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Introduction 

If you have never taken a calculus course, and now find that you need to know calculus—this is the book 

for you. If you have already taken a calculus course, but felt like you never understood what the teacher 

was trying to tell you—this book can teach you what you need to know. If it has been a while since you 

have taken a calculus course, and you need to refresh your skills—this book will review the basics and reteach 

you the skills you may have forgotten. Whatever your reason for needing to know calculus, Calculus Success 

in 20 Minutes a Day will teach you what you need to know. 

► Overcoming Math Anxiety 

Do you like math or do you find math an unpleasant experience? It is human nature for people to like what 

they are good at. Generally, people who dislike math have not had much success with math. 

If you have struggles with math, ask yourself why. Was it because the class went too fast? Did you have 

a chance to fully understand a concept before you went on to a new one? One of the comments students fre¬ 

quently make is, “I was just starting to understand, and then the teacher went on to something new.” That is 

why Calculus Success is self-paced. You work at your own pace. You go on to a new concept only when you 

are ready. 

IX 



INTRODUCTION 

When you study the lessons in this book, the only person you have to answer to is you. You don’t have 

to pretend you know something when you don’t truly understand. You get to take the time you need to under¬ 

stand everything before you go on to the next lesson. You have truly learned something only when you 

thoroughly understand it. Take as much time as you need to understand examples. Check your work with the 

answers and if you don’t feel confident that you fully understand the lesson, do it again. You might think you 

don’t want to take the time to go back over something again; however, making sure you understand a lesson 

completely may save you time in the future lessons. Rework problems you missed to make sure you don’t 

make the same mistakes again. 

► How to Use This Book 

Calculus Success teaches basic calculus concepts in 20 self-paced lessons. The book includes a pretest, a 

posttest, 20 lessons, each covering a new topic, and a glossary. Before you begin Lesson 1, take the pretest. The 

pretest will assess your current calculus abilities. You’ll find the answer key at the end of the book. Each answer 

includes the lesson number that the problem is testing. This will be helpful in determining your strengths and 

weaknesses. After taking the pretest, move on to Lesson 1, Functions. 

Each lesson offers detailed explanations of a new concept. There are numerous examples with step-by- 

step solutions. As you proceed through a lesson, you will find tips and shortcuts that will help you learn a con¬ 

cept. Each new concept is followed by a practice set of problems. The answers to the practice problems are 

in an answer key located at the end of the book. 

When you have completed all 20 lessons, take the posttest. The posttest has the same format as the 

pretest, but the questions are different. Compare the results of the posttest with the results of the pretest you 

took before you began Lesson 1. What are your strengths? Do you have weak areas? Do you need to spend 

more time on some concepts, or are you ready to go to the next level? 

► Make a Commitment 

Success does not come without effort. If you truly want to be successful, make a commitment to spend the 

time you need to improve your calculus skills. 

So sharpen your pencil and get ready to begin the pretest! 
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Pretest 
Before you begin Lesson 1, you may want to get an idea of what you know and what you need to learn. 

The pretest will answer some of these questions for you. The pretest is 50 multiple-choice questions 

covering the topics in this book. While 50 questions can’t cover every concept, skill, or shortcut taught 

in this book, your performance on the pretest will give you a good indication of your strengths and 

weaknesses. 

If you score high on the pretest, you have a good foundation and should be able to work your way 

through the book quickly. If you score low on the pretest, don’t despair. This book will take you through the 

calculus concepts, step by step. If you get a low score, you may need to take more than 20 minutes a day to 

work through a lesson. However, this is a self-paced program, so you can spend as much time on a lesson as 

you need. You decide when you fully comprehend the lesson and are ready to go on to the next one. 

Take as much time as you need to do the pretest. When you are finished, check your answers with the 

answer key at the end of the pretest. Along with each answer is a number that tells you which lesson of this 

book teaches you about the calculus skills needed for that question. You will find the level of difficulty 

increases as you work your way through the pretest. 

