the autonomous entities. There have been various other systems developed to simu-
late emotions for different applications. A good overview can be found in [39].

2.3 Real-Time Video Tracking of Facial Features

In order to evaluate a user’s emotional state and provide the right answer, we should
be able to track user features to analyze them. The next section presents a real-time
tracking system based on video input.

2.3.1 Face Motion Tracking

To obtain real-time tracking, many problems have to be solved. One important prob-
lem lies in the variety of the appearances of individuals, such as skin color, eye color,
beard, moustache, glasses, and so on. The second problem comes from the camera
environment. The main idea to track in real time is to get as much information at the
initialization phase as possible, and reduce the computation overhead in the tracking
phase. Thus, after the automatic face detection, the whole related information of the
actor’s face is automatically extracted. The tracking is robust for a normal condition,
but weak at a changing of lighting condition [16, 17].

2.3.1.1 Initialization

The face features and its associated information are set during the initialization
phase that will solve the main problem in facial feature differences between peo-
ple. Figure 2.2(a) shows this initialization step. In this phase, the program automat-
ically recognizes salient regions to decide the initial feature positions. Therefore,
no manual manipulation is required and the information around the features, the
edge information, and the face color information are extracted automatically. Color
pixel, neighbor relation, and edge parameters used during feature tracking are then
generated automatically. Those parameters contain all the relevant information for
tracking the face position and its corresponding facial features without any marker.

The tracking process is then separated into two parts: mouth tracking and eye
tracking. The edge and the gray-level information around the mouth and the eyes
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Fig. 2.2 Initialization and sample tracking results [17].

are the main information used during tracking. Figures 2.2(b) and (c) display two
examples of the tracked features superimposed on the face images.

2.3.1.2 Mouth Tracking

The mouth is one of the most difficult face features to analyse and to track. Indeed,
the mouth has a very versatile shape, and almost every muscle of the lower face drive
its motion. Furthermore, the beard, moustache, tongue, or the teeth might appear
sometimes and further increase the difficulty in tracking. Thus, many researchers
are working on lip tracking or lip reading based on image processing. The system
presented takes into account some intrinsic properties of the mouth:

• Upper teeth are attached to the head bone and therefore their position remains
constant.

• Conversely, lower teeth move down from their initial position according to the
rotation of the jaw joints.

• The basic mouth shape (open or closed) depends upon bone movement.

From these properties it follows that detection of the positions of hidden or appar-
ent teeth from an image is the best way to make a robust tracking algorithm of
the mouth’s shape and its associated motion. The system proceeds first with the
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Fig. 2.3 Edge configuration for the mouth shapes [17].

extraction of all edges crossing a vertical line going from the nose to the jaw. In the
second phase, the energy that shows the probability of a mouth’s shape, which is
based on the edge and pixel value matching combination, is calculated. Among all
possible mouth shapes, the best candidate is chosen according to a “highest energy”
criterion from the database, which contains rules of a combination between the basic
mouth shape and the edge appearance. Figure 2.3(a) presents the simple rule con-
tained in the database. The edge level value along the vertical line from the nose to
the jaw, for different possible shape of the mouth and the corresponding detected
edges, reveals

• Closed mouth: In this case, the center edge appears strong, the other two edges
normally appear weak, and teeth are hidden inside; thus, the edge is not detected.

• Opened mouth: As shown in the figure, when teeth are present, the edges are
stronger than the edge on the outside lips, or between a lip and the teeth or
between the lip and the inside of the mouth. If the teeth were hidden inside the
lips (upper or lower), the edge of the teeth would not be detected.

Once this edge detection process is done, the extracted edge information is com-
pared with the data from a generic shape database and a first selection of possible
corresponding mouth shapes is done.

A few top candidates are passed to the second phase. At the second phase, a
mouth shape for each candidate is extracted. Figure 2.3(b) shows how the mouth
shape is calculated. The edges are searched from the center, and the edges make an
approximate mouth shape. It will not make a proper shape when the candidate is
not a proper mouth shape. Thus, the shape probability for each mouth candidate is
calculated from the edge connection. The best shape is chosen as the current mouth
position. We can then extract and guess the approximate mouth shape in real time,
not only from the image but using the mouth model information from a database.

2.3.1.3 Eye Tracking

Eye tracking is considered as a combination of pupil position tracking and recog-
nition of eyelid position. An extraction of an eyebrow position will also help to
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recognize the eye tracking. Thus, the eye tracking system includes the following
subsystem: pupil tracking, eyelid position recognition, and eyebrow tracking. These
three subsystems are deeply dependent on one another. For example, if the eyelid
is closed, the pupil position is hidden, and it is obviously impossible to detect its
position. We discuss a method based on a knowledge database, where

• Both pupil positions are calculated.
• Eyebrow positions are calculated.
• Eyelid positions are extracted with respect to their possible position.
• Every data is checked for the presence of movement. After this stage, inconsis-

tencies are checked again and a new best position is chosen if necessary.

For tracking a pupil in real time, there are some problems to be solved. One is
that sometimes a pupil is hidden behind an eyelid. In such a case, the object to track
(a pupil) is hidden immediately. Also, the motion speed of a human eyeball is very
fast compared with the image capturing speed, 60 frames per second. Thus, if the
pupil tracking is lost, there are two possible reasons: one is due to the fast motion,
and the other to the eyelid action. At the first stage of pupil tracking, a kind of
energy is used. This value is calculated from the maximum matching probability,
edge value, color similarity calculated from the image self-correlation, and position
movement. A problem occurs if there is no probability of pupil position, when it
is completely hidden, or if there is much less probability, when it is almost hidden.
For example, with the eyelid half-closed or when the person looks up, some part of
the pupil is hidden. The method will have to take into account such cases, and the
energy is weighted to the appeared pupil area. This method helps to recognize the
position even if the eyelid is half-closed. When the eyelid is completely closed, the
position of the pupil is obviously undefined.

We use an easy algorithm to track the eyebrows. An eyebrow is defined as a small
region during the initialization, and the position is roughly the center of an eyebrow.
It is sometimes difficult to indicate the region of the eyebrow correctly, because
some people have very thin eyebrows at both sides. Hence, we use a small region
to track the position. To detect the eyebrow’s shape, first a vertical line goes down
from the forehead until the eyebrow is detected. The eyebrow position is given by
the maximum self-correlation value of the extracted edge image. After the center
of the eyebrow is found, the edge of the brow is followed to the left and right to
recognize the shape. As soon as the pupil and eyebrow locations are detected using
the methods described previously, it is possible to guess an eyelid location. When
the probability of pupil is large or almost the same as its initial value, this means
that the eye is opened. When it is small, the eye may be closed or the person is
looking up. The eyebrow position narrows the possible eyelid position. This method
helps detecti the true eyelid position as opposed to a possible wrong detection that
may occur with a wrinkle. Thus, the method finds the strongest edge in the consid-
ered area and sets it as the eyelid. After data around the eyes are taken, they are
checked again to see if they are in a normal movement compared with templates
in the database. For example, if the eyes moved to the opposite direction, the next
possible position of the eyes has to be calculated again. This process improves the
robustness and reliability of the whole approach.
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All movement data of facial feature points are converted into normalized MPEG-
4 FAP (see [14]) by using the FAPUs that correspond to the region of the face that
the facial feature point is in. Eventually, we obtain a complete set of FAPs that
represents a facial expression.

2.3.2 Emotion and Personality Detection

In the previous section, we presented a system to track feature points on the face.
We now introduce an approach to recognize facial expression.

2.3.2.1 System Description

The tracking system presented here can recognize facial expressions that the users
define. Facial expressions can be defined using several basic facial action units.
This greatly enhances the flexibility of a facial expression recognition system in
comparison to a system that only recognizes a few template expressions [31]. The
user can define his/her individual facial expressions with a GUI by combining facial
action units before recognition. The layout of this GUI is shown in Fig. 2.4.

The system consists of three parts. First, an automatic initialization of the posi-
tion of the facial features is performed. Then, we can obtain MPEG-4 FAP data from
these features in real time with our tracking system. From the FAP data, we recog-
nize the facial action units for the upper and the lower face. Finally, a user-specific
classifier determines the facial expression that is displayed. Figure 2.5 shows an
overview of the complete real-time perceptive system.

Fig. 2.4 GUI used for facial expression definition [9].
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Fig. 2.5 Overview of the perceptive system [9].

2.3.2.2 Recognition of Facial Expression

One important observation of human facial expressions is that they are never exactly
the same for everyone. Building a facial expression recognition system that only rec-
ognizes template facial expressions will therefore not give very satisfactory results
in most cases. A second problem with these kinds of systems is that they are not
easily extended to recognize additional facial expressions. Recognizing someone’s
facial expression needs to be done by a system tailored to this particular user. Of
course, building a different facial expression recognition system for everyone is not
a solution to the problem. Our system can be tailored to any user, by letting him/her
define his/her facial expressions.

According to the Facial Action Coding System (FACS) [10], facial expressions
consist of several facial action units. These basic building blocks are the same for
everyone. Facial action units can be either upper facial action units or lower facial
action units (the categories are almost independent). So if we can recognize the
upper facial actions and the lower facial actions [40], we will be able to recognize
the facial expressions that they consist of. Different users can indicate the upper and
lower facial actions that their expressions are constructed of, using the GUI shown
in Fig. 2.4. Based on this idea, we have designed our facial expression recognition
system. The FAP data obtained by the facial feature tracking system are classified
into four upper facial actions and six lower facial actions. This classification is done
by two neural networks: one for the upper facial actions, and one for the lower facial
actions. After a user has indicated which combinations of facial actions correspond
to his expressions, we can easily determine the tailored facial expressions of this
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user from the facial actions obtained by the classified facial feature tracking data.
In this method, the only information that the dialogue system gets is the conceptual
information: what is the user’s current expression? This data can be easily passed
by a condition that can be described in XML as follows:

<condition type="user_expression">
joy
</condition>

2.4 Visyllable-based Speech Animation

In this section, we address the problem associated with visyllable-based speech ani-
mation. This approach is different than the classical co-articulation method used to
animate lips according to a speech. This technique has great potential for application
to various languages.

The system consists of two parts, an offline analysis part and a real-time syn-
thesis part. As offline preprocessing (shown schematically in Fig. 2.6), we have
motion-captured a set of English syllables. The syllables are derived from well-
known phonetic literature and represent all the possible syllables in spoken English.
The speaker speaks these syllable units with markers attached to her face, and an
optical motion capture system outputs the 3D positions of these markers (see [30]
and section 2.4.2.1 for more detail about the motion capture process).

The resulting visyllables are processed and labeled semiautomatically and stored
using a compact representation of the facial movement parameters (FMPs). The
FMPs are derived from the statistical analysis of the entire visyllable data. FMPs are,
in fact, the basis vectors computed as a result of the principal component analysis
(PCA) of the facial motion capture data. The PCA results in a reduced-dimensional

Fig. 2.6 The visyllable database using FMPs [30].
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Fig. 2.7 Real-time visyllable-based speech animation.

representation of the original data by extracting the principal directions of variation.
We have concluded that only eight parameters are sufficient to represent a speech
posture, considerably reducing the amount of data required for the database. A visyl-
lable is simply a time-varying trajectory of an eight-dimensional vector. However,
the use of FMPs has one more significance. Each FMP represents a particular facial
movement and can be assigned to be the key parameter for a class of phonemes.
This feature is used in the real-time processing of the concatenated visyllables in
the synthesis system (shown schematically in Fig. 2.7). The real-time synthesis sys-
tem takes audio and time stamped phoneme stream as input. We automatically seg-
ment the phoneme stream into a set of syllables, a process known as syllabification.
The corresponding timing information is calculated, and time-scaled visyllables are
concatenated followed by boundary smoothing to generate the final animation.

2.4.1 Syllabification

Syllabification is a process of segmenting a phoneme stream into a set of syllables
and clusters based on the phonological rules. We explain a syllabification algorithm
based on the set of valid syllables and show how these syllables are further mapped
onto the visyllables.

2.4.1.1 Valid Clusters

There are over 10,000 syllables in English, thus, it is practically impossible to use
the syllable definition as it is. We use the set of valid clusters to define syllable
boundaries as explained here. Given a stream of phonemes, it is a nontrivial task
to extract the syllables. A meaningful syllabification should allow the breaking of a
word into syllables in the most natural way, as we pronounce it. For example, the
word x-ray can be divided into two syllables in the following ways:
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1. e-ksre
2. ek-sre
3. eks-re
4. eksr-e

It is easy to see that during the pronunciation of the word, options 1 and 4 are
clearly not natural. Even among options 2 and 3, though both appear equally valid,
the syllable charts tell us that option 3 is the correct candidate.

Each syllable is a group of phonemes containing exactly one vowel and one
or more consonants. Thus, a syllable has a maximum of three clusters or demi-
syllables: an onset (group before the vowel also known as initial), a nucleus (the
vowel itself), and a coda (group after the vowel also known as a final). For example,
in the syllable stim, st is the onset, i is the nucleus, and m is the coda. Syllables may
or may not have both an onset and a coda. We take a closer look at the clusters.
They are represented by a series of letters V (referring to vowel) and C (referring
to consonant). Thus, a VC cluster means a vowel followed by a consonant. Thus,
seven clusters are possible in English, namely, V, VC, VCC, VCCC, CV, CCV, and
CCCV. A cluster can be a monophone, a biphone, a triphone, or even a quadrphone.
Of course, not any combination of Vs and Cs is possible.

There are standard charts to define valid clusters [15]. For example, a cluster kji
is not possible in English. We believe that because there exists a most natural (if not
unique) way of pronouncing a word as a sequence of syllables, this is also the best
way to generate speech animation from the basic visyllable units. Our syllabification
algorithm uses the basic definition of syllable and the set of valid clusters. Each
word in an utterance consists of one or more syllables of the structure C∗VC∗, i.e.,
of a syllable nucleus (V) optionally preceded or followed, or both, by any number
of consonants (C). We first locate the vowel positions. For each vowel, we search
in the list of valid clusters to see which onsets and codas are possible and match
the accompanying consonants in our phoneme stream. It is possible that more than
one cluster is valid. For example, a stream VCCCV can be broken into VCCCV or
VCC-CV. In this case, the decision is based on which group the boundary consonant
lies in (explained ahead). Normally, the dissimilar consonants are grouped together,
as they will have stronger co-articulation effects than similar consonants that can
be smoothed in the post-processing. We note here that we apply this syllabification
not only to words but also to a complete phoneme stream of a sentence, since we
have no information about the word’s boundaries. However, in fluent speech, co-
articulation effects are observed even across the word boundaries, and hence such a
syllabification is justified.

2.4.1.2 From Syllables to Visyllables

We noted previously that the number of syllables in English is too large to form a
database for animation. This number is reasonably high, even after defining demi-
syllables. There are about 800 initials and 1200 finals in English. However, it is easy
to notice that demi-visyllables can be far less in number than demi-syllables. This is
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the same principle as used for the definition of visemes, and we briefly present our
classification here.

In spoken English, 20 vowels are defined, as well as 24 consonants. The 20 vow-
els include short and long vowels (I in fish and i in tree) as well as diphthongs (au
in owl, aI in bye, etc.). Doing so requires a larger number of units in the database,
but ensures better results for time stretching and concatenation of visyllable units.
We classify these phonemes so that subsequently the syllables can be grouped into
visyllables based on which consonant forms the onset and the coda. For speech ani-
mation, it is more natural to group the phonemes according to how they appear visu-
ally when pronounced. The main classification is applied to consonants, and each
vowel in fact represents its own class. This classification is based on the place and
manner of articulation for the particular consonant. We have defined six different
groups for consonants:

1. Glottals: articulation is at the glottis; k, g;
2. Palatals: articulation is at the palate; ch, dz, z, and aspirants s, sh;
3. Retroflex and dentals: articulation at the palate or back of teeth; t, th, d, dh;
4. Plosives or bilabials: articulation at the lips; p, b, and nasal m;
5. Labio-dental: articulation between lip and teeth, f, v;
6. Glides: l, y, r, w and nasal n.

As a result of such a classification, we have concluded that the total number of
demi-visyllables required for our system is 900. At first glance, it still appears to be
a huge number. However, with the use of FMP, the overall size of the database is
quite small. Furthermore, the preparation of the database is an offline task, and with
appropriate indexing and labeling tools, the formation of the database is facilitated.

2.4.2 Facial Movement Parameters

So far the two popular facial parameter sets used in computer facial animation
include the FACS [13] and the MPEG-4 FAPs [14]. The FACS are inspired from
the facial muscle structures. The FAPs are defined in terms of the movements of the
facial feature points. However, in order to design speech animation and especially
to model co-articulation effects, we believe that it is necessary to have a parame-
ter set that clearly reflects the basic facial movements observed in fluent speech.
Such a parameter set can be obtained by statistical analysis of the facial motion
data. Principal component analysis (PCA) is a powerful tool for achieving this goal.
Recently, Kalberer et al. [23] used the principal components (PCs) as parameters to
define visemes. They used spline interpolation for key frame-based speech anima-
tion using the visemes defined by the PCs. We have previously reported the results
of our analysis using the PCA that have formed the basis for this work [29]. We only
briefly explain this approach and elaborate on the results that are most relevant to
the visyllable-based approach.



2 Expressive Visual Speech Generation 43

2.4.2.1 Data Acquisition and Analysis

We used a motion capture system to acquire the analysis data. Markers are attached
to the speaker’s face at the locations defined by MPEG-4 feature points. The MPEG-
4 feature points are optimum for defining the animation; furthermore, they also
facilitate obtaining the MPEG-4 FAP animation to help directly visualize the results
on a synthetic MPEG-4 compliant face [27]. We use 17 markers in total; 8 along the
lip contour, 4 on the cheeks, 2 on the chin, and 3 on the nose. The speaker speaks
all the possible demi-syllables in spoken English, and global head movements are
compensated to obtain the 3D positions of the markers. In fact, the same data used
to build the visyllable database are used for analysis. A subsequent PCA on this 3D
marker position data results a new space referred to as the expression and viseme
space [29]. The basis vectors of this space are the PCs, which represent the principal
variation in the data—the speech-related facial movement data in our case.

2.4.2.2 Principal Components as FMPs

In general, principal components do not represent any real-life parameters. We
notice, however, that, for the facial capture data, they are closely related to facial
movements. As we change one PC at a time, keeping all others at a neutral position,
we can easily establish the role of each parameter. The lower-order components
do not contribute much to the deliberate facial movements. Since each PC can be
attributed to a specific facial movement, hereafter we use the more specific FMP
for the PCs. Indeed, each PC can be visualized as a parameter to define a particu-
lar facial movement. Figure 2.8 shows the influence of the first six FMPs. We also
note the consonant group for which each of the FMP is a key parameter. This was
observed by computing the percentage variation of the individual FMPs across all
the captured demi-syllables of types VC and CV. The parameter having the max-
imum variation for a particular group was assigned as the key parameter for that
group.

• FMP1 Open Mouth: This parameter results in the global movement of the open-
ing of the jaw; a slight rotation of the jaw forcing the lips to part. This is by far
the most common facial movement necessary for many phoneme pronunciations.
For the consonant group 1, this is the most important parameter.

Fig. 2.8 PCs as Facial Movement Parameters (FMPs).
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• FMP2 Pucker Lips: This movement causes the lips to form a rounded shape,
necessary for pronunciation of vowels such as /o/ and /u/. It is a key parameter
for consonant groups 2 and 3. This also causes the protrusion of the lips.

• FMP3 Part Lips: It causes separation between the lips, without opening the
jaw. In the other direction, this causes pressing of lips against each other. The
movement is local to the lips and does not affect the cheek region much. FMP3
is a key parameter for consonant groups 4 and 5.

• FMP4 Raise Cornerlips: This movement causes the vertical movement of the
corner of the lips, resulting in a smiling action that slightly parts the lips. In
the other direction, it causes depressing of the corner lips. It is important for
consonant group 6.

• FMP5 Raise Upperlip: This movement causes movement of the upper lip and,
combined with FMP3, can be used to control the lower lip movement, which
does not have a separate parameter associated with it. Notice the change in the
nose shape because of the change in the upper lip (exaggerated here) that is also
observed in real life.

• FMP6 Protrude Lowerlip: This is a peculiar movement, causing the curling of
the lower lip and slight raising of the chin. Though FMP 5 and 6 are not partic-
ularly important for any specific vowel or consonant group, they add realism to
the appearance of all the visemes.

We observed that nearly 99% of the variation has been accommodated in only the
first eight principal components. The FMP7 and FMP8 are combinations of the first
six FMPs and do not have any particular significance. However, they are important
for complete definition of any speech posture. Thus, each frame of a visyllable unit
is represented as an 8-dimensional vector, reducing the amount of data in the visyl-
lable database. Furthermore, each FMP is significant for a group of consonants. The
importance of this classification for concatenating visyllables especially at conso-
nant boundaries is explained in Section 2.4.4.

2.4.3 The Visyllable Database

We now explain the actual data capture and post-processing so that the resulting
visyllable database can be used in the automatic concatenation of the visyllable
units in the real-time speech animation system. Once we define a list of valid demi-
syllables, it is rather straightforward to capture them using a facial motion capture
system. The optical motion capture system directly results in the 3D position of the
feature points attached to the speaker’s face. The important step in the system is the
processing of the captured data. We perform this semiautomatically. With the help of
interactive tools, the user segments the demi-visyllables manually. This is done by
picking the points on the timeline to define the demi-syllable boundaries. Individual
demi-visyllables are then segmented and stored in separate files after labeling. On
average, this process takes about 5 minutes for each demi-visyllable.
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We follow the labeling by boundary matching. It is ensured that the trajectories
of all the FMPs match the the end of the onset (CV) and at the beginning of the coda
(VC) constituting the same vowel. Initially, all the demi-visyllables ending with the
same vowel are analyzed and normalized to have the same boundary values for all
the FMPs. Then, this same boundary value is used for all the demi-visyllables begin-
ning with that vowel. For example, the demi-visyllables pa, ka, ra, etc. are matched
at the end. This is done by performing a stretch operation. The segment is stretched
or compressed in amplitude, keeping the beginning or the endpoint unchanged. This
preserves the overall shape of the demi-visyllable, but changes the span. Then the
demi-visyllables ap, ak, ar, etc. are analyzed to match their beginning to the pre-
viously adjusted demi-visyllables. This is also done interactively and the user is
presented the results for visual inspection of the concatenated elements CV-VC. As
a result, all the vowel boundaries in all the demi-visyllables are matched for conti-
nuity and smoothness. In rare cases, certain adjustments have to be done manually.
This is done interactively by adjusting the FMP trajectories. This process reduces
the real-time processing of demi-visyllables to a great extent and also improves the
smoothness of the resulting animation during the synthesis phase. Furthermore, the
vowel boundaries of the demi-visyllables in fact represent the nucleus of the visyl-
lables; it is important that they are continuous by definition. It is possible to perform
the boundary matching for consonants as well. However, in a syllable, the conso-
nants are affected by the nucleus of the syllable differently in each case.

2.4.4 Stitching Together

Once we have done the boundary matching for the vowels in the database, we ana-
lyzed the effects of concatenation with various examples. The input phoneme stream
is divided into a demi-syllable stream and subsequently a syllable stream. The indi-
vidual demi-visyllables from the database are time-warped to match the required
length from the input phoneme stream. The time-warped demi-visyllables are con-
catenated, and the resulting animation is analyzed. The analysis is done by visual
inspection of the resulting animation as well as analysis of the FMP trajectories. We
found that even though much work has been done in the processing of the database,
post-concatenation processing is required for smoothness. However, there is no gen-
eral filtering or smoothing method that could suit well for different boundary prob-
lems. We thus treated each problem separately and formulated certain rules and
procedures for post-processing and boundary smoothing of the concatenated FMP
trajectories.

There are mainly two types of problems at the concatenation boundary. One is the
absolute value continuity, or C0 continuity. Second is the C1 continuity or matching
rate of change of parameters at the boundaries. We first ensure the C0 continuity by
computing all the gaps and automatically performing shift and stretch operations on
individual visyllable segments to nullify the gaps. We observed two types of gaps
across the demi-visyllable boundaries. In the first case, the entire segment needs
a shift in order to be continuous with the previous and the subsequent segments.
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This is when the boundary gap on either side of the segment is more or less of the
same magnitude and no significant amplitude stretching is required after the shift.
This shift operation is performed in the first pass of our algorithm. As a result, all
the segments that need such a shift are adjusted for each FMP. The shift operation
preserves the overall shape and hence the characteristic of the visyllable unit, which
is important for realism. However, in the second case, on one boundary the trajectory
is continuous, while on the other boundary it is not. Thus, a stretch operation needs
to be performed for boundary matching. We can perform the stretch operation of the
segment so that one end of the segment is unaffected, whereas the other end of the
segment is stretched to a new target position and the stretch required is distributed
equally across the segment. However, it becomes necessary to decide which segment
(segment on the left side of the boundary or on the right side) is stretched. Here we
use the FMP knowledge. The segment for which the FMP under consideration is the
key parameter remains unaffected, whereas the other demi-visyllable is stretched. If
both consonants at the boundary belong to the same group (which is quite rare), the
gap is equally distributed to both segments and both segments are stretched. This
criterion improved the realism of the resulting animation.

There is an additional constraint for such a stretch operation. The most important
factors are to preserve the shape of the visyllable segment and not let the amount of
stretch cause any distortion. This is ensured by restricting the stretch to less than the
total span of the syllable unit. For example, if the maximum and minimum values
of a visyllable unit are x, then the maximum stretch is restricted to 0.75x. This value
was decided experimentally. Finally, after all the boundary smoothing operations,
about 5–10% of boundaries still require additional smoothing. These are the cases
where the FMP value continuity is obtained by the shift and stretch operation, but
there is a sudden change in the rate of change of the FMP, causing a sharp peak
or cusp. In this case, we perform a smoothing operation similar to the traditional
co-articulation method. Both the segments are stretched by 10% of the length to
overlap, and an exponentially decaying envelop is applied to each across the bound-
ary. A simple average is carried out to get the final smooth trajectory. This approach,
we found, works quite well in the final stages of the concatenation algorithm.

Considering different possibilities of the boundary mismatch, we have compiled
all the sets of rules for smoothing of the FMP trajectories. This processing forms
an important part of the synthesis system. The observed boundary mismatch can
be minimized by careful design and processing of the visyllable database. How-
ever, even when the visyllable units in the database are not perfectly matched, the
smoothing operations result in satisfactory animation.

2.5 Real-Time Dialogue Systems

We have previously developed an autonomous virtual human dialogue system in
which the personality of the virtual human was modeled by transition probabil-
ity matrices [32]. Emotional tags embedded in the dialogue database were used to
generate facial expressions. In this section, we present a more general multiplayer
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framework for modeling personality. We do not focus on a specific application,
but this model could be adapted to several applications in games, entertainment,
and communication in virtual environments. We implement the Five Factor Model
using a Bayesian Belief network. We also discuss a layered approach to personality
modeling (Personality-Moods-Emotions). This approach not only makes the system
implementation modular but enables the easy and quick design of virtual humans.
We enable a complete design of personality, focusing on emotional personification.

2.5.1 Definition of Multilayered Personality

Personality is a characteristic of a virtual human that distinguishes it from others.
Emotion is analogous to a state of mind that is only momentary. Mood is a prolonged
state of mind, resulting from a cumulative effect of emotions. We now give a brief
overview of the models used to realize these concepts. The discussion is based on
well-known literature in psychology, cognitive science, and artificial intelligence. It
is included here not only for the sake of completeness, but also to indicate how we
incorporate these aspects in the discussed system. In order to model the personality
of autonomous virtual humans, we must study the personality modeling from the
viewpoint of psychology as well as computation. There are various obvious and
not so obvious aspects directly linked to personality. They include the choice of
language, style of talking, gestures, and thinking process. We focus here on the
emotional behavior of the virtual human as a function of personality.

2.5.1.1 Personality

In psychology, the Five Factor Model (FFM) [34, 8] of personality is one of the most
recent models proposed. The model was proposed not only for a general understand-
ing of human behavior but also for psychologists to treat personality disorders. The
five factors are considered to be the basis or dimensions of the personality space
(see Table 2.1).

Table 2.1 Five personality dimensions.

Factor Description Adjectives used to describe

Extraversion Preference for and behavior in Talkative, energetic, social
social situations

Agreeableness Interactions with others Trusting, friendly,
cooperative

Conscientiousness Organized, persistent in achieving Methodical, wellorganized,
goals dutiful

Neuroticism Tendency to experience negative Insecure, emotionally
thoughts distressed

Openness Open-mindedness, interest in Imaginative, creative,
culture explorative
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All these dimensions of personality are closely related to the expressional, log-
ical, and emotional personification to varying degrees. For example, extraversion
affects the logical behavior (choice of linguistic expressions), whereas neuroticism
affects the emotional behavior more closely. Nevertheless, we prefer using all the
dimensions in the model, even though the focus is on emotional personality. Since
the model states that these five factors form the basis of the personality space, one
should be able to represent any personality as a combination of these factors.

Emotions and Expressions

By emotion, we understand a particular state of mind that is reflected visually by
way of facial expression. Hence, though we use emotion and expression as two
different words, conceptually, we refer to the same thing by either of them. We use
the emotion categories proposed by the model of Ortony, Clore, and Collins [35],
commonly known as the OCC model. The model categorizes various emotion types
based on the positive or negative reactions to events, actions, and objects. The OCC
model defines 22 such emotions. Table 2.2 shows these emotions with high-level
categorization (positive and negative). The OCC model also describes how the inten-
sities of the emotions are governed by internal as well as external factors. We do not
currently use the cognitive processing specified by the OCC model. However, the
use of the emotions specified by the OCC model facilitates the integration of a dia-
logue module that can generate emotions depending upon the semantics and context.

Ekman [11] defined six basic facial expressions that are recognized as univer-
sal by many facial expression and emotion researchers. These basic expressions are
joy, sadness, anger, surprise, fear, and disgust. They are very useful for facial ani-
mation and can be combined to obtain other expressions. There is a partial overlap
between the expressions proposed by Ekman and the ones stated by the OCC model.
Only four expressions (joy, sadness, fear, and anger) are defined in the OCC model.
Surprise and disgust do not find place in the OCC model, mainly because they do
not involve much cognitive processing and do not correspond to valenced reactions.
However, we find them important for the expressiveness of the virtual human in
a conversation system. The emotions defined by the OCC model are too many in

Table 2.2 Basic emotions

Positive Emotions Negative Emotions

Happy-for Resentment
Gloating Pity
Joy Distress
Pride Shame
Admiration Reproach
Love Hate
Hope Fear
Satisfaction Fear-confirmed
Relief Disappointment
Gratification Remorse
Gratitude Anger
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Table 2.3 Basic emotions grouped

Joy Happy-for, Gloating, Joy, Pride, Admiration,
Love, Hope, Satisfaction, Relief, Gratification, Gratitude

Sadness Resentment, Pity, Distress, Shame, Remorse
Anger Anger, Reproach, Hate
Surprise Surprise
Fear Fear, Fear-confirmed
Disgust Disgust

number to directly use in the computation of emotional states. At the same time,
they are important and necessary for making the dialogue rich with expressions.

We attach 24 emotions (22 defined by the OCC model, with surprise and dis-
gust as additional emotions) to the dialogue sentences in the form of tags. To reduce
the computational complexity, we use only six basic expressions to represent the
emotional states. These basic expressions are used as a layer between visible facial
expressions and invisible mood, described ahead. In order to facilitate the link
between these two levels, we recategorize the 24 emotions into 6 expression groups
(see Table 2.3). This modification in the emotion structure enables us to handle a
relatively lower number of emotional states while still retaining the completeness
necessary for expressive conversation.

Mood

The FFM describes the personality, but it is still a high-level description. We need
to link the personality with displayed emotions that are visible on the virtual face.
This is difficult to do unless we introduce a layer between the personality and the
expressions. This layer, we observe, is nothing but mood. We clearly distinguish
between mood and personality. Personality causes deliberative reactions, which in
turn cause the mood to change. According to Velasquez [41], moods and emotions
are only differentiated in terms of levels of arousal. However, we define mood as a
conscious and prolonged state of mind that directly controls the emotions and hence
the facial expressions. Mood is also affected by momentary emotions as a cumula-
tive effect. Thus, mood is affected from the level above it (personality) as well as
the level below it (emotional state). The expressions can exist for a few seconds or
even shorter, whereas mood persists for a larger timeframe. The personality, on the
highest level, exists and influences expressions as well as moods, on a much broader
time scale. This relation is shown graphically in Fig. 2.9.

To summarize, the following relations are made between the layers:

1. Personality practically does not change over time. It causes deliberative reaction
and affects how moods change in a dialogue over time.

2. Mood, from a higher level, is affected by the personality, and it is also affected
from the lower level by emotional states.

3. On the lowest level, the instantaneous emotional state, which is directly linked
with the displayed expressions, is influenced by mood as well as the current
dialogue state.
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Fig. 2.9 Layered approach to personality modeling [28].

The emotion layer is further subdivided into two layers as explained previously.
However, this is more of computational convenience than semantic distinction.

Considering the FFM, we observe that agreeableness, neuroticism, and extraver-
sion are the most important dimensions of the personality, as far as emotions are
concerned. A neurotic person will change moods often, and tend to go into a neg-
ative mood easily. On the other hand, an extraverted person will tend to shift to a
positive mood quickly in a conversation. An agreeable person will tend to go into
positive mood more often, but frequent mood changes may not be shown.

Having emphasized the importance of mood in personality modeling, we find that
it is difficult to clearly distinguish all the possible various moods. We did not find
sufficient literature in psychology for analysis and classification of moods and mood
changes in a systematic manner. Hence, we propose to categorize mood simply into
two basic categories, namely, good and bad. So the emotions categorized by the
OCC model under the negative group (anger, hate, shame, etc.) are more likely
to be expressed when in a bad mood. However, it may be possible that our mood
forbids us from being expressive. We call this a neutral mood. In this mood, the
virtual human will tend not to change its displayed expression easily and will tend
to express itself with less intensity.

Bayesian Belief Network

Knowing the emotional personality definitions and emotion classifications, it could
be possible to write rules mapping personality to emotional states. However, such
rule-based systems are unlikely to succeed in simulating believable behaviors,
mainly because uncertainty is an important aspect of human behavior. Thus, we
need a computational model that can handle uncertainty while retaining the under-
lying principles. The Bayesian Belief Network (BBN) is the natural choice as it is
used to model domains containing uncertainty [37]. Syntactically, it is a directed
acyclic graph, where each node represents a state variable with mutually exclusive
and independent states. The directed links represent the influence of the parent node
on the child node. For each child node, a conditional probability table defines how
its states are affected for each combination of possible states of the parent node.
Thus, the effects (children) of the causes (parents) are encoded probabilistically
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into the definition of the BBN. How to initialize the transition probability values,
to clearly represent the causes-and-effect relationship for a particular application,
is altogether a different topic of research. For our application, we set the condi-
tional probability values by intuition. The BBN is particularly suitable for modeling
complex phenomena such as personality because of the following reasons:

1. It handles uncertainty powerfully, which is evident in its evolution of emotions.
2. It gives a structured probabilistic framework to represent and calculate other-

wise very complex and rather abstract concepts related to emotions, moods, and
personality.

Ball et al. [3] previously reported the use of the BBN for personality and emotion
modeling. The main difference in their approach and the presented one is that we
try to use the FFM of personality to devise a way of combining personalities and
also to introduce an additional layer of “mood” in the model.

2.5.1.2 System Overview

In this section, we present an overview of the emotional virtual human system that
we have developed. Figure 2.10 shows the various components of the system and
their interactions. For the expressional personification, we use MPEG-4 Facial Ani-
mation Parameters and the real-time facial animation system using FAPs [27].

A text processing and response generation module processes the input text; in
our case it is the chat-robot ALICE [1]. ALICE uses Artificial Intelligence Mark-
up Language (AIML), which is an XML-based language, to define the dialogue
database. We define the AIML database such that the emotional tags are embedded

Fig. 2.10 A system overview [28].
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in the responses. The emotional tags have probability values associated with them.
These emotional tags are passed on to the personality model, which is a BBN.
The personality model, depending upon the current mood and the input emotional
tags, updates the mood. As mood is relatively stable over time, mood switching
is thus not a frequent task. Depending upon the output of the personality model,
mood processing is done to determine the next emotional state. This processing
determines the probabilities of the possible emotional states. Though the system
uses emotion tags in dialogues for evolving emotions based on mood and person-
ality, it is possible to link the model with an affective reasoner, which can provide
similar tags for emotion appraisal. The personality and mood model can process
emotional tags irrespective of the process that derived them. The synchronization
module analyzes previous facial expression displayed and outputs probabilities of
the mood processing. It determines the expression to be rendered with appropri-
ate time envelopes. It also generates lip movements from the visemes generated
by the Text-To-Speech engine. Finally, it applies blending functions to output the
facial animation parameters depicting “expressive speech.” We use the technique
described in [29] for this. A separate facial animation module renders the FAPs in
synchrony with the speech sound.

Text Processing and Reponse Generation

All the AIML categories are not such strict matches. AIML uses various tags to
introduce randomness in answers, to remember limited dialogue history, and to
allow symbolic reduction. Though ALICE does not use any syntactic or semantic
language analysis techniques, the features embedded in AIML and ALICE make
the chat robot much more than a mere pattern matching program operating on a set
of possible inputs and answers. It can engage the user in believable conversation
to a considerable degree. Though originally designed for merely a chat application,
AIML can be generated to tackle a particular domain queries from the user, e.g.,
a sales assistant or a virtual receptionist. For a complete description of AIML,
interested readers are referred to [1].

We notice that the current state of natural language processing does not allow us
to relate dialogue with emotions easily and generally. Hence, we extend AIML to
incorporate emotional tags in the responses. Each response may be associated with
one or more emotional tags. These tags essentially represent the possible emotional
state of the virtual human while rendering the particular response. Currently, we
use the 24 emotional tags as explained previously. However, it is easily possible
to extend this list. It could be useful to introduce bored, thinking, and frustration
as new tags belonging to sad, neutral, and anger expression categories respectively.
Consider a particular response: “I am very busy nowadays.” This response can be
associated with pride or distress. Subsequently, we can associate probability values
to these possible emotions. For this particular response sentence, the probability of
pride is set to 30% and that of distress is 70%. The corresponding AIML category
looks like the following:
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<category>
<pattern>What are you doing?</pattern>
<template><emo name="pride" prob="30"><emo name="distress"

prob="70">
I am very busy nowadays.</template>
</category>

The introduction of emotional tags is not a trivial task. It is necessary to imagine
various situations that may give rise to various emotions according to the meaning
of the response sentence. A response like “I am happy to hear that” can mostly be
associated with emotional tag joy with 100% probability. This ensures higher prob-
ability of joy being expressed finally as a result of the emotion-processing pipeline.
We subsequently explain how these tags and corresponding probabilities are pro-
cessed by the personality and mood model to generate the final emotional state. In
order to facilitate introducing a variety of emotional tags with each and every possi-
ble response, we have developed an interactive tool enabling easy and quick design
of “emotional” AIML. For improving the naturalness of the dialogue, we propose
further modification in AIML. Instead of attaching different emotions to a single
response, while creating the AIML database, we input different responses corre-
sponding to different emotions. For example, a typical modified AIML category
will look like the following:

<category>
<pattern>How are you?</pattern>
<template>
<emo name="joy" prob="50" res="I am fine, thank you.">
<emo name="sadness" prob="50" res="Not so good today!">
</template>

</category>

The emotional tags are processed by the personality and mood processing modules.
Subsequently, the processing will result into not only appropriate emotion, but also
a selection of the speech response analogous to the emotion. In the future, it is
possible to replace ALICE with a more sophisticated language analysis module.
Such a module should create the emotional tags depending upon the semantics,
context, and dialogue history of the conversation, in a more coherent way.

2.5.2 Dialogue Manager

A number of modules are available that provide for extra flexilibity of the system.
Input Module. This module compares an input string to a predefined pattern. It

is related to a condition that evolves to true or false defining whether or not a string
follows the pattern.

Output Module. This module consists of an action that produces text output.
The text can be formatted in different way and includes support for XML tags.
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Emotion Module. The emotion module handles the relation between the emo-
tional state and the running dialogue. From the dialogue, the emotional state can be
updated. Also, conditions are defined that indicate if a certain emotion is above or
below a given threshold, thus allowing for different behavior according to different
emotional states.

User Profile Module. The goal of this module is to maintain information about
the user, such as name, age, and so on. Also, it can serve as an interface between
automatic facial expression and emotion tracker.

The dialogue manager generates responses that are tagged using XML. These
tags indicate where a gesture should stard and end. There are many different repre-
sentation languages for multimodal content, for example, Rich Representation Lan-
guage (RRL) [26] or Virtual Human Markup Language (VHML) [42]. We will now
give an example of how such a representation language can be used to control ges-
ture sequences in the presented system. For testing purposes, we have defined a sim-
ple tag structure that allows for the synchronized playback of speech and nonverbal
behavior. An example of a tagged sentence looks like this:

<begin_gesture id="g1" anim="shake_head"/>Unfortunately, I
have <begin_gesture id="g2" anim="raise_shoulders"/> no idea
<end_gesture id="g2"/> what you are talking about. <end_
gesture id="g1"/>

Within each gesture tag, an animation ID is provided. When the gesture ani-
mation is created, these animations are loaded from the database of gesture—
also called a Gesticon [26]—and are blended using a blending engine. The tim-
ing information is obtained from the Text-To-Speech system. The animation system
only activates actions at given times with specified animation lengths and blending
parameters.

2.5.2.1 From Dialogue to Facial Animation

In this section, we present the techniques used to create the facial animation from
the output text and speech. The output text is first converted into speech signal by the
Text-To-Speech engine. At the basic level, speech consists of different phonemes.
These phonemes can be used to generate the accompanying facial motions, since
every phoneme corresponds to a different lip position. The lip positions related to the
phonemes are called visemes. There are not as many visemes as phonemes, because
some phonemes revert to the same mouth position. For example, the Microsoft
Speech SDK defines 49 phonemes but only 21 different visemes. For each viseme,
the mouth position is designed using the MPEG-4 FAPs. Constructing the facial
motion is achieved by sequencing the different mouth position, taking into account
the speech timing obtained from the TTS engine. An important issue to take into
consideration when creating facial speech is co-articulation, or the overlapping of
phonemes/visemes. Generally, co-articulation is handled by defining a dominance
function for each viseme. For example, Cohen and Massaro [5] use this technique
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and define an exponential dominance function. Similarly, we use the following base
function to construct the co-articulation curve:

f (x) = e−αx − x .e−α, (2.1)

where 0 < α < ∞. The parameter α governs the shape of the curve. Because of the
generic structure of the animation engine , it is a simple task to create the facial
animation from the viseme timing information. We define a blending action for
each viseme, where the dominance function acts as the weight curve. The blending
schedule containing the different blending actions will then automatically perform
the viseme blending.

Next to facial speech animation, also any facial gestures need to be added, defined
as tags in the text. An example of an eyebrow-raising facial gesture could be defined
as follows:

Are you <begin_gesture id="g1" anim="raise_eyebrows"/>
really sure about that ? <end_gesture id="g1"/>

In addition to the facial gesture derived from the tagged text, the emotional state is
also shown on the face by mapping the expression onto one of the six facial expres-
sions defined by Ekman [11]. The intensity of the emotion is included by applying
a corresponding scaling factor in the blending parameters. Finally, a face blinking
generator is added for increased realism. Each face animation track has different
weights for the FAPs. The speech animation has a higher weight on the mouth area,
whereas the face expression weights are higher on the eye and eyebrow area. By
blending the different facial animation tracks, the final animation is obtained.

2.6 Conclusion

2.6.1 Real-Time Video Tracking

Section 2.3.1 discussed a method to track facial features in real time. This recog-
nition method for facial expressions does not use any special markers or makeup.
It does not need training but a simple initialization of the system allowing the new
user to adapt immediately. Extracted data are transformed into MPEG-4 FAPs that
can be used easily for any compatible facial animation system.

2.6.2 Visyllable-based Speech Animation

One may ask what is the difference between a triphone-based approach and a demi-
syllable-based approach. First, a demi-syllable can be a biphone, a triphone, or even
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a quadraphone. Second, as all the vowel boundaries of the demi-visyllables are
normalized during the processing of the database, concatenating along the vowel
boundaries is ensured to impart smooth results. Third, the co-articulation effect
along the syllable boundaries is known to be weak. Thus, demi-syllable-based inter-
polation is justified.

We would like to highlight the strengths of the visyllable-based speech animation
system:

• It is a more general and powerful approach as compared to the context-
independent co-articulation algorithms. Through a complete visyllable database,
all the known co-articulation effects are accounted for.

• With the help of compact representation using the Facial Movement Parameters,
we observe that the data required for a complete English speech animation system
are reasonably small.

• Furthermore, this method can be used for real-time as well as non-real-time high-
end productions of facial animation.

The technique has great potential for application to various languages, especially
Asian languages such as Indian and Japanese, which have a built-in phonetic script
and pronunciation structure. In the future, we would like to continue to investigate
this methodology with more perceptive tests and applicability to various languages.
We would like to devise a more generalized and robust boundary smoothing algo-
rithm. We intend to draw inspiration from concatenative speech synthesis systems in
which such boundary smoothing and trajectory matching algorithms are employed
for increased quality of speech. We feel that the fields of phonetics and phonology
have a lot more to offer to the speech animation research.

2.6.3 Real-Time Dialogue Systems

We have prepared a dialogue scenario that best shows the strength of the model.
We simulate a conversation between a manager and his virtual assistant. Since our
focus is to demonstrate change in emotions governed by dialogue content as well
as personality, we have designed the dialogue with many possibilities for emotions.
For each possible input, we encode various possible responses attributed to differ-
ent emotional states. From these possibilities, the personality and mood process-
ing modules select the final response. Indeed, designing such a general AIML is a
painstaking task. With the availability of an intelligent dialogue system capable of
generating various possibilities depending upon the context, the need for creating
such an AIML would be eliminated.

We have designed two contrasting personalities, agreeable and neurotic. We have
chosen to model these traits because they are clearly distinguishable mainly from
emotional behavior and facial expressions. In the beginning of the conversation, the
moods of both personalities are set to neutral. The inputs appear on the screen as
typed text. The mood change is also seen on the left corner of the frame. The agree-
able personality tends to be pleasant. The neurotic personality, on the other hand,
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tends to change to a bad mood more easily. However, note that a good mood does
not always mean a smiling face. Since both the mood and emotion computations are
probabilistic, the final expressions may not be exactly the same each time we run
the dialogue. However, the overall trend of the mood changes is similar. Figure 2.11
shows the snapshots from the animation depicting various facial expressions during
the conversation.

Apart from the lack of an intelligent dialogue system, we are aware of sev-
eral aspects for further improvement. Integration of a real-time speech recognizer
will considerably add to the usability. Furthermore, controlling voice intonation and
talking speed according to emotions would bring out the real expressiveness of the
character. Development of such modules or the integration of such already available
modules remains an important future task for the completion of the system. Within
these limitations, the effectiveness of the multilayer personality model is evident.
It is also a challenging but interesting task to fine-tune the conditional probabili-
ties of the personality Bayesian Belief Networks and mood transition probability
matrices. We have identified the need for thorough experimentation by users and
researchers from various backgrounds. The system has great potential to be used by
the emotion researchers and psychologists to study and validate the model and make
improvements.

To conclude, we have presented a system incorporating a personality model for
an emotional autonomous virtual human that covers the following important aspects:

• Many concepts are brought together from psychology, artificial intelligence, and
cognitive science to create a layered model of human personality directly affect-
ing the emotional and expressional behavior.

• A user is able to design personalities for virtual humans as a combination of five
basic factors. Furthermore, the user can define moods for a virtual human and
dictated how these moods affect the emotional state and displayed expressions.

Fig. 2.11 Expressive speech animation [28].
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• The model has been integrated with a chat system, demonstrating the potential
use of such a model in a real-life system enabling believable communication with
a virtual human in a natural language.
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Chapter 3
Data-Driven Expressive Speech Animation
Synthesis and Editing

Zhigang Deng and Ulrich Neumann

3.1 Introduction

The synthesis of compelling facial animations remains one of the most challenging
topics in the computer graphics community, because humans are super sensitive to
the subtleties of moving human faces. In the entertainment industry, animators often
manually create key-frame faces every two or three frames, which is a painstaking
and tedious task even for skilled animators.

In this chapter, we present a novel data-driven expressive Facial Animation
Synthesis and Editing system (termed eFASE) [1]. Its algorithm generates expres-
sive speech animations by searching for best-matched motion capture subsequences
in the motion database given new utterance. This eFASE system is automatic, while
it provides optional controls for users, and the users can specify constrained expres-
sions for phonemes and emotion modifiers over arbitrary time intervals. It should be
noted that user input is optional, only to impart them with a desired expressiveness.
Figure 3.1 illustrates high-level components of the eFASE system.

This system offers intuitive and convenient tools for managing a large facial
motion capture database. Since facial motion capture is often not perfect, contami-
nated marker motions can occasionally occur in a motion capture sequence. Elimi-
nating these contaminated motions is important to motion synthesis, but it is often
a difficult task. Our phoneme-Isomap based visualization tool displays the facial
motion database in an intuitive way, which can help users to remove the contami-
nated motion sequences conveniently.

The contributions of this work include:

• Its expressive speech animation synthesis algorithm is an improvement over pre-
vious data-driven search algorithms, introducing more general cost functions that
incorporate emotion controls and velocity/acceleration components.

• The phoneme-Isomap based visualization interface provides intuitive controls
for facial animation synthesis and a convenient tool for managing a large facial
motion database.

The remainder of this chapter is organized as follows: Section 3.2 reviews previ-
ous and related work on motion capture and facial animation. Section 3.3 describes
the capture and processing of expressive facial motion data. Section 3.4 describes
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Fig. 3.1 Schematic illustration of the eFASE system. At the left, given novel phoneme-aligned
speech and specified constraints, this system searches for best-matched motion nodes in the facial
motion database and synthesizes expressive facial animation. The right panel illustrates how users
specify motion-node constraints and emotions with respect to the speech timeline. Reproduced by
kind permission of the Eurographics Association; c© Eurographics Association 2006.

the construction of 2D expressive phoneme-Isomaps that allow users to interactively
specify phoneme expression constraints and edit the motion database. Section 3.5
details how to perform motion editing operations and specify constraints for facial
animation synthesis. Section 3.6 describes how to search for best-matched motion
frames from the processed motion database to create complete animations while sat-
isfying user-specified constraints. Finally, results (Section 3.7) and discussion and
conclusions (Section 3.8) are presented.

3.2 Previous and Related Work

Since Parke’s pioneering work in facial animation [2], various facial modeling and
animation techniques have been proposed [3]. In this section, we only briefly review
some recent related work. Data-driven speech animation approaches learn statistical
models from data for facial animation synthesis and editing [4–7]. Ezzat et al. [5]
proposed a multidimensional morphable model from a prerecorded video database
that requires a limited set of mouth image prototypes. Chuang et al. [6] described
facial expression mapping/transformation from training footage using bilinear mod-
els, and then this learned mapping is used to transform novel video of neutral talking
to expressive talking.

Another way of exploiting data for facial animation synthesis is to concatenate
prerecorded phoneme or syllable motion segments [8–12]. “Video rewrite” [8] gen-
erates 2D talking faces for novel speech input by recombining collected “triphone
video segments.” Instead of constructing a phoneme segment database, Kshirsagar
and Thalmann [11] present a syllable-motion-based approach to synthesize novel
speech animations. In their approach, captured facial motion are chopped and cat-
egorized into syllable motions, and then novel speech animations are generated by
concatenating proper syllable motions optimally chosen from the syllable motion
database. Rather than restricting the search within triphones or syllables, longer
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(≥3) phoneme sequences can be combined in an optimal way using various search
methods, including greedy search [10] or the Viterbi search algorithm [9, 12].

The eFASE system introduced in this chapter employs a constrained dynamic
programming algorithm to search for the best-matched motion capture frames in a
prerecorded database, similar to [9,12]. But the distinctions of our search algorithm
include (1) it introduces a new position velocity cost for favoring smooth paths,
(2) by introducing a novel emotion mismatch penalty function, our algorithm can
seamlessly generate expressive facial animations, and (3) it introduces motion-node
constraints and emotion modifiers into the search process, which make the control
of data-driven speech animation synthesis intuitive and convenient.

3.3 Facial Motion Data Capture and Processing

In order to capture subtle facial motion, a VICON optical motion capture system
was deployed to capture expressive facial motions. The motion capture system can
work at a high sampling rate, such as 120 Hz. In the motion capture setup stage, 102
markers were put on the face of a selected actress, and a corpus composed of 225
phoneme-balanced sentences was delicately designed. In motion capture sessions,
the actress was directed to speak the corpus four times as naturally as possible. Each
repetition was spoken with a different expression (four expressions are considered
in this work: neutral, happiness, anger, and sadness). During data capture, simulta-
neous facial motion and audio were recorded by the system.

It should be noted that sentences for each expression repetition are slightly dif-
ferent, because some sentences are not proper for recording certain expressions. We
collected more than 105,000 frames of motion data. Due to tracking errors caused
by occusions and the removal of unnecessary markers, only 90 of 102 markers
were used for this work. Figure 3.2 shows the 102 captured markers and the 90
used markers. The motion frames for each corpus repetition are associated with the
intended expression. Except for 36 sentences that are used for cross-validation and

Fig. 3.2 The left is a snapshot of the captured actress. Blue and red points in the right panel
represent the 102 captured markers, where the red points are the 90 markers used for this work.
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test comparisons, the other captured facial motion data are used for constructing a
training facial motion database.

After facial motion capture, the facial motion data are normalized as follows: (1)
a facial motion frame (neutral, m-viseme) is chosen to be the reference frame; (2) all
the markers were translated so that a specific marker is at the local coordinate center
of each frame; and (3) a statistical shape analysis method [13] is used to calculate
head motion. This head motion removal method can be summarized as follows:
first, the reference frame and other motion capture frames were packed into a 90×3
matrix. Here y is used to represent the reference frame, and xi for one motion capture
frame. After this step, the singular-value decomposition (SVD), U DV T , of matrix
yT xi was calculated. Finally, the product of V U T gave the rotation matrix, R:

yT xi = U DV T , (3.1)

R = V U T . (3.2)

The Festival speech system [14] was used to perform automatic phoneme align-
ment on the captured audio. Accurate phoneme alignment is important to the suc-
cess of this work, and automatic phoneme alignment is imperfect, so two linguistic
experts manually checked and corrected all the phoneme alignments by examining
corresponding spectrograms.

After motion data normalization, 3D positions (xyz) of all 90 markers in one
motion capture frame are transformed to a 270-dimensional motion vector. We then
apply principal component analysis (PCA) to these motion vectors, primarily for
the purpose of dimensionality reduction. In this work, the reduced dimensionality is
experimentally set to 25, which covers 98.53% of the variations of motion data. As
such, each 270-dimensional motion vector was transformed to a reduced vector that
concatenates the retained 25-dimensional PCA coefficients.

To make the terms used in this chapter consistent, we use motion frames to refer
to the above PCA coefficient vectors or their corresponding facial marker config-
urations. Based on the phoneme timing boundaries from the phoneme-alignment
results, the recorded motion capture sequences were further chopped into small sub-
sequences, and each subsequence corresponds to the duration of a specific phoneme.
These motion subsequences span several to tens of motion frames. These subse-
quences are referred to as motion nodes in this chapter. The triphone context for
each motion node that includes its previous phoneme and the next phoneme is also
retained in this process.

Each phoneme often occurs a number of times in the spoken corpus, with varied
co-articulations. A phoneme cluster is defined as a cluster of motion frames that
is constructed by collecting all motion nodes of a specific phoneme. A phoneme
cluster typically consists of thousands of motion frames representing facial config-
urations that occur for a specific phoneme. Because each motion capture sequence
was recorded with certain expressions, each motion frame in a phoneme cluster has
an emotion/expression label and a relative time property (relative to the duration
of the motion node that it belongs to). The specific phoneme that a motion node
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Fig. 3.3 To construct a specific /w/
phoneme cluster, all expressive motion
capture frames corresponding to /w/
phonemes are collected, and the Isomap
embedding generates a 2D expressive
Phoneme-Isomap. Colored blocks in the
figure are motion nodes. Reproduced
by kind permission of the Eurographics
Association; c© Eurographics Associa-
tion 2006.

represents is called the phoneme of this motion node. Figure 3.3 illustrates the pro-
cess of constructing phoneme clusters and motion nodes.

A facial motion-node database is accordingly constructed based on the above
phoneme clusters. The constructed motion-node database can be viewed as a 3D
conceptual space spanned by sentence, emotion, and motion-node order. Sentence is
the atomic captured unit in the above motion capture sessions; as such, each motion
node oi has a predecessor motion node pre(oi) and a successor motion node suc(oi )

in its sentence recording, with the exception of the first/last motion node of a sen-
tence recording. It should be noted that in this step, motion nodes for the silence
phoneme /pau/ are discarded, and if the /pau/ phoneme happens to appear in the
middle of the phoneme transcript of a sentence, it will break the recorded motion
sequence of this sentence into two sub-sentences when constructing the motion-
node database. Figure 3.4 shows this 3D conceptual view. In this figure, these prede-
cessor/successor relationships are illustrated as solid directional lines. As illustrated
in the right panel of this figure, a synthesized facial motion sequence (yellow line)
is a concatenated motion-node trajectory in this conceptual view.

