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fields. However, finding the optimal hyperparameters of a DL model often needs high computational cost
and human expertise. To mitigate the above issue, evolutionary computation (EC) as a powerful heuristic
search approach has shown significant merits in the automated design of DL models, so-called evolutionary
deep learning (EDL). This article aims to analyze EDL from the perspective of automated machine learning
(AutoML). Specifically, we first illuminate EDL from DL and EC and regard EDL as an optimization problem.
According to the DL pipeline, we systematically introduce EDL methods ranging from data preparation, model
generation, to model deployment with a new taxonomy (i.e., what and how to evolve/optimize), and focus
on the discussions of solution representation and search paradigm in handling the optimization problem by
EC. Finally, key applications, open issues, and potentially promising lines of future research are suggested.
This survey has reviewed recent developments of EDL and offers insightful guidelines for the development
of EDL.
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1 INTRODUCTION

Deep learning (DL) as a promising technology has been widely used in a variety of challenging
tasks, such as image analysis [102] and pattern recognition [104]. However, the practitioners of
DL struggle to manually design deep models and carefully find appropriate configurations by trial-
and-error. An example is given in Figure 1, where domain knowledge is fed to DL in different
stages such as data preparation [208], model generation [235], and model deployment [33, 35]. In
fact, the manual design of novel DL models requires much knowledge and experience of human
experts, which may take a large number of trials to achieve satisfied DL models. These may limit
the development of DL in various applications.

In contrast, the automatic design of deep neural networks (DNNs) tends to be preva-
lent in recent decades [74, 235]. The main reason lies in the flexibility and computation effi-
ciency of automated machine learning (AutoML) in data preparation (i.e., feature selection
(FS) [208], feature construction (FC) [140], feature extraction (FE) [6], and data augmenta-
tion (DA) [197]), model generation (i.e., parameter optimization (PO) [226], architecture op-
timization (AO) [173], and joint optimization (JO) [74, 213, 235]), and model deployment (i.e.,
model pruning (MP) [80], and other model compression techniques [152, 153]). In this way, Au-
toML without manual intervention has attracted great attention and much progress has been made.

Evolutionary computation (EC) has been widely applied to automatic DL, termed as evo-
lutionary deep learning (EDL) [53, 184, 227, 228], owing to its flexibility and automatically
evolving mechanism [216]. In principle, EC evolves a population of individuals towards the op-
timum/optima via evolutionary operations and environmental selection, which is a gradient-free
and robust search paradigm [91, 217]. As a result, the integration of EC and DL has become a hot
research topic in both academic and industrial communities. Moreover, in Figure 2, the number of
publications and citations referring to EC and DL by years from Web of Science gradually increases
until around 2018, whereas it sharply rises in the recent years. Hence, more and more researchers
work on the area of EDL.

In Table 1, we have listed recent surveys on automatic DL. A large number of existing sur-
veys focus on different aspects of the DL pipeline (e.g., AO [235] or FS [208]) rather than the
whole pipeline. For example, References [65, 172] concentrate on the aspect of deep model archi-
tecture search from the perspective of neuroevolution. Many others focus on specific optimization
paradigms such as reinforcement learning (RL) [86], EC [180], and gradient [164]. However,
very few of them have systematically analyzed EDL and runs the gamut of FS, FC, FE, DA, PO, AO,
JO, MP, and other EC-based approaches for model deployment. To fill the gap, we aim to give a
comprehensive review of EDL in detail. The main contributions of this work are as follows:

• Existing work on EDL is reviewed from the perspective of DL and EC to facilitate the under-
standing of readers from the communities of both ML and EC, and we also formulated EDL
into an optimization problem from the perspective of EC.
• The survey describes and discusses EDL in terms of data preparation, model generation, and

model deployment from a novel taxonomy, where the solution representation and the search
paradigms are emphasized and systematically discussed. To the best of our knowledge, few
surveys have investigated the evolutionary model deployment.
• On the basis of the comprehensive review of EDL approaches, a number of applications,

open issues, and trends of EDL are discussed, which will guide the development of EDL.

The rest of this article is organized as follows: Section 2 presents an overview of EDL. In
Section 3, EC-driven data preparation is presented. EC-driven model generation is discussed
in Section 4. Section 5 reviews EC-driven model deployments. Section 6 describes the common
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Fig. 1. An overview of EDL, driven by domain knowledge or evolutionary computation, where the life of DL

gets through problem, data collection, data preparation, model generation, and model deployment.

Fig. 2. Total publications and citations referring to EC and DL by years from Web of Science until April 2023.

acceleration strategies in EDL. After that, relevant applications, open issues, and the trends of
EDL are discussed in Section 7. A conclusion of the article is drawn in Section 8.

2 AN OVERVIEW OF EVOLUTIONARY DEEP LEARNING

2.1 Deep Learning

DL can be described as a triplet M = (D, T , P ) [213], where D is the dataset used for the training
of a deep model (M), and T is the targeted task. P indicates the performance of M . The aim of DL
is to boost its performance over specific taskT , which is measured by P on dataset D. In Figure 1, we
can see there are three fundamental processes of DL, i.e., data preparation, model generation, and
model deployment.

Data preparation: It aims to find a high-quality D to improve the performance (P ) of the deep
model (M) on specific tasks (T ). In practice, the feature space of D may include redundant and
noisy information, which harms the performance (P ) of the model (M). For example, on Prostate
dataset, the size of feature subset (65) selected in Reference [187] is only 1% of the total size of
features (10,509).

Model generation: It targets at optimizing/generating a model (M) with desirable performance
(P ) for specific task (T ) on the given datasets (D) [74]. For model generation, the efficiency of the
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Table 1. Comparison between Existing Surveys and our Work, Where FS, FC, FE, DA, PO, AO, JO,

MP, and Others Indicate Feature Selection, Feature Construction, Feature Extraction, Data

Augmentation, Parameter Optimization, Architecture Optimization, Joint Optimization, Model

Pruning, and other Model Compression Techniques for Model Deployment, Respectively

Survey Type
Data preparation Model generation Model deployment

FS FC FE DA PO AO JO MP Others

[213] AutoML � � � - � - - - -
[74] AutoML � � � - - � � - -
[214] EDL - - - - � � � � -
[159] EDL - - - - - � � � -
[86] EDL - - - - - � � - -
[164] EDL - - - - - � � - -
[184] EDL � � � � - � � � -
[118] EDL - - - - - � � � -
[235] EDL - - - - � � � - -
[208] EDL � � - - - - - - -
[5] EDL � � - - - � � - -
[7] EDL � � - - - � � � -

[132] EDL � � - - - � � - -
[19] EDL � � � - - � - - -
[45] EDL - - - - - � � � -
[60] EDL � � � - - � � � -
[172] EDL - - - - - � � � -
[65] EDL - - - - - � � � -
[223] EDL - - - � � � � � -

Ours EDL � � � � � � � � �
“�”, “�”, and “-” indicate that the content is mentioned or briefly mentioned or not mentioned in the original

paper, respectively.

search and the size of the final architecture need to be considered. Thus, the design of search spaces
and acceleration strategies is very important for model generation.

Model deployment: This process aims to deploy a deep model (M) to solve a deployment task
T with acceptable performance (P ) on input data (D) within limited computational budgets. The
key issue of model deployment is how to reduce the latency, storage, and energy consumption
when the number of parameters of a deep model is large, e.g., Transformer-XL Large has 257M
parameters [47].

2.2 Evolutionary Computation

EC is a collection of stochastic population-based search methods inspired by evolution mechanisms
such as natural selection and genetics, which does not need gradient information and is able to han-
dle a black-box optimization problem without explicit mathematical formulations [125, 191, 219].
In principle, we can broadly divide EC methods into three categories: evolutionary algorithms
(EAs), swarm intelligence (SI), and other algorithms. More specifically, promising examples of
EAs include genetic algorithm (GA) [11], genetic programming (GP) [21, 22], evolution-
ary strategy (ES) [82], evolution programming (EP) [78], and estimation of distribution
algorithm (EDA) [48]. The representative algorithms of SI include ant colony optimization
(ACO) [220], particle swarm optimization (PSO) [97], brain storm optimization (BSO) [87],
artificial bee colony (ABC) [198], and so on. Other algorithms cover memetic algorithm
(MA) [200], artificial immune systems (AIS) [106], and so on. EC complies with a general frame-
work, as shown in Figure 3, which consists of three main components. In addition, we provide a
detailed comparison between EC and other optimization methods (e.g., RL, Bayesian and gradient)
in the Section 1 of the online supplementary material, with the aim of enabling the reader to better
understand the advantages of EC.
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Fig. 3. A general framework of EC.

