#### **Σχεδιάση υβριδικών υλικών** κλίμακα μήκους και διάταξη των επί μέρους συστατικών



#### Υβριδικά υλικά γεμίζοντας τα κενά στους χάρτες ιδιοτήτων



ιδιότητα P<sub>2</sub>

#### **Σύνθετα** άκαμπτα, ανθεκτικά και ελαφριά



κομμένες ίνες

διασπορά σωματιδίων

#### **Σύνθετα** κριτήρια αριστείας: ακαμψία για ελάχιστη μάζα



AlBeMet (62% Be, 38% Al) διφασικό κράμα (σύνθετο) με *E*<sup>1/2</sup>/*ρ* = 6.5 αντί 3.1 του Al

#### **Σύνθετα** αντοχή: δύσκολα προβλέψιμη

η μη γραμμικότητα, η πολλαπλότητα και η εξάρτηση των μηχανισμών από ατέλειες της κατεργασίας

αξονικά:

ταυτόχρονη αστοχία

$$\left(\tilde{\sigma}_{f}\right)_{U,a} = f\left(\tilde{\sigma}_{f}\right)_{r} + (1 - f)\left(\tilde{\sigma}_{f}\right)_{m}$$

το πιο αδύναμο αστοχεί πρώτο $\left(\tilde{\sigma}_{f}\right)_{L,a} = \max\left\{f\left(\tilde{\sigma}_{f}\right)_{r}, (1-f)\left(\tilde{\sigma}_{f}\right)_{m}\right\}$ 

εγκάρσια:

συνεκτική διεπιφάνεια

$$\left(\tilde{\sigma}_{f}\right)_{U,t} \approx \min\left\{\left(\tilde{\sigma}_{f}\right)_{r}, \left(\tilde{\sigma}_{f}\right)_{m}\left(1-f^{1/2}\right)^{-1}\right\}$$

συγκέντρωση τάσεων και αποκόλληση  $\left(\tilde{\sigma}_{f}\right)_{L,t} pprox \left(\tilde{\sigma}_{f}\right)_{m} \left(1 - f^{1/2}\right)$ 



#### Σύνθετα θερμικές ιδιότητες

100

ειδική θερμότητα ανά μονάδα όγκου (κανόνας των μιγμάτων)

 $\tilde{\rho}\tilde{C}_{p} \approx f\rho_{r}(C_{p})_{r} + (1-f)\rho_{m}(C_{p})_{m}$ 

συντελεστής θερμικής διαστολής

$$\tilde{a}_{L} \approx \frac{E_{r}a_{r}f + E_{m}a_{m}(1-f)}{E_{r}f + E_{m}(1-f)}$$

$$\tilde{a}_{U} = fa_{r}(1+v_{r}) + (1-f)a_{m}(1+v_{m}) - a_{L}[fv_{r} + (1-f)v_{m}]$$

θερμική αγωγιμότητα

$$\begin{split} \tilde{\lambda}_{U} &= f \lambda_{r} + (1 - f) \lambda_{m} \\ \tilde{\lambda}_{L} &= \lambda_{m} \left( \frac{\lambda_{r} + 2\lambda_{m} - 2f(\lambda_{m} - \lambda_{r})}{\lambda_{r} + 2\lambda_{m} + f(\lambda_{m} - \lambda_{r})} \right) \end{split}$$

(χαμηλότερη αν υπάρχει αποκόλληση)

Linear expansion coefficient lpha (10<sup>-6</sup>/K)  $10^{7}$ 50 Criterion of 1000 series excellence  $\lambda/\alpha$ . aluminum alloys Bound  $\alpha_{\mu}$ 20  $3 \times 10^{7}$ Bound Boron 🖊 10 -Bound nitride  $\alpha_{l}, \lambda_{u}$ 108 Bound  $\alpha_{u}$ , 2 Silicon carbide MFA, 09 2 TT 10 30 70 100 300 700 Thermal conductivity  $\lambda$  (W/m.K)

10<sup>6</sup>

Composite design

Conductivity/Expansion

 $3 \times 10^{6}$ 

κριτήριο θερμικής στρέβλωσης  $\alpha/\lambda$ 

# 

(σχετικά) άκαμπτες πλάκες διαχωρίζονται από ελαφρύ πυρήνα αυξάνοντας την *ροπή αδράνειας της διατομής* και προσδίδοντας στην δομή ακαμψία και αντοχή σε κάμψη και λυγισμό για χαμηλό βάρος