Fig. 3.4 Conceptual illustration of the constructed motion-node database. Here solid directional
lines indicate predecessor/successor relations between motion nodes, and dashed directional lines
indicate possible transitions from one motion node to the other. The colors of motion nodes repre-
sent different emotion categories of the motion nodes. The yellow line in the right panel illustrates
a motion-node trajectory of synthesized facial motions. Reproduced by kind permission of the
Eurographics Association; c© Eurographics Association 2006.
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3.4 2D Expressive Phoneme Isomaps

In this section, we describe how the phoneme clusters are transformed into 2D
expressive phoneme-Isomaps. These 2D phoneme-Isomaps introduced in this work
provide a mechanism for users to interactively browse and select motion nodes. The
idea of constructing phoneme-Isomaps for control is motivated by the work of [15],
where PCA is applied to a specific type of human body motion (e.g., jumping)
to generate a low-dimensional manifold representation. In this work, the Isomap
framework [16] is applied to the phoneme clusters in order to embed all motion
frames in the clusters into two-dimensional manifolds.

Constructed 2D phoneme-Isomaps are compared with corresponding 2D
phoneme-PCA maps that are expanded with two largest eigenvectors, by visu-
alizing these two representations in color schemes. We found that points (motion
frames) of one specific expression, visualized as the same color, are distributed
throughout the 2D phoneme-PCA maps, and motion frames of various expressions
are better distributed and have a better projection in the 2D phoneme-Isomaps. As
such, the 2D PCA displays are not as effective as the 2D phoneme-Isomaps as a
mean for frame selection. We also found that certain directions in the 2D phoneme-
Isomaps, e.g., a vertical axis, roughly corresponded to certain perceptual variations
of facial configurations, such as an increasingly open mouth. Figure 3.5 compares
2D PCA projections and 2D Isomap projections on the same phoneme clusters.

The point rendering in Fig. 3.5 of 2D expressive phoneme-Isomaps is not suitable
for interactively browsing and selecting facial motion frames without considerable
effort, because these discrete points are difficult to pick, and it is not a continu-
ous space. In this work, an efficient Gaussian kernel-based point-rendering method
is used to visualize the phoneme-Isomaps. The pixels of the rendered phoneme-
Isomaps accumulate weights of Gaussian distributions centered at each embedded
2D location, and the pixel brightness is proportional to the probability of repre-
senting the phoneme. In this way, a phoneme-Isomap image is produced for each
phoneme-Isomap (Fig. 3.6).

Now we describe how to construct a continuous facial configuration space from
a 2D phoneme-Isomap. The 2D Delaunay triangulation algorithm is applied to
embedded 2D Isomap coordinates of each phoneme-Isomap to produce a 2D trian-
gulation network, where each vertex of these 2D triangles corresponds to an embed-
ded phoneme-Isomap point—a motion frame in the phoneme cluster. It should be
noted that these 2D triangles cover most of the space in the phoneme-Isomap image
without overlap, but some points around the phoneme-Isomap image boundaries
are not covered by the triangulation network due to the fact that this triangulation
network is useful for interpolation, but not extrapolation.

When a point in the 2D phoneme-Isomap is picked, first its 2D position is
mapped back to the 2D embedded Isomap coordinate system, and then the unique
covering triangle for this picked point can be identified based on the mapped posi-
tion. Finally, barycentric coordinates of the picked point are used to interpolate three
vertices (motion frames) of the covering triangle to generate a new motion frame,
which corresponds to the picked point. Based on the interpolated motion frame



66 Z. Deng, U. Neumann

Fig. 3.5 Comparisons between 2D phoneme-PCA maps and 2D phoneme-Isomaps. The left panels
are 2D phoneme-PCA maps for /aa/ (top) and /y/ (bottom), and the right panels are 2D phoneme-
Isomaps for /aa/ (top) and /y/ (bottom). In all four panels, black is for neutral, red for angry, green
for sad, and blue for happy. Note that some points may overlap in these plots. Reproduced by kind
permission of the Eurographics Association; c© Eurographics Association 2006.

for the picked point, a 3D face model is deformed correspondingly. An extension
of the feature point-based mesh deformation approach [17] is used for this rapid
deformation. At this point, a phoneme-Isomap image is converted to a visualized
representation of a continuous space of recorded facial configurations for one spe-
cific phoneme. Figure 3.6 shows the phoneme-Isomap image of the /ay/ phoneme. It
should be noted that these phoneme-Isomap images and their mapping/triangulation
information were precomputed and stored for later use, so this computation was
needed once.

3.5 Motion Editing

Managing and editing a large high-dimensional motion database is a challenging
problem. As mentioned in Section 3.3, the constructed facial motion-node database
consists of hundreds of thousands of motion capture frames. The phoneme-Isomaps
provide a novel mechanism for managing motion nodes in the database conve-
niently and efficiently. In this work, each motion node—a sequence of motion cap-
ture frames (of one specific phoneme) in their recorded order—is visualized as a
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Fig. 3.6 The 2D expressive phoneme-Isomap for phoneme /ay/. Here each point in the map cor-
responds to a specific 3D facial configuration. Note that gray is for neutral, red for angry, green
for sad, and blue for happy. Reproduced by kind permission of the Eurographics Association; c©
Eurographics Association 2006.

directed 2D trajectory (curve) in a phoneme-Isomap image, where the pixel color
behind a motion-node trajectory represents the emotion category of its represented
motion node.

Via motion-frame preview, users can conveniently check and inspect any frame
of a motion node (a point on the trajectory) as follows: if any point on the motion-
node trajectory is picked, its corresponding deformed 3D face will be interactively
displayed in a preview window. Directly showing animations of a selected motion
node is another solution: if a motion node as a whole in a 2D phoneme-Isomap
is picked, a video-clip preview window will show the “expressive facial motion
clips” of this motion node. This mechanism can be used for removing contaminated
motion nodes in the following way: if contaminated motion nodes/frames are found
at this stage, users can choose to select and delete these motion nodes from the
database, so that the motion synthesis algorithm (Section 3.6) can avoid the risk of
being trapped into these contaminated motion nodes. Figure 3.7 shows snapshots of
motion editing in this system.
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Fig. 3.7 Snapshots of motion editing for the phoneme /ay/. Here each trajectory (curve) repre-
sents one motion node, and the image color represents the emotion category. Reproduced by kind
permission of the Eurographics Association; c© Eurographics Association 2006.

3.6 Novel Expressive Speech Motion Synthesis

In this section, we describe how our motion synthesis algorithm generates corre-
sponding expressive speech animations given a novel utterance. The basic idea is
to search for a best-matched motion-node sequence from the constructed motion
database, given a novel phoneme sequence and its emotion specifications as input.
The search algorithm treats the optional motion-node constraints as “hard con-
straints” and emotion modifiers as “soft constraints” and then searches for a best-
matched sequence (path) of motion nodes from the database by minimizing a cost
function using a constrained dynamic programming algorithm.

3.6.1 Specify Motion-Node Constraints

This system is fully automatic given new utterance and emotion specifications. Fur-
thermore, it provides controls to users. Users can optionally specify a motion-node
constraint and tie it to a specific phoneme utterance’s expression by interacting
with its corresponding phoneme-Isomap. They first need to specify a constrained
time when they want to create a constraint. The corresponding phoneme at the con-
strained time is called a constrained phoneme in this work. Since phoneme timing
is enclosed in the input phrase (phoneme) transcript, once a constrained phoneme is
picked, its corresponding phoneme-Isomap will be automatically loaded. Figure 3.8
illustrates this process.

During this interaction process, this system automatically highlights recom-
mended motion nodes and their picking points using a triphone-based heuristic rule.
The purpose of this highlighting is to guide users in identifying and selecting proper
motion nodes effectively. Assuming a motion-node path o1, o2, . . . , ok is obtained
by our automatic motion-path search algorithm (the followup Section 3.6.2 details
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Fig. 3.8 Illustration of how to specify a motion-node constraint via the phoneme-Isomap inter-
face. When users want to specify a specific motion node for expressing a particular phoneme utter-
ance, its corresponding phoneme-Isomap is automatically loaded. Then, users can interact with
the system to specify a motion-node constraint for this constrained phoneme. Reproduced by kind
permission of the Eurographics Association; c© Eurographics Association 2006.

this algorithm), users want to specify a motion-node constraint for a constrained
time Tc (its corresponding constrained phoneme is Pc and its motion frame at Tc is
Fc, called current selected frame). A normalized time, tc(0 ≤ tc ≤ 1), relative to
the duration of the constrained phoneme Pc, is calculated for the constrained time
Tc. Then, for each motion node in the phoneme-Isomap, the system highlights one
of its motion frames (a time-correct motion frame) whose relative time property is
the closest to the current relative time tc.

When the motion-node database was constructed (Section 3.3), the specific tri-
phone context of each motion node was also retained. By triphone context matching,
this system identifies and highlights the motion nodes in the phoneme-Isomap that
have the same triphone context as the constrained phoneme, Pc. In this chapter,
these motion nodes are termed context-correct motion nodes. Here is an example:
in Fig. 3.8, the current constrained phoneme is /w/, and its triphone context is [/iy/,
/w/, /ah/]; as such, this system will identify the motion nodes in the /w/ phoneme
cluster that have the triphone context [/iy/, /w/, /ah/] as the context-correct motion
nodes. In this way, users can choose one of these context-correct motion nodes as a
motion-node constraint for Pc. This motion-node constraint is imposed per phoneme
utterance, i.e., if one specific phoneme appears multiple times in a phoneme tran-
script input, users can specify a motion-node constraint for each occurrence of this
phoneme. Figure 3.9 shows a snapshot of phoneme-Isomap highlights for specifying
motion-node constraints. It should be noted that the background phoneme-Isomap
image is always the same for a specific phoneme, but these highlighting symbols
(Fig. 3.9) are associated with the current relative time tc and the current triphone
context.

3.6.2 Search for Best-Matched Motion Nodes

This motion-node path search problem can be formalized as follows: given a
novel phomeme sequence input � = (P1, P2, . . . , PT ) and its emotion mod-
ifiers � = (E1, E2, . . . , ET ) (Ei can only be one of four possible values:
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Fig. 3.9 A snapshot of phoneme-Isomap highlights for specifying motion-node constraints. Repro-
duced by kind permission of the Eurographics Association; c© Eurographics Association 2006.

neutral, anger, sadness, and happiness), and optional motion-node constraints
� = (Ct1 = oi1 , Ct2 = oi2 , . . . , Ctk = oik , ti �= t j ), we want to search for a
best-matched motion-node path �∗ = (o∗

ρ1
, o∗

ρ2
, . . . , o∗

ρT
) that minimizes a cost

function C OST (�,�,�,�∗). Here oi represents a motion node with index i.
The cost function C OST (�,�,�) is the accumulated summation of transition
cost, T C(oρi , oρi+1 ), observation cost OC(Pi , oρi ), emotion mismatch penalty
E M P(Ei , oρi ), and blocking penalty B(t, oρi ), as described in Eq. 3.3.

Now we describe how the specified motion-node constraints � = (Ct1 = oi1 ,

Ct2 = oi2 , . . . , Ctk = oik , ti �= t j ) affect the above search algorithm to guarantee
that the searched motion-node path passes through the specified motion nodes at
specified times. The constraints affect the search process by blocking the chances
of other motion nodes (except the specified ones) at a certain recursion time. An
additional cost term B(t, o j ) is introduced for this purpose (see Eq. 3.4). For the
details of the definition of these cost functions, please refer to the appendix to this
chapter.

C OST (�,�,�) =
T −1∑

i=1

T C(oρi , oρi+1 )

+
T∑

i=1

(OC(Pi , oρi ) + E M P(Ei , oρi ) + B(t, oρi )), (3.3)

B(t, o j ) =
{

0 if ∃m, tm = t and j = im,

HugePenalty otherwise.
(3.4)
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Based on the cost definitions, we use the dynamic programming algorithm to search
for the best-matched motion-node sequence. Assume there is a total of N motion
nodes in the processed motion-node database and the length of a new phoneme
transcript input is T. This expressive speech animation synthesis algorithm can be
described as follows.

Algorithm 1 ExpressiveSpeechMotionSynthesis
Input: OC[1...T, 1...N], observation cost function
Input: EMP[1...T, 1...N], emotion mismatch penalty function
Input: TC[1...N, 1...N], transition cost function
Input: B[1...T, 1...N], blocking penalty
Input: N, size of the motion-node database; T, length of input phoneme sequence
Output: Motion, synthesized motion sequence
1: for i = 1 to N do
2: ϕ1(i)= OC(P1, oi )+ E M P(E1, oi )

3: end for
4: for j = 1 to N do
5: for t = 2 to T do
6: ϕt ( j) = mini {ϕt−1(i) + T C(oi , o j ) + OC(Pt , o j ) + E M P(Et , o j ) + B(t, j)}
7: χt ( j) = arg mini {ϕt−1(i) + T C(oi , o j ) + OC(Pt , o j ) + E M P(Et , o j ) + B(t, j)}
8: end for
9: end for

10: C O ST ∗ = mini {ϕT (i)}
11: ρ∗

T = arg mini {ϕT (i)}
12: for t = T − 1 to 1 do
13: ρ∗

t = χt+1(ρ
∗
t+1)

14: end for
15: PcaSeq = ConcatenateAndSmooth(o∗

ρ1
, o∗

ρ2
, · · · , o∗

ρT
)

16: Motion = PcaTransformBack(PcaSeq)

The time complexity of the above search algorithm is �(N2∗T ), N is the num-
ber of motion nodes in the database, and T is the length of the input phoneme
sequence. Note that in the cost function definition (see the appendix), the parameters
〈α, β, η, γ, δ, ϕ〉 are used to balance the weights of different costs. In this work, the
cross-validation approach [18] was used to experimentally determine these parame-
ter values.

Given the optimal motion-node path �∗ = o∗
ρ1

, o∗
ρ2

, . . . , o∗
ρT

, we concatenate its
motion nodes by smoothing their neighboring boundaries and transforming facial
motions of the motion nodes from their retained PCA space to markers’ 3D space
(Eq. 3.5). Finally, we transfer the synthesized marker motion sequence onto specific
3D face models:

MrkMotion = MeanMotion + EigMx∗PcaCoef. (3.5)

As mentioned in Section 3.3, motion nodes for the silence time (the /pau/
phoneme in the Festival system) were discarded when constructing the processed
motion-node database. Therefore, when computing the observation cost for the /pau/
phoneme time (Eq. 3.9), as long as Pi = /pau/, the observation cost is simply set
to zero. In other words, any motion node is perfect for expressing the silence time
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during the motion-node search process (Section 3.6.2). After the motion nodes are
concatenated and smoothed, we need to post-process these synthesized frames cor-
responding to the silence time: first identify these silence-time frames based on the
input phoneme transcript and then regenerate these frames by performing a linear
interpolation on the boundary of non-silence frames.

During the post-processing stage, it is necessary to resample motion frames.
When motion nodes are concatenated, the number of frames in the motion node
may not exactly match the duration of the input phoneme. So, we use the time-
warping technique to resample the searched motion nodes to obtain the desired
number of motion frames. This resampling is still done at 120 Hz (the same as the
original motion capture rate). Although synthesized marker motion frames are 120
frames/second, the resulting animations are often at an ordinary animation rate of
30 frames/second. Thus, before we map the synthesized marker motion frames to
a specific 3D face model, we down-sample these motion frames to the ordinary
animation rate.

3.7 Results and Evaluations

We developed the eFASE system using VC + + that runs on the MS Windows XP
system. Figure. 3.10 shows a snapshot of the running eFASE system. As shown in
this figure, the left is a basic control panel, and the right panel encloses four work-
ing windows: a synthesized motion window (top-left), a video playback window
(top-right), a phoneme-Isomap interaction window (bottom-left), and a face preview
window (bottom-right). Both the synthesized motion and face preview windows can
switch among several display modes, including marker-drawing mode and deformed
3D face mode.

This is how this eFASE system works: first, users input a novel speech (WAV
format) and its aligned phoneme transcript file, and an emotion specification (mod-
ifier) file via the basic control panel (left). And then, after the synthesis process is
enabled, this system automatically generates corresponding expressive facial anima-
tions. The synthesized facial marker motions are shown in the synthesized motion
window. Users can browse these synthesized marker motions frame by frame using
a timeline gadget in the basic control panel. They can switch the display of the
synthesized motion window between point and deformed 3D face display. Addi-
tionally, the system automatically composes an AVI video (audio-synchronized),
which the users can play back immediately in the video playback window (top right
in Fig. 3.10) to check the final result. This provides an interactive way for the users
to check on animation synthesis results.

On the user interaction side, the users can edit the facial motion database and
impose motion-node constraints via the phoneme-Isomap interaction window (bot-
tom left in Fig. 3.10) and the face preview window (bottom right in Fig. 3.10). If any
point in the phoneme-Isomap interaction window is picked, the face preview win-
dow will show its deformed 3D face (or corresponding facial marker configuration)
in real time. Motion editing and management are also done in the phoneme-Isomap
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Fig. 3.10 A snapshot of the running eFASE system. The left is a basic control panel, and the
right panel encloses four working windows: a synthesized motion window (top left), a video play-
back window (top right), a phoneme-Isomap interaction window (bottom left), and a face pre-
view window (bottom right). Reproduced by kind permission of the Eurographics Association; c©
Eurographics Association 2006.

interaction window. Table 3.1 illustrates an example of a phoneme input file and an
emotion specification file.

We conducted a running-time analysis on the eFASE system. The computer used
was a Dell Dimension 4550 PC (Windows XP, 1 GHz Memory, Intel 2.66 GHz Pro-
cessor). Table 3.2 lists the running times for some example inputs. As mentioned
in Section 3.6.2, the motion node searching part (the most time-consuming part of
the eFASE system) has a time complexity of �(N2∗T ) that is linear to the length of
input phonemes (assuming N is a fixed value for a specific database). The computing
times listed in Table 3.2 are approximately matched with this analysis.

We synthesized numerous expressive facial animations using novel recorded and
archival speech. Figure 3.11 shows some frames of synthesized facial animations.
Trajectory comparisons between synthesized expressive facial motions with corre-
sponding ground-truth (captured) motions were also performed. Twelve additional

Table 3.1 An example of an aligned phoneme input file (left) and an emotion modifier file (right).
Its phrase is “I am not happy....” Here the emotion of the starting 2.6 second is angry, and the
emotion from #2.6 second to #16.6383 second is sadness. Reproduced by kind permission of the
Eurographics Association; c©Eurographics Association 2006.

0.122401 pau 2.6 angry
0.24798 ay 16.6383 sad
0.328068 ae
0.457130 m
0.736070 n
...
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Table 3.2 Running time for synthesis of some example phrases. Here the computer used was a
Dell Dimension 4550 PC (Windows XP, 1 GHz memory, Intel 2.66 GHz Processor). Reproduced
by kind permission of the Eurographics Association; c©Eurographics Association 2006.

Phrases (number of phonemes) Time (second)

“I know you meant it” (14) 137.67
“And so you just abandoned them?” (24) 192.86
“Please go on, because Jeff’s
father has no idea" (33) 371.50
“It is a fact that long words are difficult
to articulate unless you concentrate" (63) 518.34

Fig. 3.11 An example sequence of synthesized facial animation. Reproduced by kind permission
of the Eurographics Association; c© Eurographics Association 2006.

sentences were exclusively used for the test comparisons. One of these sentences
was “Please go on, because Jeff’s father has no idea of how things became so hor-
rible.” We chose a right cheek marker (#48 marker) in an expression-active area
and a lower lip marker (#79 marker) in a speech-active area for the comparisons
(Fig. 3.2). We plotted a part of the synthesized sequence and ground-truth motion
for these marker trajectory comparisons. Figure 3.12 is for #48 marker (the right
cheek marker) and Fig. 3.13 is for #79 marker (the lower lip marker). We found
that the trajectories of the synthesized motions are quite close to the actual motions
captured from the actress. It should be noted that the the synthesized motions for
these comparisons (e.g., Figs. 3.12 and 3.13) were automatically generated without
any manual intervention (i.e., without the use of motion-node constraints).

3.8 Discussion and Conclusions

A data-driven system (eFASE) for an expressive facial animation synthesis and
editing system is presented in this chapter. This animation generation system is
fully automatic given user-specified novel speech input. At the same time, it offers
flexible user control over the facial motion synthesis process, by specifying emo-
tion modifiers and expressions for certain phoneme utterances via 2D expressive
phoneme-Isomaps. Objective motion trajectory comparisons between synthesized
facial motions and ground-truth motions and novel animation synthesis experi-
ments showed that this eFASE system is effective for generating realistic expressive
speech/facial animations.

As this is a new approach to facial animation synthesis and editing, several
issues deserve further investigation. The quality of novel motion synthesis depends
on constructing a large facial motion database with accurate motion and phoneme
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Fig. 3.12 A part of marker (#48 marker) trajectory of the sentence “Please go on, because Jeff’s
father has no idea of how things became so horrible.” The dashed line is the ground-truth trajectory
and the solid line is the synthesized trajectory. Reproduced by kind permission of the Eurographics
Association; c© Eurographics Association 2006.

alignment. Building this database takes care and time; integrated tools could
improve this process immensely. Additionally, a significant amount of expressive
facial motion data is needed to construct this system with reasonable performance,
since the larger the captured facial motion database is, the better synthesis results
from our systems are expected. However, it is difficult to anticipate in advance how
much data are needed to generate realistic facial animations in this system, which
is one of the common issues in many data-driven systems. Further research on the
trade-off between synthesis quality and the size of captured facial motion database
would be an interesting topic.

The current system cannot be used for real-time applications due to the efficiency
of the motion search algorithm in this system. Future work on optimizing the facial
motion database could improve the overall efficiency of this system, such as reduc-
ing the size of the facial motion database through clustering methods. We are also
aware that subjective evaluation would be helpful to quantify the performance of this
system, and we plan to look into it as our future work. Emotion intensity control that
is absent in the current system is another good direction to go for future research.

Phoneme-viseme mappings are widely used in ad hoc facial animation systems,
but there are no uniform phoneme-viseme mappings, and it is difficult to evalu-
ate any mapping scheme. The 2D expressive phoneme-Isomaps introduced in this
work might provide a basis for evaluating these mapping schemes or determining
new phoneme-viseme mapping schemes based on the probabilities in the phoneme-
Isomaps and the variations among the phoneme-Isomaps produced by different
subjects.
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Fig. 3.13 A part of marker (#79 marker) trajectory of the sentence “Please go on, because Jeff’s
father has no idea of how things became so horrible.” The dashed line is the ground-truth trajectory
and the solid line is the synthesized trajectory. Reproduced by kind permission of the Eurographics
Association; c© Eurographics Association 2006.

The motions of the silence phoneme (the /pau/ phoneme in the Festival system)
are not modeled. This phoneme and other non-speaking animations (e.g., yawning)
need to be represented as motion nodes to allow more flexibility and model personal-
ities. Lastly, there are more open questions, such as whether combining the speaking
styles of different actors into one facial motion database would result in providing
a greater range of motions and expressions, or if such a combination would muddle
the motion-frame sequencing and expressiveness, or whether exploiting different
weights for markers to guide the coherence of perceptual saliency could improve
results.
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3.9 Appendix: Cost Functions for Motion-Node Path Searching

The transition cost T C(oρi , oρi+1 ) represents the smoothness of the transition from
one motion node oρi to another motion node oρi+1 :

T C(oρi , oρi+1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if pre(oρi+1) = oρi ,

β∗DSC(oρi , pre(oρi+1 ))+
PV C(oρi , oρi+1 ) if viseme(oρi ) = viseme(pre(oρi+1 )),

β∗DSC(oρi , pre(oρi+1 ))+
PV C(oρi , oρi+1 ) + P N T if viseme(oρi ) �= viseme(pre(oρi+1 )),

α∗P N T if pre(oρi+1) = N I L .

(3.6)
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The direct smoothing cost DSC(oρi , pre(oρi+1)) and the position velocity cost
PV C(oρi , oρi+1 ) are defined in Eqs. 3.7 and 3.8:

DSC(oρi , pre(oρi+1)) =
∫

Blending(war p(oρi ), pre(oρi+1))
′′dt, (3.7)

PV C(oρi , oρi+1 ) = η∗PosGap(oρi , oρi+1) + V eloGap(oρi , oρi+1). (3.8)

The observation cost OC(Pi , oρi ), which measures the goodness of a motion
node oρi for expressing a given phoneme Pi , is computed as follows: if the phoneme
of oρi is our expected Pi or Pi is the silence phoneme /pau/, we set the cost to zero. If
they are the same in terms of viseme category, then we set it to a discounted penalty
value (0 < γ < 1); otherwise, the cost is a penalty value. Equation 3.9 defines the
observation cost:

OC(Pi , oρi ) =

⎧
⎪⎨

⎪⎩

0 if Pi = pho(oρi ) or Pi = /pau/,

γ ∗δ∗P NT if viseme(Pi ) = viseme(oρi ),

δ∗P NT otherwise.

(3.9)

If the emotion label of a motion node oρi is the same as the specified emotion
modifier Ei , we set the emotion mismatch penalty to zero; otherwise, it is set to a
constant penalty value. Equation 3.10 describes this definition. The emotion mis-
match penalty cost E M P(Ei , oρi ) is defined as follows:

E M P(Ei , oρi ) =
{

0 if Ei = emotion(oρi ),

ϕ∗P NT otherwise.
(3.10)



Chapter 4
Eye Movements, Saccades, and Multiparty
Conversations

Erdan Gu, Sooha Park Lee, Jeremy B. Badler, and Norman I. Badler

4.1 Introduction

In describing for artists the role of eyes, Faigin [20] illustrates that downcast eyes,
upraised eyes, eyes looking sideways, and even out-of-focus eyes are all suggestive
of states of mind. Given that eyes are a window into the mind, we propose a new
approach for synthesizing the kinematic characteristics of the eye: the spatiotem-
poral trajectories of saccadic eye movement. “Saccadic eye movements take their
name from the French ‘saccade’, meaning ‘jerk’, and connoting a discontinuous,
stepwise manner of movement as opposed to a fluent, continuous one. The name
very appropriately describes the phenomenological aspect of eye movement” [4].

We present a statistical eye movement model based on both empirical studies
of saccades and acquired eye movement data. There are three strong motivations
for our work. First, for animations containing close-up views of the face, natural-
looking eye movements are desirable. Second, traditionally it is hard for an anima-
tor to obtain accurate human eye movement data. Third, the animation community
appears to have had no models for saccadic eye movement models that are easily
adopted for speaking or listening faces. We apply the eye model to conversational
agents in which gaze direction and role are modeled on saccades during talking, lis-
tening, and “thinking” as well as on the social aspects of interaction behaviors such
as turn-taking and feedback signals. A preliminary eye saccade model is the basis
for the present work [28].

As computer animation techniques mature, there has been considerable interest
in the construction and animation of human facial models. Applications include
such diverse areas as advertising, film production, game design, teleconferencing,
social agents and avatars, and virtual reality. To build a realistic face model, many
factors including modeling of face geometry, simulation of facial muscle behav-
ior, lip synchronization, and texture synthesis have been considered. Several early
researchers [25, 32, 37, 43] were among those who proposed various methods to
simulate facial shape and muscle behavior. A number of investigators have recently
emphasized building more realistic face models [8,21,30,36]. Others have suggested
automatic methods of building varied geometric models of human faces [7, 16, 29].
Motion capture methods can be used to replay prerecorded facial skin motion or
behaviors [19, 35].

Z. Deng and U. Neumann, Data-Driven 3D Facial Animation. 79
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Research on faces has not focused on eye movement, although the eyes play
an essential role as a major channel of nonverbal communicative behavior. Eyes
help to regulate the flow of conversation, signal the search for feedback during
an interaction (gazing at the other person to see how she follows), look for infor-
mation, express emotion (looking downward in case of sadness, embarrassment,
or shame), or influence another person’s behavior (staring at a person to show
power) [18, 34].

Recently, eye movement has attracted attention among computer animation
researchers. Directional gaze cues are frequently present to communicate the nature
of the interpersonal relationship in face-to-face interactions [1]. It is estimated
that 60% of conversation involves gaze and 30% involves mutual gaze [34]. Some
researchers [15, 44] analyze frequencies of mutual gaze to simulate patterns of eye
gaze for the participants. Social gaze serves to regulate conversation flow. Cassell
and colleagues [11–13] in particular have explored eye engagement during social
interactions or discourse between virtual agents. They discuss limited rules of eye
engagement between animated participants in conversation. Eye movements are
linked to visual attention processing: task actions generate the appropriate atten-
tional (eye gaze or looking) behavior for virtual characters existing or performing
tasks in a changing environment, such as “walk to the lamp post,” “monitor the
traffic light,” or “reach for the box” [14].

Eye-gaze patterns for an avatar interacting with other real or virtual participants
have also become important areas of study and simulation. Gaze patterns are inves-
tigated to see how observers react to whether an avatar is looking at or looking
away from them [15]. Simulations for face-to-face conversation are mainly dyadic,
and turn allocation using gaze signals is relatively simple. Multiparty turn-taking
behavior has been less explored, and some attempts [39,41] have been based largely
on the dyadic situation. Much of this work focuses on user-perceptual issues or
has involved mediated communication rather than conversational agent simulation.
Intuitively, a significant difference exists in gaze behaviors between dyadic and mul-
tiparty situations: at the minimum, the latter must include mechanisms for multiple
audience turn requests, acknowledgement, and attention capture.

We propose a new approach for synthesizing the trajectory kinematics and sta-
tistical distribution of saccadic eye movements. First, we present an eye move-
ment model based on both empirical studies of saccades and statistical models of
eye-tracking data. Then we address the role of gaze in multiparty conversation,
giving a procedure for turn allocation, turn request, and expression of conversational
feedback signals. The overview of our approach is as follows. First, we analyze
a sequence of eye-tracking images in order to extract the spatiotemporal trajec-
tory of the eye. Although the eye-tracking data can be directly replayed on a face
model, its primary purpose is for deriving a statistical model of the saccades that
occur. The eye-tracking video is further segmented and classified into two modes,
a talking mode and a listening mode, so that we can construct a saccade model
for each. The models reflect the dynamic (spatiotemporal) characteristics of natural
eye movement, which include saccade magnitude, direction, duration, velocity, and
inter-saccadic interval. Based on the model, we synthesize an animated face with
more natural-looking and believable eye movements. Communicative aspects of eye



4 Eye Movements, Saccades, and Multiparty Conversations 81

movement are layered on top of the saccade model to give multiparty conversational
signals.

This article describes our approach in detail. Section 4.2 reviews pertinent
research about saccadic eye movements and the role of gaze in communication.
Section 4.3 presents an overview of our system architecture. Section 4.4 introduces
our statistical model based on the analysis of eye-tracking images. An eye saccade
model is constructed for both talking and listening modes and adapted for “think-
ing” mode. Section 4.5 shows the model implemented in agents who use appropriate
social signals to simulate interactive conversations. Section 4.6 describes the archi-
tecture of our eye movement synthesis system. Finally we give our conclusions and
closing remarks.

4.2 Background

4.2.1 Saccades

Saccades are rapid movements of both eyes from one gaze position to another [31].
They are the only eye movement that can be readily, consciously, and voluntar-
ily executed by human subjects. Saccades must balance the conflicting demands of
speed and accuracy, in order to minimize both time spent in transit and time spent
making corrective movements.

There are a few conventions used in the eye movement literature when describ-
ing saccades. The magnitude (also called the amplitude) of a saccade is the angle
through which the eyeball rotates as it changes fixation from one position in the
visual environment to another. Saccade direction defines the 2D axis of rotation,
with 0◦ being to the (person’s) right. This essentially describes the eye position in
polar coordinates. For example, a saccade with magnitude 10◦ and direction 45◦ is
equivalent to the eyeball rotating 10◦ in a right-upward direction. Saccade duration
is the amount of time that the movement takes to execute, typically determined using
a velocity threshold. The inter-saccadic interval is the amount of time that elapses
between the termination of one saccade and the beginning of the next one.

The metrics (spatiotemporal characteristics) of saccades have been well studied
(for a review, see [4]). A normal saccadic movement begins with an extremely
high initial acceleration (as much as 30, 000◦/sec2) and terminates with almost
as rapid a deceleration. Peak velocities for large saccades can be 400−600◦/sec.
Saccades to a goal direction are accurate to within a few degrees. Saccadic reaction
time is 180–220 msec on average. Minimum inter-saccadic intervals range from
50–100 msec.

The duration and velocity of a saccade are functions of its magnitude. For sac-
cades between 5◦ and 50◦, the duration has a nearly constant rate of increase with
magnitude and can be approximated by the linear function

D = D0 + d∗A, (4.1)
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where D and A are the duration and amplitude of the eye movement, respec-
tively. The slope d represents the increment in duration per degree. It ranges
from 2–2.7 msec/deg. The intercept or catch-up time D0 typically ranges from
20–30 msec [4].

Saccadic eye movements are often accompanied by a head rotation in the same
direction (gaze saccades). Large gaze shifts always include a head rotation under
natural conditions; in fact, naturally occurring saccades rarely have a magnitude
greater than 15◦ [3]. Head and eye movements are synchronous [6, 42].

4.2.2 Gaze in Social Interaction

According to psychological studies [1, 18, 26], there are three functions of gaze:

1. sending social signals: speakers use glances to emphasize words, phrases, or
entire utterances while listeners use glances to signal continued attention or inter-
est in a particular point of the speaker, or in the case of an averted gaze, lack of
interest or disapproval;

2. open a channel to receive information: a speaker will look up at the listener dur-
ing pauses in speech to judge how his words are being received and whether the
listener wishes him to continue while the listener continually monitors the facial
expressions and direction of gaze of the speaker;

3. regulate the flow of conversation: the speaker stops talking and looks at the lis-
tener, indicating that the speaker is finished and conversational participants can
look at a listener to suggest that the listener be the next to speak.

Gaze aversion can signal that a person is thinking. For example, someone might
look away when asked a question as she composes her response. Gaze is lowered
during discussion of cognitively difficult topics. Gaze aversion is also more common
while speaking as opposed to listening, especially at the beginning of utterances
and when speech is hesitant. Kendon found additional changes in gaze direction,
such as the speaker looking away from the listener at the beginning of an utterance
and toward the listener at the end [26]. He also compared gaze during two kinds of
speech pauses: phrase boundaries (the pause between two grammatical phrases of
speech), and hesitation pauses (delays that occur when the speaker is unsure of what
to say next). The level of gaze rises at the beginning of a phrase boundary pause,
similarly to what occurs at the end of an utterance in order to collect feedback from
the listener. Gaze level falls at a hesitation pause, which requires more thinking.

4.3 Overview of Eye Movement System Architecture

Figure 4.1 depicts the overall eye movement system architecture and animation
procedure. First, the eye-tracking images are analyzed and a statistical eye move-
ment model is generated using MATLAB R© (The MathWorks, Inc.) (Block 1). For
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Fig. 4.1 Overall eye movement system architecture.

lip movements, eye blinks, and head rotations, we use the alterEGO face motion
analysis system (Block 2), which was developed at face2face.com. The alterEGO
system analyzes a series of images from a consumer digital video camera and gen-
erates a MPEG-4 Face Animation Parameter (FAP) file [24, 35]. The FAP file con-
tains the parameter values of lip movements, eye blinks, and head rotation [35].
These components are executed offline, before the animation is created. Our princi-
pal contribution, the Eye Movement Synthesis System (EMSS) (Block 3), takes the
FAP file from the alterEGO system and adds values for eye movement parameters
based on the statistical model. EMSS outputs a new FAP file that contains eye-
ball movement as well as the lip and head movement information. We constructed
the Facial Animation System (Block 4) by adding eyeball movement capability to
face2face’s Animator plug-in for 3D Studio Max R© (Autodesk, Inc.). In other appli-
cations, such as the multiparty conversation ahead, we can output the FAP file to a
different animated face model, such as the Greta head [33]. In the next section, we
will explain the analysis of the eye-tracking images and the building of the statisti-
cal eye model (Block 1). More detail about the EMSS (Block 3) will be presented
in Section 4.5.

4.4 Analysis of Eye-Tracking Data

4.4.1 Images from the Eye Tracker

We analyzed sequences of eye-tracking images in order to extract the spatiotem-
poral characteristics of the eye movements. Eye movements were recorded using
a lightweight eye-tracking visor (ISCAN, Inc.). The visor is worn like a baseball
cap and consists of a monocle and two miniature cameras. One camera views the
visual environment from the perspective of the participant’s left eye and the other
views a close-up image of the left eye. Only the eye image was recorded to a digital
videotape using a DSR-30 digital VCR (Sony Inc.). The ISCAN eye-tracking device
measures the eye movement by comparing the corneal reflection of the light source
(typically infrared) relative to the location of the pupil center. The position of the
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Fig. 4.2 (a) Original eye image from the
eye tracker (left); (b) output of the Canny
enhancer (right) distribution.

(a) (b)

pupil center changes during rotation of the eye, while the corneal reflection acts as
a static reference point.

The sample video we used is 9 minutes long and contains an informal conver-
sation between two people. The speaker had used the eye-tracking device many
times prior to this sample session; hence, it was not disruptive to her behav-
iors. The speaker was allowed to move her head freely while the video was
taken. It was recorded at the rate of 30 fps. From the video clip, each image
was extracted using Adobe Premiere R© (Adobe Inc.). Figure 4.2(a) is an exam-
ple frame showing two crosses, one for the pupil center and one for the corneal
reflection.

We obtained the image (x, y) coordinates of the pupil center by using a pattern
matching method. First, the features of each image are extracted by using the Canny
operator [10] with the default threshold gray level. Figure 4.2(b) is a strength image
output by the Canny enhancer. Second, to determine a pupil center, the position
histograms along the x- and y-axes are calculated. Then the coordinates of the two
center points with maximum correlation values are chosen. Finally, the sequences
of (x, y) coordinates are smoothed by a median filter.

4.4.2 Saccade Statistics

Figure 4.3(a) shows the distributions of the eye position in image coordinates. The
red circle is the primary position (PP), where the speaker’s eye is fixated upon the
listener. Figure 4.3(b) is the same distribution plotted in 3D, with the z-axis repre-
senting the frequency of occurrence at that position. The peak in the 3D plot corre-
sponds to the primary position.

The saccade magnitude is the rotation angle between its starting position S =
(xs, ys) and ending position E = (xe, ye), computed by

θ ≈ arctan(d/r) = arctan

(√
(xe − xs)2 + (ye − ys)2

r

)
, (4.2)

where d is the Euclidean distance traversed by the pupil center and r is the radius
of the eyeball. The radius r is assumed to be one half of xmax, the width of the
eye-tracker image (640 pixels).
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(a) (b)

Fig. 4.3 (a) Distribution of pupil centers; (b) 3D view of same distribution.

(a) (b)

Fig. 4.4 (a) Frequency of occurrence of saccade magnitudes; (b) cumulative percentage of mag-
nitudes

The frequency of occurrence of a given saccade magnitude during the entire
recording session is shown in Fig. 4.4(a). Using a least-mean-squares criterion, the
distribution was fitted to the exponential function

P = 15.7e− A
6.9 , (4.3)

where P is the percent chance to occur and A is the saccade magnitude in degrees.
The fitted function is used for choosing a saccade magnitude during synthesis.
Figure 4.4(b) shows the cumulative percentage of saccade magnitudes: the probabil-
ity that a given saccade will be smaller than magnitude x. Note that 90% of the time
the saccade angles are less than 15◦, which is consistent with a previous study [3].

Saccade directions are also obtained from the video. For simplicity, the directions
are quantized into 8 evenly spaced bins with centers 45◦ apart. The distribution of
saccade directions is shown in Table 4.1. One interesting observation is that up-down
and left-right movements occurred more than twice as often as diagonal movements.
Also, up-down movements happened equally as often as left-right movements.
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Table 4.1 Distribution of saccade directions.
Direction 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

% 15.54 6.46 17.69 7.44 16.80 7.89 20.38 7.79

Fig. 4.5 Instantaneous velocity functions of
saccades.

Saccade duration was measured using a velocity threshold of 40◦/sec (1.33◦/
frame). The durations were then used to derive an instantaneous velocity curve for
every saccade in the eye-track record. Sample curves are shown in Fig. 4.5 (black
dotted lines). The duration of each eye movement is normalized to six frames. The
normalized curves are used to fit a 6-dimensional polynomial (red solid line):

Y = 0.1251X6 − 3.1619X5 + 31.5032X4 − 155.8713X3 (4.4)

+ 394.0271X2 − 465.9513X + 200.3621,

where x is frame 1 to 6 and y is instantaneous velocity (◦/frame).
The inter-saccadic interval is incorporated by defining two classes of gaze,

mutual and away. In mutual gaze, the subject’s eye is in the primary position, while
in gaze away it is not. The duration that the subject remains in one of these two
gaze states is analogous to the inter-saccadic interval. Figures 4.6(a) and (b) plot

(a) (b)

Fig. 4.6 (a) Frequency of mutual gaze duration while talking; (b) frequency of gaze away duration
while talking.
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duration distributions for the two types of gaze while the subject was talking. They
show the percent chance of remaining in a particular gaze mode (i.e., not making a
saccade) as a function of elapsed time. The polynomial fitting function for mutual
gaze duration is

Y = 2.5524e − 4X2 − 0.1763X + 32.2815 (4.5)

and for gaze away duration is

Y = 1.8798e − 5X4 + 0.0034X3 + 0.2262X2 + 6.7021X + 78.831. (4.6)

Note that the inter-saccadic interval tends to be much shorter when the eyes are not
in the primary position.

4.4.3 Talking Mode vs. Listening Mode

Characteristics of gaze differ depending on whether a subject is talking, listening,
or thinking [1]. We manually segmented the video eye movement data to obtain
the statistical properties of saccades in these modes. Figures 4.7(a) and (b) show
the eye position distributions for talking and listening, respectively. While talking,
92% of the time the saccade magnitude is 25◦ or less. While listening, over 98% of
the time the magnitude is less than 25◦. The average magnitude is 15.64◦ ± 11.86◦
(mean±stdev) for talking and 13.83◦±8.88◦ for listening. In general, the magnitude
distribution of listening is much narrower than that of talking: when the subject is
speaking, eye movements are more dynamic and active. This is also apparent while
watching the eye-tracking video.

Inter-saccadic intervals also differ between talking and listening modes. While
talking, the average mutual gaze and gaze away durations are 93.9 ± 94.9 frames
and 27.8 ± 24.0 frames, respectively. The complete distributions are shown in
Figs. 4.7(a) and (b). While listening, the average durations are 237.5 ± 47.1 frames

(a) (b)

Fig. 4.7 Distribution of saccades (a) in talking mode; (b) in listening mode.
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Table 4.2 Neurolinguistic information processing and corresponding eye movement patterns.

Eye Movement Information Processing

Eye up and to the right Trying to envision an event that has never been
seen

Eye up and to the left Recalling an event that has been seen
Unfocused eyes looking fixedly into Visualizing an event, real or imagined

space
Eye down and to the right Sorting out sensations of the body
Eye down and to the left Carrying on an internal conversation

for mutual gaze and 13.0 ± 7.1 frames for gaze away. These distributions were far
more symmetric and could be suitably described with Gaussians. The longer mutual
gaze times for listening are consistent with earlier empirical results [1] in which the
speaker was looking at the listener 41% of the time, while the listener was looking
at the speaker 75% of the time.

While watching a different video of a subject performing a monologue (“tell us
about yourself”), we observed eye movements during periods where the subject was
not speaking (and she clearly wasn’t “listening” to someone else). During such sub-
jective “thinking” modes, we found that people tend to make more eye movements
upward or downward in order to avoid outside information and concentrate on their
inner thoughts and emotional state. In fact, neurolinguistic programming theory pos-
tulates that the direction of eye movement is a reflection of cognitive activity [27].
This theory associates eye positions with different types of information processing
(Table 4.2). Although neurolinguistic ideas often fail to survive rigorous experimen-
tal testing, the patterns for eye movement have received independent validation [9].
Remembering a has-been-seen event is significantly suggestive of a state of mind so
that turning eyes up and to the left most frequently occurs when people are think-
ing. At that time, we observe the eyeball will have a long hold when it reaches the
maximum magnitude of the current saccade. When we animate a character using the
talking, listening, and thinking modes, we monitor long pauses in a speech signal
as a trigger for the thinking mode and adjust the upward and downward direction
distribution from the preliminary study.

4.5 Gaze Role in Multiparty Turn-Taking

Directional gaze behaviors and visual contact signal and monitor the initiation,
maintenance, and termination of communicative messages [13]. Two participants
use mutual gaze to look at each other, usually in the face region. Gaze contact means
they look in each other’s eyes. In gaze aversion, one participant looks away when
others are looking toward her. Short mutual gaze (∼1 sec) is a powerful mechanism
that induces arousal in the other participants [27]. Gaze diminishes when disavow-
ing social contact. By avoiding eye gaze in an apparently natural way, an audience
expresses an unwillingness to speak.
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Table 4.3 Turn-taking and associated gaze behaviors.

State Signals Gaze Behavior

Speaker Turn yielding Look toward listener
Turn claiming suppression signal Avert gaze contact from audience
Within turn signal Look toward audience
No turn signal Look away

Audiences Back channel signal Look toward speaker
Turn claiming signal Seek gaze contact from speaker
Turn suppression signal Avert gaze contact from speaker
Turn claiming suppression signal Look toward other aspiring audiences

to prevent their speaking
No response Random

Conversation proceeds in turns. Two mutually exclusive states are posited for
each participant: the speaker who claims the speaking turn and the audience who
does not. Gaze provides turn-taking signals to regulate the flow of communication.
Table 4.3 shows how gaze behaviors act to maintain and regulate multiparty conver-
sations. Figure 4.8 shows sample images of the face2face.com animated face with
eye movements.

In dyadic conversation, at the completion of an utterance or thought unit, the
speaker gives a lengthy glance to the audience to yield a speaking turn. This gaze
cue persists until the audience assumes the speaking role (Fig. 4.9(a)). The multi-
party case requires a turn-allocation strategy. Inspired by Sacks [38], we address

Fig. 4.8 Sample images of the face2face.com animated face with eye movements.
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(1) Gaze signals within turn 

Speaker 

Audience 1 

Audience 2,3,…

Within turn (frequently)

Within turn (less frequently)

Back Channel

Back Channel 

Within Turn 

(2) Gaze signals in Transition Space 

Speaker 

Audience 1

Audience 2,3,…

Turn yielding

Turn claiming suppression 

Turn claiming/suppression 

Turn claiming/no response 

Transition Space 

(3) Gaze signals in Competition Space

Speaker Audience 
1.2,3,… 

Serial turn yielding 

Turn claiming suppression 

Competition Space 

Turn suppression/no response 

Fig. 4.9 Diagrams for turn taking allocation employed conversational gaze signal.

the multiparty issue with two mechanisms: a transition space, where the speaker
selects the next speaker, and a competition space, where the next turn is allocated
by self-selection.

Transition space (Fig. 4.9(b))
Speaker:

1: She gives a lengthy glance (turn yielding) to one of the audiences.

2.i: Receiving gaze contact (turn claiming) from the audience, the speaker relin-
quishes the floor.
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2.ii: Receiving gaze aversion (turn suppression) from the audience, the speaker
decides to keep transition space to find another audience or go to competi-
tion space directly. If no one wants to speak, the speaker has the option of
continuing or halting.

Audience:

1: An audience who wants a turn will look toward speaker’s eyes to signal her desire
to speak (turn claiming), and want to draw the attention of the speaker.

2: An audience receiving speaker gaze (turn yielding) uses quick gaze contact
(turn claiming) to accept the turn or lengthy gaze aversion (turn suppression)
to reject it.

Competition space (Fig. 4.9(c))
Speaker:
She scans all the audiences, serially sending a turn yielding signal (see

Figs. 4.10(a) and (b)).

(a) (b)

(c)

Fig. 4.10 Sample images from a five-party conversation demonstration. (a) A full-view image of
five conversational agents sitting around a table; the main speaker is in the foreground with her
back to the camera. (b) The main speaker sends a turn-yielding gaze signal to the agent sitting to
her right. (c) The main speaker sends a turn gaze-yielding signal to the agent sitting on the first
place to her left.
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Audience:
They may have eye interactions at that time. The aspiring audience looks toward

the speaker to signal a desire to speak (turn claiming). After receiving visual contact
from the speaker, she looks at all the other aspiring audiences to signal her taking the
floor (turn claiming suppression). Non-aspiring audiences may follow the speaker’s
gaze direction or use random gaze (no response).

Turns begin and end smoothly, with short lapses of time in between. Occasionally
an audience’s turn-claim in the absence of a speaker’s turn signal results in simulta-
neous turns [27] between audiences, even between audience and speaker. Favorable
simultaneous turns will occur that show it is a comfortable and communicative cir-
cumstance. The general rule is that the first speaker continues and the others drop
out. The dropouts lower gaze or avert gaze to signal giving up.

Within a turn, audiences spend more time looking toward the speaker (back chan-
nel) to signal attention and interest. They focus on the speaker’s face area around
the eyes. The speaker generally looks less often at audiences except to monitor
their acceptance and understanding (within turn signal). The speaker glances during
grammatical breaks, at the end of a thought unit or idea, and at the end of the utter-
ance to obtain feedback. The speaker usually assigns a longer and more frequent
glance to the audience to whom she would like pass the floor.

4.6 Synthesis of Natural Eye Movement

A detailed block diagram of the eye movement synthesis model is illustrated in
Fig. 4.11. The key components of the model consist of the (1) Attention Moni-
tor (AttMon), (2) Parameter Generator (ParGen), and (3) Saccade Synthesizer
(SacSyn).

AttMon monitors the system state and other necessary information, such as
whether it is in talking, listening, or thinking mode, whether the direction of the

Fig. 4.11 Block diagram of the statistical eye movement model.
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head rotation has changed, or whether the current frame has reached the mutual
gaze duration or gaze away duration. By default, the synthesis state starts from the
mutual gaze state.

If the direction of head rotation has changed and its amplitude is larger than
an empirically chosen threshold, then it invokes ParGen to initiate eye movement.
Also, if the timer for either mutual gaze or gaze away duration is expired, it invokes
ParGen. ParGen determines saccade magnitude, direction, duration, and instan-
taneous velocity. It also decides the gaze away duration or mutual gaze duration
depending on the current state. Then it invokes SacSyn, where appropriate saccade
movement is synthesized and coded into FAP values.

Saccade magnitude is determined using the inverse of the exponential fitting
function of Fig. 4.4(a). First, a random number between 0 and 15 is generated. The
random number corresponds to the y-axis (percentage of frequency) in Fig. 4.4(a).
The magnitude is computed from the inverse of Eq. 4.3,

A = −6.9∗log(P/15.7), (4.7)

where A is the saccade magnitude in degrees and P is the random number gen-
erated, i.e., the percentage of occurrence. This inverse mapping using a random
number guarantees that the saccade magnitude has the same probability distribution
as shown in Fig. 4.4(a). Based on the analysis result in Section 4.4.3, the maximum
saccade magnitude is limited to 27.5◦ for talking mode and 22.7◦ for listening mode.
The maximum magnitude thresholds are determined by the average magnitude plus
one standard deviation for each mode.

Saccade direction is determined by two criteria. If the head rotation is larger than
a threshold, the saccade direction follows the head rotation. Otherwise, the direction
is determined based on the distribution shown in Table 4.1. A uniformly distributed
random number between 0 and 100 is generated and 8 non-uniform intervals are
assigned to the respective directions. That is, a random number between 0–15.54 is
assigned to the direction 0◦ (right), a number between 15.54–22.00 to the direction
45◦ (up-right), and so on. Thus, 15.54% of the time a pure rightward saccade will
occur, and 6.46% of the time an up-rightward saccade will be generated.

Given a saccade magnitude A, the duration is calculated using Eq. 4.1 with val-
ues d = 2.4 msec/deg and D0 = 25 msec. The velocity of the saccade is then
determined using the fitted instantaneous velocity curve (Eq. 4.4). Given the sac-
cade duration D in frames, the instantaneous velocity model is resampled at D times
the original sample rate (1/6). The resulting velocity follows the shape of the fitted
curve with the desired duration D.

In talking mode, the mutual gaze duration and gaze away duration are determined
similarly to the other parameters, using inverses of the polynomial fitting functions
(Eqs. 4.5 and 4.6). Using the random numbers generated for the percentage range,
corresponding durations are calculated by root-solving the fitting functions. The
resulting durations have the same probability distributions. In listening mode, inter-
saccadic intervals are obtained using Gaussian random numbers with the duration
values given in Section 4.4.3: 237.5 ± 47.1 frames for mutual gaze and 13.0 ± 7.1
frames for gaze away.
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SacSyn collects all synthesis parameters obtained above and calculates the
sequence of coordinates for the eye centers. The coordinate values for eye move-
ments are then translated into FAP values for the MPEG-4 standard [24]. For facial
animation, we merge the eye movement FAP values with the parameters for lip
movement, head movement, and eye blinks provided by the alterEGO system. After
synthesizing a saccade movement, SacSyn sets the synthesis state to either gaze
away state or mutual gaze state. Again, AttMon checks the head movement, inter-
nal mode of the agent, and the timer for gaze away duration.

When a new eye movement has to be synthesized, ParGen is invoked to deter-
mine the next target position, e.g., another agent’s face. Depending on the next target
position, the state either stays at the gaze away state or returns to the mutual gaze
state. In addition to applying the saccade data from the FAP file, we incorporate the
vestibulo-ocular reflex (VOR). The VOR stabilizes gaze during head movements
(as long as they are not gaze saccades) by causing the eyes to counter-roll in the
opposite direction [31].

4.7 Conclusions

We presented eye saccade models based on the statistical analysis of an eye-tracking
video. The eye-tracking video is segmented and classified into talking, listening,
and thinking modes. A saccade model is constructed for each of the three modes.
The models reflect the dynamic characteristics of natural eye movement, which
include saccade magnitude, duration, velocity, and inter-saccadic interval. In a
sample experiment with 12 observers, 10 of 12 judged the model visually and psy-
chologically superior to two alternate methods of automatic gaze generation: no
saccades and randomized saccades [28]. This model is implemented on conversa-
tional agents during face-to-face interaction. Simultaneously, the role of gaze on
the turn-taking allocation strategy, appearance of awareness, and expression of the
feedback signal are addressed in the simulation.

One way to generate eye movements on a face model is to replay the eye-tracking
data previously recorded from a subject. Preliminary tests using this method indi-
cated that the replayed eye movements looked natural by themselves, but were often
not synchronized with speech or head movements. An additional drawback to this
method is that it requires new data to be collected every time a novel eye-track
record is desired. Once the distributions for the statistical model are derived, any
number of unique eye movement sequences can be animated.

The eye movement video used to construct the saccade statistics was limited to a
frame rate of 30 Hz, which can lead to aliasing. In practice, this is not a significant
problem, best illustrated by an example. Consider a small saccade of 2◦, which will
have a duration of around 30 msec (Eq. 4.1). To completely lose all information on
the dynamics of this saccade, it must begin within 3 msec of the first frame capture,
so that it is completely finished by the second frame capture 33 msec later. This can
be expected to happen around 10% of the time (3/33). From Fig. 4.5(b), it can be
seen that saccades this small comprise about 20% of all saccades in the record, so
only around 2% of all saccades should be severely aliased. This small percentage
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has little effect on the instantaneous velocity function of Fig. 4.6. Since saccade
starting and ending positions are still recoverable from the video, the magnitude
and direction are much less susceptible to aliasing problems.

A more important consideration is the handling of the VOR during the eye move-
ment recording. A change in eye position that is due to a saccade (e.g., up and to the
left) must be distinguishable from a change that is due to head rotation (e.g., down
and to the right). One solution is to include a sensor that monitors head position.
When head position is added to eye position, the resultant gaze position is without
the effects of the VOR. However, this introduces the new problem that eye and head
movements are no longer independent. An alternate approach is to differentiate the
eye position data, and threshold the resultant eye velocity (e.g., at 80◦/sec) to screen
out non-saccadic movements. Although this can be performed post-hoc, it is not
robust at low sampling rates. For example, revisiting the above example, a 2◦ posi-
tion change that occurred between two frames may have taken 33 msec (velocity =
60◦/sec) or 3 msec (velocity = 670◦/sec). In this study, head movements in
subjects occurred infrequently enough that they were unlikely to severely contami-
nate the saccade data. However, in future work they must be better controlled, using
improved equipment, more elaborate analysis routines, or a combination of both.

