ARDUINO
COOKBOOK

by Angelos Floros

HARDWARE REQUIRED

CIRCUIT

IMAGE

3 Degrees Accelerometer using MMA8452Q

https://www.sparkfun.com/products/10955

This breakout board makes it easy to use the tiny MMA8452Q ac-
celerometer in your project. The MMA8452Q is a smart low-power,
three-axis, capacitive micro-machined accelerometer with 12 bits of
resolution. This accelerometer is packed with embedded functions
with flexible user programmable options, configurable to two interrupt
pins. Embedded interrupt functions allow for overall power savings
relieving the host processor from continuously polling data.

The MMA8452Q has user selectable full scales of £2g/+4g/+8g with
high pass filtered data as well as non filtered data available real-time.
The device can be configured to generate inertial wake-up interrupt
signals from any combination of the configurable embedded functions
allowing the MMA8452Q to monitor events and remain in a low power
mode during periods of inactivity.

This board breaks out the ground, power, I2C and two external inter-
rupt pins.

Not sure which accelerometer is right for you? Our Accelerometer and
Gyro Buying Guide might help!

Various type of Accelerometers:
https://www.sparkfun.com/pages/accel_gyro_guide

Arduino Board
(1) MMA8452 Accelerometer
2 330 Ohm Resistors

Hardware setup:

MMAB8452 Breakout Arduino
3.3V 3.3V
SDA ---------—- AN(330 Resistor)AA----—--- A4

SCL -------——--- AN(330 Resistor)AA---—--—- A5
GND GND

Arduino”

Made with [ Fritzing.org



CODE #include < > // Used for I12C

// The SparkFun breakout board defaults to 1,
// set to 0 if SAO jumper on the bottom of the board is set

#define MMA8452_ADDRESS 0x1D // 0x1D if SAO is high, 0x1C if low

//Define a few of the registers that we will be accessing on the MMA8452
#define OUT_X_MSB 0x01

#define XYZ_DATA_CFG OxOE

#define WHO_AM_I 0x0D

#define CTRL_REG1 0x2A

#define GSCALE 2 // Sets full-scale range to +/-2, 4, or 8g. Used to calc real g
values.

0

(57600);
("MMAB8452 Basic Example”);

(); //3oin the bus as a master
initMMA8452(); //Test and intialize the MMA8452

b
0

accelCount[3]; // Stores the 12-bit signed value
readAccelData(accelCount); // Read the x/y/z adc values

// Now we'll calculate the accleration value into actual g’s
accelG[3]; // Stores the real accel value in g’s

/*
(inti=0,;i<3;i++)

MMAB8452Q Basic Example Code
Nathan Seidle

SparkFun Electronics

November 5, 2012

accelG[i] = ( ) accelCount[i] / ((1<<12)/(2*GSCALE));
// get actual g value, this depends on scale being set
¥ (inti=0;i<3;i++) // Printout values
License: This code is public domain but you buy { (accelG[i], 4); // Print g values
me a beer if you use this and we meet someday ("\t"); // tabs in between axes
(Beerware license).
0;

This example code shows how to read the (10); // Delay here for visibility

X/Y/Z accelerations and basic functions of the b

MMAS5842. It leaves out . .
o readAccelData(int *destination)

all the neat features this IC is capable of (tap, {

orientation, and inerrupts) and just displays rawData[6]; // x/y/z accel register data stored here

readRegisters(OUT_X_MSB, 6, rawData); // Read the six raw data registers
into data array

X/Y/Z.See the advanced example code to see
more features.

(inti=0;1i< 3 ; i++) // Loop to calculate 12-bit ADC and g value for
Hardware setup: each axis
MMAS8452 Breakout ------------ Arduino {
3.3V oo 3.3V gCount = (rawData[i*2] << 8) | rawData[(i*2)+1]; //Combine the

two 8 bit registers into one 12-bit number
gCount >>= 4; //The registers are left align, here we right align the 12-bit
integer

// If the number is negative, we have to make it so manually (no 12-bit data
The MMA8452 is 3.3V so we recommend using type)
330 or Tk resistors between a 5V Arduino and the

MMAB8452 breakout. (rawData[i*2] > 0x7F)

{
gCount = ~gCount + 1;
gCount *= -1; // Transform into negative 2’s complement #
b
destination[i] = gCount; //Record this gCount into the 3 int array
b
b

The MMA8452 has built in pull-up resistors for
12C so you do not need additional pull-ups.
*/



1
1
1
1
: // Initialize the MMA8452 registers

1 // See the many application notes for more info on setting all of these registers:
I'// http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MMA8452Q
|

initMMA8452()

{
¢ = readRegister(WHO_AM_I); // Read WHO_AM_I register
(c == 0x2A) // WHO_AM_I should always be 0x2A

("MMAB8452Q is online...”);

b

{

(“Could not connect to MMA8452Q: 0x");
(c, )i
(1) ; // Loop forever if communication doesn’t happen

MMA8452Standby(); // Must be in standby to change registers

// Set up the full scale range to 2, 4, or 8g.
fsr = GSCALE;
(fsr > 8) fsr = 8; //Easy error check
fsr >>= 2; // Neat trick, see page 22. 00 = 2G, 01 = 4A, 10 = 8G
writeRegister(XYZ_DATA_CFG, fsr);

//The default data rate is 800Hz and we don’t modify it in this example code

MMAB8452Active(); // Set to active to start reading

C 3

'}

|
1 // Sets the MMA8452 to standby mode. It must be in standby to change most regis-
: ter settings

I MMA8452Standby()
{
: ¢ = readRegister(CTRL_REG1);
(CTRL_REG1, c & ~(0x01)); //Clear the active bit to go into
standby

// Sets the MMA8452 to active mode. Needs to be in this mode to output data
MMAB8452Active()
{
c = readRegister(CTRL_REG1);
writeRegister(CTRL_REG1, c | 0x01); //Set the active bit to begin detec-

tion

b

// Read bytesToRead sequentially, starting at addressToRead into the dest byte ar-
ray
readRegisters(byte addressToRead, int bytesToRead, byte * dest)

{
(MMA8452_ADDRESS);
(addressToRead);
(false); //endTransmission but keep the connection ac-
tive

(MMAB8452_ADDRESS, bytesToRead); //Ask for bytes,
once done, bus is released by default

( () < bytesToRead); //Hang out until we get the # of
bytes we expect

(int x = 0 ; x < bytesToRead ; x++)
dest[x] = Wire.read();
b

// Read a single byte from addressToRead and return it as a byte
readRegister( addressToRead)

{
(MMA8452_ADDRESS);



(addressToRead);
(false); //endTransmission but keep the connection ac-
tive

Wire.requestFrom(MMA8452_ADDRESS, 1); //Ask for 1 byte, once done,
bus is released by default

(! ()) ; //Wait for the data to come back
(); //Return this one byte
¥
// Writes a single byte (dataToWrite) into addressToWrite
writeRegister( addressToWrite, dataToWrite)
{
(MMA8452_ADDRESS);
(addressToWrite);
(dataToWrite);

(); //Stop transmitting



