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Abstract. We study in this lecture the literature on mixed integer pro-
gramming models and formulations for a specific problem class, namely
deterministic production planning problems. The objective is to present
the classical optimization approaches used, and the known models, for
dealing with such management problems.
We describe first production planning models in the general context of
manufacturing planning and control systems, and explain in which sense
most optimization solution approaches are based on the decomposition
of the problem into single-item subproblems.
Then we study in detail the reformulations for the core or simplest sub-
problem in production planning, the single-item uncapacitated lot-sizing
problem, and some of its variants. Such reformulations are either ob-
tained by adding variables – to obtain so called extended reformulations
– or by adding constraints to the initial formulation. This typically al-
lows one to obtain a linear description of the convex hull of the feasible
solutions of the subproblem. Such tight reformulations for the subprob-
lems play an important role in solving the original planning problem to
optimality.
We then review two important classes of extensions for the production
planning models, capacitated models and multi-stage or multi-level mod-
els. For each, we describe the classical modeling approaches used.
Finally, we conclude by giving our personal view on some new directions
to be investigated in modeling production planning problems. These in-
clude better models for capacity utilization and setup times, new models
to represent the product structure – or recipes – in process industries,
and the study of continuous time planning and scheduling models as
opposed to the discrete time models studied in this review.

1 Introduction

Two chapters in this book present the general theory of mixed integer pro-
gramming [−→ Martin], and the lift-and-project approach to combinatorial op-
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M. Jünger and D. Naddef (Eds.): Computat. Comb. Optimization, LNCS 2241, pp. 57–111, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



58 Y. Pochet

timization [−→ Balas]. They propose and study methods for improving the for-
mulations and solving general mixed integer programs, without considering or
exploiting the specific nature of the problems. In this chapter we take a dif-
ferent viewpoint. We study the literature on mixed integer programming mod-
els and formulations for a specific problem class, namely deterministic produc-
tion planning problems. We illustrate how the specific structure of these prob-
lems can be exploited to obtain good or better formulations and algorithms
for solving them. Implementation issues are not considered in this chapter,
we refer the reader to two chapters [−→ Elf/Gutwenger/Jünger/Rinaldi], and
[−→ Ladányi/Ralphs/Trotter].

In manufacturing environments, production planning problems deal with de-
cisions about the size of the production lots of the different products to manu-
facture or to process, about the time at which those lots have to be produced,
and sometimes about the machine or production facility where the production
must take place. The production decisions are typically taken by looking at the
best trade-off between financial and customer service or satisfaction objectives.
In production planning and operations management, the financial objectives are
usually represented by production costs – for machines, materials, manpower,
startup costs, overhead costs, . . . – and inventory costs – opportunity costs of
the capital tied up in the stocks, insurances, . . . –. Customer service objectives
are represented by the ability to deliver the right product, in ordered quantity,
at the promised date and place. The final aim of such modelling approaches is to
provide tools allowing one to better plan and control the flow of materials and
information within the firms.

These production planning problems abound in practice and the literature
contains many heuristic and exact optimization algorithmic approaches to solve
them. Our objective here is to present a classification of the mixed integer pro-
gramming (MIP) optimization models, and mathematical formulations, used for
dealing with such management problems.

In Section 2, we describe production planning models in the general context
of manufacturing planning and control systems, including Material requirements
planning (MRP-I), Manufacturing resource planning (MRP-II) and Hierarchical
production planning (HPP). We describe briefly the elements of production plan-
ning models, and define a typology of the models encountered in practice. This
part is a self contained introduction to production planning models, and to make
the presentation more practical at this early stage, we describe example plan-
ning models such as the uncapacitated lot-sizing model, the multi-item master
production scheduling (MPS) model and the materials requirements planning
basic model.

Although practical models are multi-item, we explain in which sense most
optimization solution approaches are based on the decomposition of the problem
into single-item subproblems. This motivates the analysis of the formulations of
a variety of single-item models in the next section. The goal is to obtain a
complete linear description of the convex hull of the feasible solutions of the
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subproblem. Such tight formulations play an important role in solving or finding
good solutions for the original multi-item planning problem.

In Section 3, we present known results on the MIP formulation of the basic
or core planning subproblem, namely the single-item uncapacitated lot-sizing
subproblem (ULS), and some of its single-item variants including startup costs,
backlogging, constant capacity restriction, Wagner-Within costs and profit max-
imization objective function. We illustrate on the ULS problem the classical ap-
proach used to study the reformulations of these polynomially solvable single
item problems. The reformulations are either obtained by adding variables – to
obtain so called extended reformulations – or by adding constraints to the initial
formulation.

For the ULS problem, several extended formulations are described, including
the shortest path formulation that can be derived directly from the polynomial
time dynamic program solving the problem. Other classical extended reformula-
tions such as multicommodity and facility location reformulations are presented.

The alternative approach is to work with the initial set of variables, and derive
valid inequalities that describe the convex hull of the incidence vectors of feasible
solutions. By solving the separation problem associated with such inequalities,
it is possible to develop a branch and cut algorithm for solving these problems.
For each model studied in this section, we describe the known valid inequalities,
indicate whether or not they describe the convex hull of solutions.

In Sections 4 and 5, we review two important classes of extensions for the
production planning models, capacitated models and multi-stage or multi-level
models.

We separate capacitated planning models into big buckets (large time pe-
riods) and small buckets (small time periods) models. Big buckets capacitated
models are used in order to control the capacity utilization in each period. We
describe how to obtain classes of valid inequalities to strengthen the formulation
of these models. Small buckets models are used when, in order to model accu-
rately the capacity utilization, one has to control the production sequence of
the different items – because there are variable sequence dependent change over
costs and times –. We describe several formulations that are used to represent
these production sequences using small buckets.

For multi-stage models, we explain the classical stage by stage decomposition
used in MRP-I, and describe the well known echelon stock reformulation which
is the basis of all MIP approaches for these problems.

In Section 6, we give our personal view on some new directions to be inves-
tigated in modeling production planning problems. These include better models
for capacity utilization and setup times, new models to represent the product
structure – or recipes – in process industries, and the study of continuous time
planning and scheduling models as opposed to the discrete time models studied
in this review.

We conclude with some challenges for the future of this field of research.
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2 Production Planning

2.1 Manufacturing Planning and Control Systems

The production process can be defined as the transformation process of raw
materials into end products, usually through a series of transformation steps
producing and consuming intermediate products. These raw materials, interme-
diate and end products can often be inventoried, allowing one to produce and
consume them at different moments and rates in time. Each transformation step
may require several input products and may produce one or several outputs. The
raw materials are purchased from suppliers, and the end products are sold to
external customers. Sometimes, intermediate products are also sold to customers
(spare parts, . . . ). This general definition of the production as a transformation
process is illustrated in Figure 1, where materials inventories are represented
by triangles, transformation processes are represented by circles, and flows of
materials through the process (i.e. inputs into or outputs from transformations
steps) are represented by arrows.

Fig. 1. The production process

Production planning is defined as the planning (that is the acquisition, time
of usage, quantity used, . . . ) of the resources required to perform these trans-
formation steps, in order to satisfy the customers in the most efficient or eco-
nomical way. In other words, the production decisions are typically taken by
looking at the best trade-off between financial objectives and customer service
or satisfaction objectives. In production planning and operations management,
the financial objectives are usually represented by production costs – for ma-
chines, materials, manpower, startup costs, overhead costs, . . . – and inventory
costs – opportunity costs of the capital tied up in the stocks, insurances, . . . –.
Customer service objectives are represented by the ability to deliver the right
product, in ordered quantity, at the promised date and place.

According to Anthony [5] and Salomon [62] –among others–, the produc-
tion planning problems can be classified into strategic, tactical and operational
planning problems.
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Fig. 2. An MRP-II system (adapted from [76])

Strategic problems deal with the management of change in the production
process and the acquisition of the resources needed to produce. This includes for
example product-mix, plan layout as well as location, supply chain design and
investment decisions. The objective pursued in solving these strategic problems
is to maintain the competitive advantage and capabilities, and to sustain the
growth rate. This requires to model the decisions over a long term horizon using
aggregate information.

Tactical planning problems analyse the resource utilization problems over
a medium term planning horizon using aggregate information. This consists in
making decisions about, for instance, materials flow, inventory, capacity utiliza-
tion, maintenance planning. The usual objective at this stage is to improve the
cost efficiency and the customer’s satisfaction.

Operational Planning problems aim at planning and controling the execution
of the production tasks. For instance, production sequencing and input/output
analysis models fit into this category. Here the goal is to obtain an efficient and
accurate execution of the plans, over a very short term horizon, and using very
detailed information.

Manufacturing planning and control systems (MPC) (see Vollman, Berry,
Whybark [76]) are developed to cope with these complex planning environments,
and integrate these multi-level multi-horizon planning problems into a single
integrated management system.

For instance, Figure 2 describes how the tactical and operational planning
problems are integrated in classical manufacturing resources planning (MRP-II)
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systems, an example of MPC system. In these systems, medium term production
planning (PP) consists in deciding about capacity utilization and aggregate or
global inventory levels to meet forecasted demand over a medium term horizon
of about one year. A medium term horizon is needed to be able to take into
account some seasonal pattern in the demand. Master production scheduling
(MPS) consists in planning the detailed short term production of end-products
in order to meet forecasted demand and firm customer orders, taking into account
the capacity utilization and global inventory levels decided at the PP stage. Here
the time horizon is usually expressed in weeks and corresponds to the duration
of the production cycle. Materials requirements planning (MRP-I) establishes
the short term production plans for all components (intermediate products and
raw materials) from the production plan of end-products decided at the MPS
stage, and from the product structure database (Bills of Materials, BOM). Then,
shop-floor control systems (for manufactured components) and vendor follow-up
systems (for purchased components) control the very short term execution of the
plans decided at the MRP-I stage. The time horizon at this last stage is usually
of a few days.

Other well known integrated production planning concepts and systems fit
into this general manufacturing planning and control framework. For instance
the MRP-II system represented in Figure 2 subsumes the original MRP-I system
defined by Orlicky [49], and follows the hierarchical production planning (HPP)
principles defined by Hax and Meal [29].

In these systems, the production decisions are taken, one after the other,
using a sequential (decomposition) approach. For instance, in the classical MRP-
II systems, the production plans of the end-items are decided first at the MPS
level, without considering the capacity or inventory available for intermediate
products and raw materials. Then a tentative production plan for intermediate
items is decided assuming that the production capacity is infinite (or at least
does not impose any constraint on the production plans). Finally, the available
capacity is taken into account, and the production plans are modified (smoothed)
by finite loading heuristics.

This sequential approach is suboptimal because it is not capable to integrate
some important constraints in a global model. The complicating factors and
constraints that would need to be integrated are: multilevel product structures
(raw materials, intermediate products and end products), capacity constraints
(and in particular the presence of setup times), sequencing aspects that have to
be taken into account because they affect the capacity utilization.

The purpose of this lecture is precisely to describe and study more global
production planning models addressing these complicating factors. The final
aim of such modelling approaches is to provide tools allowing one to better plan
and control the flow of materials and information within the firms.
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2.2 Production Planning Models

We describe in this Subsection the main modelling elements defining production
planning models, and we provide examples of mixed integer programming formu-
lations corresponding to the MRP-I, MPS and integrated MPS/MRP decision
problems.

Modelling Elements. There are a number of modelling elements present in
many or most production planning problems.

– Production planning problems deal with sizing and timing decisions for pro-
duction lots,

– defining the availability of resources (machine hours, workforce, subcontract-
ing, . . . ),

– allocating the resources to the production lots,
– meeting forecasted demand (in a make to stosk environment) and/or cus-

tomer orders (in a make to order environment)
– and maximizing performance, expressed in terms of production costs, inven-

tory costs, and customer service level.
– over a finite planning horizon.

There are also some complicating modelling elements that are not present in
all models.

– Multiple items interacting through shared resources.
In this case, there is no material flow between the items, but there are
capacity restrictions linking the items and coming from the shared resources.
A typical example of such a model is the MPS model described in Subsection
2.2.

– Multiple items interacting through multi-level product structures.
In the case of multi-level product structures, there are additional material
flow restrictions because a product can be an input of some production stage
and also an output of some other production stage, or it may be delivered
from an external supplier. This creates some precedence constraints between
the supply and the consumption of that product. These restrictions are usu-
ally modelled through inventory balance constraints. A typical example of
such a model is the MPS/MRP intergated model described in Subsection
2.2.