Initialization is performed to generate a population of individuals that are encoded according
to the decision space (or search space and variable space) of the optimization problem, such
as the feature set, model parameters, and topological structure.

Evaluation aims to calculate the fitness of individuals. In fact, the evaluation of the individuals
in EDL is a computationally expensive task [131]. For example, Reference [157] used 3,000
GPU days to find a desirable architecture.

Updating aims to generates a number of offspring solutions through various reproduction
operations. A new soultion is generated via velocity and position formula in PSO [187]. For
GA, some reproduction operators (e.g., crossover and mutation) are used to generate new
individuals [190].

2.3 Evolutionary Deep Learning

2.3.1 EDL from Two Perspectives. In contrast to traditional DL that heavily relies on expert or
domain knowledge to build deep model, EDL is to automatically design the deep model through
an evolutionary process [159, 180, 214, 227].

From the perspective of DL: Traditional DL needs a lot of expert knowledge in inventing and
analyzing a learning tool to a specific dataset or task. In contrast, EDL can be seen as a human-
friendly learning tool that can automatically find appropriate deep models on given datasets or
tasks [213]. In other words, EDL concentrates on how easy a learning tool can be used.

From the perspective of EC: The configurations of a model are represented as an individual
and the performance as the objective to be optimized. EC plays an important role in the opti-
mization driven by evolutionary mechanisms [218]. Namely, EDL can be seen as an evolutionary

optimization process to find the optimal configurations of the deep model with high performance.
From the above analysis, EDL not only aims to increase the adaptability of a deep model towards

learning tasks via the automatic construction approach (from the perspective of DL), but also tries
to achieve the optimal model under the designed objectives or constraints (from the perspective
of EC).

2.3.2 Definition and Framework of EDL. According to the above discussion in Section 2.3.1 and
following Reference [213], we can define EDL as follows:

Max
conf iд .

Learning tools performance (P ) for target tasks (T ) on datasets (D)

s .t .

{
No assistance from humans

Limited computational budgets
,

(1)

where conf iд. indicates the configurations that form the decision space of an optimization prob-
lem. The problem is to maximize the objective (i.e., learning tools’ performance P ) of target tasks
T on datasets D under the constraints of no assistance from humans and limited computational
resources. Accordingly, three aspects are taken into account in the design of EDL.

Desirable generalization performance: EDL should have desirable generalization perfor-
mance across given datasets and tasks.

ACM Computing Surveys, Vol. 56, No. 2, Article 41. Publication date: September 2023.
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Fig. 4. A taxonomy of EDL approaches.

High search efficiency: EDL is able to find optimal or desirable configuration within a lim-
ited computational budgets (e.g., hardware, latency, energy consumption) under different
designed objectives (e.g., high accuracy, small model size).

Without human assistance: EDL is able to automatically configure without human
intervention.

Following the EC framework described in Figure 3, we present a general optimization framework
of EDL as follows:

Step 1 Initialization: A population of individuals are initialized according to the designed
encoding scheme.

Step 2 Evaluation: Each individual is evaluated according to the objectives (e.g., high accu-
racy, small model size) or constraints (e.g., energy consumption).

Step 3 Updating: A required number of new solutions are generated from previous genera-
tion via various updating operations.

Step 4 Termination condition: Go to Step 2 if the predefined termination condition is unsat-
isfied; Otherwise, go to Step 5.

Step 5 Output: Output the solution with the best performance.

2.3.3 Taxonomy of EDL Approaches. In this section, a novel taxonomy of EDL approaches
is proposed according to “what to evolve/optimize” and “how to evolve/optimize,” as shown in
Figure 4.

“What to evolve/optimize”: We may be concerned about “what EDL can do” or “what kinds of
problems EDL can tackle.” In data preparation, there are four key issues to be resolved, including
the FS, FC, FE, DA. In model generation, PO, AO, and JO become the critical issues [235], while
model deployment is involved with the issues of MP and other compression technologies.

“How to evolve/optimize”: The answer to the question is designing appropriate solution rep-
resentation and search paradigm for EC. The representation schemes are designed for the encod-
ing of individuals, search paradigms for the achievement of optimal configurations, acceleration
strategies for the reduction of time or resources consumption.

According to the above taxonomy, we will elaborately introduce EDL in data preparation, model
generation, and model deployment in Sections 3, 4, and 5, respectively, and acceleration strategies
of EDL are provided in Section 6.

3 DATA PREPARATION

Generally, to enhance the prediction performance, the deep learning model usually integrates com-
plex feature extraction structure to get task-specific features for the downstream tasks, which in
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fact increases the black-box feature (i.e., uninterpretable) as well as influences the convergence per-
formance. Therefore, the additional feature engineering step can reduce the complexity of the deep
model structure and thereby enhance the performance of the model (e.g., alleviating under-fitting
and performance collapse) [51].

Data preparation is an important step in DL pipeline, aiming to improve the quality of the data
for deep models by filtering out the irrelevant features of the data or creating the new features/data
based on original data [107, 208]. Various EC-based techniques have been proposed to reduce
data dimensionality, speed up learning process, or improve model performance [208]. The common
techniques can be categorized into FS [144], FC [18], FE [149], and DA [39].

3.1 Feature Selection

3.1.1 Problem Formulation. FS is to automatically select a representative subset F by removing
irrelevant or redundant features, aiming to minimize model loss L (.). However, the search space
grows exponentially with the increase of features. If the original feature set has M features, then
there are 2M solutions in the search space. In addition, the interactions between features may
seriously impact the FS performance [208]. The FS problem can be defined as:

minL (F )
s .t . F = S (Fo ,xm ) , |F | < M

Fo =
(
f o
1 , f

o
2 , . . . , f

o
M

)
, xm ∈ {0, 1} ∀m ∈ {1, 2, . . . ,M },

(2)

where S (.) is a selection function. Fo indicates the original feature set. xm = 1 indicates that the
mth corresponding feature is selected. Otherwise, the corresponding feature is discarded. In the
following, we will review existing work on solution representations and search paradigms in EC
for FS.

3.1.2 Solution Representations. Generally, there are three different categories of solution
representations.

Linear encoding: This encoding uses vectors or strings to store feature information. For ex-
ample, in Reference [52], a fixed-length binary vector was used to express whether a feature is
selected or not, where “1” indicates a corresponding feature is selected, and “0” is the opposite.
In Reference [76], a binary index was used to indicate the corresponding feature.

Tree-based encoding: In canonical GP, all leaf nodes/terminal nodes represent the selected
features and non-terminal nodes represent functions (e.g., arithmetic or logic operators) [101].
For automatic classification on high-dimensional data, Krawiec et al. [101] proposed a tree-based
encoding to select a subset of highly discriminative features, where each feature consisted of sib-
ling leaf nodes and their paternal function node. On the basis of the tree-based encoding, Muni
et al. [138] proposed a multi-tree GP method for online FS.

Graph-based encoding: In Reference [145], the feature space of the high-dimensional data is
represented by a graph, and each node of the graph represents a feature. A feature subset is com-
posed of visited nodes of the graph, i.e., the path of node composition or subgraph. Yu et al. [220]
converted FS to the optimal path problem in a directed graph, where the value of the node was “1”
or “0” to indicate whether the feature was selected or not.

3.1.3 Search Paradigms. In FS, representative types of search paradigms are introduced as
follows:

Basic EC search paradigm: In FS, typical evolutionary search methods have been widely used,
such as GA [41, 52], GP [101], PSO [144, 192], ACO [127], and ABC [198]. Besides, some other
studies [95] combined ACO with DE to seek optimal feature subsets, where the solutions searched
by the ACO were fed into the DE to further explore the optimal solution. In Reference [41], a
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family of FS methods based on different variants of GA was developed to improve the accuracy of
content-based image retrieval systems.