A number of enhancements to our system could be implemented in the future.
During the analysis of eye-tracking images, we noticed a high correlation between
the eyes and the eyelid movement that could be incorporated; Deng’s model can be
applied to improve this aspect of the simulation [17]. A scan-path model could be
added, using not only the tracking of close-up eye images but also the visual environ-
ment images taken from the perspective of the participant’s eye. Additional subjects
could be added to the pool of saccade data, reducing the likelihood of idiosyncrasies
in the statistical model. Other modeling procedures themselves could be investi-
gated, such as neural networks or Markov models. Improvements such as these will
further increase the realism of a conversational agent.
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Chapter 5
Realistic Eye Motion Synthesis by Texture
Synthesis

Zhigang Deng, J.P. Lewis, and Ulrich Neumann

5.1 Introduction

Making realistic facial animations is generally regarded as one of the most challeng-
ing research topics in the graphics and computer animation community, partly due
to the fact that producing photo-realistic and emotive virtual characters requires a
demanding combination of face modeling, animation, and rendering. Of the parts
of the face, the eye motions are particularly scrutinized. Furthermore, eye motion is
one of the strongest cues to the mental states of a person, as reflected in the saying,
“the eyes are windows to the soul.” In fact, in attempts to create realistic animated
virtual characters, the eyes are often the things that observers point out as looking
wrong.

In this chapter, we describe an automated approach for generating eye motions
using texture synthesis.1 The goal of this work is to improve the realism of aspects
of eye movements, including gaze saccades and correlated eyelid motions. We
formalize the synthesis of eye motions as a one-dimensional texture synthesis
problem. While applying efficient one-dimensional versions of the popular non-
parametric sampling paradigm, we found that synthesized eye motions are hard to
distinguish from the captured eye motions.

Explicitly characterizing and modeling eye motions is difficult, because though
there may be some connection between eye gaze and eyelid motions, the connec-
tion is not strictly deterministic. For example, as suggested in Figs. 5.2–5.4, gaze
changes often appear to be associated with blinks. A data-driven stochastic model-
ing approach is more appropriate in this case, because without explicitly determin-
ing the possible correlations, data-driven approaches are still valid for synthesizing
eye motions—if the correlations are in the data, the synthesis (properly applied)
will reproduce them. Further, it should be noted that the combined gaze-blink vector
signal does not have obvious segmentation points. Thus, we think adapting texture
synthesis approaches to the problem of realistic eye motion synthesis would be more
appropriate than motion graph approaches. In this work, eye gaze and aligned eye

1 Portions reprinted, with permission, from (Z Deng, JP Lewis, and U Neumann, Automated eye
motion using texture synthesis, IEEE Computer Graphics & Applications, 25(2), March/April
2005, pp. 24–30). c© 2005 IEEE.

98 Z. Deng and U. Neumann, Data-Driven 3D Facial Animation.
C© Springer-Verlag London Limited 2008
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blink motion will be considered together as an eye motion texture sample and will
be used for synthesizing novel but similar-in-character eye motions.

To justify this choice of a texture synthesis approach over a hand-crafted
statistical model, consider the order statistics classification of statistical mod-
els: the first-order statistics p(x) used in [1] capture the probability of events of
different magnitude but do not model any correlation between different events.
Correlation E[xy] is a “second-order moment,” or an average of the second-order
statistics, p(x,y). Third-order statistics would consider the joint probability of triples
of events p(x,y,z), etc. Increasing the order of statistics would result in more pow-
erful models, but suffers from the accordingly increased complexity of modeling
algorithms and poor performance if the model is derived from insufficient training
data. On the other hand, low-order statistics models are generally incapable of
modeling complex correlations and clearly do not capture some visible features
(Fig. 5.1).

Hidden Markov models (HMM), a powerful probabilistic modeling framework
proved in speech recognition applications, would be another possible choice for
eye motion synthesis. The challenge in applying HMMs to this problem is that
the required architecture and number of hidden states is not obvious; because the
model must potentially capture subtle “mental states” (such as agitated, distracted,
etc.) as manifested in eye movement, the mappings between the hidden states and
observations also may not be easily created. As such, even though HMM-based
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Fig. 5.1 Eye “blink" data (bottom) and a synthesized signal with the same autocovariance (top). A
simple statistical model cannot reproduce the correlation and asymmetry characteristics evident in
the data. Reprinted with permission from c©2005 IEEE.
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approaches would probably work for this problem to some extent, the effort of
designing and training suitable HMMs may not be worth the effort if the goal is
simply to synthesize animated eye movements mimicking an original sample. By
adopting a data-driven texture synthesis idea, we avoid this issue and let the data
“speak for itself,” thereby generating eye movements that are indistinguishable in
character from captured eye motions.

The remaining sections are organized as follows: Section 5.2 briefly reviews
related work in eye motion generation. Section 5.3 describes the eye motion data
acquisition and pre-processing. Section 5.4 describes the eye motion synthesis algo-
rithm. Section 5.5 addresses the patch-size selection issue encountered in the synthe-
sis algorithm. The final sections of this chapter describe our results and evaluations
(Section 5.6) and conclusions and future work (Section 5.7).

5.2 Related Work

There has been quite a lot research effort that model eye gaze motions in different
scenarios [2, 3, 4, 5, 6, 1, 7]. For example, the rule-based approach proposed by Cas-
sell et al. [2, 3] generates animated nonverbal behaviors based on linguistic and
context analysis of input texts. Chopra-Khullar et al. [4] present a psychologically
motivated framework for computing visual attending behaviors including eye and
head motions of virtual agents in dynamic environments, given high-level scripts.
Experiments by Vertegaal et al. [5, 6] were designed to validate whether eye gaze
direction cues can be used as a reliable signal for determining who is talking to
whom in multi-agent, multi-user environments. Their results indicated that gaze
directions indeed have a high correlation with the person who is talking and lis-
tening. Lee et al. [1] gave a detailed summary of these and other investigations of
eye movement. Most of these approaches take a goal-directed approach to gaze
and focus on major gaze events such as those for effecting conversational turn-
taking. These high-level directions indicate what the eyes should do and where
the eyes should look, but not the details of eye motions. There is still some free-
dom as to how particular gaze changes should be performed—the detailed tim-
ing of eye saccades and blinks can convey various mental states such as excited
or sleepy.

The “Eyes Alive” work by Lee et al. [1] presented the first in-depth treat-
ment of these “textural” aspects of eye movements and built a first-order statisti-
cal model of eye saccades based on gaze signals from an eye tracker. Their work
also demonstrated the necessity of this detail for achieving realism and convey-
ing an appropriate mental state. However, eye movements are remarkably complex,
and not all aspects of eye movements are considered in their work. Specifically,
only first-order statistics are used, and gaze-eyelid coupling and vergence are not
considered. In this work we will address the first two of these issues by intro-
ducing a more powerful statistical model that simultaneously captures gaze blink
coupling.
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5.3 Eye Motion Acquisition and Preprocessing

A Vicon motion capture system is used to capture facial motions of a human subject
who spoke naturally like a newscaster, with markers on his face. The motion cap-
ture rig consists of 6 cameras and works with a 120-Hz sampling frequency. Two
markers are put on the eyelids to capture eye blink motions. Besides the motion
capture system, a commercial video camera was used to record his front face simul-
taneously. The recorded motion capture data consist of about 16,500 motion capture
frames.

After motion data were acquired from the system, first we need to convert the
recorded eyelid motion into an “eye blink” texture signal, which is one-dimensional.
Because the motions in three directions (X, Y, and Z) are strongly correlated—and
among all aspects of eyelid movement, eyelid openness is the main aspect we want
to address in this work—the eye blink motion in three dimensions can be represented
by a one-dimensional “blink” signal based on the dominant Y (vertical) direction.
As shown in Fig. 5.2, we found that the motion of the left eyelid is approximately
synchronized with that of the right eyelid. We only need the motion capture trace
of one eye to create eye blink texture signals. We further normalized the extracted
eye blink signals into the range [0,1]—here 0 denotes a closed eyelid, 1 denotes a
fully open eyelid, and any value between 0 and 1 represents a partially open eyelid.
During this process, outliers in the motion data are discarded, and the gap will be
filled by interpolating neighbor points.
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Fig. 5.2 Y-coordinate motion of captured left and right eye blinks (green for left and red for right).
Reprinted with permission from c©2005 IEEE.
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Fig. 5.3 Labeled eye gaze signals: solid red for X trajectory and dashed blue for Y trajectory.
Reprinted with permission from c©2005 IEEE.

Various eye-tracking algorithms have been proposed, such as velocity-threshold
identification and dispersion-based algorithms. A detailed summary and compar-
isons of these eye-tracking algorithms can be found in the work of Sawucci and
Goldberg [8]. In this work, fixation and saccade signals of the eyes were obtained by
manually estimating the eye direction in recorded video clips frame by frame using
an “eyeball tracking widget” in a custom GUI (Fig. 5.5). Achieving complete accu-
racy through the manual estimation is a very difficult task, but the estimated eye sig-
nals qualitatively capture the character and cadence of real human gaze movement,
and the gaze durations are frame-accurate. The resulting gaze signals are shown in
Fig. 5.3. It should be noted that the piecewise-continuous character of these signals
is consistent with the fact that our eyes tend to fixate on some point for a period of
time and then rapidly shift to another point (called saccades). When doing a large
change in gaze direction, it appears that the eyes often execute several smaller shifts
rather than a single large and smooth motion. We also observed that gaze changes
frequently occur during blinks.

5.4 Eye Motion Synthesis

Data-driven approaches for human motion synthesis have been the subject of
increasing attention in the computer animation community. Several approaches
partition human motion data into small segments and then concatenate these
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Fig. 5.4 Eye blink and gaze-x signals are plotted simultaneously. Reprinted with permission from
c©2005 IEEE.

segments together based on specified constraints [9, 10]. Texture synthe-
sis techniques are originally used to generate a large texture based on a
small texture sample, and it can be considered as another kind of data-driven
approaches. The basic idea of non-parametric sampling [11, 12, 13] is to
grow one sample (or one patch) at a time given an initial seed, by identify-
ing all regions of the sample texture that are sufficiently similar to the neigh-
borhood of the sample, and randomly selecting the corresponding sample (or
patch) from one of these regions (the left panel of Fig. 5.6). These texture
synthesis algorithms have some resemblance to the above approaches [9, 10],
though they differ in that the entire texture training data is searched for
matching candidates, whereas in the motion capture case the data are divided
into segments in advance and only transitions between these segments are
searched—this trade-off assumes that possible matches in texture-like data
are too many and too varied to be profitably identified in advance. In this
work, texture synthesis algorithms are used in the one dimension case (the
right panel of Fig. 5.6). The patch-based sampling algorithm [13] is cho-
sen due to its time efficiency. For more details about this algorithm, please
refer to [13].

In this work, each texture sample (analogous to a pixel in the 2D image texture
case) consists of three elements: the eye blink signal, the x position of eye gaze sig-
nal, and the y position of the eye gaze signal. If t i = (b, g1, g2) is used to represent
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Fig. 5.5 Eye direction training signals are digitized with a custom GUI. Reprinted with permission
from c©2005 IEEE.

Fig. 5.6 Non-parametric sampling for texture synthesis. The left panel shows the standard 2D
image case, and the right panel shows our eye motion signal case. In the right panel, regions in a
sample signal (top) that are similar to the neighborhood of the signal being synthesized (bottom)
are identified. One such region is randomly chosen, and new samples are copied from it to the
synthesized signal.
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one eye motion texture sample, we compute its elements as follows: the variance of
each element is estimated in a standard way (Eq. 5.1):

Vτ = 1

N − 1

N∑

i=1

(t i
τ − t̄τ )

2. (5.1)

Here τ = b, g1, g2.
After their variances, Vb, Vg1 , and Vg2 , are computed respectively from the above

step, each element (component) is divided by its variance to give it an equal contri-
bution to the candidate patch searching. To measure the similarity between two (eye
motion) patches, we need to define a distance metric. In this work, a distance metric
between two texture patches is defined as follows:

d(Bin, Bout) = (
1

W

W∑

k=1

dtex(T ink, T outk))1/2, (5.2)

dtex(ts , td ) = (bs − bd)2/Vb + (gs
1 − gd

1 )2/Vg1 + (gs
2 − gd

2 )2/Vg2 . (5.3)

Here T[in] represents input eye motion samples, T[out] represents synthesized (out-
put) eye motion samples, and W is the size of boundary zone that functions as a
search window. The patch size essentially depends on the properties of a given tex-
ture, and a proper choice is critical to the success of the above eye motion synthesis
algorithm. If the patch size is too small, it cannot capture the characteristics of
eye motions (e.g., it may cause the eye gaze to change too frequently and look
too active); if it is too large, there are fewer possible matching patches and more
training data are required to produce variety in the synthesized motion. In this work,
the patch size is experimentally set to 20 and the boundary zone size is set to 4.
(Section 5.5 describes how to determine the proper patch size from the data.)

Another parameter used in this algorithm is the distance tolerance, which is
defined as follows:

dmax = ε(
1

W

W∑

k=1

dtex(tk
out, 03)

2)1/2. (5.4)

Here 03 is a three-dimensional zero vector. In this study, we experimentally set the
tolerance constant to 0.2. Figures 5.7 to 5.9 illustrate synthesized eye motions. Note
that the synthesized signals in these figures are synthesized at the same time, which
is necessary to capture the possible correlations between them.
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5.5 Patch Size Selection

As mentioned in Section 5.4, proper patch size is important to the success of this
eye motion synthesis algorithm. In order to determine the proper patch size in this
eye motion synthesis algorithm, we look into transition interval distributions in the
recorded eye motion data.

We count all the time intervals (in terms of frame number) between two adja-
cent approximate eye blink actions in the recorded eye blink data. If the eye blink
value (openness of eyelid) is less than a threshold value (experimentally set to 0.2),
then it is counted as an “approximate eye blink.” It should be noted that setting this
threshold is subjective and experimental, but this threshold is used only for the pur-
pose of choosing the texture patch size. The eye blink synthesis uses the original
un-thresholded data.

For eye gaze data, we count all the time intervals between two adjacent “large
saccadic movements.” These are defined as places where either the x- or y-movement
is larger than a threshold value (experimentally set to 0.1). Then, we collect all these
time intervals and plot their distributions (Fig. 5.10). From Fig. 5.10, we found that
a time interval of 20 is a good transition point: when the time interval is less than 20,
the covered percentage increased rapidly, while it slows down when it is larger than
20. The accumulated coverage is about 55.68% of the “large eye motions” when the
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Fig. 5.7 Synthesized eye blink motion (blue) vs. eye blink sample (red dots). The X-axis repre-
sents the frame number and Y-axis represents the eyelid opening. Reprinted with permission from
c©2005 IEEE.
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Fig. 5.8 Synthesized eye gaze x trajectory (blue) vs. eye gaze-x sample (red). Reprinted with per-
mission from c©2005 IEEE.

time interval limit is set to 20. As such, we experimentally set 20 as the proper patch
size for the eye motion synthesis algorithm.

The size of the boundary zone is another tricky parameter used in the algorithm,
which is used to control the number of “texture-block candidates”: if the size of
boundary zone is too large, then few candidates are available and the diversity of
the synthesized motion is impaired. On the other hand, if this size is too small,
some of the higher-order statistics of eye motion are not captured and the resulting
synthesis looks jumpy. We adopted a similar strategy as used in [13], where the size
of the boundary zone is a fraction of the patch size, e.g., 1/6. As such, we chose 4
as the size of boundary zone; in practice, it works well.

5.6 Results and Evaluations

To evaluate this approach, we took one segment from extracted eye motion sequence
as an “eye motion texture sample” and synthesized novel eye motions based on this
sample; finally, we conducted subjective experiments. We found that our synthe-
sis algorithm produces eye movement that looks alert and lively, rather than other
moods (e.g., the drugged, agitated, or “schizophrenic” moods), although the real-
ism is difficult to judge since the face model itself is not completely photo-realistic.
Figure 5.11 shows some frames of synthesized eye motions.
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Fig. 5.9 Synthesized eye gaze y trajectory (blue) vs. eye gaze-y sample (red). Reprinted with per-
mission from c©2005 IEEE.

To compare this method with other approaches, we synthesized eye motions
using three different methods. Subjective evaluations were conducted on these eye
motions that were played on the same face model. In the first result (Method I), the
Eyes Alive model [1] was used to generate gaze motion, and the eye blink motion
was sampled from a Poisson distribution (note that “discrete event” in this Poisson
distribution means “eyelid close” event). In the second result (Method II), both ran-
dom eye gaze and eye blink were sampled from Poisson distributions. In the third
(Method III), this method synthesized eye blink and gaze motion simultaneously.

Three eye motion videos with the same duration time were presented in random
order to 22 viewers who are undergraduate and graduate students at a university. The
viewers were asked to rate each eye motion video on a scale from 1 to 10, with 10
indicating a completely natural and realistic motion. Among these 22 participants,
one of them thought these two were equivalent and declined to make any choice, and
he/she was considered as “an invalid viewer” in our test. We plotted average ratings
and standard deviation of this evaluation (Fig. 5.12). As shown in the figure, both
Method I (Eyes Alive) and Method III (this approach) received much higher scores
than Method II (random), and in fact viewers slightly preferred the synthesized eye
motion by this approach (Method III) over that of Method I.

A second subjective test was also conducted to see whether it is possible to distin-
guish the synthesized eye motions by this approach from the original captured eye
motions. In this test, 15 viewers were asked to forcibly identify the original (assum-
ing the original has better motions) after they carefully watched two eye motion
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Fig. 5.10 The top is the histogram of time intervals of “large eye movements." The bottom is the
accumulated covered percentage vs. time interval limit. When the time interval limit is 20, the
covered percentage is 55.68%. Reprinted with permission from c©2005 IEEE.
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Fig. 5.11 Some frames of synthesized eye motion. Reprinted with permission from c©2005 IEEE.

Fig. 5.12 One-way ANOVA results of our evaluations. The p-value is 2.3977e-10. Reprinted with
permission from c©2005 IEEE.

videos (one is original captured eye motion, the other is synthesized from this cap-
tured segment) a number of times. Evaluations results are as follow: seven out of 15
made correct choices, and the other eight subjects made wrong choices. We used a
normal approximation to the binomial distribution with p = 7/15, and found that
equality ( p = 0.5) is easily within the 95% confidence interval (See the appendix).
It should be noted that because of this small number of participants in our test, more
experiments and tests are still needed to fully conclude that the original and synthe-
sized video clips are truly indistinguishable.

5.7 Conclusions and Future Work

In this chapter, instead of generating eye motions from programmer-defined rules
or heuristics, or using a hand-crafted statistical model, we explore a “motion tex-
ture” strategy and successfully apply it to produce realistic eye motions. We also
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demonstrated that texture synthesis techniques can be applied in the animation
realm, to the modeling of incidental facial motion. Our subjective evaluations val-
idated that the quality of statistical modeling and the introduction of gaze-eyelid
coupling are improvements over previous work, and the synthesized results are hard
to distinguish from actual captured eye motions.

A limitation of this approach is that it is hard to know in advance how much data
are needed to avoid getting stuck in the motion synthesis procedure. However, after
generating some animations it is easy to evaluate the variety of synthesized move-
ment, and more data can be obtained if necessary. Our approach works reasonably
well for applications where nonspecific but natural-looking automated eye motions
are required, such as for action game characters, etc. We are aware that complex eye
gaze motions exist in many scenarios, especially communications among multiple
agents.

In future work, we want to verify whether different moods (attentive, bored,
nervous, etc.) can be reproduced by our approach. Head rotation (and, especially
rotation-compensated gaze) and vergence will need to be addressed, for exam-
ple, properly incorporating data-driven head motion generation techniques [14, 15]
would enhance the overall realism of virtual avatars. It should also be noted that fully
realistic eye movement involves a variety of phenomena not considered here, such
as upper eyelid shape changes due to eyeball movement, skin deformation around
the eyes due to muscle movement, etc.
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Appendix

Suppose N subjects were asked to make evaluations, and n out of N made wrong
choices. Now we estimate the probability distribution of making wrong choices.
First, suppose X denotes the probability of making wrong choices, D denotes the
observed data, I denotes prior information about X, and P(X|I) is uniform in (0,1).

According to Bayes’s theorem, we get the following:

P(X = x |D, I )dx = (P(X |I )x−>x+dx P(D|X, I )X=x )/(P(D|I )),
P(X |I )x−>x+dx = 1.dx, P(D|X = x, I ) = xn(1 − x)N−n ,

P(D|I ) =
∫ 1

0
P(D|X = x, I )dx = (n(N − n))/((N + 1)).

Thus, P(X |D, I ) = ((N + 1))/(n(N − n)).xn.(1 − x)N−n . Let d(P(X |D, I ))/
dx = 0; then we get estimated X ′ and its standard deviation σ X ′ = n/N ,

σ =
√

var(x) =
√∫ 1

0
(x − x ′)2.(N + 1)/(n(N − n)).xn(1 − x)N−ndx,

=
√

2/((N + 2)(N + 3)) + X ′(1 − X ′)(N − 6)/((N + 2)(N + 3)).



Chapter 6
Learning Expressive Human-Like Head Motion
Sequences from Speech

Carlos Busso, Zhigang Deng, Ulrich Neumann, and Shrikanth Narayanan

6.1 Introduction

With the development of new trends in human-machine interfaces, animated feature
films, and video games, better avatars and virtual agents are required that more
accurately mimic how humans communicate and interact. Gestures and speech are
jointly used to express intended messages. The tone and energy of the speech, facial
expression, rigid head motion, and hand motion combine in a nontrivial manner as
they unfold in natural human interaction. Given that the use of large motion capture
data sets is expensive and can only be applied in planned scenarios, new automatic
approaches are required to synthesize realistic animation that capture and resemble
the complex relationship between these communicative channels. One useful and
practical approach is the use of acoustic features to generate gestures, exploiting the
link between gestures and speech.

Since the shape of the lips is determined by the underlying articulation, acous-
tic features have been used to generate visual visemes that match the spoken sen-
tences [4, 5, 12, 17]. Likewise, acoustic features have been used to synthesize facial
expressions [11, 30], exploiting the fact that the same muscles used for articulation
also affect the shape of the face [44, 46]. One important gesture that has received
less attention than other aspects in facial animations is rigid head motion.

Head motion is important not only to acknowledge active listening or replace ver-
bal information (e.g., “nod”), but also for many aspect of human communication (for
details, see [26]). Graf et al. suggested that rigid head motion is used to segment the
linguistic units of spoken content, since the timing between the prosodic structure
and head motion is consistent [23]. Head motion also improves acoustic perception,
as noted by Munhall et al. [36]. They also suggested that head motion helps to distin-
guish between interrogative and declarative statements. Hill and Johnston show that
head motion is used to recognize speaker identity [27]. Moreover, Jefferies et al.
suggest that head motion influences the perception of the personality of the ani-
mated character. Similarly, our previous work indicates that head motion affects the
emotional perception of facial animations [6].

Given the importance of head motion in human-human interaction, this nonver-
bal channel needs to be properly modeled for realistic facial animation. Kuratate
et al. have estimated the correlation levels between prosodic and head motion
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features [32]. Based on the high correlation levels achieved (r = 0.8), they con-
cluded that the production of speech and head motion are internally linked. Even
though head motion patterns depend on many other factors such as the underly-
ing semantic content and the personality of the subjects, these results suggest that
speech can be used to generate head motion sequences.

In this chapter, the relationship between rigid head motion and prosodic speech
is analyzed in terms of emotional categories (neutral state, sadness, happiness, and
anger). The results show that head motion and prosodic speech are strongly con-
nected. However, the relationship varies from emotion to emotion, suggesting that
emotional models need to be built to generate realistic head motion sequences.
Based on this study, a novel approach to synthesize head motion sequences from
prosodic speech is presented. In this framework, head poses are quantized in a finite
number of clusters or codebooks. For each of these codebooks, a hidden Markov
model (HMM) is built, taking prosodic features as observations. In the synthesis
step, the acoustic features of the test speech are entered in the HMMs and the most
likely head motion sequences are generated. Smoothing techniques based on first-
order Markov models followed by spherical cubic interpolation are used to ensure
continuous head motion sequences. To include emotional patterns in the generated
sequences, different sets of HMMs are built for each emotional category. Evalu-
ations of this framework reveal that the generated sequences follow the temporal
dynamics of speech well. Moreover, the generated sequences were judged by human
raters at the same level of naturalness as the captured head motion sequences. Pre-
vious versions of this framework were published in [6, 7].

This chapter is organized as follows: Section 6.2 presents previous work on
head motion synthesis. It also motivates the importance of modeling emotion for
engaging animated characters. Section 6.3 describes the audio-visual database and
the procedure used to extract the audio-visual features. In Section 6.4, the relation-
ship between head motion and prosodic features is analyzed in terms of emotional
categories. Section 6.5 describes the framework used to synthesize head motion
sequences. Section 6.6 presents the objective and subjective evaluations of this
approach. Finally, Section 6.7 gives the concluding remarks and our future research
directions.

6.2 Related Work

6.2.1 Head Motion Synthesis

Different approaches have been used to synthesize head motion sequences, given
the relationship between head motion and the verbal message. For instance, plain
text enriched with manual annotations of discourse functions were used to synthe-
size well-known head motion gestures such as head “tilt” and “nod.” De Carlo et al.
present a coding-based platform for real-time facial animation that supports head
motion rotation and translation [14]. The movements of the head are driven by man-
ual annotations of specific head motion gestures co-occurring with prominent words
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in the text. Pelachaud et al. propose a rule-based system to synthesize head move-
ment from text responding to discourse function (e.g., conversational signal and
punctuators) [37]. If the emotion of the animation is specified, the velocity and the
global pose of the head motion are modified according to predefined rules (e.g.,
for sadness, the global pose was set with a downward direction). Similar rule-based
systems are presented in [10, 43].

Instead of using text, other approaches have been proposed to exploit the prosodic
structure of the acoustic signal. The prominence in speech prosody is closely related
to head motion [10, 24, 32]. Therefore, it can be used to estimate head motion
sequences. Albrecht et al. propose the generation of head movements based on
the pitch contour [1]. If the difference between two maxima of the pitch exceeds
a threshold, the head is raised. If the difference between two minima exceeds a
given threshold, the head is lowered. The amplitude of the upward and downward
movements is proportional to the magnitude of the differences. Random movements
in the horizontal and vertical axes are added to prevent repetitive movements.

Graf et al. analyze the relationship between head motion and the prosodic struc-
ture in the speech [23]. They define few primitives to describe head motion (e.g.,
“nod”) that were consistently observed across speakers. The co-occurrence between
these primitives and prosodic events, which were labeled using the Tones and Break
Indices (ToBI) scheme, are used to estimate the conditional probability of major
head movement given pitch accents. A similar approach is presented by Sargin et al.,
in which specific head motion sequences for “nod” and “tilt” are generated when
pitch accent is detected [40]. Unfortunately, these approaches only generate limited
head motion gestures, which do not reflect the wide range of head motion patterns
displayed during human-human interaction.

Chuang and Bregler present a data-driven approach to synthesize head motion
sequences [11]. In this approach, the head motion and pitch contour corresponding
to segments in the training data are recorded. The prosodic structure of each new
speech signal is compared with the ones in the database with similar emotional con-
tent. After selecting the top M matches for each segment in that sentence, a dynamic
programming algorithm is used to find the optimum path of the head motion
sequences. The cost function is designed to achieve smooth transitions between
segments. Deng et al. developed a similar head motion synthesis technique [16].
In addition to searching the M best matches between the novel speech material
and the ones in the database, they proposed the inclusion of optional key framing
controls. With this extension, the designers were able to incorporate specific rigid
head gestures in the animation, such as “head nod.” Then, a dynamic programming
algorithm maximizes the optimum path between the head motions segments, con-
strained by the specified key head poses. One advantage of these two studies is that
the head motion sequences are not restricted to a few prototype rigid head gestures.

In the proposed framework, the focus is on modeling the temporal relationship
between head motion and prosodic features. HMMs are used to estimate discrete
representation of head poses from prosodic features. As shown in Section 6.6,
the resulting head motion sequences preserve the temporal relation between head
motion and speech. More importantly, in the context of facial animation, human
evaluators perceived them as natural as the captured head motion sequences.
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6.2.2 Emotion in Facial Animation

For engaging talking avatars, special attention needs to be given to include emo-
tional capability in the virtual characters. Importantly, Picard has underscored that
emotions play a crucial rule in rational decision making, in perception, and in
human interaction [38]. In fact, Gratch and Marsella have proposed the use of emo-
tions as a crucial component in the decision-making model of human-like char-
acters [25]. Therefore, applications such as virtual teachers, animated films, and
new human-machine interfaces can be significantly improved by designing control
mechanisms to animate the character to properly convey and react according to the
desired emotion. Human beings are especially good not only at inferring the affec-
tive state of other people, even when emotional clues are subtly expressed, but also
in recognizing non-genuine gestures, which challenges the designs of these control
systems.

The production mechanisms of gestures and speech are internally linked in the
brain. Cassell et al. mention that these mechanisms are not only strongly connected,
but also systematically synchronized in different scales (phonemes-words-phases-
sentences) [10]. They suggest that hand gestures, facial expressions, head motion,
and eye gaze occur at the same time as speech and convey information similar to that
in the acoustic signal. Similar observations are mentioned by Kettebekov et al. [31].
They studied deictic hand gestures (e.g., pointing) and speech prosody in the context
of gesture recognition. They concluded that there is a multimodal co-articulation of
gestures and speech, which are loosely coupled.

From an emotional expression point of view in communication, it has been
observed that human beings jointly modify gestures and speech to express emotions.
Communicative channels such as facial expressions [21, 22], head motion [6, 37],
pitch [13, 41], and short-time spectral envelope [47] all present specific patterns
under emotional states. Therefore, a more complete human-computer interaction
system should include details of the emotional modulation of gestures and speech.

In sum, all these findings suggest that the control system to animate virtual
human-like characters needs to be closely related and synchronized with the infor-
mation provided by the acoustic signal. In addition, these control systems need to
model the emotional content that the animated character is supposed to convey. This
chapter proposes the use of emotion-dependent models driven by prosodic features
to synthesize realistic head motion sequences.

6.3 Audio-Visual Database

The audio-visual database was recorded from an actress who was asked to read a
semantically neutral, custom-made, phoneme-balanced corpus four times, express-
ing different emotions: neutral state, sadness, happiness, and anger, at each read-
ing. Facial markers were attached to her face according to the layout illustrated
in Fig. 6.1. The markers were tracked with a VICON motion capture system with
three cameras at a sampling rate of 120 frames per second (right of Fig. 6.1). Her
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Fig. 6.1 Audio-visual database. The left figure shows the layout of the 102 facial markers, and the
right figure shows the motion capture system.

speech was simultaneously recorded with a close talking SHURE microphone at
48 KHz. In total, 640 sentences were used in this work. Notice that the actress
was instructed to act naturally without any specific instructions about how to move
her head.

After the data were collected, the markers’ positions were translated to make
the lower nose marker the center of the coordinate system. After that, the three
degrees of head rotation were estimated using a technique based on singular-value
decomposition (SVD) [2]. In this technique, a reference frame was selected from a
neutral pose. The 3D positions of the markers were arranged as a 102 × 3 matrix,
referred here on as Mref. Each of its rows contains the x, y, and z location of the
markers. Then, for frame t, a matrix Mt is created following the same order as in
Mref. Then the SVD, U DV T , of the matrix Mt · Mref is calculated. The product
V U T gave the rotation matrix for frame t:

MT
ref · Mt = U DV T , (6.1)

Rt = V U T . (6.2)

Finally, head motion is modeled as the 3D Euler angles, xt , corresponding to
head rotation, which are derived from Rt (Fig. 6.2). Notice that head motion is usu-
ally parameterized with 6 degrees of freedom (DOF), corresponding to rotation (3
DOF) and translation (3 DOF) [16, 45]. As discussed in Section 6.5, the proposed
framework requires discrete head poses, which are estimated using vector quantiza-
tion. For a constant quantization error, the number of clusters significantly increases
if 6 DOF are considered instead of 3 DOF. Fortunately, from a practical point of
view, most applications require a close view of the face, in which translation effects
are less important than rotation effects.

The acoustic features were extracted using the Praat speech processing soft-
ware [3]. The analysis window was set to 25 msec, with an overlap of 8.3 msec,
producing 60 frames per second. The pitch (F0) and the RMS energy were esti-
mated. The pitch was smoothed to remove any spurious spikes and interpolated to
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Fig. 6.2 Head motion parameterization.

avoid zeros in the unvoiced region of the speech, using the corresponding options
provided by the Praat software. The first and second derivatives of these features
were also considered, since they provided useful temporal information. In sum, a
6D feature vector was used. Notice that prosodic features predominantly describe
the source of the speech rather than the vocal tract. Therefore, this head motion
framework is independent of the specific lexical content of the sentence, reducing
the size of the database needed to train the models.

6.4 Analysis of Head Motion During Expressive Speech

In this section, a brief analysis of the relationship between head motion and prosodic
features in terms of emotional categories is studied. For this purpose, the database
was split into emotional categories, and different statistical measures were com-
puted. The main goal of this study is to quantify differences in the head motion
patterns displayed under expressive utterances.

To measure the relationship between head motion and prosodic features, canoni-
cal correlation analysis (CCA) [28] was applied to the data. CCA provides a scale-
invariant optimal linear framework to measure the correlation between two streams
of data with equal or different dimensionality. In this method, the feature vectors
are projected into a common space in which Pearson’s correlation can be mea-
sured. Table 6.1 shows the average first-order canonical correlation between head
motion and speech. The results show correlation levels higher than r = 0.69 across
emotional categories. This result agrees with the observation made in [32], about
the close relation between head motion and prosodic features. Notice, however,
that the correlation levels vary from emotion to emotion [8]. A one-way analysis
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Table 6.1 Statistics of head rotation [6].

Neu Sad Hap Ang

Canonical correlation Analysis

0.74 0.74 0.71 0.69

Motion Coefficient [◦]

α 3.32 4.76 6.41 5.56
β 0.88 3.23 2.60 3.67
γ 0.81 2.20 2.32 2.69

Range [◦]

α 9.54 13.71 17.74 16.05
β 2.31 8.29 6.14 9.06
γ 2.27 6.52 6.67 8.21

Velocity Magnitude [◦/sample]

Mean .08 0.11 0.15 0.18
Std .07 0.10 0.13 0.15

of variance (ANOVA) evaluation indicates that there are significant differences
between emotional categories (F[3,640], p = 0.0013). In fact, multiple compari-
son tests reveal that the average CCA of neutral head motion sequences is different
from the average CCA of sadness (p = 0.001) and anger (p = 0.001).

To measure the level of head movement activity, a motion coefficient, � , is
defined as the standard deviation of the sentence-level mean-removed signal:

� =
√√√√ 1

N · T

N∑

u=1

T∑

t=1

(xu
t − μu)2, (6.3)

where T is the number of frames, N is the number of utterances, and μu is the
mean of the sentence u. The average results of this motion coefficient when applied
to head motion features are presented in Table 6.1. The results indicate that head
motion activity during emotional utterances is significantly higher than in neutral
utterances. Happiness and anger present the highest levels of head motion activity.
As an aside, it is interesting to notice that similar trends were also observed in the
articulatory domain for tongue and jaw movement [33].

Table 6.1 also gives the average range and velocity of expressive head motion
patterns. These results indicate that during emotional utterances the head moves
over a wider range than in the neutral case. Likewise, for happiness and anger the
head motion velocity increase more than 90%, compared to the neutral case. These
results, which agree with previous work [37], indicate that the temporal dynamics
of head motion during neutral speech presents important differences compared to
the patterns displayed during emotional speech.

A discriminant analysis was applied to the data, to infer how distinct the head
motion patterns are under different emotional categories. The mean, standard devi-
ation, range, maximum, and minimum of the head motion features computed at
the sentence level were used as features. Fisher classification was implemented
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Table 6.2 Emotional discriminant analysis of head rotation [6].

Neu Sad Hap Ang

Neu 0.92 0.02 0.04 0.02
Sad 0.15 0.61 0.11 0.13
Hap 0.14 0.09 0.59 0.18
Ang 0.14 0.11 0.25 0.50

with the leave-one-out cross-validation method. Table 6.2 shows the results. On
average, the recognition rate was 65.5% using only head motion features. Notice
that the emotional class with the lowest performance (anger) is correctly classified
with accuracy higher than 50% (chance is 25%). These results suggest that there
are distinguishable emotional characteristics in rigid head motion. Also, the high
recognition rate of the neutral state implies that global patterns of head motion
in normal speech are completely different from the patterns displayed under an
emotional state.

Previous work has shown than prosodic features are also affected by emotional
modulation [13, 41]. As a result, it is not surprising that the relationship between
head motion and prosodic features is emotion-dependent.

These results agree with our previous work, which indicates that head motion is
one of the facial gestures that is less constrained by articulatory processes [9]. As a
result, it can be used with less restriction to express other non-linguistic messages,
such as emotions. Therefore, emotion-dependent head motion models are needed
for human-like expressive facial animation. Further details on the analysis can be
found in [6, 8, 9].

6.5 Head Motion Framework

As discussed in the previous section, head motion and prosodic features are
closely related across time. The hidden Markov model (HMM) is a statistical
time-series framework that has been used to model similar data. Accordingly,
we propose to generate head motion sequences using HMMs. Instead of estimat-
ing a mapping function [23], designing rules according to specific comunicative
functions [10, 37, 43], or finding similar samples in the training data [11, 16], we
model the problem as classification of discrete representations of head motion
using acoustic prosody as feature. That is to say, the relationship between head
motion and prosodic features is directly learned from data, without specify-
ing the high-level functions in the speech. We will discuss this point further in
Section 6.7.

Since an HMM will be built for each head pose, a discrete representation of head
motion is needed. This representation is obtained by using the Linde–Buzo–Gray
vector quantization (LBG-VQ) technique [34]. The 3D space spanned by the head
motion features is split in K Voronoi cells. For cell Vi with i ∈ {1, . . . , K }, the
mean, Ui , and covariance matrix �i of the points inside the cluster are estimated
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Fig. 6.3 2D projection of the Voronoi regions using 16-size vector quantization.

(Fig. 6.3). In the quantization step, the continuous Euler angles of each frame are
approximated with the closest vector code in the codebook.

For each of the head pose cluster (Vi ), an HMM is built to generate the most
likely head motion sequence, given the observation O, which corresponds to the
prosodic features. Therefore, the number of models that will be built is given by the
number of clusters (K) used to represent the head poses. The HTK toolkit is used to
build these HMMs [48].

To guarantee a continuous head motion sequence without breaks, two smoothing
constraints are imposed. The first smoothing technique takes place in the decoding
step of the HMMs. In this approach, transitions between head motion cluster are
constrained according to their appearance in the training data. The second smooth-
ing constraint is imposed as a post-processing step, by using spherical cubic inter-
polation. Further details of these smoothing techniques are given in Sections 6.5.1
and 6.5.2, respectively.

As discussed in Section 6.4, the relationship between head motion and prosodic
features depends on the emotional content of the utterance. If human-like facial
animations are required, the specific emotional patterns of the gestures, in this
case head motion, need to be appropriately designed. In this proposed approach,
the relationship between head motion and prosodic features is learned in terms
of emotional categories. The data is split according to the emotional labels, and
emotion-dependent HMMs are separately built. Therefore, the specific emotional
patterns are directly included in the models.
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6.5.1 Learning Head Motions

To synthesize human-like head motion, our technique searches for the sequences of
discrete head poses that maximize the posterior probability of the cluster models
V = (V t

i1
, V t+1

i2
, . . .), given the observations O = (ot , ot+1, . . .):

arg max
i1,i2,...

P(V t
i1
, V t+1

i2
, . . . |O). (6.4)

Instead of directly modeling this posterior probability, the problem is solved
by training the prior probability, P(O), and the likelihood, P(O|V t

i1
, V t+1

i2
, . . .), by

making use of Bayes’ rule:

P(V |O) = P(O|V ) · P(V )

P(O)
. (6.5)

The likelihood distribution, P(O|V ), models how well the head motion models
fit the data. Here, it is modeled as a first-order Markov process with S states. There-
fore, the probability description at time t includes only the current and the previous
states, which significantly simplifies the problem. In each of the states, the distri-
bution of the observations are modeled with a mixture of M Gaussians. As noted
in [6,7], the mapping between head motion and prosodic features is many-to-many.
By using mixture of Gaussians to model the distribution of the observations, this
ambiguous relationship is included in the models. Under this formulation, build-
ing the likelihood distribution of head motion sequences is reduced to learning the
parameters of standard HMMs. For this training problem, well-known techniques
such as forward-backward and Baum–Welch re-estimation algorithms are used. For
more information about HMM, readers are referred to [39, 48].

The prior probability, P(V), in Eq. 6.5 plays an important role in this framework.
It models the transition probability between head motion clusters based only on
prior information. Here, P(V) is used as a first smoothing technique to guarantee
valid transitions between the discrete head poses. Similar to bi-gram models used
for language models [48], this prior probability is modeled as a first-order state
machine. The transitions between clusters are learned by counting their relative fre-
quency in the training data. In the decoding step of the HMMs, this prior information
is used to reward or penalize transitions that are frequently or seldom observed in
the database, respectively. According to the analysis presented in Section 6.4, head
motion dynamics are also affected by the underlying emotion of the subject. There-
fore, this prior probability is separately learned from each emotional category.

P(O) does not depend on the head motion models and is a constant in Eq. 6.4.
Therefore, it can be ignored in this framework.

Notice that in the training procedure the segmentation of the acoustic signal
is obtained from the vector quantization of the head motion space. Therefore, the
HMMs were initialized with this known segmentation, avoiding the use of forced
alignment, as it is usually done in automatic speech recognition to align phonemes
with the speech features.
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6.5.2 Head Motion Synthesis

Figure 6.4 describes the proposed framework to generate human-like head motion
sequences. After the HMMs are trained, the prosodic features described in Section
6.3 are extracted from the acoustic signal of the test database. This feature vector
is used as an observation of the HMMs, which generates the most likely sequences
of head poses codebooks, V̂ = (V̂ t

i1
, V̂ t+1

i2
, . . .), according to Eq. 6.5. After the

sequence V̂ is generated, the means of the clusters are used to form a 3D sequence,
Ŷ = (Ut

i1
, Ut+1

i2
, . . .), which is the first approximation of the head motion.

The next step in this approach is to blur the sequence Ŷ with additive colored
noise (Eq. 6.6). The purpose of this step is to compensate for the quantization error
yielded during vector quantization. Hence, the noise is added such that the covari-
ance of the noise matches the covariance matrix associated with the codebooks (�).
Therefore, the power of the noise is distributed in proportion of the quantization
error. The parameter λ is included in Eq. 6.6 to attenuate, if desired, the noise level
used to blur the sequence Ŷ (e.g., λ = 0.7). Notice that this is an optional step that
can be ignored by setting λ equal to one, if no attenuation is desired, or to zero if
no noise is desired. The solid blue line in Fig. 6.5 shows an example of the noisy
version of the head motion sequences, Ẑ :

Ẑ t
i = Ŷ t

i + λ · W (�i ). (6.6)

As can be observed from Fig. 6.5, the noisy version of the head motion sequence
(Ẑ ) presents a break in the cluster transitions. This problem is observed even when
the number of codebooks or the noise level is increased (K). To avoid these dis-
continuities, a second smoothing technique is applied to the sequence. If a standard
cubic interpolation is separately applied to each of Euler’s angles, it is well known
that the resulting sequence may present jerky movements and undesired effects
such as Gimbl lock [42]. Instead, the proposed smoothing technique is based on
spherical cubic interpolation [20]. With this technique, the 3D Euler angles are

Fig. 6.4 Emotion-dependent head motion synthesis framework.
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Fig. 6.5 Example of a synthesized head motion sequence. The solid blue line represents the 3D
noisy signal Ẑ from Eq. 6.6. The circles are the key points used for spherical cubic interpolation.
The dashed red line is the smoothed head motion sequences used in the animation (X̂ ).

jointly interpolated in the unit sphere by using quaternion representation, avoiding
the artifact mentioned before.

In the interpolation step, the sequence Ẑ is downsampled to 6 points per second
to obtain equidistant frames. These frames are referred, from here on, as key points
and are marked in Fig. 6.5 as a black circle. These 3D Euler angle points are then
transformed into the quaternion representation [20]. Spherical cubic interpolation
(squad) is then applied over these quaternion points. The squad function builds upon
the spherical linear interpolation (slerp). The functions slerp and squad are defined
by Eqs. 6.7 and 6.8, respectively:

slerp(q1, q2, μ) = sin(1 − μ)θ

sin θ
q1 + sin μθ

sin θ
q2, (6.7)

squad(q1, q2, q3, q4, μ) = slerp(slerp(q1, q4, μ), slerp(q2, q3, μ), 2μ(1 − μ)),

(6.8)

where qi (with i ∈ {1, . . . , 4}) are quaternions, cosθ = q1 · q2, and μ is a parameter
that ranges between 0 and 1 and determines the frame position of the interpolated
quaternions. With these equations, the head motion sequence is interpolated in the
unit sphere by varying the parameter μ to recover the original sample rate (120
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(a) Neutralstate (b) Sadness (c) happiness (d) anger

Fig. 6.6 Frames from synthesized sequences. Each column corresponds to a specific emotional
category.

frames per second). The last step in this smoothing technique is to transform the
interpolated quaternions into an Euler angle representation.

Notice that the noise is added before the spherical cubit interpolation technique
is applied. Therefore, the resulting head motion sequence, referred by X̂ , is a con-
tinuous and smooth 3D signal without the jerky behavior of noise. An example of
this sequence is illustrated in Fig. 6.5 as dashed red line.

The final step in this framework is to include the head motion sequence X̂ in the
facial animation. Here, a blendshape face model composed of 46 blend shapes is
used, which is modeled and rendered using Maya [35]. The head motion sequence
X̂ is directly applied to the angle control parameters of the face model. For real-
istic human-like expressive animation, other facial components such as expressive
visual speech and eye motion are also modeled and synthesized. The details of those
approaches can be found in [15, 17–19].

Figure 6.6 shows frames of the synthesized sequences for each of the four emo-
tional categories considered here.

6.5.3 Parameter Configuration of the Models

An important parameter in this framework is the HMM topology, which is defined
by the number and interconnection of the states. The most common topologies are
the left-to-right topology (LR), in which only transitions in the forward direction
between adjacent states are allowed, and the ergodic topology (EG), in which the
states are fully connected. In the LR topology, fewer parameters are required. There-
fore, less data are needed to train its parameters. The EG topology is less restricted,
so it can learn the state transitions from the database. However, more parameters
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are needed to learn the models, which increase the requirement on the size of
training data.

In this particular problem, it is not clear which HMM topology provides the
best description of the head motion dynamics. In our previous work, different
generic HMM configurations were evaluated. By generic models, we mean emotion-
independent HMMs that were learned without considering the emotional category
of the sentences (the entire database was used for training). The left-to-right HMM,
with three states (S) and two mixtures (M), achieved the best result. Notice that if
the database were big enough, an ergodic topology with more states and mixtures
could perhaps give better results.

When emotional models are used instead of generic models, the training data are
even smaller, since the emotion-dependent models are separately trained. Therefore,
the HMMs used in the experiments were implemented using a LR topology with two
states (S = 2) and two mixtures (M = 2).

Another important parameter of this model is the number of clusters (K) used
to create the discrete representation of head motion, which is directly related with
the number of HMMs to be built. If K increases, the quantization error of the dis-
crete representation of head poses decreases. However, the discrimination between
models will significantly decrease and more training data will be needed. Therefore,
there is a trade-off between the quantization error and the inter-cluster discrimina-
tion. As shown in [6, 7], a 16-word codebook was adequate to synthesize realistic
facial animation. In the experiments reported here, K was also set to 16.

The audio-visual database mentioned in Section 6.3 was randomly split into
training (80%) and testing data (20%).

6.6 Head Motion Evaluation

The head motion sequence framework presented here was objectively and subjec-
tively evaluated. This section presents the main results.

6.6.1 Objective Evaluation

The first-order canonical correlation between the original and synthesized head
motion sequences was computed to analyze whether this framework is able to cap-
ture the temporal relationship between head motion and prosodic features. The aver-
age results are presented, separately for each emotional category, in Table 6.3. The
results show that the sequences generated with prosodic features are highly cor-
related with the original captured sequences. This suggests that this framework
appropriately models the temporal behavior of head motion sequences. Notice that
the first-order correlation between head motion and prosodic features was about
r ≈ 0.72 (Table 6.1). Interestingly, the first-order canonical correlation between
the original and synthesized head motion sequences was over r > 0.85. Even
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Table 6.3 Canonical correlation analysis between original and synthesized head motion
sequences [6].

Neutral Sadness Happiness Anger

Mean 0.86 0.88 0.89 0.91
Std 0.12 0.11 0.08 0.08

though prosodic features do not provide all the information needed to synthesize
head motion sequences, this result indicates that the performance of the proposed
system is notably high.

6.6.2 Subjective Evaluation

For subjective assessments of this framework, 17 human subjects were asked to
rate the naturalness of videos with facial animation rendered with the synthe-
sized and original head motion sequences. Likewise, they were also asked to rate
the naturalness of the animation without head motion (rigid head), to study how
important head motion is for realistic facial animation. In total, one video per
each emotional category was presented to the evaluators, resulting in 12 videos:
4 emotions × 3 modalities (synthesized, original, and rigid). Although the facial
animations included other facial gestures such as lips and eyes, the only gesture that
was modified was head motion.

The animations were presented in random order. The naturalness of the anima-
tion was rated using a five-point scale. The extremes were called robot-like (value
1), and human-like (value 5). The evaluators received instructions to rate their over-
all impression of the animation and not individual aspects such as head movements
or voice quality. The subjects were not made aware that head motion was the com-
ponent of the facial animation that was under assessment.

Table 6.4 presents the results for the subjective assessment. With the exception
of sadness, the synthesized sequences were judged to be more natural than the ani-
mation with the original head motion sequences. This result indicates that the head
motion synthesis approach presented here was able to generate realistic human-like
head motion sequences. One aspect that significantly improves the naturalness per-
ception of the facial animation is the synchronism between the prosodic structure
of the speech and the head motion. Prominence in the speech was systematically
accompanied with head motion gestures, which indicates that this framework was
able to model the nontrivial relationship between head motion and speech.

Table 6.4 also shows how the listeners assessed the naturalness of the facial ani-
mation without head motion. These results show that the naturalness perception
significantly decreases when head motion is not included in the facial animation.
This implies that head motion is an important component for human-like facial ani-
mations that needs to be appropriately modeled for engaging animated characters.

The inter-evaluator average variance in the scores rated by human subjects
was 0.97. This result indicates that the concept of naturalness of the animation
is perceived slightly differently between the evaluators. However, since we are
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Table 6.4 Naturalness assessment of rigid head motion sequences [1—robot-like, 5—human-
like] [6].

Head Motion Data Neutral Sadness Happiness Anger

Mean Std Mean Std Mean Std Mean Std

Original 3.76 0.90 3.76 0.83 3.71 0.99 3.00 1.00
Synthesized 4.00 0.79 3.12 1.17 3.82 1.13 3.71 1.05
Fixed head 3.00 1.06 2.76 1.25 3.35 0.93 3.29 1.45

interested in the mean differences of each group, this variability does not bias these
results.

6.7 Discussion and Conclusions

Head motion is an important component in interpersonal human interactions. There-
fore, this gesture needs to be properly modeled and included in realistic human-like
facial animations. The subjective evaluations presented in this chapter support this
observation, since the naturalness perception significantly decreases when the ani-
mations were rendered without head motion.

As analyzed in this chapter, the head motion patterns displayed under expressive
utterances vary across emotional categories. For instance, the range and velocity of
the head present higher values for happiness, anger, and sadness, compared with
the values for neutral utterances. In fact, the results reveal that head motion can be
used to discriminate between emotional categories. Since prosodic features are also
affected by the affective state of the subject, the relationship between head motion
and prosodic features is emotion-dependent. This observation is supported by the
canonical correlation analysis, which indicates that the correlation levels between
head motion and prosodic features are significantly different across emotional cat-
egories. Furthermore, our previous work indicates that head motion influences the
emotional perception of facial animations [6]. As results, emotion-dependent head
motion models need to be designed for human-like facial animation.

Based on previous observations, a novel data-driven framework to synthesize
head motion sequences based on prosodic features was presented. In this tech-
nique, discrete representations of head poses, estimated with vector quantization,
were modeled with HMMs, which took prosodic features as inputs. A set of HMMs
was separately trained for each emotional category, building emotion-dependent
head motion models. The subjective and objective evaluations indicate that this
framework successfully modeled the temporal relationship between head motion
and speech. Furthermore, the facial animations with the synthesized head motion
sequences were perceived as having the same level of naturalness as the animations
with the motion captured head motion sequence.

In this work, head motion is only modeled with 3 DOF corresponding to head
rotation. However, the human neck allows the head not only to rotate, but also to
translate, especially back and forward. An interesting question is how to include in
this framework this extra 3 DOF of head translation.
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Another limitation of this work is that the database was recorded from only one
subject. We are collecting similar data from other subjects to validate and expand
these results. As suggested by [27], head motion is speaker-dependent. By study-
ing and learning interpersonal differences, head motion sequences can be used to
provide a desired personality to the animation [29].

One interesting extension of this work is to include key frame controls to specify
gestures such as head “nod” and “tilt” (similar to [16]). Therefore, the designer can
add believable head motion in response to facial conversation signals, as proposed
by Cassell et al. [10].

Another interesting question is how to include other facial gestures such as eye-
brow and lip motion in the animation. As mentioned before, gestures and speech
are related in a nontrivial manner. Furthermore, different gestures are also related
with each other, since most of the time the same set of muscles jointly trigger them.
Our research efforts are focused on modeling these relationships to generate facial
animations that are perceived to be more natural and engaging.

Acknowledgment This research was supported in part by funds from the NSF (through the Inte-
grated Media Systems Center, a National Science Foundation Engineering Research Center, Coop-
erative Agreement No. EEC-9529152 and a CAREER award), the Department of the Army, and a
MURI award from the Office of Naval Research (ONR). Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

References

1. I. Albrecht, J. Haber, and H.P. Seidel. Automatic generation of non-verbal facial expressions
from speech. In Computer Graphics International (CGI 2002), pages 283–293, Bradford,
U.K., July 2002.

2. K.S. Arun, T.S. Huang, and S.D. Blostein. Least-squares fitting of two 3-d point sets. IEEE
Trans. Pattern Anal. Mach. Intell., 9(5):698–700, 1987.

3. P. Boersma and D. Weeninck. Praat, a system for doing phonetics by computer. Techni-
cal Report 132, Institute of Phonetic Sciences of the University of Amsterdam, Amsterdam,
Netherlands, 1996. http://www.praat.org.

4. M. Brand. Voice puppetry. In Proc. 26th Ann. Conf. Computer Graph. Interactive Techniques
(SIGGRAPH 1999), pages 21–28, New York, 1999.

5. C. Bregler, M. Covell, and M. Slaney. Video rewrite: Driving visual speech with audio.
In Proc. 24th Annual Conf. Computer Graphics Interactive Techniques (SIGGRAPH 1997),
pages 353–360, Los Angeles, CA, August 1997.

6. C. Busso, Z. Deng, M. Grimm, U. Neumann, and S. Narayanan. Rigid head motion in expres-
sive speech animation: Analysis and synthesis. IEEE Transactions on Audio, Speech and
Language Processing, 15(3): 1075–1086, March 2007.

7. C. Busso, Z. Deng, U. Neumann, and S.S. Narayanan. Natural head motion synthesis driven
by acoustic prosodic features. Computer Animation and Virtual Worlds, 16(3–4):283–290,
July 2005.

8. C. Busso and S. Narayanan. Interrelation between speech and facial gestures in emotional
utterances: A single subject study. Accepted to appear in IEEE Transactions on Speech, Audio
and Language Processing, 2007.



130 C. Busso et al.

9. C. Busso and S.S. Narayanan. Interplay between linguistic and affective goals in facial expres-
sion during emotional utterances. In 7th International Seminar on Speech Production (ISSP
2006), pages 549–556, Ubatuba-SP, Brazil, December 2006.

10. J. Cassell, C. Pelachaud, N. Badler, M. Steedman, B. Achorn, T. Bechet, B. Douville,
S. Prevost, and M. Stone. Animated conversation: Rule-based generation of facial expres-
sion gesture and spoken intonation for multiple conversational agents. In Computer Graphics
(Proc. ACM SIGGRAPH’94), pages 413–420, Orlando, FL, 1994.

11. E. Chuang and C. Bregler. Mood swings: Expressive speech animation. ACM Transactions
on Graphics, 24(2):331–347, April 2005.

12. M.M. Cohen and D.W. Massaro. Modeling coarticulation in synthetic visual speech. In
Magnenat-Thalmann N., Thalmann D. (Eds.), Models and Techniques in Computer Anima-
tion, Springer Verlag, pages 139–156, Tokyo, 1993.

13. R. Cowie and R.R. Cornelius. Describing the emotional states that are expressed in speech.
Speech Communication, 40(1–2):5–32, April 2003.

14. D. DeCarlo, C. Revilla, M. Stone, and J.J. Venditti. Making discourse visible: coding and
animating conversational facial displays. In Computer Animation (CA 2002), pages 11–16,
Geneva, Switzerland, June 2002.

15. Z. Deng, M. Bulut, U. Neumann, and S. Narayanan. Automatic dynamic expression synthesis
for speech animation. In IEEE 17th International Conference on Computer Animation and
Social Agents (CASA 2004), pages 267–274, Geneva, Switzerland, July 2004.