– Demand backlogging.
In this case, it is possible – but penalized because it has a negative impact
on customer satisfaction – to deliver a customer later than required. This
occurs for example when a factory does not have enough capacity to deliver
all customers on time. The single item model with demand backlogging will
be studied in Section 3.5.
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– Startup or switching capacity utilization.
In many cases, it is necessary to model accurately the capacity utilization in
order to obtain feasible production plans. This requires sometimes to model
the capacity consumed when a machine starts a production batch, or when
a machine switches from one product to another. In these cases, we obtain
setup or startup times models, change over times models, or models with
sequencing restrictions. These models will be described in Section 4.
In some other cases, the model are too complex to be solved with such setup
or startup times restrictions, and usually simpler models involving setup or
startup costs are considered. Such models can be seen as obtained by relaxing
the setup or startup time restrictions. Models with setup and startup costs
will be studied respectively in Sections 3 and 3.5.

Models Classification. The classification of deterministic production planning
models given in Table 1 is adapted from Kuik et al [35]. In each model class, we
cite seminal or important work related to the optimization of some corresponding
models. Some more references will be given in the text. We refer to the above
paper for a more comprehensive classification of the related literature.

The models are classified along three criteria: capacitated or uncapacitated,
constant or variable demand, single or multiple item.

Uncapacitated Lot-Sizing Model. The first example model is the uncapac-
itated single item, single level, uncapacitated lot-sizing problem that we will
study in detail in Section 3. This model is the core subproblem in production
planning because it is the problem solved repeatedly for each item (from end
products to raw materials) in the material requirements (MRP-I) sequential
planning system.

We define the index t = 1, · · · , n to represent the discrete time periods, and n
is the final period at the end of the planning horizon. The purpose is to plan the
production over the planning horizon (i.e. fix the lot size in each period) in order
to satisfy demand, and to minimize the sum of production and inventory costs.
Classically, the production costs exhibit some economies of scale that are are
modelled through a fixed charge cost function. That is, the production cost of a
lot in decomposed into a fixed cost independent of the lot size, and a unit cost
incurred for each unit produced in the lot. The inventory costs are modelled
by charging an inventory cost per unit held in inventory at the end of each
period. Any demand in a period can be satisfied by production or inventory,
and backlogging is not allowed. The production capacity in each period is not
considered in the model, and therefore assumed to be infinite.

For each period t = 1, · · · , n, the decision variables are xt , yt and st . They
represent respectively the production lot size in period t, the binary variable
indicating whether or not there is a positive production in period t (yt = 1 if
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Table 1. Production planning models

Uncapacitated Capacitated
(fixed lead times) (variable lead times)

Stationary Single Inventory control
or Constant Item EOQ (raw material)
demand EPQ (production)

[Harris [28], Wilson [80]]
Stationary Multi Serial lot sizing Economic
or Constant Item Assembly lot sizing lot scheduling
demand (multi-level) (single-level)

(shared resources)
[Crowston, W., W. [15]] [Elmaghraby [18]]

Dynamic Single Uncapacitated Capacitated
demand Item lot sizing (ULS) lot sizing (CLS)

[Wagner, Whitin [78]] [Florian, Klein [23]]
Dynamic Multi Serial lot sizing Big buckets
demand Item Assembly lot sizing Small buckets

General lot sizing Discrete LS
(multi-level) (single-level)

(shared resources)
[Veinott [75]] [Eppen, Martin, [19]]
[Zangwill [85]] [Trigeiro, [68]
[Love [41]] [Karmarkar, Schrage, [31]

[Crowston, W., [14]] [Lasdon, Terjung, [36]]
[Afentakis, G., K. [1]] [Fleischmann, [21], [22]]
[Afentakis, G., [2]] [Salomon, K., K., V.W., [63]]

xt > 0), and the inventory at the end of period t. The data are pt, ft, ht and
dt modelling respectively, and for each period t, the unit production cost, the
fixed production cost, the unit inventory cost, and the demand to be satisfied.
For simplicity we suppose that dt ≥ 0 for all periods t.

The natural formulation of this uncapacitated lot-sizing problem (ULS) can
be written as follows.

min
n∑

t=1

(ptxt + ftyt + htst) (1)

st−1 + xt = dt + st for all t (2)
s0 = sn = 0 (3)

xt ≤Myt for all t (4)
xt, st ≥ 0, yt ∈ {0, 1} for all t (5)
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where M is a large positive number. Constraint (2) expresses the demand satis-
faction in each period, and is called the flow balance or flow conservation con-
straint. This is because every feasible solution of ULS corresponds to a flow in
the network shown in Figure 3, where d14 =

∑4
i=1 di is the total demand. Con-

straint (3) says there is no initial and no final inventory. Constraint (4) forces the
setup variable in period t to be 1 when there is positive production (i.e. xt > 0)
in period t. Constraint (5) imposes the nonnegativity and binary restrictions on
the variables. The objective function defined by (1) is simply the sum of unit
production, fixed production and unit inventory costs.

The set of feasible solutions to (2)-(5) is called XULS .

0

1 2 3 4

x x x x

dd dd
1

1

1

2

2 3

3

4

2 3

4

s ss

d
14

Fig. 3. Uncapacitated lot-sizing network (n = 4)

Master Production Scheduling Model. The next example is known as the
multi item (single level) capacitated lot-sizing model. This model corresponds
typically to the problem solved at the master production scheduling level in an
MPC system. The purpose is to plan the production of a set of items, usually fin-
ished products, over a short term horizon corresponding to the total production
cycle of these items. For each item, the model is the same as the ULS model in
terms of costs and demand satisfaction. In addition, the production plans of the
different items are linked through capacity restrictions coming from the common
resources used to produce the items.

We define the indices i = 1, · · · , I to represent the set of items whose produc-
tion has to be planned, k = 1, · · · , K to represent the set of shared resources with
limited capacity, and t = 1, · · · , n to represent the time periods. The variables
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x, y, s, and the data p, f , h, d, have the same meaning for each item i as in the
model ULS. A superscript i has been added to represent the item i for which
they are each defined.

The data Lk
t represents the available capacity of resource k during period t.

The data αik and βik represent the amount of capacity of resource k consumed
respectively per unit of item i produced, and for a setup of item i. The coefficient
βik is often called the setup time of item i on resource k, and represents the
time spent to prepare the resource k just before the production of a lot of item
i. Together with αik, it may also be used to represent some economies of scale
in the productivity factor of item i on resource k.

The natural formulation of this multi item capacitated lot-sizing model, or
basic MPS model, can be written as follows.

min
∑

i

∑

t

{pi
tx

i
t + f i

t yi
t + hi

ts
i
t} (6)

si
t−1 + xi

t = di
t + si

t for all i, t (7)

xi
t ≤Myi

t for all i, t (8)
∑

i

αikxi
t +

∑

i

βikyi
t ≤ Lk

t for all t, k (9)

xi
t, s

i
t ≥ 0, yi

t ∈ {0, 1} for all i, t (10)

where constraints (6)-(8) and (10) are the same as for the ULS model, and con-
straint (9) expresses the capacity restriction on each resource k in each period t.

Material Requirements Planning Model. As a last example model, we
describe the multi-item multi-level capacitated lot-sizing model, that can be
seen as the integration of the previous MPS model for finished products, and
the ULS models for all intermediate products ans raw materials, into a single
monolithic model. The purpose of this model is to optimize simultaneously the
production and purchase of all items –from raw materials to finished products–,
in order to satisfy for each item the external or independent demand coming from
customers and the internal or dependent demand coming from the production
of other items, over a short term horizon.

The dependency between items is modelled through the definition of
the product structure, also called the bill of materials (BOM). The product
structures are usually classified into Series, Assembly or General structures, see
Figure 4.

The indices, variables and data are the same as before, except that, for sim-
plicity, we also use the index j = 1, · · · , I to indentify items. For item i, we use
the additional notation S(i) to represent the set of successor items of i, i.e. the
items consuming directly some amount of item i when they are produced. Note
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Fig. 4. Types of product structures in multi-level models

that for series and assembly structures, these sets S(i) are singleton for all items
i, and for a finished product i, we always have S(i) = ∅. And for j ∈ S(i), we
denote by rij the amount of item i required to make one unit of item j. These rij

values are indicated along the edges (i, j) in Figure 4. This parameter r is used
to identify the dependent demand, whereas di

t corresponds to the independent
demand. For each item i, we denote by γi the lead time to produce or deliver
any lot of i. More precisely, xi

t represents the size of a production or purchase
order of item i launched in period t, and delivered in period t + γi.

The natural formulation for the general product structure capacitated multi-
level lot-sizing model, or the monolithic MRP model, is

min
∑

i

∑

t

{pi
tx

i
t + f i

t yi
t + hi

ts
i
t} (11)

si
t−1 + xi

t−γi = [di
t +

∑

j∈S(i)

rijxj
t ] + si

t for all i, t (12)

xi
t ≤Myi

t for all i, t (13)
∑

i

αikxi
t +

∑

i

βikyi
t ≤ Lk

t for all t, k (14)

xi
t, si

t ≥ 0, yi
t ∈ {0, 1} for all i, t (15)

where the only difference with respect to the previous MPS model resides in the
form of the flow conservation constraint (12). For each item i in each period t, the
amount delivered from production or vendors is xi

t−γi ordered in period t− γi,
and the demand to be satisfied is the sum the independent demand di

t and
the dependent demand

∑
j∈S(i) rijxj

t implied by the production of immediate
successors j ∈ S(i).
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Because of the multi-level structure, the presence of single item ULS models
as submodels is less obvious, but we will show in Section 5.1 how to reformulate
this model in the form of single item ULS models linked by capacity and product
structure restrictions.

2.3 Optimization Methods

We are interested in this lecture in the optimization approaches used to solve
production planning problems. This means that we want either to find provably
optimal solutions, or to find near-optimal solutions with a performance guar-
antee, expressed usually in terms of a percentage of deviation of the objective
value from the optimal value.

As we have seen in the examples from Section 2.2, many or most multi item
production planning problems can be modelled as the following mixed integer
programming (MIP) model

MIP = min
∑

i

∑

t

{pi
tx

i
t + hi

ts
i
t + f i

t yi
t} (16)

(xi, si, yi) ∈W i for all i (17)
(xi, si, yi)i=1,···,I ∈ P (18)

(19)

where the index t is used to represent time periods, the index i is used to represent
the different items, W i represents the set of feasible solutions (i.e. lot sizes, setups
and inventory levels) to the item i lot-sizing problem – like ULS, or some of its
variants studied in Section 3.5–, and P represents the set of solutions satisfying
a set of coupling linear constraints – like the capacity constraints (9) in Section
2.2, among others–.

Most optimization methods are based on easy to solve relaxations of the
initial problem, either to prove optimality, or to provide a performance guarantee
of some near-optimal solution. For example, the above problem can be solved by
some standard MIP software using a branch and bound approach based on the
following linear relaxation

LR = min
∑

i

∑

t

{pi
tx

i
t + hi

ts
i
t + f i

t yi
t} (20)

(xi, si, yi) ∈W i
LR for all i (21)

(xi, si, yi)i=1,···,I ∈ P (22)
(23)

where W i
LR represents the linear relaxation of the set W i obtained by relaxing

the constraints yi
t ∈ {0, 1} into 0 ≤ yi

t ≤ 1, for all i, t.
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Unfortunately, this direct MIP approach can only be used for the solution of
small size problems. In order to solve or to find good solutions for more realistic
or real size problems, one has to work with better or tighter relaxations. Because
of the structure of the intial problem, most efficient solution approaches are based
on the following relaxation

LB = min
∑

i

∑

t

{pi
tx

i
t + hi

ts
i
t + f i

t yi
t} (24)

(xi, si, yi) ∈ conv(W i) for all i (25)
(xi, si, yi)i=1,···,I ∈ P (26)

(27)

where conv(W i) represents the convex hull of the solutions of W i.

This bound LB is never worse, and typically much tighter than the bound
LR, and is precisely the relaxation bound exploited in many different methods.

– Lagrangean relaxation methods and Dantzig-Wolfe or column generation
methods give rise to schemes where the bound LB is iteratively computed by
relaxing or eliminating the coupling constraints (26), and solving separately
for each item i the resulting single item subproblems. These subproblems are
optimization problems defined over the sets W i. See, for instance, [1], [2],
[10], [17], [66], [67], [68] for Lagrangean relaxation approaches, and [30], [69]
for column generation approaches. See also Lemarechal [−→ Lemaréchal] for
a general presentation of Lagrangean relaxation.

