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Soap, Cells and Statistics-Random Patterns in Two Dimensions 

D. WEAIRET 
Department of Applied Science, University of California? 
Davis, California 95616, U.S.A. 

and N. RIVIER 
Department of Physics, Imperial College, 
Prince Consort Road, London 

ABSTRACT. Random two-dimensional patterns crop up in a wide variety of 
scientific contexts. What do they have in common? How can they be classified or 
analysed? These questions are underlined, and partly answered, by a survey of such 
patterns, paying particular attention to soap cell networks, metallurgical grain 
structures and the Giant’s Causeway. 

1. Introduction 
All natural structures (and many artificial ones) represent some compromise 

between order and chaos. When order predominates, the definition and classification of 
structures can proceed straightforwardly. Consider the case of a solid in the form of a 
single crystal. A precise space group can be assigned to it, from a finite list of 
possibilities. A specification of the structure is completed by adding a few numbers for 
the lattice constants and local arrangement of atoms. Disorder may be incorporated in 
the conceptual framework by identifying local defects, such as dislocations, or 
considering the effect of the thermal excitation of lattice vibrations. Such is the 
programme of crystallography and the foundation of conventional solid-state physics. 

But what if disorder predominates? In the context of solids, this is the case for a glass 
or  amorphous solid, in which the atoms are arranged in an irregular, non-periodic 
structure. Although this has been a popular academic subject in recent times, we are 
still not sure where to start in specifying the structure in such a case (Zallen 1979). The 
term arnorphogruphy has been coined for the equivalent of crystallography, signifying a 
systematic approach to the definition of amorphous structures from diffraction data 
(Wright et ul. 1980, Wright 1983). For the time being it is only a primitive and tentative 
procedure. 

In some cases of disorder in condensed matter (such as the theory of simple liquids 
(March 1968, Collins 1967)), headway can be made by appeal to statistical thermo- 
dynamics, but often we are dealing with a structure which is far from thermal 
equilibrium. Metallurgical grains are an important example. Their arrangement is a 
metastable structure which forms in an accidental manner and will evolve (given a 
sufficiently high temperature and no factors which impede grain growth) towards a 
single crystal. 

If one looks beyond physics, which even physicists should sometimes do, one sees 
that such non-ideal structures are the rule rather than the exception. Biological cells, 
geographical or ecological territories and other natural structures on scales much 
greater than molecular dimensions are usually disordered. Occasional counter- 

t Permanent address: Department of Physics, University College, Dublin, Ireland. 
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60 D. Weaire and N. Rivier 

examples displaying periodic structures, such as the bee’s honeycomb or the insect’s 
compound eye, have always excited the enthusiasm of scientists. Here at last, they 
would say, is something we can get our teeth into with a bit ofrigorous theory. At times, 
this prejudice was taken a stage further by imagining order when there was none, as in 
the frequent references to the Giant’s Causeway as being ‘hexagonal’ and its eventual 
‘explanation’ in such terms (Section 3.6). Similarly, plant cells were for long visualized 
as ‘pretty regular dodecahedra’ which they are certainly not. Even the bee’s honeycomb 
is not as perfect as has often been supposed (Wyman 1865). Of course, idealization is a 
valid procedure in science, provided it is done consciously. But it is difficult to sustain a 
picture of many natural structures as imperfect realizations of some ordered ideal, from 
which they are distantly removed. 

If the need for a proper theory of random structures is so obvious, how have the 
adherents of the various scientific disciplines responded to it? 

Condensed-matter physicists have tended to ignore questions which lie far outside 
the range of equilibrium statistical thermodynamics, and to study disorder only in that 
context. Recently, however, there has been a growth of interest in disorder over a wider 
field-percolation theory, chaos, fractals-as well as the work of the amorphous solid- 
state community to which we have already referred. 

Metallurgists, ceramicists and other materials scientists have always recognized the 
ubiquity of disorder and have made progress with empirical and analytical techniques 
for adequate data acquisition. This is no easy matter in the case of a three-dimensional 
structure, whatever its scale may be, and at  best a tedious chore in two-dimensional 
cases. 

Geographers and ecologists, who deal exclusively in two-dimensional structures in 
in which data acquisition is less of a problem, have been more ambitious in data 
analysis and in testing idealized mathematical models in terms of statistical criteria. 

In recent years, the biological community has not shown much enthusiasm for 
questions relating to the random arrangement of cells. If one looks at this in the wider 
context that is offered in our later sections, i t  is difficult to see how such an attitude can 
be justified. 

This article may offer some tentative insights to all these separate communities and 
may perhaps help to bring them together. It concentrates mainly on two-dimensional 
structures of the kind that may be loosely classified as ‘cellular’, typified by fig. 1. It is 
enough to take us into many fields-metallurgy, geology, hydrodynamics, ecology, 
geography, astronomy-so perhaps we may be excused this specialization. 

Some of the most important general sources from which we have drawn 
information and inspiration are: 

Thompson (1942): the classic work On Growth and Form, best read in this edition, 
as much amusing detail is suppressed in the later abridged edition. 
Smith (1954, and other references below) complements Thompson’s work with 
ideas concerning metallurgical structures, structure in art and aesthetics. 
Dormer (1980): an account of the topological and geometrical principles relevant 
to biological tissue geometry. 
Getis and Boots (1979): a survey of work on random patterns in two dimensions, 
mainly with a geographical perspective. 
Stevens (1974) contains several beautiful photographs and a few elementary 
mathematical principles. 
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Soap, cells and statistics 61 

Fig. 1. Typical cellular structure in two dimensions. 

Section 2 explains the various topological/geometrical definitions which are 
essential to the subject and states some of the few general theorems which are helpful. 
Particular mathematical constructions, leading to creation or modification of idealized 
random two-dimensional models, will be described in Section 2 with some indication 
of their motivation. 

In Section 3, random cellular structures are taken from many different contexts, 
mostly in two dimensions (2D). They are compared with each other and with the 
idealized models of Section 2. Attempts are made to extract significant correlations 
between various structural parameters. Much of this material can be read without 
recourse to the details of Section 2. 

Finally, in Section 4, we review some more speculative ideas on random patterns, 
arising out of statistical mechanics, and summarize the present state of our 
understanding. 

2. Models and mathematics 
2.1. Geometry and topology 

All the geometrical and topological theorems which we shall use are really very 
elementary but the topological ones may be unfamiliar so they are reviewed here. It 
seems natural to include three-dimensional cellular structures at this point, even 
though they are of little relevance to our later sections. In both cases, the structure 
includes vertices, joined by edges, which surround faces, and in the three dimensional 
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62 D. Weaire and N. Rivier 

case the faces surround cells. (When we restrict attention to two dimensions, we shall 
use the word cells for what are here called faces, for instance the polygons of fig. 1.) 

The number of edges joined to a given vertex is its coordination number, z. Usually 
we shall be interested in topologically stable structures, which means that their 
topological properties are unchanged by small deformations-in practice, this implies 
z = 3 (2D) and z = 4 (3D), everywhere. We shall sometimes call a cellular structure with 
this coordination number a froth. 

The cells, faces, edges and vertices of any cellular structure obey the conservation 
law (Euler’s equation) 

F - E + V / = z  (2D) (1) 

- C + F - E + V = t  (3D) (2) 
Here C is the number of cells, E of edges, F of faces, and Vof vertices. The quantity in the 
right hand side, x or 5, is an integer of order 1, and is a topological invariant of the space 
in which the tissue is put. For example, x = 2 for a sphere or a rugby ball, and x = 0 for a 
torus, doughnut or tea cup. x = 1 for a plane and 5 = 1 for 3D Euclidean space, when the 
face or cell at infinity is not counted. 

An immediate consequence of Euler’s equation in two dimensions is that the 
average number of edges surrounding a cell is six 

( n ) = 6  (2D) (3) 
in the limit of a large system, provided all vertices have coordination z = 3 as in fig. 1. 
Indeed one has the valence relations, 3 I/= 2E and CnF, = 2 4  where P, numbers the n- 
sided cells, because 3 edges meet at every vertex and an edge links 2 vertices, whereas it 
separates 2 faces. Euler’s relation can therefore be written as (6 -c nF,/F) F = a 
number of order 1, so that the bracketed expression equals zero in the limit of a tissue 
containing a large number of cells. The three-dimensional equivalent (with z = 4) is less 
drastic, 

( f ) = 12/(6 - ( n ) )  (3D) (4) 
where ( f ) is the average number of faces of three-dimensional cells. Incidentally, 
equation (4), valid for the froth as a whole, also holds for each individual cell. It relates 
the number of faceqfto ( n ) ,  the average number of sides per face in the cell. It is a direct 
consequence of Euler’s theorem (for 2D) for x = 2 and z = 3. Most random structures 
have (f  ) e 14, but it is, emphatically, not an exact result or even a limit, despite 
repeated statements in the literature to the contrary (Smith 1952, Laves 1967, Ogawa 
1983, . . .). A statistical froth with isotropic cells of equal volume has ( f ) = 13.40 
(corresponding to equal regular tetrahedra in the dual graph (cf. Section 3)). One ‘can’ 
pack 5.1 tetrahedra about a common edge; thus, by duality, ( n )  = 5.1, and ( f ) = 13.40. 
Fluctuations in the volumes of the cells reduce ( f  ), whereas fluctuations in angles 
(anisotropy of the cells) increase ( f ) (Rivier 1982), as observed. (See Matzke and 
Nestler (1946), Hulbary (1948), Meijering (1953), Marvin (1939), who obtained a high 
( f  ) by compressing lead shot uniaxially, and Williams and Walker (1983).) Finally, 
Meijering (1953), by a remarkable feat of geometry, has obtained f= (48/35)n2 
+ 2 ( N 15.54) exactly for a Voronoi froth with randomly distributed centres. This 
corresponds to the territorial division of an ideal gas, whose cells are, accordingly, 
highly anisotropic. 