1. (0 0 0 0 
2. 0 0 0 0 
3. 0 0 0 0 
4. 0 0 0 0 
5. 0 0 0 0 
6. 0 0 0 0 
7. 0 0 0 0 
8. 0 0 © 0 
9. 0 0 0 0 

10. 0 0 0 0 
11. 0 0 © 0 
12. 0 0 © 0 
13. © 0 © 0 
14. 0 0 © 0 
15. 0 0 © 0 
16. 0 0 © 0 
17. 0 0 © 0 
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18. 0 © © 0 
19. 0 © © 0 
20. 0 © © 0 
21. © © © 0 
22. © © © 0 
23. 0 0 © 0 
24. 0 0 © 0 
25. 0 0 © 0 
26. 0 0 © 0 
27. 0 0 © 0 
28. 0 0 © 0 
29. 0 0 © 0 
30. 0 0 © 0 
31. 0 0 © 0 
32. 0 0 © 0 
33. 0 0 © 0 
34. 0 0 © 0 

35. 0 © © 0 
36. 0 0 © 0 

37. 0 0 0 0 

38. © 0 0 0 

39. © © © © 
40. © © © © 
41. © 0 © © 
42. © 0 0 © 
43. © 0 0 © 
44. © 0 0 0 

45. © 0 0 © 
46. © 0 0 © 
47 0 0 0 0 
48. © © 0 © 
49. © © 0 © 
50. 0 0 0 0 



PRETEST 

1. What is the value of /(4) when 

f(x) = 3X2 — Vx? 

a. 44 

b. 46 

c. 140 

d. 142 

2. Simplify g(x + 3) when g(x) = x2 — 2x + 1. 

a. x2 + 4x + 4 

b. x2 — 2x + 4 

c. x2 — 2x + 13 

d. x2 + 4x + 10 

2 
3. What is f° g(x) when f(x) = x — — and 

g(x) = x + 3? 

a. x-1-3 
x 

b. 2x - - + 3 
x 

c. x2 — 2 + 3x — — 
x 

Use the following figure for questions 5 and 6. 

5. Where is f(x) increasing? 

a. (—oo,l) and (5,oo) 

b. (1,5) 

c. (1,6) 

d. (5,oo) 

6. Where does /(x) have a point of inflection? 

a. (0,5.5) 

b. (1,6) 

c. (3,3) 

d. (5,1) 

d. x + 3 — 
2 

x + 3 

4. What is the domain of h(x) = —-? 
A 1 

a. x ^ 1 

b. x + 0 

c. x # — 1 and x ^ 1 

7. What is the equation of the straight line through 

(2,5) and (-1,-1)? 

a. y = 2x + 5 

b. y — 2x + 1 

c. y — — 2x + 9 

d. y = —2x — 3 

d. x ¥= —1, x ¥= 0, and x =£ 1 

2 
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8. Simplify 645. 

a. 4 

b. 8 

c. 32 

d. 4,096 

9. Simplify 2-3. 

1 

a' 8 

b. 8 

c. —8 

d. —6 

10. Solve for x when 3X = 15. 

a. 5 

b. ln(5) 

ln(15) 

c- w 

d. ln(12) 

11. Evaluate sin 

a. 
_1 
2 

b. 
1 

2 

c. 
V2 

2 

d. 
2 

12. Evaluate tan 

a. —1 

b. 1 

c- 1" 

d. \Tl 

x2 - 1 
13. Simplify lim—;- 

F 7 x^x2 + 1 

a. -1 

b. 
3 

5 

c. 
15 

17 

d. 
7 

9 

14. Simplify lim-y-. 
x-^ir — 1 

a. —1 

b. 1 

1 

C‘ 2 

d. undefined 

x + 3 
15. Evaluate lim-- 

x—>2“ X — 2 

a. 00 

b. —00 

c. 
I 

4 

d. undefined 

3 
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16. What is the slope of /(x) = 3x 4- 2 at x = 5? 

a. 2 

b. 17 

c. 3x 

d. 3 

17. What is the slope of g(x) 

x = 3? 

a. 2 

b. 8 

c. 14 

d. 2x + 2 

18. Differentiate 7z(x) = 4X3 — 5x + 1. 

a. 12X2 

b. 12X2 - 5 

c. 12X2 - 5x 

x2 + 2x — 1 at 

d. 12X2 — 5x 
x 

40 
19. The height of a certain plant is 41-— inches 

after t > 1 weeks. How fast is it growing after 

two weeks? 

a. 5 inches per week 

b. 10 inches per week 

c. 21 inches per week 

d. 31 inches per week 

20. What is the derivative of y = x2 — 3cos(x) ? 

dy 
a. — = 2x + 3sin(x) 

dy 
b. = 2x — 3sin(x) 

c. ^ = 2x — 3cos(l) 