16. Z. Deng, C. Busso, S. Narayanan, and U. Neumann. Audio-based head motion synthesis for
avatar-based telepresence systems. In ACM SIGMM 2004 Workshop on Effective Telepresence
(ETP 2004), pages 24–30, ACM Press, New York, 2004.

17. Z. Deng, J.P. Lewis, and U. Neumann. Automated eye motion using texture synthesis. IEEE
Computer Graphics and Applications, 25(2):24–30, March/April 2005.

18. Z. Deng, J.P. Lewis, and U. Neumann. Synthesizing speech animation by learning com-
pact speech co-articulation models. In Computer Graphics International (CGI 2005), pages
19–25, Stony Brook, NY, June 2005.

19. Z. Deng, U. Neumann, J.P. Lewis, T.Y. Kim, M. Bulut, and S. Narayanan. Expressive
facial animation synthesis by learning speech co-articultion and expression spaces. IEEE
Transactions on Visualization and Computer Graphics (TVCG), 12(6):1523–1534, Novem-
ber/December 2006.

20. D. Eberly. 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics.
Morgan Kaufmann Publishers, San Francisco, CA, 2000.

21. P. Ekman. Facial expression and emotion. American Psychologist, 48(4): 384–392,
April 1993.

22. P. Ekman and E.L. Rosenberg. What the Face Reveals: Basic and Applied Studies of Sponta-
neous Expression Using the Facial Action Coding System (FACS). Oxford University Press,
New York, 1997.

23. H.P. Graf, E. Cosatto, V. Strom, and F.J. Huang. Visual prosody: Facial movements accom-
panying speech. In Proc. of IEEE International Conference on Automatic Faces and Gesture
Recognition, pages 396–401, Washington, DC, May 2002.

24. B. Granström and D. House. Audiovisual representation of prosody in expressive speech
communication. Speech Communication, 46(3–4):473–484, July 2005.

25. J. Gratch and S. Marsella. Lessons from emotion psychology for the design of lifelike char-
acters. Applied Artificial Intelligence, 19(3–4):215–233, March–April 2005.

26. D. Heylen. Challenges ahead head movements and other social acts in conversation. In
Artificial Intelligence and Simulation of Behaviour (AISB 2005), Social Presence Cues for
Virtual Humanoids Symposium, page 8, Hertfordshire, U.K., April 2005.

27. H. Hill and A. Johnston. Categorizing sex and identity from the biological motion of faces.
Current Biology, 11(11):880–885, June 2001.

28. H. Hotelling. Relations between two sets of variates. Biometrika, 28(3/4): 321–377, Decem-
ber 1936.

29. L.N. Jefferies, J.T. Enns, S. DiPaola, and A. Arya. Facial actions as visual cues for personality.
Computer Animation and Virtual Worlds, 17(3–4):371–382, July 2006.



6 Learning Expressive Human-Like Head Motion Sequences 131

30. K. Kakihara, S. Nakamura, and K. Shikano. Speech-to-face movement synthesis based on
HMMS. In IEEE International Conference on Multimedia and Expo (ICME), volume 1,
pages 427–430, New York, April 2000.

31. S. Kettebekov, M. Yeasin, and R. Sharma. Prosody based audiovisual coanalysis for coverbal
gesture recognition. IEEE Transactions on Multimedia, 7(2): 234–242, April 2005.

32. T. Kuratate, K.G. Munhall, P.E. Rubin, E. Vatikiotis-Bateson, and H. Yehia. Audio-visual
synthesis of talking faces from speech production correlates. In Sixth European Conference
on Speech Communication and Technology, Eurospeech 1999, pages 1279–1282, Budapest,
Hungary, September 1999.

33. S. Lee, S. Yildirim, A. Kazemzadeh, and S. Narayanan. An articulatory study of emotional
speech production. In 9th European Conference on Speech Communication and Technology
(Interspeech’2005—Eurospeech), pages 497–500, Lisbon, Portugal, September 2005.

34. Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. IEEE Transactions
on Communications, 28(1):84–95, January 1980.

35. Maya software, Alias Systems division of Silicon Graphics Limited.
http://www.alias.com, 2005.

36. K.G. Munhall, J.A. Jones, D.E. Callan, T. Kuratate, and E. Vatikiotis-Bateson. Visual prosody
and speech intelligibility: Head movement improves auditory speech perception. Psycholog-
ical Science, 15(2):133–137, February 2004.

37. C. Pelachaud, N. Badler, and M. Steedman. Generating facial expressions for speech. Cog-
nitive Science, 20(1):1–46, January 1996.

38. R.W. Picard. Affective computing. Technical Report 321, MIT Media Laboratory Perceptual
Computing Section, Cambridge, MA, November 1995.

39. L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proceedings of the IEEE, 77(2):257–286, February 1989.

40. M.E. Sargin, O. Aran, A. Karpov, F. Ofli, Y. Yasinnik, S. Wilson, E. Erzin, Y. Yemez, and
A.M. Tekalp. Combined gesture-speech analysis and speech driven gesture synthesis. In IEEE
International Conference on Multimedia and Expo (ICME 2006), pages 893–896, Toronto,
ON, Canada, July 2006.

41. K.R. Scherer. Vocal communication of emotion: A review of research paradigms. Speech
Communication, 40(1–2):227–256, April 2003.

42. K. Shoemake. Animating rotation with quaternion curves. Computer Graphics (Proceedings
of SIGGRAPH85), 19(3):245–254, July 1985.

43. K. Smid, I.S. Pandzic, and V. Radman. Autonomous speaker agent. In IEEE 17th Interna-
tional Conference on Computer Animation and Social Agents (CASA 2004), pages 259–266,
Geneva, Switzerland, July 2004.

44. E. Vatikiotis-Bateson, K.G. Munhall, Y. Kasahara, F. Garcia, and H. Yehia. Characterizing
audiovisual information during speech. In Fourth International Conference on Spoken Lan-
guage Processing (ICSLP 96), volume 3, pages 1485–1488, Philadelphia, PA, October 1996.

45. H. Yehia, T. Kuratate, and E. Vatikiotis-Bateson. Facial animation and head motion driven by
speech acoustics. In 5th Seminar on Speech Production: Models and Data, pages 265–268,
Kloster Seeon, Bavaria, Germany, May 2000.

46. H. Yehia, P. Rubin, and E. Vatikiotis-Bateson. Quantitative association of vocal-tract and
facial behavior. Speech Commun., 26(1–2):23–43, 1998.

47. S. Yildirim, M. Bulut, C.M. Lee, A. Kazemzadeh, C. Busso, Z. Deng, S. Lee, and S.S.
Narayanan. An acoustic study of emotions expressed in speech. In 8th International Confer-
ence on Spoken Language Processing (ICSLP 04), Jeju Island, Korea, 2004.

48. S. Young, G. Evermann, T. Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason, D. Povey,
V. Valtchev, and P. Woodland. The HTK Book. Entropic Cambridge Research Laboratory,
Cambridge, UK, 2002.



Chapter 7
A User Interface Technique for Controlling
Blendshape Interference

J.P. Lewis, Jonathan Mooser, Zhigang Deng, and Ulrich Neumann

7.1 Introduction

Blend shapes are a standard approach to computer facial animation.1 The technique
was popularized in the pioneering character animation of Tony de Peltrie [2], and
it continues to be used in projects such as Stuart Little, Star Wars, and the Lord
of the Rings movies. The technique is described by other names, including “morph
targets” and “shape interpolation.”

A blendshape model is simply the linear weighted sum of a number of topologi-
cally conforming shape primitives,

f j =
∑

wkbkj , (7.1)

where f j is the jth vertex of the resulting animated model, wk are the blending
weights, and bkj is the jth vertex of the kth blendshape. The weighted sum can
be applied to the vertices of polygonal models, or to the control vertices of spline
models. The weights wk are manipulated by the animator in the form of sliders,
with one slider for each weight. Weight values (slider positions) are keyframed to
produce animation over time.

One of the major issues in constructing and using blendshape models is that
of blendshape interference. The problem is seen in definition (7.1): the individ-
ual blend shapes bk often have overlapping (competing or reinforcing) effects. For
example (see Fig. 7.1), the animator may initially adjust the eyelid by moving one
slider, but by adjusting other sliders (eyebrows, forehead, etc.) the eyelid may be
raised or further lowered from its desired position. The animator then has to go
back and readjust the first slider.

In practice, the interference problem is often minimized by sculpting the indi-
vidual blend shapes to be as local and independent in effect as possible, and by
iteratively refining these shapes when interference is found. Blendshape interfer-
ence cannot be entirely eliminated, however, because desirable blendshape targets
naturally have overlapping effects. For example, the blend shapes to effect a smile,

1 Portions reprinted, with permission, from J.P. Lewis, J. Mooser, Z. Deng, and U. Neumann,
Reducing blendshape interference by selected motion attenuation, ACM SI3D 2005 [1].
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Fig. 7.1 (a) We attempt to mimic the “Jack Nicholson” expression of partially closed eyes with
an arched eyebrow. First the eyelids are partially closed. (b) The model has three controls over
eyebrow shape. The desired arched eyebrow is easily obtained, but the eyelid is changed as a side
effect. (c) The model is capable of approximating the desired expression however, by readjusting
the eyelid control (or, by using our technique).

raise the corner of the mouth, and produce the vowel “A” all affect the corner of the
mouth region. Interference is thus considered by the animator as an expected cost
of using the blendshape approach.

That cost is considerable, however. Blendshape models used in entertainment
practice may take as long as a year or more to construct and can have more than 100
individual blend shapes [3], resulting in thousands of potential pairwise interfer-
ence effects. An animator working with a poorly designed model may spend much
more time readjusting previously adjusted sliders than doing “new” animation. In
the “Gollum” model used on the recent Lord of the Rings movies, the pairwise
effects of many blend shapes were explicitly corrected in the model construction.
The result was a model with a total of 946 blend shapes, the majority of which
were used to correct for the behavior of an original set of 64 shapes (the correction
shapes were automatically invoked, with only 64 sliders being exposed to the ani-
mator). More than 10,000 blend shapes were sculpted in the process of developing
the final model [4].

Figure 7.2 shows another example of an interference problem in a professionally
developed model [5]. Figure 7.2(a) is the unaltered neutral pose—all slider weights
are set to zero. Figure 7.2(b) shows the effect of a single slider move. Presumably,
an animator making such an adjustment has positioned the brow exactly as desired.
But as further moves are made [Fig. 7.2(c)], the brow continues to furrow, requiring
readjustment of the first slider. It should be emphasized that

• although the geometric movement being discussed is sometimes subtle, the char-
acter animator’s art requires him to produce and control such subtle movement in
order to distinguish geometry similar facial expressions (such as “worried” and
“angry”).

In this chapter, we show that the interference problems in a given model can
be greatly reduced during animation without resculpting the model. We present a
technique that allows the animator to temporarily designate portions of the model
that should not be altered during a set of subsequent editing operations.
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Fig. 7.2 (a) Another example, using a well-known model [5]. (b) The effect of moving the fourth
slider, Furrow, to a value of 0.4. (c) Further slider moves, mostly affecting the mouth, are made,
but the middle of the brow has continued to move downward as well, below the desired position.
Neutral pose of the blendshape model.

7.2 Related Work

Despite its popularity the blendshape technique has had relatively little development
since the 1980s, though it is often used as a representation in research on facial
animation and tracking, e.g., [6, 7]. Prior to [2], Parke demonstrated cross-fading
between whole-face models in his well-known early work [8]. In the “delta” blend-
shape form introduced in the late 1980s (see Section 3), the individual blend shapes
are all offsets from a common “neutral” face. Delta blend shapes were implemented
at Pacific Data Images [9], and the Symbolics animation system also had a sophis-
ticated implementation [10, 11]. Kleiser [12] describes segmenting the face into
separate regions (e.g., upper and lower face regions) that are blended independently,
thus reducing memory usage and improving performance (though, segmenting does
not by itself improve the power of the model, because a blend shape that affects
a local region is no different than a blend shape with global support that is zero
outside the local region).

An exception to the lack of attention to blend shapes in the research community
is the recent paper by Joshi et al. [13]. In this paper, the segmentation of the face
into regions is obtained automatically using a physically motivated approach. Seg-
menting prevents interference across segments but does not eliminate the problem,
because many interference effects result from overlapping blendshapes that effect
the same local region (c.f. Fig. 7.5).

Principal component (PCA) face models derived from data [14] can strictly be
regarded as blend shapes, though they are outside the spirit of the term: blend shapes
are understood as a representation suitable for manual animation, with the individ-
ual blend shapes having intuitive or “semantic” meanings such as raise-left-
eyebrow. Typically, only the first few eigenvectors of a PCA model have any
intuitive interpretations. The effect of the remaining PCA blend shapes is distributed
and difficult to characterize, as shown in Fig. 7.3, and doing key-frame animation
in a PCA representation would be very difficult. (On the other hand, converting
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Fig. 7.3 Principal component targets are orthogonal,
but only the first few have any interpretable role, mak-
ing them difficult to use and remember. This is the
nineth eigenvector (PCA face target) of a motion-
captured facial performance. (Motion capture data pro-
vided by George Borshukov.)

between a PCA and another representation is a simple matter of linear algebra, so
an internal PCA representation would pose no issues if it were not presented to the
user.)

Blend shapes are a standard component of commercial animation packages such
as Maya and Softimage. Although the algorithms used in these packages are unpub-
lished, in the case of a simple technique such as blend shapes it is easy to surmise
the underlying approach from the documentation, available controls, and behavior of
the controls. Maya, for example, implements the standard delta blendshape scheme,
with one extension: multiple “intermediate” blendshape targets can be situated at
points along a particular slider. The system cross-fades among these to produce
the ultimate blend shape for that slider, which then takes part in the blendshape
weighted sum.

Our solution to the interference problem resembles inverse kinematics (IK)
[15, 16] in that we constrain particular points. It differs, however, in that IK
automatically determines the pose of unconstrained parts of the character given the
constraint of a moved part, whereas in our technique the user manually explores
facial poses while the system keeps particular points stationary. On the other hand,
the IK “pin-and-drag” editing presented in [15] directly anticipates the working style
needed to use our technique. Blend shapes can be considered a form of skinning;
pointers to the general literature on this subject include the popular SSD or linear-
blend skinning technique [17] and recent improvements [18]. Recent example-based
approaches [19] to skinning have produced excellent results, but have not yet been
applied in facial animation.
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7.3 A Linear Algebra View of Blend Shapes

To simplify notation, a model will be expressed as a vector of length 3n (for n
vertices), by packing the individual vertices in the vector in some arbitrary but con-
sistent order such as xyzxyzxyz . . .or xxxx . . .yyyy . . .zzzz. . . . The vectors bk rep-
resenting each blend shape are gathered in the columns of a blendshape basis matrix
B. The blendshape sum for the complete model is

f = Bw,

where f is a 3n × 1 vector containing the resulting model, B is a 3n × m matrix
containing m blend shapes, and w is the m × 1 vector of weights.

Two variants of the blendshape idea are the “whole-face” formulation and “delta”
blend shapes. In the former, the vectors bk represent the complete face in some pose
such as a smile, or with the mouth posed to produce a particular vowel. Whole-face
blend shapes were used in Disney’s Dinosaur movie and some approaches inspired
by Eckman’s Facial Action Coding System (FACS) [20], for example.

In the delta form, the individual blend shapes are added to a “neutral” face
model f0:

f = f0 + Dw, (7.2)

where columns of the delta blendshape basis D are simply the corresponding
columns of the original basis B with the neutral shape subtracted: dk = bk − f0,
and D has m − 1 rather than m columns.

The whole-face formulation is preferable for the modeler because sculpting delta
shapes is difficult, and it has been used to guarantee that particularly important ex-
pressions appear (by sculpting that exact expression and adding it to the blendshape
basis) [21]. The delta form is often preferred by animators because (with appro-
priately sculpted blend shapes) it can reduce interference; for example, sufficiently
localized blend shapes may affect only one eyebrow, raise one corner of the mouth,
etc., or roughly mimic the effect of individual facial muscles [7].

Proponents of each system sometimes claim that their choice is the most powerful
(an alternate claim is that theirs is the only possible system in which any combina-
tion of weights produces a reasonable or “legal” face shape). Simple algebra shows
that these opinions are incorrect, at least if “powerful” is interpreted to refer to the
range of achievable face shapes. Although they present different advantages to the
user, the whole-face and delta formulations are identical in power because any posed
blendshape model in one formulation can be represented exactly in the other form.
For example, to convert a delta model to the whole-face form, set b1 = f0, and set
bk to f0 + dk−1 for k = 2, . . . , m (dk is the kth column of D). A particular pose in
the delta model represented by the weight vector w1...m−1 is then represented in the
whole-face model by the weights (1−�wk, w1, w2, . . .). In the whole-face formula-
tion, the weights should sum to one, a constraint that prevents scaling of the model.
With one fewer weight, the delta form does not have this “barycentric” constraint.
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Because the algorithm we present ahead transforms the weight vector such that its
sum may change, we assume the use of the delta form throughout this chapter. This
does not limit the results, because the two forms are equivalent in power and are
easily exchanged.

7.4 Possible Approaches to Reducing Interference

An obvious approach to reducing the interference of new slider movements on a
recently obtained facial pose might be to find all rows in the blendshape matrix
D that correspond to vertices that have recently been moved and set those rows to
zero. With this change, further adjustments made to the sliders are guaranteed not
to move those vertices. Such a brute-force approach will generally produce poor
results, however. There are cases where a single blend shape affects most of the
vertices in the model, at least slightly. If we freeze the position of all those ver-
tices, the model cannot be animated. More importantly, an underlying assumption
of blend shapes is that the columns of D span the desired and allowable movement
of the model. Zeroing rows of D allows facial poses that depart from the designed
subspace in undesirable ways. For example, suppose slider 1 affects vertex 1, while
slider 2 affects both vertex 1 and its neighbor vertex 2. If vertex 1 is frozen, the
adjustment of slider 2 will move vertex 2 away from its neighbor vertex 1, disrupt-
ing the smoothness of the surface.

A more subtle approach is to enforce vector orthogonality between some of the
blendshape vectors. This would allow an animator to select a set of one or more
blend shapes to be “locked.” Then, the effect of the remaining blendshape vectors
would be altered by projecting them onto a space orthogonal to the locked vectors.
This ensures orthogonality between previous changes and any future changes.

Although this avoids problems introduced by the first approach, in our experience
the results are still not as desired. The main problem arises from the fact that or-
thogonality between high-dimensional vectors representing the entire face does not
sufficiently constrain the movement of particular vertices. Further, even at a local
level orthogonality is not always what is desired. Imagine a blend shape that moves
a particular vertex up and to the right and another blend shape that moves the same
vertex up and to the left. Those two movements might be orthogonal, but arguably
they disrupt each other.

7.5 Coordinate Motion Attenuation

The technique we present overcomes these problems by allowing the user to select
a subset of coordinates to remain as stationary as possible. Those coordinates may
ultimately move as the sliders are adjusted, but their movements will be relatively
attenuated.



138 J. P. Lewis et al.

We treat this as a minimization problem. For any weight vector w, we want to find
a new weight vector w′ such that the resulting coordinate changes, Dw′, are as close
as possible, in Euclidean distance, to 0 for the selected coordinates and as close as
possible to Dw for the unselected coordinates. In other words, we want to minimize

||Sw′||2 + ||S̄(w′ − w)||2 = w′T ST Sw′ + (w′ − w)T S̄
T

S̄(w′ − w),

where S is a matrix made up of the rows of D corresponding to the selected coordi-
nates, and ˚S is a matrix made up of every other row of D.

We can simplify the notation by defining

P = S̄
T

S̄,

Q = ST S,

so the expression to be minimized becomes

w′T Qw′ + (w′ − w)T P(w′ − w).

Minimizing this expression strikes a balance between keeping the selected coor-
dinates motionless and letting the other coordinates move freely. One might wonder
whether simultaneously achieving both of these goals is possible. In fact, it is quite
possible in some, but not all, cases, as will be described in the next subsection.

A user should be able to control the relative weight of each of these goals, so we
multiply Q by a user-controlled scaling factor, α:

w′T (αQ)w′ + (w′ − w)T P(w′ − w) (7.3)

(α will be discussed further ahead).
Taking the gradient of (7.3) and setting to 0, we get the desired weight vector w′:

∇w′T (αQ)w′ + (w′ − w)T P(w′ − w) = 0,

2αQw′ + 2Pw′ − 2Pw = 0,

so

w′ = Aw, (7.4)

where

A = (P + αQ)−1P. (7.5)

We refer to the matrix A as the attenuation matrix, which remains constant as
long as a given set of coordinates is selected. Inserting (7.4) into the original delta
blendshape formulation (7.2) yields

f = f0 + Dw′ = f0 + DAw. (7.6)
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Now, whenever the animator sets the sliders to w, the application will internally
calculate and use the transformed weights w′.

Note that when coordinate motion attenuation is enabled, the transformation will
not only affect subsequent slider moves, but will modify the current pose as well.
The change to the current pose is expected (since it results from a user action) and
is generally small for reasons to be described in the next subsection. Nevertheless,
a minor change in formulation can eliminate this change to the current pose, if de-
sired.

We introduce a modified neutral pose f′0 such that

f′0 + DAw1 = f′0 + Dw. (7.7)

Solving for f′0, we get

f′0 = f0 + D(I − A)w, (7.8)

and the overall formula for the facial pose becomes

f = f′0 + DAw. (7.9)

When the animator wishes to deactivate motion attenuation and return to normal
editing, the neutral pose would be altered again. By an analogous derivation, a new
neutral pose, f′′0, becomes

f′′0 = f′0 + D(A − I)w. (7.10)

Conceptually, we present these results in terms of the attenuation matrix, A,
transforming the weight vector w. The solution (7.9), however, offers a dual in-
terpretation in which A post-transforms the blendshape matrix D so that

D′ = DA

and

f = f′0 + D′w. (7.11)

In practice, this formulation offers implementation advantages. The blendshape
matrix D is constant throughout the animation process, so we only need to compute
D′ once each time motion attenuation is activated or deactivated, rather than con-
tinuously calculating the adjusted internal weight values w′. The formulation also
allows the actual weights to be exposed to the user, rather than requiring a distinction
between internal weights w′ and the user-adjusted weights w.
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7.5.1 The Balancing Factor α

The factor α controls the balance between attenuating the movement of selected
coordinates and allowing the unselected coordinates to move freely. If α is very
small,

αQ ≈ 0,

w′ ≈ (P + 0)−1Pw = w,

so w′ will be close to the original values w, which is to say the algorithm favors
allowing the unselected vertices to move. As α takes on increasingly large values,
(7.3) will be dominated by w′T Qw′, which is minimized when w′ is in the nullspace
of Q, and thus is in the nullspace of S:

Sw′ = 0.

In this case, the selected vertices will not move at all.
From this observation we can see that it is possible to move coordinates in S̊

without significantly displacing coordinates in S to the extent that S has small (even
if not strictly zero) singular values. We see this in practice in Figs. 7.4 and 7.5.

The two terms in (7.3) have unequal contributions, with typically fewer selected
than unselected coordinates. We compensate for this by initializing α to the ratio of
the number of unselected and selected vertices.

Fig. 7.4 (a) The user selects two vertices whose motion is to be attenuated. The algorithm operates
at the level of coordinates rather than vertices, so in effect six coordinates are selected. (b) The
results of the same slider moves shown in Fig. 7.2(c), but with coordinate movement attenuation
[compare to Fig. 7.2(c)]. (c) Repeated from Fig. 7.2(c) for comparison.
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Fig. 7.5 (a) The y-component of two vertices are selected. (b) Sliders SmirkLeft and SmirkRight
are increased to 0.7. We see their normal effects of stretching out the mouth and pushing back the
cheeks, but the selected vertices maintain their vertical positions. (c) The same slider moves with
no attenuation. The corners of the mouth move significantly in the y-direction.

7.6 Results

We implemented the weight correction (7.9) in Matlab, making use of the commer-
cial animation package Maya to perform coordinate selection interaction and render
the results. Figure 7.4 illustrates the effect of applying the correction algorithm to
the case shown in Fig. 7.2. Note that the mouth is sculpted as desired, but the posi-
tion of the brow is undisturbed.

The algorithm operates on coordinates, allowing the animator to independently
select the x-, y-, and/or z-components of a particular vertex, thus attenuating its
movement along particular axes. Figure 7.5(a) shows a pose with only two coordi-
nates selected: the y-components of the corners of the mouth. After further slider
moves, Figure 7.5(b) shows a new pose where the corners of the mouth have moved
along the x-axis, but not along the y-axis. Figure 7.5(c) shows the effect of the same
slider moves without coordinate attenuation.

Figure 7.6 shows an example of poses created using the same slider weights but
different values of α. At very high values, the results are almost indistinguishable
from the attenuated pose. At very low values, none of the vertices, selected or uns-
elected, moves very much.

The computations required are simple and fast enough to be performed at inter-
active speeds on a modern desktop machine. As such, selected motion attenuation
would be relatively easy to add to an existing blendshape animation package. In ad-
dition to the usual slider interface, there would be controls to invoke motion atten-
uation, select vertices, and adjust the value of α. Until motion attenuation is turned
off, weights would be automatically transformed as the sliders move. Using motion
attenuation in conjunction with a one-level undo is a particularly simple strategy: if
any slider has undesired side effects, the animator simply undoes the slider move,
applies motion attenuation to the area(s) exhibiting the interference, and releases the
attenuation after adjusting the slider as desired.
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(a) 6 vertices (18 coordinates)
are selected below the eye.

(b) Slider      moves       with-
out      attenuation:    Wince,
SneerLeft,                  and
SneerRight are   all    set
to 0.7.    The selected vertices
move significantly as the face
is deformed

(c) The same slider moves
with attenuation applied.
Mouth movement is similar
to Fig.6b, but the movement
of the selected verticesis
attenuated.α is left at its
default initialization value
here, α = 335.

(d) The user adjusts α to 25.
Now the mouth moves exactly
as in Fig. 6b, but so do the se-
lected vertices.

(e)   α = 3000.  The algorithm
favors keeping the selected
vertices stationalry, but at the
cost of not moving unselected
vertices either. The animator
should reduce α.

Fig. 7.6 an example of poses created using the same slider weights but different values of α.

7.7 Conclusions and Future Work

This chapter has demonstrated an interactive technique that provides animators im-
proved control over blendshape interference. In order to take advantage of this tech-
nique, an animator needs to be aware of the new controls, understand them, and
make ongoing decisions about when to use them. The need for judgment on the ani-
mator’s part is ultimately not a disadvantage; animators rely on human judgment and
necessarily become intimately familiar with the models they use. In fact, the use of
our technique reduces the need for animators to learn and remember the interactions



7 A User Interface Technique for Controlling Blendshape Interference 143

between blend shapes. Note that a somewhat similar “pin-and-drag” style of inter-
action has also been proposed for inverse kinematics [15]. Reducing the need for
repeated correction of blendshape interference has the potential to save valuable
modeling and animation effort.

It is also worth investigating the possibility of incorporating these techniques into
the modeling process. A modeler would apply constraints to the blendshape system,
dictating that a given vertex should only be moved by certain sliders or that it should
remain within specific bounds. How these controls might be defined and presented
to a modeler is the subject of future work.

Acknowledgment We thank Hiroki Itokazu and Bret St. Clair for model preparation, Fred Parke,
Craig Reynolds, and Lance Williams for information on the early history of blend shapes, and Fred
Pighin for additional discussion of these topics.
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Chapter 8
Sketching Articulation and Pose for Facial
Animation

Edwin Chang and Odest Chadwicke Jenkins

8.1 Introduction

Articulating and posing are both tasks inherent to the animation of 3D meshes.
Defining the articulation (or rigging) of a mesh traditionally involves specifica-
tion of several deformation variables over the range of desired motion. To achieve
satisfactory results, a user may need to manually specify deformation settings for
hundreds of vertices. Furthermore, an infinite number of plausible deformations can
exist for a given mesh that range from the realistic flexing and extending of underly-
ing muscle to cartoon squash and stretch motion. Consequently, articulation is often
a tedious and complex process requring substantial technical as well as artistic skill.
This problem is compounded when defining the articulation of a facial mesh, where
motion is quickly discernable as natural or unnatural to a human viewer.

Once articulation is performed, an animator creates animations by specifying
poses of the mesh in the articulation space.

To specify a pose efficiently, an animator is often provided with a control rig
comprised of widgets and sliders that provide a puppet-like control of the mesh
deformation. Unfortunately, users face a considerable learning curve to understand
and utilize such control rigs, often requiring as much time as creating the control
rig itself.

To address the lack of accessiblity in current rigging systems, the process in this
chapter aims to leverage the familiarity of 2D sketching as an interface for 3D mesh
animation. While current articulation and posing interfaces provide detailed control,
such interfaces lack intuition and accessiblity for novices and traditional animators
trained with pencil and paper. A sketching interface, however, provides a familiar
interface while still providing a high level of control to users. It can be particularly
helpful to a novice who lacks a strong understanding of facial movement but is
comfortable working with simple line drawings of a face. For traditional animators,
sketching provides a direct correlation between hand-drawn and 3D animation.

In this chapter, we present a 2D sketching interface to facilitate procedures for
articulating a single mesh and posing an articulated mesh. This method focuses on
the inference of reference and target curves on the mesh from user sketch input.
In the posing procedure, the user first draws a sketch to place a reference curve on
the mesh. The user then draws a sketch to identify a target curve, which specifies
the desired manipulation of the reference curve. The posing system then uses the
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Fig. 8.1 A reference curve (green) and target curve (blue) are sketched to pose the lower lip of
an articulated mesh in the sketch-based posing system. c©Eurographics Association 2006; Repro-
duced by kind permission of the Eurographics Association.

downhill simplex method to optimize the mesh pose in the articulation space such
that the distance between these two curves is minimized. The user can additionally
introduce additional constraints to pin parts of the mesh in place. In the articulation
procedure, reference curves are generated from the sketching of regions of interests
on the mesh that are then manipulated by sketched target curves.

Both the articulation and posing methods can work in tandem or independently
such that one can be replaced by alternative mechanisms. We show results from
using this posing method with a mesh articuated by blend shapes modeled in Alias
Maya. While these methods are suited to facial meshes, the same procedures are
applicable to other types of meshes as well.

8.1.1 Background

There exists much previous work in mesh articulation and deformation as well as
in the related field of mesh editing. One typical approach for facial articulation is
to create several meshes with the same topology and blend between them, i.e., a
blendshape approach. While robust and granting users a high amount of control,
this approach often requires users to create a large number of blend shapes. The
blendshape process has also been combined with a skeletal approach to provide the
flexibility of a skeletal system with the expressiveness of a blendshape system [19].
Shapes have also been used as examples for a combination of shape and transform
blending [20].

Free-form deformation (FFD) [10] is one method that provides a wide range of
possible deformation without requiring multiple shapes. The deformations used for
articulation in this chapter parallel the use of FFDs, in particular a curve-based FFD
method that warps the mesh [3,11]. This type of FFD provides a method of smooth
deformation that facilitates the use of curves sketched by users. Sketches have also
been used to specify FFDs based on scalar field manipulation [9] and as input to
a gesture-based FFD interface [14]. Outside their use in FFDs, sketches have also
been used as skeletal strokes [8] to bend and twist two-dimensional images.

Recent work has also focused on drawing directly onto the image plane in order
to specify deformation. This poses challenges when interpreting the intent of users
as well as providing a coherent translation from 2D to 3D space. This problem has
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also been encountered in 3D modeling using 2D sketches. One modeling method
interprets 2D sketches as silhouettes to infer and construct 3D polygonal shapes
[16]. A similar approach uses implicit surfaces, allowing for surface modification
by silhouette oversketching [26]. Another solution used for mesh editing is to treat
the process as an inverse NPR process [4], where the mesh is transformed to match
user-drawn contours and silhouette contours. This method of interpretation of user-
drawn curves is very natural to users; while the approach here differs, it aims to
replicate its functionality. Silhouette sketches additionally have been used to stylize
previously animated motion by specifying the silhouette contours of the desired
pose [2]. Sketches have also been used to specify curves in a free-form skeleton
method [5], but the approach was limited to deformation in appendage-like parts of
a mesh, e.g., tails, legs, or arms.

Often one limitation of drawing on the image plane is that deformations remain
parallel to the image plane. One approach to this problem that is described in this
chapter constrains vertices to follow a surface, similar to the method used in manip-
ulating clothing [13], where cloth can be positioned by moving it across the surface
of a mesh.

Posing an articulated mesh involves its own unique challenges separate from
those encountered in articulation. Control widgets are often added that allow users
to interact directly with the articulation parameters. Sketching has been applied to
manipulate multiple control points in order to pose the mesh [7], but these con-
trol points must have been previously defined by a user. Sketches have also been
used to describe the motion of a figure across time rather than through individual
poses [21]. Other work has treated the posing problem as an optimization problem,
attempting to determine the pose of a human figure that best matches hand-drawn
sketches [6]. The approach in this chapter also views the problem as an optimization
problem but focuses on posing articulated facial meshes. Posing a facial mesh has
been approached previously using a blendshape method [12] but required users to
build a set of key blend shapes instead of using a previously created set. Other work
has applied inverse kinematics to sets of existing blend shapes [17], allowing users
to interactively pose between the blend shapes.

One of the methods of evaluation used for the posing process described in this
chapter involves the use of curves generated from the tracking of facial features in
video. The eigenpoints approach [22] is used in order to determine these curves. This
approach uses an eigenfeature-based method in order to place control points onto
unmarked images, which are then used to define curves for posing. Other work has
also used video with facial models, creating high-resolution models of a moving face
that can be used to pose new expressions by interactively dragging surface points [25].

8.2 Sketching Articulation and Pose

While the posing and articulation methods described here are independent, they
share a simple interaction scheme based on sketching reference and target curves.
Reference and target curves are 3D features on the mesh inferred from a 2D sketch.
These curve features are used in a slightly different manner for the articulation and
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Fig. 8.2 The flow of user control for articulation and posing.

posing processes. The articulation method uses the additional selection of regions
of interests to compute reference curves. The posing procedure incorporates user-
selected constraints to keep parts of the mesh in place. Figure 8.2 presents the flow
of user control in both these processes. In the remainder of this section, we explain
further these differences in the computation of feature curves from sketching.

8.2.1 Sketch-based Mesh Posing

Given an articulated mesh, posing that mesh presents challenges in estimating the
appropriate articulation parameters. The approach here casts pose parameter esti-
mation as an optimization problem. We apply this approach to an articulated mesh
based on blendshape interpolation as well as one from the sketch-based articulation
method.
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The user first draws a reference curve Cr , an ordered set of points {r1, . . . , rn}
on the image plane. Each of these points is projected from the camera onto the
closest visible face of the mesh (Fig. 8.3) and stored as weights of the vertices of
that face. As the mesh is deformed, the system recalculates new 3D positions for
these points based on the vertex weights so that the curve follows the surface of
the mesh during deformation. The user then draws a target curve Ct , an ordered set
of points {t1, . . . , tn}, which is projected onto the mesh. The system reverses the
order of the points of Ct if the target curve’s endpoint, tn , is closer to the reference
curve’s start point, r1, than the target curve’s own start point, t1 (i.e., reverse Ct if
||tn − r1|| < ||t1 − r1||). In this case, reversing the order of the points facilitates
a more coherent interpolation scheme between the two curves. The system then
reparameterizes the target curve to match n, the number of points in the reference
curve. The curve is reparameterized by choosing the new points by distance along
the original line, where r′

i is the ith of n points along the reparameterized curve:

r′
i = Cr

(
i − 1

n

)
. (8.1)

The target curve is then projected into 3D space using the distances from the camera
along the reference curve Cr . The system then searches the articulation space Md of
d deformers to find an optimal pose P given by the optimal articulation parameters
x that minimizes the distance between the reference curve, which maintains its
position on the mesh, and the target curve (Fig. 8.1). The distance term for the
optimization is given by the following, where ri and ti are corresponding points
on the reference and target curves for a given pose P in an articulation space of d
dimensions:

E(P) =
n∑

i=1

||ri − ti ||. (8.2)

Fig. 8.3 A reference curve drawn on the image plane is projected onto the mesh. c©Eurographics
Association 2006; reproduced by kind permission of the Eurographics Association.
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Algorithm 1 Downhill Simplex Method
S ⇐ {P1, P2, ...Pd } // simplex shape of poses
SE ⇐ {E(P1), E(P2), ...E(Pd )} // simplex pose values
loop

Phigh ⇐ Pi where E(Pi ) is max(SE )

Pnexthigh ⇐ Pi where E(Pi ) is max(SE − {E(Phigh)})
Plow ⇐ Pi where E(Pi ) is min(SE )

rtol ⇐ 2.0 ∗ |(E(Phigh) − E(Plow))|/|E(Phigh) + E(Plow) + ε|
if rtol < ftol then

// found minimum under simplex tolerance
return Plow

end if
Ptry ⇐ re f lect (S, Phigh) // try reflecting simplex from high point
if compare(S, Ptry , Phigh) then

Ptry ⇐ extrap(S, Phigh ) // try additional extrapolation
compare(S, Ptry , Phigh)

else if E(Ptry) ≥ E(Pnexthigh) then
Ptry ⇐ contract1D(S, Phigh ) // try one-dimensional contraction
if not compare(S, Ptry , Phigh) then

// contract around lowest point and update S and SE
contract (S, Plow)

end if
end if

end loop

define compare(S, Ptry , Phigh)

if E(Ptry) < E(Phigh)

replace(S, Phigh , Ptry ) // replace Phigh with Ptry in S
replace(SE , E(Phigh), E(Ptry )) // update SE
return true

else
return false

endif
end define

In order to solve this optimization problem, the downhill simplex method [15] is
used, which provides the ability to perform optimization without the use of deriva-
tives (Algorithm 1). Since this is the case, the optimization process does not need
knowledge of the underlying articulation system and can work with any type of
articulation. The downhill simplex method searches a d-dimensional space using a
simplex shape of d + 1 points that searches the space by reflecting and contracting
itself until it reaches its goal (Fig. 8.4). The optimization works best with non-
hierarchical articulation (like faces, rather than arms), however, and is only efficient
for a limited number of variables (d<20). We propose methods to deal with this
limitation in Section 8.4.

Using the downhill simplex method, the system reaches an acceptable solution
when the vector distance traveled in one iteration, rtol, is less than a fractional toler-
ance, ftol of 0.05. After this solution is found, the system performs a cleanup stage.
Since several of the articulation parameters may have had no effect on the region
of interest, these parameters may have become unneccessarily changed through
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Fig. 8.4 Searching in a two-dimensional articulation space using the downhill simplex
method. c©Eurographics Association 2006; reproduced by kind permission of the Eurographics
Association.

searching the articulation space in the optimization process. A pose Pi is evalu-
ated for each articulation variable xi , where xi is set to its original value and all
other variables are set to those from xo, the set of articulation variables derived from
optimization. If the difference between E(Pi ) and E(Po) (where Po is the pose set
by xo) is minimal, xi returns to its original value.

This system also provides a method for the user to set constraints on the mesh
with additional curves in order to keep parts of the mesh in place. For each constraint
curve K j , a set of ordered points {k1, . . . , kn} is projected onto the mesh. When a
pose is evaluated using Eq. 8.2, the following term is also added for each constraint,
where k ′

i is the position of ki in the new pose P:

E j (P) =
n∑

i=1

‖k′
i − ki‖, (8.3)

Constraint curves are useful, as a deformer on a mesh may have a small effect
on the region the reference curve lies on even though it mainly deforms a separate
area. For example, a cheek deformer could slightly affect the vertices around the
lips on a mesh. When the user attempts to pose the lips, the cheeks could then be
undesirably affected. These constraints are drawn on the mesh in the same manner as
the reference curve. Previously used reference curves can also be used as constraint
curves in order to keep a previously specified deformation in place.

8.2.2 Sketch-based Mesh Articulation

Users specify one articulated deformation at a time in our system in a four-step
process. Users first select a region of general interest and then a region of specific
interest. Users can then draw reference and target curves to specify the deformation.
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Fig. 8.5 (a) A region of general interest is selected and then (b) a region of specific interest to
specify articulation weights. (c) A reference curve and (d) target curve are then drawn to specify
the deformation. c©Eurographics Association 2006; reproduced by kind permission of the Euro-
graphics Association.

Each of these deformations becomes one dimension in the articulation space. The
four steps are pictured in Fig. 8.5.

8.2.3 Regions of Interest

In the first step, the user must pick a general region on the mesh where the defor-
mation is desired, a set of vertices Vg . To do so, the user first draws a curve Cg to
encircle the region on the image plane, selecting a set of vertices Va . The desired
set of vertices will be a subset of the set of all selected vertices (Vg ⊆ Va), but often
Vg 	= Va , as some vertices in Va may be behind the desired region or occluded by
other parts of the mesh. In order to avoid selecting these vertices, Vg is chosen to be
the set of connected vertices containing the vertex closest to the camera and of suf-
ficient size (|Vk|>10, where Vk ⊆ Va and Vk is connected). Each vertex in this set
(vi ∈ Vg) is then projected to the image plane in order to determine its 2D distance
to the drawn curve Cg , which is then stored. We will call this distance gi for every
vertex vi in Vg .

The user then encircles a region of specific interest with a new curve Cs to specify
a set of vertices Vs , where Vs ⊆ Vg . Each vertex vi in Vg is then assigned articulation
weights by the following equation, where wi is the articulation weight and ci is the
distance to the curve Cs on the image plane:

wi =
{

1.0 if vi ∈ Vs,
gi

gi+ci
otherwise.

(8.4)

In this manner, articulation weights smoothly blend off from 1.0 to 0.0 from the
region of specific interest to the borders of the region of general interest. The system
displays the articulation weights to users by coloring vertices white if unselected,
and blue to black from 1.0 to 0.0. The camera is restricted from movement in this
step as gi and ci are 2D distances calculated on the image plane. Using different
camera views when selecting the two regions may result in an undesirable blend of
articulation weights. This camera restriction only exists at this step.
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8.2.4 Estimating a Reference Curve

The system then generates a reference curve Cr , an ordered set of points
{r1, . . . , rn}, that estimates a skeletal curve in 3D space for the region of spe-
cific interest. The curve Cr is determined by ordering the vertices in Vs by their
x-values when projected to the image plane, where x and y refer to the horizontal
vertical axes on the image plane. If the difference in the minimum and maximum
y-values of the vertices when projected to the image plane in Vs is larger than the
minimum and maximum x-values, the y-value of each vertex is used to order Cr

instead. This 3D curve is then smoothed through convolution with a triangle filter
reference f(j) across a kernel size v that is one third the number of vertices in the
curve (v = |Cr |/3):

r′
i =

v/2∑

j=−v/2

f ( j)ri+ j . (8.5)

In some cases, this estimated curve may not be satisfactory to the user, especially
when the region of interest does not have a distinct curve-based feature, like the
cheek of a face. If desired, the user can redraw the curve Cr on the image plane,
which is then projected onto the mesh to form the reference curve. The reference
curve, either estimated or not, is then slightly smoothed to account for noise (con-
volved with a triangle filter reference) and reparameterized to have a regular spacing.

With the reference curve Cr smoothed and reparameterized in 3D space, the user
can choose to move the camera and view the mesh at different angles. In order to
facilitate this, the system does not depth-test when rendering curves, instead over-
laying them over the entire image.

In the final step, the user draws a target curve Ct , an ordered set of points
{t1, . . . , tn}, indicating how the mesh should be deformed so that the reference curve
meets the target curve. The order of the points of the curve is reversed if the target
curve’s endpoint, tn , is closer to the reference curve’s start point, r1, than the target
curve’s own start point, t1 (i.e., reverse Ct if ‖tn −r1‖ < ‖t1−r1‖). The target curve
is then reparameterized to match the number of points in the reference curve, n. The
points of the target curve are then projected into 3D space by using the distances to
the camera of the corresponding points on the reference curve, d1 to dn .

8.2.5 Curve Interpolation

Since the target and reference curves now share the same number of points, we can
determine rotations between the matching line segments on the two curves by find-
ing the cross product of the two segments and the angle between them. We will call
these rotations φ j for each segment j. The system stores these rotations as relative
for each segment, such that each rotation assumes all rotations previous to a line
segment have been applied. By keeping rotations relative, the system can determine
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Fig. 8.6 (a), (b) Rotation-scale and (c), (d) translation methods of interpolation, where the initial
curve is yellow, the in-between curve is red, and the final curve is blue. c©Eurographics Association
2006; reproduced by kind permission of the Eurographics Association.

partial rotations between points on the curves when we perform the mesh deforma-
tion. The system also calculates a scale change si between the two segments, as the
two curves may have different lengths:

si = ‖ti+1 − ti‖
‖ri+1 − ri‖ . (8.6)

With the rotations and scales for each segement of the lines, the system can then
interpolate between the curves by applying a partial transformation α (where 0 ≤
α ≤ 1) of αφ j and αsi to the line segments of the reference curve.

In certain situations, however, applying scale and rotation to interpolate is inap-
propriate. The curves in Figs. 8.6(a) and (b) are interpolated using the rotation-scale
method. In Fig. 8.6(a) this works well, especially if these lines pose an appendage
like a leg. In Fig. 8.6(b), however, the curve becomes undesirably extended, which
would be inappropriate if these curves were posing a blinking eyelid. For this case,
the system instead linearly interpolates between corresponding points on the two
curves, translating the points without regard to scale or rotation of the line segments
[Fig. 8.6(c)]. The system automatically chooses this method if the endpoints of the
reference and target curves are within 10 pixels of each other, but also allows the
user to specify otherwise.

8.2.6 Mesh Deformation

Once the system has an appropriate method of interpolation between the reference
and target curves, it can deform the vertices of the mesh according to those curves.
Each vertex vi in Vg is projected onto the reference curve to find the closest point
on that curve, which is then stored as a proportional distance along the length of the
entire curve, li , where 0 ≤ li ≤ 1. This projection is done on the image plane in 2D
space so that vertices farther from the camera than other vertices still project to an
appropriate reference point ri . The system then determines the corresponding point
on the target curve, which we will call the target point ti , by the distance along
the target curve according to li . The system then applies the translation from the
reference point to the target point (ti − ri ) to the vertex. A rotation transformation
must also be applied to the vertex centered around the target point. Since this point
does not likely lie on the end of a line segment on the curve, the rotation must be
calculated.
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(a) (b)

Fig. 8.7 Examples of desirable (a) and undesirable (b) mesh deformation with rota-
tion. c©Eurographics Association 2006; reproduced by kind permission of the Eurographics
Association.

The system first combines all the line segment rotations previous to the target
point, φ j from 1 to k − 1, where the target point lies on segment k. The system
then applies a partial rotation of the last line segment’s rotation, φk , according to
the length where the target point lies on that segment, a value from 0 to 1 we will
call u. We express this in the following equation, where the final rotation is φt . The
rotations are centered about the target point.

φt =
⎛

⎝
k−1∏

j=1

φ j

⎞

⎠ (φku) (8.7)

In order to pose between the reference and target curves, the system applies
the same operations, but instead uses an interpolated curve, determined using the
method described earlier, instead of the target curve. For similar reasons discussed
concerning curve interpolation, rotations are not always desired in the mesh defor-
mation. In Fig. 8.7, a mesh deformation with rotations on three vertices is depicted
in two examples. Rotations are appropriate for Fig. 8.7(a), but less so for Fig. 8.7(b),
especially if this were deforming an eyelid. Vertices past the endpoints of the curves
can move greater distances than expected due to rotation. For this reason, when
curve interpolation does not use rotations, they are not applied in mesh deformation
as well.

Since deformations are specified using curves in the image plane, it can be dif-
ficult to specify deformation outside one plane of movement. To facilitate this,
the user can set the deformation to follow the surface of a sphere. In Fig. 8.8,

Fig. 8.8 An eyelid deformation constrained and not constrained to follow the eyeball sur-
face. c©Eurographics Association 2006; reproduced by kind permission of the Eurographics
Association.
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the deformation is constrained to maintain the vertices’ distance from the eyeball
sphere. Otherwise, the vertices move in only one direction and the eyelid inter-
sects the eyeball. While only a sphere is used here, other surfaces could be used
by constraining the vertices to maintain their original distance from the surface by
projecting outward from the normal of the closest point on that surface.

Once all the vertices have been repositioned according to the target curve,
they are returned to their original positions according to the value of the articu-
lation weights determined previously. The transformation is calculated as a linear
translation for each vertex, where vertices with weight 0 return completely to their
original position and vertices with weight 1 stay in their new position. In this man-
ner, smooth deformations are ensured even when the region is enclosed by other
parts of the mesh.

8.3 Applications of Posing and Articulation

We begin with the mesh of a face and articulate it using the system to specify a
deformation for each eyelid, eyebrow, cheek, jaw, and various movements of the
lips (Fig. 8.11), for a total of 15 deformers. Figure 8.9 depicts these deformers
as separately colored regions that fade to black according to articulation weights.
Figure 8.12 shows some of the poses that can be acheived using this articulation.
Each of these deformations was created quickly, in under 2 minutes each. By com-
parison, specifying similar deformations in a blendshape approach required 10–20
minutes per shape. For eyelid deformations, deformations were set to follow the sur-
face of a sphere centered at the eye. The system also works for nonfacial meshes,
like the trunk of an elephant (Fig. 8.10).

Bringing this articulated mesh into the posing system, one can pose the face using
reference and target curves. We also test this posing system with a mesh articulated

Fig. 8.9 An articulated mesh colored according to
deformer and articulation weights. c©Eurographics
Association 2006; reproduced by kind permission
of the Eurographics Association.
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Fig. 8.10 Deformation of an elephant’s trunk using the articulation system. c©Eurographics Asso-
ciation 2006; reproduced by kind permission of the Eurographics Association.

Fig. 8.11 A few of the individual deformations created in the sketch-based articulation sys-
tem. c©Eurographics Association 2006; reproduced by kind permission of the Eurographics
Association.

Fig. 8.12 A sampling of poses in our articulation space. c©Eurographics Association 2006; repro-
duced by kind permission of the Eurographics Association.
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Fig. 8.13 Posing using similar curves on a sketch-based articulation (left) and a blendshape articu-
lation (right). c©Eurographics Association 2006; reproduced by kind permission of the Eurograph-
ics Association.

by a blendshape method using shapes created in Alias Maya (Fig. 8.13) and achieve
similar results in both. In the top examples, the mouth is posed in two iterations, one
for the upper lip and one for the lower lip. In total, with the cheek constraints, six
curves were drawn to pose the face (two constraint curves, and two pairs of reference
and target curves). In the lower examples, the right eyelid and left eyebrow were
posed using four curves (two pairs of reference and target curves).

8.3.1 Facial Animation from Video Features

The posing process is not only limited to sketching, but can be used with any image
features about a moving mesh. We used the posing process with curves generated
from tracking of facial features in video on a sketch-based articulated mesh. These
curves were determined through the eigenpoints method [22] and follow the eye-
brows, eyelids, and lips of the subject in the video shown in Fig. 8.14.

The eigenpoints method associates points with a model of the image that is cre-
ated through principal component analysis of a set of previously labeled images.
This image model is then used to find features in new, unlabeled images and esti-
mates the positions of the points associated with those features, which are then used
to create the curves we use.

These tracked curves, while slightly noisy, remain unfiltered in our testing. Since
the facial features of the subject do not match those in the 3D mesh, relative changes
in the tracked curves are applied to user-drawn reference curves to create new target
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Fig. 8.14 Posing using curves from tracking of facial features in video. c©Eurographics Associa-
tion 2006; reproduced by kind permission of the Eurographics Association.

curves. For one curve from video Cv f in frame f, relative changes, {c1, . . . , cn}, from
frame to frame for each point were determined. These relative changes were then
applied to a user-drawn curve Cu reparameterized to have n points, {d1, . . . , dn}. For
each frame of video a new curve C ′

u was determined by applying ci to every point
di. The change ci was also scaled up in order to account for difference in length
between Cv0 and Cu :

d′
i = di + ci

|Cu |
|Cv0| . (8.8)

When posing the face from video features, the limited articulation of the mesh
does not fully match the range of expression in the human face. Even so, the posing
process works well at capturing the motion of the face across frames (Fig. 8.14).

The optimization process for posing requires many iterations before convergence
and results in a pause in the posing system after drawing the target curve. On an
AMD XP 2000+ processor, the computation time is under 5 seconds for the blend-
shape method and under 10 seconds for our articulation method. The optimization
takes longer for our articulation method because it takes slightly longer to pose than
the blendshape method. From pose to pose, this time is small [the mesh can be posed
at (∼50 fps), but is still longer than the blend shape method (∼90 fps)].

8.4 Discussion

The implementation described here allows users to quickly sketch a wide range of
articulations for a mesh. Users also maintain a level of control with deformations
comparable to blendshape approaches (Fig. 8.13). Furthermore, this method does
not face the limitations blend shapes have, such as the issues linear blending between
shapes can cause. For example, it is difficult to have rotational movement with blend
shapes, like an eye blink or jaw movement. This method can recreate these motions
and allows users to apply the strengths of free-form deformation to enclosed areas
of the mesh while maintaining smooth deformation.
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The posing process is likewise simple to use and requires little to no training or
knowledge of the articulation system. Through sketching curves to pose the mesh,
the user has intuitive control over the articulation space while unaware of the actual
articulation parameters. Usability testing would be needed to further substantiate the
intuitive nature of this approach.

The optimization required for posing is not instantaneous and does not work at
interactive rates (> 15 Hz), though it is fast enough for user interaction (typically
within 5 seconds per pose). Further limitations involve the limit of the number of
variables the optimization process can deal with. The downhill simplex method is
only effective to under 20 variables, and a large number of variables will further
slow down the optimization. As many professional facial animation systems often
have several hundred controls, this method may be impractical. The problem can be
reduced, however, by limiting the articulation search space only to those articulation
variables that affect the reference curve. If the search space still remains overly
large, the method can be used in stages, first posing articulation variables that have
a large effect and then smaller variables in greater detail. Another possible approach
would be to create low-dimensional subspaces [23] or probabilistic priors [24] from
previously generated poses.

In this chapter, we presented a sketch-based method of preparing a mesh for
animation in two processes—articulation and posing. The system focused on infer-
ence of reference and target curves for facial animation but was adept at animating
motion for meshes with different kinematic structures. This system has a simple
and intuitive interface that allows for a wide span of deformation to be specified.
This approach to posing is flexible for usage with typical articulation and rigging
systems, including blendshape interpolation.

Acknowledgment We thank John F. Hughes for his comments and advice on our work. Special
thanks also go to the Brown Graphics Group, in particular Olga Karpenko and Tomer Moscovich
for initial discussions on this work.
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Chapter 9
Learning Controls for Blendshape-based
Realistic Facial Animation

Pushkar Joshi, Wen Tien, Mathieu Desbrun, and Frédéric Pighin

9.1 Introduction

Detailed and expressive facial animation is essential for high-end character anima-
tion.1 When the character is speaking or displaying emotions, the character’s face
may need to express a wide range of configurations. Since infinitely many facial
expressions may be necessary, the face model should be able to deform to arbitrary
configurations. Such a face model is called a deformable or morphable model of
the face.

Often, a deformable face model can be constructed by mimicking the actual facial
anatomy. Such a physically based model generally simulates various skin layers,
muscles, fatty tissues, bones, and all the necessary components to approximate the
real facial mechanics (see [15] for an example of recent work). The physically cor-
rect model provides precise control over the facial expressions. However, it is often
very difficult and time-consuming to construct an accurate, anatomical model of the
face that allows precise control over the facial expressions. Moreover, in charac-
ter animation, simulating all the facial tissues is unnecessary; only the outermost
surface layer needs to be deformed properly.

An easier method to construct a deformable face model is to use blendshapes.
A blendshape model mostly disregards the facial muscle mechanics. Instead, the
model directly considers every facial expression as a linear combination (i.e., a lin-
ear “blend”) of a few select facial expressions: the blendshapes. By varying the
weights of the linear combination, a full range of facial expressions can be generated
with very little computation. During the control of the blendshape model, the user
can design expressions with intuitive commands (e.g., 30% happy, 70% surprised),
thereby making a blendshape model easier to use for non-experts. Blendshape inter-
polation can be traced back to Parke’s pioneering work in facial animation [11, 12].

Sometimes in character animation tasks, parameterization and control of the
blendshape model can be difficult. Spanning a complete range of highly detailed
facial expressions might require a large number of blendshapes. For instance, the

1 An earlier version of this paper [7] appreared in the 2003 ACM SIGGRAPH/ Eurographics Sym-
posium on Computer Animation. All images are c© Eurographics Association 2006; reproduced
by kind permission of the Eurographics Association.

162 Z. Deng and U. Neumann, Data-Driven 3D Facial Animation.
C© Springer-Verlag London Limited 2008
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facial animations of Gollum in the feature film The Two Towers required 675 blend-
shapes [6]. To build a facial expression from such a large database of expressions, an
animator needs to tweak the blend weights of each blendshape — an inconvenient
and arduous task. Assigning an independent parameter value to every blendshape
is not practical and often leads to a tedious trial-and-error process for the anima-
tor.