Interesting but mistaken arguments leading to ( f ) = 1 4  rely on an arbitrary, 
planar cut of a three-dimensional tissue. Concentrate on one particular cell. The cut 
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Soap, cells and statistics 63 

divides it into two new cells. One states that (1) the new face (apparent on the cut) is 
hexagonal on average, as befits a two-dimensional mosaic decorating the planar cut; (2) 
this new face is typical of the froth. Statements (1) and (2) are not compatible. Either the 
cut is planar and the face created is not typical of the froth (the dihedral angle between 
two neighbouring faces in the cut is lSoO), or a particular cell is divided, but this division 
does not produce an extended planar cut, but something with a positive curvature 
overall, leading to ( n )  < 6. Tf one assumed that statements (1) and (2) were compatible, 
then one cut would produce a new froth with C+C+ 1, and F + F +  1 +6. After 
m random cuts, C+C+m and F+F+7m. Given that 2 F = x f C f = ( f ) C ,  
( f )=2F/C+2(F+7m)/(C+m),  which tends to 14 as m+m. This argument is due to 
Laves (1967) who gives priority to van der Waerden and Meuse. But absolute priority 
should go to Duchartre (1867), who, in p. 141 of his Eltments de Botanique, formulates 
the correct result and gives fully and precisely the restrictive assumptions for its 
validity: “Les cellules dont la coupe est hexagonale forment donc chacune, du moins 
quand elles sont rkgulieres, un solide a 14 faces (tetradecahedre), et non a douze, comme 
on le dit souvent.” Actually, the new face cannot be typical of the froth since ( n )  =6 
implies (f) = 00 from equation (4). 

There is another conservation law for three-dimensional tissues (Rivier 1979). Faces 
containing an odd number of edges cannot be found in isolatiqn, but form lines which 
are either closed or terminate on the surface of the material. These lines thread only odd 
faces. The proof is similar to that of the Maxwell equation, div B = 0, in electromagne- 
tism, which implies that magnetic induction lines are closed and that magnetic 
monopoles are absent in classical electromagnetism. Odd lines may play an important 
part in the physical properties of glasses, both at high and low temperatures. 

Returning to the two-dimensional systems which are our main interest, we shall 
identify three elementary processes by which a hexagonal network might be 
progressively modified to produce a disordered structure, or by which such a structure 
might itself change with time; they all maintain z = 3, except at the point of transition in 
the first case. 

Firstly, there is the neighbour-switching process shown in fig. 2, which we shall call 
a T1 process. It can be pictured as taking place as an edge shrinks to zero, to be replaced 
by another one in such a way that the connections to vertices are rearranged. This, 
incidentally, justifies the statement that only vertices with z = 3 (in 2D) are topologically 
stable. 

Fig. 2. Elementary local rearrangement of cells. 

Secondly, faces (2D cells) may vanish-the T 2  process of fig. 3. We confine this to 
the vanishing of a three-sided cell as shown. (A cell with more than three sides can 
vanish through a series of T1 processes to make it three-sided, followed by a T2 
process.) 
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64 D. Weaire and N. Rivier 

Fig. 3. Vanishing of a cell. 

Thirdly, cells may be divided-the process shown in fig. 4. This could be visualized 
as a continuous process (combining the inverse of T2 with Tls) but it is suggested by 
mitosis in biology, which is a discontinuous change. In metallurgy, we must sometimes 
consider the inverse of the process of fig. 4 (coalescence of subgrains). 

Fig. 4. Cell division. 

The reader may like to check that the Euler relation (3) is preserved under such 
changes. Indeed, this is one approach to proving it. (Another simply follows from the 
fact that the average angle at a vertex is 2n/3 and hence the average turning angle of 
polygonal cells must be TC - 2n/3 = 2n/6). 

Note also that a pentagon/heptagon construction in an otherwise hexagonal 
structure, may be regarded as a topological dislocation (fig. 5).  For example, Lewis 

Fig. 5. A 5-7 pair of cells, making up a topological dislocation in an otherwise hexagonal 
structure. 
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Soap, cells and statistics 65 

Fig. 6. Creation and dissociation of a dislocation pair by successive cell divisions. 

(1943 b) and Pyshnov (1980) have noticed that successive mitoses of neighbouring cells 
(fig. 6)  correspond, in two dimensions, to the creation of a dislocation dipole (a 
quadrupole of pentagons/heptagons), followed by glide of the two dislocations away 
from each other, leaving an additional cellular layer in between. This yields a 
‘topological solution for cell proliferation in intestinal crypt’, and, as far as elastic 
energy is concerned, dislocations are a very efficient way to solve the problem of coping 
with additional material. The T1 process defined above also creates two such dipoles, 
which can then be dissociated (by further Tls) to form isolated pentagon/heptagon 
pairs. The intestinal crypt is a highly corrugated surface: its curvature is locally very 
high, even if it vanishes on average, as befits a cylindrical object. The dislocation glide 
mechanism of Pyshnov (1980) is stopped by pentagonal cells present in the regions of 
positive curvature of the intestine, and cell proliferation is arrested at these points. 

Finally we should note that, while our main interest is in planar structures, there are 
plenty of examples of cellular structures on curved surfaces, such as a sphere. An excess 
of pentagons or other cells having n < 6 (as in a football or in radiolaria) betrays positive 
overall curvature of the underlying space, whereas an excess of cells with n > 6 betrays 
negative curvature (saddle-like surfaces). It is tempting to think of random tissue, with 
its non-hexagonal cells, as having been put on a substrate with fluctuating curvature 
(Gaspard et al. 1983, Nelson 1983). 

2.2. Statistical dejinitions 
It is natural to characterize a random structure in terms of the distribution 

functions of some of its local geometrical/topological properties, such as the number of 
edges or the area of a cell. These are indeed two popular choices, which we shall denote 
by p(n) and $(A). These obey 

x n p ( n ) = 6  (z=3) 
n {r 4(A)dA= 1 
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66 D. Weaire and N. Rivier 

Equations (5) and (7) express the normalization of p and 4, (6) is Euler’s relation (3), and 
(8) is just the definition of the mean area per cell. In general, one does not have a well 
established analytical form for p or 4, although various forms have been conjectured. 
One may therefore resort to consideration of their moments in characterizing them. 
These are 

pk =I ( n -  6 ) k p ( n )  (9) 
n 

By definition, po = M ,  = 1, p, = M ,  = 0. The width of distributions is indicated by the 
second moment and its asymmetry by the third moment. Two other quantities which 
are sometimes used are the mean number of sides of neighbours of n-sided cells, which 
we shall call m(n), and the mean area of n-sided cells, A@). 

Finally, it is often more convenient to measure the average linear intercept d, rather 
than A,,,,, as a measure of the average size of cells. This is done by finding the average 
length of the segments into which straight lines (whose directions are random) are 
broken by their intersections with the cells. Loosely speaking, d is the typical cell 
diameter. 

Examples of the use of all these quantities may be found in Section 3. Typical 
distributions can be seen in Pieri (1981) (geological crackings or jointings) and 
Smolyaninov (1980) (biological mosaics). 

2.3. Model structures 

or artificial random cellular structures, before looking at naturally occurring ones. 
At the risk of putting the cart before the horse, we shall now consider some idealized 

2.3.1. Voronoi polygons 
By far the most commonly studied ideal structure is the Voronoi construction, of 

which an example is shown in fig. 7. In this an array of points or centres is first defined, 
which may be completely random or correlated in some way. Then each of these centres 
is assigned a cell containing all points which are nearest to it. Specifically, one draws the 

Fig. 7. Voronoi construction for random points, after Kiang (1966). 
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Soap, cells and statistics 67 

perpendicular bisecting planes (in 3D) or lines (in 2D) to the lines joining any two 
centres. The smallest convex polyhedron (polygon) surrounding a given centre contains 
all points in space closest to this centre. The construction is clearly unique. That it fills 
space can be seen in two dimensions from the result of elementary geometry that the 
three mediatrices of a triangle are concurrent. (The vertices of the triangle represent any 
three centres, and the mediatrices, the perpendicular, bisecting lines making up the 
faces of the Voronoi polygons. Their common point is a vertex of the Voronoi 
polygonal froth.) 