, dy 
d. ^ = 2x — 3tan(x) 

21. Differentiate /(x) = ln(x) — & + 2, 

a. /'(x) = ln(x) + e* 

b. /'(x) = ln(x) — ? 

c. f(x) =- + e* 
J y ' x 

d* /'(*) = “ ~ c* 

22. Differentiate g(x) = x2sin(x). 

a. 2xcos(x) 

b. 2x + cos(x) 

c. 2xsin(x) + x2cos(x) 

d. 2xsin(x)cos(x) 



PRETEST 

23. Differentiate 

a. 0 

b. 
1 

x 

24. Differentiate y = tan(x). 

a. sec2(x) 

b. csc(x) 

cos2(x) — sin2(x) 
C* 2/ \ 

cos (x) 

d. sin(x)cos(x) 

25. Differentiate /(x) = e[x + 7. 

a. ix 

b. e4x2+7 

c. 8xe4x2+7 

d. (4X2 + 7)e4x2~8 

26. Differentiate (x2 — l)5. 

a. lOx 

b. {lx)5 

c. 5(x2 - l)4 

d. 10x(x2 — l)4 

27. Find ^ if y2 + xy x3 + 5. 

dy 3X2 — y 

dx 2y + x 

dy 3X2 

dx 1 + 2y 

dy 3X2 — 3y 

dx X 

dy 
28. Find if sin(y) = 4X2. 

dy 
a- ~JX = 8x~ cos(f) 

dy 

b' dx = 8*cosW 

dy 
c. — = cos(y) — 8x 

ax 

dy 

d' ~dx= 8xsec(>d 

5 



PRETEST 

29. What is the slope of x2 + y2 = 1 at 

a. — 1 

b. 1 

c. 
V3 

3 

32. Evaluate lim 
x—»oo 

4X2 — 5x + 2 

1 - x2 

a. 4 

b. -4 

c. 2 

d. undefined 

30. If the radius of a circle is growing at 4 feet per 

second, how fast is the area growing when the 

radius is 10 feet? 

a. 2077 square feet per second 

b. 8077 square feet per second 

c. IOO77 square feet per second 

d. 40077 square feet per second 

31. The height of a triangle increases by 3 inches 

every minute while its base decreases by 1 inch 

every minute. How fast is the area changing 

when the triangle has a height of 10 inches and a 

base of 100 inches? 

a. It is increasing at 145 square inches 

per minute. 

b. It is increasing at 500 square inches 

per minute. 

c. It is decreasing at 1,500 square inches 

per minute. 

d. It is decreasing at 3,000 square inches 

per minute. 

33. Evaluate lim 
x—> — oo 

Ax’ + 6x + 4 

x3 + lOx — 1 

a. —oo 

b. oo 

c. -4 

d. 4 

ln(x) 
34. Evaluate lim -——-. 

X—KX) JX I 2 

1 

a- 3 

b. 2 

c. 3 

d. 0 

6 



PRETEST 

35. Which of the following is the graph of c. 



PRETEST 

36. Where is g(x) = x4 — 6X2 + 5 concave down? 

a. (1,12) 

40. What is 

•4 

f(x) dx ? 
Jo 

b. (-6,5) 

c. (-V3,V3) 

d. (-1,1) 

37. A 5,000-pound block of ice melts at a rate of 200 

pounds each day. If the price of ice is 5<t a pound 

and increases by 1 $ each day, in how many days 

will the block have a maximal value? 

a. 5 days 

b. 10 days 

c. 15 days 

d. 20 days 

38. A box with a square bottom and no top must 

contain 108 cubic inches. What dimensions will 

minimize the surface area of the box? 

a. 2 

b. 3 

c. 10 

d. 12 

a. 2 X 2 X 27 

b. 8X8X3 

c. 6X6X3 

d. 4 X 4 X 6.75 

39. If f g(x) dx = 5 and 

f 8 

what is 

a. —20 

b. 1 

c. 3 

d. 9 

g(x) dx ? 