Splitting the face geometry into smaller regions slightly alleviates the problem
of blendshape control. The task of specifying weights is done independently per
region. By manipulating the configuration of the smaller regions separately, the ani-
mator is guaranteed that the modification will impact only a specific part of the face
(e.g., the left eyebrow). For a given region, the animator needs to specify weights
only for those blendshapes that are expressive over that region. Segmentation can
also be used to minimize the total number of blendshapes required. Studies [5] have
shown that it is possible to create complex and believable facial expressions using
only a few blendshapes by combining smaller, local shapes. If the regions can be
manipulated independently, the number of possible combinations (and therefore the
number of possible expressions) increases significantly. Therefore, segmenting the
face into regions helps in controlling a blendshape model. Kleiser [8] extended
Parke’s original idea of blendshape interpolation to a segmented face where the
regions are blended individually, thereby allowing a wider range of expressions from
a relatively small set of blendshapes.

Traditionally, face segmentation is done manually. A typical example is the seg-
mentation of a face into an upper region and a lower region: the upper region is
used for expressing emotions with the eyes and eyebrows, while the lower region
expresses speech with the lips and lower jaw. Although this approximation is often
used in practice, such an ad hoc separation does not reflect the subtle inter-region
dependencies appearing in the actual face. Ideally, the face segmentation should be
adaptive to the blendshapes and reflect the idiosyncracies of the face being modeled.
Additionally, the segmentation should provide control for editing at different levels
of detail. We propose that a proper segmentation of the face helps us with the tasks
of parameterization and control of a blendshape model.

9.1.1 Contribution and Overview

In this chapter, we describe a simple, automatic, and fast face segmentation method
that addresses the problems of parameterization and control of blendshape models.
We design an automatic technique that extracts a set of parameters (regions) from a
blendshape model. Instead of deriving our control mechanism from the biomechan-
ics of the face, we learn it directly from the available data. Our solution is thus spe-
cific to the input blendshapes and reflects the facial idiosyncracies present in those
blendshapes. We demonstrate the usefulness of our improved face segmentation in
two well-known facial animation tasks: motion capture mapping and key-frame con-
struction.
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9.1.2 Related Work

As mentioned before, blendshape interpolation is almost as old as the idea of com-
puterized facial animation [11, 12]. Blendshape models are also used in the com-
puter vision community for analyzing face images and video. Blanz and Vetter [1]
designed an algorithm that fits a blendshape model onto a single image. Their result
is an estimate of the geometry and texture of the person’s face. Pighin et al. [14]
extend this work by fitting their model to a whole sequence of images, allowing
manipulation of the video by editing the fitted model throughout the video sequence.

Pighin et al. [13] describe a key-frame construction system that uses a palette
of facial expressions along with a painting interface to assign blending weights.
The system gives the animator the freedom to assign the blending weights at the
granularity of a vertex. Note that in many character animation tasks, this freedom is
actually a drawback: it is rather difficult to create realistic expressions by tweaking
blend weights. The system we propose is quite different: it respects the mechanics
of the face through an analysis of the captured, real data. As a result, our system is
more intuitive and helps generate plausible facial expressions.

9.2 Blendshape Face Model

We define a blendshape face model as being a convex linear combination of n basis
vectors, each vector being one of the blendshapes. Each blendshape is a face model
that includes geometry and texture. All the blendshape meshes for a given model
share the same topology. The coordinates of a vertex V belonging to the blendshape
model can then be written as follows:

V =
n∑

i=1

αi Vi ,

where the scalars αi are the blending weights, Vi is the location of the vertex in the
blendshape i, and n is the number of blendshapes. These weights must satisfy the
convex constraint:

αi ≥ 0, for all i

and must sum to one for rotational and translational invariance:

n∑

i=1

αi = 1.

Similarly, the texture at a particular point of the blendshape model is a linear
combination (i.e., alpha blending) of the blendshape textures with the same blending
weights as those used for the geometry.
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9.2.1 Learning Controls

In this section, we describe a segmentation process that leverages face deformation
information directly from the input data to create meaningful blend regions. First,
we describe our approximation of the physical model of the face skin, and then we
give the method used to extract regions.

9.2.2 Physical Analogies

We assume that the face configuration corresponding to the neutral expression is the
face at rest position. For all the other blendshapes, we analyze the deformation from
the rest position to learn the material properties of the face skin. The deformation
of every blendshape is measured by the displacement field d between each vertex’s
current position and its rest position. We model the physical properties of the face
skin using linear elasticity. The governing equation of motion of a linear elastic
model is the Lamé formulation:

ρa = λ�d + (λ + μ)∇(∇ · d). (9.1)

In our current context, d is the displacement of the vertex from its position on the
neutral face, ρ is the averaged face mass density, a is the vertex’ acceleration, and
λ and μ are the Lamé coefficients that determine the material’s behavior (related to
Young’s modulus and the Poisson ratio). The interpretation of the previous equation
is relatively simple: the Laplacian vector �d of the displacement field represents
the propagation of deformation through the blendshape, while the second term rep-
resents the area-restoring force. These two second-order operators, null for any rigid
deformation, are therefore two complementary measures of deformation of our face
model. To further simplify our model, we will assume that the area distortion is
negligible on a face (our tests confirm that this assumption does not change the
results significantly). Therefore, we can use only the Laplacian magnitudes to iden-
tify disjoint regions of the face that have a similar amount of deformation. Since the
deformation on the face is continuous, these disjoint regions often move together
coherently during face motion. Consequently, we can use these regions to segment
the face.

9.2.3 Segmentation

Debunne et al. [4] have introduced a simple discrete (mesh-based) formula for the
Laplacian operator present in Eq. 9.1. We compute this discrete Laplacian value
at every vertex of every non-neutral (i.e., expressive) blendshape mesh and take
the magnitude of the resulting vectors. This provides us with a deformation map
for each expression. We gather these maps into a single deformation map M by



166 P. Joshi et al.

computing for each vertex independently its maximum deformation value across all
expressions. This resulting map (see Fig. 9.1(a)—expressed as an RGB colored vec-
tor map to show direction of deformation) measures the maximum amount of local
deformation that our face model has for the blendshapes used. A fast segmentation
can now be performed by simply splitting this map into regions with low deforma-
tion and regions with high deformation. The threshold for this split can be chosen as

threshold = Dn t,

where D is the array of sorted deformation values, n is the size of this array, and t is a
scalar between 0 and 1. (That is, first sort all the deformation values, and then obtain
the deformation at the position that is a function of the number of values.) The value
t determines the granularity of the regions, as this single parameter can control the
level of region detail. For instance, to generate the segmentations in Figs. 9.1(b) and
(c), we used t = 0.25 and t = 0.75, respectively.

Depending on the threshold, disconnected regions are created all across the mesh.
We automatically clean up the regions by absorbing isolated regions into larger

(a)

(b) (c)

Fig. 9.1 Automatically generated regions: (a) deformation map (the deformation in x, y, and z
directions is expressed as a respective RGB triplet); (b) segmentation for a low threshold and (c)
for a high threshold.
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Fig. 9.2 Mapping motion capture data on a set of blendshapes.

regions and minimizing concavity of the regions. Finally, each region is extended by
one vertex all around its boundary, in order to create an overlap with the neighbor-
ing regions. The result is one large, least deformed region (i.e., the background) and
a number of overlapping regions where there is generally more significant defor-
mation in the range of expressions. These latter regions [see Figs. 9.1(b) and (c)]
correspond to vertices that generally undergo similar deformation: locally, each
region deforms in a quasi-rigid way. Thus, linear blending in each of these regions
will reconstruct realistic target face expressions. The entire region extraction rou-
tine is fast (about 1 minute for our example with 10 blendshapes) and is generally
performed as a pre-process.

9.3 Animation with Motion Capture

We express the motion in the motion capture data using the blendshape model. That
is, we assume that the motion (or the per-frame position) of a motion marker can
be expressed as a linear combination of corresponding points in the blendshapes.
Namely,

M j =
n∑

i=1

αi Vi j ,

where M j is a location on the face whose motion was recorded and Vi j is the cor-
responding location in blendshape i. m is the number of motion markers and n the
number of blendshapes (as in Choe et al. [3]).

Given several such equations, we find the blending weights αi . We use a least-
squares solution, where we minimize the sum of the squared differences:
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m∑

j=1

[
M j −

(
n∑

i=1

αi Vi j

)]2

. (9.2)

We get a linear system of equations where the unknowns αi are the weights in
the blendshape combination. We use an iterative quadratic programming solver [10]
to obtain the optimal values of the blending weights αi in the least-squares sense.
Solving this system is equivalent to orthogonally projecting the motion onto the set
of blendshapes.

Note that, in general, Eq. 9.2 is an overconstrained system that does not have
an exact solution. If the positions of the motion markers are outside the range of
motion spanned by the blendshape model, the motion mapping using only blend-
shape interpolation produces unsatisfactory results. To solve this problem and pro-
duce an animated mesh that follows the motion more precisely, we complement
the projection on the blendshape basis by translating the vertices in the mesh by
the residual (M j − ∑n

i=1 αi · Vi j ). The residual, which is only known for a small
set of points, is interpolated to the rest of the facial mesh using radial basis func-
tions [9]. The final coordinates, V j , of a vertex on the face are then constructed
using

V j = P j + RB F(P j ),

where P j is the projection on the set of blendshape:

P j =
n∑

i=1

αi Vi j

and RB F(P j ) is the interpolated residual at vertex P j :

RB F(P j ) =
m∑

i=1

exp(−||Mi − P j ||)Ci . (9.3)

In Eq. 9.3, the vectors Ci are computed using the known values of the residual at
Mi . Since the system of equations is linear in the unknowns, using least squares
provides an estimate of the unknowns [13]. Note that bypassing the solution of
Eq. 9.2 and directly solving for the radial basis weights would have a very different
effect. By first projecting on the set of blendshapes, we obtain a face geometry that
reflects the idiosyncracies unique to the character. This geometry is then brought
closer to the prescribed marker motion by interpolating the residual. Choe et al. [3]
use a similar approach to map motion onto a set of face muscle actuator parameters.
The main difference is how the residual is handled. In their approach, the generic
blendshapes are modified (as part of the muscle actuator training) to adapt to the
motion of the target character. We, on the other hand, use radial basis functions to
modify the geometry on a per-frame basis.
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Instead of solving the above system for the entire model, we solve for each region
created using our automatic segmentation process. Doing so gives us localized con-
trol over the face mesh and results in better enforcement of the spatial constraints.
This also allows us to express a wide range of motion using only a limited number
of blendshapes (ten, in our case).

For every frame and for every region, we construct the above minimization prob-
lem and obtain blending weights. The same weights are then used to obtain, for all
vertices of the region, new positions that match the motion. Thus, for every frame
of motion, we can solve a minimization problem to obtain the blending weights and
consequently the face mesh that follows the motion capture data.

9.4 Key-Frame Editing

Using our blendshape model, we can interactively construct face meshes that can be
used as key frames in a key framing-based facial animation tool. In order to control
the face configuration at smaller granularity, we segment the blendshape model into
regions using our automatic segmentation technique.

9.4.1 User Interface for Creating Key Frames

The blendshape model reads in the various regions and presents the face in the neu-
tral expression to the user. The user interactively specifies positions of arbitrarily
chosen control points by direct manipulation (clicking and dragging vertices). The
system treats these control points like motion markers and uses blendshape inter-
polation (see Eq. 9.2) to interpolate the user-specified deformation over the region
that contains the marker. The core least-squares solver is the same as the one used
for mapping motion data. Often times, the system of equations is underconstrained;
in this case, we solve for the blend weights that minimize the norm of the residual.
The resulting system is interactive, intuitive, and easy to use.

9.4.2 Extensions for Key-Frame Editing

We describe some additional functionality for improving the key-frame construction
and editing system.

9.4.2.1 Region Hierarchy

In order to allow key-frame editing at various degrees of control (global versus
local), we build a hierarchy of regions. This hierarchy is created by first running the
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segmentation algorithm described in Section 9.2.1 with a high threshold value so as
to generate small and localized regions. These regions constitute the lowest region
level. We can then merge regions iteratively so that contiguous regions are merged
together as we generate higher region levels.

9.4.2.2 Motion Damping

Some parts of the face do not move significantly throughout the entire set of blend-
shapes (e.g., tip of the nose). If we were to select such a part and try to deform it
using the interface described so far, a small deformation of the control point could
trigger a dramatic change in the facial expression. To reduce the sensitivity of the
system, we need to scale the displacement of the control point according to that
part’s ability to deform. Our scale factor is the inverse of the maximum displace-
ment of the control point across all blendshapes in the blendshape model. This is a
simple method to add stiffness to those parts of the face that typically show higher
resistance to deformation.

Figure 9.3 displays a sequence of manipulations performed on a key frame. The
successive key-frame editing is performed with increasing levels of detail to refine
the facial expression in a localized manner.

Fig. 9.3 Successive key-frame editing from coarse (top left) to fine (bottom right) level of details.
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9.5 Rendering Realistic BlendShapes

9.5.1 Basic Process

Rendering the blendshape model is pretty straightforward and can be done in two
steps: first the consensus geometry is evaluated, and then it is rendered as many
times as there are blendshapes in the model to blend the texture maps. This latter
step is done by assigning to each vertex’s alpha channel the corresponding weight
for a given blendshape.

9.5.2 Realistic Textures

Texture misregistration is a common problem with blendshape rendering for real-
istic facial animation. If the textures do not correspond at each point on the face
geometry, combining them linearly will result in a blurred rendering. Thus, the fre-
quency content of the rendered face images varies as a function of time. Figure 9.4
provides an illustration of this phenomenon. The leftmost image shows our model
rendered with only one contributing blendshape. The middle image shows the ren-
dered model with seven equally contributing blendshapes. In the middle rendering,
a lot of the details of the face texture have disappeared.

To alleviate this problem, we borrow an approach from the image processing
community [2] and perform a bandpass decomposition of the textures. More specif-
ically, we build a two-level Laplacian image pyramid out of each blendshape texture
map. This results in the creation of two texture maps for each blendshape: the first is
a low-pass version of the original texture, and the second is a signed detail texture.
We first render the lowpass texture maps for each blendshape by using alpha blend-
ing. Then we render the detailed (high-frequency) texture map of a single blend-
shape (usually the neutral expression) using the consensus geometry and add it to
the previous rendering. The result is a rendering that both better preserves the orig-
inal spectral content of the blendshape textures and maintains the high-frequency
content constant throughout the animation. Figure 9.4(c) illustrates the improve-
ment obtained by using this technique.

9.6 Results

The techniques described in this paper have been implemented and tested with a
set of blendshapes modeled to capture the facial expression of an actor. We cre-
ated 10 blendshapes corresponding to extreme expressions. We used an image-based
modeling technique similar to the one developed by Pighin et al [13]. Three pho-
tographs of the actor were processed to model each blendshape: front facing, 30
degree right, and 30 degree left. All the animations were computed and rendered in
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(a) (b)

(c)

Fig. 9.4 Blendshape renderings: (a) a single contributing blendshape; (b) seven equally contribut-
ing blendshapes without detail texture; (c) seven equally contributing blendshapes with detail tex-
ture.

real time (30 Hz) on a 1 GhZ PC equipped with an NVidia GeForce 3 graphics card.
To enhance realism with only little overhead, we decided to animate the tongue,
the lower teeth, and the upper teeth in a simple procedural manner; they are moved
rigidly and follow the motion of separate sets of manually selected points on the
mesh. The eyeballs are moved rigidly according to the rigid motion of the head.

9.6.1 Motion Capture

As described in Section 9.3, we can project recorded motion onto the blendshape
model. We also tried this approach for a few animated sequences. As expected, the
resulting deformations of the face are very natural and reflect the actor’s personality.
Figure 9.2 shows some of the frames obtained. The example shown uses only 10
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blendshapes. To animate speech motion, usually a much larger set of shapes needs to
be used. We are able to animate the lips by using radial basis functions as described
in Section 9.3.

9.6.2 Key-Frame Editing

We also experimented with the interactive tool described in Section 9.4. The tool
proved to be very efficient, helping us sculpt a face quickly and in a very intuitive
way. We started manipulating the face with a set of coarse regions and refined the
expression by using increasingly finer segmentations.

Video sequences generated with our implementation are available on the Web at
http://www.geometry.caltech.edu/Movies/BlendShapes/.

Acknowledgment The authors would like to thank J.P. Lewis for discussions about blendshape
animation and Andrew Gardner for its initial development. This project was supported in part by
the National Science Foundation (CCR-0133983, DMS-0221666, DMS-0221669, EEC-9529152)
and the U.S. Army Research Institute for the Behavioral and Social Sciences under ARO con-
tract number DAAD 19-99-D-0046. Any opinions, findings, conclusions, or recommendations
expressed in this paper are those of the authors and do not necessarily reflect the views of the
Department of the Army.

References

1. T. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces. In SIGGRAPH 99
Conference Proceedings. ACM SIGGRAPH, August 1999.

2. P.J. Burt and E.H. Adelson. A multiresolution spline with application to image mosaics. ACM
Transactions on Graphics, 2(4), October 1983.

3. B. Choe, H. Lee, and H. Ko. Performance-driven muscle-based facial animation. In Proceed-
ings of Computer Animation, volume 12, pages 67–79, May 2001.

4. G. Debunne, M. Desbrun, M. Cani, and A. Barr. Adaptive simulation of soft bodies in real-
time. In Proceedings of Computer Animation 2000, pages 15–20, May 2000.

5. P. Ekman and W.V. Friesen. Unmasking the Face. A Guide to Recognizing Emotions fron
Facial Clues. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.

6. J. Fordham. Middle earth strikes back. Cinefex, (92):71–142, 2003.
7. P. Joshi, W.C. Tien, M. Desbrun, and F. Pighin. Learning controls for blendshape based real-

istic facial animation. In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 187–192, Aire-la-Ville, Switzerland, 2003.

8. J. Kleiser. A fast, efficient, accurate way to represent the human face. In SIGGRAPH ’89
Course Notes 22: State of the Art in Facial Animation, 1989.

9. G.M. Nielson. Scattered data modeling. IEEE Computer Graphics and Applications,
13(1):60–70, January 1993.

10. J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, 1999.
11. F.I. Parke. Computer generated animation of faces. Proceedings ACM Annual Conference.,

August 1972.
12. F.I. Parke. A parametric model for human faces. PhD thesis, University of Utah, Salt Lake

City, Utah, December 1974. UTEC-CSc-75-047.



174 P. Joshi et al.

13. F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D.H. Salesin. Synthesizing realistic facial
expressions from photographs. In SIGGRAPH 98 Conference Proceedings, pages 75–84.
ACM SIGGRAPH, July 1998.

14. F. Pighin, R. Szeliski, and D.H. Salesin. Resynthesizing facial animation through 3d model-
based tracking. In Proceedings, International Conference on Computer Vision, 1999.

15. E. Sifakis, I. Neverov, and R. Fedkiw. Automatic determination of facial muscle activations
from sparse motion capture marker data. ACM Trans. Graph., 24(3):417–425, 2005.



Chapter 10
Speech Motion Decomposition and Editing

Yong Cao, Petros Faloutsos, and Frédéric Pighin

10.1 Introduction

Complex facial expressions and speech motions are generated by hundreds of
individual muscles.1 We don’t understand quite well the dynamic of these muscles
nor their collaborative effects. Realistic physical simulation of these muscles can
be computationally expensive or lack details. Using motion capture is an attractive
alternative. Current motion capture technology can record accurately the motions
of a character’s face. These motions can then be mapped onto a face model to pro-
duce realistic animations. It is, however, impossible to record all the motions a face
can do. Thus, the motion capture sessions should be carefully planned to meet the
needs of the production. A different approach is to record a representative set of
motions and use machine learning techniques to estimate a generative statistical
model. The goal is then to find and fit a model that is able to re-synthesize the
recorded data. Finding an appropriate model that can reproduce the subtleties of the
recorded motion can be a very difficult task. In addition, the parameters of the model
might not be appropriate for manipulating or editing the data. Fitting statistical mod-
els generally involves minimizing an error function regardless of the semantics of
the data or what the model’s parameters really represent. Interpretation of the data
is generally best done by a human observer who can annotate the data and specify
its semantics. A function can then be learned that expresses the correlation among
the annotations, the input, and the motions, the output. We can use this function
to manipulate the data. However, when the size of the data becomes large, human
intervention and annotation are impractical. Our method addresses this issue.

In this chapter, we introduce an unsupervised learning technique, based on
independent component analysis (ICA), that splits the recorded motions into linear
mixtures of statistically independent sources. These sources, called independent
components, offer a compact representation of the data with clear semantics. The
lack of structure or model underlying the recorded data makes it really hard to
edit. In contrast, the decomposition provides a meaningful parameterization of the
original data that is suitable for editing. The technique is automatic and does not
require annotating the data.

1 This chapter is an improved version of the authors’ previous work [1]. Reproduced by kind
permission of the Eurographics Association; c©Eurographics Association 2003.

Z. Deng and U. Neumann, Data-Driven 3D Facial Animation. 175
C© Springer-Verlag London Limited 2008
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The remainder of the chapter is organized as follows. Section 10.2 reviews
some related research. Section 10.3 introduces ICA and describes its application
to recorded facial motion. Section 10.4 explains how to determine the semantics
of the resulting decomposition. Section 10.5 describes editing operations using the
ICA representation of the motion. Section 10.6 presents some experimental results.
Lastly, Section 10.7 summarizes the chapter.

10.2 Related Work

Other works extract facial expressions from speech motion. In this section, we give
a brief review of these works.

Chuang et al. [2] present an interesting attempt to separate visual speech into
content and style (emotion). Based on factorization [3, 4], their method produces a
bilinear model that extracts emotion and content from input video sequences.

The pattern recognition community has performed a significant amount of work
on facial expression analysis. Expressions are typically based on tracking the motion
of particular facial elements such as the eyes, the rigid body motion of the face, or
transient features such as wrinkles [5–11]. These systems are quite effective for
facial feature recognition.

Learning the style and content from recorded variations of a motion has been also
investigated in the area of full-body animation. Pullen et al. [12] propose a technique
that decomposes motion into different frequency bands. The low-frequency compo-
nents represent the basic motion, while the higher-frequency ones capture the style
of the motion. Combining the basic signals with different higher-frequency bands
results in stylistic variations of the basic motions. Brand et al. [13] train hidden
Markov models to capture the style variations of example dance data. The resulting
style models can be applied to novel dance sequences. Unuma et al. [14] decompose
example motion into high and low frequencies using Fourier analysis. Manipulating
the resulting coefficients provides an intuitive way to alter the original motion.

10.3 Facial Motion Decomposition

In this section, we present an overview of independent component analysis. We then
discuss our decomposition technique and the way we determine the semantics of the
resulting independent components.

10.3.1 Independent Component Analysis

Independent component analysis is an unsupervised learning technique [15].
It assumes that a set of observed random variables can be expressed as linear
combinations of independent latent variables. In a way it deconvolves the recorded
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signals into a set of statistically independent random variables. It is often associ-
ated with the “blind source separation” problem. One instance of this problem can
be found in audio processing: imagine that the sound in a room comes from two
sources, the voice of a speaker and the humming of an air conditioning system.
Solving the blind source separation problem in this context would involve recording
the sound in the room (from two different locations) and processing it statistically
so that the two original sources can be separated. This audio separation problem is a
very difficult one. ICA can successfully separate the two sources by exploiting their
statistical independence.

Let us examine the mathematics of ICA. Assume that we observe n random vari-
ables x1, . . . , xn , each of which is a linear mixture of n latent or hidden variables
u1, . . . , un such that

x j =
n∑

i=1

a j iui ,

or, in matrix notation,

x = Au. (10.1)

Equation 10.1 represents a generative model: it describes how the recorded data x
are generated by the sources u. The sources ui , which are called the independent
components, cannot be observed directly. The matrix of coefficients A, called the
mixing matrix, is also unknown. ICA provides a framework to estimate both A and
u. In practice, estimating A is sufficient, since if the matrix is known, its inverse, W,
can be applied to obtain the independent components:

u = Wx.

To estimate the matrix A, ICA takes advantage of the fact that the components are
statistically independent. The key to estimating the ICA model is non-Gaussianity.
According to the central limit theorem, the sum of two independent random vari-
ables usually has a distribution closer to a Gaussian distribution. The idea then is to
iteratively extract random variables from the recorded data that are as non-Gaussian
as possible. How non-Gaussianity is measured is beyond the scope of this paper.
Different metrics have been used, leading to a variety of implementations. For more
details, see [15,16]. In our experiments, we use a publicly available implementation
called FastICA [17].

10.3.2 Pre-Processing

Before ICA is applied, the facial motion data have to go through a preprocessing
phase that consists of two steps, centering and whitening.

Centering shifts the data toward its mean so that the resulting random variables
have zero mean. Whitening transforms the centered set of observed variables into a
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set of uncorrelated variables. Principal component analysis (PCA) can be used to per-
form this transformation. After pre-processing, the model of Eq. 10.1 takes the form

x = E{x} + PAu, (10.2)

where E{x} is the expectation of x and P is an n by m matrix obtained by applying
PCA to the centered data. m is the number of principal components we keep. Matrix
P will not be square (m < n) if we decide to only retain a subset of the princi-
pal components. This reduction in dimension reduces the number of independent
components to the same number as well.

10.3.3 PCA vs. ICA

PCA and ICA are related statistical techniques. They both provide a linear decom-
position of sampled data. The fundamental difference is that PCA assumes the latent
variables are uncorrelated, whereas ICA assumes they are independent. Independent
random variables are also uncorrelated, but not vice versa. The goal of PCA is to
find a sequence of uncorrelated random variables (components) where each variable
covers as much of the variance of the data as possible. The resulting sequence is
ordered by decreasing variance coverage. For this reason, PCA is often an effective
compression technique: by keeping the first few components, most of the variance
in the data can be covered. The independent components produced by ICA provide
a separation mechanism between sources that are assumed independent rather than
a compression mechanism.

10.3.4 Application to Facial Motion

Applying ICA to recorded facial motion is straightforward. The motion is repre-
sented as a set of time series xi (t) that captures the Euclidean coordinates of the
motion capture markers in time. Each of these time series can be thought of as sam-
ples of random variables xi . Then we can directly apply ICA decomposition on this
set of variables, xi , using Eq. 10.2.

This decomposition results in a set of independent components that have intuitive
interpretation. In the next section, we will describe how to determine the meaning
of the independent components.

10.4 Interpretation of the Independent Components

ICA decomposes speech-related motions into a set of sources that can be clearly
interpreted and manipulated for editing purposes. In particular, we apply ICA to
separate the data into style and content components. In our case, we equate style
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with expressiveness or emotion and contents with the part of the motion responsible
for the formation of speech.

10.4.1 Number of Independent Components

Before applying ICA to the data, we have to determine the number of components
we need to extract. There is no clear rule here. In practice, the whitening pre-
processing step (Section 10.3) reduces the dimension of the data and determines the
number of independent components. We can experimentally determine how many
components to keep so that we preserve the subtleties of the motion. For most of
the experiments, keeping enough components to cover 95%–98% of the variance
proved to be sufficient.

In what follows, we describe how to associate specific meaning to the indepen-
dent components.

10.4.2 Emotion

We recorded the motion of an actor’s face while he was uttering a set of sentences
multiple times, each time expressing a different emotion. Let us denote as (xi , yi ) p
pairs of motions that corresponds to the same sentence but two different emotions.
Applying ICA to each pair of motions in our data set results in pairs of correspond-
ing independent component sets, (ui , vi ). We would expect that the independent
components related to emotion differ significantly between two speech motions that
have the same content but different emotion. In contrast, if an independent com-
ponent is not related to emotion, its value in time for two corresponding motions
should be the same except for some timing differences. In order to verify this prop-
erty, we align each pair of corresponding motions using a dynamic time-warping
(DTW) algorithm [18]. Let us denote (u′i , v′i ) the independent components of two
aligned motions after time warping. We compute their difference using the root
mean-square (RMS) error as follows:

demotion, j =
(

1∑
qi

( p∑

i=1

(

qi∑

k=1

(u′i
j (tk) − v

′i
j (tk))

2

)) 1
2

,

where qi is the number of aligned time samples for pair i. The distance demotion, j is
designed such that it should be large if component j is related to emotion.

Figure 10.1(a) shows a plot of the demotion, j -values of six independent com-
ponents estimated from 32 pairs of sentences of frustrated and happy motions.
These data total 11,883 frames or 99 seconds. A clear peak can be observed
for the third component. This strongly indicates that this component is related to
emotional variations. The other components participate to a lesser degree to the
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Fig. 10.1 These graphs [1] illustrate the classification of independent components. Each graph
illustrates a category of motion: (a) for emotions, (b) for speech, (c) for eyebrows, and (d) for
eyelids. The horizontal axis represents the index of independent components. The vertical axis
shows the distance metrics that we describe in Section 10.4.

emotional content of the motions. This shows that speech motion cannot be strictly
separated into statistically independent components. Our approach is albeit a suc-
cessful approximation. As further proof, in Fig. 10.2 we plot the evolution of the
different components over time for a set of five pairs of motions. On the timeline,
we alternate frustrated and happy motions. The behavior of the third component
appears very much related to changes in emotions (illustrated with different gray
levels).

10.4.3 Content

We define content as the part of the motion associated with the formation of speech
independent of expressiveness. For this case we only consider the motion of the
markers in the mouth area (12 markers in our data set).
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Fig. 10.2 These graphs [1] present the evolution in time of five independent components corre-
sponding to five pairs of frustrated and happy motions. The timeline alters between frustrated
(light) and happy (dark) motions. Notice how the third component oscillates between extreme val-
ues when the emotion changes.

Let us define a distance metric between two motions that have been reconstructed
using two subsets of independent components, A and B:

dmouth(xA, xB) =
(

1

q

q∑

k=1

(
1

r

r∑

l=1

(xl
A(tk) − xl

B(tk))
2

)) 1
2

, (10.3)

where xA and xB are the motions reconstructed using component subset A and B,
respectively, q is the number of time samples of both motions, and r is the number
of the markers considered for the mouth region (12 markers).

Reconstructing the motion of the mouth markers using all the independent com-
ponents produces xall. In general, this is different from the captured motion because
of the compression done in the pre-processing step (Section 10.3). In order to eval-
uate how much independent component i contributes to the mouth motion, we com-
pute the following metric:

dmouth,i = dmouth(xE∪{i}, xall) − dmouth(xE , xall), (10.4)

where E is the subset of independent components responsible for emotion and xE is
the marker motion reconstructed from subset E.

In Eq. 10.4, dmouth,i quantifies the influence of independent component i on the
motion of the mouth. The larger in absolute value this number is, the more influence
component i has over the mouth motion. Figure 10.1(b) shows the value of demotion,i
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for six independent components. Notice how large dmouth,1, dmouth,4, and dmouth,5
are compared to the rest of the components. We can visually verify that the motion
x{1}∪{4}∪{5} reconstructed using components 1, 4, and 5 captures most of the speech
motion.

10.4.4 Blinking and Non-Emotional Eyebrow Motions

Our experiments show that some independent components cannot be associated with
emotion or content. We have experimentally determined that we can further classify
such components into two groups: one for blinking motion and the other for non-
emotional eyebrow motion. The latter refers to eyebrow motion that reflects stress
and emphasis in the speech rather than in the emotional state of the speaker.

In order to identify the components related to these two types of motion, we
use the same method employed for finding content-related components. We define
deyebrow and deyelids according to Eq. 10.3 while considering only the markers on the
eyebrows and the eyelids, respectively. We use these two metrics to define deyebrow,i

and deyelids,i from Eq. 10.4 for the eyebrows and the eyelids, respectively.
Figure 10.1(c) shows the value of the distance metric deyebrow,i for six inde-

pendent components. Notice how much larger deyebrow,2 is compared to the dis-
tance metric of the rest of the components. Clearly, component 2 captures most of
the eyebrow motion. Similarly, Fig. 10.1(d) shows the value of the distance met-
ric deyelids,i for each of the six components. In this case, deyelids,6 dominates the
rest of the components. We conclude that component 6 captures most of the eyelid
motion.

10.5 Editing

Based on the decomposition provided by ICA, we can build a facial motion editing
tool that allows the user to interactively change the apparent emotional content of
visual speech.

We are now defining multiple operations in ICA space to change the emotion
expressed in a recorded motion. We use the ICA representation to resynthesize the
motion after editing the parameters of the model. The ICA model can be written
(see Section 10.3)

x = E{x} + PAu. (10.5)

Three parameters can be manipulated: the mean E{x}, the mixing matrix PA, and the
independent components u. The independent components contribute to the motion
as an offset around the mean. Changing the mean often results in unnatural motion
or violation of physical constraints such as lip intersection. However, modifying
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the mixing matrix and/or the independent components yields interesting editing
operations.

10.5.1 Translate

In Section 10.4 and Fig. 10.1(a), it is made clear that a single independent compo-
nent captures the difference between frustrated and happy motions. Moreover, this
component seems to vary between two extreme values as a function of emotion. A
straightforward way of modifying emotion is then to estimate these extreme values
and translate the time series responsible for emotion between them. With this tech-
nique, we can change the emotion continuously between the two emotions present
in the training set. Editing can be expressed as

x = E{x} + PA(u + αeE ),

where α is a scalar that quantifies the amount of translation in the emotional com-
ponent and eE is the vector in the canonical basis of the ICA mixing matrix that
corresponds to the emotional component.

10.5.2 Copy and Replace

Another editing operation is to replace the emotional component of a motion
with the emotional component of a different motion without changing the content
(speech-related motion) of the original motion. To do this we replace the time series
that corresponds to the emotional component u1 in ICA space by the emotional
component of a second motion u2. This manipulation can then be written as follows:

x = E{x} + PA(u1 + ((u2 − u1)
T eE )eE ).

10.5.3 Copy and Add

We can also add an emotional component that was not present in the original motion.
Let’s consider u1 and u2 as the emotional components of two motions. In order to
add the emotional component of motion 1 to motion 2, we perform the following
operation:

x = E{x} + (PA)1u1 + (PA)2((uT
2 e2

E )e2
E ),

where (PA)1 and (PA)2 are the mixing matrices of the two motions. e2
E is the vector

in the canonical basis of the ICA mixing matrix A2 that corresponds to the emotional
component.
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Notice that all the editing operations we have described so far are applied to
motions that are already in the training set used to estimate the ICA model. In order
to edit a motion x that does not belong to the training set, we can project it to extract
the independent components:

u = (PA)+(x − E{xtraining}),

where + indicates the pseudo-inverse of a matrix and xtraining the expectation of the
motions in the training set. After projection, the motion can be edited in ICA space.

10.6 Results

To demonstrate ICA decomposition and editing operations, we show the results
of several experiments we did in our previous work [1]. Please see demonstration
videos at http://people.cs.vt.edu/∼yongcao.

10.6.0.1 Motion Capture and Rendering

The data used in these experiments are captured by a Vicon8 optical motion capture
system. We used 109 markers to sample the face geometry fairly densely. The sam-
pling rate of the data is 120 frame/sec. To drive a 3D textured face mesh, the mark-
ers are mapped to corresponding mesh points, and the rest of the mesh is deformed
using radial basis functions [19].

10.6.0.2 Editing

The introduced method provides an intuitive decomposition of facial motion that
allows us to edit the apparent emotion of visual speech. Figure 10.3 shows three
rendered frames from an editing session. The neutral and sad independent compo-
nents are mixed with different percentages. Figure 10.4 shows an emotion session
that changes the emotional content by translating among neutral, sad, and angry.

10.7 Summary

In this chapter, we describe a method that can extract meaningful components from
facial motions. This method, based on independent component analysis, provides a
representation of the data that has much more intuitive semantics than the original
data. Each independent component can be associated with a clear meaning and can
be edited separately. We can see that facial motions should lend themselves so easily
to a linear decomposition, despite the complexity of the associated control system
(the brain) and of the mechanisms responsible for these motions.
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Fig. 10.3 Three snapshots of editing visual speech. Each row shows the same speech content but
a different amount of neutral and sad emotions.

©Eurographics Association 2003.
Reproduced by kind permission of the Eurographics Association

Fig. 10.4 Translating among three emotions; neutral, sad, and angry.
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Chapter 11
Facial Animation by Expression Cloning

Junyong Noh and Ulrich Neumann

11.1 Introduction

Facial animation aims at producing expressive and plausible animations of a 3D
face model. Some approaches model the anatomy of the face, deriving facial anima-
tion from the physical behaviors of the bone and muscle structures [21, 30, 36, 37].
Others focus only on the surface of the face, using smooth surface deformation
mechanisms to create dominant facial expressions [15, 17, 29]. These approaches
make little use of existing data for the animation of a new model. Each time a
new model is created for animation, a method-specific tuning is inevitable or the
animation is produced from scratch. Animation parameters do not simply transfer
between models. If manual tuning or computational costs are high in creating ani-
mations for one model, creating similar animations for new models will take similar
efforts.

A parametric approach associates the motion of a group of vertices to a specific
parameter [27]. This manual association must be repeated for models with differ-
ent mesh structures. Vector-based muscle models place the heuristic muscles under
the surface of the face [36, 37]. This process is repeated for each new model. No
automatic placement strategy has been reported except for the case where a new
model has the same mesh structure. Muscle contraction values are transferable
between models only when the involved models are equipped with properly posi-
tioned muscles. Even then, problems still arise when muscle structures are inher-
ently different between two models, i.e., a human and a cat face. A three-layer
mass-spring-muscle system requires extensive computation [21]. The final com-
puted parameters are, however, only useful for one model. Free-form deformation
manipulates control points to create key facial expressions [17], but there is no auto-
matic method for mapping the control points from one model to another. Expression
synthesis from photographs can capture accurate geometry as well as textures with
a painstaking model fitting process for each key frame [29]. In practice, animators
often sculpt key-frame facial expressions for every three to five frames to achieve

This work is based on an earlier work: Expression cloning, in Proceedings of Siggraph c© ACM,
2001. http://doi.acm.org/10.1145/383259.383290

Z. Deng and U. Neumann, Data-Driven 3D Facial Animation. 187
C© Springer-Verlag London Limited 2008
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the best-quality animations [22]. Obviously, those fitting or sculpting processes
must be repeated for a new model even if the desired expression sequences are
similar.

Our goal is to produce facial animations by reusing motion data. Once high-
quality facial animations are created for any model by any available mechanisms,
expression cloning (EC) reuses the dense 3D motion vectors of the vertices of
the source model to create similar animations on a new target model. Anima-
tions of completely new characters can be based on existing libraries of high-
quality animations created for many different models. If the animations of the
source are smooth and expressive, the animations of the target model will also
have the same qualities. Another advantage of EC is the speed of the algorithm;
source animations created by computationally intensive physical simulations can
be quickly cloned to new target models. After some pre-processing, target model
animations are produced in real time, making EC also useful for interactive con-
trol of varied target models driven from one generic model, e.g., for text-to-speech
applications [26].

Similar to EC, performance-driven facial animation (PDFA) and MPEG-4 both
use measured motion data [2,10,15,26,38]. In PDFA, 2D or 3D motion vectors are
recovered by tracking a live actor in front of a camera to drive the facial animation.
With this approach, the quality of the animation depends on the quality of feature
tracking and correspondences between the observed face and target model. MPEG-
4 specifies 84 feature points. Accurately identifying corresponding feature points
is difficult and a daunting manual task. Degraded animation is expected if only a
subset of the feature points is identified or tracked. In contrast, EC reuses anima-
tions already containing precise dense 3D motion data. A sophisticated mechanism
identifies dense surface correspondences from a small set of correspondences. For
models with typical human facial structure, a completely automated correspondence
search is described in Section 11.6.

Expression cloning also relates to 3D metamorphosis research where establishing
correspondences between two different shapes is an important issue [18]. Harmonic
mapping is a popular approach for recovering dense surface correspondences [8].
Difficulty arises, however, when specific points need to be matched between mod-
els. For instance, a naïve harmonic mapping could easily flip the polygons if a
user wanted to match the tip of the noses or lip corners between the source and
the target models. Proposed methods to overcome this issue include partitioning
models into smaller regions [18] or model simplification [20] before applying har-
monic mapping. A spherical mapping followed by image warping is used in the case
of star-shaped models [19]. Our approach to finding dense correspondences starts
with specific feature matches, followed by a volume morphing and a cylindrical
projection.

Our work is also motivated by techniques for retargeting full-body animations
from one character to another [13]. While we consign the creative decisions (how
does a cat smile?) to the user’s choice of the source animation as in [13], our tech-
nique of cloning a facial animation is significantly different in approach from that
dealing with articulated body motions.
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11.2 System Overview

Expression cloning directly maps an expression of the source model onto the tar-
get model. The first step determines which surface points in the target correspond
to vertices in the source model. See the arrow labeled with Deform in Fig. 11.1,
where the source model is deformed to the target model’s shape to find the dense
surface correspondences. No assumptions are made about the number of vertices
or their connectivity in either model. We compute the dense correspondences by
using a small set of initial correspondences to establish an approximate relationship.
Identifying initial correspondences requires manual selection of fewer than 10 (and
possibly zero) vertices after an automated search is applied. Without the automated
search, experiments showed that 15 to 35 manually selected vertices were required,
depending on the shape and the complexity of the model. Automatic correspondence
search bootstraps the whole cloning process, and detailed heuristic rules are given
in Section 11.6.

The second step transfers motion vectors from source model vertices to tar-
get model vertices, labeled as motion transfer in Fig. 11.1. The magnitude and
direction of transferred motion vectors are properly adjusted to account for the
local shape of the model. Using the dense correspondences computed in the first
step, motion transfers are well defined with linear interpolation using barycentric
coordinates.

Motion Capture 
Data Or Any 
Animation 
Mechanism

Deform
Dense Surface 

Correspondences

Vertices 
Displacements

Cloned 
Expressions

Source Model Target Model

 Source Model Animation Target Model Animation

Fig. 11.1 Expression cloning system.
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11.3 Dense Surface Correspondences

Assuming N sparse correspondences are available, dense surface correspondences
are computed by volume morphing with radial basis functions (RBF) followed
by a cylindrical projection. Volume morphing roughly aligns features of the two
models such as eye sockets, nose ridge, lip corners, and chin points. As shown in
Fig. 11.2(a), volume morphing with a small set of initial correspondences does not
produce a perfect surface match. A cylindrical projection of the morphed source
model onto the target model ensures that all the source model vertices are truly
embedded in the target model surface, as shown in Fig. 11.2(b). See Fig. 11.11 for
more examples.

When multi-quadrics is used for an RBF, h(r) = √
r2 + s2,

x� target
i = F(x� source

i ) =
N∑

j=1

w j

√
||x� source

i − x�
j ||2 + s j

2. (11.1)

This network is trained three times with the 3D coordinates of source corre-
spondences as x� source

i , and the x-, y-, or z-values of target correspondences as
x� target

i (i = 1, 2, . . . , W). The distance s j is measured between c�
j and the nearest

x�
i , leading to smaller deformations for widely scattered feature points and larger

deformations for closely located points [7]:

s j = min
i �= j

||x�
i − c�

j ||. (11.2)

Given λ, the weight wω to be computed is

w� = (H T H + λI )−1 H T x� target
i . (11.3)

(a) After morphing the generic 
model to itself with 23 initial 
correspondences, some features are 
aligned. However, off-surface 
edges also arise like these blue 
edges over the nose.

(b) Morphing followed by a 
cylindrical projection achieves a 
complete surface match between 

two models.  

Fig. 11.2 Surface correspondences by morphing and projection.
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The regularization parameter λ is a smaller number and can be determined empiri-
cally. Once all the unknowns are computed, the RBF network smoothly interpolates
the non-corresponding points, mapping the source model onto the target model’s
shape.

After the RBF deformation, each vertex in the source model is projected onto the
target model’s surface to ensure a complete surface match. A cylindrical projection
centerline is established as a vertical line through the centroid of the head. A ray
perpendicular to the projection centerline is passed through each vertex in the source
model and intersected with triangles in the target model. The first intersection found
is used in cases of multiple valid intersections. Although this could cause a potential
problem, visual artifacts are not observed with various models in practice. A reason
may be that motions are similar for any of the valid intersections due to their regional
proximity.

Referring to the notations in Fig. 11.3, the line equation passing through the
center of the projection x�

o and a point in the source model x�
p is

x� = (x�
p − x�

0 )t + x�
0 . (11.4)

The plane equation that contains the triangle in the target model is

n� • (x� − x�
1 ) = 0. (11.5)

Plugging Eq. (11.4) into (11.5) and solving for t yield

t = n1(x1 − x0) + n2(y1 − y0) + n3(z1 − z0)

n1(x p − x0) + n2(yp − y0) + n3(z p − z0)
. (11.6)

Then the intersection x�
i is computed with equation (11.4) with t from (11.6)

plugged in.

000 ,, zyx

111 ,, zyx

iii zyx ,,

ppp zyx ,,

),,( 321 nnnn
ϖ

ox
ϖ

 the projection center 

px
ϖ

a source model point  

ix
ϖ

 the intersection point 

1x
ϖ

 a target model triangle vertex 

nϖ a target model triangle normal

Fig. 11.3 Notations used in Eqs. 11.4, 11.5, and 11.6.
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To test for intersections within a triangle, compute the barycentric coordinates of
the intersection point with respect to the vertices of the target triangle. Computing
barycentric coordinates is equivalent to solving a 3 × 3 linear system:

⎡

⎣
x1 x2 x3
y1 y2 y3
z1 z2 z3

⎤

⎦

⎡

⎣
b1
b2
b3

⎤

⎦ =
⎡

⎣
xi

yi

zi

⎤

⎦ . (11.7)

By a property of barycentric coordinate systems, if 0 ≤ b1, b2, b3 ≤ 1, then the
intersection lies inside the triangle. In reality, due to numerical precision limits, we
subtract and add 0.005 from zero and one, respectively.

11.4 Animation with Motion Vectors

A cloned expression animation displaces each target vertex to match the motion of
a corresponding source model surface point. Since we have dense source motion
vectors, linear interpolation with barycentric coordinates is sufficient to determine
the motion vectors of the target vertices from the enclosing source triangle vertices.

Note that although the source model vertices are embedded in the surface of the
target model by the RBF morphing followed by the cylindrical projection, the oppo-
site is not necessarily true (Fig. 11.4). To obtain the barycentric coordinates needed
for motion interpolation, we also project the target model vertices onto the source
model triangles. In other words, we do the same operation described in Section 11.3,
but this time reversing the source and target models. The barycentric coordinates
of each target vertex determine both the enclosing source model triangle and the
motion interpolation coefficients.

Since facial geometry and proportions can vary greatly between models, source
motions cannot simply be transferred without adjusting the direction and magnitude
of each motion vector. As shown in Fig. 11.5, the direction of a source motion vector
must be altered to maintain its angle with the local surface when applied to the target
model. Similarly, the magnitude of a motion vector must be scaled by the local size
variations. Examples are shown in Fig. 11.12.

Fig. 11.4 Side view of two models
after the projection.

Target model 

Points in the source are embedded in the surface 
of the target.  The opposite is not necessarily 

true. 

Source model 
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Source Model          Target Model Source Model          Target Model 

Magnitude needs to be adjusted accord-
ing to the local size variations. 

Source Motion 

Direction needs to be adjusted to 
preserve the motion angle with re-

spect to the local surface. 

Target Motion 

Fig. 11.5 Direction and magnitude adjustment of the motion vector.

To facilitate motion vector transfer while preserving the relationship with the
local surface, a local coordinate system is attached to each vertex in both the orig-
inal and deformed source model.1 The transformation between these local coordi-
nate systems defines the motion vector direction adjustment (Fig. 11.6). The local
coordinate system is constructed as follows. First, the x-axis is determined by the
average of the surface normals of all the polygons sharing a vertex. To ensure con-
tinuous normal (x-axis) variations across the surface, a noise filter [32] is applied
by averaging neighbor vertex normals. Second, the y-axis is defined by the projec-
tion of any edge connected to the vertex onto the tangent plane whose normal is the
just-determined x-axis. Lastly, the z-axis is the cross product of the x-and y-axes. To
obtain the deformed motion vector mω, for a given source vector mω (Fig. 11.6),

RO
W

RW
D

YZ

X

Y

T

   X 

Y

Z

X
Z

m
ϖ

m′
ϖ

World coordinate sys-
tem

Local coordinate system for  
(a) original vertex (b) the same vertex in the deformed model

(a) (b)

Fig. 11.6 Transformation matrix as a means to adjust a motion vector direction.

1 A deformed source model is the source model after the morphing and projection described in
Section 11.3.
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the transformation matrices are computed between the two local coordinate systems
and the world coordinate system:

O
W R =

⎡

⎣
x�
w • x�

o y�
w • x�

o z�
w • x�

o
x�
w • y�

o y�
w • y�

o z�
w • y�

o
x�
w • z�

o y�
w • z�

o z�
w • z�

o

⎤

⎦ , (11.8)

W
D R =

⎡

⎣
x�

d • x�
w y�

d • x�
w z�

d • x�
w

x�
d • y�

w y�
d • y�

w z�
d • y�

w

x�
d • z�

w y�
d • z�

w z�
d • z�

w

⎤

⎦ . (11.9)

The matrix O
W R denotes the rotation from a local source vertex coordinates axes

to the world coordinate axes, and W
D R is the rotation matrix from world axes to

the local deformed model axes. Prior to the dot product computation in Eqs. (11.8)
and (11.9), each component denoting the direction of x-, y-, and z-axes is normal-
ized. Finally, the transformation matrix is

O
D R = W

D R
O
W R. (11.10)

This mapping at each vertex determines the directions of the deformed source model
motion vectors given the source model motion vectors.

If the source and target face models have similar proportions, the motion vec-
tors may simply be scaled in proportion to the model sizes. However, to preserve
the character of animations for models with large geometry differences (e.g., the
unusually big ears of Yoda), the magnitude of each motion vector is adjusted by a
local scale factor constrained within a global threshold. The local scale at a vertex
is determined by a bounding box (BB) around the polygons sharing the vertex. In
deforming a source model to fit a target model, the local geometry around a vertex
is often scaled and rotated. Rotations are eliminated to facilitate a fair comparison
of local scale. The source BB is transformed by the rotation matrix of Eq. (11.10).
For each source model vertex in a BB, we compute its rotated position due to model
deformation:

ν�, = O
D Rν� . (11.11)

The local scale change due to deformation is the ratio of the rotated source BB and
the deformed BB (between b and c in Fig. 11.7):

S�
x,y,z = si zex,y,z(Def ormed SourceModel Local BoudingBox)

si zex,y,z(SourceModel Local BoundingBox)
. (11.12)

A protrusion or noise in the local geometry (e.g., a bump on the face in either
model) can exaggerate motion vector scaling, making the scaling unnecessarily
large or small. One solution is to limit scale factors by a global threshold such as
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Fig. 11.7 Local bounding box.

RO
D

Local bounding box  
a)original (b) transformed (c) deformed 

(a) (b) (c) 

the standard deviation of all scale factors. Scale factors greater than the standard
deviation are discarded and replaced by the results of a noise filter [32] that aver-
ages neighboring values. The filter is then applied over the whole face to ensure
smooth, continuous scale factors.

The transformation matrix that accounts both for the direction and magnitude
adjustments of a motion vector is given by

T = SO
D R, (11.13)

where S =
⎡

⎣
Sx 0 0
0 Sy 0
0 0 Sz

⎤

⎦ from Eq. (11.12). During animation, the motion vector for

each deformed model vertex is obtained by

mω′ = T mω, (11.14)

where mω is the vertex motion of the source model and m�, is the vertex motion
of the deformed model. Finally, a vertex in the target model v�

t is displaced by the
following equation:

m�
t = b1m� ′

1 + b2m� ′
2 + b3m� ′

3 , (11.15)

where b1,2,3 denotes the barycentric coordinates, mω
t the target vertex motion vector,

and m� ′
1,2,3 the enclosing source triangle motion vectors.

11.5 Lip Contact Line

Our models have lips that touch at a contact line. This contact line between the
upper and lower lips requires special attention. Although they are closely posi-
tioned, motion directions are usually opposite for upper and lower lip vertices.
Severe visual artifacts occur when a vertex belonging to the lower lip happens to
be controlled by an upper lip triangle, or vice versa. Therefore, careful alignment of
the lip contact lines between the two models is very important. Misalignment results



196 J. Noh, U. Neumann

in misidentification of the enclosing triangles and subsequent lip vertex motions in
the wrong direction.

Specific processes are followed to produce artifact-free mouth animations. First,
include all the source model lip contact line vertices in the initial correspondence
set for the RBF morphing step. Since source vertices do not usually coincide with
target vertices [Fig. 11.8(a)], it is necessary to compute corresponding points in the
target model. Compute the sum of the piecewise distances between the left and right
corners of the lip contact line and normalize each length to the range [0, 1] for
both models. Corresponding locations on the target lip line are found at normalized
parameters matching those of the source lip line vertices. Label each vertex param-
eter in the lip contact line as S1,2,3 ... and t1,2,3 ...for the source and target model,
respectively (Fig. 11.8). If parameter Sm falls between tn and tn+1, the correspond-
ing 3D coordinate c on the target lip is interpolated by

c = 3D(tn+1)
∗ Sm − tn

tn+1 − tn
+ 3D(tn)∗

tn+1 − Sm

tn+1 − tn
. (11.16)

With the above correspondences, the RBF morphing in Section 11.3 brings the
source lip vertices into the target model’s surface as shown in Fig. 11.8(a). Note that
there are duplicate vertices at each point—one for the upper lip and one for the lower
lip. If we perform the cylindrical projection in Section 11.3, the duplicate points
represented by t2, t3, or t4 in Fig. 11.8(a) will be controlled by upper-lip source
model triangles since these points are located above the source model lip contact
line. Therefore, another step is necessary to completely align the lip contact lines
of the two models. Temporarily move the vertices of the target model lip contact

Fig. 11.8 Lip contact line
alignment.

(a) After morphing

(b) Aligned two lip contact lines

Source model lip contact line

Target model lip contact line

Upper lip

Lower lip

t3

s2

s2

t2

t3
t4

t1,s1

t1,s1

t4

s3
t5

t5
s3
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line onto the corresponding source model lip contact points. These corresponding
positions are computed with normalized parameters and Eq. (11.16), as before, but
this time the target vertices are moved onto the source lip contact line as opposed
to the source vertices moving onto the target lip contact line. Figure 11.8(b) shows
final aligned lip lines.

Two issues are noteworthy. First, there is no actual degradation of the fidelity of
the target model from aligning its lip line vertices with the source model. Lip line
alignment is only temporary to facilitate determining the enclosing source model
triangles. The original target model lip vertex coordinates are used for animation.
Second, by manipulating the contact line vertices for alignment, there may be cases
where triangles flip if only the vertices on the lip contact line move. We recursively
propagate the same displacements in the contact line neighborhood until no more
triangle flipping is detected.

The next step determines which vertex at the lip contact points belongs to the
upper and lower lip so that each can be assigned to the appropriate enclosing trian-
gle. A naïve barycentric coordinate test may indicate both the upper and lower lip
triangles as the enclosing triangles for both points on a lip contact line. We check the
neighborhood of each vertex to see if neighbor vertices are located above or below
the vertex.

Motion vector transformations also require special attention at the lip contact
line. The matrices could easily be different for each of the duplicate vertices at a lip
contact point due to their different local neighborhoods. This would cause the two
vertices to move to different positions when driven with the same source motion
vector. To ensure the same transformation matrices for both vertices on a lip contact
point, consider the upper and lower lips connected. Specifically, the normal compu-
tations and local BB comparisons include neighbors from the upper and lower lips.

11.6 Automated Correspondence Selection

A small set of correspondences is needed for the RBF morphing. Since all other EC
steps are fully automated, automatic initial correspondence selection would com-
pletely automate expression cloning. Automatic correspondences not only reduce
tedious manual selection, but also remove the errors and variations produced by
mouse clicking and judgment. We present 15 heuristic rules that identify more than
20 correspondences when applied to most human faces. In some cases, we find that
up to 10 additional manual correspondences may be added to improve the animation
quality. In all cases, an animator can simply edit erroneous automatic correspon-
dences, substituting or adding their own selections.

Orient the face model to look in the positive z-direction. The y-axis points
through the top of the head, and the x-axis points through the right ear. The model
is assumed to have a neutral expression initially with the lips together and the
contact line defined by duplicate vertices. For robust behavior during the heuristic
correspondence searches, we skip (ignore) degenerate triangles that have one very
short edge compared to the other two edges.
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Heuristic rules

1. Tip of the nose: find the vertex with the highest z-value.
2. Top of the head: find the vertex with the highest y-value.
3. Right side of the face (right ear): find the vertex with the highest x-value.
4. Left side of the face (left ear): find the vertex with the lowest x-value.
5. Top of the nose (between two eyes): from the tip of the nose, search upward

along the ridge of the nose for the vertex with the local minimum z-value.
6. Left eye socket (near nose): from the top of the nose, search down to the left

side of the nose for the vertex with the local minimum z-value.
7. Right eye socket (near nose): from the top of the nose, search down to the right

side of the nose for the vertex with the local minimum z-value.
8. Bottom of the nose (top of the furrow): from the tip of the nose, search down-

ward to the center of the lips until reaching the vertex with the local minimum
z-value. The vertex with the biggest angle formed by two neighbors is the bot-
tom of the nose.

9. Bottom left of the nose: from the tip of the nose, search downward to the left side
of the nose until reaching the vertex with the local minimum z-value. The vertex
with the biggest angle formed by two neighbors is the bottom left of the nose.