Co-evolution search paradigm: In co-evolution search paradigm for FS, at least two popula-
tions are simultaneously evolved and interacted toward the optimal subset of features [155, 200].
For example, a divide-and-conquer strategy was developed in Reference [200] to manage two sub-
populations. One subpopulation was to conduct an evolution process of classifier design, while the
other one was to search for an optimal subset of features.

Multi-objective search paradigm: This type of search paradigms are driven by two or more
conflicting objectives [32, 73, 207], such as the maximization of the accuracy of a classifier and
minimization of the size of a feature subset. On the basis of the above two conflicting objectives,
Xue et al. [207] designed a multi-objective PSO algorithm for FS and obtained a set of Pareto non-
dominated candidate solutions for FS after the multi-objective search.

3.1.4 Summary. Table S2 of the online supplementary material documents the classical FS
works based on the solution representations and search paradigms. GA and GP are widely ap-
plied to FS. GA early serves for low-dimensional (i.e., ≤1,000) datasets [77, 208]. Recently, many
GA-based approaches have been proposed to solve high-dimensional FS [32]. Nevertheless, GP
is commonly applied to large-scale/high-dimensional FS, since it is flexible in feature represen-
tation [208]. Especially, GP outperforms GA on some small but high-dimensional datasets, e.g.,
Brain Tumor-2 [97] with 10,367 features but only 50 samples. In addition, PSO has been proved
with faster convergence rate to an optimal feature subset than GAs and GP [230]. The graph repre-
sentation of ACO outperforms GA and GP on flexibility, but the challenge of ACO is how to design
appropriate graph encoding for large-scale scenarios [184, 208].

3.2 Feature Construction

3.2.1 Problem Formulation. FC aims to create new high-level features Fa (size = N ) from the
original features Fo (size = M) [189] via appropriate function operators To (.) (e.g., conjunction
and average) [140, 209], so the high-level features are more easily discriminative than the original
ones. After FC, the additional feature set Fa is generated based on the original feature set Fo by
function operators. The original feature set and the additional features are combined to form more
expressive feature set F (size = M + N ) for the model training [136]. FC can be represented as:

minL (F )

s .t . F = Fo + Fa =
(
f o
1 , f

o
2 , . . . , f

o
M
, f a

1 , f
a

2 , . . . , f
a
N

)
Fo =

(
f o
1 , f

o
2 , . . . , f

o
M

)
, Fa = To (Fo ) =

(
f a
1 , f

a
2 , . . . , f

a
N

) , (3)

where f o
i denotes ith feature in Fo and f a

i represents ith feature in Fa . FC is a complicated com-
binatorial optimization problem, where search space increases exponentially along with the total
number of original features and the function operators. In the following subsections, we will de-
scribe the EC-based FC methods in terms of both solution representations and search paradigms.

3.2.2 Solution Representations. Existing EC-based approaches for FC can be categorized into
three groups.

Linear encoding: Reference [209] used n-bit (n is the total number of original features) binary
vector to represent each particle, where “0” indicated the corresponding feature not applied to
build the new high-level feature while “1” was in the opposite. On the basis of the encoding, a local
search was performed to select candidate operators from a predefined function set to construct a
new high-level feature.

ACM Computing Surveys, Vol. 56, No. 2, Article 41. Publication date: September 2023.



Survey on Evolutionary Deep Learning 41:9

Tree-based encoding: Tree-based encoding is natural for FC, where leaf nodes represent the
feature information and internal nodes represent operators. Many studies [18, 189] have demon-
strated the effectiveness of tree encoding in FC. For example, Bhanu et al. [18] designed a GP-based
coevolutionary FC procedure to improve the discriminative ability of classifiers. In Reference [189],
an individual in EC was represented by a multi-tree encoding with multiple high-level features.

Graph-based encoding: In this encoding, the nodes and edges represent features and operators
(e.g., “+”, “-”, “*”, “/”), respectively. Teller et al. [185] applied an arbitrary directed graph to represent
all features and operators, where each possible high-level feature can be represented as a subgraph
of this directed graph. For linear GP, features and operations form a many-to-many directed acyclic
graph, in which each feature is loaded into predefined registers and register’s value can be used in
multiple operators [57]. However, graph encoding becomes inefficient on high-dimensional feature
sets, since the complexity of graph traversal exacerbates the difficulty of FC.

3.2.3 Search Paradigms. There are four categories of search paradigms for FC in existing works.
Basic EC search paradigm: Existing studies include but are not limited to GA [190] and

GP [141, 183, 189]. For example, Reference [141] designed GP-based FC to reduce the feature (in-
put) dimensions of a classifier. Especially, GP has been also widely used to construct new features,
where each individual following the form of a GP tree usually represents a constructed high-level
feature [66].

Co-evolution search paradigm: It can be decomposed to FC subproblem and classifier de-
sign subproblem, and each subproblem is solved with a standalone subpopulation by an EC-based
method [18, 160]. For example, Reference [160] decomposed construction problem into two sub-
problems (i.e., FC, and object detection), where the FC was solved by evolving a population of
pixel (i.e., feature) and the object detection was optimized using object detection algorithm
(ODA) [160].

Multi-features search paradigm: Unlike early methods [167, 188–190] only constructing one
high-level feature in a single search process, this sort of paradigm is able to create multiple high-
level features. For example, Ahmed et al. [3] employed Fisher criterion together with p-value mea-
sure as the discriminant information between classes, based on which multiple features were con-
structed through multiple GP trees.

Multi-objective search paradigm: In this search paradigm, the number of features and classi-
fication accuracy are commonly taken into account as the objective functions for multi-objective
evolutionary optimization [25, 71]. Especially, Hammami et al. [71] constructed a set of high-level
features by optimizing a multi-objective optimization problem (MOP) with three objectives
(i.e., the number of features, the mutual information, and classification accuracy) with Pareto dom-
inance relationship.

3.2.4 Summary. Existing works on FC are listed in Table S3 of the online supplementary
material based on the solution representations and search paradigms. GP-based approaches are
popular in FC due to the flexible representation of features and operations. In addition, the hy-
brid of evolutionary algorithms also attracts much attention for FC. However, there is still plenty
of room for the improvement of efficiency in constructing features in high-dimensional or large-
scale scenarios, where a large number of computational resources are needed [183, 188]. Notably,
FC often requires more computational overhead than FS, since FC commonly performs after the
FS and the quality of the selected features may influence the performance of FC.

3.3 Feature Extraction

3.3.1 Problem Formulation. FE is to reduce the feature dimensions by altering the original
features/data via some transformation functions [74]. Traditional extractors include principal

ACM Computing Surveys, Vol. 56, No. 2, Article 41. Publication date: September 2023.



41:10 N. Li et al.

component analysis (PCA) [1] and linear discriminant analysis (LDA) [85]. However, they
cannot keep somewhat important information after the transformation [1] and it is tedious to
tune their hyperparameters (e.g., number of retained features) to find the best extraction. Thus,
automatically finding high-quality map functions by EC-based approaches to achieve informative
feature set tends to be popular. FE task is explained as:

minL (B)
s .t . B = To (Fo ) = (b1,b2, . . . ,bN ) , M > N

Fo =
(
f o
1 , f

o
2 , . . . , f

o
M

)
,

(4)

where B is the new features extracted from the original features Fo by the transformation function
To . The new features B generated by FE are usually used directly for model training while in FC,
the new features are combined with and the original features to form a more expressive feature set
for parameter learning [136]. Besides, traditional feature extraction (e.g., local binary pattern [69]
and histogram of oriented gradient [43]) may generate high-level features from low-level data
(e.g., image pixels), while FC aims to construct new high-level features from the original low-level
features. In the following, we will introduce the EC-based FE methods in terms of both solution
representations and search paradigms.

3.3.2 Solution Representations. There are two typical ways for solution representation in EC-
driven FE.

Linear encoding: In this encoding, map functions [6, 158] or function parameters [232] are
encoded as a linear format. For example, Wissam et al. [6] predefined three sets of track functions
(i.e., trace functions, diametric functions, and circus functions) for FE, and the optimal combination
between the functions was obtained by an EC-based method. In Reference [232], the hyperparam-
eters of map functions were encoded by some linear vectors that were constructed by a number
of optimal projection basis vectors obtained via EC.