•5 

g(x)dx 
h 

—4, then 

41. If g(x) is the area under the curve y = t3 + 4t 

between t = 0 and t = x, what is g'(x) ? 

a. x3 + 4x 

b. 3X2 + 4 

c. -7X4 + 2x 
4 

d. 0 

42. Evaluate (3X2 + 8x + 5)dx. 

a. 6x + 8 

b. 6x + 8 + c 

c. x3 + 4X2 + 5x 

d. x3 + 4X2 + 5x + c 

8 
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f 9 

43. Evaluate 

7 

Vxd. !X. 

a. 
1 

6 

b. 3 

c. 12 

d. 18 

44. Evaluate sin(x)dx. 

a. cos(x) + c 

b. — cos(x) + c 

c. sin(x) + c 

d. —sin(x) + c 

45. Evaluate 

i*2 

5X3 — x 

x2 — 1 

+ c 

dx. 

b. ln(x — 1) + c 

c. lr^x2 — 1) + c 

d. —ln(x? — 1) + c 

46. Integrate e?xdx. 

a. J-e5* + c 

b. e?x + c 

c. e5 + c 

d. ^-e5 + c 

47. Evaluate 4x2cos(x3)dx. 

a. 4sin(x3) + c 

b. — sin(x3) + c 

c. —x3sin(x3) + c 

d. —x2sin(x3) + c 

48. Evaluate f x(x2 + 2)5 dx. 
J0 

a. 73 

b. 81 

c. 

d. 

665 

12 

81 

9 



49. Integrate xln(x) dx. 

a. -odXn^x) + c 

b. xln(x) — ln(x) + c 

c. x2ln(x) + ^x2 + c 

d. -^x2ln(x) — ~x2 + c 

PRETEST 

50. Evaluate xsin(x) dx. 

a. —xcos(x) + sin(x) + c 

b. ^x2cos(x) + c 

c. — ^■x2cos(x) + c 

d. — xcos(x) + cos(x) + c 



PRETEST 

► Answers 

1. b. Lesson 1 

2. a. Lesson 1 

3. d. Lesson 1 

4. c. Lesson 1 

5. a. Lesson 2 

6. c. Lesson 2 

7. b. Lesson 2 

8. b. Lesson 3 

9. a. Lesson 3 

10. c. Lesson 3 

11. d. Lesson 4 

12. a. Lesson 4 

13. c. Lesson 5 

14. c. Lesson 5 

15. b. Lesson 5 

16. d. Lessons 6, 7 

17. b. Lessons 6, 7 

18. b. Lesson 7 

19. b. Lesson 8 

20. a. Lesson 8 

21. d. Lesson 8 

22. c. Lesson 9 

23. c. Lessons 8,9 

24. a. Lesson 9 

25. c. Lesson 10 

26. d. Lesson 10 

27. b. Lesson 11 

28. d. Lessons 4,11 

29. c. Lesson 11 

30. b. Lesson 12 

31. a. Lesson 12 

32. b. Lesson 13 

33. b. Lesson 13 

34. d. Lesson 13 

35. a. Lesson 14 

36. d. Lesson 14 

37. b. Lesson 15 

38. c. Lesson 16 

39. d. Lesson 16 

40. c. Lesson 16 

41. a. Lesson 17 

42. d. Lesson 18 

43. d. Lesson 18 

44. b. Lesson 18 

45. d. Lesson 19 

46. a. Lesson 19 

47. b. Lesson 19 

48. c. Lesson 19 

49. d. Lesson 20 

50. a. Lesson 20 



. 



LESSON 

Functions 

Calculus is the study of change. It is often important to know when something is increasing, when it 

is decreasing, and when it hits a high or low point. Much of the business of finance depends on pre¬ 

dicting the high and low points for prices. In science and engineering, it is often essential to know 

precisely how fast quantities such as temperature, size, and speed are changing. Calculus is the primary tool 

for calculating such changes. 

Numbers, which are the focus of arithmetic, are no longer the objects of our study. This is because they 

do not change. The number 5 will always be 5. It never goes up or down. Thus, we need to introduce a new 

sort of mathematical object, something that can change. These objects, the centerpiece of calculus, are 

functions. 

► Functions 

A function is a way of matching up one set of numbers with another. The first set of numbers is called the 

domain. For each of these numbers in a set, the function assigns exactly one number from the other set, the 

range. 

3 



Parentheses Hint 

It is true that in aigebra, everyone is taught “parentheses mean multiplication.” This means that 

5(2 + 7) = 5(9) = 45. If x is a variable, then x(2 + 7) = x(9) = 9x. However, if f is the name of a func¬ 

tion, then f(2 + 7) = f(9) = the number to which f takes 9. The expression f(x) is pronounced “f of x” and 

not “f times x.” This can be confusing, so an apology is necessary. Mathematicians use parentheses to 

mean several different things and expect everyone to know the difference. Sorry! 