10. Bottom right of the nose: from the tip of the nose, search downward to the right
side of the nose until reaching the vertex with the local minimum z-value. The
vertex with the biggest angle formed by two neighbors is the bottom right of
the nose.

11. Lip contact line: find the set of duplicated vertices.
12. Top of the lip: from the center of the upper lip contact line, search upward along

the centerline for the vertex with the local maximum z-value.
13. Bottom of the lip: from the center of the lower lip, search downward along the

centerline for the vertex with the local minimum z-value after passing the vertex
with the local maximum z-value.

14. Chin: from the bottom of the lip, search downward along the centerline for the
vertex with the local maximum z-value.

15. Throat: from the chin, search downward along the centerline until reaching the
vertex with the local minimum z-value. Along the search, find two vertices with
two maximum angles. The one with smaller z-value is the throat (the other one
should be near the chin point).

The labels given to these points may not be precise and are not important. We
only seek to locate corresponding geometric points in both models. Figure 11.9
shows the correspondences automatically found with the above rules.

11.7 Results and Discussion

The specifications of the test models are summarized in Table 11.1. The “source
man” model is used as the animation source for all the expressions that are cloned
onto the other models. Source animations are created by (1) an interactive design
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Fig. 11.9 Automated search results.

23 automatically found 
feature points includ-

ing 9 lip contact points 

Table 11.1 Models used for the experiments.

Model Polygons Vertices

Source man 1954 988
Woman 5416 2859
Man 4314 2227
Rick 927 476
Yoda 3740 1945
Cat 5405 2801
Monkey 2334 1227
Dog 927 476
Baby 1253 2300

system for creating facial animations and (2) motion capture data embedded into
the source man model (Fig. 11.10). An algorithm similar to [15] is implemented to
animate the source model with the motion capture data.

For expression cloning onto the woman and man models, only the 23 corre-
spondences from the automated search are used. This means that the whole EC
process is fully automated for these models. The Yoda model has large eyes and
ears. We manually add three additional points on each eye socket and two points
on each side of the face. The monkey model is handled similarly. The dog and

Fig. 11.10 Motion capture data and their
association with the source model.

46 motion-capture 
data points

Motion capture data 
embedded into the 
source man model
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cat models do not have anything close to human face geometry. Twelve and 18
points are manually selected for the dog and cat, respectively, to replace erroneous
automatic search results. Figure 11.11 shows the deformed source models produced
to determine dense surface correspondences from these initial sets of points. The
deformations closely approximate each target model. For example, the bumps on
the Yoda eyebrows are faithfully reproduced on the deformed source model. The
source model cheek is also smoothly bulged for the monkey model. The eyes are
properly positioned for the man and woman model. Motion vector adjustments are
depicted in Fig. 11.12. The monkey model has different local geometry from the
source model. Motions are widely distributed (column 5) and more horizontal (col-
umn 2) in the mouth region. The finer geometry of the forehead produces denser but
smaller motions (column 3).

Figures 11.13 and 11.14 show sample expressions from cloned animation
sequences. Although the models have different geometric proportions and mesh
structures, the expressions are well scaled to fit each model. For instance, the smile
and nervous expressions are effectively transferred to the woman model (columns
3 and 4 in Fig. 11.13). Frown and surprise expressions are shown on the cat model
(columns 5 and 6). Moderate-intensity expressions cause mostly small motions,
and these are sometimes hardly distinguishable from neutral expressions in static
images. Exaggerated expressions are tested in Fig. 11.14. A big round open mouth
source expression creates a rectangular mouth shape for the monkey due to its
much longer lip line. An asymmetric mouth shape is reproduced on the target
models, and variations arise from differences in the initial target mesh expres-
sions (column 4). The use of human source animations creates many human-like
mouth shapes for the dog model rather than expressions more typical of a real dog
(last row).

First row: The source model after the RBF morphing followed by the cylindrical 
projection. Second row: Target models. The source model is shown in figure 12. 

Note that although all the source model vertices are embedded in the target model, 
different tessellation makes the deformed cat model wireframe appear different 

from the source.  In general, deformed source models closely reproduce the target 
model features. For example, look at Yoda’s eyebrows and mouth (column 4).   

Fig. 11.11 Deformed models produce dense surface correspondences.
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First row: Source model motions. Second row: Monkey model motions. The left four 
expressions in figure 14 are used. The monkey’s wide and bulged mouth has more 

horizontal motions compared to the source model (solid orange circle). Finer geometry 
of the monkey forehead leads to denser smaller motions (dotted red circle). 

Fig. 11.12 Adjusted direction and magnitude after the motion vector transfer.

Assessing the emotional quality of the expressions produced by EC is clearly
subjective, but we can validate the quantitative accuracy of the algorithm by using
the “source man” model as both the source and target models. The EC algorithm
is applied to find the surface correspondences and adjust the motion vectors to any
local geometry variation. Ideally, the target vertex displacement should be identical
to that of the source model. Table 11.2 and Fig. 11.15 show error measures for
sample expressions. Staring with the automatically found 23 points, an additional
10 points are included for this test, 3 on each eye socket and 2 on each side of the
face. These points produce a more accurate surface match that reduces quantitative
errors. The error measure is defined as the size ratio between the position error and
the size of the motion vector:

%Error = 100
si ze(Posi tionError)

si ze(MotionVector)
. (11.17)

Figure 11.15 depicts displacement errors such that a vertex with zero error is
yellow and a vertex position error one tenth of its motion vector length (10%) is red.
Errors between 0 and 10% are colored by interpolation. Vertices with no motion
are colored blue. Figure 11.15 shows that central face areas where most expression
motions occur have small errors and boundary regions generally have higher errors.
The larger boundary-area error percentage occurs because motions are relatively
small at the boundary, making the denominator in Eq. 11.17 small. With very small
motions, even numerical errors can adversely affect this error measure. Table 11.2
shows the average errors of all the vertices with motions. To better quantify the
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First row: The source model and expressions.  Second row through the last row: The 
cloned expressions. Models have different shapes but expressions are well scaled to fit 

each model.

Fig. 11.13 Cloned expressions onto various models.

visual significance of the errors, the position error is also measured relative to an
absolute reference, in this case the size of the model:

%Errorx,y,z = 100
si zex,y,z(Posi tionError)

si zex,y,z(FaceRegionBoundingBox)
. (11.18)

Note that in this case the error is computed separately along the x-, y-, and
z-directions. Table 11.3 indicates that the average errors relative to the size of the
model are negligible. Since the motion vectors are dense over the whole face, and
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Fig. 11.14 Exaggerated expressions cloned on a wide variety of texture-mapped target models.
The Yoda model is provided courtesy of Harry Change, http://Avalon.viewpoint.com.

Table 11.2 Average errors relative to the motion vector size.

Angry Talking Smiling Nervous Surprised

5.28% 8.56% 4.77% 4.07% 4.56%

their errors are small, visual artifacts are very difficult to perceive, even at high
resolutions.

The experiments are performed on a 550-MHz Pentium-III PC. Except for the
actual animations, all other processes are performed offline. The automated search
takes O(n) to find the tip of the nose, the top of the head, and other extreme points.
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Angry                  Talking             Smiling             Nervous              Surprised 

No displacement error  
10% displacement error 
Area with no motion

% error is determined by equation (11-17).  
Colors between yellow and red represent 

values between 0 and 10%. 

Fig. 11.15 Visually depicted displacement errors.

Table 11.3 Average errors relative to the model size.

Angry Talking Smiling Nervous Surprised

x 0.22% 0.14% 0.13% 0.14% 0.16%
y 0.18% 0.26% 0.16% 0.11% 0.12%
z 0.09% 0.23% 0.06% 0.05% 0.05%

Once those initial points are found, the search for other points (i.e., the chin) only
requires a local search of neighborhood vertices. Therefore, the feature search is
fast, taking only a few seconds in our experience. RBF morphing involves solving
for eigensystems needed for the regularization parameter and the matrix inversion
needed for the weight vectors. The size of the matrix is typically less than 30 × 30,
so the morphing is also fast. A naïve cylindrical projection to find the correspon-
dence between n source vertices and m target triangles takes O(nm). Even with this
brute-force approach, projection takes less than a minute for our models. This time
could be reduced, by using a smarter search exploiting, for instance, spatial coher-
ence. Unnecessary tests in the back of the head could be prevented by limiting the
search to the frontal face. The transformation matrix to adjust the motion vector
magnitude and direction is constructed per vertex, O(n). Finally, the actual ani-
mation using already-computed barycentric coordinates is performed in real time
(> 30 Hz) including rendering time.

The manual intervention required for expression cloning is minimal, involving
at most the selection of a small set of correspondences. We show that correspon-
dence search can be at least partially automated by a heuristic analysis of the geom-
etry. There are some regions, however, for which geometric descriptions are not
practical. For example, locating the boundary of the face and finding detailed eye
features appear difficult using only geometry. As an extension, automatic search
may be expanded to use textures. Additional rules or methods would help identify a
greater set of correspondences [23,33]. This could further automate facial animation
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cloning and reduce quantitative errors. The EC method currently transfers only
motion vectors, but it seems possible to include color or texture changes as well [11].

Our goal is to easily create quality animations, and we assume that dense sur-
face motion vectors are available. However, we also observe that stick figures and
cartoons can convey rich expressions from a sparse representation. Future research
could explore how sparse source data can become without loss of expressive anima-
tion quality. The issue may be addressed by locating the points with the most salient
information for conveying the animation while the dense data field is algorithmi-
cally decimated. This knowledge may be useful for collecting motion capture data,
and at that point EC may also be suitable for applications in compression.

Currently, our efforts are focused on transferring exactly the same expressions
from a source to targets. It would be useful to put control knobs that amplify or
reduce a certain expression on all or part of a face. The control knobs would directly
modulate the sizes of the motion vectors. The expression motions could also be
transformed to Fourier space where its coefficients could be manipulated [5]. It may
also be possible to mix the motions of a set of expressions to produce a variety of
speech and emotion combinations for any target model.

Clearly, the flexibility provided by control knobs could provide varied target ani-
mations from just a few source animations. The idea is actually implemented and
discussed in more detail in Section 11.8.

Tongue and teeth model manipulations are not handled by EC at this point. If
the source model includes tongue animation, we believe that the EC technique can
generate animations for target tongue models [6,34]. Similarly, teeth models can be
rotated from source animations providing jaw rotation angles or just motion vectors
for the teeth. Finally, assuming an eyeball as a separate model, an eyelid could be
treated similar to the lip contact line, or eyelids could be rotated if the rotation angle
is provided.

11.8 Extension 1: Motion Volume Control and Motion Equalizer

In Section 11.4, we show how to adjust motion vector sizes while transferred
from the source model to target. As suggested, one way is to use local bounding
boxes coupled with a global threshold. By considering the model shape variation
locally, the mechanism reduces the adverse effects on motion vector scaling caused
by global shape variation between the two models. Applying a global threshold
enforces smooth scaling change across the whole face. Although the mechanism
produces well-proportioned expression animation on various target models, it may
be desirable to provide animators with a means to change resulting animations for
their end animation goal. For example, the EC system equipped with control knobs
would allow an animation sequence to be manipulated when cloned onto the target
model. This way, diverse target animations can be possible from a source anima-
tion. This section delves into the issue of the animator controlled motion vector size
manipulation.
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A quick and intuitive way of varying motion vector size is to directly influ-
ence the vertex displacements determined by the EC system. This direct manipu-
lation could be operated on each vertex, a group of vertices, or whole face vertices.
Figure 11.16 shows various effects on the resulting animation when each vertex dis-
placement is multiplied by constant scaling values. Varied scaling values amplify
or reduce the expressiveness of original expressions at various degrees. This sim-
ple operation can be a powerful editing tool especially when applied to a group of
vertices locally instead of to the whole face.

An interesting way to look at the direct multiplication of scaling values to the
vertex displacement is to consider it as a volume control for music. A scaling value
is then analogous to a volume gain. Exaggerated expressions correspond to high vol-
umes while reduced expressions correspond to low volumes. This volume control
influences the vertex displacements at each frame or spatially. In contrast, an audio
equalizer modulates music in frequency domain. Depending on various settings of

          Source model                    x 0.4                            x 1.0                           x 1.6 
Determined each vertex displacement is multiplied by constant scaling values. Scaling 

value 1.0 is equivalent to the default output from the EC system. 

Fig. 11.16 Cloned expressions produced with different scaling values.
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the low-frequency (bass) and high-frequency (treble) components, the overall feel-
ing that music conveys varies. Analogously, we attempt to modulate the frequency
of the vertex displacements in an animation sequence just like the audio counterpart.
Motion signal processing [5] motivated this work where signals from an articulated
body are decomposed into the frequency domain and manipulated. Our basic algo-
rithm is same as that of [5]. Only the applied signals are different. Instead of joint
angles, vertex positions in the face mesh are treated as input signals. Here is the
reproduced motion signal filtering algorithm.

The number of frames m determines how many frequency bands fb are used. Let
2n ≤ m ≤ 2n+1; then f b = n. The B-spline filter kernel of width 5 is w1 = cbabc,
where a = 3/8, b = 1/4, c = 1/16. The filter kernel is expanded by inserting zeros,
w2 = c0b0a0b0c, w3 = c000b000a000b000c, etc. Now, steps 1 to 4 are performed
simultaneously for each vertex motion signal.

1. Convolve the signal with the kernels to calculate lowpass sequence of all fb sig-
nals. G0 is the original motion signal and G f b is the DC or the average intensity.
Gk+1 = wk+1 × Gk or equivalently,

Gk+1(i) =
2∑

m=−2

w1(m)Gk(i + 2km). (11.19)

2. Compute the bandpass filter bands,

Lk = Gk − Gk+1. (11.20)

3. Multiply the Lk by each gain value.

4. Reconstruct the motion signal:

G0 = G f b +
f b−1∑

k=0

Lk . (11.21)

Our sample animation consists of 1201 frames, yielding f b = 10. The sam-
ple animation decomposes into 11 lowpass sequences, G0 − G10, and 10 band-
pass sequences, L0 − L9. Multiplying an arbitrary gain value to any of Lk before
reconstructing the motion signal back to G0 alters the original animation. Sup-
pose a gain value g is multiplied to band L0. Equation (11.21) becomes G0new =
G f b + gL0 + L1 + L2 + · · · + L f b−1. Using (11.20), expanding and rearranging
the equation yields G0new = G0 + (g − 1)(G0 − G1). More generally, for a gain
value g applied to band Lk ,

G0new = G0 + (g − 1)(Gk − Gk+1). (11.22)

This equation indicates that the new signal is sum of the original signal and differ-
ence of the lowpass sequence at level k multiplied by the gain factor minus one. The
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more the lowpass signals G are different between the two consecutive levels Gk and
Gk+1, the more G0new gets affected.

Next, suppose a gain value g is multiplied to bands L0, L1, and L2. Equa-
tion (11.21) then becomes G0new = G f b + gL0 + gL1 + gL2 . . . . . . + L f b−1.
Using (11.20), expanding and rearranging the equation yields G0new = G0 +
(g − 1)(G0 − G3). More generally, for a gain value g applied to m consecutive
bands from Lk ,

G0new = G0 + (g − 1)(Gk − Gk+m). (11.23)

The interpretation of this equation is similar to above, but this time the more the
lowpass signals G differ between the discrete levels Gk and Gk+m , the more G0new

is affected.
From Eqs. (11.22) and (11.23), we can see that G0new = G0 when the gain

value equals 1. When the gain value is greater than 1, the difference between the
lowpass bands are added to the original signal G0. This operation somewhat ampli-
fies the motion vector in its original direction. When the gain value is less than 1,
the difference between the lowpass bands is subtracted from the original signal G0.
This operation also amplifies the motion vector to some degree but this time in the
opposite direction.

Figure 11.17 shows the source model at two different frames when the gain
value is 1, meaning that no motion signal processing happened. Since 10 band-
pass sequences are used, L0 − L9, bands 10 through 13 are disabled as shown in
the picture. In contrast, Fig. 11.18 shows various effects on the original facial ani-
mation depending on the different gain values applied to different frequency bands.
The first row shows that the gain value 3 is applied to the bandpass frequency bands
0, 1, and 2. From Eq. (11.23), it can be seen that the difference between G0 and G3
is multiplied by 3−1 = 2 and added to the original expression G0. G3, which is the
3-times smoothed version of G0 by the B-spline filter along the temporal domain,
is similar to G0 so that the effect is small, and not much difference is observed
from the original expressions in Fig. 11.17. The fourth row shows that the gain
value −2 is applied to the frequency bands 0, 1, and 2. This time, the difference
between G0 and G3 is multiplied by 2 + 1 = 3 and subtracted from the origi-
nal expression G0. The effect is also small due to the small difference between G0
and G3.

Fig. 11.17 Original source expressions at two different frames with all the gain values set to one.
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First row: Gain sets to 3 at band 0, 1, and 2. Second row: Gain sets to 3 at band 
3, 4, 5, and 6. Third row: Gain sets to 3 at band 7, 8, and 9. Fourth row: Gain 
sets to –2 at band 0, 1, and 2. Fifth row: Gain sets to –2 at band 3, 4, 5, and 6. 

Sixth row: Gain sets to –2 at band 7, 8, and 9. 

Fig. 11.18 Various expressions generated by applying different gain values. See Fig. 11.17 for the
original expressions.

The second row shows, more salient effect. Compared to the original expressions
in Fig. 11.17, the mouth is much more open due to the relatively big difference
between G3 and G7. Similarly, the fifth row shows an interesting effect. The differ-
ence between G3 and G7 is subtracted from the original signal, resulting in reversal
of the motion vector direction. The mouth is firmly closed. The third and sixth rows
can be similarly explained. Especially, the comparison of second expressions shows
that the mouth is wide and lip corners up in the third row while narrow and lip
corners down in the sixth row.

Although not shown here, much more diverse effects can be obtained by manip-
ulating gain values in different ways. For example, setting the gain value to 0 for
the band L0 yields Gonew = G1. Since the high-frequency G0 is removed from
the original signal and replaced by the smoothed version G1, this operation can be
employed for the coarticulation effect for speech animation. For a smoother effect,
the gain value for L1 can be also set to 0, yielding Gonew = G2. In fact, setting the
gain value to 0 is equivalent to fitting a spline curve to each mouth vertex along the
temporal axis.

Obviously, greater variations can be observed by individualizing gain values for
each bandpass frequency band. In this case, analytic explanation may not be possible
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due to its complexity. However, random non-intuitive facial expressions are possible
by setting the gain value for each band arbitrarily.

11.9 Extension 2: Direct Animation with Motion Capture Data

One of the well-known approaches to producing facial animation with motion cap-
ture data is to use the Guenter’s algorithm [15]. In fact, the technique is utilized to
create a source animation in Section 11.7. However, it entails tedious manual pre-
processing of specifying feature correspondences between the motion capture data
and the 3D model. In addition, the way to propagate feature point displacements
to neighborhood heavily depends on the feature point distribution and the model’s
shape. If the actor and model do not conform in shape, the method will suffer.

Commercial software by Famous3D takes a different approach to generating
facial animations with motion capture data. After the initial feature correspondence
specification, a region of influence around each motion capture data is determined at
the animator’s discretion. This added manual intervention eliminates the problem of
shape conformation between the actor and 3D model and provides flexibility for the
resulting animation. Different animation can result with the same motion capture
data depending on the animator’s intention.

This section illustrates a mechanism to animate a 3D face model given motion
capture data utilizing the expression cloning technique. The idea is to triangulate
the motion capture data to produce a 3D face mesh and to apply the same technique
treating the triangulated motion capture data as a source model. Once the triangula-
tion is done and a source mesh is prepared, animation transfer between the source
and target model is straightforward using expression cloning. So the focus in this
section is placed on mesh generation from the provided motion capture data.

The steps to generate a plausible mesh are as follows:

1. Adjust the marker locations so that the left and right markers along the face
centerline become symmetric.

2. Approximate the lip contact line with a Bezier curve.

3. Specify constraints (if any) to consider in the triangulation step.

4. Project 3D markers onto a 2D plane and triangulate.

5. Split upper and lower lips from the triangulated mesh.

11.9.1 Step 1: Symmetry of the Face

When facial motion data are captured, the makers are manually attached on the
actor’s face. In general, the initial marker positions are approximately symmetric
with respect to the face centerline but not precisely. This asymmetry of the mark-
ers results in an asymmetric mesh if the triangulation is performed on the initial
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Fig. 11.19 Asymmetric mesh vs. sym-
metric mesh.

Asymmetric marker positions result in an asym-
metric mesh as shown in the blue circle.

marker positions (Fig. 11.19). To produce a nice symmetric mesh, the initial marker
positions needs to be adjusted.

The markers are divided into two groups. Assuming the orientation of the motion
capture data is looking in the positive z-direction, the y-axis points through the top
of the head, and the x-axis points through the right ear, the marker on the tip of
the nose is the one with the highest z-value. The markers on the centerline are then
determined as the ones with a similar x-coordinate to the nose marker. A tiny value ε

defines the similar x-coordinate. The markers on the left side of the centerline points
are one group and the rest is the other group (Fig. 11.20).

Individual marker correspondence between the two marker groups needs to be
found to properly adjust the maker positions. This problem can be cast as an energy
minimization problem. After the flipping of one marker group with respect to the
centerline through the nose, the correspondence configuration generating minimum
distance energy among all the possible correspondence configurations is the correct
individual marker correspondence. More formally, we are looking for a correspon-
dence configuration c such that Ec is minimum, where E = ||ML − MR ||. ML

denotes the left-hand marker set, MR the right-hand marker set, and ||. || the sum of
the pairwise Euclidean distance for each correspondence configuration. The number
of such configuration is k!, where k is the number of markers in each set.

Fig. 11.20 Marker grouping.

The left hand group, right 
hand group and centerline 
The point in the middle is 

the nose. 
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Obviously, with the increase in the number of markers used, the search space
becomes easily intractable. Since the two marker groups are roughly symmetric,
however, sorting the markers based on the y-coordinate values first and consider-
ing a subset of markers one at a time can dramatically reduce the search space. In
our case, three points from the left and five points from the right are considered each
time starting from the top of the sorted markers, and the window is shifted down with
the two unselected points from the right side carried over. Once the desired indi-
vidual correspondence is found, the initial positions are pairwise-averaged. Finally,
points in the centerline are also aligned with the nose point. The second picture in
Fig. 11.19 shows the adjusted marker positions for symmetry.

11.9.2 Step 2: Lip Contact Line Construction

Most of the motion capture data do not contain the lip contact line points. Since
the expression cloning technique assumes a mesh with the upper and lower lips fully
defined, the lip contact points need to be artificially created. A way to approximate the
arc-shaped lip contact line is to construct a Bezier curve with four control points [1,4].

The user specifies two lip corners and the number of points to be added along
the lip line. Then a nice lip contour is generated (Fig. 11.21). The added points
are displaced every frame for animation as the average of the neighbor points
displacements.

11.9.3 Step 3: Constraint Specification (Optional)

The triangulation at step 4 is performed to maximize the minimum angle. It achieves
the best triangulation in terms of the resulting triangle shapes. However, the user
may want to have a specific edge connecting specific points. For example, an edge

The upper left picture shows a Bezier curve 
with 4 control points with 2 of them coincident 
with the lip corners. The user specified 7 points 
to approximate the lip contact line. The upper 
right picture shows the resulting mouth mesh 

while the bottom right picture shows the mouth 
mesh without lip line approximation for com-

parison. 

Fig. 11.21 Lip contact line approximation using a Bezier curve.
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The left mesh is generated 
without constraints yielding 
the missing nose ridge edge. 
It can be fixed by changing 
the projection center or by 
simply inserting constraint 
points. The right mesh is 
produced by inserting a 

point to force the generation 
of the nose ridge edge. 

Fig. 11.22 Side view of the meshes generated with and without a constraint.

separating the forehead from the lower part of the face might be desirable. Similarly,
an edge representing the nose ridge might also be necessary. Although these edges
are automatically produced most of the time by the adopted triangulation method, it
can be forced to generate the edges if necessary, by simply inserting a small number
of new points between the two endpoints where the edge is desired. With the inserted
points, the inter-distance between points becomes smaller forcing an edge between
them (Fig. 11.22). The inserted points can be stationary or displaced for animation
as the average of the neighbor point displacements.

11.9.4 Step 4: Projection and Triangulation

Usually, a motion capture data is three-dimensional. Performing a triangulation in
3D space is a difficult task [9]. Therefore, 3D marker positions are spherically pro-
jected onto a 2D plane prior to the triangulation for a simpler 2D triangulation. The
projection center can be interactively adjusted.

In general, skinny triangles cause trouble for animation, so a triangulation con-
taining small angles should be avoided. The Delaunay triangulation [3] maximizes
the minimum angle, avoiding sharp triangles in the resulting mesh. Triangulations
are compared by their smallest angle and the one with the bigger angle is selected. If
the minimum angles of two triangulations are identical, the comparison is performed
with the second smallest angle, and so on. The connectivity among the points in the
2D plane is maintained while transferred to the 3D points for 3D mesh construction
(Fig. 11.23).

Fig. 11.23 Delaunay triangulation performed in 2D
space.
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Fig. 11.24 Open mouth after lip contact line split.

Left: source mesh directly generated from the motion capture data  
Middle and Right: target models 

Fig. 11.25 Expression cloning using the mesh directly generated from the motion capture data.

Since the triangulation is performed without consideration for the orientation of
each triangle, normal variation might be inconsistent over the surface. For example,
some triangles’ normal would point outward while others would point inward. For
correct rendering, a triangle is flipped if the angle between the triangle normal and
ray from projection center through triangle center is greater than 90 degrees.

11.9.5 Step 5: Lip Split

The mouth should be split open for correct facial animation. To open the mouth, the
artificially added lip contact line vertices in step 2 are duplicated and one is assigned
to the upper triangle while the other is to the lower triangle (Fig. 11.24). This step
completes the mesh generation from the initial 3D markers. The mesh now can serve
as a source mesh containing the source animation. Expression cloning algorithm can
be applied to various target meshes for animation transfer (Fig. 11.25).

11.10 Conclusion

The concept of expression cloning provides an alternative to creating animations
from scratch. We take advantage of the dense 3D data in (possibly painstakingly cre-
ated) source model animations to produce animations of different models with sim-
ilar expressions. Cloning can be completely automatic, or animators can easily alter
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or add correspondences. Cloning effectively hides unintuitive low-level parameters
from animators while allowing high-level control through correspondence selec-
tion. To naïve users, selecting a small number of correspondences is likely to be
much more intuitive and easier than dealing with muscles or sculpting. Since EC
starts with ground-truth data spatially (each frame) and temporally (a sequence of
frames), the quality of output animation is very predictable. Because animations
use precomputed barycentric weights and transformations to determine the motion
vector of each vertex, the method is fast and produces real-time animations.
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Chapter 12
Real-Time Adaptive Facial Animation

Stephane Garchery, Thomas Di Giacomo, and Nadia Magnenat-Thalmann

12.1 Introduction

Facial modeling and animation are important research topics in computer graph-
ics. During the last 20 years, a lot of research has been done in these areas, but it
still remains a challenging task. The impact of previous and ongoing research has
been felt in many applications, like games, Web-based 3D animations, 3D anima-
tion movies, etc. Two directions are investigated: precalculating animation with very
realistic results for animated films and real-time animation for interactive applica-
tions. Correspondingly, the animation techniques vary from key-frame animations,
where animators set each frame, to algorithmic parameterized mesh deformation.
Many of the proposed deformation models use a parameterization scheme, which
helps control the animation. Computer graphics have evolved to a relatively mature
state. In parallel to the evolution of 3D graphics technologies, user and applica-
tion requirements have also dramatically increased from simple virtual worlds to
highly complex, interactive, and detailed virtual environments. Additionally, the
targeted display platforms have widely broadened from dedicated graphics worksta-
tions or clusters of machines to standard desktop PCs, laptops, and mobile devices
such as personal digital assistants (PDAs) or even mobile phones. Facial animation
can be one illustration of such closely related evolutions of graphics techniques
and corresponding applications and user’s requirements. Actually, despite much
research and work on modeling, animation, and rendering techniques, it is still
an important challenge to animate a highly realistic face with simulated hair and
cloth, to display hundred of thousands of real-time animated humans on a standard
computer, and it is still not possible to render animated characters on most mobile
devices.

The focus of this chapter is to present dynamically adaptive real-time facial
animation techniques. We discuss methods to automatically and dynamically con-
trol the processing and memory loads together with the visual realism of rendered
motions for real-time facial animation. Such approaches would theoretically allow
us to free additional resources for hair or cloth animation; for instance, it should
also achieve real-time performance for facial animation on multiplatform and on
lightweight devices, as well as enable improvements to virtual environments with
the addition of more and more facially animated humans in a single scene.
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12.2 State-of-the-Art

We present various facial deformation models and then level-of-detail and scal-
abibility for animation, to conclude work related to media conversion.

12.2.1 On Facial Deformation

Generation of facial deformation is an issue that is particularly important for ani-
mating faces. A face model without the capabilities of deforming is a passive object
and has little role in virtual humans. The deformation model needs to consider that
facial movements are naturalistic and realistic. This involves study and investiga-
tion of the facial anatomy and of the motion and behavior of faces involving the
generation of facial expressions, which are readily comprehensible.

The study of anatomy and physiology helped artists to create lively pictures and
drawings. Similarly, this can give better insight for modeling and animating faces.

• Skin is significant both for the appearance and the movement of the face.

– Structure: Human skin comprises several layers. This structure enables skin to
move freely over the muscles and bones underneath.

– Motion: The motion characteristics are due to the mechanical properties of
skin, interaction of layers, and muscle activation. The main mechanical proper-
ties are nonlinearity, anisotropy, viscoelasticity, incompressibility, and plastic-
ity [80]. Aging changes properties of skin and causes emergence of wrinkles.

• Muscles are the principal motivators of facial actions and thus determine the
facial movement.

– Structure: Muscles lie between the bone and skin.
– Contraction and movement: All facial actions occur as a consequence of mus-

cular contraction. Muscles in general are of a large variety of size, shape, and
complexity. Facial muscles are, in general, thin, voluntary, and subcutaneous.
They also occur in pairs with one for each side of the face. Often muscles
tend to be considered according to the region in which they occur. There are
three types of facial muscles in terms of their actions: linear/parallel muscles,
which pull in an angular direction; elliptical/circular sphincter muscles, which
squeeze; and sheet muscles, which act as a series of linear muscles.

• Bones of the head, collectively termed as the skull, determine the proportion and
shape of the face. The skull consists of two parts: the cranium and mandible.

In addition to the above, there are facial features with a distinct form and specific
motion, e.g., eyes, tongue, and teeth. Eyes are a particular noticeable attribute and
significant to the appearance and motion of the face.

The development of facial animation may be considered as dealing with defin-
ing control parameterization and development of techniques and models for facial
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animation based on these parameterizations [62]. From animators’ point of view,
facial animation is a manipulation of the parameters and, therefore, parameteriza-
tion is an important aspect to the animation model. There are three main schemes of
parameterization, which have been used in the context of facial animation models:

• FACS (Facial Action Coding System) was developed by Ekman et al. [24] and
was not intended for animation. Its primary goal was to develop a comprehensive
system that could reliably describe all possible visually distinguishable facial
movements. It defines fundamental basic actions, known as action units, which
describe the contraction of one facial muscle or a group of related muscles. There
are 46 action units. FACS seems complete for reliably distinguishing actions of
the brows, forehead, and eyelids, but it does not include all the visible actions
for the lower part of the face, particularly related to oral speech. In addition, it
does not include the head movements. Still, the use of FACS in facial anima-
tion goes beyond what was intended. There have also been minor variants of
FACS. For example, a basic facial motion parameter can be defined in terms of
minimum perceptible action (MPA) [40]. Each MPA has a corresponding set of
visible facial features such as movement of the eyebrows, the jaw, the mouth,
or other motions that occur as a result of contracting muscles associated with
the region. The MPAs also include nonfacial muscle actions such as nods and
turns of the head and movement of the eyes. The MPAs for the mouth region are
designed so that rendering of speech can be done reliably.

• MPEG-4 facial animation is an efficient coding method for geometry and effi-
cient for the compressed transmission of corresponding animation parameters.
Facial animation parameters (FAPs) are designed to encode animation of faces
reproducing expressions, emotions and speech pronunciation. The 68 parameters
are categorized into 10 different groups related to parts of the face. FAPs repre-
sent a complete set of basic facial actions and therefore allow the representation
of most natural facial expressions. The parameter set contains two high-level
parameters, the viseme and the expression. Since the FAPs are required to ani-
mate faces of different sizes and proportions, the FAP values are defined in face
animation parameter units (FAPU). The FAPU are computed from spatial dis-
tances between major facial features on the model in its neutral state. It must
be noted that the standard does not specify any particular way of achieving facial
mesh deformation for a given FAP. The implementation details such as resolution
of the mesh, deformation algorithm, rendering, etc., are left to the developer of
the MPEG-4 facial animation system. The standard also specifies the facial ani-
mation table (FAT) to determine which vertices are affected by a particular FAP
and how. Using the FAT is very appropriate, guaranteeing not only the precise
shape of the face, but also the exact reproduction of animation.

Various models of deforming a face have been developed over the years [57].
Many of these models are adapted from general deformation models. We categorize
them based on the mechanisms by which the geometry of the face is manipulated:

• Shape interpolation: One of the earliest approaches employed for animat-
ing faces, this is primarily based on running an interpolation function (linear
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or nonlinear) on the vertex positions of the extreme poses or expressions of
faces. It has several limitations: the range of expressions obtained is restricted
and the method is data-intensive, as it needs explicit geometrical data for each
pose/expression.

• Parametric model: This model overcomes the restrictions of the interpola-
tion technique [61]. Here, a collection of polygons is manipulated through a
set of parameters. This allows a wide range of faces by specifying a small
set of appropriate parameters associated with different regions of a face. How-
ever, the design of the parameters set is based on hardwiring the vertices for
manipulating a part of the face, which makes the model dependent on the facial
topology.

• Muscle-based models: The complete anatomical description of a face is rather
complex; thus, it is not practical to design a model that entails the intricacies
of the complete description of the face anatomy. However, efforts have been
made to create models based on simplified structures of bones, muscles, skin, and
connective tissues. These models provide the ability to manipulate facial geom-
etry based on simulating the characteristics of the facial muscles. Most of these
muscle-based models use the FACS parameterization scheme or its variant. The
work by Platt and Badler [68] is one of the earliest attempts focused on muscle
modeling and the structure of the human face, where the skin is considered as
an elastic plane of surface nodes. Forces applied to elastic mesh through muscle
arcs generate realistic facial expressions. Waters [78] propose a model based on
a delineated deformation field for the action of muscles upon skin. Waters ani-
mates human emotions such as anger, fear, surprise, disgust, joy, and happiness,
using vector-based muscles implementing FACS. Terzopoulos and Waters [73]
propose a facial model with a more detailed anatomical structure and dynam-
ics of the human face. A three-layered structure is considered, which correspond
to skin, fatty tissue, and muscle, respectively. Muscle forces propagate through,
the mesh systems to create animation. This model achieves great realism; how-
ever, simulating volumetric deformations with three-dimensional lattices requires
extensive computation. A simplified mesh system reduces the computation time
while still maintaining visual realism [82]. Here, the viscoelastic properties of
skin are considered. Lee et al. [49] present models of physics-based synthetic
skin and muscle layers based on earlier work [73]. The model accounts for vol-
ume preservation and skull penetration force. The model achieves a great degree
of realism and fidelity; however, the model remains computationally expensive.
In another method [39], a three-layer structure is used and a mass-spring system
is employed for deformation. An editing tool is provided to design a coarse shape
of muscles interactively, which is then used for automatic creation of a muscle
fitting to the face geometry.

• Pseudo-muscle modeling: Simulated muscles offer an alternative approach by
deforming the facial mesh in muscle-like fashion, but ignoring the compli-
cated underlying anatomy and the physics. Deformation usually occurs only
at the thin-shell facial mesh surface. Muscle forces can be simulated in the
form of operators arising through splines [54, 55, 75, 76] or other geometric
deformations [41].
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– Abstract muscle actions (AMA) [51] refer to a procedure for driving a facial
animation system. These AMA procedures are similar to the action units of
FACS and work on specific regions of the face. Facial expressions are formed
by a group of AMA procedures.

– Free-form deformation (FFD) is a common deformation technique. Rational
free-form deformation (RFFD) incorporates weight factors for each control
point, adding another degree of freedom in specifying deformations [41].
Kalra et al. [41] simulate the visual effects of the muscles using rational free-
form deformation (RFFD) with a region-based approach. To simulate the mus-
cle action on the facial skin, surface regions corresponding to the anatom-
ical description of the muscle actions are defined. The skin deformations
corresponding to stretching, squashing, expanding, and compressing inside
the volume are simulated by interactively displacing the control points and by
changing the weights associated with each control point. Displacing a control
point is analogous to actuating a physically modeled muscle. Compared to
Waters’ vector muscle model [78], manipulating the positions or the weights
of the control points is more intuitive and simpler than manipulating muscle
vectors with a delineated zone of influence. However, RFFD (or FFD) does
not provide a precise simulation of the actual muscle and the skin behavior, so
that it fails to model furrows, bulges, and wrinkles in the skin. Furthermore,
since RFFD is based upon surface deformation, volumetric changes occurring
in the physical muscle are not accounted for.

– Spline muscles: Parametric surfaces or spline-based surfaces provide high-
order continuities, usually up to C2. Furthermore, the affine transformations
can be applied to a small set of control points instead of all the vertices of the
mesh, hence reducing the computational complexity. Some models based on
parametric surfaces have been used for defining the facial model [54, 55, 75,
76]. Wang et al. [76] show a system that integrated hierarchical spline models
with simulated muscles based on local surface deformations. Muscles coupled
with hierarchical spline surfaces are capable of creating bulging skin surfaces
and a variety of facial expressions.

• Finite element method (FEM), in the context facial deformation, has been
employed for biomechanical study and medical simulations, where accuracy is
of importance. Larrabee [48] proposed the first skin deformation model using
FEM. The skin is simplified to an elastic membrane with nodes spaced at regular
intervals. The linear stress-strain relationship is employed for the skin membrane.
This approach attempted modeling the effect of skin flap design for preopera-
tive surgical simulation. Deng [17] proposed a more rigorous model comprising
three-layered facial tissues. The model was used for simulating the closure of
skin excision. Further work [67] extends Deng’s model employed on facial data
obtained from CT (computer tomography) for surgical simulations. One may
notice that these methods have not really been used for facial animation; how-
ever, they do have potential. Guenter [30] proposes a simpler scheme of attaching
muscles and wrinkle lines to any part of the face and using the global stiffness
matrix for computing the deformation. The skin is modeled as a linear elastic
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rectangular mesh. Contraction of muscles is computed in 2D and then mapped
onto 3D. FACS is used for control parameterization where muscles can be speci-
fied as one or more action units.

• Others: There are other deformation models that do not strictly fall in any of
the above classes. Many of these models are based on local deformation of facial
geometry. In some of the performance-driven animations [31, 64, 79], the defor-
mation for the neighboring zone of the dot is computed through a distance func-
tion. A normalization or composition scheme is often desirable to overcome
the unwanted effects when two regions overlap. In other approaches, a trans-
formation method is used for modeling an individualized face from a canonical
model [46]. The same method is also extended for animating a face. A set of con-
trol points is selected, and the transformation gives the displacement of these con-
trol points. The displacements of other points are computed using a linear combi-
nation of the displacements of the control points. The actual computation is done
in 2D using cylindrical projection. FACS is used for control parameterization.

12.2.2 On Animation LoD and Adaptation

As for geometry, animation techniques can be adapted and simplified in certain
cases, i.e., when motions are too fast, too far away, or too numerous for
human sight as stated by Berka [6], or when motions are of low interest and
therefore should not require complex calculations. Similarly to Level-of-Detail
(LoD) for rendering and geometry, this approach can be applied for animation to
manage expensive computations and memory costs of transformations and deforma-
tions, and provide a controlled trade-off between speed and realism. But unlike for
geometry, in LoD for animation data that are out of the viewing-frustum still need to
be processed. Actually, invisible objects are still animated and can enter the frustum
at any time, so its motion updates need to be computed. Chenney et al. [14] propose
to ensure a coherent treatment for this by setting the lowest level on objects out
of the frustum. Most of the interest for animation LoD has been focused on defor-
mation techniques, such as mass-spring networks and FEM: Hutchinson et al. [36]
present a simple square mass-spring structure that is refined where and when the
angle between springs increases and exceeds a user-defined threshold. Howlett
et al. [35] extend this method by introducing non-active points, which play a role in
the spatial subdivisions but none in the dynamics of the object. For FEM, adaptive
techniques such as proposed by Wu et al. [81] using a progressive mesh, and by
Debunne et al. [16] also using a progressive mesh with an adaptive timestep, fasten
FEM computations to obtain real-time simulations. Capell et al. [12] use a mul-
tiresolution hierarchical volumetric subdivision to simulate dynamic deformations
with finite elements and also use FEM to propose a framework for skeleton-driven
deformations [11]. Animated natural phenomena have also taken advantage of LoD
for animation, as proposed in [18,65], as well as hair animation [7,77] and character
animation. The idea to control the skeleton complexity, by statically decreasing the
sampling frequency of motions and degree of freedom of the hierarchy, has been
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proposed by Granieri et al. [29]. Cozot et al. [15] propose adapting the complexity
of character animation by using different animation methods as different levels.
They apply their method on walking humans, with standards criteria for level selec-
tion. O’Sullivan et al. [59] includes some LoD for motion in an integrated LoD
system that also handles LoD for behavior. Ahn et al. [2] propose a simplification
of motions based on a frame-based pre-processing stage to cluster joint motions.
Recently, Redon et al. [70] presented adaptive forward dynamics with motion error
metrics. Based on dynamic bodies, they simulate hybrid skeletons with active, (i.e.,
featuring acceleration, velocity, and position updates), passive (i.e., featuring bias
acceleration and inverse inertia updates), and rigid joints (i.e., featuring only bias
acceleration. Pettre et al. [66] also propose a framework for scalable rendering of
crowds, with navigation graphs where individuals are spread, LoD for geometry
including impostors, and basic LoD for motion with the use of pre-processed baked
meshes rather than run-time animation.

Similarly to other media types, such as scalable video discussed by Kim
et al. [43], audio presented for instance by Aggarwal et al. [1], or graphics as
proposed by Boier-Martin [8], adaptation of content is also applicable to 3D graph-
ics, as proposed by Van Raemdonck et al. [74] and Tack et al. [71] for instance,
who propose a view-dependent quality metrics for decision-making based on Pareto
plots, and also applicable to 3D animation as proposed by Joslin et al. [38].

12.2.3 On Media Conversion

Rendering and animating complex 3D scenes on very lightweight and mobile
devices are still very important and challenging issues. Despite some methods on
3D graphics for mobiles, which use devices as display while the rendering is pro-
cessed elsewhere [47], or which use existing optimization techniques [13, 22, 69],
an important direction to investigate, especially when considering very lightweight
devices, is the conversion of 3D graphics to other media, such as images or videos.
Image-based techniques, when focusing on the simplification of 3D rather than on
the improvement of the rendering realism, provide clues on the possible adapta-
tion of 3D to other representations. Maciel et al. [50] propose replacing geometry
with impostors that are roughly semi-transparent textured quads usually gener-
ated by pre-rendered images from predefined camera positions. Character anima-
tion has received particular attention from Tecchia et al. [72] and Aubel et al. [5].
These approaches animate impostors to reproduce the 3D animation of hierarchi-
cally articulated bodies with animated textures. Brosnan et al. [10] experiment the
efficiency of impostors versus complete geometry on mobile devices. The results of
their studies illustrate that impostors are suitable on such platforms. Although an
impostor offers the advantage of preserving details with a small number of trian-
gles, it cannot be easily applied to general detailed triangle meshes, especially those
used for deformable surfaces. The Geometry Video is an innovative representation
of animated meshes encoded as videos proposed by Briceno et al. [9]. Based on
the geometry image representation, it is extended to videostreams compressible by
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common codecs, MPEG compression notably. The interest and work for 3D con-
version to 2D vector graphics are very recent, and only a few investigations and
experiments have tried to address them. One of the most significant works has been
presented by Herman et al. [32]. It features a rotating 3D teapot in vector graphics,
with wireless rendering and global rotations of the object. Other contributions are
proposed in [60]. Unfortunately, none of the existing approaches handles complex
shading, not even Gouraud, and particularly lack support for animation and defor-
mation of high-resolution and articulated objects.

12.3 Example-based Real-Time Deformation Engine

A literature survey on different approaches to facial animation systems shows the
most important characteristics to be featured in an ideal facial animation system.
First, a facial animation system should be easy to use, multiplatform, and simple to
implement. Thus, it should be suitable for any kind of geometry, require a minimum
of time to set up face models for animation, and allow user input for animators to
design specific deformations if necessary. It should also provide realistic results and
provide a precise control on the animation.

To achieve a maximum of these goals, it is crucial to properly define which
parameters are considered. In 1999, MPEG-4 defined a standard that proposed
deforming the face model directly by manipulating feature points of the face and
presented a novel animation structure. These parameters are completely model-
independent, based on very few pieces of information, and leave open the adaptation
of animations for each face model according to the facial engine that is used. A lot
of research has been done in order to develop facial animation engines based on this
parameterization system. Commonly, a piecewise linear interpolation function for
each animation parameter [42, 58] is used to produce the desired result, and some
research [56,63] has been done to simplify the process, or to propose semiautomatic
approaches. We now present an automatic way to simplify facial data construction.

12.3.1 MPEG-4 Overview

To understand facial animation based on MPEG-4 parameters, some keywords of
the standard and the pipeline to animate compliant face models are described:

• FAPU (facial animation parameter units): all animation parameters are described
in FAPU units. This unit is based on face model proportions and computed based
on a few key points of the face (like eye distance or mouth size).

• FDP (facial definition parameters): this acronym describes a set of 88 feature
points of the face model. FAPU and facial animation parameters are based on
these feature points. These points could also be used in order to morph a face
model according to specific characteristics.



12 Real-Time Adaptive Facial Animation 225

• FAP (facial animation parameters): it is a set of values decomposed in high-level
and low-level parameters that represent the displacement of some features points
(FDP) according to a specific direction. Two special values (FAP 1 and 2) are
used to represent visemes and expressions. All 66 low-level FAP values are used
to represent the displacement of some FDPs according to a specific direction
(see [26]). The combination of all deformations resulting from these displace-
ments forms the final expression. A facial animation then is a variation of these
expressions over time.

The FAP stream does not provide any information on the displacement of neigh-
boring vertices; therefore, for each FAP, we use a method that defines each dis-
placement, i.e., which vertices are influenced and in which weight and direction
according to FAP intensities. MPEG-4 provides a referencing method called face
definition tables (FDT) based on a piecewise linear interpolation in order to animate
the face model [27]. These tables (also referred as FAT) provide information about
which vertices should be translated or rotated for each FAP displacement. More
information can be found in [53]. FDT is optional: the information it provides can
be created by an animator by defining each influence on each FAP manually. How-
ever, areas such as the lips make this work very tedious due to the close proximity
of 21 FAP values in a very small region.

12.3.2 Automatic Feature-based Geometrical Construction
of Deformation Data

We present a generic approach to compute each region of influence. The main idea
is to keep coherence and a maximum of simplicity in order to adapt this approach to
different platforms or environments, but at the same time also to allow for realistic
expressions.

12.3.2.1 Computation Description

The main problem is to find a correct definition of the influence area for each FAP
according to its neighboring vertices. We propose an approach based on the follow-
ing process:

• Compute the distribution of FDPs on the model and a relation of distance
between them.

• For each vertex of the mesh, define which control point is able to influence it and
define the ratio of influence of each control point.

A 3D face mesh is composed of different meshes for the eyes, teeth, tongue,
and skin. The skin mesh is mainly defined by the holes for the eyes and the mouth.
Also, often a face model has a vertex distribution that is not uniform over the mesh.
In order to develop a model-independent approach, we have to take into account
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these specificities, and then we should define an appropriate distance measurement.
A measurement based on Euclidean distance is efficient to manage the variations
in mesh density, but it does not take into account problems like holes in the model.
A measurement based on the topology like the number of edges between vertices
takes the holes into account, but it is not efficient for the mesh density variations.
We propose to use a metric based on both aspects: Euclidean distance and mesh
topology. The metric is computed following this rule: “the distance is equal to the
sum of the edge distances along the shortest path between two vertices.” Using this
metric, we are able to manage both holes and mesh density variation. Our approach
is based on the definition of a list of influencing feature points for each vertex in
the face mesh. Initially, all of the feature points are in the influence list. First, we
find the closest feature point to the vertex with the previously defined metric. Then,
we remove all the feature points from the list that are in the plane perpendicular to
the vector between the vertex and the selected feature point (see Fig. 12.1). Then,
we select the next closest feature point in the remaining list and we apply the same
procedure until all feature points have been taken into account. When the list of
influencing feature points is established, the influence of each of them on the current
vertex is processed as a balanced sum d, where P is a vertex of the mesh:

d =
∑n

i=1 di∗cos θi∑n
i=1 cos θi

, (12.1)

where n equals the number of influencing feature points for P, θi is the angle
between P and the feature point, and di is the distance between the feature point and
the vertex. The weight associated to a specific feature point for P is computed as

Wi,P = sin

(
π

2

(
1 − di

d

))
. (12.2)

By computing Wi,P for each vertex, we obtain for each feature point a list of the
vertices that are influenced by it, with an associated weight. Some normalization
process occur to keep skin deformation coherence.

Fig. 12.1 Three steps to define a potential feature point [26].
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Fig. 12.2 Directional repartition of facial animation parameters [26].

12.3.2.2 Application to the Face by Defining Simple Constraints

Looking at the FAP repartition from a directional point of view, there are important
differences in the feature points distribution (see Fig. 12.2). The method described
above is applied to the 3D face model three times, one for each direction of deforma-
tion, to compute a different influence area according to each displacement direction.
We obtain then three different lists of vertices influenced for each feature point for
each region, used during the animation to deform the mesh. This information can
easily be represented in the FaceDefMesh format and be used in an MPEG-4 com-
pliant face system.

This initialization step of influence computation is done only once, can be stored,
and only takes a few seconds for a model composed of more than 10 K polygons on
a standard PC. The advantages of this approach are that it provides a quick way
to simplify the number of influent points and it allows for the same computation
on all vertices independently of their location on the face. Therefore, it is possible
to add or remove feature points easily without changing the computation process.

Fig. 12.3 Overview of global facial animation process.
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This approach works not only with MPEG-4 but with any feature point-based defor-
mation approach. Figure 12.3 shows a summary of the steps needed. First, starting
from only a mesh (model topology) and FDP information, the system computes
normalization values (FAPU), the distribution of FDP, and vertices. After this ini-
tialization step, during the animation process the system converts FAP information
into new FDP positions and animates the mesh in order to follow the FDP spatial
modifications.

After computing the influences, a designer can still edit this information and
modify it if necessary or use it to control a specific deformation. Starting from
already calculated influence areas is easier for the animator and saves a lot of manual
work.

12.4 Scalability and Adaptation of Facial Animation

Traditionally, content has been tailored toward a specific device or a specific appli-
cation. For instance, computer games have been developed with specific computers’
capabilities in mind. In recent years, this trend of multiple contents for multiple
devices has slowly shifted toward a single content for multiple devices approach.
This has great advantage both for the content/service provider and for the end user.
First, only a single content, of high quality, needs to be authored and provided for
an entire suite of devices and conditions. Second, the user receives content that is
optimized and that could fit not only the limitations of the device, mobile or not,
but also the network capabilities, the user’s own preferences, and the application
performance.

12.4.1 Introduction to Bitstream Adaptation

This motivating goal is being explored in the framework of standardization, specif-
ically by MPEG groups. Though early work in MPEG-7, e.g., proposed by Heuer
et al. [33], adapts certain types of content, this concept is particularly being explored
under the framework of MPEG-21 Digital Item Adaptation (DIA, see [37]). A digi-
tal item is the MPEG name given to any media type or content.

The adaptation of a bitstream is basically illustrated by Fig. 12.4, where parts
of an original bitstream are dropped to generate an adapted bitstream. The princi-
ples are based on XML schemas called Bit Stream Description Language (BDSL),
and its generic form is called generic Bit Stream Description Language (gBDSL).
The idea is that compressed data are described using these schemas. BSDL uses
a codec-specific language, meaning that the adaptation engine needs to understand
the language and use a specific XML stylesheet, explained ahead, in order to adapt
the bitstream.

The adaptation process is very flexible and decomposed in multiple levels. The
components and elements working together to perform a complete adaptation are as
follows:
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Fig. 12.4 Illustration of bitstream adaptation.

• The original bitstream, referred to as the Content Digital Item (CDI) in MPEG.
This is the initial encoded format of the content. It should be the highest-quality
version and should contain all elements and scalability mechanisms required for
the adaptation.

• The bitstream description, being a gBSD for instance. The gBSD [3, 4] file is
essentially localizing each of the important elements within the encoded file,
marking lengths, offsets, and other information that enables the adaptation to
occur. It can be generated in different ways, but the simplest is probably dur-
ing the encoding of the original scalable bitstream. Another way is to generate
a BSD with a binary to bitstream description engine (BintoBSD), as shown in
Fig. 12.5. The BSD contains a description of the bitstream at a high level, i.e.,
not on a bit-by-bit basis, and can contain either the bitstream itself, represented
as hexadecimal strings, or links to the bitstream.

• The context, refered as the Context Digital Item (XDI) in MPEG. The XDI con-
tains the formatted information from the client and can also contain information
from the server, on the target device, the user preferences, the network character-
istics. It can be seen as a set of input control parameters for adaptation.

• The Adaptation Quality of Service (AQoS). According to the context, the AQoS
is selecting specific parameters that will drive the XSLT (see ahead) and then
the adaptation itself. For instance, the AQoS can relate an available bandwidth
at a given time, provided by the context, to a desired layer of complexity for the
XSLT to keep only bitstream parts belonging to this layer.

Fig. 12.5 On the left, generation of a bitstream description; on the right, adaptation of a bitstream
processed by a transformed bitstream description.
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Fig. 12.6 Overall schematized architecture of the adaptation process.

• The transformation description, being an XML stylesheet (XSLT). The XSLT
is the core for the adaptation. Actually, it relates the gBSD to the actual val-
ues or preferences given by the user or the terminal through the context and the
AQoS. The XSLT contains processes for verification of a gBSD file against the
required adaptation process, as well as the transformation process of bitstream
descriptions itself with a set of rules. This is generally an execution routine and
must be handcrafted for a particular task or set of tasks; for instance, for remov-
ing elements from the XML bitstream descriptions. During this stage, the bit-
stream’s header might be changed in order to take into account the elements that
were removed from the bitstream. For example, an initial mask might indicate the
presence of all elements, but this would be modified to indicate which elements
have remained after adaptation, to maintain consistency so that the decoder on
the terminal does not become unstable. The XML document is then parsed via a
BSDtoBin converter, which takes the XML document and converts it back into a
bitstream, as shown in Fig. 12.5.

Figure 12.6 summarizes the whole adaptation process. The client requests a con-
tent to the server, which then sends it to the adaptation engine, together with the
associated bitstream description. The AQoS and XSLT can be stored in the adapta-
tion engine or also sent by the server. According to the AQoS and the aggregated
context coming from the client and through the context aggregation tool, the opti-
mizer outputs values for the XSLT to perform the transformation on the bitstream
description. Once transformed, this description is used in the resource adapter to
generate the adapted bitstream and send it to the client.

As mentioned in Section 12.2, adaptation of video, image, and audio has received
a lot of attention by the research community, while graphics, and especially 3D
graphics, has, until now, been less investigated. We present methods for 3D graphics
data adaptation based on [20], with a focus first on the scalability of the geometry
and then, on the scalability of facial animation data.

12.4.2 Scalable Representation

3D graphics data can be decomposed into geometrical parameters, such as ver-
tices coordinates, normals, textures, etc., and animation data, such as the joints
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transformations, displacements of facial control points, etc. This part details an
approach for the adaptation of geometry. It is based on previous work [44], which
has been extended for supporting adaptation as introduced previously. The method
is based on a clustered representation of the different resolution of the geometry.
The idea of clustering is presented along with its extension to the compact rep-
resentation of vertex properties and animation parameters for latter adaptation. The
premise involves clustering all the data so that a specific complexity can be obtained
by simply choosing a set of clusters. From the complex mesh Mn(Vn, Fn), where
Vn is a set of vertices and Fn is a set of faces, it is sequentially simplified to
Mn−1, . . . , M1, M0. A multiresolution model of this simplification sequence has,
or at least is able to generate, a set of vertices V and faces M (see Fig. 12.7), where
the union is denoted as + and the intersection as −:

V =
n∑

i=0

Vi , M =
n∑

i=0

Mi .