The method described is not really practical for making the Voronoi construction 
(other than graphically), and several different computer algorithms have been proposed 
to do so (Crain 1978, Ocelli 1983, Brostow et al. 1978). Some idea of the popularity of 
this construction over a wide range of specific fields may be gained by considering the 
variety of its names-Voronoi polygons, Wigner-Seitz cells, Dirichlet regions or 
tesselations, the cell model, the S-mosaic, Thiessen polygons, plant polygons, Wirkungs- 
bereich . . . For a recent application in materials science, see Wray et al. (1983). 

The Voronoi construction also imposes on to the original centres the structure of a 
graph, by defining unambigously which centres are nearest neighbours and linked by 
an edge in the graph. Two centres are linked by an edge in the graph if their Voronoi 
polyhedra have a face in common. Thus, the Voronoi partition of space, a froth of C 
cells, F faces, E edges, and Vvertices, is the dual structure to the graph of atomic centres, 
with Tp centres, E* edges, F* faces and C* cells, in that there is a one-to-one 
correspondence between elements of the froth and the dual graph 

V=C*, E=F*,  F = E * ,  C = V  

It also follows that coordination numbers offroth and graph are related by duality. The 
vertex coordination of the original graph is equal to the number of faces per cell of the 
froth. Usually, the dual graph has high vertex coordination on average; z* N 14 for 
three-dimensional packings, and ( z * )  = 6 exactly in two dimensions, which is just 
Euler’s relation. 

Apart from its essential simplicity the attractive feature about the Voronoi 
construction, when applied to a random array of centres (which statisticians call a 
Poisson point process), is the availability of some exact analytical results for some of its 
statistical properties (Getis and Boots 1979). Specifically, Gilbert (1962) has shown, 
inter alia, that the second moment of the area distribution, as defined in the previous 
section, is given by 

(1 1) 

M ,  = 0.280Ake,, (12) 

and other results are given by Gilbert (1962) and Meijering (1953) for the distribution of 
edge lengths. 

The form of the distribution function +(A) was conjectured by Kiang (1966) to have 
the form of the gamma distribution, 

+(A)ccA”-’ ~ X P  {-v(A/’Anean)l  (13) 

and he found that computer-generated distributions were fitted quite well with v = 4. 
Note that for the corresponding one-dimensional problem, equation (13) gives the 
exact distribution function, with v = 2, as can be proved by elementary methods. There 
is no rigorous justification for it in higher dimensions. In later work (Kiang, personal 
communication), the value of v for two dimensions was revised to be approximately 3.5. 
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68 D. Weaire and N. Rivier 

Note that the second moment of this distribution is given by 

M2=v-IAie,, (14) 
which is equal to 0.25Aie,,, for v = 4  and 0.286A:,,,, for v=3.50. 

Note also that the empirical data of Crain (1972,1978) shows that the mean area of 
n-sided cells is proportional to n for this pattern. (For further discussion, see Section 
4.1 .) 

Sometimes we may wish to assign space to chosen centres in a less democratic 
manner than this. For example, this might be done in analysing the structure of a 
multicomponent metallic glass, a herd of different predators, or the work of a crooked 
electoral boundary commission. There are many ways of doing so. A particular 
example which is often cited is that of Cox and Agnew (1974) who drew up a ‘theoretical 
partition’ of Ireland into ideal counties (which they miscounted as thirty-one instead of 
thirty-two!) according to ‘Redly’s Law of Retail Gravitation’. To the physicist, this 
seems a bizarre procedure and even the mathematics appears inconsistent. For better- 
defined procedures, see Boots (1980 b), who discussed boundaries such that (a) the 
boundary points have distances from the centres in proportion to their assigned 
weights (and form straight lines), and (b) the boundary points are equidistant from 
circles of unequal radii surrounding the centres. These boundaries are arcs of 
hyperbolas, not straight lines. Another possibility is provided by the ‘radical axes’ of 
such circles. The radical axis of two circles is the locus of points from which the tangents 
to the two circles have equal length (Gaultier 1813, Coxeter 1961). It is obvious that 
radical axes will meet in threefold vertices, but not so obvious that they are straight 
lines (Coxeter 1961, Ch. 6.5). Coxeter’s proof strongly suggests that radical axes are the 
only possible straight-line partition of space between circles. It reduces to a Voronoi 
partition when the circles have equal radii. Radical partition of space has recently been 
used by Fisher and Koch (1979) and Gellatly and Finney (1982). Yet another procedure 
is that of the Johnson-Mehl model, in which the territories of points placed randomly 
in space and time grow radially at uniform rates until they impinge at boundaries 
(Johnson and Mehl (1939); see Getis and Boots (1979) for further discussion). 

In some cases a Voronoi construction is made without any such refinements but the 
centres are then progressively readjusted. For example, we may wish to make each 
centre coincide with the centroid of its cell. This procedure has been used in ecology (see 
Section 3.7), and while iterative computer algorithms designed to implement it do 
converge, no relevant uniqueness theorems seem to have been proved for the resulting 
structure. 

Yet another model can be generated by making the original points less random. An 
obvious way of doing this is to surround each point with a ‘hard disc’ and demand that 
these do not overlap. Only a certain density of discs can be deposited and the resulting 
pattern of points will be separated by a minimum distance (the diameter of the hard 
disc), giving a more regular Voronoi pattern than that of random points (Smalley 1966). 
This is shown in fig. 8. For a more recent reference, see Lotwick (1982). 

2.3.2. Minimal-surface models 
The Voronoi model is motivated by the idea of a ‘territory’ which belongs to a given 

point and is most obviously reasonable in applications in which such centres as a city or 
a den exist. A very different model can be constructed on the assumption that each cell 
is of some constant predetermined area (in 2D) and that the system is in equilibrium 
when the total ‘surface energy’ (really the total length of all cell edges) is a minimum, 
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Fig. 8. Voronoi construction for centres of hard discs, at maximum density, after 
Smalley (1966). 

Fig. 9. Typical local configuration of cells in the minimum surface model (taken from the soap 
cell simulations of Section 3.2). 

with respect to any small distortion. A two-dimensional soapfroth (fig. 9) is just such a 
system in reality. We shall use the terms appropriate to the soap froth, but these really 
stand for quantities with more general meanings. Hence we write the total energy 
(really the energy per unit thickness) as 

U=2T C li 
edges 

i 

where T denotes surface tension and li is the length of cell edge i. For equilibrium, (a)  all 
cell edges must meet at 120" at vertices, (b) each cell edge must be an arc of a circle, with 
a curvature related to the difference of pressures in the two neighbouring cells (see 
fig. lo), that is 
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Fig. 10 Intercellular diffusion. 

In addition the gas in the cells is treated as incompressible. Note that there is no claim 
that a structure which is found to obey these conditions for prescribed cell areas is 
unique-indeed it clearly is not. Other minima of surface energy can be found, with 
different arrangements of cells. 

This model has always had a strong aesthetic appeal (Smith 1954, Pearce 1978) but 
apart from basic topological results, such as Euler’s theorem, has not been the subject of 
much computational or mathematical work until quite recently. It is particularly 
interesting, because it can be given an internal dynamics, if we allow cells to transfer 
area to each other at a (slow) rate proportional to the product of the length of their 
common boundary and the pressure difference. This is what happens in practice with 
soap cells, or so it is claimed. From this may be derived (by simple arguments 
of geometry) Von Neumann’s growth law which states: the rate ofgrowth o f a  cell is 
proportionul to its number ofsides minus six (Von Neumann 1952). Thus many-sided 
cells grow, few-sided cells diminish and six-sided cells remain constant in area. The 
result is a trend towards a more and more inhomogeneous structure. We shall discuss 
all this in detail in the context of actual soap froths (in Section 3.2), because our 
understanding is still largely based on empirical results, but will note here the 
surprising conclusion that such a system may tend towards a fractal structure 
(Mandelbrot 1977) in the limit of infinite time! At this point we wish to stress the 
relevance of the model to other fields, of which metallurgy (grain growth) and ceramics 
(sintering) are the most obvious. 

2.3.3. Fragmentation 
The idea that a cellular structure is formed by some process of progressive 

fragmentation or cracking (as in the pattern formed by cracks or glaze-see Section 3.6) 
might motivate another area for exploration of the definition of ideal patterns, in terms 
of a hierarchy of cracks. However, this does not seem to have been investigated (but see 
further remarks in Section 4). 