For example, the domain of the function could 

be the numbers 1, 4, 9, 25, and 100; and the range 

could be 1, 2, 3, 5, and 10. Suppose the function takes 

1 to 1,4 to 2, 9 to 3,25 to 5, and 100 to 10. This could 

be illustrated by the following: 

l-> 1 

4 —> 2 

9 —» 3 

25—> 5 

100->10 

Because we sometimes use several functions at 

the same time, we give them names. Let us call the 

function we just mentioned by the name Eugene. Thus, 

we can ask, “Hey, what does Eugene do with the num¬ 

ber 4?” The answer is “Eugene takes 4 to the number 2.” 

Mathematicians are notoriously lazy, so we try to 

do as little writing as possible. Thus, instead of writing 

“Eugene takes 4 to the number 2,” we often write 

“Eugene(4) = 2” to mean the same thing. Similarly, we 

like to use names that are as short as possible, such as 

/(for function), g (for function when /is already being 

used), h, and so on. The trigonometric functions in 

Lesson 4 all have three-letter names like sin and cos, 

but even these are abbreviations. So let us save space 

and use /instead of Eugene. 

Because the domain is small, it is easy to write 

out everything: 

/(1)= 1 
/(4)= 2 

/(9)= 3 
/(25) — 5 

/(100) = 10 

However, if the domain were large, this would get 

very tedious. It is much easier to find a pattern and use 

that pattern to describe the function. Our function / 

just happens to take each number of its domain to the 

square root of that number. Therefore, we can describe 

/ by saying: 

/(a number) = the square root of that number 

Of course, anyone with experience in algebra 

knows that writing “a number” over and over is a waste 

of time. Why not just pick a variable to represent the 

number? Just as/is our favorite name for functions, lit¬ 

tle x is the most beloved of all variable names. Here is 

the way to represent our function /with the absolute 

least amount of writing necessary: 

f(x) = Vx 

This tells us that putting a number into the func¬ 

tion /is the same as putting it into Thus, 

/(25) = V25 = 5 and /(4) = VI = 2. 

Example 

Find the value of g(3) if g(x) = x2 + 2. 



FUNCTIONS 

Solution 

Replace each occurrence of x with 3. 

g(3) = 32 + 2 

Simplify. 

g( 3) = 9 + 2= 11 

Example 

Find the value of h( — 2) if /i(f) = t3 — 2? + 5. 

Solution 

Replace each occurrence of f with — 2. 

h{~2) = {-if - 2(-2)2 + 5 

Simplify. 

h{-2) = -8 - 2(4) + 5 = -8 - 8 + 5 = -11 

► Practice 

1. Find the value of /(5) when /(x) = 2x — 1. 

2. Find the value of g( — 3) when 

g(x) — x3 + x2 + X + 1. 

3. Find the value of when /z(f) = t2 + 

4. Find the value of f{7) when f(x) = 2. 

5. Find the value of k{4) when 

k( u) = u2 + 2 u — —. 
v y u 

6. Find the value of h{64) when 

h(x) — Vx — X/x. 

7. Suppose that after t seconds, a rock thrown off a 

bridge has height s(f) = -16Z2 + 201 + 100 

feet off the ground. How high is it after 3 

seconds? 

8. Suppose that the profit on making and selling x 

X 
cookies is P(x) = - - 1Q QQ() - $10. How 

much profit is made on 100 cookies? 

^ Plugging Variables into 
Functions 

Variables can be plugged into functions just as easily as 

numbers can. Often, though, they can’t be simplified as 

much. 

Example 

Simplify f(w) if /(x) = Vx + 2X2 + 2. 

Solution 

Replace each occurrence of x with w. 

f(w) = \/w + 2 w2 + 2 

That is all we can say without knowing more about w. 

Example 

Simplify g(a + 5) if g(t) — t2 — 3t + 1. 

Solution 

Replace each occurrence of t with (a + 5). 

g(a + 5) = (a + 5)2 — 3 {a + 5) + 1 

Multiply out (a + 5)2 and —3{a + 5). 

g(fl + 5) = a2 + 10fl + 25 - 3a - 15 + 1 

Simplify. 

g(a + 5) = a2 + 7a + 11 

5 
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Example 
f(x + a) — f(x) 

Simplify if /(x) = x2. 