Tree-based encoding: In tree-based encoding, leaf nodes represent original features or con-
stants, while the non-leaf nodes are some operators for FE including common arithmetic, logical
operators (i.e., “+”, “/”, “∪”) or other transformation operators (e.g., uLBP, and SobelY). In EC-driven
FE, an individual represents a feature extractor or map function [149, 231]. Especially, an EC-based
framework was developed in Reference [231] to search for features and sequences of operations
by use of tree-based encoding.

3.3.3 Search Paradigms. In this section, some common search paradigms for FE are introduced.
Basic EC search paradigm: EC has been successfully utilized in various FE tasks [20, 222]. For

example, Zhao et al. [234] introduced bagging concept to an evolutionary algorithm for FE. The
work in Reference [233] developed an evolutionary discriminant feature extraction (EDFE)
algorithm by combining GA with subspace analysis, which can reduce the complexity of the search
space and improve the classification performance.

Co-evolution search paradigm: In FE, finding the optimal extractor is an optimization prob-
lem, which can be decomposed into a series of subproblems [70, 98]. For example, Hajati et al. [70]
proposed a co-evolutionary method for FE. Specifically, a subpopulation was evolved to optimize
the classifier-related subproblem (i.e., classifier construction), and the other subpopulation made
use of genetic information from the first population for the optimization of a feature-related sub-
problem (i.e., FE).

Multi-objective search paradigm: In multi-objective FE, the model accuracy, computational
time, complexity, and robustness are often taken into account as the objectives [24, 231]. Cano
et al. [24] proposed a Pareto-based multi-objective GP algorithm for FE and data visualization,
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where the objectives were to minimize the complexity of data transformation (i.e., tree size) and
maximize the recognition performance (i.e., accuracy).

3.3.4 Summary. Table S4 of the online supplementary material presents existing works on FE
according to the solution representations and search paradigms. In existing studies, many efficient
searching and balancing strategies—driven by EC approaches to achieve satisfactory solutions at
significantly reduced computation overheads—have been developed in recent years [24, 128, 168,
231]. However, the performance of extractors may be limited with existing encoding methods
and predefined operation sets. Therefore, it is essential to develop efficient algorithms, operation
control strategies, and representation for high-dimensional FE.

3.4 Data Augmentation

3.4.1 Problem Formulation. DA aims to enhance the generalizability and robustness of a deep
model via increasing the volume, quality, and diversity of training data (i.e., additional training
data Da ). Assume that an original training data Do consists of instances Ii with corresponding
labels Li . The task of DA can be expressed as follows: it is to generate additional instance I∼i using
the original instance Ii without altering the corresponding label Li by a transformation functionTA

(.). Meanwhile, the deep models can obtain smaller loss L(Do , Da ) by using Da and Do . Therefore,
the DA task can be depicted using the following formula:

minL (Do ,Da )

s .t . Da =
(
I∼i ,Li

)
= TA (Ii ,Li ) , I∼i ∈ Rn , Ii ∈ Rn , (5)

where n is the dimensionality of training data. Note that the output of the transformation function
in DA is different from FC and FE. The generated instances have the same dimensionality as the
original instance (i.e., I∼i ∈ Rn and Ii ∈ Rn ) [137]. In the following, we will introduce the EC-based
DA methods in terms of both solution representations and search paradigms.

3.4.2 Solution Representations. The direct encoding and indirect encoding are the two popular
ways in the EC-based DA approaches.

Direct encoding: This method directly encodes the variables that need to be optimized [39, 130].
For example, Reference [39] directly encoded the basic elements (e.g., eyebrows, eyes, and nose)
of the face, and a GA was used to select the best combination of the basic elements, which can
improve the performance of face detector.

Indirect encoding: It is based on pre-designed rules or mappings to transform complex vari-
ables into a simple space. For example, Reference [64] proposed a tree-based rule to encode the
transformation function, where each node indicated an image processing filter.

3.4.3 Search Paradigms. EC-based methods for DA can be divided into two categories according
to whether the method combines with other generators, including pure EC search paradigms and
generator-based EC search paradigms.

Pure EC: This paradigm utilizes reproduction operators (e.g., crossover and mutation) to gener-
ate new data, where the fitness evaluation is performed using an additional model. In other words,
each individual in the population represents new training data. For example, Silvan et al. [130] em-
ployed a well-trained discriminator to evaluate the fitness value of the individuals (i.e., additional
training data).

Generator-based EC: In this paradigm, EC is mainly used to optimize the generator (i.e., trans-
formation function). It has emerged as a mainstream approach that EC optimizes generative ad-
versarial networks (GANs) to obtain high-quality data [61, 129]. For example, Mehta et al. [129]
proposed an improved EA to find the best architecture of GANs for DA. In addition, very little
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existing work on finding optimal combinations of transformation functions has also been pro-
posed [64, 151]. For example, Reference [151] designed an EC-based DA method to select the op-
timal combination among a collection of transformation functions (e.g., addElementwise, dropout
and cutout).

3.4.4 Summary. Table S5 of the online supplementary material lists the main works about
EC-based DA. The pure EC search paradigm cannot handle complex data formats due to limited
encoding strategies, and they often use a two-stage process that increases the algorithmic complex-
ity. Although the generator-based search paradigm can handle complex data formats, they highly
depend on the distribution and volume of the original data [130, 151]. Thus, it is desirable to design
DA methods for small and complex data.

4 MODEL GENERATION

Model generation is to search for optimal models with desirable learning capability on given
tasks [74, 213]. In this section, we introduce corresponding PO, AO, and JO from solution rep-
resentation to search paradigms. Readers interested in other model generation approaches (e.g.,
RL-based and gradient-based approaches) can refer to References [86, 159].

4.1 Parameter Optimization

4.1.1 Problem Formulation. PO targets at searching for the best parameter set (i.e., weights
W ∗) for a predefined architecture A. The loss function L(.) (e.g., the cross-entropy loss function)
measures the performance of the model with optimized parameters (i.e., W in Equation (6)) on
given datasets. The general PO can be formulated as:

W ∗ = arg min
W

L (W ,A) , (6)

whereW is usually large-scale (millions of model parameters) and highly non-convex.

4.1.2 Solution Representations. There are two typical EC-based representation schemes for PO,
including direct encoding and indirect encoding [74].

Direct encoding: The model parameters are directly represented via a vector or matrix, in
which each element represents a specific parameter [83, 93]. For example, a chromosome with 64
real numbers is used to directly represent the network corresponding weights, where the first 63
real numbers are used to encode three convolution masks of size 1 × 21. The last real number
was the random seed of a generator for the initialization of a fully connected network [83]. This
encoding approach may require a huge computational overhead to represent and optimize the
large-scale weights.

Indirect encoding: This encoding approach represents only a subset of the model parame-
ters via a deterministic transformation [99, 109]. In Reference [99], the weight information was
encoded as a set of Fourier coefficients in the frequency domain to reduce dimensionality of rep-
resentation by ignoring high-frequency coefficients. Although this method is able to speed up the
search process, the loss of parameter information may occur due to the incomplete information
representation, which may degrade the model performance.

4.1.3 Search Paradigms. EC-based methods for PO can be divided into two categories according
to whether or not method combines with the gradient approach, i.e., pure EC and gradient-based
EC.

Pure EC paradigms optimize model parameters only via evolutionary search, including the
basic EC search paradigm and co-evolution search paradigm.
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Fig. 5. Three hybrid ways of gradient-based ECs.

• Basic EC search paradigm: In addition to GA [93, 135], some heuristic algorithms such as
PSO [4], ABC [92], and ACO [171] are also commonly utilized for PO. For example, Karaboga
et al. [92] adopted ABC to find a set of weights for a feed-forward neural network (FNN)
on targeted tasks.
• Co-evolution search paradigm: Co-evolution search is conducted on the subproblems

of the original optimization problem (e.g., synapse-based and neuron-based problems [27,
28]). For example, Chandra et al. [28] regarded a single hidden layer as a subcomponent
in the initialization phase, which will be merged with the individuals with the best fitness
from different sub-populations to constitute new neural networks during the co-evolution
optimization process.

Gradient-based EC combines basic EC with the gradient-based method to enhance the ex-
ploitation ability in optimizing model parameters. According to the execution order, there are
three hybrid ways.