2.3.4. Other ad hoc models 
Two other idealized models are worthy of mention here. Firstly, Thorpe (1983) has 

generated a number of patterns simply by imposing T1 processes (see Section 2.1) 
randomly on a hexagonal structure. A typical pattern is shown in fig. 11, used for model 
calculations of properties of disordered solids. Secondly, Shackelford (1982) has 
generated random two-dimensional networks by attaching units sequentially to a 
growing cluster, according to a simple computer algorithm. Figure 12 shows one such 
structure. This work was inspired by the original paper of Zachariasen (1932), 
advocating the random network model of glasses. Zachariasen’s ideas were illustrated 
by means of two-dimensional analogous structures ofjust this type. Shackelford claims 
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Fig. 1 1 .  Pattern produced by random T1 processes (Thorpe 1983). 

H 

Fig. 12. Pattern produced by adding triangular units sequentially to a cluster (Shackelford 
1982). 
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that the distribution function p(n) for his patterns is best fitted by a log-normal 
distribution and he cites evidence for the widespread occurrence of such distributions 
in amorphous solids. 

3. Examples of cellular structures 
3.1. Introduction 

“The time has come,” the Walrus said, 
“To talk of many things: 
Of shoes-ships-and sealing wax- 
Of cabbages-and kings-. . .” 

In doing so, we shall begin with those systems with which a physicist would be most 
comfortable, and progress to the social and biological ones in which physical principles 
cannot be so straightforwardly applied. 

3.2. Soup froths in two dimensions 
A two-dimensional soap froth may be formed by squeezing an ordinary soap froth 

between two plates, or injecting bubles between them (Smith 1952, Aboav 1980). Our 
knowledge of the resulting system is largely based on the experiments of Smith (1952), 
who was originally motivated by its relevance to metallurgy (Section 3.3). 

We shall assume, following Smith, that it corresponds to the ‘minimal surface’ 
model of Section 2.3, which seems reasonable, although one may be uneasy regarding 
the growth law that is mentioned there. Individual vertical films drain and thin 
progressively in quite a complicated way, presenting a problem interesting enough to 
attract Hooke, Newton and Gibbs (Mysels et al. 1959). Smith assumed that his soap 
films could be treated as being of equal and constant thickness so that Von Neumann’s 
growth law (Section 2.3) applied. To our knowledge, this assumption has not been 
specifically checked, experimentally or otherwise, but we shall provisionally accept it. 

Sketches made from some of Smith’s photographs (Aboav 1980) are reproduced in 
fig. 13, showing the interesting progression with time to which we referred in Section 
2.3. Smith’s own conclusions, based on earlier photographs, were mainly qualitative. If 
we start from a structure which has relatively little disorder (small p 2  =C(n - 6)’p(n)), it 
becomes more disordered ( p 2  increases). This is fairly obvious since larger cells will tend 
to have more sides and smaller ones less. As they change size, the process by which they 
lose or acquire sides is just that of fig. 2. Eventually, small cells reach the point of 
disappearance and so the overall scale, given by A,,,, for example, begins to increase. 
Smith asserted that beyond a certain point this change of scale continued, but the 
increase of p2 did not. This suggests that the asymptotic behaviour of the system is (in 
an average sense) just a change of scale, with no change of the distribution of cell shapes. 
The conclusions was, however, based on very limited early data and, as we shall see, did 
not stand up to further scrutiny. This is an important point, since Smith’s picture of the 
asymptotic behaviour is widely accepted and often quoted. 

The further analysis of Smith’s pictures was undertaken at a much later date by 
Aboav (1980). Aboav’s main interest was in correlation of cell shapes and areas, as 
described below, so he did not stress the results which bear on the asymptotic 
behaviour. What he found was a continuing increase of p2 up to values (% 3) far beyond 
that to which Smith thought it was converging (about p 2  = 1.5). Moreover, after the 
initial period in which no cells are lost, there is a simple linear dependence of p 2  and the 
average linear intercept d on time t. Also p 2  and d are proportional to each other! Some 
of Aboav’s results are shown in figs. 14-16. 
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Fig. 13. Evolving cellular structure of soap cells at roughly 15-hour intervals, as observed by 
Smith (Aboav 1980). 
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r 

\ 

i 
9 12 n 

Fig. 14. Distribution function p(n)  for structures (a) and (e)  of fig. 13. 

Fig. 15. Variation of p2, the second moment of p(n)  about its mean, with average linear 
intercept (cell diameter) d.  
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1 I I I I I I 
3 6 9 

n 
Fig. 16. Aboav’s law is shown as a plot of rnn against n ( n  is the number of sides of a cell, rn the 

average number of sides of neighbours) for two different samples. 

The linear dependence of pz on t, on which we shall focus, is not clearly stated in 
Aboav’s paper. Weaire and Kermode (1983a) pointed out that it was a radical 
departure from the accepted picture. Aboav (private communication) confirms that 
further photographs show no sign of a change in this behaviour at later times, so it 
seems reasonable to conjecture that p z  - t is the correct asymptotic behaviour of pZ, 
even though the published data go only some way towards its demonstration. 

It should be remembered that a limiting structure with an infinite p2 is not an 
absurdity-all that is required is a distribution function p(n) which falls off as n-‘ where 
2 < CI 6 3. In practice such a distribution could develop by the growth of the tail on the 
distribution toward higher values of n as time proceeds-indeed one can see such 
behaviour in fig. 14. 

At the risk of piling conjecture upon conjecture, Weaire and Kermode (1983 a) 
suggested that the structure at large times might have a fractal nature (Mandelbrot 
1977). What they had in mind was a structure in which cells could have patches of 
smaller cells at their intersections, and these could in turn have smaller cells, etc. Figure 
17 conveys the general idea. Such a structure would be quite unlike anything else that 
we shall meet in this article, and well worth pursuing experimentally, even though this 
would not be easy. 
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1 

Fig. 17. Illustration of a fractal structure for the soap cell system 

As we have said, Aboav’s main concern was with the correlation of neighbouring 
cells, for which he found the relation 

6a + P2 m=6-a+- n 

for the mean number of sides of cells surrounding n-sided cells, with a = 1.2 (see fig. 16). 
Equation (9) has antecedents in Aboav’s earlier work (Aboav 1970). An analysis of 

the grain structure (in section) of a polycrystalline MgO ceramic led him to the relation 

m = 5 + 8/n (18) 
which he interpreted as implying some special arrangement of grains. Weaire (1974) 
criticized this notion, showing that, if one assumed that the angles at neighbouring 
vertices were uncorrelated, one could derive by a heuristic argument the relation 

m=5+6/n  (19) 
which is close to (18). The argument is very simple. Firstly, we replace each cell edge by a 
straight line joining the vertices at  its ends. If a cell has n sides, its average internal angle 
is n-2nln. The other angles associated with the cell vertices must have an average 
value (n + 2n/n)/2. These belong to neighbouring cells, for which we attribute the 
average value 2n/3 to their other internal angles. Equation (19) then follows easily from 
the rule that the sum of the turning angles of a polygon equals 2n, applied to the 
neighbouring cells. 
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Alternatively, Euler’s theorem (n) = 6 may be applied to a local cluster of cells, 
consisting of an n-sided cell and its neighbours, to give the same result. The theorem is, 
of course, valid only in the limit of an infinite cluster, so this procedure is somewhat 
obscure, although pleasingly ‘topological’ in character, It was further pointed out by 
Weaire that there is an exact sum rule which m(n) must obey, namely 

1 nm(n)p(n) = 36 + p2. 

This suggested the relation 

6+P2 m=5+- 
n 

as a patched-up version of (19), compatible with (18) (which was for a sample with 
p z  N 2). Finally, Aboav’s analysis of Smiths soap froth data, for which a linear relation 
also works, confirmed that p 2  should be included as in (21), but the constants were 
modified, in a way consistent with (20), to give (17). 

There thus emerges an interesting structural constant a, whose precise significance 
has so far escaped explanation. For example, Lambert and Weaire (1981) tried to derive 
(17) from consideration of a model based on random T1 processes. 

Another derivation of Aboav’s relation (21) has been recently given by Blanc and 
Mocellin (1979). They assume, as usual, that there is no correlation in cell shapes 
beyond nearest neighbours, and obtain the same recursion relation for m(n) for all 
elementary transformations T1, T2, mitosis and their inverses. (This is no longer the 
case in 3D.) All these transformations can therefore occur independently of each other, 
at random in space or time, without affecting the statistical equilibrium of the structure. 
Aboav’s relation is an equation of (the equilibrium) state. 

Aboav’s law can also be regarded as evidence of the correlation of angles at 
neighbouring vertices (see above argument). Perhaps this only restates the question, 
but it does suggest that a > 1 is an indication of the tendency to minimize distortion of 
the polygonal cells, to lower surface energy. 

This seems a nice example of the digestion of a mass of statistical data to produce a 
single significant number characterizing any structure which obeys Aboav’s law. We 
suspect the law to be rather general (recall that it was originally found for a ceramic, and 
also see Section 3.3). However, Boots (1981) has pointed out that it does not hold for the 
Voronoi polygon model. For further discussion see Lambert and Weaire (1983). 