13. g(2x) - ^(x) when g(t) = ^ - 6t 

14. f(x + a) — f(x) when /(x) = x2 + 4x — 5 

Solution 

Start with what needs to be simplified. 

f(x + a) - /(x) 

a 

h(x + a) — h(x) , s 
15. when h(x) = 3x + 2 

a 

s(x + a) — six) 
16. ^ when g(x) — x2 2x + 1 

Use f(x) = x2 to evaluate f(x + a) and /(x). 

(x + a)2 — x2 

a 
► Composition 

Multiply out (x + a)2. 

x2 + 2 xfl + a2 — x2 

a 

Now that we can plug anything into functions, we can 

plug one function into another. This is called compo- 

Cancel out the x2 and the — x2. 

2xa + a2 

a 

sition. The composition of function /with function g 

is written f° g. This means to plug g into / like this: 

f° £(*) = Ad*)) 

It may seem that/comes first in f° g{x), reading 

Factor out an a. 

(2x + a) a 

a 

from left to right, but actually, the g is closer to the x. 

This means that the function g acts on the x first. 

Cancel an a from the top and bottom. 

2 x + a 

Example 

If /(x) = Vx + 2x and g(x) = 4x + 7, then what 

is the composition /° /x)? 

► Practice Solution 

Simplify the following. 

Start with the definition of composition. 

f° SO) = /(£(*)) 

9. f(y) when /(x) = x2 + 3x - 1 
Use g(x) = 4x + 7. 

10. f(y + 1) when /(x) = x2 + 3x — 1 f° &x) = /(4x + 7) 

11. /(x + a) when /(x) = x2 + 3x — 1 
Replace each occurrence of x in /with 4x + 7. 

f° g(x) = V4x + 7 + 2(4x + 7) 

12. ^(x2 + Vx) when g(f) = ^ — 6f Simplify. 

/° £(x) = V4x + 7 + 8x + 14 

6 



FUNCTIONS 

Conversely, to evaluate g ° f(x), we compute: 

g°f(x) = g(/(x)) 

Use f(x) = Vx + 2x. 

g°Kx) = g(Vx + 2x) 

Replace each occurrence of x in g with Vx + 2x. 

g°f(x) = 4(Vx + 2x) + 7 

Simplify. 

g 0 /(x) = 4\/x + 8x + 7 

Notice that f° g(x) and g ° f(x) are different. This is 

usually the case. 

Example 

If f(x) = x2 + 2x + 1 and g(x) = 5x + 1, then 

what is /° g[x) ? 

Solution 

Start with the definition of composition. 

f° g(x) = M*)) 

Use g(x) = 5x + 1. 

f° g(x) = f(5x + 1) 

Replace each occurrence of x in /with 5x + 1. 

f° &(x) = (5x + l)2 + 2(5x + 1) + 1 

Simplify. 

f° g(x) = 25X2 + 20x + 4 

► Practice 

Using f(x) = g(x) = x3 - 2X2 + 1, and 

h(x) = x — Vx, simplify the following compositions. 

17. fo g{x) 

18. g°f(x) 

19. fo h(t) 

20. /o/(x) 

21. h° h(x) 

22. g0 h{9) 

23. h°f°g[x) 

24. f°h° /(2x) 

► Domains 

In the beginning of the lesson, we defined the function 

Eugene as: 

f(x) = Vx 

However, we left out a crucial piece of information: the 

domain. The domain of this function consisted of only 

the numbers 1,4,9,25, and 100. Thus, we should have 

written 

/(x) = Vx if x = 1, 4, 9, 25, or 100 

Usually, the domain of a function is not given 

explicitly like this. In such situations, it is assumed that 

the domain is as large as it possibly can be. The domain 



FUNCTIONS 

consists of all numbers that don’t violate one of the fol¬ 

lowing two fundamental prohibitions: 

■ Never divide by zero. 

■ Never take an even root of a negative number. 

If you divide by zero, the entire numerical uni¬ 

verse will collapse down to a single point. If dividing by 

zero were allowed, then all numbers would be equal. 

Four would equal five. Negative and positive would be 

equivalent. “It’s all the same to me” would be the cor¬ 

rect answer to every math question. While this might 

be appealing to some people, it would make calculus, 

the study of change, impossible. If only one number 

existed, there could be no change. Thus, we automati¬ 

cally rule out any situation where division by zero 

might occur. 