– If a compact (small size) linear description of conv(W i) is available for each
item i, then by adding the coupling constraints one gets a formulation whose
linear relaxation gives the bound LB. Then a direct branch and bound ap-
proach can be used with this formulation. See, for instance, [19], [54] and
[81].

– If a linear but non compact description of conv(W i) is available for each
item i, using the corresponding formulation directly to compute LB takes
too much time. Then the classical approach is to add (some of) the con-
straints defining conv(W i) in the course of optimization, instead of a priori,
by solving a so-called separation problem over the set conv(W i). This gives
branch and cut type methods. See, for instance, [7], [12] and [55].

Therefore, in order to design optimization methods for solving complex multi
item production planning problems, one has to design algorithms to solve the
single item subproblem, or one has to find a compact complete linear description
for the subproblem, or one has to find a complete linear description with an
efficient separation algorithm for the subproblem.
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3 The CORE Subproblem: Single Item Uncapacitated
Lot-Sizing

First, we study in detail in this Section the uncapacitated lot-sizing problem
(ULS) already introduced in Section 2.2. Next, we will give the main optimization
and reformulation results known for the main variants of this single item problem.
A number of formulations and the general structure of this Section are imported
from the more technical paper by Pochet and Wolsey [58], and from Chapter 13
of Wolsey [83].

3.1 Basic Formulation and Motivation

For the ease of reading, we have tried to separate as much as possible the previous
modelling Section from this more technical Section. Therefore, we recall here the
basic formulation of the ULS problem.

min
n∑

t=1

(ptxt + ftyt + htst) (28)

st−1 + xt = dt + st for all t (29)
s0 = sn = 0 (30)

xt ≤ dtnyt for all t (31)
xt, st ≥ 0, yt ∈ {0, 1} for all t (32)

where the large upper bound on xt in constraint (31) has been replaced by its
true upper bound dtn equal to the sum of the demands from period t up to end
of the horizon. In general, we define dkl by dkl =

∑l
t=k dt for all k ≤ l.

The set of feasible solutions to (29)-(32) is called XULS .

The first motivation to study this specific ULS problem is that ULS is solved
repeatedly in MRP systems for each component, backward in the product struc-
ture from end products to raw materials. This approach, to define the production
plans using a sequential item by item and uncapacitated model, has important
shortcomings. By solving the capacity problems only after the solution of ULS
for all items, and by neglecting the multi-level product structure, the production
plans obtained are suboptimal in terms of cost and flexibility. The extension to
capacitated models and multi-level models are discussed in Sections 4 and 5,
respectively.

The other motivation to study ULS comes from the fact that it is the most
common subproblem arising in complex multi-item production planning prob-
lems, and we have already seen in Section 2.3 the central role of single item
subproblems in designing decomposition or branch and cut solution approaches
for multi item problems.
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3.2 Dynamic Programming Algorithm

The first natural question to ask in studying a subproblem is the following.

Question 1: Is optimization over XULS polynomially solvable ?

The answer is yes, and comes from a well known decomposition property of
optimal solutions (see, for example, Zangwill [84]). This property means that
there always exists an optimal solution where production only occurs in a period
t when the entering stock st−1 is zero.

Theorem 1 There exists an optimal solution to problem ULS (28)-(32) where
st−1xt = 0 for all t

Proof. Production may only occur in periods t with yt = 1. For any selection
of such production periods, the problem reduces to a minimum cost flow prob-
lem through the network shown in Figure 3. In any extreme solution, the arcs
with positive flow form an acyclic subgraph and any acyclic subgraph satisfies
st−1xt = 0 for all t.

There are a number of algorithms based on this decomposition property. The
seminal paper of Wagner and Whitin [78] describes an O(n2) dynamic program-
ming algorithm solving ULS. More efficient implementations of this algorithm
running in O(n log n) have been proposed by Federgrun, Tsur [20], Wagelmans,
van Hoesel, Kolen [77], and Aggarwal, Park [3].

We describe here a simple forward dynamic program with a trivial imple-
mentation in O(n2). For simplicity of notation, we eliminate first the stock cost
coefficients from the objective function using the flow balance constraints (29).
That is, we replace htst by ht[

∑t
k=1 xk − d1,t] in the objective (28), for all t

(Recall that d1,t =
∑t

k=1 dk). Observe also that if ft < 0 for some t in the objec-
tive (28), then yt = 1 in all optimal solutions to (28)-(32). Therefore, problem
ULS can be solved using the following objective function.

min
n∑

t=1

(ctxt + f+
t yt) (33)

with ct = pt+
∑n

i=t hi and f+ = max{f, 0}. In other words, to obtain the optimal
solution to ULS ((28)-(32)) is suffices to add

∑n
t=1 f−

t , with f− = min{f, 0}, to
the optimal solution of the transformed problem (33), (29)-(32). From now on,
and unless otherwise mentioned, we will work with this transformed objective
function.

Now, let H(k) be the cost of the minimum cost solution for problem ULS
restricted to periods 1 up to k. From Theorem 1, there exists a minimum cost
solution of value H(k) such that, if period t ≤ k is the last production period
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before period k, then xt = dtk, xl = 0 for l = t + 1, · · · , k, and the cost of the
solution for periods 1 to t − 1 must be H(t − 1). This holds by the optimality
principle, and the fact that st−1 = 0 when xt > 0. This allows us to define the
following recursion to compute H(k).

H(k) = min
1≤t≤k

{H(t− 1) + f+
t + ct dtk} (34)

Starting from H(0) = 0, and computing H(k) using (34) for k = 1, · · · , n
leads to the value

H(n) +
n∑

t=1

f−
t (35)

of an optimal solution to ULS. It is easy to check that a direct implementation
of this recursion leads to an O(n2) algorithm for ULS.

3.3 Extended Reformulations

Given the equivalence between optimization and separation (see Grotschel, Lo-
vasz and Schrijver [25]), and given the fact that ULS is polynomially solvable
and appears as a subproblem in many complex multi-item lotsizing problems,
the next question to ask in order to solve these problems by branch and bound
is now.

Question 2: Is there a compact linear description for ULS ?

The answer is again yes for such a simple lot-sizing problem, and we describe
three of the popular extended reformulations for ULS.

Facility Location. The first reformulation takes the form of a simple facility
location model, defined for facilities and customers located on a line, and intro-
duced by Krarup, Bilde [34]. It consists in locating facilities ( yt = 1 if a facility
is located at location t) to serve customer demands on a one way road ( dt is the
demand to meet at location t) and minimize installation costs (ft at location t),
unit production costs (pt at location t) and unit transportation costs (ht from
location t to location t + 1).

If we define the variable wst as the fraction of the demand dt served from a
production in period s (i.e. a facility located in s), for all 1 ≤ s ≤ t ≤ n, and ys

as the usual 0/1 setup variable for period s = 1, · · · , n, then, by analogy to the
location model, ULS can be reformulated as
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(FL) min
n∑

t=1

ftyt +
n∑

s=1

n∑

t=s

csdtwst (36)

t∑

s=1

wst = 1 for all t (37)

wst ≤ ys for all 1 ≤ s ≤ t ≤ n (38)
wst, yt ≥ 0 for all 1 ≤ s ≤ t ≤ n (39)

yt ≤ 1 for all t (40)
yt integer for all t (41)

where constraint (37) expresses the demand satisfaction in period t from pro-
ductions in periods s ≤ t, constraint (38) imposes a setup in period s when there
is production in s to satisfy some demand in period t ≥ s, constraints (39)-(41)
impose the nonnegativity and binary restrictions on the variables, the objective
function (36) expresses the cost of the production plan in the form (33).

Formulation (36)-(41) is a valid reformulation for ULS, but due to the par-
ticular structure of the objective function, we have the following stronger result
from Krarup, Bilde [34] (see also Barany, Van Roy and Wolsey [6] for a primal-
dual proof).

Theorem 2 The linear programming relaxation (36)-(40)of FL always has an
optimal solution with y integer, and solves ULS.

Note that the polyhedron (37)-(40) has fractional vertices. However, as there is
always an optimal integral solution to (36)-(40), this linear formulation suffices to
solve ULS. In order to obtain an integral polyhedron corresponding to the convex
hull of solutions to ULS (i.e. a linear formulation with all integral vertices), one
needs to add the constraints wst ≥ ws,t+1 for 1 ≤ s ≤ t < n to (37)-(40).

Multicommodity. A classical way to tighten the formulation of fixed charge
network flow problems is to decompose the flow along each arc of the network as a
function of its destination. This defines a so-called multicommodity formulation
by assigning a different commodity to each destination node, see Rardin and
Choe [60].

We define the variable xit (resp. sit) as the production of commodity t (resp.
inventory of commodity t) in period i. Commodity t corresponds to the demand
delivered in period t. By decomposing the flow by commodity, ULS can be re-
formulated as

(MC) min
n∑

i=1

n∑

t=i

cixit +
n∑

i=1

fiyi (42)

si−1,t + xit = δitdt + sit for 1 ≤ i ≤ t ≤ n (43)
s0t = stt = 0 for 1 ≤ t ≤ n (44)
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xit ≤ dtyi for 1 ≤ i ≤ t ≤ n (45)
sit, xit, yit ≥ 0, yit ≤ 1 for 1 ≤ i ≤ t ≤ n (46)

yit integer for 1 ≤ i ≤ t ≤ n (47)

where the notation δit denotes 1 if i = t, and 0 otherwise. Constraint (43) is the
flow conservation constraint of commodity t in period i ≤ t. Constraints (44)
impose there is no intial and no final inventory (end of period t) of commodity t.
Constraint (45) forces the setup variable yi to be 1 when there is production in
period i, and using the decomposition of the flow the upper bound on xit is dt.
Constraints (46)-(47) impose the nonnegativity and binary restrictions on the
variables and constraint (42) expresses the cost of the production plan.

Formulation (42)-(47) is a valid reformulation for ULS. Using the equations
(43) to eliminate the inventory variables from formulation (MC), and using the
substitution ws,t = xs,t/dt between formulations MC and FL, it is easy to prove
the following result.

Theorem 3 The linear relaxations of MC ((42)-(46)) and FL ((36)-(40)) are
equivalent. Therefore,the linear programming relaxation of MC always has an
optimal solution with y integer, and solves ULS.

Shortest Path. The last reformulation technique that we illustrate here is due
to Martin [44], and first applied to lot-sizing problems by Eppen and Martin
[19]. It can be used to transform the dynamic programming algorithm for ULS
into a pair of primal-dual linear formulations.

The dynamic programming algorithm (34) constructs a least cost succes-
sion of so-called (disjoint) regeneration intervals [t, k], with t ≤ k, covering the
planning horizon from period 1 to period n. Each interval [t, k] represents the
satisfaction of the demands in periods t up to k by the production of dtk in
period t. This is illustrated in Figure 5 with n = 7, where the entire production
plan consists in the succession of 3 regeneration intervals: [1, 2], [3, 6], [7, 7].

Fig. 5. An extreme solution as a succession of regeneration intervals

Using as variables H(k), for k = 0, · · · , n, the following linear program com-
putes the optimal value H(n) +

∑n
t=1 f−

t of the dynamic program (34) solving
ULS.
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max H(n)−H(0) +
n∑

t=1

f−
t (48)

H(k) ≤ H(t− 1) + f+
t + ct dtk for all 1 ≤ t ≤ k ≤ n (49)
H(0) = 0 (50)

This claim is easy to prove by observing that the constraints (49) are equivalent
to H(k) ≤ min1≤t≤k{H(t−1)+f+

t +ct dtk}, for all k. The maximization direction
in the objective function (48) suffices to guarantee that the values H(k), for all k,
computed in the dynamic program (34) define an optimal solution to (48)-(50).