There are many simplification operators, including decimation, region merging,
and subdivision. Here we use half-edge-collapsing operators [34] and quadric error
metrics (QEM) [28]. By an edge-collapsing operator, an edge (vr , vs ) is collapsed
to the vertex vs . For instance, let say that faces f1 and f2 are removed by such a col-
lapse and that faces f3 and f4 are modified into f ′

3 and f ′
4. The clusters are therefore

defined as C(i) = { f1, f2, f3, f4} and N(i) = { f ′
3, f ′

4}. The error metric is slightly
modified to adopt the animation parameters. Each vertex has measurement of levels
of animation. For example, a vertex that is close to the joint in body animation or
a vertex that has large facial deformation parameters needs to be preserved during
the simplification process (see Figs. 12.8 and 12.9). At one extreme, it is desired to
preserve the control points of animation as much as possible. This level of deforma-
tion is the multiplied QEM of each vertex such that vertices with a high deformation
parameter are well preserved through simplification.

V and M can be partitioned into a set of clusters. The first type is a set of vertices
and faces removed from a mesh of the level i to a mesh of the level i − 1, denoted
by C(i). The other type is a set of vertices and faces that are newly generated by
simplification, denoted by N(i). A level i mesh is as follows:

Mi = M0 + (

i∑

j=1

C( j) −
i∑

j=1

N( j)).

Fig. 12.7 Different mesh resolutions for upper body.
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Fig. 12.8 The architecture for multires-
olution generation using 3D modeling
tools and appropriate modules for pre-
serving animation parameters.

To evaluate this equation requires set, union and intersection, which are still com-
plex. Using the properties of the simplification, it ensures N(i) to be a subset of
unions of M0, C(1), . . . , C(i − 1). Using this property, the cluster C(i) is subclus-
tered into a set of C(i,j), which belongs to N(j), where j > i , and C(i,i), which does
not belong to any N(j). It is same for the M0, where M0 = C(0). Thus, the level i
mesh is represented as follows, which requires simple set selections:

Mi =
i∑

k=0

(C(k, k) +
n∑

j=i+1

C(k, j)).

The last process is the concatenation of clusters into a small number of blocks to
reduce the number of selection or removal operations during the adaptation process.
Processing vertices is rather straightforward, because the edge-collapsing operator
(vi , vs ) ensures that every C(i) has a single vertex vi as C(i,i). By ordering vertices
of C(i,i) by the order of i, the adaptation process of vertex data for level i is a single
selection of continuous block of data, v0, v1, . . . , vi . For the indexed face set, each

Fig. 12.9 Preservations of facial anima-
tion control points during the mesh sim-
plification process.
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C(i) is ordered by C(i,j) in the ascending order of j. Thus, an adaptation to level i
consists of at most 3i + 1 selections or at most 2n removals of concatenated blocks.

So far, we have described the process using only the vertex positions and face
information. In the mesh, other properties have to be taken into account, such as
normal, color, and texture coordinates. Because these properties inheritably belong
to vertices, a similar process to vertex positions is applied. Exceptional cases are
(1) two or more vertices use the same value for a property, and (2) a single vertex
has more than two values. In both cases, there is a unique mapping from a pair of
vertex and face to a value of properties. The cluster C(i) has properties that have a
mapping from (vi , f j ), where vi ∈ C(i). If a property p belongs to more than one
vertex such as (vi , f1) → p and (v j , f2) → p, p is assigned to the cluster of C(j),
where j < i . By ordering this, p remains active as long as there is one vertex that
has p as its property. Therefore, we have a valid set of clusters for each level i. Each
cluster has a set of vertices and vertex properties such as vertex normal, color, and
texture coordinates. Along with vertex information, the cluster has a set of indexed
faces, normal faces, color faces, and texture faces. Also, each cluster can consist of
subsegments with their own material and texture. Each level is selected by choosing
blocks of clusters.

12.4.3 Adaptive 3D Facial Animation Technology

Now, we describe scalable mechanisms for facial animation parameters, with similar
adaptation concepts. The scalability is based on the lowest-level facial animation
parameters, i.e., the FAP. Two different methods for generating adaptive animation
are presented: levels of complexity structures, referred to as levels of articulation
(LoA), and face regions, see Table 12.1. Regions and LoA, which are levels of FAP
complexity, are thus defined, although the LoA is also applied on each region. For
scalability, the face is segmented into different regions. It is based on MPEG-4 FAP
grouping, although we have grouped the tongue and the inner and outer lips in a

Table 12.1 Face regions definition and their associated number of FAPs per LoA. Note that the
high level is for generic face expressions and that region 4 is the head rotation, which is controlled
by the body animation and therefore omitted here.

Region Definition High Medium Low Very Low

High level 2 2 2 2
0 Jaw (chin, lips, tongue) 31 19 12 6
1 Eyeballs (eyelids) 12 8 4 1
2 Eyebrows 8 3 2 1
3 Cheeks 4 4 1 1
5 Nose 4 3 0 0
6 Ears 4 2 2 0

Total 68 44 26 14
Ratio 100% 65% 38% 21%
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single region since these displacements are closely linked. This segmentation allows
to group FAPs according to their influence regions with regards to deformation, and
the LoA is therefore applied per region. A sample use of the face regions is an
application based on speech, which would require detailed animation around the
mouth region and less in other parts of the face. This would, for instance, result in a
low LoA for the eyebrows, eyeballs, and nose and ears regions, a medium LoA for
the cheek regions, and a high LoA for the jaw region.

Actually, we define four LoA based on the FAP influences with two different
techniques. The first technique is to group FAP values together, with the following
constraints:

• all grouped FAPs must be in the same area;
• all grouped FAPs must be under the influence of the same FAPU.

Additionally, when grouped by symmetry, the controlling FAP value is the one on
the right part of the face. The second technique is reducing quality more rapidly,
assuming some FAPs are insignificant at certain times, by introducing four LoA:

• LoA high: it uses all FAP values.
• LoA medium: certain FAPs are grouped together, resulting in a total of 44 FAPs

instead of 68.
• LoA low: some FAPs are removed and other grouped, keeping only 26 FAPs.
• LoA very low: most FAPs are removed; only base values for minimal animation

are maintained. It consists of merging FAPs from the low LoA by symmetry and
removing other FAPs, resulting in a total of 14.

We also propose a scalability mechanism for the FAT. The generation of these
tables is done with geometric deformation algorithms to compute FAP influences. It
allows for an automatic computation of influenced vertices according to FDP only.
Based on this technique, the animation engine is able to animate any face model with
only the FDP. This method is also very practical for devising different resolutions,
since only the influence information needs to be recomputed, using the same FDP,
which is preserved by the adaptation of geometry. So from the highest-level model,
we automatically construct the FAT, and since the vertices are ordered by FDP and
influence, we can easily identify and extract the corresponding FAT information
from the highest-level FAT for each resolution, as illustrated by Fig. 12.10.

12.4.4 Automatic Conversion of 3D to 2D Facial Animation

We present two methods for automatically converting 3D facial animation to 2D
graphics and to 2D vector graphics. The goal is to provide an additional lowest
animation resolution for devices that cannot render complex 3D graphics and for
devices optimized to support natively vector graphics such as mobile phones. The
difficulties in such conversion are to maintain intrinsic 3D properties in the 2D rep-
resentation, such as depth and lighting, and to keep the size of the generated data
small enough for light devices. Visually, the main criterion for a correct conversion
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Fig. 12.10 Scalable FAT coupled with multiresolution geometry.
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is the similarity between the generated copycat 2D animations and the original 3D
ones. The first technique transforms MPEG-based 3D facial animation to 2D MPEG
compliant facial animation, hence keeping advantages for interoperability, compac-
ity, and delivery of content on any device featuring 2D graphics. It is also practical
for integration with scalable 3D facial animation frameworks presented previously.
Then we detail an approach that converts general 3D facial animation to 2D Vec-
tor Graphics (VG), including optimizations for the resulting VG animations and the
simulation of Gouraud shading, which is not natively supported by 2D VG.

12.4.4.1 2D Adapted Facial Animation

Concerning the conversion of 3D to 2D facial animation with MPEG compli-
ance [21], the goal is also to keep components as unchanged as possible and
adapt only the necessary parts, i.e., with a two-, instead of three-, dimensional
scene graph to represent the face. So basically, to obtain an animatable 2D face
at the end of the conversion chain (see Fig. 12.11), 3D meshes are converted to 2D
representations, including projected shaded images of the original model with the
preservation of the topology, and the use of FAP and FAT in 2D as detailed ahead.

Conversion of Geometry for 2D

The concept used is based on warping-based facial image animation. It consists of
two modifications in the facial representation data. The FDP contains, for 2D facial
animation, a 2D warped indexed facet set instead of a 3D one, and the image texture
portrait of the original face. The 2D mesh is consequently deformed using FAP. The
2D feature points are a subset of the 3D feature points, where 3D feature points, still
visible on the frontal view after a projection from the 3D space into the 2D space,
have been preserved. As this should happen in the neutral state, i.e., with a closed
mouth, the teeth and tongue have no matching part in the image. Therefore, we are
adding default teeth and tongue image patterns, placed behind the 2D warped mesh
(see Fig. 12.12). They become visible when the mouth is opened. Actually, for good
results, the face representation should consist of three 2D layers: the bottom one is
the whole portrait image; the middle one provides the teeth and tongue image data;
and the top one is the actual deformable face data.

Use of Animation for 2D

Each low-level FAP corresponds to a piecewise linear function that defines the func-
tion between vertex displacements and the corresponding FAP amplitude values.
Thus, after the definition of the FATs, input FAPs can be recognized and handled
reasonably to produce the intended face animation. This requires, that for each low-
level FAP, the corresponding 2D vertex displacements for the 2D mesh have to be
defined. The projection of the 3D vertex displacements can be used as a first guess
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Fig. 12.11 Overview of the global archi-
tecture for facial animation adaptation,
with the 2D conversion module.

though further manual refinements are vital for good visual results. Based on the
scalable FAT, an additional FAT layer is included to handle this 2D deformation.
Facial animation parameters constituting changes in the z-direction are ignored as
they have small impacts onto the 2D projection. In addition, rotations of the eyeball
are substituted by 2D translations. Furthermore, animations of the tongue are cur-
rently neglected, as well as head rotations due to the reduction of one dimension.
There are then some restrictions in animating the full set of FAP values. A possible
solution to copy all 3D-based deformations of the face would be to generate 2D ani-
mations directly from the resulting updates of vertex positions. Additionally, some
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Fig. 12.12 2D mesh warping on a face
view prerendered image of the original
3D mesh. The eyes, tongues, and teeth
are separate images.

devices might not support 2D graphics with deformable meshes, so we present a
method in the vector graphics domain to address those two issues.

12.4.4.2 Gouraud-Shaded Vectorial Animation

When vector graphics (VG) are supported, we propose to have a full VG animation
instead of a 2D mesh deformed with FAP [19]. As an example, this conversion
method for VG generates a scalable vector graphics (SVG) file, a widely adopted
W3C standard format for VG.

Extraction of 2D Data

Basically, the conversion is processed into two main steps: the identification and
extraction of appropriate 2D data and the generation of VG data accordingly (see
Fig. 12.13). By decoupling the extracted 2D data from the generation, the method

Fig. 12.13 This diagram illustrates the 3D-to-2D module for facial animation.
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is immediately extensible with different formats, using additional file generator
modules. Taking advantage of hardware processing, 2D data and extracted from
3D by prerendering 3D facial animation with a standard graphics library to com-
pute projections. The 2D coordinates are then extracted with the projection matrix
and the 3D coordinates. The 3D rendering is actually extended with a gather-
ing of projected vertices data and faces visibility, according to the camera and
vertices’ positions. This process is conducted at each frame, and it is possible
to select which one in the sequence serves as the neutral position of the face.
View-frustum and backface cullings are performed on the 3D scene to create a per-
frame visibility list for each polygon. Culling is performed on complete faces by
setting a bit flag to true or false depending on the 3D face visibility and therefore
provide information for visible or invisible states of 2D polygons.

Generation of VG Data

After the 2D data extraction process, VG data can be generated to mimic the original
3D animation. The SVG generator creates a file according to the 2D data present in
the cache. To represent a 3D face, an SVG element capable of animation, deforma-
tion, and color filling is necessary. The polygon element supports 2D animation and
color, but does not provide deformation mechanisms. Therefore, for a 3D polygon,
a series of nbF SVG polygons, where nbF is the number of frames of the anima-
tion, would be required. Thus, inspired by the approach of Herman et al. [32], the
internal SVG representation used in the presented method is based on path. It is the
most appropriate SVG structure to represent a 3D polygon since it can specify a
closed n-gon, on which each points are animatable independently and where visi-
bility can be described for any frame. Positions of path points are directly related
to the 2D projected vertices computed during the extraction. Filling a path can also
be done with an image, a solid color, in the case of a simple flat shaded object, or a
linear or radial gradient. Linear gradient is used for Gouraud shading simulation, as
described ahead. At initialization, the 3D triangles are z-sorted to create an ordered
list of paths, and then the visibility of each path is adjusted by the sequence of bit
flags from the extraction module.

Post-Optimizations of VG

Depending on the number of polygons and the number of frames of the animation,
generated SVG files might be several megabytes big. To reduce the output SVG
file’s size, we define and apply some post-process optimizations. The first optimiza-
tion is to delete the animated coordinates data of a path when it is not visible. It
is done by determining the range of frames where a face is hidden, thus specifying
the data to be deleted. To further optimize the size of the output file, we also deter-
mine sequences of frames when the path is visible but does not move. All these
optimizations basically merge animation data when possible, by adding animate
tags. The keyTime attribute is another SVG feature one can exploit to perform such
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optimizations. Unlike animate, it does not add key frames but parameterizes the tim-
ing of each frame and, thus, keyTime is especially relevant in the case of many static
frames while less efficient than animate in the case of dynamic long sequences.

Gouraud-Shaded VG

When generating an SVG file, instead of producing an animation with poor shad-
ing effect, it is possible to create an SVG file representing the current frame with
Gouraud shading, in order to have a more realistic rendering. Gouraud shading is
an intensity-interpolation method based on the illumination of vertices. First these
values are calculated, and then interpolation is done among the three vertices to
obtain a gradient. Our method implements it with the tools and specifications avail-
able with a vectorial language such as SVG. We therefore propose to apply three
gradients per triangle, i.e., one per vertex, each one filling its respective part. To
merge these gradients, we have to modify spatially the transparency, and then the
closer a gradient is to the opposite edge of the triangle, the smaller is its alpha value.
Because SVG does not allow several gradients per triangle, we have to superpose
three triangles, one for each gradient, with the same coordinates. These triangles
are then combined by applying a filter fe Composite. The result is again filtered
with a filter fe Colormatrix in order to correct the opacity of the three previous
layers. Afterwards, an additional triangle is set under this composition to ensure
faces are hidden when required, by avoiding the coverage of triangles. Indeed, this
background triangle’s color is the average of the three vertices’ colors and the first
gradient.

12.5 Conclusion

Methods to control the processing and memory requirements of animating and ren-
dering facial animation with respect to visual quality are important. Such a control
should allow for rendering on light devices, for delivery of animation data over het-
erogeneous networks, as well as for optimizations on a standard PC. Additionally,
a solution should be devised to provide facial animation even on non-3D-capable
architectures. The same real-time facial animation engine has been used on differ-
ent platforms such as the PC, Web, or mobile. Figure 12.14 presents the results of
different models. We have applied for each model the same set of FAP values to gen-
erate the same expression. Each model presented in this example could be animated
on a standard PC in real time.

The performance of this approach on a PDA is a rendering of 25 to 30 fps for a
model with 750 polygons. For Web-based applications, based on MPEG-4 FAT and
using Shout3D for rendering, which provides a Java API, good-quality models can
be animated with low computation, and interactive speeds can be easily achieved.
The details of the system can be found in [27], and this applet can be accessed on the
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Fig. 12.14 Five models animated with the same FAP set value [25].
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Table 12.2 Comparison of facial animation data sizes using different LoA.

Size wow baf face23 macro lips

High 21255 32942 137355 18792 44983
Medium 16493 24654 104273 14445 36532
Low 13416 20377 78388 11681 30948

MIRALab Website (http://www.miralab.unige.ch) in the facial animation section
under the research topic.

To validate the efficiency of the discussed method that adapts facial animation,
we have performed comparisons using several sample sequences covering a wide
range of possible facial animations. Using the same animation frequency and the
same compression scheme, we have encoded different FAP files to evaluate the
influence of the LoA for the whole duration of animations. Sizes are compared in
Table 12.2. Overall, with respect to the original file size, the results show a mean
value of 77.4% for LoA medium, of 62.6% for LoA low, and of 54.4% for LoA very
low. All the sample sequences, except the Lips one, consist of animation of all parts
of the face. For each of them, the obtained reduction is quite similar, while the size
reduction is smaller for the last sequence due to the lack of FAP suppressions.

Using the same sequences, we have also tested performance with processing
times required for the rendering of animation. Results are given in Table 12.3, where
the processing time gain for LoA medium is on average 86.6%, 75.2% for LoA low,
and 68.2% for LoA very low. Once again, the gain is a little bit smaller for the last
sequence compared to the other ones. This is due to the smaller amount of FAP used
in the Lips animation.

For the conversion to 2D, some results on a PDA (Dell Axim series) are pre-
sented on Table 12.4, illustrating the needs and benefits of 2D rather than 3D facial
animation on light devices. Figures 12.15 and 12.16 show the visual results obtained
on such platforms.

To validate the conversion of 3D facial animation to animated and shaded vec-
tor graphics, three experiments have been set up. The first one evaluates the core
elements of the method with an animated pyramid, namely the generation of vec-

Table 12.3 Comparison of facial animation processing times using different LoA.

Size wow baf face23 macro lips

High 4.17 6.10 25.04 4.08 10.90
Medium 3.56 5.23 21.23 3.54 9.81
Low 3.09 4.56 17.58 3.10 8.81

Table 12.4 Performance of facial animation on a PDA with various 3D resolutions and the 2D
resolution. Sizes are indicated uncompressed.

Nb of polygons FPS Size (kb)

3D high 17788 N.A. 2045
3D medium 8882 3 1013
3D low 1790 10 197
2D 600 25 0.8
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Fig. 12.15 2D facial animation on a
PDA, with audio and a background slide-
show.

Fig. 12.16 Rotation of the plane where
is mapped the 2D face textures.

Table 12.5 Duration and generation are expressed in seconds, while sizes in kilobytes. The pyra-
mid and face test sequences feature animation, while Gouraud is a single Gouraud-shaded face
image.

# polys Duration Raw size Optim size Generation

Pyramid 8 12.08 529 91 0
Face 484 8.28 5684 4798 8
Gouraud 484 N.A. 610 N.A. 3
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tor graphics data, the visibility of faces, and the optimization techniques to reduce
the size of the output file. The second test is conducted to compare SVG copies
of 3D facial animation. Finally, we test the Gouraud shading simulation in SVG
with images captured during the animation. The obtained sizes and generation time
are given in Table 12.5. The 2D data extraction is done in real time; only the SVG
data generation might take some additional time at the end of 3D animations to
be converted.

References

1. Aggarwal, A., Rose, K., Regunathan, S.: Compander domain approach to scalable AAC. In
110th Audio Engineering Society Convention, 2001.

2. Ahn, J., Wohn, K.: Motion level-of-detail: A simplification method on crowd scene. In
Computer Animation and Social Agent, CASA’04, pages 129–137. Computer Graphics Soci-
ety, 2004.

3. Amielh, M., Devillers, S.: Bitstream syntax description language: Application of XML-
schema to multimedia content adaptation. In International WWW Conference’02. Interna-
tional World Wide Web Conference Committee, 2002.

4. Amielh, M., Devillers, S.: Multimedia content adaptation with XML. In MultiMedia Model-
ing, MMM’01, pages 127–145. Springer Verlag, 2001.

5. Aubel, A., Boulic, R., Thalmann, D.: Real-time display of virtual humans: Levels of detail and
impostors. IEEE Transactions on Circuits and Systems for Video Technology, Special Issue
on Video Technology, 2:207–217, 2000.

6. Berka, B.: Reduction of computations in physic-based animation using level of detail. In
Spring Conference of Computer Graphics, pages 69–76. ACM Press, 1997.

7. Bertails, F., Kim, T.Y., Cani, M.P., Neumann, U.: Adaptive wisp tree: A multiresolution con-
trol structure for simulating dynamic clustering in hair motion. In Symposium on Computer
Animation, pages 207–213, Eurographics Association, 2003.

8. Boier-Martin, I.: Adaptive graphics. IEEE Computer Graphics & Applications, 2(1):
6–10, 2003.

9. Briceno, H., Sander, P., McMillan, L., Gortler, S., Hoppe, H.: Geometry videos: A new repre-
sentation for 3D animations. In Symposium on Computer Animation, SCA’03, pages 136–146.
Eurographics Association, 2003.

10. Brosnan, A., Dobbyn, S., Hamill, J., O’Sullivan, C.: Animating humans on handheld devices
for interactive gaming. In Computer Animation and Social Agents, CASA’05. Computer
Graphics Society, 2005.

11. Capell, S., Green, S., Curless, B., Duchamp, T., Popovic, Z.: Interactive skeleton-driven
dynamic deformations. In ACM SIGGRAPH’02, pages 586–593, 2002.

12. Capell, S., Green, S., Curless, B., Duchamp, T., Popovic, Z.: A multiresolution framework
for dynamic deformations. In Symposium on Computer Animation, SCA’02, pages 41–47.
Eurographics Association, 2002.

13. Chang C., Ger, S.: Enhancing 3D graphics on mobile devices by image-based rendering. In
IEEE Pacific-Rim Conference on Multimedia, 2002.

14. Chenney, S., Forsyth, D.: View-dependent culling of dynamics systems in virtual environ-
ments. In Symposium on Interactive 3D Graphics, pages 55–58. ACM Press, 1997.

15. Cozot, B., Multon, F., Valton, B., Arnaldi, B.: Animation levels of detail design for real-
time virtual human. In Eurographics Workshop on Computer Animation and Simulation,
EGCAS’99, pages 35–44. Springer Verlag, 1999.

16. Debunne, G., Desbrun, M., Cani, M.P., Barr, A.: Dynamic real-time deformations using space
& time adaptive sampling. In ACM SIGGRAPH’01, pages 31–36, 2001.



12 Real-Time Adaptive Facial Animation 245

17. Deng, X.Q.: A finite element analysis of surgery of the human facial tissue. Ph.D. thesis,
Columbia University, New York, 1988.

18. Di Giacomo, T., Capo, S., Faure, F.: An interactive forest. In Eurographics Workshop on
Computer Animation and Simulation, pages 65–74. Springer Verlag, 2001.

19. Di Giacomo, T., Gaudry, M., Magnenat-Thalmann, N.: Converting 3D facial animation with
Gouraud shaded SVG. 4th Annual Conference on Scalable Vector Graphics (SVG OPEN’05),
August 2005.

20. Di Giacomo, T., Joslin, C., Garchery, S., Kim, H., Magnenat-Thalmann, N.: Adaptation
of virtual human animation and representation for MPEG. Elsevier Computer & Graphics,
28(4):65–74, August 2004.

21. Di Giacomo, T., Kim, H., Garchery, S., Magnenat-Thalmann, N., Cailliere, D., Belay, G.,
Cotarmanac’h, A., Riegel, T.: Benchmark-driven automatic transmoding of 3D to 2D talking
heads. Modelling and Motion Capture Techniques for Virtual Environments (CAPTECH’04),
December 2004.

22. Duguet, F., Drettakis, G.: Flexible point-based rendering on mobile devices. IEEE Computer
Graphics and Applications, 24(4):57–63, 2004.

23. Ekman, P.: Emotion in the Human Face. Cambridge University Press, New York, 1982.
24. Ekman, P., Frisen, W.V.: Facial action coding system. In Investigator’s Guide Part II, Con-

sulting Psychologists Press Inc., 1978.
25. Garchery, S.: Real time facial animation multiplatform. Ph.D. Thesis, University of Geneva,

n 569, 2004.
26. Garchery, S., Egges, A., Magnenat-Thalmann, N.: Fast facial animation design for emotional

virtual humans. In Measuring Behaviour, Wageningen, NL, 2005.
27. Garchery, S., Magnenat-Thalmann, N: Designing MPEG-4 facial animation tables for web

applications. In Multimedia Modeling 2001, Amsterdam, pages 39–59, 2001.
28. Garland, M., Heckbert, P.: Simplifying surfaces with color and texture using quadric error

metrics. IEEE Visualization’98, pages 263–269, 1998.
29. Granieri, J., Crabtree, J., Badler, N.: Production and playback of human figure motion

for visual simulation. ACM Transactions on Modeling and Computer Simulation, 5(3):
222–241, 1995.

30. Guenter, B.: A system for simulating human facial expression In State of the Art in Computer
Animation, pages 191–202, 1992.

31. Guenter, B., Grimm, C., Wood, D., Malvar, H., Pighin, F.: Making faces, In SIGGRPAH’98,
pages 55–67, 1998.

32. Herman, I., Hopgood, B., Duce, D.: SVG: Scalable vector graphics, tutorial notes. In WWW
Conference’02, International World Wide Web Conference Committee, 2002.

33. Heuer, J., Casas, J., Kaup, A.: Adaptive multimedia messaging based on MPEG-7—the M3-
box. In Symposium on Mobile Multimedia Systems and Applications, pages 6–13, 2000.

34. Hoppe, H.: Progressive meshes. In ACM SIGGRAPH’96, pages 99–108, 1996.
35. Howlett, P., Hewitt, W.: Mass-spring simulation using adaptive non-active points. Blackwell

Ltd., Computer Graphics Forum, 17(3):345–354, 1998.
36. Hutchinson, D., Preston, M., Hewitt, T.: Adaptive refinement for mass/spring simulations. In

Eurographics Workshop on Computer Animation and Simulation, EGCAS’96, pages 31–45.
Springer Verlag, 1996.

37. ISO/IEC JTC1/SC29/WG11/N5845: MPEG-21 Digital Item Adaptation DIA. ISO/IEC
21000-7 Final Committee Draft, 2003.

38. Joslin, C., Magnenat-Thalmann, N.: MPEG-4 animation clustering for networked virtual
environments. In IEEE International Conference on Multimedia & Expo, ICME’02, pages
365–368, 2002.

39. Khler, K., Haber, J., Seidel, H.-P.: Geometry-based muscle modeling for facial animation. In
Proceedings Graphics Interface, pages 37–46, 2001.

40. Kalra, P., Mangili, A., Magnenat-Thalmann, N., Thalmann, D.: SMILE: A mult-layered facial
animation system. In IFIP WG 5.10, pages 189–198, 1991.

41. Kalra, P., Mangili, A., Magnenat-Thalmann, N., Thalmann, D.: Simulation of facial muscle
actions based on rational free form deformations. In Eurographics, 11(3):59–69, 1992.



246 S. Garchery et al.

42. Kim, J.W., Song, M., Kim, I.J., Kwon, Y.M., Kim, H.G., Ahn, S.C.: Automatic fdp/fap gen-
eration from an image sequence. In ISCAS 2000—IEEE International Symposium on Circuits
and Systems, 2000.

43. Kim, J., Wang, Y., Chang, S.: Content-adaptive utility based video adaptation. In IEEE Inter-
national Conference on Multimedia & Expo, ICME’03, volume 3, pages 281–284, 2003.

44. Kim, H., Wohn, K.: Multiresolution model generation with geometry and texture. In Virtual
Systems and Multimedia, pages 780–789. IEEE Computer Society, 2001.

45. Kshirsagar, S., Garchery, S., Sannier, G., Magnenat-Thalmann, N.: Synthetic faces: Anal-
ysis and applications. In International Journal of Imaging Systems and Technology, 13(1):
65–73, 2003.

46. Kurihara, T., Arai, K.: A transformation method for modeling and animation of the human
face from photographs. In Proc. Computer Animation ’91, Geneva, Switzerland, pages
45–57, 1991.

47. Lamberti, F., Zunino, C., Sanna, A., Fiume, A., Maniezzo, M.: An accelerated remote
graphics architecture for PDAs. In Symposium of Web3D’03, pages 55–63. ACM Press,
2003.

48. Larrabee, W. F.: A finite element method of skin deformation: I, biomechanics of skin and
soft tissues. In Laryngoscope, 96:399–419, 1986.

49. Lee, Y.C., Terzopoulos, D., Waters, K.: Realistic face modeling for animation. In SIGGRAPH
Proceedings, pages 55–62, 1995.

50. Maciel, P., Shirley, P.: Visual navigation of large environments using textured clusters. In
Symposium on Interactive 3D Graphics, pages 95–102. ACM Press, 1995.

51. Magnenat-Thalmann, N., Primeau, N.E., Thalmann, D.: Abstract muscle actions procedures
for human face animation. In Visual Computer, 3(5):290–297, 1988.

52. Magnenat-Thalmann, N., Thalmann, D. (Eds.): Interactive Computer Animation, Prentice
Hall, 1996, ISBN 0-13-518309-X.

53. Magnenat-Thalmann, N., Thalmann D.: Handbook of Virtual Human, Wiley & Sons, Ltd.,
2004, ISBN: 0-470-02316-3.

54. Nahas, M., Hutric, H., Rioux, M., Domey, J.: Facial image synthesis using skin texture record-
ing. In Visual Computer, 6(6):337–343, 1990.

55. Nahas, M., Huitric, H., Saintourens, M.: Animation of a B-spline figure. In The Visual Com-
puter, 3(5):272–276, 1988.

56. Noh, J.Y., Fidaleo, D., Neumann, U.: Animated deformations with radial basis functions. In
VRST, pages 166–174, 2000.

57. Noh, J., Neumann, U.: A survey of facial modeling and animation techniques. In USC Tech-
nical Report, 1998.

58. Ostermann, J.: Animation of synthetic faces in MPEG-4. In Computer Animation, 1998.
59. O’Sullivan, C., Cassell, J., Vilhjálmsson, H., Dingliana, J., Dobbyn, S., McNamee, B.,

Peters, C., Giang, T.: Levels of detail for crowds and groups. In Computer Graphics Forum,
21(4):733–742, 2002.

60. Otkunc, C., Mansfield, P.: Interactive 3D viewer written in SVG. In SVG Open Conference,
SVG’03, 2003.

61. Parke, F.I.: A parametric model for human faces. Ph.D. Thesis, University of Utah, Salt Lake
City, Utah, UTEC-CSc-75-047, 1974.

62. Parke, F.I., Waters, K.: Computer facial Animation. A. K. Peters Ltd., 1996.
63. Pasquariello, S., Pelachaud, C., Greta: A simple facial animation engine. In 6th Online World

Conference on Soft Computing in Industrial Appications, Session on Soft Computing for Intel-
ligent 3D Agents, 2001.

64. Patterson, E.C., Litwinowicz, P.C., Greene, N.: Facial animation by spatial mapping. In Proc.
Computer Animation ’91, Geneva, Switzerland, pages 31–44, 1991.

65. Perbet, F., Cani, M.P.: Animating prairies in real-time. In Symposium on Interactive 3D
Graphics, I3D’97, pages 103–110. ACM Press, 2001.

66. Pettre, J., de Heras, P., Maim, J., Yersin, B., Laumond, J.-P., Thalmann, D.: Real-time navi-
gating crowds: Scalable simulation and rendering. Computer Animation and Virtual Worlds,
17(3–4):445–455, 2006.



12 Real-Time Adaptive Facial Animation 247

67. Pieper, S., Rosen, J., Zeltzer, D.: Interactive graphics for plastic surgery: A task level anal-
ysis and implementation In Computer Graphics, Special Issue: ACM SIGGRAPH, pages
127–134, 1992.

68. Platt, S., Badler, N.: Animating facial expression. In Computer Graphics, 15(3):
245–252, 1981.

69. Pouderoux, J., Marvie, J.-E.: Adaptive streaming and rendering of large terrains using strip
masks. In ACM GRAPHITE’05, pages 299–306, 2005.

70. Redon, S., Galoppo, N., Lin, M.: Adaptive dynamics of articulated bodies. ACM Transactions
on Graphics, 24(3):936–945, 2005.

71. Tack, N., Lafruit, G., Catthoor, F., Lauwereins, R.: Pareto based optimization of multi-
resolution geometry for real time rendering. In ACM Press, International Conference on 3D
Web Technologies, pages 19–27, 2005.

72. Tecchia, F., Loscos, C., Chrysanthou, Y.: Image-based crowd rendering. IEEE Computer
Graphics & Applications, 22(2):36–43, 2002.

73. Terzopoulos, D., Waters, K.: Physically-based facial modeling, analysis, and animation. In
Journal of Visualization and Computer Animation, 1(4): 73–80, 1990.

74. Van Raemdonck, W., Lafruit, G., Steffens, E., Otero-Perez, C., Bril, R.: Scalable 3D graphics
processing in consumer terminals. In IEEE International Conference on Multimedia & Expo,
ICME’02, pages 369–372, 2002.

75. Waite, C.T.: The facial action control editor, FACE: A parametric facial expression editor for
computer generated animation. Master’s thesis, MIT, 1989.

76. Wang, C.L.Y., Forsey, D.R.: Langwidere: A new facial animation system. In Proceedings of
Computer Animation, pages 59–68, 1994.

77. Ward, K., Lin, M., Lee, J., Fisher, S., Macri, D.: Modeling hair using level-of-detail rep-
resentations. In Computer Animation and Social Agents, CASA’03, pages 41–48. Computer
Graphics Society, 2003.

78. Waters K.: A muscle model for animating three-dimensional facial expression. In Computer
Graphics (SIGGRAPH Proceedings), 21:17–24, 1987.

79. Williams, L.: Performance-driven facial animation. In Proc. SIGGRAPH ’90, Computer
Graphics, 24(3):235–242, 1990.

80. Wu, Y.: Skin deformation and aging with wrinkles. In Ph.D. Thesis, University of
Geneva, 1998.

81. Wu, X., Downes, M.S., Goktekin, T., Tendick, F.: Adaptive nonlinear finite elements for
deformable body simulation using dynamic progressive meshes. Computer Graphics Forum,
20(3):349–358, 2001.

82. Wu, Y., Magnenat-Thalmann, N., Thalmann, D.: A plastic-visco-elastic model for wrinkles in
facial animation and skin aging. In Proc. 2nd Pacific Conference on Computer Graphics and
Applications, Pacific Graphics, 1994.



Chapter 13
Spacetime Faces: High-Resolution Capture
for Modeling and Animation

Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz

13.1 Introduction

Creating face models that look and move realistically is an important problem in
computer graphics.1 It is also one of the most difficult, as even the most minute
changes in facial expression can reveal complex moods and emotions. Yet, the pres-
ence of very convincing synthetic characters in recent films makes a strong case that
these difficulties can be overcome with the aid of highly skilled animators. Because
of the sheer amount of work required to create such models, however, there is a clear
need for more automated techniques.

Our objective is to create models that accurately reflect the shape and time-
varying behavior of a real person’s face from videos. For those models, we seek
real-time, intuitive controls to edit expressions and create animations. For instance,
dragging the corner of the mouth up should result in a realistic expression, such as a
smiling face. Rather than programming these controls manually, we wish to extract
them from correlations present in the input video. Furthermore, we wish to use these
controls to generate desired animations that preserve the captured dynamics of a real
face. (By “dynamics,” we mean the time-varying behavior, not the physics per se.)

Creating human face models from images is by now a proven approach, with
stunning results (e.g., [1]). However, the problem of accurately modeling facial
expressions and other dynamic behavior is still in its infancy. Modeling facial
dynamics is essential for creating animations, but it is more difficult to achieve
due in part to limitations in current shape capture technology. In particular, laser
scanners and most other high-resolution shape capture techniques do not operate
effectively on fast-moving scenes (a transition to a smile can occur in a fraction of a
second). Furthermore, the problem of creating animation tools that exploit captured
models of 3D facial dynamics has yet to be explored.

In this paper, we present a novel, end-to-end system for producing a sequence
of high-resolution, time-varying face models using off-the-shelf hardware, and
we describe tools that use these models for editing and animation. This paper
makes several specific technical contributions. First, we introduce a novel, globally

1 c©ACM, 2004. This is a minor revision of the work published in ACM Transactions on Graphics,
Volume 23, Issue 3, August 2004. http://doi.acm.org/10.1145/1015706.1015759.
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C© Springer-Verlag London Limited 2008
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consistent spacetime stereo technique to derive high-quality depth maps from struc-
tured light video sequences. Next, we propose a new surface fitting and tracking pro-
cedure in which the depth maps are combined with optical flow to create face models
with vertex correspondence. Once acquired, this sequence of models can be inter-
actively manipulated to create expressions using a data-driven inverse kinematics
technique we call faceIK. FaceIK blends the models in a way that is automatically
adaptive to the number of user-specified controls. We also describe a representation
called a face graph, which encodes the dynamics of the face sequence. The graph
can be traversed to create desired animations. While our animation results do not
match the artistry of what an expert animator can produce, our approach makes it
simple for untrained users to produce face animations.

13.1.1 Related Work

Modeling and synthesizing faces is an active research field in computer graphics and
computer vision. Here we review three topics most related to our work: reconstruct-
ing moving faces from images, constraint-based face editing, and data-driven face
animation. Other related work is discussed throughout the paper, as appropriate.

13.1.1.1 Reconstructing Moving Faces from Images

Very few shape capture techniques work effectively for rapidly moving scenes.
Among the few exceptions are depth-from-defocus [2] and stereo [3]. Structured
light stereo methods have shown particularly promising results for capturing depth
maps of moving faces [4,5]. Using projected light patterns to provide dense surface
texture, these techniques compute pixel correspondences to derive depth maps for
each time instant independently. Products based on these techniques are commer-
cially available.2 Recent spacetime stereo methods [6,7] additionally integrate infor-
mation over time to achieve better results. In particular, Zhang et al. [6] demonstrate
how temporal information can be exploited for dynamic scenes. Compared to these
previous structured light stereo methods, the shape capture technique presented in
this paper produces higher-resolution shape models with lower noise.

While the aforementioned shape capture techniques yield spatially and tempo-
rally dense depth maps, a key limitation is that they do not capture motion, i.e.,
point correspondence over time, making it difficult to repose or reanimate the cap-
tured faces. 3D face tracking techniques address this problem by computing the
deformation of a deformable 3D face model to fit a sequence of images [8–12] or
3D marker positions [13]. Blanz and Vetter [1] construct particularly high-quality
models, represented as linear subspaces of laser-scanned head shapes. Although
subspace models are flexible, they fail to reconstruct shapes that are outside the sub-
space. In order to handle expression variation, Blanz and Vetter [12] laser-scanned

2 For example, www.3q.com and www.eyetronics.com.
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faces under different expressions, a time-consuming process that requires the sub-
ject to hold each expression for tens of seconds. A problem with existing face track-
ing methods in general is that the templates have relatively few degrees of freedom,
making it difficult to capture fine-scale dimples and folds, which vary from one indi-
vidual to another and are important characteristic features. We instead work with a
generic high-resolution template with thousands of degrees of freedom to capture
such fine-grain features. This approach is related to the work of Allen et al. [14]
for fitting templates to human body data, except that they rely on markers to pro-
vide partial correspondence for each range scan, whereas we derive correspondence
information almost entirely from images.

An interesting alternative to traditional template-based tracking is to compute the
deformable template and the motion directly from the image sequence. Torresani
et al. [15] and Brand [16] recover nonrigid structure from a single video assum-
ing the shape lies within a linear subspace. Although these methods are promising
and work from regular video streams, they produce relatively low-resolution results,
compared to, e.g., structured light stereo.

13.1.1.2 Direct 3D Face Editing

Following Parke’s pioneering work [17] on blendable face models, most face edit-
ing systems are based on specifying blending weights to linearly combine a set of
template faces. These weights can be computed indirectly from user-specified con-
straints [9, 18] or fit directly to images [1].

Our faceIK tool, as a general expression editing interface, is similar to the one
in [18]. However, Joshi et al. [18] segment a face into a region hierarchy a priori,
which decouples the natural correlation between different parts of the face. Zhang
et al. [19] address this problem with a hierarchical PCA technique in which user
edits may propagate between regions. Our faceIK method instead maintains the cor-
relation across the whole face and only decouples it — automatically and adap-
tively — as the user introduces more constraints.

13.1.1.3 Data-Driven 3D Face Animation

A focus of our work is to use captured models of human face dynamics to drive ani-
matable face models. Several previous authors explored performance-based meth-
ods for animating faces, using either video of an actor [12, 20], or speech [21–23]
to drive the animation. These techniques can be considered data-driven in that they
are based on a sequence of example faces.

Other researchers have explored data-driven animation techniques in the domains
of human figure motion [24–27] and video sprites [28]. We adapt ideas from these
other domains to devise 3D face animation tools.
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color cameras
monochrome cameras

projectors

Fig. 13.1 Our face capture rig consists of six video cameras and two data projectors. The two
monochrome cameras on the left constitute one stereo pair, and the two on the right constitute a
second stereo pair. The projectors provide stripe pattern textures for high-quality shape estimation.
The color cameras record video streams used for optical flow and surface texture. c©ACM, 2004.
http://doi.acm.org/10.1145/1015706.1015759.

13.1.2 System Overview

Our system takes as input 6 synchronized video streams (4 monochrome and 2
color) running at 60 frames per second (fps) and outputs a 20-fps sequence of high-
resolution 3D meshes that capture face geometry, color, and motion, for our data-
driven editing and animation techniques. The videos are recorded by a camera rig,
as shown in Fig. 13.1. Three of the cameras capture the left side of the face, and the
other three capture the right side.

To facilitate depth computation, we use two video projectors that project gray-
scale random stripe patterns onto the face. The projectors send a “blank” pattern
every three frames, which is used to compute both color texture maps and time
correspondence information (optical flow). We will refer to these as “non-pattern”
frames. All of the components are off-the-shelf.3

The following sections describe the stages in the pipeline from the input streams
to high-resolution editable and animatable face models. Section 13.2 introduces the
spacetime stereo method to recover time-varying depths maps from the left and right
stereo pairs. Section 13.3 presents a procedure that fits a time-varying mesh to the
depth maps while optimizing its vertex motion to be consistent with optical flow.
Section 13.4 describes how this mesh sequence is used for expression editing using
faceIK. Section 13.5 describes two animation tools that use a face graph to model
the dynamics present in the captured face sequence.

13.2 From Videos to Depth Maps

In this section, we present a novel method to recover time-varying depth maps from
two synchronized video streams. The method exploits time-varying structured light
patterns that are projected onto the face using a standard video projector. We first

3 We use Basler A301f/fc IEEE1394 cameras, synchronized and running at 60 fps, and NEC
LT260K projectors.
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provide a brief review of traditional stereo matching and prior work in spacetime
stereo, to motivate our new approach.

13.2.1 Binocular Stereo Matching

There exists an extensive literature on stereo matching algorithms that take as input
two images and compute a depth map as output (for a good overview, see [29]).
The key problem is to compute correspondences between points in the left and
right images, by searching for pixels of similar intensity or color. Once the corre-
spondence is known, depth values (i.e., distance from the camera) are readily com-
puted [3]. Generally, the images are assumed to be rectified after calibration,4 so that
the motion is purely horizontal and can be expressed by a 1D disparity function.

More precisely, given two rectified images Il(x, y) and Ir (x, y), we wish to com-
pute a disparity function given by d(x, y). For a pixel Il(x0, y0) in the left image,
there is often more than one pixel with similar color in the right image. To resolve
this ambiguity, most stereo algorithms match small windows W0 around (x0, y0),
assuming that the disparity function is locally nearly constant. Mathematically, this
matching process involves minimizing the following error function:

E(d0) =
∑

(x,y)∈W0

e(Il(x, y), Ir (x − d0, y)), (13.1)

where d0 is shorthand notation for d(x0, y0) and e(p, q) is a similarity metric
between pixels from two cameras. The size and shape of the window W0 give a
free parameter, with larger windows resulting in smooth depth maps and smaller
windows yielding more detailed but also noisier reconstructions.5 e(a,b) can simply
be the squared difference of color differences. We use the “gain-bias” metric [32] to
compensate for radiometric difference between cameras.

13.2.2 Spacetime Stereo

Given two sequences of images, Il(x, y, t) and Ir (x, y, t), a time-varying disparity
map d(x, y, t) may be computed by applying the above stereo matching procedure
to each pair of frames independently. However, the results tend to be noisy, be low-
resolution ([Figs. 13.3, (c), (d), (g), (h)], and contain temporal flicker as the shape
changes discontinuously from one frame to the next (see the accompanying video).
More accurate and stable results are possible by generalizing stereo matching into
the temporal domain.

The basic idea, as originally proposed by Zhang et al. [6] and Davis et al. [7], is
to assume that disparity is nearly constant over a 3D spacetime window W0 × T0

4 We calibrate our stereo pairs using Bouguet’s software [30].
5 Some methods allow the window size to vary, and compute sizes automatically [31].
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around (x0, y0, t0), and solve for d(x0, y0, t0) by minimizing the following error
function:

E(d0) =
∑

t∈T0

∑

(x,y)∈W0

e(Il(x, y, t), Ir (x − d0, y, t)), (13.2)

where T0 may be chosen to be anywhere from a few frames to the whole sequence,
depending on how fast the scene is moving. As shown in [6], assuming locally
constant disparity introduces reconstruction artifacts for oblique or moving surfaces.
To model such surfaces more accurately, Zhang et al. [6] instead approximate the
disparity variation linearly within the spacetime window as

d(x, y, t) ≈ d̃0(x, y, t)
def= d0 +dx0 · (x − x0)+dy0 · (y − y0)+dt0 · (t − t0), (13.3)

where dx0, dy0, dt0
T is the gradient of the disparity function at (x0, y0, t0). They

solve for d0 together with dx0, dy0, dt0
T by minimizing the following error function:

E(d0, dx0, dy0, dt0) =
∑

t∈T0

∑

(x,y)∈W0

e(Il(x, y, t), Ir (x − d̃0, y, t)). (13.4)

Under this linearity assumption, a 3D window W0 × T0 in Il maps to a sheared
window in Ir , as shown in Fig. 13.2. Consequently, [6] developed an approach to
minimize Eq. 13.4 by searching for the best matching sheared window at each pixel
independently. The resulting depth maps are both higher-resolution and more stable
than those produced using standard stereo matching as shown in Figs. 13.3(e) and
(i) and the companion video.

Fig. 13.2 Illustration of spacetime stereo. Two
stereo image streams are captured from fixed
cameras. The images are shown spatially off-
set at three different times, for illustration pur-
poses. For a moving surface, a rectangular win-
dow in the left view maps to a warped window
in the right view. The best affine warp of each
spacetime window along epipolar lines is com-
puted for stereo correspondence. c©ACM, 2004.
http://doi.acm.org/10.1145/1015706.1015759.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 13.3 Comparison of four different stereo matching algorithms. (a), (b) Five consecutive
frames from a pair of stereo videos. The third frames are non-pattern frames. (c) Reconstructed
face at the third frame using traditional stereo matching with a [15 × 15] window. The result is
noisy due to the lack of color variation on the face. (d) Reconstructed face at the second frame
using stereo matching with a [15 × 15] window. The result is much better because the projected
stripes provide texture. However, certain face details are smoothed out due to the need for a large
spatial window. (e) Reconstructed face at the third frame using local spacetime stereo matching
with a [9 × 5 × 5] window. Even though the third frame has little intensity variation, spacetime
stereo recovers more detailed shapes by considering neighboring frames together. However, it also
yields noticeable striping artifacts due to the overparameterization of the depth map. (f) Recon-
structed face at the third frame using our new global spacetime stereo matching with a [9 × 5 × 5]
window. The new method removes most of the striping artifacts while preserving the shape details.
(g)–(j) Closeup comparison of the four algorithms around the nose and the corner of the mouth. c©
ACM, 2004. http://doi.acm.org/10.1145/1015706.1015759.

13.2.3 Globally Consistent Spacetime Stereo

In practice, a spacetime stereo produces significantly improved depth maps for mod-
erately fast moving human shapes. However, it also produces significant ridging
artifacts, both evident in the original work [6] and clearly visible in Fig. 13.3(e).
Our analysis indicates that these artifacts are due primarily to the fact that Eq. 13.4
is minimized for each pixel independently, without taking into account constraints
between neighboring pixels. Specifically, computing a disparity map with N pix-
els introduces 4N unknowns: N disparities and 3N disparity gradients. While this
formulation results in a system that is convenient computationally, it is clearly
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overparameterized, since the 3N disparity gradients are a function of the N dis-
parities. Indeed, the estimated disparity gradients may not agree with the estimated
disparities. For example, dx(x, y, t) may be quite different from 1

2 (d(x + 1, y, t) −
d(x − 1, y, t)), because dx(x, y, t), d(x + 1, y, t), d(x − 1, y, t) are independently
estimated for each pixel. This inconsistency between disparities and disparity gra-
dients results in inaccurate depth maps, as shown in Figs. 13.3(e) and (i).

To overcome this inconsistency problem, we reformulate spacetime stereo as a
global optimization problem that computes the disparity function, while taking into
account gradient constraints between pixels that are adjacent in space and time.
Given image sequences Il(x, y, t) and Ir (x, y, t), the desired disparity function d(x,
y, t) minimizes

�({d(x, y, t)}) =
∑

x,y,t

E(d, dx , dy, dt ) (13.5)

subject to the following constraints:6

dx(x, y, t) = 1
2 (d(x + 1, y, t) − d(x − 1, y, t)),

dy(x, y, t) = 1
2 (d(x, y + 1, t) − d(x, y − 1, t)),

dt (x, y, t) = 1
2 (d(x, y, t + 1) − d(x, y, t − 1)).

(13.6)

Equation 13.5 defines a nonlinear least-squares problem with linear constraints.
We solve this problem using the Gauss–Newton method [33] with a change of vari-
ables. To explain our approach, we use D to denote the concatenation of d(x, y, t)
for every (x, y, t) into a column vector. Dx , Dy , and Dt are defined similarly, by
concatenating values of dx(x, y, t), dy(x, y, t), and dt (x, y, t), respectively. Given
an initial value of D, Dx , Dy , and Dt , we compute the gradient b and local Hessian
J of Eq. 13.5 using Gauss–Newton approximation. Then, the optimal updates δD,
δDx , δDy , and δDt are given by

J

⎡
⎢⎢⎣

δD
δDx

δDy

δDt

⎤
⎥⎥⎦ = −b. (13.7)

Since Eqs. 13.6 are linear constraints, we represent them by matrix multiplication:

Dx = GxDDy = GyDDt = Gt D, (13.8)

where Gx , Gy , and Gt are sparse matrices encoding the finite difference opera-
tions. For example, suppose d(x, y, t) is the ith component of D, then the only
nonzero columns in row i of Gx are j and j ′, which correspond to d(x + 1,

6 At spacetime volume boundaries, we use forward or backward differences instead of central
differences.
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y, t) and d(x − 1, y, t) and take values of 0.5 and −0.5, respectively. Substituting
Eq. 13.8 into Eq. 13.7, we obtain the optimal update δD by solving

⎡

⎢⎢⎣

I
Gx

Gy

Gt

⎤

⎥⎥⎦

T

J

⎡

⎢⎢⎣

I
Gx

Gy

Gt

⎤

⎥⎥⎦ δD = −

⎡

⎢⎢⎣

I
Gx

Gy

Gt

⎤

⎥⎥⎦

T

b, (13.9)

where I is an identity matrix of the same dimension as D. We initialize D using
dynamic programming with the spacetime window metric Eq. 13.2,7 as described
in [6], and set Dx , Dy , and Dt to be zero. Then we iteratively solve Eq. 13.9 and
recompute J and b until convergence. Figures 13.3(f) and (j) show the resulting
improvement when employing this new spacetime stereo method.

13.2.3.1 Scalable Implementation

Although Dx , Dy , Dt , and J are very sparse, solving Eq. (13.9) using the conju-
gate gradient method [34] over the whole video is not practical; a 10-second video
of 640×480 resolution at 60 Hz comprises nearly 180 million depth variables! To
apply global spacetime stereo matching over a long video, we divide the video into
a 3D (X,Y,T) array of 80×80×90 blocks that are optimized in sequence. When
optimizing a particular block, we treat as boundary conditions the disparity values
in its adjacent blocks that have already been optimized. To speed up the procedure,
we distribute the computation over multiple machines while ensuring that adjacent
blocks are not optimized simultaneously. While many traversal orders are possible,
we found that the following simple strategy suffices: We first optimize blocks with
odd T values, and distribute blocks with different T values to different CPUs. On
each CPU, we traverse the blocks from left to right and top to bottom. We then
repreat the same procedure for blocks with even T values. Our prototype imple-
mentation takes 2 to 3 minutes to compute a depth map on a 2.8, GHz CPU, and
each depth map contains approximately 120K depth points.

13.3 Shape Registration

In this section, we present a novel method for computing a single time-varying
mesh that closely approximates the depth map sequences while optimizing the ver-
tex motion to be consistent with optical flow between color frames. We start by
fitting a template mesh to the pair of depth maps captured in the first non-pattern
frame, initialized with a small amount of user guidance. We then track the template

7 When using dynamic programming for initialization, we use a [1 × 3] image window for frame-
by-frame matching and a [1 × 3 × 3] window for spacetime matching.
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mesh through other non-pattern frames in the sequence automatically and without
the need for putting markers on the subject’s face.

13.3.1 Template Fitting

Let M = (V, E) be an N-vertex triangle mesh representing a template face, with
vertex set V = {sn}N

n=1 and edge set E = {(n1, n2)|sn1 and sn2are connected}.
Let h j (x, y), j ∈ {1, 2}, be the two depth maps at frame 1, as shown in Figs. 13.4(a)
and (b). Given the relative pose between these depth maps,8 we wish to solve for a
displacement dn for each vertex such that the displaced mesh M1, with vertex set
{sn +dn}N

n=1, optimally fits the depth maps. Our fitting metric has two terms: a depth
matching term, Es , and a regularization term Er .

(a) (b)

(c) (d) (e)

Fig. 13.4 Illustration of the template fitting process. (a), (b) Depth maps from two viewpoints at
the first frame. (c) A face template. A few corresponding shape feature positions are manually
identified on both the face template and the first two depth maps. (d) The template after initial
global warp using the feature correspondence. (e) Initial mesh after fitting the warped template to
the first two depth maps. The initial mesh is colored red for regions with unreliable depth or optical
flow estimation. c© ACM, 2004. http://doi.acm.org/10.1145/1015706.1015759.

8 We obtain the relative pose between depth maps using the rigid registration tool provided in
Scanalyze [35].
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The depth matching term Es measures the difference between the depths of ver-
tices of M1 as seen from each camera’s viewpoint and the corresponding values
recorded in each depth map. Specifically,

Es({dn}) =
2∑

j=1

N∑

n=1

wn, jρ(sn + dn − hn, j z j , σs), (13.10)

where N is the number of mesh vertices, hn, j ∈ R3 is the intersection of the depth
map h j (x, y) and the line from the jth camera’s optical center to sn + dn , as shown
in Fig. 13.5(a); ·z j is the z-component of a 3D point in the jth camera’s coordinate
system; ρ(·, σs) is Tukey’s biweight robust estimator, shown in Fig. 13.6; and wn, j

is a weight factor governing the influence of the jth depth map on the template mesh.
In experiments, we set σs = 20, which rejects potential depth map correspondences
that are over 20 mm away from the template mesh. For wn, j , we use the product of
the depth map confidence, computed as in [36], and the dot product of the normals9

at hn, j and sn + dn ; we set wn, j to 0 if the dot product is negative. Note that, in
practice, we do not need to intersect a line of sight with a surface to compute each
hn, j . Instead, we project each displaced template point into the depth map h j (x, y)

and perform bilinear interpolation of depth map values to measure depth differences.
In general, the shape matching objective function, Eq. 13.10, is under-

constrained. For instance, template surface points after being displaced could
bunch together in regions while still matching the depth maps closely, as shown in

s
d

s+d-h

optical center

depth map

template mesh

image plane

{
h

s
dt

π(U)-u

optical center

template mesh

image plane

{
dt+1

u
vertex motion
U=dt+1-dtoptical flow

projected motion
π(U)

(a) (b)

Fig. 13.5 Illustration of the error metric of a vertex used in template fitting. (a) s is a vertex on
the template mesh and d is its displacement vector. Let h be the intersection of the depth map,
shown as a surface, and the line from optical center to s + d. s + d − h is the difference vector
between s + d and the depth map. (b) dt+1 and dt are the displacements for a vertex s on the
template mesh at frame t and t + 1, respectively. U = dt+1 − dt is the vertex motion from frame
t to t + 1. The projection of U in the image plane, π(U), should be the same as the optical flow u.
||π(U) − u|| is used as a metric for consistency between vertex motion and optical flow. c© ACM,
2004. http://doi.acm.org/10.1145/1015706.1015759.

9 We compute the normal of a vertex as the area-weighted average of the normals of its neighboring
triangles.
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Fig. 13.6 A plot of Tukey’s biweight robust esti-
mator. c© ACM, 2004. http://doi.acm.org/10.1145/
1015706.1015759.

Tukey's Biweight robust estimator:

−σ σ

1.0

Fig. 13.7. Furthermore, the depth maps do not completely cover the face, and so the
template can deform without penalty where there is no data. Thus, we add a regular-
ization term Er that penalizes large displacement differences between neighboring
vertices on the template mesh. Specifically,

Er ({dn}) =
∑

(n1,n2)∈E

||dn1 − dn2 ||2/||sn1 − sn2 ||2, (13.11)

where the denominator ||sn1 − sn2 ||2 helps to penalizes neighboring displacement
differences according to the neighboring vertex distance. Notice that preferring a
smooth displacement field is different from preferring a smooth displaced template
mesh; the former preserves the shape details in the template mesh while the latter
often smooths out the details [14].