• The first hybridization approach is shown in Figure (5(a)), where the EC is used to identify
the optimal parameters for model, then the parameters are further optimized using gradient-
based method to find the final optimal solution [29, 229]. For example, a genetic adaptive
momentum estimation algorithm (GADAM) was proposed in Reference [226] by in-
corporating Adam and GA into a unified learning scheme, where Adam was an adaptive
moment estimation method with first-order gradient.
• The second hybridization approach is given in Figure (5(b)), where the gradient-based

method is used to produce a set of parameters for the initialization of the population used
in EC [203]. For example, Reference [94] first trained an RL agent through a gradient-based
method, then the parameters of the RL were used as the initial population to feed the EC. As
a result, the parameters will be further optimized by the EC.
• The third approach is presented in Figure (5(c)), which iteratively applies EC and gradient-

based method during the optimization to find the optimal parameters. Following this
framework, when the method is used and which method is chosen vary in different stud-
ies [40, 210].

4.1.4 Summary. Table S6 of the online supplementary material summarizes some EC-based
PO methods according to solution representations and search paradigms. The direct encoding
is straightforward and able to keep more information than the indirect encoding. Compared to
gradient-based methods easily trapped into local optima, EC shows more powerful ability in global
search. Here, several scenarios are introduced as follows, where EC is applied to PO:

Small-scale scenario: Reference [135] shows that pure EC approaches outperform gradient-
based methods in search effectiveness on some small-scale problems, where the models are with
small numbers of parameters or simple architectures (e.g., FNN).

Large-scale scenario: The performance of pure EC approaches might not be promising in
large-scale learning models, while a better way is to utilize the hybridization of EC and gradient-
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based methods. Such hybrid methods can alleviate the issue of getting trapped in local optima and
increase the effectiveness of subsequent exploitation [210].

In addition to above scenarios, EC-based method can be used to train the DNN when the exact
gradient information of the loss function is difficult to be acquired [150]. For example, the rewards
of policy network are sparse or deceptive in deep reinforcement learning (DRL) so the gradient
information is unattainable. Reference [38] introduced the novelty search (NS) and the quality
diversity (QD) to the evolution strategies (ES) for the policy network.

4.2 Architecture Optimization

4.2.1 Problem Formulation. AO, also termed as neural architecture search (NAS), is to search
promising network architectures with good performance such as model accuracy on given tasks.
AO can be formulated as follows:

⎧⎪⎪⎨
⎪⎪
⎩

A∗ = arg min
A∈A

Leval (W ∗,A)

s .t . W ∗ = arg min
W

Ltrain (W ,A) ,
(7)

where weightsW ∗ are obtained by training architecture A on the training data while minimizing
the loss function Ltrain, and A∗ indicates the architecture with the minimum loss function Leval

on fitness evaluation set (e.g., training set or validation set), searched from the search space A.
Thereby, this optimization is a bi-level optimization problem [118, 235], where AO is subject to the
PO [123]. Since the current AO works are mainly focused on CNN, we will discuss the solution
representations, the search paradigms, and acceleration strategies of CNN. Due to the page limit,
the design of the search space of AO are not introduced here, but interested readers can check
References [118, 159], which have details about search space design.

4.2.2 Solution Representations. According to varying lengths of encodings, we can classify the
encoding strategies into fixed-length and variable-length encodings.

Fixed-length encoding: The length of each individual is fixed during the evolution. For exam-
ple, a fixed-length vector is designed to represent the model architecture of CNN [206], where a
subset of elements in the vector represents an architectural unit (e.g., convolutional, pooling or
fully connected layer) of a CNN. Such encoding may be easily adapted to evolutionary operations
(e.g., crossover and mutation) of EC [206], but it has to specify an appropriate maximal length,
which is usually unknown in advance and needs to predefine based on domain expertise.

Variable-length encoding: Different from the fixed-length approach, the variable-length en-
coding strategy does not require a prior knowledge about the optimal depth of model architecture
and actually could be a way to reduce the complexity of the search space. The flexible design of
this encoding may encode more detailed information about the architecture into a solution vec-
tor, and the optimal length of the solution is automatically found during the search process [118].
In Reference [30], the entire variational autoencoder (VAE) was divided into four blocks, in-
cluding h-block, μ-block, σ -block, and t-block, while the variable-length chromosomes consisted
of different quantities and types of layers. Notably, variable-length encoding is not straightforward
to apply standard genetic operators (e.g., crossover).

Since the neural network architectures are composed of basic units and connections between
them, both of them are to be encoded, as suggested in Reference [118].

(1) Encoding hyperparameters of basic units. In CNNs, there are many hyperparameters to
be specified for each unit (e.g., layer, block, or cell), such as feature map size, type of convolution
layer, and filter size [180]. In Reference [177], DenseBlock only had to set two hyperparameters
(e.g., block type and specific parameter of internal unit) to configure the block that can be seen as
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a microcosm of a complete CNN model. The parameterization of a cell is more flexible than that
of a block, since it can be configured via a combination of different primitive layers [178].

(2) Encoding connections between units. In general, there are two kinds of model archi-
tectures according to the connection patterns of basic units: linear topological architectures and
non-linear topological architectures [212]. The linear pattern of architecture consists of sequential
basic units, and the non-linear pattern allows for skip or loop connections in the architecture [118].

• Linear topological architecture: The linear topology widely appears in the construction
of layer-wise and block-wise search spaces. Due to the simplicity of linear topology, basic
units can be stacked one-by-one by a linear piecing method. In this way, the skeleton of an
architecture can be built up effectively [30, 177] regardless of the complexity of the internal
of basic units.
• Non-linear topological architecture: Compared to the linear architecture, the non-linear

topological architecture receives much more attention due to its flexibility to construct well-
performing architectures [193, 195, 206], such as macro structures composed of basic units
and micro structures within basic units. There are two typical encoding approaches for non-
linear topological architectures: one is to use adjacent matrix to represent the connections
in non-linear architectures, where “1” of the matrix denotes the existence of the connection
between two units, and “0” goes the opposite. In Reference [121], skip connections are rep-
resented by a matrix where constraints can be set in place to guarantee valid encoding and
avoid recurrent edges while performing skip connections. Note that adjacent matrix has a
limitation that the number of basic units needs to be fixed in advance [96]. Another one is to
utilize an ordered pair to represent a directed acyclic graph and then encode the connections
between unites. The ordered pair can be formulated asG = (V , E), whereV is a set of vertices
and E is a directed edge in the acyclic graph, and it has been applied in Reference [84] to
encode the connections.

4.2.3 Search Paradigms. In this section, the commonly used EC-based search paradigms for AO
are introduced.

Basic EC search paradigm: Many basic EC algorithms have been widely applied in existing
AO methods, such as GA [96] and PSO [179]. A general framework of EC is presented in Figure 3.

Incremental search paradigm: A model architecture can be built in an incremental way where
model elements (e.g., layers and connections) are gradually added to the model during the evolu-
tionary process [112, 194]. This way allows to find parts of architecture at different optimization
stages, which reduces the computational burden on acquiring a complete model at once [112]. For
example, Wang et al. [194] used an incremental approach to stack blocks for building architectures,
which improved the capacity of the final architecture via a progressive process.

Co-evolution search paradigm: AO is decomposed into the optimizations of a blueprint and
its components [110, 146]. Specifically, the blueprint plays a role in specifying the topological con-
nection patterns of its components, and an optimal architecture is acquired by cooperatively opti-
mizing the blueprint and its components. For example, O’Neill et al. [146] proposed a co-evolution
search paradigm for AO, where the candidate blueprints and components were sampled from two
populations and then combined to form new architectures.

Multi-objective search paradigm: This paradigm targets at searching for a set of Pareto op-
timal architectures based on multiple criteria and finding the final solutions according to some
practical considerations, such as computational environment [124, 139]. This paradigm becomes
popular in practical applications, since many objectives are required to be considered, such as the
accuracy, inference time, model size, and energy consumption. In Reference [139], NSGA-II and RL
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were used to explore model architectures with respect to the model accuracy and model complexity
(e.g., the number of model parameters and multiply-adds operators).

4.2.4 Summary. Table S7 of the online supplementary material shows the AO approaches,
which are classified according to the search paradigms and solution representations. Obviously,
the basic EC search paradigms and fixed-length encodings dominate AO. Most AO methods are
based on basic EC search paradigms on an global search space [118]. There are also some other au-
tomatic search techniques such as RL-based [86], Bayesian-based [201], and gradient-based [114]
methods, for architecture search.