Associating the dual variable φt,k to each constraint in (49), the dual of
(48)-(50) can be written as the minimum cost network flow problem

min
n∑

t=1

n∑

k=t

[ctdtk + f+
t ]φtk +

n∑

t=1

f−
t (51)

n∑

t=1

φtn = 1 (52)

t∑

i=1

φit −
n∑

l=t+1

φt+1,l = 0 for 1 ≤ t ≤ n− 1 (53)

−
n∑

l=1

φ1l = −1 (54)

φtk ≥ 0 for 1 ≤ t ≤ k ≤ n (55)

where the constraints (52)-(54) correspond to the flow conservation constraints
of the network flow problem, with one flow constraint for each time period, and
one unit of flow sent from the single source node (52) to the single sink node
(54). Therefore, the linear program (51)-(55) defines a shortest path problem
from source to sink, and it has 0-1 extreme points. It is easy to see that this
formulation models the possible sequences of regeneration intervals, with φt,k = 1
if the regeneration interval [t, k] is part of the solution at cost [ctdtk + f+

t ]. This
is illustrated in Figure 6 for the case n = 3.

Fig. 6. Shortest Path Formulation of ULS (n = 3)

A final reformulation step can be used to obtain an equivalent formulation
where the setup decisions are made explicit.
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(SP) min
n∑

t=1

n∑

k=t

ctdtkφtk +
n∑

t=1

ftyt (56)

n∑

t=1

φtn = 1 (57)

t∑

i=1

φit −
n∑

l=t+1

φt+1,l = 0 for 1 ≤ t ≤ n− 1 (58)

−
n∑

l=1

φ1l = −1 (59)

n∑

k=t

φtk ≤ yt for all t (60)

φtk, yt ≥ 0, yt ≤ 1 for 1 ≤ t ≤ k ≤ n (61)

In order to obtain this formulation, we have first replaced the objective term∑n
k=t[f

+
t ]φtk by [f+

t ]yt and added the setup defining equalities
∑n

k=t φtk = yt,
for all t. Next we have replaced

∑n
t=1 f+

t yt +
∑n

t=1 f−
t by

∑n
t=1[f

+
t + f−

t ]yt =∑n
t=1 ftyt, and relaxed

∑n
k=t φtk = yt into

∑n
k=t φtk ≤ yt to be able to force

yt = 1 when ft < 0 without perturbing the flow constraints.

The above discussion has shown the following.

Theorem 4 The linear program SP ((56)-(61)) always has an optimal solution
with y integer, and solves ULS.

Note that here the polyhedron (57)-(61) has no fractional vertices. To relate
this shortest path formulation to the other formulations, one can show that
formulation (57)-(61) is equivalent to the facility location formulation (37)-(40),
augmented with wst ≥ ws,t+1 for 1 ≤ s ≤ t < n, using the substitution φtk =
wtk − wt,k+1 for 1 ≤ t ≤ k ≤ n.

3.4 Complete Linear Description in the Initial Space

We have described in Section 3.3 several linear formulations for the ULS problem
with n periods, but they involve O(n2) variables and O(n2) or O(n) constraints.

Although these formulations are as tight as possible, to be able to solve large
size multi item production planning problems – with many items and many
periods –, we need to reduce the size of the formulation used for the single item
subproblems. One way to achieve this is to look for a complete linear description
of XULS in the initial variable space with only O(n) variables. In that case, even
if this complete linear description needs an exponential number of constraints,
we do not need to add them all (a priori) to solve a particular instance. If we
add the constraints using a separation algorithm, then at most O(n) variables
and constraints are needed to describe any particular extreme point of XULS .
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This is typically what happens when branch and cut is used instead of branch
and bound.

In order to identify a complete linear description of conv(XULS) in the initial
space of variables, we first need to answer to the following question.

Question 3: How to find valid inequalities for the set XULS?

To answer to that question, we describe the typical way a researcher could think
of in order to identify classes of valid inequalities.

One approach is to find numerically the complete description of small in-
stances, and to generalize the results to classes of valid inequalities for arbitrary
data and problem dimension.

Another approach is to solve the LP relaxations of some instances, and to
find valid inequalities cutting off the non-integral optimal solutions so obtained,
and then to generalize the results to classes of valid inequalities for arbitrary
data and problem dimension. This approach gives also some intuition for the
separation problem.

The example and the procedure used to find valid inequalities are taken from
Wolsey [83]. Consider the fractional solution pictured in Figure 7 and obtained
by solving the linear programming relaxation of the natural formulation (29)-
(32) of some specific instance of ULS.

Fig. 7. A fractional solution(n = 6)

Observation: As in the dynamic program, the solution decomposes into inter-
vals of periods between successive points with st = 0. Intervals in which all the
y variables are integral, like interval [5, 6] in Figure 7, cannot be cut off because
they correspond to integer (partial) solutions in conv(XULS). Therefore, we look
at intervals in which the corresponding y variables are fractional, like interval
[2, 2] in Figure 7, and try to cut-off the corresponding point.

This can be done either by generating valid inequalities using known cutting
planes, or by generating new and specialized valid inequalities for the problem
at hand. We illustrate these two approach types in turn on this very simple
problem and on the fractional interval [2, 2] from Figure 7.
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Valid Inequalities Using Known Cutting Planes. The fractional interval
[2, 2] from Figure 7 corresponds to a fractional solution of the single node or
single period flow model defined by

{(x2, y2, s1, s2) ∈ R1
+ ×B1 ×R2

+ : s1 + x2 = d2 + s2, x2 ≤ d2,ny2} (62)

where d2,n = 28 and d2 = 7 in our toy example.

The well known flow cover inequalities have been defined for such single node
flow models, see Padberg, Van Roy and Wolsey [50]. Let the cover be C = {x2},
with excess capacity λ = d2,n − d2. The resulting flow cover inequality is

x2 ≤ d2 − (d2,n − λ)(1− y2) + s2 , or equivalently (63)
x2 ≤ d2 y2 + s2. (64)

which gives x2 ≤ 7 y2 + s2 in our example.

This inequality is violated by the current fractional point from Figure 7, and
it can be easily generalized to

xt ≤ dtyt + st forall t (65)

for arbitrary demand data and time period.

New Valid Inequalities. Consider again the fractional interval [2, 2] from
Figure 7. In any feasible solution, if there is no production in period 2 (which
surely occurs if y2 = 0), then the demand d2 for period 2 must be produced
earlier and must be contained in the entering stock s1.

Therefore, a logical implication is y2 = 0 implies s1 ≥ d2. This implication
can be converted into the valid linear inequality s1 ≥ d2(1 − y2), which can be
interpreted as if y2 = 0 then s1 ≥ d2, and if y2 = 1 then s1 ≥ 0.

This inequality is violated by the current fractional point from Figure 7, and
can be easily generalized to

st−1 ≥ dt(1− yt) forall t (66)

for arbitrary demand data and time period.
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Reoptimization and Generalization. After some violated valid inequalities
have been identified, they can be added to the initial formulation, and the re-
sulting tighter linear formulation solved.

Using the flow balance equality, st−1 + xt = dt + st , one observes that
the 2 classes of valid inequalities found (65) and (66) are equivalent. We add
these inequalities for t = 2, 3, 4 to the formulation, reoptimize, and get the
new non-integral solution pictured in Figure 8. Again, to find new violated valid
inequalities, it suffices to look at the solution for periods 1 up to 3 because the
partial solution for periods 4 to 6 is integral.

Fig. 8. A fractional solution after some cuts (n = 6)

By the same type of logical arguments, one can derive the valid inequality
s1 ≥ d2(1−y2) +d3(1−y2−y3), which says that s1 must carry over d2 if y2 = 0
and must also carry over d3 if both y2 = 0 and y3 = 0.

This inequality is violated by the current fractional point from Figure 8, and
it can be generalized to

st−1 ≥
l∑

k=t

dk(1− yt − · · · − yk) for 2 ≤ t ≤ l ≤ n (67)

Complete Linear Description. Once classes of valid inequalities have been
identified, the next natural questions to ask are, in sequence.

Question 4: Are the valid inequalities (67) facet defining for conv(XULS)?
Question 5: Do we have a complete linear description of conv(XULS)?

We will not describe here the various techniques that can be used to prove that
some valid inequalites are facet defining, and that some valid inequalities suffice
to describe the convex hull of a problem. For a general presentation of these
topics, we refer the reader to Nemhauser and Wolsey [47]. We will rather state
the main results for the ULS problem, with adequate references for their proofs.

Using the flow balance constraints to eliminate the stock variables (i.e. st =
[
∑t

k=1 xk − d1,t]), the class of valid inequalities (67) is rewritten as
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t−1∑

k=1

xk +
l∑

k=t

dk,l yk ≥ d1,l for 2 ≤ t ≤ l ≤ n (68)

These inequalities (68) do not suffice to describe conv(XULS), but they suffice
to solve most practical instances without any branching, i.e. the solution of the
linear relaxation of (28)-(32), augmented with the inequalities (68), is almost
always integral. We will see later why, and in which sense, this is the case (see
Section 3.5). To obtain a linear description of conv(XULS), the inequalities (68)
have to be further generalized, as shown in the following Theorem.

Theorem 5 Assuming dt > 0 for all t, conv(XULS) is described by
∑

i∈L\S

xi +
∑

i∈S

dilyi ≥ d1l for 1 ≤ l ≤ n, S ⊆ L = {1, · · · , l} (69)

y1 = 1 (70)
n∑

i=1

xi = d1n (71)

xi ≥ 0, 0 ≤ yi ≤ 1 for all i (72)

Barany, Van Roy, Wolsey [6] give a primal-dual proof of Theorem 5, Pochet
and Wolsey [58] give a direct proof using a technique due to Lovasz [40].

Separation. We have obtained a complete linear programming formulation
in the original variables (x, y) that solves ULS. Unfortunately this formulation
contains an exponential number of so-called (l, S) inequalities (69). In a branch
and cut or cutting plane approach, instead of adding all these inequalities a priori
to the formulation, they are added in the course of optimization when they are
needed. We then need to solve the following separation problem.

We define XULS
LR as the linear relaxation of the natural formulation (29)-(32)

of ULS.

Separation Given (x∗, y∗) ∈ XULS
LR :

– Either we find an (l, S) inequality violated by (x∗, y∗),
– or we prove that all (l, S) inequalities are satisfied by (x∗, y∗).

To find the most violated (l, S) inequality for fixed l ∈ {1, · · · , n}, it suffices
to test whether or not

∑l
i=1 min(x∗

i , dily
∗
i ) < d1l.

– If this holds, then the (l, S∗) inequality with S∗ = {i ∈ L : dily
∗
i ≤ x∗

i } is
the most violated inequality for the given value of l.

– Otherwise, there is no violated (l, S) inequality for the given value of l.

By enumerating all possible values of l, we obtain an O(n2) separation algo-
rithm for the (l, S) inequalities.
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3.5 Single Item Variants of Uncapacitated Lot-Sizing

Using the same approach as for ULS, we describe here very briefly several ULS
variants that have been studied in the literature, and for which complexity and
reformulation results are available.

Start-up Costs. We consider first the single item lot-sizing problem with start-
up costs. This model is identical to ULS, with an additional startup cost incurred
in the first period of a production sequence or batch. More precisely, the startup
cost is incurred in period t, if there is a setup in period t, but not in period t−1.
To introduce this startup cost model into the formulation, we define additional
binary variables zt taking the value 1 when there is a startup in period t. This
leads to the formulation

min
∑

t

{ptxt + ftyt + htst + gtzt} (73)

st−1 + xt = dt + st for all t (74)
s0 = sn = 0 (75)

xt ≤Myt for all t (76)
yt ≥ zt ≥ yt − yt−1 for all t (77)

xt, st ≥ 0, yt, zt ∈ {0, 1} for all t (78)

where constraints (77) impose a startup in period t if there is a setup in t, but
not in t − 1, and also force a setup in period t if there is a startup in period t.
We define ULSS as the optimization problem (73)-(78).

Magnanti and Vachani [42] show that the decomposition property of optimal
solutions given in Theorem 1 still holds. This allows one to define a dynamic
programming algorithm for solving ULSS, as in van Hoesel [71], with a direct
implementation running in O(n2). Again, more effcient implementations run in
O(n log n), see van Hoesel [71] and Aggarwal, Park [3].

The techniques used to generate compact linear formulations for ULS in
Section 3.3 can be extended to ULSS. In particular, Wolsey [81] provides a facility
location type formulation and van Hoesel, Wagelmans and Wolsey [72] provide
a proof that its linear relaxation solves ULSS, Rardin and Wolsey [61] prove
that the muticommodity linear formulation solves ULSS, and the technique of
Martin [44] can be used to generate a shortest path linear formulation from the
dynamic program solving ULSS. All these compact linear formulations involve
O(n2) variables and constraints.