In addition to the experimental results, some further information is available from 
computer simulations (Weaire and Kermode 1983c) and more may soon be 
forthcoming. A computer program has been developed which (a) relaxes a given 
starting configuration to equilibrium, with fixed cell areas, and (b) transfers small 
increments of area between cells, to simulate the growth behaviour, according to Von 
Neumann’s law. This kind of work would be practically impossible without the help of 
modern graphical output facilities. 

Note that, in addition to adjusting vertex coordinates and pressures (and hence 
curvatures), the program must cope with the T1 and T2 process defined in Section 2.1, 
i.e. cell rearrangements and disappearences. The T1 process is particularly interesting, 
because the local configuration makes a sudden change to a quite different one as soon 
as a side vanishes, with a corresponding decrease in energy. 

Figure 18 shows a sequence of structures at roughly equally spaced times, generated 
in this way, using periodic boundary conditions (Weaire and Kermode 1983 c). It shows 
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(4 (f) 

on facing page). 
Fig. 18. Sequence of simulated soap cell structures a t  roughly equal time intervals (continued 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
E
A
L
-
L
i
n
k
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
1
7
:
0
1
 
3
0
 
N
o
v
e
m
b
e
r
 
2
0
0
9



Soap, cells and statistics 79 

Fig. 18 (continued) 

Fig. 19. Periodic boundary conditions are used in these simulations, so that each side of the 
sample matches the opposite one as shown. 
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the same steady progression towards higher p 2  as in the experimental data (although it 
only gets as far as p 2  21 1.5 before the number of cells is unacceptably low). In this and all 
other respects, including Aboav’s law, the simulated system resembles the real soap 
froth system (Weaire and Kermode 1983 c). 

In all of this work, periodic boundary conditions are used, as illustrated by fig. 19. 
The choice of an initial structure is an awkward one and further work is in progress to 
test alternatives and to find out how quickly the memory of a given starting 
configuration is lost in the chaotic development which ensues (Kermode and Weaire 
1984). 

Ashby and Verrall(l973) have made two-dimensional emulsions which are closely 
analogous to this system, and have studied their response to stress. The T1 processes, 
which are increasingly provoked at large strains, play a large role in the plastic 
behaviour of the system. This behaviour too can be simulated (Kermode and Weaire 
1984). 

Princen (1983) has recently given an analysis of the rheology of foams and 
emulsions, including the effects of finite film thickness. 

Before leaving soap films, we should note that three-dimensional soap froths have 
long been a subject of interest, being of direct importance in chemical engineering. 
Analogous principles are certainly at work in this case (small cells shrink and 
disappear, etc.) but available data is limited. Experimental work does not seem to have 
progressed beyond that of Matzke (1946), who determined distribution functions for 
cells. There is a suspicion that the bursting of cell faces contributes significantly to the 
coarsening of the structure, and that gravity plays a significant role in its evolution. 

Simulation of the three-dimensional system presents some intimidating problems, 
but should be possible. 

3.3. Grain structure in metals and ceramics 
The grain structure of a metal or  ceramic is another example of a space-filling 

cellular structure (fig. 20). In thin films, this has a two-dimensional character. In both 
the three-dimensional and two-dimensional cases, the structure which is observed in 
relatively pure single-phase metals is similar to the soap froth. This similarity was 

Fig. 20. Section of polycrystalline MgO (Aboav 1980, Aboav and Langdon 1969). 
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especially emphasized in the work of Smith (1952, 1964) and was the original 
motivation for his work on the two-dimensional soap froth, discussed in the previous 
section. It is, of course, no coincidence, since there will be a surface energy associated 
with grain boundaries, and the grains will tend to readjust to lower this energy. The 
transfer of atoms between grains, in order further to reduce the surface energy (which is 
precisely what drives the growth process in the previous section) will lead to grain 
growth, an important metallurgical process (Martin and Doherty 1976). For a nice 
example of grain growth in a two-dimensional (thin film) system, see Guy (1971). 

However, on closer inspection, it is difficult to see the precise relationship between 
the two problems, even though it is very commonly invoked. First, there is the question 
of crystalline anisotropy, which will make surface energies dependent on the 
orientation of the boundary. This is generally neglected in theories of grain growth 
(Martin and Doherty 1976), as is sub-grain coalescence (Byrne 1964). However, there 
are further questions regarding the various mechanisms of atomic diffusion which 
contribute to grain rearrangements and grain growthaiffusion within grains, 
diffusion along grain boundaries and the process of transfer across a grain boundary. A 
little thought will convince the reader that the situation is really quite different from 
that ofthe soap froth in which afixed volume ofgas is enclosed by each cell. The fact that 
this has zero shear modulus means that the soap froth is always in equilibrium, to within 
a very good approximation, and growth is controlled entirely by diffusion through cell 
walls. In the case of the metallurgical grains, it is not clear that the problem really 
separates so neatly into equilibrium and growth. To be fair, Smith’s original work really 
offers only a loose analogy. He goes no farther than to say that, “Normal grain growth 
results from the interaction between the topological requirements (of space filling 
polyhedra) and the geometrical needs of surface tension equilibrium” (Smith 1952). 

There is a substantial body of literature in theoretical metallurgy devoted to grain 
growth, including the two-dimensional case. The facts to which it is addressed appear 
to be as follows (Cahn 1974, Aboav 1971). At constant temperature, the mean grain 
diameter varies with time according to D - t” where n lies between 3 and 3. However, at 
a given temperature T the grain growth process stops when this diameter reaches a 
value given by 

Dl’z = C( T - To) 

where C and To are constants. The latter effect is generally attributed to the effect of 
inclusions (analogous to the pinning of dislocations). 

A series of papers addresses the question of the growth law. These include Hillert 
(1965), Louat (1974), Rhines and Craig (1974) and Kurtz and Carpay (1981). The last 
two papers are especially interesting in that an attempt is made to use topological 
properties. Kurtz and Carpay’s work is particularly thorough and based on a number 
of clearly stated premises regarding statistical quantities. It is too detailed to review 
here but we shall comment on some aspects. Firstly, log-normal distributions are 
assumed for various distributions p(n) in two dimensions. Some experimental evidence 
for this is given, but the theoretical justification which is offered seems somewhat 
circular. Shackelford (see Section 2.3) has also suggested that this distribution is the 
appropriate one for p(n), in another context. Kurtz and Carpay’s work also contains 
interesting ideas on the relationship between three-dimensional cellular structures and 
the two-dimensional structures obtained by sectioning them. This has long been a key 
problem in metallography and elsewhere. 
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All of these theories are based on questionable assumptions and are inadequately 
tested by the available data. In the circumstances, recent work by the Exxon group 
(Sahni et al. 1983, Srolovitz et al. 1983 a, Anderson et al. 1983, Srolovitz et al. 1983 b) 
should be the best guide to further progress. This uses Monte Carlo simulation 
techniques to obtain a number of statistical results. The classic growth law D--t’’’ 
favoured by most of the earlier work is not found. Instead, the index is approximately 
0.38, which is just as consistent with experiment, according to these authors. The 
discrepancy may seem small but it poses fascinating questions regarding scaling 
arguments for this problem (Weaire and Kermode 1984). 

Another topic which bears on the soap froth model is superplasticity. Superplastic 
alloys can be plastically deformed to very large strains without fracture. In the process, 
grains are rearranged locally in the manner of the T1 process of fig. 2 (Ashby and 
Verralll973). This also occurs when a 2D soap froth is strained, as remarked in the last 
section, but here the analogy must be even looser than in the grain growth problem 
(Kermode and Weaire 1984). 

Finally, it should be noted that grain growth in sintered ceramics is thought to be 
essentially the same process of that in metals, and is well described by Coble and Burke 
(1963). 

3.4. Other domain structures in materiuls science 
Other types of two-dimensional cellular patterns are observed in a variety of 

materials. For example, fig. 21 shows domain structure in a film of As,Se, glass (Chen 
et al. (1981). 

Fig. 21. Domain structure in a thin film of As,Se, glass (Chen et al. 1981). 
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Soap, cells and statistics 83 

Such patterns, which are testimonials to the refinement of electron microscopy, are 
usually not sufficiently well defined to invite the kind of statistical analysis which might 
help in classifying them and explaining the underlying mechanisms. However, in the 
case of the As,Se, glass, the domains are very well resolved and have very recently been 
analysed as shown in figs. 22 and 23 (Chen et al. 1983). 

Other examples, similar but less well resolved, are to be found in the pattern of 
segregated In in In-implanted single crystal Si (Cullis and Joy 1981), (thin film) 
amorphous Ge (Donovan and Heinemann 1974), hydrogenated amorphous silicon 

0.3 2 

n 

Fig. 22. Distribution function p(n) for the structure of fig. 21. Cf. fig. 14. 

n 

Fig. 23. Test of Aboav’s Law for the structure of fig. 21. The straight line is that defined by (17), 
for p2=2  and a = l . l .  Cf. fig. 16. 
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84 D. Weaire and N. Rivier 

(Messier and Ross 1982), and various cases of crystal growth instability, analogous to 
BCnard patterns (Kirkaldy 1966, Langer 1982). We should also mention, in passing, the 
formation of cellular arrangements of dislocations under plastic strain (Konig and 
Blum 1980), and the classic experiments of Leduc, described by Thompson (1942), on 
cellular structures formed by diffusion. 