RL-based methods can be regarded as an incremental search, where a policy function is learned
by using a reward-prediction error to drive the generation of incremental architecture. Due to
huge state space and action space, the environment modeling and exploration-learning procedures
become extremely difficult, leading to inefficient sampling for search space [221], which brings
tremendous pressures for the exploration of agents. In particular, existing RL-based methods for
AO generally enable agents to learn from scratch when dealing with new search space, which is dif-
ficult to leverage pre-acquired prior knowledge to assist explorations [242]. In addition, there are
a large number of hyper-parameters (e.g., discount factor) in RL-based methods. Tuning these hy-
perparameters also requires a huge overhead [118, 180]. Besides, they transform a multi-objective
optimization problem into a single-objective problem via a priori or expert knowledge, so they are
unable to find a Pareto optimal set to the target tasks.

Bayesian-based methods are a common tool for hyperparametric optimization problems with
low dimensions. In comparison to EC-based methods, they are much more efficient on the condi-
tion that a proper distance function has to be designed to evaluate the similarities between two
subnets. However, the computational cost of Gaussian process grows exponentially and its accu-
racy decreases when the dimensionality of the problem increases.

Gradient-based methods, taking AO problem as a continuous differentiable problem instead of
a discrete one, are able to efficiently search architectures with proper weight parameters. Unfortu-
nately, their GPU costs are usually very high due to a large number of parameters to be updated
in gradient-based algorithms [114].

In contrast, EC-based methods benefit from less hyperparameters to be optimized and no dis-
tance functions to be designed. The related experiments demonstrate that RL-based methods re-
quire more computational resources than EA-based methods under the same settings. In addition,
EC-based methods can be applied to AO with multiple objectives and constraints. Although there
are many acceleration strategies in EC-based methods, they still suffer from high computational
overheads.

4.3 Joint Optimization

4.3.1 Problem Formulation. The independent optimization of architecture or parameters is dif-
ficult to achieve the optimal model on give tasks. Hence, joint optimization methods have been
developed to search for the optimal configuration of architecture (A∗), and parameters (W ∗, asso-
ciated weights). The optimization problem can be defined in Equation (8):

(W ∗,A∗) = arg min
W ,A

L (W ,A) , (8)

where L is the loss function. In the following, we will introduce the joint optimization regarding
the solution representations and search paradigms and then discuss the pros and cons of EC-based
methods in comparison to others.
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4.3.2 Solution Representations. There are three typical classes of encoding schemes used for
joint optimization.

Linear encoding: This is a simple but effective encoding strategy, which has been widely used
in many studies to build architecture with high performance [8, 62]. In Reference [62], a variable-
length binary vector was used to represent weights and structure of neural networks, where the
weights utilize direct encoding.

Tree-based encoding: In this encoding, the topology and weights of an architecture can be
represented by a tree structure with a number of nodes and edges [67, 224]. In Reference [225], the
mechanism of Reverse Encoding Tree (RET) was developed to ensure the robustness of a deep
model, where the topological information of an architecture was represented by a combination of
nodes and the weight information was recorded on the edges.

Graph-based encoding: In this encoding, the nodes of a graph represent neurons or other net-
work units, and the edges are used to record the weight information [26, 72]. For example, a graph
incidence matrix was developed in Reference [147] to encode a neural network. The size of the ma-
trix was set to (Ni + Nh + No )× (Ni + Nh + No ), where Ni , Nh , and No indicate the numbers of input,
hidden, and output nodes, respectively. In the graph incidence matrix, real numbers represented
the weight and biases, and “0” meant that there was no connection between two nodes.

4.3.3 Search Paradigms. There are a number of effective search paradigms for joint optimiza-
tion, and the EC-based search paradigms are in the spotlight.

Basic EC search paradigm: Some basic EC search methods have been employed to handle
joint optimization problems [16, 17, 54, 147, 173]. In Reference [147], an architecture and its corre-
sponding weights were simultaneously optimized by an EC-based method using linear and graph
encodings. In neuro-evolution of augmenting topologies (NEAT) [173], the architecture of a
small network is evolved by an incremental mechanism, while the weights are optimized by an
EC-based method. NEAT is able to ensure the lowest dimensional search space over all generations.
Some representative studies on NEAT are presented in References [16, 17].

Multi-objective search paradigm: Multi-objective optimization on model design has been
developed in many studies (e.g., artificial neural network [161] and recurrent neural network [170]).
For example, Smith et al. [170] built a bi-objective optimization (i.e., the minimizations of the
mean squared error (MSE) on a training dataset and the number of connections in the network)
to search for optimal weights and connections of network architectures. The chromosome of an
individual was composed of two parts, where the one with Boolean type represented the structure
of a network, and the other with real values represented the weights.

4.3.4 Summary. Existing works about JO are summarized in Table S8 of the online
supplementary material. Linearity encoding is used to be prevalent in the joint optimization of
small-scale neural networks [147, 215]. However, with the increase of the scale of neural networks,
encoding of high-dimensional vector or matrix of weights is not realistic. Therefore, recent stud-
ies are more on efficient encoding (e.g., indirect encoding). For example, a complex mapping with
acceptable accuracy loss is designed in References [44, 100] to construct weight vectors with ar-
bitrary size. EC-based approaches with capability of searching the optimal solution have been
developed to configure a DL model for the specific task. However, they often encounter a prohibi-
tive computational cost, which is even higher than that of AO. Hence, designing efficient EC-based
approaches for architecture and parameter search deserves much investigation.

5 MODEL DEPLOYMENT

The large-scale DNNs are not straightforward to be deployed into devices (e.g., smartphones) with
limited computation and storage resources (e.g., battery capacity and memory size). To solve this
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issue, various model compression approaches have been proposed to reduce the model size and
inference time, such as pruning, model distillation, and quantization [35, 169]. However, they need
much expert knowledge and a lot of efforts on the manual compression of neural network models.
In contrast, EC-based approaches are automation approaches and have been recently introduced
to achieve automated model compression. We have observed that most of them concentrate on the
area of MP.

5.1 Model Pruning

5.1.1 Problem Formulation. DNN is commonly an over-parameterized model, which has redun-
dant and non-informative components (e.g., weights, channels, and filters). To address this issue,
researchers have designed various pruning approaches (e.g., channel pruning [75]) to obtain a con-
figuration (i.e., A∗ andW ∗) of lightweight deep model with high accuracy. MP can be formulated
as: {

(A∗,W ∗) = arg minϕ = Lu (Au ,Wu ) − Lp (Ap ,Wp )
s .t . (Ap ,Wp ) = P (Au ,Wu ),

(9)

whereLu andLp denote loss functions of unpruned and pruned network, respectively.ϕ indicates
the gap between the loss function of pruned and unpruned network. P is the pruning function
that is used to generate different configurations of the pruned network (i.e., Ap andWp ) based on
the configurations of unpruned network (i.e., Au andWu ), where A# andW# indicate architecture
and weight configuration. The common pruning functions are mainly weight pruning, channel
pruning, shape pruning, filter pruning, and layer pruning [111]. This study aims to introduce EC-
based methods for MP, and readers interested in traditional pruning methods may refer to the sur-
veys cited in Reference [35] to get more details. In Table S9 of the online supplementary material,
we have summarized these two categories of search paradigms as well as their corresponding ways
of encoding.

5.1.2 Solution Representations. For MP, binary encoding is one of the most popular approaches
among these solution representations, where each element corresponds to the network component
(e.g., channel). In Reference [199], the network pruning task was formulated as a binary program-
ming problem, where a binary variable was directly associated with each convolution filter to
determine whether or not the filter took effect. Although binary representation is straightforward,
the length of the representation becomes large when the model complexity (i.e., the number of
units) improves, and the overhead of exploration will also increase.

To address the above issue, some efficient solution representations (i.e., indirect encoding) have
been developed. For example, Liu et al. [116] used N digits to record the number of compressed lay-
ers. The first digit represented the number of compressed layers, and following digits recorded the
selected compression operator index of each layer. This way can significantly improve the search
efficiency. In Reference [119], encoding vectors are used to represent the number of channels in
each layer for original networks. Then, a meta-network is constructed to generate the weights
according to network encoding vectors. By stochastically inputting different structure encodings,
the meta-network gradually learns to generate weights for various pruned structures.