A class of valid inequalities can easily be obtained starting from the (l, S)
inequalities (69) of ULS. For example, starting with the (l, S) inequality s1 ≥
d2(1 − y2) + d3(1 − y2 − y3) + d4(1 − y2 − y3 − y4), which is also valid in
the presence of startup costs, one can derive the stronger valid inequality s1 ≥



Mathematical Programming Models 83

d2(1 − y2) + d3(1 − y2 − z3) + d4(1 − y2 − z3 − z4). This inequality says that
s1 must carry over d2 if y2 = 0, must also carry over d3 if y2 = z3 = 0 (which
implies that y3 = 0, and thus there is no production in periods 2 and 3), and
must carry over d4 when y2 = z3 = z4 = 0 (which implies y3 = y4 = 0).

This inequality can be generalized to

st−1 ≥ dt(1− yt)

+
l∑

k=t+1

dk(1− yt − zt+1 − · · · − zk) for 2 ≤ t < l ≤ n. (79)

However, as for ULS, the inequalities (79) do not suffice to obtain a linear
description of the convex hull of solutions, but they suffice to solve most practical
instances by linear programming, without any branching (see Section 3.5). A
further generalization of inequalities (79) proposed by van Hoesel, Wagelmans
and Wolsey [72] is proved to define the convex hull of feasible solutions to ULSS
in the initial variable space. This formulation contains an exponential number
of constraints that can be separated in time of O(n3).

Constant Capacity. We consider now the single item constant capacity lot-
sizing problem (CCLS) defined by (80)-(84). This constant capacity model is
quite realistic and occurs often in practice when the production, inventory and
demand are expressed in equivalent-time units.

min
∑

t

{ptxt + ftyt + htst} (80)

st−1 + xt = dt + st for all t (81)
s0 = sn = 0 (82)

xt ≤ Cyt for all t (83)
xt, st ≥ 0, yt ∈ {0, 1} for all t (84)

The formulation of CCLS is identical to the natural formulation of ULS,
except that constraint (83) expresses now a limited capacity when C < d1n. The
capacity limit C is constant over time.

Florian and Klein [23] propose a dynamic programming programming algo-
rithm for CCLS running in O(n4) time, and van Hoesel, Wagelmans [73] reduce
this time to O(n3). The technique of Martin [44] can be used to generate a short-
est path linear formulation from the dynamic program solving CCLS with O(n4)
variables and constraints. Pochet and Wolsey [56] give a linear programming for-
mulation with O(n3) variables and constraints solving CCLS that corresponds
to a shortest path sequence of regeneration intervals, but cannot be derived from
the dynamic program solving CCLS.
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Pochet and Wolsey [56] describe also a new class of valid inequalities for
CCLS. This class was generalized to other problems than CCLS, and a new
procedure to obtain these inequalities by mixing the mixed-integer rounding
inequalities of Nemhauser and Wolsey [48] is described in Gunlunk and Pochet
[26]. We illustrate here this class of inequalities with an example. The reader is
referred to the above papers for a formal definition of these inequalities.

Consider the instance of CCLS with C = 10, n = 5 and demand d =
(1, 7, 4, 2, 3) represented in Figure 9. First, by summing the flow conservation
constraints (81) from period 2 to some period l ≥ 2, by replacing the production
variables xt by their variable upper bounds Cyt, one gets the following starting
or base (valid but redundant) inequalities

s1 + 10y2 ≥ 7, (85)
s1 + 10y2 + 10y3 ≥ 11, (86)

s1 + 10y2 + 10y3 + 10y4 + 10y5 ≥ 16. (87)

Fig. 9. A CCLS example(n = 5)

Then, standard mixed-integer rounding (MIR) inequalities [←− Martin] for a
general description of MIR inequalities) can be constructed from these base
inequalities. This gives

s1 ≥ 7(1− y2), (88)
s1 ≥ 1(2− y2 − y3), (89)
s1 ≥ 6(2− y2 − y3 − y4 − y5). (90)

Finally, the MIR inequalities can be mixed by taking differences of terms at the
right hand side. This gives, for example, the new inequalities

s1 ≥ 1(2− y2 − y3) + (6− 1)(2− y2 − y3 − y4 − y5) + (7− 6)(1− y2), (91)
s1 ≥ 1(2− y2 − y3) + (7− 1)(1− y2), (92)
s1 ≥ 6(2− y2 − y3 − y4 − y5) + (7− 6)(1− y2). (93)
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For example, the second of these inequalities can be interpreted as follows. As
d23 = 11, if there is only one production period in periods 2 and 3 (i.e. y2+y3 = 1,
so a capacity of 10 is available in periods 2 and 3), then s1 must carry over at
least one unit in order to satisfy demand in periods 2 and 3. But if, in addition,
y2 = 0, then s1 must carry over the whole demand d2 = 7 (instead of only 1 unit
when y2 = 1 and y3 = 0).

Such mixed MIR inequalities do not suffice to describe the convex hull of
solutions for CCLS by linear inequalites only, but they suffice to solve most
practical instances without branching (see Section 3.5). Examples of facet defin-
ing inequalities that are not of the type (91)-(93) are given in Pochet and Wolsey
[56]. However, in this case, no complete linear description of the convex hull of
solutions is known for CCLS.

Leung, Magnanti and Vachani [37], Pochet [53], Loparic, Marchand and
Wolsey [39] define and test valid inequalities for the case where the capacities
may vary over time.

Backlogging. Another variant of ULS is to allow for backlogging. To model
this situation, we introduce a new variable rt, for each period t, representing
the backlog of demand at the end of period t. So, rt is the demand from periods
{1, · · · , t} that will be delivered late (in some period in {t+1, · · · , n}). A classical
formulation for the uncapacitated lot-sizing problem with backlogging (BLS) is
(94)-(98)

min
∑

t

{ptxt + ftyt + htst + gtrt} (94)

(st−1 − rt−1) + xt = dt + (st − rt) for all t (95)
s0 = r0 = sn = rn = 0 (96)

xt ≤Myt for all t (97)
xt, st, rt ≥ 0, yt ∈ {0, 1} for all t (98)

where the flow conservation constraints (95) are adapted to take into account
these backlogging variables. In each period t, rt represents a flow coming from
period t + 1 to period t (to satisfy artificially some demand in periods at or
before t). Constraints (96) impose that there is no initial and final inventory and
backlog. It is assumed in 94 that each unit of product backlogged at the end of
period t costs gt.

Zangwill [85] describes a dynamic programming programming algorithm for
BLS running in O(n2) time, and Wagelmans, van Hoesel, Kolen [77] obtain an
implementation in O(n log n) time. Pochet and Wolsey [54] provide facility
location, multicommodity and shortest path linear formulations involving O(n2)
variables and constraints.
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Pochet and Wolsey [54] describe a new class of valid inequalities for BLS.
This class, that can also be applied to other problems than BLS, gives a way
to generalize the class of valid inequalities defined in Van Roy and Wolsey [74]
for uncapacitated fixed charge network flow problems. We illustrate this class of
inequalities with a simple example. The reader is referred to the above papers
for a formal definition of these inequalities.

Consider an instance of BLS with n ≥ 5, and represented in Figure 10.
First we define a subset of the inventory and backlog variables, for example
{s1, s3, r2, r4}, and then we find logical conditions under which some demand has
to flow through the selected variables. For example, if y2 = 0 then s1 + r2 ≥ d2,
giving the base valid inequality s1 + r2 ≥ d2(1 − y2). Similarly, one can obtain
the base valid inequalities s1+r4 ≥ d3(1−y2−y3−y4) and s3+r4 ≥ d4(1−y4).
Finally we put all these inequalities together to obtain the valid inequality

s1 + s3 + r2 + r4 ≥ d2(1− y2) (99)
+ d3(1− y2 − y3 − y4) (100)
+ d4(1− y4) (101)

Fig. 10. A BLS example (n ≥ 5)

Again, the inequalities illustrated above do not suffice to obtain a linear
description of the convex hull of solutions to BLS (such a description is unknown
for general objective functions), but they suffice to solve most practical instances
of BLS without branching (see Section 3.5).

Wagner-Whitin Costs. We analyze in this Section the special case of the pre-
viously studied lot-sizing problems where the production, inventory and back-
logging costs satisfy the Wagner-Whitin condition. An instance of ULS, ULSS,
CCLS or BLS is said to have Wagner-Whitin costs if pt + ht ≥ pt+1 and
pt+1+gt ≥ pt, for all t. This means that the unit production, unit inventory and
unit backlogging costs are non speculative in the sense that,

– if a demand dt is satisfied from production in periods t or before, then this
production occurs as late before t as possible (with respect to setup decisions
and capacity available) because producing and stocking in earlier periods
costs more than producing later (pt + ht ≥ pt+1),
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– if a demand dt is satisfied from production in periods t or after, then this
production occurs as early after t as possible (with respect to setup deci-
sions and capacity available) because producing and backlogging from later
periods costs more than producing earlier (pt+1 + gt ≥ pt).

The implication of this non speculative cost condition is that

– the complexity bound for the optimization of the subproblems ULS, ULSS,
CCLS and BLS are reduced,

– new and smaller (in number of variables and constraints) linear reformula-
tions can be derived based on the fact that there always exists stock minimal
and backlog minimal solutions (i.e. each stock and backlog variable is set to
its minimal minimal possible value with respect to setup decisions and ca-
pacity constraints) to these problems,

– fewer constraints are needed in the complete linear description of the convex
hull of feasible solutions in the initial space, and the complexity bounds of
the separation algorithms are reduced.

Federgrun, Tsur [20], Wagelmans, van Hoesel, Kolen [77], and Aggarwal, Park
[3]. Furthermore have shown that the dynamic programs solving ULS and ULSS
can be implemented in O(n) when the cost function satisfies the Wagner-Whitin
assumption.

For the linear reformulation, in the case of ULS, we have seen that inequalities
(68) do not suffice to obtain a linear description of conv(XULS), but they suffice
to solve ULS by linear programming with a Wagner-Whitin objective function.
This means that in this case there always exists an optimal solution with y
integer to the linear relaxation of (28)-(32) augmented by (68). Moreover, this
Wagner-Whitin condition is a very natural assumption that is almost always
satisfied by the objective functions encountered in practice. This is the reason
why it generally suffices to add the inequalities (68) to solve most ULS problems
by LP.

Similarly, there always exists an optimal solution with y integer to the linear
relaxation of problem (73)-(78), plus (79). Therefore, adding inequalities (79)
suffices to solve ULSS by LP. Similar results hold for problems CCLS and BLS.

We summarize in Table 2 the results about the linear reformulations of prob-
lems ULS, ULSS, CCLS and BLS. See Pochet and Wolsey [57] for a detailed
description of the formulations and separation algorithms under the Wagner-
Whitin cost assumption. We indicate in the table the sizes and complexity
bounds for general cost functions, and the size/complexity reduction obtained, if
any, with Wagner-Whitin costs (after the →WW sign). In the table, ?? indicates
that no result is known, to the best of our knowledge. These results are extended
to the uncapacitated lot-sizing problem with backlogging and startup costs in
Agra and Constantino [4].
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Table 2. Size/complexity reductions with Wagner-Whitin costs

Extended Initial space
linear formulation linear formulation

Uncapacitated (ULS)
number of variables O(n2) O(n)
number of constraints O(n2) O(2n) →WW O(n2)
separation complexity O(n2)

Startup costs (ULSS)
number of variables O(n2) O(n)
number of constraints O(n2) O(2n) →WW O(n2)
separation complexity O(n3) →WW O(n2)

Constant capacity (CCLS)
number of variables O(n3) →WW O(n2) O(n)
number of constraints O(n3) →WW O(n2) ?? →WW O(2n)
separation complexity ?? →WW O(n2 log n)
Backlogging (BLS)
number of variables O(n2) →WW O(n) O(n)
number of constraints O(n2) ?? →WW O(2n)
separation complexity ?? →WW O(n3)

Profit Maximization. As a last variant of the ULS problem, we consider the
profit maximization problem PLS formulated as

max
∑

t

πtvt −
∑

t

{ptxt + ftyt + htst} (102)

st−1 + xt = vt + st for all t (103)
s0 = sn = 0 (104)

xt ≤Myt for all t (105)
0 ≤ vt ≤ Ut for all t (106)

xt, st ≥ 0, yt ∈ {0, 1} for all t (107)

where the variable vt, representing the amount sold in period t, replaces the
fixed demand in the flow balance constraint (103), and is bounded from above by
the maximum forecasted market potential Ut in constraint (106). The objective
function (102) represents the profit contribution to be maximized and defined
as the product of sales at a price πt per unit sold in period t, minus production
and inventory costs.