3.5. Convection cells 
BCnard-Marangoni convection cells, which form under certain conditions when a 

liquid is heated uniformly from below, usually form a structure close to a perfect 
hexagonal arrangement. While Benard (1901) may have been the first to study them 
systematically, they were reported by Thompson in the nineteenth century (Thomson 
1881). They might well be left out of our list of interesting random cellular structures, 
were it not that we shall want to make reference to them elsewhere. In any case, random 
patterns are sometimes formed. In particular, if the lower surface is heated well above 
the threshold for convective instability, the hexagonal structure ‘melts’ (Occelli et al. 
1983). For a modern discussion of the mechanism of formation of such a structure, see 
Whitehead (1975). 

3.6. Geological structures 
Geology is concerned with many random structures, formed by faults, phase 

separation in minerals, etc. Of these, one particular example closely resembles some of 
our other cellular patterns. This is the structure of columnar basalt, a familiar feature in 
volcanic areas all over the world but usually exemplified by the Giant’s Causeway in 
Northern Ireland for historical reasons. Certainly, fig. 24 must stand as a very early 
example of scientific interest in a random network. 

Concerning the Giant’s Causway. Prolixity in a Philosophical Description I’m sure 
you’l pardon. Thus wrote Sir Richard Bulkley (1693) in an early volume of the 
Philosophical Transactions of the Royal Society, and there has been much prolixity on 
the subject ever since. It continues to be an inevitable topic to be lightly touched upon 
in textbooks of structural geology; but the critical reader is likely to be more intrigued 
than edified bymuch that is offered by way of explanation. Part of the problem is that 
many writers have not actually examined the structure and fall easily into the habit of 
referring to it as ‘hexagonal’, which it is not-even Bulkley noted that there were 
‘pentagones’. In fact there are columns of as few as four and as many as eight sides, in an 
irregular but remarkably perfect network (fig. 25). Had more emphasis been placed on 
this disorder, the the early idea that the structure had something to do with crystallinity 
would not have persisted, as it did in some quarters for nearly two hundred years. Other 
suggested mechanisms included the compaction of cylindrical bodies and, in more 
modern times, convection cells (Section 3.5). Most of these are reviewed by Spry (1962). 
In fact, the now accepted basic mechanism was stated by Desmarest (1771) at the time 
of the French Enlightenment, namely, that the columns were formed by the cracking of 
deep lava flows upon solidification and cooling. However, credit for this idea is 
sometimes ascribed to Mallet (1875) who put an attractive mathematical gloss upon it. 
Mallet’s article was rejected by the Royal Society after five months and four referees, 
but the Philosophical Magazine did well to accept it-it has been cited continually ever 
since. We need not really concern ourselves with it here, because Mallet idealized the 
structure as hexagonal, and moreover, his calculations are very difficult to interpret or 
accept. 
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Soap, cells and statistics 85 

Fig. 24. Sketch of the Giant's Causeway from an early volume of the Transactions ofthe Royal 
Society (Foley 1694). 

In more recent times the notion that cracks must propagate, rather than appearing 
simultaneously, has become familiar, so that the network of cracks is pictured as 
forming by some process of propagation and bifurcation (Thompson 1942, Lachen- 
bruch 1962). However, it is difficult to see how horizontally propagating/bifurcating 
cracks could organize themselves to this extent. Even if they did bifurcate regularly at 
roughly 120" angles, the accidental confluences of the randomly propagating cracks 
would surely produce a much less coherent structure than is observed. It would have 
much in common with the kind of structure shown in fig. 26, which is found in glazes 
and dried mud. Mud or 'gumbo' patterns do sometimes contain a proportion of 120" 
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86 D. Weaire and N. Rivier 

Fig. 25. Accurate map of a small part of the Causeway, taken from O’Reilly (1879). 

Fig. 26. Typical cracking pattern (mainly T-junctions) in a ceramic glaze. 

vertices, but nothing like the overwhelming proportion of these in the basalt columnar 
structure. 

Some idea of the primitive state of our approach to two-dimensional random 
patterns may be conveyed by the fact that when interesting patterns were observed by a 
space probe on Europa, rough comparisons were made with p(n)  for the Giant’s 
Causeway, in the search for an interpretation (Pieri 1981). 

The only work which attempts to model the details of the structure is that of 
Smalley (1966). His model is in fact just the Voronoi construction for hard discs, 
described in Section 2.3. Only a vague comparison of the two patterns is made, in terms 
of p(n) ,  which contains very little information, being quite narrow ( p 2  ~ 0 . 7 ) .  In any case 
the motivation which is offered for the model, in terms of randomly placed ‘stress 
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centres’, seems difficult to justify. While the comparison is interesting, it seems to offer 
nothing to our understanding. 

Weaire and O’Carroll(l983) have suggested that the solution to this dilemma must 
lie in the vertical propagation of the cracks, as the interior of the lava flow slowly cools. 
The cracks will tend towards a dynamically stable arrangement, and it is suggested that 
it is this which is on view in locations such as the Giant’s Causeway. They also 
examined a detailed survey and map of part of the Causeway made by O’Reilly in the 
1870s (OReilly 1879). This was subsequently forgotten or disregarded, so that several 
others made partial recounts in later years. It can be used to carry the analysis of the 
structure beyond a mere tabulation of p(n). OReilly’s compendious data is most 
valuable, despite his misguided interpretations (he dung to the tradition of crystal- 
linity). A surprising correlation shows up between lengths of sides and the neighbouring 
angles. This is 

0 = 90 + 30LL,,’,, (degrees) (23) 
which is the result of a regression analysis of O’Reilly’s data (Weaire and O’Carroll 
1983). Its significance is unknown but we suspect it to be related to the condition for 
dynamical stability mentioned above. 

Thus we still lack a complete answer to the questions raised by Bulkley in 1693. 
Fracture mechanics is still a rather sketchy subject so it may be a long time before this 
beautiful pattern is the object of an equally beautiful theory. 

Finally, we should mention that somewhat similar but rather less perfect patterns 
are formed by ‘ice wedge polygons’ in permafrost (Lachenbruch 1962). 

3.7. Territories in ecology, geography and economics 
Ecologists, when they turn their minds to the spatial distribution of species or 

competing groups, are soon concerned with random cellular patterns. The relatively 
new subject Locational Geography often deals with similar problems. Even when they 
study patterns of points (such as cities or nesting birds) ecologists and geographers find 
the idea of cells of dominance or influence attractive. The Voronoi construction 
(Section 2.3) is generally invoked, in one form or another. While such territories are 
usually somewhat notional, in at least one case they are visible (fig. 27) (Hasegawa and 
Tanemura 1976, Barlow 1974). In fig. 28 we show the results of the procedure 
mentioned in Section 2.3.1. by which a completely random Voronoi structure was 

Fig. 27. Territories of mouth-breeder fish (Barlow 1974, Hasegawa and Tanemura 1980). 
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88 D. Weaire and N. Rivier 

Fig. 28. Upper figure: --, Random Voronoi structure. Lower: --, same structure, after 
relaxation to  place each point at the centroid of its cell. 

relaxed to make each point the centroid of its Voronoi cell (Tanemura and Hasegawa 
1980). Further consideration of mouth-breeder fish, nesting eagles, pectoral sandpipers, 
etc., might take us too far from the territory of this journal. Equally, we shall not dwell 
on the geographers’ work on county and parish boundaries, although it is worthy of 
note that a modification of Aboav’s law (Section 3.2) has found its way into such areas 
(Boots 1980a, c). 

For further details and many references, the book by Getis and Boots (1979) may be 
consulted. 
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3.8. Biological cells 
It has been memorably asserted that “Order breeds habit, disorder breeds life”- 

although we have forgotten by whom! Here at last, in the consideration of biological 
cells, we reach the most intriguing of our cellular structures but, as we shall explain, we 
face an anticlimax. 

Again, we shall find it convenient to stay in two dimensions, confining our 
immediate attention to cells in surfaces or stems, which have an essentially two- 
dimensional structure, for example, see figs. 29 and 30. In many biological specimens, 
the pattern is greatly complicated by differentiation, just as metallurgical specimens 
generally exhibit more than one phase. However, it is not difficult to find examples 

Fig. 29. Cell structure in the skin of a cucumber (Lewis 1928). p2 =O% 

Fig. 30. Cells in the stem of a plant (after Krommenhoek et al. 1979). 
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90 D. Weaire and N. Rivier 

where there are large areas of undifferentiated cells. Such cells have long been vaguely 
compared with the other random cellular structures which we have noted. 