5.1.3 Search Paradigms. The search paradigms in MP studies can be categorized into two main
groups.

Basic EC search paradigm: A number of studies introduce single-objective EC search par-
adigm for MP [182, 204]. For example, Wu et al. [204] first analyzed the pruning sensitivity on
weights via differential evolution (DE), and then the model was compressed by iteratively per-
forming the weight pruning process according to the weight sensitivity. In addition, this method
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adopted a recovery strategy to increase the pruned model performance during the fine-tuning
phase.

Multi-objective search paradigm: Recently, this sort of search paradigm has been adopted to
MP, which is able to provide users with a set of Pareto lightweight models [236, 239]. For example,
Zhou et al. [237] considered two objectives (i.e., minimizing convolutional filters and maximiz-
ing the model performance) for biomedical image segmentation. During the MP, a classical multi-
objective optimization algorithm (NSGA-II [46]) was used find the optimal set of non-dominated
solutions, where the optimization was based on a binary string encoding (each bit represents a
filter).

5.2 Other EC-based Model Deployment Methods

There are several other EC-based model compression methods for model deployment. In the follow-
ing, some typical methods are introduced, including knowledge distillation, low-rank factorization,
and EC for hybrid techniques.

5.2.1 Knowledge Distillation. Knowledge distillation (KD) [68] aims to get a small light net-
work but with good generalization capability. The basic idea is to transfer the knowledge learned
from a big cumbersome network (or teacher network) with good generalization ability to a small
but light network (or student network).

However, knowledge distillation may be seriously influenced when there is a big gap in the
learning capability between the teacher and student networks. In other words, if the difference is
large, then the student network may not be able to learn knowledge from the teacher network. Re-
cently, several EC-based approaches have been proposed to mitigate the above issue of knowledge
distillation. For example, Reference [174] constructed KD as a multi-objective optimization prob-
lem, aiming to enable student networks to achieve tradeoffs between two conflicting objectives
minimizing inference latency (i.e., latency) and minimizing accuracy loss (i.e., error). Four hyper-
parameters of student models were evolved in this approach. Jiao et al. [88] proposed a GA-based
approach to find the optimal layer mapping for task-agnostic bidirectional encoder representa-
tion from transformers (BERT) distillation. This method encoded the layer mapping as a binary
string, where each element represented whether the student network required to learn from the
teacher network. Their experimental results showed that the proposed approach was able to nar-
row the performance between the teacher and student networks on given tasks, where student
network achieved state-of-the-art accuracy on GLUE tasks.

5.2.2 Low-rank Factorization. DNNs often involve a huge number of weights, which may im-
pact the inference speed and seriously increase the storage overhead of the DNN. The weights can
be viewed as a matrix W with m × n dimensions. The low-rank approach is commonly applied
to the weight matrix (W ) after the DNN is fully trained. For example, singular value decomposi-
tion [58] is a typical low-rank factorization method, whereW is decomposed as follows:

W =USVT , (10)

where U ∈ Rm×m , VT ∈ Rn×n are orthogonal matrices and S ∈ Rm×n is a diagonal matrix.
Notably, most of the existing low-rank factorization methods rely on domain expertise and ex-

perience for the selection of hyperparameters (e.g., the rank and sparsity of weight matrix) to get
appropriate compression results without serious performance degradation [79, 181, 202]. Accord-
ingly, EC-based methods have been introduced to solve the above challenge [81, 199]. For example,
Huang et al. [81] presented a multi-objective evolution approach to automatically optimize rank
and sparsity for weight matrix without human intervention, where two objectives were taken into
account including the minimization of the model classification error rate and maximization of the
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model compression rate. They therefore generated a set of approximately compressed models with
different compression rates to mitigate the expensive training process.

5.2.3 Joint Optimization. Many compression techniques (e.g., quantization) can be easily ap-
plied on top of other techniques (e.g., pruning and low-rank factorization). For example, pruning
first and then quantification can obtain a lightweight model with faster inference. Similarly, EC
can optimize more than one model compression method at the same time. In the following, we
will briefly review such works.

Phan et al. [152] designed efficient 1-Bit CNNs, which combined quantization with a compact
model. Specifically, they first created a number of strong baseline binary networks, which had
abundant random group combinations at each convolutional layer. Then, they adopted evolution-
ary search to seek an optimal group convolution combination with accuracy above threshold.
Finally, the obtained binary models were trained from scratch to achieve the final lightweight
network. Different from Reference [152], Polino et al. [153] jointly utilized weight quantization
and distillation to compress large networks (i.e., teacher network) into small networks (i.e., stu-
dent network), where the latency and model error were regarded as the objectives during the
optimization.

Recently, Zhou et al. [238] developed an evolutionary algorithm-based method for shallowing
DNNs at block levels (ESNB). In ESNB, a prior knowledge was extracted from the original model
to guide the population initialization. Then, an evolutionary multi-objective optimization method
was performed to minimize the number of blocks and the accuracy drop (i.e., loss). After that,
knowledge distillation was employed to compensate for the performance degradation via matching
output of the pruned model with the softened and hardened output of the original model.

5.2.4 Summary. Similar to architecture optimization in terms of search techniques, RL-based
methods, Bayesian-based methods, and gradient-based methods have also been applied to model
deployment. Specifically, RL-based methods explore the search space using a predefined controller
model. However, controller construction is a complex task, which results in slow convergence of
model compression [9]. Bayesian-based methods use Gaussian Process to construct the relation-
ship between accuracy and the compressed components. Unfortunately, Bayesian-based methods
are highly dependent on well-designed distance functions between different solutions and the pre-
cision of the Gaussian Process [196]. The gradient-based methods aim to explore the search space
of discretization by gradient information. However, such methods often require a large amount of
memory space to store an over-parameterized model, and using gradient information to determine
the results of model compression may not be the best solution in many cases [211].

In contrast, EC-based methods use flexible and variable populations to drive model compression.
However, the additional model (e.g., controller and Gaussian Process) and gradient information are
not required during the search process [75, 204]. However, there is still much room for improve-
ment in addressing the huge computational overhead of evolutionary model deployment due to the
large search space and expensive evaluation costs. Acceleration strategies may be able to alleviate
the issue, and related works have been discussed in Section 6.

6 ACCELERATION STRATEGIES

EDL is a high computational overhead task, mainly due to the large search space and highly time-
consuming evaluation [213]. To overcome this challenge, various acceleration strategies [14, 179]
have been developed to accelerate the optimization. In this section, we summarize the speed-up
strategies from the aspects of algorithm design to the hardware implementation, as shown in
Figure 6.
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Fig. 6. Overview of acceleration strategies.

From the algorithm design point of view, we summarized a number of acceleration strategies
from population initialization to evaluations.

• Initialization:
(1) Reduced population: The simplest way of acceleration during the initialization stage is to

set the population with a small size. In other words, less evaluations are required with
a smaller size of population, since the evaluation of a candidate architecture is time-
consuming [213]. As a result, some studies [13, 14] use small populations with a fixed
size to speed up their evolutionary process, such as CARS (size = 32) [212], ESNB (size
= 30) [238], and ECDNN (size = 60) [237]. In contrast, some other studies use dynamic
sizes of populations during the optimization. In Reference [56], the population size is
dynamically changed to reach a balance between algorithmic efficiency and population
diversity.

(2) Efficient search space: Another way is to design efficient search space to speed up the
search process. For example, an architecture constructed on the basis of cell-wise search
space [118] is composed of many similar structures of cells and only representative cells
need to be optimized, which contributes to significant computational speed-up.

• Evaluations:
(1) Early stopping policy: A relatively small number of training epochs are used to reduce

the training cost (i.e., early stopping policy), since the training time is reduced [2, 179, 186].
(2) Reduced training set: Some methods are designed to reduce the size of the training

set to improve training efficiency at the expense of a little accuracy [115, 165]. Besides,
low-resolution data (e.g., ImageNet 32) [36] is also commonly used as the training set to
accelerate the search process for the optimal architecture.

(3) Weight inheritance1:
– Supernet-based inheritance: It uses an over-parameterized and pre-trained supernet to en-

code all candidate architectures (i.e., subnets). In other words, the subnets share weights
of the identical structures from the supernet, and they are directly evaluated on the
validation dataset to obtain their model accuracy [42, 50, 154, 165].