οι πλάκες φέρουν το μεγαλύτερο μέρος των φορτίων και προστατεύουν από το περιβάλλον – ο πυρήνας αντιστέκεται σε διατμητικές τάσεις ώστε το σάντουϊτς να λειτουργεί ως δομικό στοιχείο

η δομή σάντουϊτς μπορεί να θεωρηθεί ως ένα καινούργιο υλικό με ισοδύναμες ιδιότητες, π.χ.,  $ilde{E}, ilde{
ho}$ 

#### **Ισοδύναμες ιδιότητες** ακαμψία (1)



$$\tilde{\rho} = \frac{m_a}{d} \qquad \qquad \tilde{\rho} = f\rho_{\varepsilon} + (1-f)\rho_{\pi}$$

$$\tilde{E}_{\kappa\alpha\mu\eta\eta} = \frac{12EI}{bd^3} \qquad \frac{1}{\tilde{E}_{\kappa\alpha\mu\eta\eta}} = \frac{1}{E_{\varepsilon} \left\{ \left[ 1 - \left( 1 - f \right)^3 \right] + \frac{E_{\pi}}{E_{\varepsilon}} \left( 1 - f \right)^3 \right\}} + \frac{B_1}{B_2} \left( \frac{d}{L} \right)^2 \frac{\left( 1 - f \right)}{G_{\pi}}$$

Ε: μέτρο του Young ρ: πυκνότητα

G: μέτρο διάτμησης

# Ισοδύναμες ιδιότητες ακαμψία (2)

| Table 11.3         Constants to Describe Modes of Loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |            |                       |            |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------|-----------------------|------------|------------|
| Mode of Loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Description                                  | <b>B</b> 1 | <b>B</b> <sub>2</sub> | <b>B</b> 3 | <b>B</b> 4 |
| $\begin{array}{c} \downarrow \\ \downarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cantilever, end load                         | 3          | 1                     | 1          | 1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cantilever, uniformly distributed load       | 8          | 2                     | 2          | 1          |
| F<br>Ann Ann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Three-point bend, central load               | 48         | 4                     | 4          | 2          |
| F<br>The second se | Three-point bend, uniformly distributed load | 384/5      | 8                     | 8          | 2          |
| ↓<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ends built in, central load                  | 192        | 4                     | 8          | 2          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ends built in, uniformly distributed load    | 384        | 8                     | 12         | 2          |

## **Ισοδύναμες ιδιότητες** αντοχή

τρόποι αστοχίας



διαρροή έδρας  $\tilde{\sigma}_{\kappa\alpha\mu\psi\eta_1} = \left[1 - (1 - f)^2\right]\sigma_{\varepsilon} + (1 - f)^2\sigma_{\pi}$ 

λυγισμός έδρας: λεπτή δομή σε θλίψη  $\tilde{\sigma}_{\kappa\alpha\mu\psi\eta^2} = 1.14 f \left( E_{\varepsilon} E_{\pi}^2 \right)^{1/3}$ 

διάτμηση πυρήνα  $\tilde{\sigma}_{\kappa\alpha\mu\psi\eta^3} = \frac{B_4}{B_3} \left[ 4 \frac{L}{d} (1-f) \tau_{\pi} + f^2 \sigma_{\varepsilon} \right]$ 

εντύπωση έδρας

$$p_{\varepsilon v\tau} = \frac{2t}{a} (\sigma_{\varepsilon} \sigma_{\pi})^{1/2} + \sigma_{\pi}$$

#### Απόδοση δομών σάντουϊτς σε κάμψη



## **Κυτταρικές δομές** αφροί και πλέγματα

δομές που «λυγίζουν»: η συμπεριφορά τους ερμηνεύεται από την κάμψη των δοκών που απαρτίζουν την συμπαγή δομή των αφρών

δομές που «τεντώνουν»: η συμπεριφορά τους εμηνεύεται από την αξονική φόρτιση των στοιχείων που απαρτίζουν το πλέγμα







[Jacobsen et al., Adv. Mat., In press.]



# **Κυτταρικές δομές** μηχανική αφρών



 $\tilde{U} pprox \tilde{\sigma}_{pl} \tilde{\varepsilon}_{d}$ 

# **Κυτταρικές δομές** μικροδικτυώματα





#### **Τμηματικές δομές** η επί μέρους διαίρεση ως σχεδιαστική παράμετρος