What principles dictate the arrangement of these cells? This question was asked by 
the American botanist Lewis from the 1920s (Lewis 1925, 1928, 1931, 1933, 1943 a, 
1943 b, 1944, 1949). For example, he compared the structure of biological cells in two 
dimensions with that of an emulsion (fig. 31). However, Lewis did not really take his 
mathematical or statistical analysis very far, and it was extended only to a modest 
extent by Marvin (1939) and Matzke (1950). The questions which he left unanswered 
seem to be almost entirely ignored today. Given the scope and sophistication of 
modern biology, this is somewhat surprising. What little has been done on this subject 
is reviewed by Dormer (1980) but it is mainly concerned with the eternal verities of the 
relevant mathematics, such as Euler’s Theorem. “So long as a system is mathematically 
determinate there is no room for any biological phenomenon to show itself. Biology 
begins at  the point where there are two or more mathematically admissible results, 
between which the organism must choose upon some basis other than geometrical 
necessity. We have to recognize and eliminate from further discussion aspects of tissue 
structure deriving from pure mathematical necessity” (Dormer 1980, pp. 5-6). 

Lewis’s early work did, in fact, turn up a surprising relation which we can place 
beside Aboav’s, as possible general features of wide classes of cellular structures. He 
found that, for various two-dimensional cellular patterns, the mean area A(n) of n-sided 
cells varies linrarly with n. This relation does not follow from any elementary 

Fig. 3 I .  Cells formed by droplcts of photographic emulsion, studied by Lewis as a model for 
biological cells. 
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Soap, cells and statistics 91 

consideration of geometry. Rivier and Lissowski (1982) have suggested an explanation, 
which we shall discuss in Section 4. For the moment, it is sufficient to note that the 
Voronoi construction for random points (Section 2.3) also obeys this rule. For the 
biological systems, the intercept A(n) = 0 is in the range n = 1-3, while for the Voronoi 
construction it is approximately n = 0 (Smolyaninov 1980, Rivier and Lissowski 1982). 

A continuation of Lewis’s work would surely be most valuable. Perhaps in the end 
the conclusion may be that the detailed statistical properties of the cell structure have 
no particular biological importance (apart from disorder itself). This would seem to be 
the assumption of cell biologists at present. Experience with other, better understood, 
systems gives one cause to wonder if this can be so. As DArcy Thompson said, quoting 
Aristotle, “Nature does nothing in vain”. 

Recall what happens in the case of the soap film system. A structure made up of only 
six-sided cells is stable, but any departures from this topology create an instability 
which feeds the continual evolution of the soap froth. Order breeds habit, disorder 
breeds life . . . Of course, the growth mechanism is quite different for biological cells, 
involving a combination of mitosis and T1 processes rather than T1 and T2 processes 
(Section 2.1). Incidentally, Bknard convection cells sometimes undergo a process 
similar to mitosis (Whitehead 1975). 

Specifically, we offer the following comment on Dormer’s methodology quoted 
above. A random cellular structure in statistical equilibrium (the most probable 
distribution of Section 4) is mathematically determinate, yet its cells can be distributed 
in an overwhelmingly large number of configurations all consistent with statistical 
equilibrium. Cells can even undergo transformations (Tl, T2 and mitosis) which, in two 
dimensions, do not affect statistical equilibrium even locally. Such a structure 
constitutes a fertile soil for any biological phenomenon to manifest itself. The 
diagnostic potential of statistical crystallography is yet to be exploited. 

There is obvious biological value in disorder in a growing tissue-it smoothes out 
what would otherwise by a clumsy, stepwise growth process, located on selected, 
dividing cells. At the very least, dislocations (pentagon-heptagon pairs) screen the 
strain imposed by isolated pentagonal or heptagonal cells, and their glide enables the 
tissue to grow by successive mitoses under little elastic distortion, and from several cells 
at the same time. 

Rather different considerations, having to do with optics, may favour disordered 
structures in the retina (Yellott 1983) and it is notable that the hard disc pattern 
(Section 2.3.1) recurs in attempts to simulate the pattern of receptors. 

With these few tentative remarks we leave the problem of biological cell statistics 
for future study. In our opinion, the botanist and the metallurgist, like the farmer and 
the cowboy, should be friends. Recently developed techniques of data acquisition, 
developed for the analysis of grain structures, might well also find application to cell 
structure. 

4. Finding order in chaos 
4.1. Maximum entropy? 

All of the work that we have touched upon in Section 2 suffers from the lack of an 
established methodology-it is a story of a blind search for significant correlations, 
without any guiding principle. 

There is one school of thought that claims to have found such a principle. Loosely 
speaking, it is claimed that the methods of statistical mechanics, rephrased in terms of 
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92 D. Weaire and N. Rivier 

information theory, can be carried over into a much more general field than 
equilibrium thermodynamics. The guiding principle is that of Maximum Entropy. In 
this section we shall comment briefly on this and certain other arguments which are of a 
similar nature. They are likely to remain controversial for some time, simply because 
“the weakness of the Maximum Entropy Formalism (MEF) is that it does not contain 
within itself any criteria for its valid application” (Oppenheim 1980, Landauer 1981). 
However, we shall argue that our subject of random space-filling structures is as good 
as, if not a better, field of application for the MEF than equilibrium thermodynamics, 
and show that empirical laws like Lewis’s can be derived by using it. There are certainly 
no other proofs on the market at  the moment. 

The Maximum Entropy Formalism (Jaynes 1957 a, b, 1979) is first and foremost the 
solution of the inverse problem of probability theory: given some prior knowledge of 
the system, for example, frequencies of a few outputs or some averages, find the 
probabilities of further outputs. Apart from this specific knowledge, included as 
‘constraint’, the MEF solution is maximally non-commital. It is the solution with 
minimal prejudice, and it is this variational requirement which grants uniqueness to an 
otherwise under-constrained problem. Most of the controversy which has been voiced 
in the literature has to do with the definition of probability as frequency or as the 
mathematical description of a particular state of knowledge. It is a 200-year-old 
battlefield, summarized delightfully by Jaynes (1979, p. 56): “One of the major unsolved 
riddles of probability theory is: how to explain to another person exactly what is the 
problem being solved?” It does not affect the status of MEF as the solution of a well- 
defined problem, but only expresses doubts of its validity for the description of real, 
physical or biological situations. 

Surely, the reader may interject, experiment should be the final judge. But 
experiment does not measure probabilities, only frequencies (of n-sided cells for 
example). In a homogeneous random structure, it turns out that the expectation value 
of the frequency is numerically equal to the probability, regardless of any correlation 
between cells (see, for example, Jaynes 1979, p. 50). Above all, experiment is there to 
verify or disprove the predicted relations between averaged quantities, the equations of 
state in thermodynamics, or Lewis’s law in random structures. There lies the predictive 
or diagnostic power of the MEF: “If it can be shown that the class of phenomena 
predictable by maximum-entropy inference differs in any way from the class of 
experimentally reproducible phenomena, that fact would demonstrate the existence of 
new laws ofphysics, not presently known.” (Jaynes 1957 c, p. 172.) 

Examples of such arguments are to be found in the work of Brostow and Rogers 
(1983) on fragmentation, Kikuchi (1956) and Tanemura (1979) on soap froth, and 
Rivier and Lissowski (1982) on Lewis’s law. The following is the gist of the latter 
authors’ justification of Lewis’s law. 

We begin with the remark that all the structures described in Section 3 are roughly 
similar. They are therefore unlikely to depend on the particular physical, biological or 
chemical forces which govern their respective constituting materials, apart from their 
single length scales. Moreover, were short-ranged physical forces dominant in their 
architecture, they would give rise to an ordered structure in two dimensions; triangular 
or hexagonal packing, interfaces at 120°, all this is conducive to regular arrangements, 
like the bees’ honeycomb, possibly with a few, well-separated defects like dislocations. 
The very fact that random structures do occur in two dimensions, suggests that specific 
short-ranged forces are less important in framing the structure than the inescapable, 
mathematical and universal constraint of space-filling. Indistinguishability of struc- 
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Soap, cells and statistics 93 

tures, originating from utterly different areas of Natural Philosophy, strongly supports 
our prejudice. 

The question now is: do these inevitable, mathematical constraints frame in any 
specific, identifiable way the structures generated under their sole or overriding 
influence? The answer is yes, and it is provided by the word ‘random’. In statistical 
mechanics, it is well known, although a source of surprise to every undergraduate, that, 
for large systems, the most probable distribution is overwhelmingly more probable 
than any other. This is associated with the problem of the 10000 monkeys at their 
typewriters and the chance of any one of them typing some Shakespeare. Everyone has 
a definition of ‘never’, or a price against it, and, less excitingly, every one knows the 
meaning of ‘almost always’, or a most probable realization. Consider a large random, 
space-filling mosaic. Is there a most probable distribution of cells, a most probable 
structure? If so, is there a criterion for such ideal random structure, analogous to the 
ideal gas law in thermodynamics? The answer is yes in both cases. 