– Parent-based inheritance: It inherits weights from previously trained networks (i.e.,
parental networks) instead of a supernet, since offspring individuals retain some iden-
tical parts of their parental architectures [49, 103, 157, 157, 240]. As a result, offspring

1In References [105, 162, 163], Rumelhart/Hinton/LeCun used the term “weight sharing” to mean that different network con-

nections/links share the same set of weights, and pointed out that “weight sharing” is the core of shared weight NNs/CNNs.

More recent [123, 205] use of this term refers to “weight/parameter replications” or “weight inheritance.”
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architectures can inherit the weights of the identical parts and no longer need to be
trained from scratch.

– In MP, the weights of candidate networks can be inherited from the pre-trained model
(i.e., pruned model). Different from the supernet-based inheritance methods, this pre-
trained model is not over-parameterized. For example, He et al. [75] used classical base-
lines (e.g., ResNet and DenseNet) as the model to be pruned. During the search process,
all candidate solutions inherit the weights of the baseline models and fine-tune them to
obtain accuracy.

(4) Surrogate model: Since the evaluation of an architecture is time-consuming [118, 213],
cheap surrogate models have been introduced in AO as performance predictors to reduce
the computational time [123].
– Online performance predictors: They are trained online on the datasets sampled from past

several epochs [118], including a sequence of data pairs with different training epochs
and their corresponding performance of these epochs [123]. After that, they will be used
for the performance prediction on new architectures. To reduce the true evaluations of
architectures, some performance predictors directly predict whether a candidate archi-
tecture can be survived into next iteration through a trained ranking or classification
method, such as classification-wise AO [126]. Reference [142] designed SVM-based sur-
rogate model for feature selection, where training data for surrogate model was built by
difference method.

– Offline performance predictors: They are regression models mapping the architectures
to specific performance. The predictors can be trained in an offline manner, so they
are able to predict the performance of architectures during the entire search process.
Consequently, they can significantly reduce the computational burden [112, 175, 176].
For FS, Liu et al. [117] designed surrogate models for each low-dimensional subspace
divided from the high-dimensional space to accelerate the search process in a parallel
way.

(5) Population memory: Population memory is used to store elite individuals from different
generations during the optimization [10, 63, 133, 180]. When a new individual is generated,
it does not need to be evaluated again if it is the same as an individual in the memory. In
other words, the performance of individuals sharing the same architectures is the same
and can be acquired via the population memory instead of training from scratch. This
mechanism relies on the fact that similar or same individuals may repeatedly appear in
different generations.

According to the above introduction, we can conclude that many of them improve the search
efficiency at the expense of sub-optimality. For example, a small population cannot well cover
a multi-objective optimal front. Parameter sharing may lead to the biased search due to much
similarities among the individuals. Highly accurate surrogates need a large number of training
data, which are commonly time-consuming. Population memory heavily relies on the random
emergence of similar or same individuals.

Hardware implementation: Importantly, a powerful hardware platform can significantly
speed up the search process under the reasonable utilization of computing resources (e.g., cloud
computing [34] and volunteer computers [15]). Parallel computation is a powerful tool to decom-
pose large search problems into small sub-problems, which can be simultaneously optimized by
several cheaper hardware [89, 90]. For example, Lorenzo et al. [122] proposed a parallel PSO al-
gorithm to search for optimal architecture of CNN. The security of the computing device also be-
comes an important consideration. For this reason, an emerging decentralized privacy-preserving
framework is applied to AO, which unites multiple local clients to collaboratively learn a shared

ACM Computing Surveys, Vol. 56, No. 2, Article 41. Publication date: September 2023.



Survey on Evolutionary Deep Learning 41:23

Table 2. Different Acceleration Strategies

Algorithm design

Initialization Reduced population

Model generation:
[14, 56, 115, 212]

Model deployment:
[237, 238]

Evaluation

Early stopping policy
Model generation:
[2, 12, 14, 59, 134, 148, 179]

Reduced training set
Model generation:
[115, 165, 194]

Weight inheritance

Supernet-based
sharing

Model generation:
[42, 50, 154, 165]

Parent-based
sharing

Model generation:
[2, 31, 49, 59, 103, 166, 240]

Other
Model deployment:
[75, 238]

Surrogate model

Online performance
predictors

Data preparation:
[142, 143]

Model generation:
[112, 120, 123, 126]

Offline performance
predictors

Data preparation:
[23, 55, 117]

Model generation:
[113, 156, 176]

Population memory

Data preparation:
[10, 133]

Model generation:
[37, 108, 131, 180]

Hardware implementation
Model generation:
[34, 89, 90, 241]

global model trained on the parameters or gradients of the local models, instead of the raw data.
For example, Zhu et al. [241] first proposed a real-time federated NAS that can not only optimize
the model architecture but also reduce the computational payload. Specifically, the decentralized
system is able to accelerate the algorithm efficiency of federated NAS. Besides, data encryption
is employed on the transmitted data (parameters or gradients of the local models) between the
clients and the server to ensure the privacy even though all of the training is performed in local.
Accordingly, federated NAS is highly efficient and secure, which may become a new hot research
topic.

Table 2 lists the common acceleration strategies to improve the algorithm efficiency. It is noted
that multiple strategies can be utilized together to improve the computational speedup. For exam-
ple, Lu et al. [123] employed supernet and learning curve performance predictor in NAS, while Liu
et al. [115] leveraged a small population size and a small dataset to reduce the time overhead of
evaluations. Besides, we can observe that the acceleration strategies are mainly focused on model
generation, and few acceleration methods are designed for data preparation and model deploy-
ment. Designing more acceleration strategies for specific optimization scenarios is an interesting
direction.

7 APPLICATIONS, OPEN ISSUES, AND TRENDS

7.1 Applications

EDL algorithms have been widely used in various real-world applications. In practice, great
developments have been achieved in computer vision (CV), natural language processing
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(NLP) and other practical applications (e.g., crisis prediction and disease prediction). The
corresponding descriptions are presented in Section 3.1 of the online supplementary material due
to the page limit.

7.2 Open Issues

EDL is a hot research topic in both fields of DL and EC. There are a large number of publications
on various top conferences and journals, such as ICCV, CVPR, GECCO, TPAMI, TEVC, TCYB,
and TNNLS (see the reference list). Yet some challenges remain to be resolved (e.g., acceleration
strategies, effectiveness, large-scale datasets, safety, privacy, ethicality, and end-to-end
EDL). The presentations of these open issues are provided in Section 3.2 of online supplementary
material because of the page limit.

7.3 Challenges and Future Trends

Although remarkable progress has been made in EDL, there are still many promising lines of re-
search, such as fair comparisons, interpretability, and exploring more scenarios. The above
mentioned contents are introduced in Section 3.3 of online supplementary material.

8 CONCLUSIONS

With the development of ML and EC, many EDL approaches have been proposed to automatically
optimize the parameters or architectures of deep models following the EC optimization framework.
EDL approaches show competitive performance in robust and search capability, in comparison
with the manually designed approaches. Therefore, EDL has become a hot research topic.

In this survey, we first introduced EDL from the perspective of DL and EC to facilitate the
understanding of readers from the communities of ML and EC. Then, we formulated EDL as a
complex optimization problem and provided a comprehensive survey of EC techniques in solving
EDL optimization problems in terms of data preparation, model generation to model deployment
to form a new taxonomy (i.e., what, where, and how to evolve/optimize in EDL). Specifiically,
we discussed the solution representations and search paradigms of EDL at different stages of its
pipeline in detail. Then, the pros and cons of EC-based approaches in comparison to non-EC based
ones are discussed. Subsequently, various applications are summarized to show the potential ability
of EDL in handling real-world problems.

Although EDL approaches have achieved great progress in AutoML, there are still a number
of challenging issues to be resolved. For example, effective acceleration strategies are essential
to reduce the expensive optimization process. Another issue is to handle large-scale datasets and
how to perform fair comparisons between different EDL approaches or non-EC-based methods.
More investigations are required to theoretically analyze or interpret the search ability of EDL. In
addition, a lot of efforts are required on improving the performance of EDL on both benchmarks
(e.g., large-scale and small-scale data) and real-world applications. Last, the development of end-
to-end EDL is challenging but deserves much efforts.
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