Such a problem arises typically as a subproblem in profit maximization multi
item production planning problems, where there are capacity linking constraints
between the items. For each single item subproblem, the production costs in
each period contain implicitely, or even explicitely when the problem is solved
by decomposition or Lagrangean relaxation, the opportunity cost of the capacity
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used for production. The problem consists in allocating the capacity to the items
in order to maximize overall profit contribution.

Loparic, Pochet and Wolsey [38] analyze the optimization algorithms and
linear formulations for problem PLS with additional lower bounds on stocks to
model required safety stock levels. They show that the problem can be solved in
O(n4) by dynamic programming, they propose linear formulations with O(n2)
variables and constraints, and they provide a complete linear description with
an exponential O(2n) number of constraints of the convex hull of solutions in
the initial variable space. Again the problem can be solved by LP with only
a subset of these constraints – but still exponentially many – when the cost
function satisfies the Wagner-Whitin assumption.

We only illustrate here the type of stock minimal inequalities needed to solve
PLS by LP in the presence of such Wagner-Whitin costs. The inequality

s1 ≥ (v2 − U2y2) + (v4 − U4(y2 + y3 + y4)) (108)

is valid for the convex hull of solutions to (103)-(107) and it is a slight generali-
sation of the inequality

s1 ≥ (d2 − d2y2) + (d4 − d4(y2 + y3 + y4)) (109)

needed to describe conv(XULS). The inequality (108) expresses that if y2 = 0,
then x2 = 0 and s1 must cover the sales level v2, and if y2 = 1 then there is
no restriction on s1 because v2 ≤ U2 can be covered by x2. Therefore, s1 ≥
(v2−U2y2) is valid. Similarly, s1 ≥ v4 when there is no production in periods 2,
3 and 4, that is when y2 + y3 + y4 = 0.

4 Formulations of Capacitated Models

We analyze in this section the main classes of capacitated production planning
models. We first classify the models, and then describe in more details the basic
mathematical programming models and formulations for the two main model
classes, the big buckets and small buckets models.

4.1 Classes of Capacitated Models

The first and important shortcoming of the classical MRP approach in discrete
manufacturing is to decompose the planning procedure in two phases. First the
uncapacitated planning problem is solved, to obtain production or purchase plans
for all items in the product structure. Then the capacity problems (overloads)
created by the production plans are resolved by smoothing the load profiles, i.e.
by shifting some of the production lots forward or backward in time. This lack
of integration between the uncapacitated planning phase and the capacitated
post-optimization phase explains that there is no guarantee to obtain a feasible
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production plan if one exists, and explains why the production plans obtained are
suboptimal in terms of cost. There is thus a need to develop capacitated models
allowing one to obtain feasible and optimized production plans, and providing
the needed flexibility and tools to adapt the production plans to demand and to
market requirements.

There are two main classes of capacitated models that can be distinguished
based on the size, or time length, of the production periods. These model classes
are known as the big buckets and small buckets models, and correspond to quite
different planning environments and problems that we describe now.

Discrete time planning models are models where the planning horizon is
divided into discrete time periods, and where all events – production, sales, . . . –
occuring during a period are aggregated in time as if they occur all at the same
time. All the models that we have studied so far are of this type.

Big buckets planning models are discrete time models with large time pe-
riods where the typical aim is to take global decisions about the resources to
be used and to acquire, and about the assignment of products to facilities or
departments, rather than to plan the production to meet some precise and firm
short term customer orders, or to control the short term output from the shop
floor. Therefore, there is usually no need for a detailed representation of time.
Moreover, and very often, a more detailed time representation would not make
sense because the required detailed information (e.g. detailed sales forecasts)
would not be available on time.

Such models are used for solving tactical medium term resource planning
problems. The size of the time period is usually taken as one week, or one
month, depending on the particular problem, and the planning horizon ranges
from a few weeks to months, up to one year.

Small buckets planning models are discrete time models with small time pe-
riods where the aim is to take detailed decisions about the materials flow in the
shop floor, the sequence of production lots on machines to control short term
output and capacity usage, to verify that technical precedence constraints be-
tween lots can be satisfied. A detailed time representation is needed to represent
accurately these events.

Such models are used for solving operational short term materials planning
problems. The size of the time period is usually taken as one week, or one day,
down to one hour, depending on the particular problem, and the planning horizon
ranges from a few weeks down to one day. In some cases, similar models have to
be used for longer term problems with larger time periods when, for instance,
the detailed sequence of products has a significant impact on the medium term
capacity utilization. This is for example often the case in the process or chemical
industry where change-over times may represent days of production lost.

For simplicity, we will consider that big buckets models are discrete time
models where there is no need to represent the sequence of events inside a period,
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and between the different periods. Small buckets models are models where it is
required to represent the sequence of events from one period to the other.

4.2 Big Buckets Models: Capacitated Lot-Sizing

Basic Big Buckets Multi-item Model. The master production scheduling
model (6)-(10) formulated in Section 2.2, also known as the capacitated multi-
item capacitated lot-sizing problem, is the basic example of big bucket model.
We formulate here the simplified version without setup times, called MICLS,
that has been widely studied in the literature.

min
∑

i

∑

t

{pi
tx

i
t + f i

t yi
t + hi

ts
i
t} (110)

si
t−1 + xi

t = di
t + si

t for all i, t (111)

xi
t ≤ Ci

ty
i
t for all i, t (112)

∑

i

αixi
t ≤ Lt for all t (113)

xi
t, s

i
t ≥ 0, yi

t ∈ {0, 1} for all i, t (114)

where constraint (112) represents a single item capacity constraint and constraint
(113) is the multi-item capacity linking constraint. Note that if Ci

t = Lt/αi, then
constraint (112) is just used to define the setup variable yi

t without imposing
another capacity constraint than the linking constraint (113).

Several optimization approaches have been proposed and tested for problem
MICLS. They are based on the single item uncapacitated ULS subproblems, and
use the optimization and reformulation results surveyed in Section 3. Thizy and
Van Wassenhove [67], Chen and Thizy [10] test and compare several Lagrangean
relaxation schemes, Eppen and Martin [19] solve the problem by branch and
bound using extendend linear formulations for the ULS subproblems, Barany,
Van Roy and Wolsey [7] and Pochet, Wolsey [55] use a cut and branch approach
(cuts are added only before the branch and bound enumeration), Constantino
[13] solve MICLS by a branch and cut approach.

Valid Inequalities Using Known Cutting Planes. As we did in Section 3.4,
we illustrate how to identify classes of valid inequalities for problem MICLS using
known cutting planes. This approach can be used to tighten the formulation and
solve such problems using branch and cut approaches.

The first idea is to use the mixed integer rounding (MIR) inequalities from
Nemhauser and Wolsey [48] [−→Martin]. Marchand and Wolsey [43] show how to
generate MIR inequalities from 0-1 knapsack problems with continuous variables.
To use this idea, it suffices to construct relaxations of MICLS in the form of 0-1
knapsacks with continuous variables.
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We illustrate this approach with an example. First we construct a single item
knapsack relaxation for item i by summing the flow conservation constraints
(111) over periods t = k, · · · , l, replacing si

l by its lower bound 0, and replacing
xi

t by its upper bound min[Ci
t , d

i
tl]y

i
t, for t = k, · · · , l. This gives the following

knapsack relaxation with one continuous variable.

si
k−1 +

l∑

t=k

min[Ci
t , d

i
tl]y

i
t ≥ di

kl (115)

si
k−1 ≥ 0, yi

t ∈ {0, 1} for t = k, · · · , l (116)

where as before we use the notation di
tl =

∑l
j=t di

j .

Suppose now that we have solved the linear relaxation of MICLS and we
want to cut off the fractional solution obtained and illustrated in Figure 11 for
one item i and for periods 2 up to 5.

Fig. 11. A fractional solution for one item in MICLS

The corresponding knapsack relaxation is (where we have dropped the item
i superscript for simplicity)

s1 + 10y2 + 9y3 + 7y4 + 3y5 ≥ 14, (117)

which can be relaxed into (where we consider variable y5 as continuous)

(s1 + 3y5) + 10(y2 + y3 + y4) ≥ 14. (118)

We obtain the classical MIR inequality

s1
4

+
3
4

y5 + y2 + y3 + y4 ≥ 2 (119)

by dividing (118) by 10 and rounding. The inequality (119) is violated by the
fractional point in Figure 11.

Another idea is to use the well known flow cover inequalities that have
been defined for single node flow models in Padberg, Van Roy and Wolsey [50]
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[−→ Martin] for a general description of flow cover inequalities). Again, it suf-
fices to construct single node flow relaxations, and to generate the corresponding
flow cover inequalities.

Consider first the single node flow relaxation defined for a single item i over
several consecutive periods, and obtained by summing the flow conservation
constraints (111) over periods t = k, · · · , l, replacing si

k−1 by its lower bound 0.
This gives the following single node flow model.

l∑

t=k

xi
t ≤ di

kl + si
l (120)

xi
t ≤ min[Ci

t , d
i
tl]y

i
t + si

l for t = k, · · · , l (121)
si

l ≥ 0, xi
t ≥ 0, yi

t ∈ {0, 1} for t = k, · · · , l (122)

where we have changed the variable upper bound constraint in (121) by adding
the flow si

l at the right hand side, allowing us to reduce the coefficient of yi
t.

Again, suppose that we are given the fractional solution illustrated in Figure
11. The corresponding single node flow relaxation is

x2 + x3 + x4 + x5 ≤ 14 (123)
x2 ≤ 10y2 + s5, x3 ≤ 9y3 + s5, x4 ≤ 7y4 + s5, x5 ≤ 3y5 + s5 (124)

By projecting s5 to zero, we obtain the classical flow cover inequality

x2 + x4 ≤ 14 − (10− 3)(1− y2)− (7− 3)(1− y4) (125)

using the cover C = {2, 4} and the excess capacity of the cover λ = 3. We obtain
finally the valid inequality

x2 + x4 ≤ 14 − (10− 3)(1− y2)− (7− 3)(1− y4) + s5 (126)

by adding the flow s5 at the right hand side of the inequality (125) to lift back
the variable s5, i.e. to make it valid even when s5 > 0. The inequality (125) is
violated by the fractional point in Figure 11.

Consider next another single node flow relaxation obtained by taking the
linking capacity constraint (113) for a given period t, and the single item capacity
constraints (113) for all items in the same period t. This gives the following single
node flow relaxation

∑

i

(αixi
t) ≤ Lt (127)

(αixi
t) ≤ (αiCi

t)y
i
t for all i (128)

(αixi
t) ≥ 0, yi

t ∈ {0, 1} for all i (129)
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where the continuous flow variables are the variables (αixi
t) with an indivudual

upper bound of (αiCi
t).

Suppose now that we have solved the linear relaxation of MICLS and we
want to cut off the fractional solution obtained and illustrated in Figure 12 for
all items and for a given single period.

Fig. 12. A fractional solution for one period, 3 items in MICLS

The corresponding single node flow model is (where we have dropped the
time index t for simplicity)

x1 + 2x2 + 3x3 ≤ 20 (130)
x1 ≤ 5y1, 2x2 ≤ 2(4y2), 3x3 ≤ 3(3y3). (131)

We obtain the classical flow cover inequality

x1 + 2x2 + 3x3 ≤ 20 −(5− 2)(1− y1)
−(8− 2)(1− y2)− (9− 2)(1− y3) (132)

using the cover C = {1, 2, 3} and the excess capacity of the cover λ = 2. This
inequality is violated by the fractional point in Figure 12.

Big Buckets Multi-item Model with Setup Times. The classical and
most studied MICLS problem as formulated in (110)-(114) does not contain any
setup time, but setups are only taken into account through a penalty cost in the
objective (110).

Therefore, this setup cost f i
t must contain the opportunity cost of the setup

activity for item i in period t. The opportunity cost is defined as the additional or
marginal cost incurred because of the setup activity. It is very difficult to estimate
a priori because it really depends on problem data, on capacity utilization and
capacity available and productivity in period t. Hence, because of the difficulty
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to estimate the setup cost , the true optimality of the solution to MICLS in not
guaranteed.