To summarize: because all the structures are, to a first approximation indis- 
tinguishable, because they are random, and because their respective, single length 
scales are so widely different, possible relevant constraints are pruned down to the few 
(2) mathematical identities pertaining to the space which the cells are filling. These two 
identities (equations 26 and 27 below) are the constraints of the MEF. Their generality 
and inevitability in turn grant universality to the (set of most probable) structures. If the 
argument is circular, it is certainly self-consistent! 

One looks for an ideal, random space-filling structure determined solely by the 
mathematical constraints and the fact that the structure is the most probable one. The 
structure is in statistical equilibrium, in that any topological rearrangement of the cells 
leaves its ‘arbitrariness’, invariant. The arbitrariness is measured precisely by the 
entropy or information contained in the structure (Shannon 1948, Pierce 1961). If such 
an ideal structure exists, it is the solution of a statistical problem and can only be the 
representative archetype of an ensemble of structures. It is not unique. Accordingly, 
criteria for ideality will be relations between average properties of the structure, like the 
ideal gas law in thermodynamics, rather than geometrical data like Bragg diffraction 
spots. One is looking for the statistical analogue of the simple cubic structure in 
crystallography. 

At the lowest order, the statistical problem is set as follows. The random variable is 
the topological shape of a cell, the number n of its sides in two dimensions. There is 
indeed, a variety of cell shapes in a random mosaic. A two-dimensional random mosaic 
is described by the probabilities p, of finding an n-sided cell. The statistics or 
correlations between shapes of neighbouring cells is also important, but represent a 
more detailed and sophisticated description of the structure, neglected at this level. A 
random mosaic with many cells (thermodynamic limit) will take up the most probable 
distribution of pn that maximizes the entropy, arbitrariness or information 

s= -ZPPn1nP, (24) 
(Shannon 1948, Pierce 1961, Jaynes 1957), subject to known constraints. 

In complete generality, the constraints are 

C P n = 1  (normalization) 

C p,A, =A,,,, (space-filling) 

C pnn=6 (Euler, topology) 
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94 D. Weaire and N. Rivier 

Here 2, is the average area of an n-sided cell, FA,,,, the total area available to the F 
cells in the mosaic. The topological constraint is an immediate consequence of Euler's 
relation and of the structural stability of the mosaic (all vertices have coordination 
z = 3). The corresponding restriction in three dimensions is much weaker. The averaged 
number of faces per cell is not fixed, but only related to the average number of edges per 
face, n, by 

< f ) = W ( 6  - <n>)  (28) 

This is all. The problem, as formulated, is entirely mathematical: the concepts of 
statistical equilibrium (most probable distribution) and entropy or information, and 
the constraints themselves, are all represented by mathematical expressions. Physics, 
and biology, are absent at this level, and the resulting structures are expected to be 
universal. The only subjective step is in the coding of the structure by the sole parameter 
n, and the requirement that it is in statistical equilibrium. (See also Delessert 1972.) 

It is unnecessary to evaluate the entropy S. For our purposes, the following 
argument suffices. The constraints are a linear system of equations between pn,  so that 
the smaller the dimensionality of the space of constraints, the larger the space of 
possible solutions p, ,  and the more probable one such solution will be. To find the most 
probable distribution, we must first reduce as much as possible the space of constraints, 
that is, make them linearly dependent. 

The average area of an n-sided cell, A,,, is linearly related to the number n of its sides. 
This relation was actually suggested empirically by Lewis (Section 3.8) and is obeyed by 
Voronoi froths generated from randomly distributed centres (Crain 1978). 

The arbitrary parameter A in (29) is the undetermined multiplier involved in the 
linear combination between constraints. (The other multiplier is eliminated because the 
system of equations 25-27 is inhomogeneous.) It is clearly related to the slope and 
intercept of Lewis's law, and is therefore an important descriptive parameter of the 
structure. But Lagrange undetermined multipliers have a habit in thermodynamics and 
in mechanics of possessing a physical meaning of their own. They are not merely 
arbitrary mathematical factors. What, therefore, is the meaning of M It has been further 
suggested that it is related to the ageing of the structure (Rivier 1983 a). 

A full calculation using MEF confirms the above. It is interesting in that it takes the 
formalism one step further than Jaynes (1957 a, b), by allowing the constraints 
themselves (the function A,,, whose average constitutes the space-filling constraint (26)) 
to be adjusted to increase further the maximal entropy. It also yields the most probable 
distribution (Rivier 1983 b). 

p ,  = N(n-  no)3 exp (- yn), n 2 a 

= 0, n < a. 

Here N is the normalization factor, and y is adjusted so that the topological constraint 
(27) is satisfied, while a( > no), the smallest number of sides per cell, is an arbitrary 
parameter in the distribution, although experimentally a 2 3. Alternatively, one can 
entertain all n, with the additional constraint that pn=O for n<a, a situation already 
discussed by Shannon (1 948), which enters naturally into the general formalism of 
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Information Theory. Distribution (30)T is in general agreement with experiment (Crain 
1978, Lantuejoul 1978, Blanc and Mocellin 1979, Smolyaninov 1980). 

By analogy with the successful application of MEF to equilibrium thermodynamics 
(Jaynes 1957 a, b), its present application implies that random cellular structures are 
also in a state of statistical equilibrium, with Lewis's law as equati,on of (equilibrium) 
state. MEF yields a more general definition of such statistical equilibrium than does 
microreversibility under elementary transformations. Statistical equilibrium and 
Lewis's law are consequences of the balance between entropy (most probable 
distribution) and lowest level of organization (space-filling territorial partition, 
encoded by the constraints). 

4.2. Conclusion 
In 1973 there took place the world's first Symmetry Festival (Senechal and Fleck 

1977). Nobody has yet suggested that there should be an Asymmetry Festival-it does 
not have the same immediate appeal, although perhaps Science still lags behind Art in 
that respect . . . 

The field lacks coherence, as this article, despite our best efforts, may have 
demonstrated. Yet it continues to fascinate those who delve into it, and their numbers 
are growing. The sheer tedium of data-gathering has in the past been an inhibiting 
factor. Today's instrumentation and computational techniques for pattern recognition 

?The reader may require an outline of the derivation (Rivier 1983 b): 

Cells are characterized by shapes (n)  and sizes (area A) through the joint distribution p(n, A). 
Correlation between shape and size, 

dAp(n, A)A =A, dAp(n, A)  (31) s f 
is included as an additional constraint, secured by Lagrange multipliers A(n). Absence of 
correlation corresponds to A(n) = 0. The other constraints are (25)-(27), with p,=JdA p(n,  A).  

The entropy must include a geometrical, a priori probability po(A)ccA", to find a cell of area 
A, thus 

This is manifest in the case of Voronoi polygons, where a = 2 (a = D in D dimensions), because 
a cell of area A requires at least 3 points within - 2 A  of its seed, for which the probability goes as 
A2 exp( - P A )  (Poisson distribution). The same geometrical prefactor (a = 2) should hold 
regardless of the type of mosaic, unless triangular cells are forbidden (a= 3) or two-sided cells 
allowed (c( = l), for some specific (biological, etc.) reason. 

Maximizing the entropy (32) subject to the constraints yields the most probable distribution 

p ,  cc z' exp (- 1,n - lJn), with Anccl(n)-' 
given by equation (31). 1, and 1, are the Lagrange multipliers securing topological (27) and 
space-filling (26) constraints, respectively. 

If the size-shape relationship A,, can be adjusted to increase further the entropy, there are two 
alternatives: either Lewis's law (29) and distribution (30), or A,=A,,,,, independently of n (no 
correlation between sizes and shapes of cells) and exponential distribution pn. The entropy has 
two disjoint maxima in configuration space (A,,,,, ( n ) ,  A,,). 

The exact Voronoi distribution in 1 D ( 1  3) is recovered from this formalism. In general, the 
exponential decay of + ( A ) = x p ( n ,  A)  is controlled by the space-filling constraint (26). 

n 
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(Serra 1982) could soon change that, just as graphical output has made computer 
simulation more feasible. Given more data and more extensive simulations, together 
with some interdisciplinary interaction, we could see emerging theories of random 
structures of which we have only fragmentary clues and tentative ideas today. 

Even if progress is made in the area which we have mapped out in this article, there 
will remain the complexities of three-dimensional structures to be sorted out. Perhaps 
our rapidly developing computer graphics facilities will also make this much easier in 
the near future. 

Theoretically, statistical techniques based on Information Theory or the Maximum 
Entropy principle have only recently begun to be applied to random structures, 
whether, as here, to obtain the distribution of random variables and the equation of 
state for statistical equilibrium, or as the best strategy in direct pattern recognition 
(Bricogne 1983). However, the growing confidence in the universality of random 
cellular structures, described by a few simple laws (such as those of Lewis and Aboav) 
must be credited to the careful and painstaking work of early experimentalists like 
Lewis, Marvin, Matzke and Smith. Should we regard the publication of a paper on 
gauge theory on a random lattice (Christ et al. 1982) as a certificate of respectability for 
the Walrus? (cf. 3.1). 
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