To fit the template mesh M to the depth maps at frame 1, we minimize a weighted
sum of Eqs. 13.10 and 13.11:

� = Es + αEr , (13.12)

with α = 2.0 in our experiments.
We minimize Eq. 13.12 using the Gauss–Newton method. We initialize the opti-

mization by manually aligning the template with the depth maps. Specifically, we
select several corresponding feature positions on both the template mesh and the

template mesh

depth map

template mesh

depth map

(a) (b )

Fig. 13.7 The need of regularization in template fitting. (a) Without additional constraints, tem-
plate surface points could bunch together while still matching the depth map closely. (b) A smooth
vertex displacement field can be obtained by adding a regularization that penalizes large displace-
ment differences between neighboring vertices on the template mesh.
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depth maps [Figs. 13.4(a), (b) ,(c)]. Next, from these feature correspondences, we
solve for an overconstrained global affine transformation to deform the mesh. To
determine an affine transformation, at least 4 correspondences are needed; in prac-
tice, we specify about 15 feature correspondences. Finally, we interpolate the resid-
ual displacements at the feature positions over the whole surface using a normalized
radial basis function [37] similar to the method of Pighin et al. [38]. After the initial
warp, the selected feature correspondences are no longer used for template fitting.
As shown in Fig. 13.4(d), the initial alignment does not have to be precise in order
to lead to an accurate final fitting result, as illustrated in Fig. 13.4(e).

13.3.2 Template Tracking

Given the mesh M1 at the first frame, we would now like to deform it smoothly
through the rest of the sequence such that the shape matches the depth maps and the
vertex motions match the optical flow computed for the non-pattern frames of the
color image streams. Specifically, we seek to compute {dn,t }, which gives the time-
varying shape {sn,t = sn+dn,t }. Let Ik(x, y, t), k ∈ {1, 2}, be color image sequences
from two viewpoints with pattern frames removed. We first compute optical flow
uk(x, y, t) for each sequence using Black and Anandan’s method [39]. The flow
uk(x, y, t) represents the motion from frame t to t + 1 in the kth image plane. We
measure the consistency of the optical flow and the vertex interframe motion Un,t =
dn,t+1 − dn,t , called scene flow in [40], by the following metric:

Em({dn,t+1}) =
2∑

k=1

N∑

n=1

ρ(||πk(Un,t ) − un,t,k ||, σm), (13.13)

where πk(Un,t ) is the image projection of Un,t in the kth image plane and un,t,k is
the value of optical flow uk(x, y, t) at the corresponding location, πk(sn + dn,t ),
shown in Fig. 13.5(c); ρ(·, σm) is the same Tukey’s biweight robust estimator as in
Eq. 13.10, with σm = 20 pixels.

Starting from M1, we recursively compute Mt+1 given Mt by optimizing a
weighted sum of Eqs. 13.12 and Eq. 13.13 where dn is replaced with dn,t :

	 = Es + αEr + β Em, (13.14)

with α = 2.0 and β = 0.5 in our experiments.
We tried our mesh fitting and tracking methods on images sequences for several

subjects and show results for three subjects here. In Figs. 13.8(a)–(d), sample results
of mesh tracking for the first subject are shown in gray shaded rendering. The video
on our Website grail.cs.washington.edu/projects/ stfaces shows the full
sequence both as gray-shaded and color-textured rendering. The sequence has 332
face meshes, and each mesh has 14,883 vertices. Template tracking takes less than
1 minute per frame.
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Fig. 13.8 Illustration of the template tracking result. (a)–(d) Selected meshes after tracking the
initial mesh through the whole sequence, using both depth maps and optical flows. The pro-
cess is marker-less and automatic. (e)–(h) The projection of a set of vertices from the selected
meshes on the image plane, shown as green dots, to verify that the vertex motion is consis-
tent with visual motion. Note that the subject had no markers on his face during capture; the
green dots are overlaid on the original images purely for visualization purposes. c© ACM, 2004.
http://doi.acm.org/10.1145/1015706.1015759.

Notice that in Fig. 13.8, the forehead data are missing. This is because the hair
hanging over the forehead and the forehead itself form two layers of motion, which
confuses the optical flow algorithm. Therefore, the forehead motion is not correctly
recovered, and we manually specify a mask and cut it out. In Fig. 13.9, we record
sequences of the same subject when he wears a hair wrapper. In this case, the full
facial shape and motion are recovered. This sequence has 384 mesh models, and
each mesh has about 23,728 vertices.

In Fig. 13.10, we show four examples of template tracking results for the second
subject. This sequence consists of 580 meshes, and each mesh has 23,728 vertices.

Fig. 13.9 Four examples of the template tracking results for another sequence. In this sequence,
the subject wears a hair wrapper, and his forehead region is correctly recovered.
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(a) (b) (c) (d)

(e) (f)

Fig. 13.10 (a)–(d) Four examples of the template tracking results for the second subject. (e) A
closeup view of the skin deformation near the nose in the “disgusted” expression shown in (b). (f)
A closeup view of the wrinkles on the “frowning” forehead of (d).

In Fig. 13.11, we show eight examples of the template tracking results for the third
subject. This sequence consists of 339 meshes, and each mesh has 23,728 vertices.
Notice that, in Figs. 13.10(e) and (f), and Figs. 13.11(i) and (j), we show closeup
views of some of the face meshes, demonstrating the ability to capture fine features
such as the wrinkles on a frowning forehead and near a squinting eye. These subtle
shape details are extremely important for conveying realistic expressions, because
our visual system is well tuned to recognize human faces. The uniqueness of our
system is its capability to capture not only these shape details, but also how these
shape details change over time. In the end, our system is an automatic, dense, and
marker-less facial motion capture system.

13.4 FaceIK

In this section, we describe a real-time technique for editing a face to produce new
expressions. The key property of the technique is that it exploits correlations in a set
of input meshes to propagate user edits to other parts of the face. So, for instance,
pulling up on one corner of the mouth causes the entire face to smile. This problem
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 13.11 (a)–(h) Eight examples of the template tracking results for the third subject. (i) A
closeup view of the wrinkles near the left eye in (f). (j) A closeup view of the pouting lips in (h).

is analogous to the inverse kinematics (IK) problem in human figure animation in
which the goal is to compute the pose of a figure that satisfies one or more user-
specified constraints. We therefore call it faceIK.

Our approach is based on the idea of representing faces as a linear combina-
tion of basis shapes. While linear combinations have been widely used in face
modeling [1, 38, 41], the problem of generating reasonable faces using only one
constraint (e.g., the corner of the mouth), or just a few constraints, is more difficult,
because the problem is severely underconstrained. One solution is to compute the
coefficients that maximize their likelihood with respect to the data, using principle
component analysis (PCA) [1, 14]. The maximum likelihood criterion works well
for modeling face variations under similar expressions and human body variations
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under similar poses. However, applying PCA to facial expressions does not pro-
duce good results unless the face is segmented a priori into separate regions, e.g.,
eyes, nose, and mouth [1, 18, 19]. Unfortunately, segmenting faces into regions
decouples the natural correlation between different parts of a face. Further, the
appropriate segmentation is not obvious until run time, when the user decides what
expressions to create. For example, to create an asymmetric expression, the left and
right sides of the face must be decoupled. As discussed in Section 13.4.2, under-
or oversegmenting the face can result in undesirable editing behavior. We instead
describe a method that avoids these problems by adaptively segmenting the face into
soft regions based on user edits. These regions are independently modeled using
the captured face sequence, and then they are blended into a single expression. We
could model these regions using PCA; however, because they are formed by user
edits, we would then have to compute principal components, a costly operation,
at run time for each region. To address this problem, we introduce a fast method,
proximity-based weighting (PBW), to model the regions. We start by describing
how to use PBW to model the entire face as a single region, and then extend it to
handle multiple, adaptively defined regions.

13.4.1 Proximity-based Weighting

Suppose we are given as input F meshes, each with N vertices. We use sn, f to denote
the nth vertex in mesh f. Let {pl}L

l=1 be user-specified 3D constraints, requiring that
vertex l should be at position pl ; we call these constraints control points.10 We seek
a set of blend coefficients c f such that for every l,

F∑

f =1

c f Sl , f = pl and
F∑

f =1

c f = 1. (13.15)

The second equation poses an affine constraint on the blend coefficients. This con-
straint makes the blend coefficients invariant to global translation. Specifically, if
we move all the meshes and control points by a same displacement, the same blend
coefficients will still satisfy Eq. 13.15 for the displaced meshes under displaced
constraints.

Because the number of constraints L is generally far fewer than the number
of meshes F, we advocate weighting example faces based on proximity to the
desired expression, i.e., nearby faces are weighted more heavily, a scheme we call
proximity-based weighting. Specifically, we penalize meshes whose corresponding
vertices are far from the control points by minimizing

10 We assume the L constraints are for the first L mesh vertices, to simplify notation without loss
of generality.
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g(c) =
F∑

f =1

φ(||s̄ f − p̄||)c2
f , (13.16)

where c = c1c2 . . . cF
T, s̄ f = sT

1, f sT
2, f . . . sT

L , f 1T, p̄ = pT
1 pT

2 . . . pT
L1T, ||s̄ f − p̄|| =√∑L

l=1 |sl, f − pl |2, and φ(·) is a monotonically increasing function. In our experi-
ments, we found that a simple function φ(r) = 1 + r worked well.

Minimizing Eq. 13.16 subject to Eq. 13.15 encourages small weights for faraway
meshes and can be solved in closed form as

c f = 1

φ f
s̄T

f a, (13.17)

where φ f = φ(||s̄ f − p̄||) and a = (
∑F

f =1
1

φ f
s̄ f s̄T

f )
−1p̄. The derivation of this

solution is given in Appendix 1.

13.4.1.1 Screen-Space Constraints

Rather than requiring that constraints be specified in 3D, it is often more natural
to specify where the projection of a mesh vertex should move to. Given a set of
user-specified 2D constraints {ql}L

l=1, Eq. 13.16 is modified as follows:

g(c) =
F∑

f =1

φ(||π(s̄ f ) − q̄||)c2
f , (13.18)

such that

π

⎛

⎝
F∑

f =1

c f sl, f

⎞

⎠ = ql and
F∑

f =1

c f = 1, (13.19)

where π(·) is the image projection operator, π(s̄ f )
def= π(s1, f )

Tπ(s2, f )
T . . . π

(sL , f )
T1T, and q̄ = qT

1 qT
2 . . . qT

L1T. Since π is in general nonlinear, we approxi-
mate Eq. 13.19 by

F∑

f =1

c f π(sl, f ) = ql and
F∑

f =1

c f = 1. (13.20)

This approximation works well in our experience, and minimizing Eq. 13.18 subject
to Eq. 13.20 yields the closed-form solution

c f = 1

φ f
π(s̄ f )

Ta, (13.21)
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where φ f = φ(||π(s̄ f )− q̄||) and a = (
∑F

f =1
1

φ f
π(s̄ f )π(s̄ f )

T)−1q̄. The derivation
of this solution is the same as that for Eq. 13.17 with s̄ f and p̄ replaced by π(s̄ f )

and q̄.

13.4.2 Local Influence Maps

The faceIK method presented so far assumes that the entire face is created by linear
interpolation of input meshes with nearby meshes given larger weights. However,
this assumption is too limiting, since, for example, an asymmetric smile cannot
be generated from a data set that contains only symmetric smiles. We therefore
propose a method to blend different face regions by defining an influence map for
each control point. Specifically, we give each control point greater influence on
nearby mesh points, and then blend the influences over the entire mesh to allow
for a broader range of expressions that do not exist in the input data.

Accordingly, for each of the L control points, we compute a set of blending coeffi-
cients cl by minimizing Eq. 13.16 or Eq. 13.18. This process is done independently
for each control point. These L sets of coefficients will result in L meshes; each
mesh satisfies one of the L constraints but not necessarily the others. The resulting
L meshes are then blended together, using normalized radial basis functions [37]
to define spatially varying weights. Specifically, we set the blending coefficient for
vertex sn as follows:

c(sn) =
L∑

l=1

B(sn, sl)ĉl , (13.22)

where B(sn, sl) = exp(−||sn−sl ||2/r2
l )

∑L
l′=1 exp(−||sn−sl′ ||2/r2

l′ )
, with rl = minl′ �=l ||sl − sl′ ||, and ĉl is

a F-dimensional vector defined at each control point l. In Appendix 1, we describe
how to compute ĉl and prove that the components of c(sn) sum to 1 given that∑L

l=1 B(sn, sl) = 1. For each vertex sn , we use c(sn) to blend corresponding ver-
tices in the mesh data set.

Figure 13.12 shows the advantage of using local influence maps to adaptively
segment the face based on user interaction, rather than specifying regions a priori.
The main observation is that the optimal set of regions depends on the desired edit;
for instance, generating an asymmetric smile from a set of roughly symmetric faces
requires decoupling the left and right sides of the mouth. However, an edit that
opens the mouth is more easily obtained without this decoupling. Our PBW scheme
supports the adaptive segmentation in real time.
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(a) (b) (c)

(d) (e)

Fig. 13.12 Advantages of adaptive face segmentation with faceIK. Many face editing techniques
presegment a face into regions (e.g., mouth, nose, eyes) and model each region separately with
PCA. (a) Three symmetric control points are used to create a symmetric smile by applying PCA on
the mouth region [14] to compute the maximum likelihood (ML) shape. (b) When the control points
become asymmetric, ML behaves poorly, since all input mouth shapes are roughly symmetric.
(c) For the same control point positions, faceIK creates an asymmetric smile by dividing the mouth
into three soft regions (indicated by color variations) and blending the influence of each control
point. Each control point influences its region using PBW in real time. By contrast, using PCA
would require computing principal components, a costly operation, at run time for each new region.
(d) With the same control vertices as in (c), if the point on the lower lip is moved by itself, the mouth
opens unnaturally, because the two control points on the mouth corners decouple their correlation
to the lower lip. (e) With only one control point on the lower lip, the mouth opens more naturally.
These comparisons indicate that it is more desirable to adaptively segment a face into regions based
on user edits, rather than a priori. c©ACM, 2004. http://doi.acm.org/10.1145/1015706.1015759.

(a) (b)

Fig. 13.13 FaceIK user interface. A user can click any point on the face to define a control point
constraint, shown as the green ball. The positions of the control point in the input mesh sequence
are then shown as a cloud of blue points. The user can move the control point within or slightly
outside this point cloud to synthesize a new face that satisfies the constraint. For example, (a)
when dragging the lower lip down, the user opens the mouth widely; (b) when dragging the left
corner of the mouth to the right, the user pouts the lips.
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(a) (b) (c)

(d) (e) (f)

Fig. 13.14 A faceIK editing session. From (a) to (f), we show the creation of a complex expression
by adding and moving control points one at a time, starting from neutral.

13.4.3 FaceIK User Interface

We implemented the proximity-based weighting and local influence map blending
in real time, providing an interactive tool for expression synthesis by direct manip-
ulation. Fig. 13.13 shows the interface of this tool. Fig 13.14 shows a sequence of
edits that leads from a neutral face to a complex expression. A screen capture of a
real-time FaceIK demo is available on our Website at http://grail.cs.washington.edu/
projects/stfaces/capture2_fast2.avi.

13.5 Data-Driven Animation

Producing realistic animations of the human face is extremely challenging, as subtle
differences in dynamics and timing can have a major perceptual effect. In this sec-
tion, we exploit the facial dynamics captured in our reconstructed 3D face sequences
to create tools for face animation. In particular, we describe two such tools, one for
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producing random infinite face sequences, and another for data-driven interpolation
of user-specified key frames.

Before introducing these tools, we first describe our model of face dynam-
ics using a graph representation. Our approach adapts related graph techniques
used in video textures [42] and character animation [25–27] to the domain of face
animation.

13.5.1 Face Graphs

Let M1, . . . , MF be a sequence of face meshes. We represent face dynamics using
a fully connected graph with F nodes corresponding to the faces; we call this the
face graph. The weight of the edge between nodes i and j specifies the cost of a
transition from Mi to M j in an animation sequence. This cost should respect the
dynamics present in the input sequence, balanced with a desire for continuity. Given
two frames Mi and M j in the input sequence, we define the weight w of edge (i, j) as

w(i, j) = dist(Mi+1, M j ) + λdist(Mi , M j ), (13.23)

where dist is a distance metric between meshes. (We use the L2-norm, summed
over all the vertices.) The first term prefers following the input sequence, while the
second term penalizes large jumps.

13.5.2 Random Walks Through Face Space

Video textures [42] generate nonrepeating image sequences of arbitrary length. The
same technique can be used to generate random, continuously varying face ani-
mations. To do so, we simply perform a random walk through the face graph. As
in [42], we define the probability of a transition from mesh Mi to mesh M j to be
Pij = e−w(i, j )/σ , normalizing so that the sum of Pij over all j is 1. The parameter
σ is used to define the frequency of transitions between different parts of the input
sequence; lower values create animations that closely follow the input sequence,
whereas higher values promote more random behavior.

As in [42], we disguise transitions between two meshes that are not consecu-
tive in the input sequence by a weighted blend of the two subsequences across the
transition. Results are shown in the companion video.

13.5.2.1 Animation with Regions

A limitation of the method described so far is that the frames composing the anima-
tion are constrained to lie within the set of input meshes. We therefore generalize
this approach by defining regions on the face, animating the regions separately using
the above method, and then blending the results into a single animation.
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Rather than grouping the vertices of the meshes into disjoint regions, we create
“soft” regions using control points to define a set of weights for each vertex, as
described in Section 13.4.2. The influence maps are taken into account in the com-
putation of the cost graph by defining d(Mi , M j ) to be weighted sum-of-squared
distance, with per-vertex weights defined by the influence map.

The companion video shows an animation generated from this method using two
control points. While a majority of the resulting sequence looks natural and com-
pelling, it also contains some unnatural frames and transitions, due to the fact that
different parts of the face are animated independently.

13.5.3 Data-Driven Key-Frame Animation

While the random walk technique produces animation very easily, it does not pro-
vide a mechanism for user control. However, the same concepts may be used to sup-
port traditional key-frame animations, in which in-between frames are automatically
generated from user-specified constraint frames. The in-between frames are gener-
ated using a data-driven interpolation method, which seeks to follow minimum-cost
paths through the graph [25–28].

Suppose that an animator has a sequence of meshes available and wants to ani-
mate a transition between two expressions that appear in the sequence. In the sim-
plest case, the expressions comprise the endpoints of a subsequence of the input
sequence. More generally, the interpolation must blend two or more noncontiguous
subsequences.

To find a path between two key frames Mi and M j , we construct the graph
defined above, then search for the shortest path connecting Mi and M j using Dijk-
stra’s algorithm [43]. The result is a sequence of meshes. We then compute a per-
vertex cubic-spline interpolation of the mesh sequence to generate a continuous
animation, which is sampled using a user-specified parameterization to produce a
desired set of in-between frames with desired timing.

13.5.3.1 Key-Frame Animation with Regions

The key-frame interpolation method is extended to work with multiple regions using
the same technique as described for random walks. In particular, a separate graph is
defined for each region. Optimal paths on each graph are computed independently,
and the resulting animations are blended together using the influence functions to
produce a composite key-frame animation. Fig. 13.15 shows an example key-frame
animation, comparing our data-driven interpolation to traditional linear interpola-
tion. We have also created a 43-second animation (shown in the companion video)
using our data-driven technique. The animation uses 19 key frames, and each key
frame has 3 control points.
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13.6 Discussion and Future Work

We have presented an end-to-end system that takes several video sequences as input
and generates high-resolution, editable, dynamically controllable face models. The
capture system employs synchronized video cameras and structured light projec-
tors to capture streams of images from multiple viewpoints. Specific technical con-
tributions include first a novel spacetime stereo algorithm that overcomes overfit-
ting deficiencies in prior work. Second, we described a new template fitting and
tracking procedure that fills in missing data and brings the surfaces into correspon-
dence across the entire sequence without the use of markers. Third, we demon-
strated a data-driven, interactive method for face editing that draws on the large
set of fitted templates and allows specification of expressions by dragging surface
points directly. Finally, we described new tools that model the dynamics in the input
sequence to enable new animations, created via key-framing or texture-synthesis
techniques.

There are many important topics to explore in future work. First, the reso-
lution of our template mesh is only about one eighth of the depth maps, and
we only fit the template to one third of the depth maps (at non-pattern frames).
A natural extension of our current work is to employ a hierarchical fitting
approach to use templates whose resolutions are comparable with the depth
maps, and also interpolate color along optical flow to obtain face models at
60 Hz.

Our capture technique requires illuminating the subject’s face with two bright
projectors and involves a relatively large rig with multiple mounted cameras. One

Fig. 13.15 Illustration of linear interpolation (top row) vs. data-driven interpolation (bottom row),
with the first and last columns as key frames. Linear interpolation makes the mouth and the eyes
move synchronously, which looks less realistic when played as an animation. Data-driven inter-
polation, instead, first purses the mouth, then squints the eyes, and finally opens the mouth. The
sequential nature of the data-driven interpolation for this example arose naturally because that is
the way the real subject behaved. c© ACM, 2004. http://doi.acm.org/10.1145/1015706.1015759.
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could imagine, however, embedding six small cameras on the sides of a moni-
tor, and use imperceptible structured light [44] to make the capture process less
objectionable.

Our registration technique depends on optical flow estimation, which can be
unreliable for textureless regions. Although regularization helps to produce smooth
meshes, we did observe some “vertex swimming” artifacts over the textureless
regions. In the future, we hope to incorporate temporal coherence.

Our faceIK method generates natural results for control points that are rela-
tively near the input faces, but can produce bizarre (and even disturbing) results
for larger extrapolations. Although this behavior is not surprising, the user must
explore the space of faces by trial and error. More useful would be if the tool could
constrain the edits to the range of reasonable faces, by learning a set of good con-
trols. Another limitation of faceIK is that, although it allows the user to segment the
face adaptively, within an animation the segmentation cannot be changed. There-
fore, before creating an animation, the user must specify enough control points so
that any desired key frame can be created. This limitation did not pose a prob-
lem when we created the animation in the accompanying video; three controls
(on both eyebrows and the lower lip) were enough to create the expressions we
wanted. However, it would be desirable to allow the controls to vary across key
frames.

The animation tools presented in this chapter are quite simple and could be
extended and improved in several ways. One limitation is that we assume that
the key frames are blends of the input frames. Although different regions can be
controlled separately, the approach does not provide good support for extrapolated
faces, since such faces may not be part of a motion sequence (i.e., there is no natural
successor frame). Another limitation is that our data-driven interpolation technique
requires a rich face sequence in order to produce natural-looking transitions between
all the captured expressions. If our technique fails to find a desired transition in the
face sequence, it may choose to use linear interpolation or an unnatural backwards
transition instead. In addition, eye blinks may occur at inopportune moments, which
complicates animation, and gaze direction is fixed by the input sequence; more care-
ful modeling of the eyes, as well as insertion of teeth, would improve the quality of
resulting animations. Finally, more intuitive control of timing would also help pro-
duce more realistic key-frame animations. All of these problems are important areas
for future work.

While we have focused on animating a single face, it would be interesting to
explore variations in dynamic behaviors among different human faces, similar in
spirit to what has been done for static shape variations [1, 14].
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13.7 Appendix 1: The Closed-Form Solution to PBW

In this appendix, we show that Eq. 13.17 minimizes Eq. 13.16 subject to Eq. 13.15.
We first rewrite this constrained minimization problem using matrices as follows:

Mininize g(c) = cTQc

such that Bc = p̄
(13.24)

where

Q =

⎡
⎢⎢⎢⎣

φ1 0 · · · 0
0 φ2 · · · 0

0 0
. . . 0

0 0 · · · φF

⎤
⎥⎥⎥⎦ , B =

⎡

⎢⎢⎢⎢⎢⎣

s1,1 s1,2 · · · s1,F

s2,1 s2,2 · · · s2,F
...

...
...

...

sL ,1 sL ,2 · · · sL ,F

1 1 · · · 1

⎤

⎥⎥⎥⎥⎥⎦
. (13.25)

Using Lagrange multipliers, we know the minimizer of Eq. 13.24 should satisfy
the following equation:

Qc = BTa, (13.26)

where a is the Lagrange multiplier. From Eq. 13.26, we obtain the following relation
between c and a:

c = Q−1BTa =

⎡

⎢⎢⎢⎢⎣

1
φ1

s̄T
1 a

1
φ2

s̄T
2 a

...
1

φF
s̄T

F a

⎤

⎥⎥⎥⎥⎦
. (13.27)

Substituting Eq. 13.27 into the constraint equation in Eq. 13.24, we have

Bc = BQ−1BTa = p̄. (13.28)

Solving Eq. 13.28, we have

a = (BQ−1BT)−1p̄ = (

F∑

f =1

1

φ f
s̄ f s̄T

f )
−1p̄. (13.29)

Equations 13.29 and 13.27 together show that Eq. 13.17 indeed minimizes Eq. 13.16
subject to Eq. 13.15.
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13.8 Appendix 2: The Normalized Property of Soft Region
Weights

In this appendix, we prove that the blending coefficients for vertex s, c(s), sum
to 1 given that

∑L
l=1 B(s, sl) = 1. Our proof is based on two facts. To state the

facts succinctly, we first introduce two concepts. A vector is called normalized if its
components sum to 1. A matrix is called normalized if all of its rows are normalized.

FACT1. If an invertible square matrix A = ai, j is normalized, then B = A−1 is
also normalized.

PROOF. Let B = bi, j . B = A−1 ⇒ ∀i,∀ j,
∑

k bi,kak, j = δi, j ⇒ ∀i, 1 =∑
j δi, j = ∑

j
∑

k bi,kak, j = ∑
k
∑

j bi,k ak, j = ∑
k bi,k

∑
j ak, j = ∑

k bi,k .
FACT2. If a m by n matrix A = ai, j is normalized and an m-dimensional vector

b = bi is normalized, then the n-dimensional vector bTA is also normalized.
PROOF. bTA = ∑

i bi ai, j ⇒ ∑
j
∑

i bi ai, j = ∑
i
∑

j bi ai, j = ∑
i bi

∑
j ai, j

= ∑
i bi = 1.

Let C = c1c2 . . . cL
T and Ĉ = ĉ1ĉ2 . . . ĉL

T. We know from the construction of
RBF that C = B(sl′ , sl)Ĉ. Because both C and B(sl′ , sl) are normalized, the matrix
Ĉ = B(sl′ , sl)

−1C is also normalized, according to FACT1 and FACT2. Again,
from the definition of RBF, we know that c(s)T = B(s, pl)

TĈ. Because both vector
B(s, pl) and matrix Ĉ are normalized, c(s), the blending coefficient for vertex s is
also normalized.
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Chapter 14
Practical Considerations for Facial
Motion Capture

Thomas W. Tolles

14.1 Introduction

Before we begin our discussion, I would like to point out the differences between
what is considered classic R&D and production R&D. In the f/x production world,
Blue Sky results are clearly desired, as the techniques that are novel and ground-
breaking this year are passé the next. The motion capture industry operates in much
the same way, leading to the expression “mochismo,” which combines motion cap-
ture with machismo.

However, the real truth is that production R&D tends to be evolutionary, not
revolutionary, since the 80% solution today is far superior to the supposed 100%
next month. Production R&D benefits from the time-induced deadlines driven by
production, as well as the chance to iterate and perfect the approach taken. With
longer R&D times, the chances to iterate are reduced, giving such solutions less
time in the crucible of production.

Given a production backdrop, it would be unreasonable to expect groundbreak-
ing R&D coming out of the production world; however, the sharp focus of pro-
duction and inherent time frames are an excellent proving ground for any relevant
technologies.

14.2 Facial Capture Production Background

From my personal experience, the very first use of a Vicon optical motion cap-
ture system for real production occurred during the spring and summer 1996 for
the remake The Real Adventures of Johnny Quest. While Johnny Quest remained
a largely 2D animated cartoon, the remake included segments of a virtual Quest
World based on 3D techniques. Each 22-minute episode included one to six minutes
of CG in each show where the realistic movements of full-body and facial capture
were used to animate the characters. The rest of the show used classic 2D animation
techniques, which, of course, did not include motion capture.

The production schedule included shooting several days of motion capture across
several episodes. For example, we might have shot three days of full-body capture
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for four different episodes, followed by a single day of facial capture for those same
four shows.

In terms of the actual facial capture, there were two significant notables: despite
having only seven cameras to work with, we captured two performers at the same
time, sitting side by side. The benefit of this approach is that each performer was
able to key off the other, giving the facial captured performances more life and better
timing. In addition, the facial performances were always captured after the full-body
capture had been recorded. By playing back the reference video of the full-body
captures and using SMPTE time-code to trigger the actual facial capture system, we
not only gave the performers the ability to see what they were supposed to be doing
but also let us maintain proper temporal alignment among the soundtrack, full-body
data, and facial data.

Another significant facial capture project occurred during 1997 and included one
of Hollywood’s “A” list actors, Bruce Willis for the videogame “Apocalypse,” which
was published by Activision Studios. During a single day, Mr. Willis was facially
scanned, facially captured, and body-captured. Unlike Johnny Quest and its use of
3D cartoon characters, Apocalypse contained a lifelike representation of Mr. Willis.
As a result, the facial scanning was done both with and without the facial markers
in order to help spatially align the facial capture markers with the model produced
from the scan data.

Separately, the recreation of Marlene Dietrich was also an attempt at recreating
reality, only this time the target performer was obviously deceased. In this case, a
female performer who visually seemed to compare favourably to Ms. Dietrich was
chosen as the facial capture performer, but clearly there was no need to scan or play
back video of full-body capture.

The James Brown facial capture project had a different goal—although Mr.
Brown was alive at the time, the goal of the Experience Music Project was to show
a young Mr. Brown. Multiple methods were used to facially capture Mr. Brown,
including film, HD video, and optical motion capture. Live action footage of Mr.
Brown’s younger dance double was combined with a digital equivalent of the real
Mr. Brown’s face, albeit younger than he was at the time, but driven by the motion
capture data.

As a last example, House of Moves provided facial capture services for Spider-
man II, capturing both Tobey Maguire and Alfred Molina. As before, the perform-
ers were scanned with and without facial markers on in order to maintain spatial
integrity between the scan data and the motion capture data. However, unlike before,
both the scanning and the motion capture data focused more on capturing specific
facial poses, and less on capturing explicit performances.

14.3 Four Methods of Facial Capture

There seem to be roughly four types of facial capture methods that are available to
professional production. I am excluding any of the facial animation techniques that
are driven from phonemes or other methods of speech analysis but am including
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only methods that attempt to record or capture actual facial movements. In no par-
ticular order, these methods include

• optical capture for high-accuracy explicit marker data such as systems sold by
Vicon Motion Systems and Motion Analysis,

• video capture intended to generate low-resolution MPEG-4 FAP files, a light-
weight data stream relying on parameters such as “mouth width,”

• video capture combined with an intelligent contextual model of the face such as
that provided by Imagemetrics,

• entire surface and/or texture capture such as recent efforts by Mova (Contour)
and earlier tests by 3Q Systems.

While all of these methods have shortcomings, the most commonly used method
of facial capture for professional production has historically been optical capture.
However, while the general technique of optical motion capture remains fundamen-
tally the same, there have been some significant advances that have helped push its
use along.

14.4 2007 — So What Has Changed?

First, let me review the general configuration for the “old” approach for optical
facial motion capture:

• dedicated facial setup,
• 8–12 cameras,
• 30–180 markers,
• 1.3-(or less) megapixel cameras,
• limited movement of the performer due to volume size,
• poor to decent data quality.

However, in the last two to three years, dedicated and small facial capture vol-
umes have given way to larger “full-performance capture” setups that allow for
facial capture along with hands and body. This new setups might consist of

• hybrid volume or full 360-degree volumes for performance capture setup,
• 32 or more cameras (even upwards to 200!),
• combined facial and body at same time,
• 360 degrees of coverage,
• very nice data quality.

So, while dedicated facial capture has tailed off, there has been an upswing in
full-performance capture to take its place. The reasons for this change are not sur-
prisingly related to advances in technology:

• camera resolution—Vicon’s MX40 4-megapixel cameras provided a huge
increase in the quality of data captured and size of a capture volume that would
be created,
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• continued efforts (and incremental success) in the high-end f/x world to solve CG
facial animation increased the need to capture the body and face simultaneously,

• next-generation game platforms were looking to take digital characters to the next
level, and facial capture was a natural place to look for improvements,

• commoditization of body-only motion capture meant the game developers and
motion capture service and hardware providers were motivated to improve upon
body-only capture.

While these advances are all well and good, there certainly are plenty of chal-
lenges of using discrete-point optical capture for capturing facial expressions.
Before I highlight all of the cons, I would like to first to review the pros.

14.5 Optical Motion Capture Production Challenges—Pros
and Cons

High-quality optical motion capture has the following strong suits:

• accuracy and repeatable capture points,
• ability to differentiate small and big markers through 3D marker modeling,
• unlimited length capture,
• does not require wearable technology,
• large volume capture.

In short, the ability to accurately and repeatedly capture known points on a per-
former without requiring the performer to wear any technology is a key driver to
optical capture’s success in the production field.

For example, in the scanning world, the Cyberware laser scanner is recognized
as an industry leader. However, despite the accuracy with which the Cyberware
scanner generates 250,000 points, users are always faced with figuring out how to
reduce so much data to a much smaller and more workable amount. With discrete
optical capture, that comes for free.

In addition, the fact that the performer does not have to wear head-mounted gear,
or have wires or battery packs and can move freely about the capture volume, is
another tremendous advantage. If the performance is no good, then capturing it is
like kissing your sister—who cares?

Nonetheless, optical capture suffers from plenty of warts. In fact, after looking at
the list below, it is almost hard to believe that optical capture seems to occupy the
top perch in the world of production facial capture:

1. no good way to capture eyes,
2. not capable of detecting or capturing skin wrinkles,
3. no way of recording textures,
4. no way of capturing tongue movements,
5. applying (and maintaining) markers can be difficult,
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6. head stabilization, though not necessarily unique to discrete optical capture,
remains a challenge.

The first four items have no known solutions directly from optical capture. How-
ever, I would like to address some of the potential solutions for items five and six.

14.6 Effect of Differing Marker Locations Across Multiple
Shoot Days

While applying discrete optical markers requires a steady hand, the right adhesives,
and clean breath so as not to offend talent (or vice versa), there is no magic to
actually applying the markers to someone’s face.

In addition, while markers might fall off during a shoot day, the right methods
for detecting missing markers, relocating fallen markers, and having the right food
and drink items for talent can reduce the impact of these events.

For instance, premarking the face with small ink dots for each marker makes it
easy to both spot a missing marker and relocate it. Giving the talent a drink with
a straw may cut down on him or her “drinking” a lip marker by accident. Video
cameras with weak lights help illuminate the facial markers and make it easier to
spot missing ones.

A bigger challenge comes from requiring day-to-day repeatability. In other
words, if you want to capture a given actor across multiple days, how do you ensure
that markers are placed on this performer in an identical fashion?

Here are three tools that have been used to aid in this issue:

• great photos of ink dots on the performer’s face,
• head casts and plastic masks,
• placement delta technology.

The first is the poor man’s version—on the first day, apply ink dots (washable!)
on the performer’s face in the desired marker location. Take clear photos of these
dots before applying any facial markers, and use these photos as a guide on subse-
quent days to replace ink dots in the same place. This approach is cheap, but not
great.

A second version and far more robust approach is to make a head cast of the
performer from which you make a clear plastic mask. Then, predrill the mask with
holes in the desired locations of the markers. You can then use the mask across
multiple shoot days to help ensure consistent marker placement.

A third technique involve the use of delta technology to help compensate for day-
to-day differences (or even intra-day differences in the case marker are replaced).
This approach makes two assumptions:

• that the delta between a given marker’s placement is small enough such that the
motion of the marker is the same,

• that the performer is capable of repeating a consistent “neutral” facial expression.
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Given the preceding constraints, the basic approach to delta technology involves
the following steps:

• from the first day of your shoot, declare a “Master Neutral” frame for your
performer that is based on the neutral expression that he/she can most repeat-
edly make,

• start each capture from this same neutral expression,
• for each shot, process the marker data by removing the delta between any given

frame of data and the defined first or neutral frame so you get a delta file that
represents the motion of the markers for the shots from that day,

• for shots across multiple days, you can add the delta to the Master Neutral in
order to remove any day-to-day variations that might have existed in the marker
placement.

Combining delta technology with clear photos of the day 1 marker locations is
probably the most cost-effective method, as opposed to going through the process
of making a live cast and subsequent clear masks.

14.7 Head Stabilization

Head stabilization is one of the most underappreciated and seemingly contradictory
challenges in the facial and full-performance capture worlds. Upon initial inspec-
tion, you might conclude that it is trivial—one must merely grab three or more
markers that are attached to nonmoving parts of the face and make all of the other
markers’ motion relative to a coordinate system defined by those three or more
markers.

The truth is that head stabilization is trivial to do—up to a point. After that point,
it can be incredibly difficult to do. Here is one what one HOM employee said about
head stabilization:

To properly Gross Stabilize face data you will need four or more markers, placed as rigidly
as possibly to each other and the performers face. These markers will vary depending on
camera set up. Ideally you would drill into the performer’s skull. If the performer agrees,
drill into their skull. Without these markers, or if they are placed poorly, you will shoot
yourself in the face. I am not kidding. Your life will be void of joy. You will welcome
death. You will add 123,232,677,833 hrs to every day on the project.

The reasons why head stabilization ends up being so hard are as follows:

• It is very difficult, if not impossible, to attach a few markers to someone’s head
and expect that they are completely rigid with respect to each other.

• It can be very hard to differentiate between what a person’s head is doing and
what the facial expression is. In other words, by looking at a pose, it is hard to
tell if the stabilization is correct and facial expression is driving the face, or if the
stabilization is not correct.

• As we move from dedicated facial capture volumes to full-performance capture
volumes, there is a natural tendency to larger and more violent head motions.
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Fig. 14.1 Snapshot of human face and body motion capture.

Fig. 14.2 Wide view of motion capture setting.

For a more complete review of how to capture and process facial motion capture
data, please refer to the Facial Animation Survival Guide at the end of this chapter.
Figures 14.1–14.3 show some snapshots of motion capture settings.

14.8 Conclusion

While it is a little hard to believe that sticking dots on people’s faces is a good idea,
optical capture is a proven technique and has demonstrated ability to operate even
in fairly harsh settings. Movies like Polar Express and Monster House have shown
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Fig. 14.3 Closeup view of motion capture setting.

that facial capture does work. One of the equipment manufacturers, Vicon Motion
Systems, has a client using a real-time integrated capture zone (face and body) for a
current production.

However, capturing the data is only the beginning, and several big challenges
remain even with successful capture data. While I hope that discrete physical marker
capture is replace by other techniques, I suspect that this will take longer than we
currently imagine.

14.9 Appendix 1: Facial Capture Survival Guide

To capture facial movement, you generally place between 50 and 150 markers on
a performer’s face. Because there are so many markers in such a tight space, and
because the movement of the face is so subtle, correct placement of the markers is
absolutely critical. Once data capture is complete, you must be very careful during
the editing process not to destroy the subtle motion that has been captured. The
following tips and tricks are designed to help you capture and edit facial animation
efficiently.

14.9.1 Marker Placement

Make sure you place four or more stabilization markers on a performer’s face. All
movement of other markers on a performer’s face are measured from these markers
so they must be completely rigid, or as close to rigid as humanly possible.

Make sure you define a completely straight centerline down the forehead, nose,
lips, and chin. You need to define a straight line along the ears, sideburns, eyes, and
nose. You must be able to clearly see these perfectly horizontal and vertical marker
lines in order to stabilize, clean, and filter the data you capture.
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Make sure you place markers on the inner corner of the eye, the bridge of the
nose, and the sideburn areas of a performer’s face. Place these markers so that they
will move as little as possible during facial movement. These are key markers for
facial motion capture.

In dense marker sets of 80 or more markers, make sure you “zipper” the eyelid
markers such that no two markers on an upper lid or a lower lids are in line. Markers
must “zig-zag” from upper to lower lid.

Symmetry is important. Place markers as symmetrically as possible on both sides
of the face. Make sure that the lines of markers on a performer’s face are as straight
as humanly possible. Straight lines of markers make editing marker data easier.

14.9.2 Gross Stabilization

The process of gross stabilization is required to define the markers from which the
movement of all other markers will be determined. Ideally, these markers on the
performer’s face will not move at all as the performer speaks.

If these markers are not completely rigid, then you will see “slide” in the posi-
tion of other markers. This means that their positions will seem to change as a group
over the course of an animation. Some slide is normal in a facial animation capture
because there are no completely rigid points on a human face. But minimizing slide
is absolutely critical because it is very time-consuming to eliminate once it is cap-
tured.

Choosing gross stabilization markers is a matter of trial and error. Every per-
former will have some stabilization markers that work and others that don’t. Feel
free to remove stabilization markers that do not work for a given performer in future
captures.

Evaluate and clean stabilization markers first. For best results, try never to filter
stabilization markers. Even very, very light filtering will cause slide over much of
the animation.

Select the stabilization markers and create a rigid body. We recommend that you
call your stabilization rigid body, STAB. After you create the rigid body, parent the
face markers to this rigid body. Cut all of the keys on the STAB rigid body. This will
plop the face down the world origin. The face is now “gross-stabilized,” though it
may not be in a good place for you to work on.

Hot tip: you must select the stabilization markers in the same way each and every
time you create a rigid body for a given capture. The order in which the markers are
selected determines how the rigid body is created, and this will affect processes
down the line. So make sure you select the stabilization markers in the same order
each and every time you create the rigid body.

14.9.3 Adjusting the Gross Stabilized Face for Easy Editing

Now that you have gross-stabilized the face using the STAB rigid body you created,
you can adjust the position of the face to make editing the markers easier.
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To do this, select the STAB marker. Rotate and move it into a good position
for editing. We recommend that you place the horizontal eye line (as described
previously) along the floor plane. The world origin should be precisely between
the two sideburn markers. This will give you X-, Y-, and Z- axes you can use as
additional references during the editing process.

If your animators specify a specific “neutral frame” display a specific “neutral
pose,” find a frame with the neutral pose, clean it, then extract the marker positions.

This is now your Master Neutral Reference Frame. You will place a copy of this
frame at the front of every edited shot you deliver to animators. The Master Neutral
Reference Frame should be a persistent dummy hierarchy of the Master Neutral
Reference frame. All of your shots will be judged against this hierarchy for slide
and general orientation. This Master Neutral Reference Frame will also be used by
the animators to align their 3D geometry to all the markers you have captured.

In general, a good Master Neutral Reference Frame will show the character with
eyes open, mouth closed, and jaw relaxed. You will need to maintain that orientation
for all future shots, so use that Master Neutral Reference Frame for any tests you do
as well as for full production.

14.9.4 Range Stabilization

There are two types of errors that you commonly encounter and fix during range
stabilization: slides and hiccups.

Slides occur for several reasons. In a perfect world, the face remains stable rel-
ative to the gross stabilization markers. Markers only move up from eyes or down
from the eyes and a solid eye line is maintained. This almost never happens. If you
over alter the stabilization markers, you will cause slides. If the stabilization markers
themselves are attached to a loose cap, there will be slides. If a performer mangles
and stretches his/her face to the limit, there will be slides. If the scalp causes the cap
to slide back and forth, you will get slides.

The best way to remove slides is to get absolutely fixed stabilization markers,
clean them up very carefully, and never ever apply a filter to them if possible.

There are six types of slides you will frequently have to correct:

1. Up-down translation. Here the entire group of face markers translates up or down.
2. Left-right translation. The entire group of face markers translates left or right.
3. Front-back translation. The entire group of face markers moves forward or back.
4. Up-down rotation. The face rotates up and/or down as if the performers is shak-

ing his/her head “yes.” The motion may not be as drastic as a head shaking yes or
no, but the markers will shift up and down uniformly. The face may only rotate
6 mm and stay up for 100 frames and then come down. These rotations are not
as obvious as the less frequent translations.

5. Left-right rotation. The face rotates left and/or right as if the performers is shak-
ing his/her head “no”.

6. Twist rotation. The face rotates as if a pole is jammed through the front of the
face. That’s the best description I can come up with.
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The goal of range stabilizing is to keep the face stable according to the eye line.
Markers should only move allowable distances from the eye line. Think of the

skull underlying the face. The markers you are using to gauge the stability of the
face are lying over fat and muscle. As you play an animation, you have to decide if
markers are sliding or are moving correctly relative to the eye line, nose line, and
stabilization markers.

If markers are appearing to move unnaturally, you must decide if gross stabi-
lization has caused the errors. If that’s the case, you may want to go back and
gross-stabilize with different markers. Alternatively, you may want to select and
edit groups of markers to fix small problems with gross stabilization.

Sometimes individual markers may be captured incorrectly. You will have to
repair these errors by selecting and editing groups of markers. This can be a time-
consuming process.

Hiccups are pops or sudden jumps in the facial animation. In some cases, a hiccup
may exist for every marker in a scene, and when this is the case, there’s a problem
caused by stabilization markers that are not, in fact, stable.

To fix this error, you must either choose new stabilization markers, or edit mark-
ers to repair the damage. You will be able to identify most hiccups in the graph view.
You will see significant changes in the trajectory of markers over just a few frames.
We recommend that you cut out or fill as required to repair all the bad data you can
identify.

At some point, you will probably have to repair bad data marker by marker. For
particularly dense facial markers, 150+ markers, you may find this quite difficult.
You must play any portion of the animation you need to edit over and over again
to determine exactly what needs to change. Once you know exactly which marker
needs to be modified and exactly how its movement has to be adjusted, you can
make the edit. Failure to understand exactly what the minimum necessary edit is
can result in smoothing out correct motion, which can be very difficult to fix later.
After you have cleaned up the data significantly, you should take the data into the 3D
animation application of your choice and have another look at it. You will discover
additional movement that needs to be modified.

Once you have eliminated or repaired as much bad data as you can, you may
apply a very, very light filter. This will give you a basically smooth curve without
throwing off your data. You will still probably have a lot of small wobbles in the
data, but by this point the data will not be dramatically jumpy.

14.10 Appendix 2: Case Study: Anatomy of an Integrated
Performance Shoot—AND1 Streetball

One of the first productions to use the current generation of 4meg optical capture
cameras in order to create a full-performance capture zone was for AND1 StreetBall
published by Ubisoft and produced by Black Ops Entertainment.

Black Ops approached Vicon House of Moves in October 2004, corresponding to
the period of time in which Polar Express was just finishing up and Monster House
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was going into production. The Vicon MX40 4-megapixel cameras had just started
shipping. Previous attempts to do integrated capture in 1999 using 18 1-megapixel
cameras had failed to be commercially and technically viable.

It is also worth noting the difference in the number of cameras and total megapix-
els of camera resolution that had been applied to full-performance capture volumes
during this time frame:

• Polar Express—72 1.3-megapixel Vicon M2 cameras (total of 94 meg),
• Monster House—220 1.3-megapixel Vicon M2 cameras (total of 286 meg),
• House of Moves—32 4-megapixel Vicon MX40 cameras (total of 128 meg),
• 1999 HOM—18 1.0-megapixel Vicon M1 cameras (total of 18 meg),

Vicon House of Moves ended up setting up a hybrid capture volume consist-
ing of part full-body only and part full-body and facial capture. The volume was
approximately 25 feet long with a 15-foot-long section for facial with 180 degrees
of coverage. There were a total of 32 cameras, low by some standards. While audio
was recorded, it was only for reference for separate ADR sessions.

The results of the capture session were delivered as marker data, with the full-
body data delivered into Motion-Builder and the facial data delivered as stabilized
marker data into Maya. Using MEL scripts, the 40 facial markers were assigned
as clusters on the head rig via weighted vertices and exported for use in the game
engine. Motion-Builder processed all of the full-body data, and the all data streams
were combined and played back in the game engine.

Several lessons were learned or confirmed by this project, confirming the asser-
tions made earlier in this chapter:

• Head stabilization is one of difficult parts of the process and remains equal parts
art and science.

• Audio recorded on the set was not shippable, i.e., it was not clean audio. This
required going back to the VO studio and doing an ADR session on the reference
audio recorded.

• It would best to record final audio at the same time we are doing the facial
capture. This will require a sound-proof stage for the full-body and facial cap-
ture.

• Eyes and tongue were not tracked, so they had to be programmatically created or
animated. The eye tracking was resolved by putting target points in the game. The
tongue was not animated, so sometimes there was less mouth fidelity movement
and/or holes in the mouth geometry.

StreetBall credits are as follows:

• Director: Jose Villeta,
• Developed by: Black Ops Entertainment,
• Published by: Ubisoft,
• Platforms: PS2 and XBOX,
• Ship date: June 2006.
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14.11 Author’s Background

The author has been working with high-end 3D computer graphics since 1985, get-
ting his start at Failure Analysis Associates (FAA), where he was one of the early
adopters of Silicon Graphics workstations and Wavefront Software. In 1986, Tolles
was the co-founder of an animation production company specializing in litigation
and commercial productions.

Around 1995, while overseeing sales and marketing at Viewpoint Datalabs, he
chanced across motion capture, which at the time was similar to the state of 3D in
1985. Realizing that the motion capture market had room to grow and acknowledg-
ing that the software tools of the days were quite crude, Tolles founded House of
Moves Motion Capture Studios in 1996.

House of Moves went to become one the world’s most successful independent
motion capture service studios, working on projects like Titanic, Spiderman, as well
as over 250 video games such as “Madden NFL” and “Guitar Hero.” House of Moves
simultaneously developed and release Diva, a high-end motion captured editing tool
that has a very strong following in the industry.

In 2004, Tolles sold House of Moves to Vicon Motions Systems. Subsequent to
the sale, Tolles assumed worldwide responsibility for Vicon’s entertainment product
marketing, ultimately developing and rolling out Vicon’s next-generation animation
production tool, Blade.

Tolles’s educational background includes a masters and bachelors in mechan-
ical engineering from Stanford University in 1981/82, where he specialized in
microprocessor-controlled electromechanical devices. Tolles also received an MBA
from the Anderson School at UCLA in 1991.
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interpolation, 192–202
mapping, 20, 187
signal filtering algorithm, 207
texture, 110, 112, 279
transfer, 210

Motion-builder, 288
Motion-node

constraint, 46, 68–69, 121, 135–136
path searching, 77

Motion vector, 97, 200
3D, 196
270-dimensional, 63
dense surface, 205
scaling, 206
source model, 214
source triangle, 195
transformation, 215

Mouth tracking, 34
MPA, 219; see also Minimum perceptible

action
Mpeg-4 facial animation, 14, 22, 51, 219

decoder, 14
standard, 14
system, 240

MPEG-7, 228
MPEG-21, 228
Multi-layered personality, 47
Multiparty turn-taking, 80, 88
Muscle

actuation, 3, 20
actuator, 168
based models, 220

contraction, 218
parameter, 3
time, 33
value, 208

Muscle model, 4, 221
physical, 4
physics-based, 1, 7, 9, 22
pseudo, 4, 220
spline, 6
vector-based, 8, 187

Muscle modeling, 1, 4, 7, 22, 220
Muscular contraction, 218

Neighbor point, 101
Neighbor point displacement, 213
Non-linearity, 218
Non-orthogonal blend shape, 3
Non-parametric, 103
Non-pattern frames, 251, 257, 260, 271

OCC model, 19, 50
Optical flow, 12, 30, 249, 251, 256,

260–261, 272
tracking, 12

Parameter generator, 92
Parameter interpolation, 3
Parameterizations, 1, 3, 22
Parameterization scheme, 217, 220
Parametric approach, 187
Parametric model, 220
ParGen, 94; see also Parameter generator
PBW, 264, 266, 273; see also Proximity-based

weighting
PCA, 19, 39, 42, 63, 65, 135, 178, 178, 250,

263, 264; see also Principal component
analysis (PCA)

PCs, 42–43, 217; see also Principal
components

PDA, 240, 242; see also Personal digital
assistant

Performance driven animation, 3, 222
Performance driven facial animation (PDFA),

1, 11, 19, 188
Personal digital assistant, 217
Person-specific modeling, 9
Phoneme cluster, 18, 63–65, 69
Phoneme-isomap, 17, 60–61, 65–70
Phonetic rule based system, 31
Physically based model, 6, 162
Physically correct model, 162
Physically faithful/pseudo muscle, 3
Physical personification, 32
Physics-based muscled modeling, 1, 7, 18, 22
Plasticity, 218
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Polygonal models, 2, 7, 132
Pose space deformation, 3
Praat, 117–118
Pre-calculating animation, 217
Primitive facial animation, 3
Principal component analysis (PCA), 39, 42,

63, 178
Principal components, 42–44, 178, 264
Prosodic features, 22, 114–116, 118–123,

126–127, 128
Proximity-based weighting, 264, 268
PSD, 3; see also Pose space deformation
Pseudo muscle modeling, 220

QEM, 231; see also Quadric error metrics
Quadric error metrics, 231

Radial basis function, 3, 10, 20, 168, 173, 184,
190, 260, 266

Range stabilizing, 287
Rational free form deformation, 221
RBF, 3, 9, 10, 20, 168, 173, 184; see also

Radial basis function
Real time animated humans, 217
Real time animation, 215, 217
Real time dialogue system, 46, 56
Real time integrated capture zone, 284
Real time video tracking, 33, 39–30, 55
Regression, 3
Resulting animated model, 2, 132
RFFD, 6, 221; see also Rational free form

deformation
Rich representation language, 54
Rigid head

gestures, 127
motion, 22, 125–126, 132, 140–141

Root mean square (RMS) energy, 117
Root mean square (RMS) error, 179
RRL, 54; see also Rich Representation

Language
Rule-based co-articulation model, 16

Saccades, 21, 79, 80–81, 82, 87, 94, 98, 100,
102; see also SacSyn

statistics, 84, 100
synthesizer, 92

SacSyn, 92, 93, 94
Sample-based approach, 16–17
Scalability, 228–229, 233–234
Scalable vector graphics, 238
Scattered data interpolation, 9
Search space, 160, 212
Segmentation algorithm, 170
Shape interpolation, 1–2, 22, 132, 219
Shape registration, 256

Shout 3D, 240
Simultaneous image morphing, 2
Singular value decomposition, 63, 117
Skeleton-driven deformations, 222
Skin membrane, 221
Skin rendering, 2
SMPTE time-code, 278
Snakes, 12
Source model triangles, 192, 196–197
Spacetime stereo, 249, 251–252, 271
Speech

analysis, 289
co-articulation, 15–16, 17
motion, 15–16, 192, 195, 200, 202
motion decomposition, 175
motion synthesis, 68

Spherical cubic interpolation, 114, 121,
123–124

Spherical mapping, 188
Spline

models, 2, 4, 142, 248
muscles, 222
pseudo muscles, 6

Spring mesh muscle, 7–8
STAB, 285–286; see also Stabilization rigid

body
Stabilization rigid body, 285
Standard deviation, 93, 108, 112, 119, 195
Star wars, 2, 132
Static shape variations, 272
Statistical model, 16, 18–19, 21, 61, 80–81,

83, 94–95, 99–100, 110–111, 175
Stereo matching algorithms, 252, 254
Stuart little, 2, 132
SVD, 63, 117; see also Singular value

decomposition
SVG, 238–240, 244; see also Scalable vector

graphics
Syllabification, 31, 40–41
Symbolics, 134

Template tracking, 260, 262
Text-to-speech

application, 205
engine, 54, 55
synthesizer, 29
system, 33, 56

Texture misregistration, 171
Texture synthesis, 21, 79, 98, 99–100, 103,

111, 271
Thin-shell mesh, 4
Tongue and neck, 2
Topologically conforming shape primitives,

2, 132
Training set, 183
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TTS, 54
Tukey’s biweight robust estimator, 258, 260
Tuning, 1, 3, 5, 9, 19, 187

Ubisoft, 287–288
Unsupervised learning technique, 175–176

Valid cluster, 40–41
Vector graphics, 224, 234, 236, 238, 242
Vector muscle, 8
Vertex displacement, 20, 201, 206–207, 236
Vestibulo-ocular reflex, 94
VG, 236, 238–240; see also Vector graphics
VHML, 54; see also Virtual human markup

language
Vicon, 62, 101, 116, 277, 279, 284, 288–289
Virtual characters, 1, 21, 80, 98, 116
Virtual environments, 47, 217
Virtual human faces, 2

Virtual human markup language, 54
Virtual worlds, 217
Visco-elasticity, 218
Viseme-driven approach, 15–16
Visual speech animation, 1, 14, 22
Visyllable based speech animation, 29, 31, 39,

55, 56
Visyllable database, 31, 39, 43, 44, 46, 56
Volume morphing, 10, 188, 190
VOR, 94, 95; see also Vestibulo-ocular reflex

Warp function, 5
Warping-based facial image animation, 236
Web based 3D animations, 217
Whitening, 177, 179
Wrinkle modeling, 2

XDI, 229; see also Content digital item
XML, 39, 51, 53, 54, 228, 330
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