Moreover, the setup activity consumes part of the capacity available, and
influences the productivity. Therefore, it is not even guaranteed that the solution
obtained from MICLS is really feasible because the capacity consumed by the
setup activity is neglected.

In order to improve the reliability of the solution from MICLS, both in terms
of feasibility and optimality, it is important to model more accurately the pro-
ductivity, i.e. the capacity used as a function of the production lot sizes. In the
presence of economies of scale in production, a better model is to introduce
directly in the model the capacity used by the setup activity – and not only
implicitely through the setup cost –. The linking capacity constraint in period t
should then be modelled as

∑

i

(αixi
t) +

∑

i

(βiyi
t) ≤ Lt (133)

where βi represents the capacity used by the setup of item i, and is often called
the setup time of item i. We call MICLSS the multi item model MICLS where
the capacity constraint with setup times (133) replaces the original capacity
constraint (113).

Very few optimzation methods have been proposed and tested for MICLSS.
Trigeiro, Thomas, McClain [68] and Diaby, Bahl, Karwan, Zionts [17] test La-
grangean relaxation heuristic approaches – with performance guarantee – based
on the solution of the ULS subproblems and the relaxation of the capacity linking
constraints (133).

To tighten the basic formulation of MICLSS beyond the complete description
of the ULS subproblems, other relaxations or subproblems have to be studied.
Goemans [24] proposes generalized flow cover valid inequalities to tighten the
formulation of the single period t multi item relaxation defined by

∑

i

(αixi
t) +

∑

i

(βiyi
t) ≤ Lt (134)

0 ≤ xi
t ≤Myi

t for all i (135)
yi

t ∈ {0, 1} for all i (136)

Constantino [13] provides a complete linear description of this single period
relaxation when the setup times are constant for all items, i.e. βi = β for all
i. These tightened formulations have been tested on multi-item single-period
subproblems, but no tests of these improved formulations on multi-item problems
with setup times (MICLSS) have been reported on in the literature.
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Another single period relaxation of MICLSS that has been studied tries to
combine the linking capacity constraints and the demand satisfaction for each
item. It is formulated as

∑

i

(αixi
t) +

∑

i

(βiyi
t) ≤ Lt (137)

si
t−1 + xi

t ≥ di
t for all i (138)

0 ≤ xi
t ≤Myi

t for all i (139)
si

t−1 ≥ 0, yi
t ∈ {0, 1} for all i (140)

Miller, Nemhauser and Savelsbergh [46] define cover and reverse cover valid
inequalities for the one period subproblem (137)-(140), and tests their effective-
ness in solving MICLSS instances by branch and cut.

4.3 Small Buckets Models

Small buckets models are used when changing the setup of the machines has a
significant impact on the capacity used and/or on the production costs. Typically
in these models, on each machine, we keep on producing the same item for a
number of periods, and we only incur a setup cost/time when the setup of the
machine is changed from one item to another.

When the capacity used or the cost incurred during the setup modification
do not depend on the sequence of items, but on the fact that the machine setup
is changed, we speak about startup time or startup cost models. When the
cost or time lost during the setup depend on the sequence of products, i.e. on
the products produced before and after the setup modification, we speak about
change over costs and times.

We describe here the basic models, formulations and applications for such
small buckets planning problems with startup costs and times, or change over
costs and times.

Basic Small Buckets Multi-item Model, One Setup per Period. The
natural and classical single machine formulation to represent the setup, startup
and change over decisions in a small buckets planning model allows one to setup
only one item per period. If the setup of the machine is changed from period
t− 1 to period t, this change is supposed to occur at the beginning of period t.
This means that only one item can be produced in any period, the one for which
the machine is setup in the period.

The variable yi
t is used to represent the setup decision, it takes the value 1

when the machine is setup to produce item i during the whole period t, and 0
otherwise.

The variable zi
t is the startup variable and takes the value 1 when the machine

starts producing item i in period t, and was not setup for item i in period t− 1,
and 0 otherwise.
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The variable wij
t is the change over variable and takes the value 1 when the

machine strats producing item j in period t and was setup for item i in period
t− 1, and 0 otherwise.

Independently on the production levels and the demand satisfaction part of
the problem, the natural formulation used to represent these setup, startup and
change over decisions is the following

∑

i

yi
t = 1 for all t (141)

zi
t ≥ yi

t − yi
t−1 for all i, t (142)

wij
t ≥ yi

t−1 + yj
t − 1 for all i, j, t (143)

zi
t, wij

t , yi
t ∈ {0, 1} for all i, j, t (144)

where constraint (141) imposes to setup the machine for exactly one item per
period, constraint (142) forces the startup of item i in period t when yi

t = 1 and
yi

t−1 = 0, constraint (143) forces the change over from item i in period t− 1 to
item j in period t when yi

t−1 = yj
t = 1.

To obtain a complete formulation of the small buckets planning problem,
classical flow conservation constraints are used to model the satisfaction of de-
mand, as well as capacity constraints. In a model with startup time γi to start
producing item i, the production capacity constraints are formulated as

xi
t ≤ U i

t yi
t − γizi

t for all i, t. (145)

In a model with change over time γji for switching from j to i, the production
capacity constraint are formulated as

xi
t ≤ U i

t yi
t −

∑

j:j �=i

γjiwji
t for all i, t. (146)

Several optimization approaches have been proposed in the literature for
solving small buckets constant capacity over time (but different for each item)
multi item lot sizing problems. Karmarkar and Scharge [31] propose, and test
on small instances, a Lagrangean relaxation and branch and bound approach for
the model with startup costs. Wolsey [81] solve problems with change over costs
by branch and bound using the extended unit flow reformulation (see below) to
model the setup decisions. Constantino [12] solve larger instances, with up to
5 items and 36 periods, of problems with startup costs using a branch and cut
approach. Vanderbeck [69] solve problems with startup times using a column
generation approach combined with cut generation.



98 Y. Pochet

Unit Flow Reformulation. The formulation (141)-(144) used to model the
steup decisions can be tightened and reformulated as a network flow problem
consisting of sending one unit of flow from period 1 to period n. The flow mod-
els the status of the machine through the time priods. This formulation is the
tightest possible to represent the machine status decisions in the sense that the
constraint matrix is totally unimodular. This formulation proposed in Karmarkar
and Schrage [31] has been tested in Wolsey [81]. It is defined by

∑

i

yi
0 = 1 (147)

∑

j

wij
t = yi

t−1 for all i, t (148)

zj
t + wjj

t = yj
t for all j, t (149)

∑

i:i �=j

wij
t − zj

t = 0 for all j, t (150)

zj
t , wjj

t , yj
t ∈ {0, 1} for all i, j, t (151)

where constraint (147) defines the initial (period 0) status of the machine –
usually these variables have a fixed value corresponding to the current status of
the machine–. Constraint (148) stipulates that if the machine was setup for i in
period t− 1, then it must switch from i to some j (possibly equal to i) in period
t. Constraint (149) expresses that if the machine is setup for j in period t, then
either it was already setup for j in period t− 1, or it starts producing item j in
period t. Constraint (150) says that if the machine starts producing item j in
period t, it must switch from a different product in period t− 1.

Alternative formulations for modelling changeovers in production planning
and scheduling problems are surveyed in Wolsey [82].

Models with Two Setups per Period. Haase [27] has proposed a more
flexible interpretation of the setup decisions. Suppose that yi

t = 1 if the machine
is setup for item i at the end of period t, and 0 otherwise. The natural formulation
(141)-(144), or the unit flow formulation (147)-(151), can still be used to model
the sequence of admissible setup decisions. But with this interpretation of the
setup variables, it is now possible to produce two items in each period t. These
are the items for which the machine is setup at the end of period t− 1 and t. If
any, the setup modification occurs now during period t between the production
lots of the two products. So we only need to reformulate the capacity constraints.
For instance, in the case of startup times, this gives

xi
t ≤ U i

t (y
i
t−1 + yi

t − wii
t ) − γizi

t for all i, t (152)
∑

i

(αixi
t) +

∑

i

(γizi
t) ≤ Lt (153)
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Kimms [32] solves multi item small buckets problems with two setups per
period using a Lagrangean relaxtion approach.

Sequencing Models or m-Setups per Period. As a final extension of the
small buckets models, we can mention the pure batch sequencing problem, or
problems with many setups per period. In this case, we still need to know the
sequence of products in order to compute the change over times, but we may
produce in each period as many items or batches as feasible given the available
capacity.

The natural formulation (141)-(144), or the unit flow formulation (147)-(151),
can still be used to model the sequence of admissible setup decisions inside each
period, but with a different interpretation of the index t as the batch number
rather than the period number. For instance, yi

t = 1 means that item i is the
item produced during the tth batch.

An alternative formulation in this case is to use the asymmetric traveling
salesman problem (ATSP) to formulate the sequence of setup decisions inside
each period.

Several papers in the literature report on such applications and propose opti-
mization approaches for similar problems. Kang, Malik and Thomas [30] propose
and test a column generation approach to solve a multi period small buckets se-
quencing problem with change over costs, and compare with a direct branch and
bound approach using the ATSP formulation for the setup decisions. Batta and
Teghem [8] solve a multi item single period problem with change over times by
branch and bound, again using an ATSP formulation.

5 Formulations of Multi-level Models

We study in this section a general class of multi level production planning models.
First we recall the description of the multi level lot sizing problem from Section
2.2, and analyze the classical level by level decompostion approach to show that
it is suboptimal. Then we survey the optimzation approaches from the literature.
Finally we present the echelon stock reformulation that plays an important role
in all optimization approaches published so far.

5.1 Multi-level Models and the Decomposition Approach

We recall first the formulation of the general product structure capacitated multi-
level lot-sizing model from Section 2.2 (see for instance Billington, McClain
and Thomas [9]). The product structures are classified into Series, Assembly or
General structures, as represented in Figure 4.
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min
∑

i

∑

t

{pi
tx

i
t + f i

t yi
t + hi

ts
i
t} (154)

si
t−1 + xi

t−γi = [di
t +

∑

j∈S(i)

rijxj
t ] + si

t for all i, t (155)

xi
t ≤Myi

t for all i, t (156)
∑

i

αikxi
t +

∑

i

βikyi
t ≤ Lk

t for all t, k (157)

xi
t, si

t ≥ 0, yi
t ∈ {0, 1} for all i, t (158)

A classical approach used for solving multi level planning problems is to de-
compose the problem level by level into single level subproblems, solved sequen-
tially from end-products to raw materials. The production plans at each level
define the demand at subsequent levels. This is the approach used in MRP-type
systems. This separate optimization at each level yields suboptimal production
plans. This sequential planning procedure, and its suboptimality, are illustrated
in the following simple example.

Suppose that we have a 3 periods lot-sizing problem with 2 levels, one item
at each level, and a serial product structure where one unit of the raw material
(i = 2) is required to produce one unit of the finished product(i = 1). For
simplicity, we assume that the lead time γi in zero for each item. The external
or independent demand for the finished product is d1 = (10, 15, 20). There is no
external demand for the raw material. There is a fixed ordering cost of f2

t = 200
for the raw material, and fixed production cost of f1

t = 100 for the finished
product, for all t. There is no unit production cost. The inventory cots is hi

t = 5,
for all i, t. This planning problems corresponds to the fixed charge minimum
cost network flow problem represented in Figure 13.

Fig. 13. A 2-level serial production planning example



Mathematical Programming Models 101

In the classical decomposition approach, we plan first the production of the
finished product in order to satisfy its external demand, by solving the corre-
sponding single item ULS problem. The optimal solution with a cost of 275 is to
produce 25 units in period 1, stock 15 from period 1 to period 2, and produce
20 units in period 3.

This production plan defines the internal or dependent demand for the raw
material, 25 units of raw material have to be available in period 1, and 20 units
have to be available in period 3. We then solve the ULS subproblem for the raw
material, and find that it is optimal at a cost of 400 to order 45 units in period
1, and stock 20 units from period 1 to period 3. Note that an alternate optimal
solution for the raw material is to order twice (25 units in period 1 and 20 units
in period 3), and avoid the inventory costs.

So, we have obtained a global (finished product and raw material) production
plan with a cost of 675. The optimal solution with a cost of 575 of this network
flow problem is to order 45 units of raw material in period 1, transform these
units directly into finished product in period 1, and stock the finished product to
satisfy demand in periods 2 and 3. Furthermore, at the first step of the sequential
procedure, if you enumerate all extreme solutions (those satisfying satisfying the
decomposition property in Theorem 1) of the ULS subproblem for the finished
product, then the worst extreme solution (which is to produce the 45 units in
period 1, and to stock to periods 2 and 3) of this subproblem should be selected
in order to find the globally optimal solution.

We have illustrated with this naive example, that it seems very difficult to
optimize the production plans by solving the single level subproblems sequen-
tially. Therefore, we need to solve integrated models, as (154)-(158), taking the
planning decisions at all levels simultaneously, in order to optimize the quality
of the production plans.

5.2 Optimization of Multi-level Models

We review briefly the complexity results known, and the optimization approaches
used to solve various multi level planning problems.

The uncapacitated problem (without constraint (157)) with a serial product
structure (see Figure 4) is the simplest problem in the class. It can be solved in
polynomial time by dynamic programming (Zangwill [85] and Love [41]) using
the same decomposition property as for ULS, and the technique of Martin [44]
can be used to transform this dynamic program into a compact (i.e. polynomial
number of variables and constraints, in the number of items and time periods)
linear extended reformulation of the problem (see Pochet [52]). The solution of
this problem using a branch and cut approach, and a partial description of the
convex hull of solutions, is presented in Pochet [52].

The next problem studied in the literature is the uncapacitated problem with
an assembly product structure (see Figure 4). The computational complexity of
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this problem is still an open question. Afentakis, Gavish and Karmarkar [1] have
solved problems with up to 50 items using a Lagrangean relaxation approach
based on the echelon stock reformulation and combined with a specialized branch
and bound algorithm.

The uncapacitated problem with general product structure has been tackled
by Afentakis and Gavish [2] using a Lagrangean relaxation approach, and by
Pochet and Wolsey [55] using a cut and branch approach (i.e. cuts are added
only at the first node of the branch and bound tree, before any branching).

The full problem (154)-(158) with general product structure, capacities and
setup times, has been addressed by Tempelmeier and Derstroff [66] to obtain
heuristic solutions with performance guarantee using a Lagrangean relaxation
approach, and by Stadtler [65] using a branch and bound approach and the
extended linear reformulations for the ULS subproblems.

All the optimization applications mentioned for assembly and general prod-
uct structures, using Lagrangean relaxation, branch and bound or branch and
cut approaches, are based on the same reformulation of the problem. First, prob-
lem (154)-(158) is reformulated using the echelon stock concept. This transforms
the initial formulation into a series of ULS subproblems linked by capacity con-
straints and by product structure constraints (see Section 5.3 below). Then, the
ULS part of the problem is reformulated in the branch and bound or branch
and cut approaches, or the linking constraints are relaxed in the Lagrangean
relaxation approach.

Better relaxations are available, but not yet used for solving complex capac-
itated multi-level problems. For instance, the reformulations and valid inequali-
ties found for big buckets capacitated models with setup times could be used to
tighten the formulations further. Valid inequalities for fixed charge network flow
problems could be generated on the multi-level network flow problem (see Van
Roy and Wolsey [74]).

5.3 The Echelon Stock Reformulation

The formulation (154)-(158) of the general multi-level planning problem does
not contain explicitely the single item ULS subproblems (except for finished
products) because of the presence of both dependent and independent demand
for the items. By using the concept of echelon stock, introduced by Clark and
Scarf [11], one can obtain a reformulation that contains explicitely the ULS sub-
problems. This allows one then to design decomposition optimization algorithms
based on our knowledge on how to solve and reformulate ULS.

For simplicity, we assume that the lead times γi are equal to zero in (155).
The echelon stock Ei

t of item i in period t is the total stock of component i in the
production system, as item i or in items appearing further on in the production
process. It can be defined as

Ei
t = si

t +
∑

j∈S(i) rijEj
t (159)
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because, in addition to the stock si
t of items i as items i, there are rij units of

items i present in each unit of stock of item j.

3 2
3

2

1

1

2

4 5 6

1

2

3

d
t

Fig. 14. A general product structure

Figure 14 gives an example of general product structure. For this example,
the echelon stocks of the different items are

E1
t = s1t (160)

E2
t = s2t + 2E1

t = s2t + 2s1t (161)
E3

t = s3t + 2E2
t + E1

t = s3t + 2s2t + 5s1t (162)
E4

t = s4t + 3E2
t = s4t + 3s2t + 6s1t (163)

E5
t = s5t + 2E2

t + 3E3
t = s5t + 3s3t + 8s2t + 19s1t (164)

E6
t = s6t + E3

t = s6t + s3t + 2s2t + 5s1t (165)

We can use equation (159) to define kij as the number of items i present in
each unit of item j, for all i, j (i.e. Ei

t =
∑

j kijsj
t ), and to replace the natural

stock variables si
t by the echelon stock variables Ei

t in formulation (154)-(158).
This gives the formulation

Ei
t−1 + xi

t =
∑

j

kijdj
t + Ei

t for all i, t (166)
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xi
t ≤Myi

t for all i, t (167)

Ei
t −

∑

j∈S(i)

rijEj
t ≥ 0 for all i, t (168)

∑

i

αikxi
t +

∑

i

βikyi
t ≤ Lk

t for all t, k (169)

xi
t, Ei

t ≥ 0, yi
t ∈ {0, 1} for all i, t (170)

where (168) is the product structure linking constraint coming from the non
negativity of the natural stock variables, (169) is the capacity linking constraint,
(166)-(167) define independent ULS subproblems, one for each item.

6 New Directions

We conclude in this Section by giving a personal view on some new directions to
be investigated in modeling production planning problems. These include better
productivity models, and in particular better models for capacity utilization
and setup times, new models to represent the product structure – or recipes –
in process industries, and the study of continuous time planning and scheduling
models as opposed to the discrete time models studied in this review. As pointed
out in Kuik et al [35], such extensions are crucial for the vitality of the production
planning and lot-sizing research.

We also define some challenges for the future of this research field.

6.1 Setup Times, Capacity Utilization, and Productivity Models

We have already mentioned in Section 4.2 that the optimal solutions of multi-
item capacitated lot-sizing models (MICLS) with setup cost may well correspond
to infeasible and/or suboptimal in reality. The main difficulty there was to esti-
mate a priori the setup cost as the opportunity cost of the capacity used during
setup. This was the main reason to study similar capacitated models, but with
setup times instead of setup costs, using constraint 133 to model capacity uti-
lization.

For such capacitated models with setup times, a first direction of research
is to investigate the polyhedral structure of multi-item subproblems involving
both capacity utilization and demand satisfaction, such as Miller [46]. This will
allow one to obtain new classes of valid inequalities and to solve problems using
better relaxations than the one obtained from the reformulation of the simple
uncapacitated subproblems.

Another extension is to develop new capacity utilization or productivity mod-
els, and to study the corresponding formulations.
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– In classical MRP databases, the routing of an item is defined as a fixed
sequence of processing or production steps, each performed in a specific
workcenter (i.e. on a specific resource), requiring a fixed setup time and a
variable processing time per unit produced. This capacity utilization model
can be introduced in the capacitated multi-level lot-sizing formulation (154)-
(158) using αik∆ and βik∆ to represent respectively the unit processing time
and fixed setup time for item i, on resource k, in the ∆th processing period,
for ∆ = 1, · · · , γi. The capacity constraint (157) becomes then

∑

i

t∑

l=t−γi+1

αik,t−l+1xi
l +

∑

i

t∑

l=t−γi+1

βik,t−l+1yi
l ≤ Lk

t for all t, k (171)

– Product similarities or product families also have some influence on the setup
and change over times. On a specific resource or machine, switching from
one product family to another requires more time than switching from one
product to another product of the same family. Van de Velde [70] suggested
new capacity utilization models to better reflect such situations, see Simpson,
Erenguc [64].

– In activity based costing and management systems (ABC/ABM), hierarchi-
cal models for activities and costs are used to better approximate the (pro-
duction) cost structure. These can be modelled using joint or hierarchical
setup cost models, as in Degraeve and Roodhooft [16].

6.2 Process Industry: Products and Operations Structure

The multi-level MRP-II model, and its typical formulation (154)-(158), should be
generalized in order to be applicable to other processes than discrete parts man-
ufacturing. In particular, for chemical or process industries, production planning
and sequencing problems require some generalization of BOM structures to al-
low the modelling of OPERATIONS consuming items as INPUTS producing
items asOUTPUTS in fixed or variable proportions and requiring some amount
of RESOURCES. The main difference with respect to discrete BOMs is that
several output items or co-products are generally produced simultaneously in a
single operation, see Westenberger, and Kallrath [79], Kondili, Pantelides and
Sargent [33].

The basic example –and formulation– of an operations model is

si
t−1 +

∑

o

ρoi
OUT xo

t−γoi = [di
t +

∑

o

ρoi
IN xo

t ] + si
t for all i, t (172)

LBo
t yo

t ≤ xo
t ≤ UBo

t yo
t for all o, t (173)

xo
t , si

t ≥ 0, yo
t ∈ {0, 1} for all i, o, t (174)

where the index o is used to model operations, xo
t represents the amount of time

spent on performing operation o in period t, and yo
t = 1 indicates that operation
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o is carried out in period t. The extended BOM structure is defined by ρoi
OUT

and ρoi
IN representing respectively the number of units of item i produced and

consumed per time unit of operation o, for all operations o and items i. The data
γoi represents the lead time needed for operation o to produce the output item
i.

Many of the reformulation techniques presented in this paper can be used to
tighten the formulation of this operations planning model.

6.3 Continuous Time Scheduling Models

In production planning, small buckets models are used when there is a need (cost,
capacity, . . . ) to represent the detailed sequence and timing of events (such as
production start, production end, empty or full storage tank, . . . ) through time.
Very often in such models, the period time lengths are very small in order to
represent these events at precise moments in time, but the number of events to
occur in the planning horizon is small. To avoid to have too many time periods,
and too large models, continuous time models are used. They use variable period
lengths in order to represent the events in time, see Zhang and Sargent [86], Pinto
and Grossman [51], Pochet, Tahmassebi, Wolsey [59].

Consider an example planning problem where a number of items – indexed
by i or j – have to be produced on a set of independent parallel production
lines – indexed by k. There is a demand of di units of item i to meet, and the
production rate of item i on machine k is ρik units of i per unit production time.
When there is a change over on machine k from item i to item j, cijk units of
time are lost, and Lk units of time are available on line k during the planning
horizon.

A continuous time formulation for this model is
∑

k

ρik (bik − aik) = di for all i (175)

∑

i

(bik − aik) +
∑

i,j

cijk wijk ≤ Lk for all k (176)

ajk ≥ bik + cijk wijk − M(yik − wijk) for all i, j, k (177)
0 ≤ (bik − aik) ≤ [di/ρik] yik for all i, k (178)

∑

j

w0jk = 1 for all k (179)

∑

i

wi0k = 1 for all k (180)

w0jk +
∑

i

wijk = yjk for all j, k (181)

wi0k +
∑

j

wijk = yik for all i, k (182)

aik, bik ≥ 0, yik, wijk ∈ {0, 1} for all i, j, k (183)
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where variable aik is the start time of item i on line k, variable bik is the end
time of item i on line k, variable yik takes the value 1 if item i is produced on
line k, and variable wijk equals 1 if there is a change over from item i to item
j on line k. Item 0 is a fictive item used to start and finish the sequence on
each machine. Constraint (175) imposes demand satisfaction, constraint (176) is
the line capacity constraint, constraint (177) imposes the starting time of item
j when it follows directly item i on line k, constraint (178) fixes the value of
the setup variables, (179)–(182) model the sequencing constraints (i.e. each line
must have a starting item, a finishing item, each item must have a predecessor,
and a successor).

6.4 Challenges

As a conclusion, we summarize some key challenges for the future of this research
field

– The multi-item production planning model (154)-(158) with general prod-
uct structure, capacities and setup times must be solved in practice. This
means that specific optimization codes have to be developed, that heuristic
algorithms based on linear programming relaxations must be designed in
order to produce good solutions for large instances, and fast and specialized
algorithms for solving the large size LP relaxations have to be developed.

– Other more general models have to be constructed in order to come closer
to interesting and real planning problems. This includes new capacity uti-
lization models, joint setup times and costs models, operations planning and
scheduling models.

– The models have to be changed when the limits of such deterministic discrete
time planning problems have been reached. This includes the development
and resolution of continuous time scheduling models, as well as of stochastic
models.
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