Example 

What is the domain of /(x) 
x — 2 

Solution 

We must never let the denominator x — 2 be zero, so 

x cannot be 2. Therefore, the domain of this function 

consists of all real numbers except 2. 

The prohibition against even roots (like square 

roots) of negative numbers is less severe. An even root 

of a negative number is an imaginary number. Useful 

mathematics can be done with imaginary numbers. 

However, for the sake of simplicity, we will avoid them 

in this book. 

Example 

What is the domain of g(x) = V3x + 2 ? 

Solution 

The numbers in the square root must not be negative, 
2 

so 3x + 2 ^ 0, thus x ^ ——. The domain consists 

of all numbers greater than or equal to — 
3 ‘ 

Do note that it is perfectly okay to take the square 

root of zero, since Vo = 0 . It is only when numbers 

are less than zero that even roots become imaginary. 

Example 
V4 —x 

Find the domain of k(x) = —z- 
xr A 5x A 6 

Solution 

To avoid dividing by zero, we need x2 + 5x + 6 A 0, 

so (x A 3)(x + 2) A 0, thus x A —3 and x A —2. 

To avoid an even root of a negative number, 

4 — x^O so x < 4. Thus, the domain of k is 

x<4,xA — 3 , x A —2. 

► Practice 

Find the domain of each of the following functions. 

1 
25. /(x) 

(x A 3)(x — 5) 

26. h(x) = Vx + 1 

27. k(t) 
Vt A 5 

28. g(x) = x2 + 5x — 6 

29. f(a) 
3x A 7 

30. h(x) = x 

31. k(x) = 

32. M = 

X 

x + 8 

8 u 

\A + 3 u(u A 3) 
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LESSON 

Graphs 

A function can be fully described by showing what happens at each number in its domain (for exam¬ 

ple, 4—> 2) or by giving its formula (for example, f(x) = Vx). However, neither of these provides 

a clear overall picture of the function. 

Luckily for us, Rene Descartes came up with the idea of a graph, a visual picture of a function. Rather 

than say 4—>2 or/(4) = 2, we plot (4,2) on the Cartesian plane, which would look like Figure 2.1. 

4 over 

Figure 2.1 

9 



Note on Finding Coordinates 

We put they into the formula y = f(x) = Vx to imply that they-coordinates of our points are the num¬ 

bers we get by plugging the x-coordinates into the function f. 

► Practice 

Plot the following points on a Cartesian plane. 

1. (3,5) 

2. (-3,4) 

3. (2,-6) 

4. (-1,-5) 

5. (0,3) 

6. (-5,0) 

7. (0,0) 

For the function f(x) = x2 - 2x + 5, plot the point 

at the following positions. 

9. x = 3 

10. x — 1 

11. x= 0 

12. x= -2 

If we plotted all the points in the domain of 

f(x) = Vx (not just the whole numbers, but all the 

fractions and decimals, too), then the points would be 

so close together that they would form a continuous 

curve as in Figure 2.2. 

The graph shows us several interesting charac¬ 

teristics of the function /(x) = Vx. Because the 

graph starts at x = 0 and runs to the right, this means 

that the domain is x > 0 . 

We can see that the function /(x) = Vx is 

increasing (going up from left to right) and not decreas¬ 

ing (going down from left to right). 

The function /(x) = Vx is concave down 

because it curves downward (see Figure 2.3) like a 

frown and not concave up like a smile (see Figure 2.4). 

Figure 2.3 

Figure 2.4 

Example 

Use the graph of the following function (see Figure 

2.5) to determine the domain, where the function is 

increasing and decreasing, and where the function is 

concave up and concave down. 

20 



Mathematical Notation Note 

An apology must be made for mathematical notation here. An expression like (2,8) is ambiguous. Is this 

a single point with coordinates x = 2 and y = 8? Is this an interval consisting of all the points between 2 

and 8? Only the context can make clear which is meant. If we read “at (2,8),” then this is a single point. 

If we read “on (2,8),” then it refers to an interval. 

Solution 

The domain of g consists of all real numbers because 

there is a point above or below every number on the 

x-axis. 

The function g is increasing up to the point at x 

= 2, where it then decreases down to x = 8, and then 

increases ever afterward. To save space, we say that g 

increases on (—oo,2) and on (8,oo), and that g 

decreases on (2,8). 

The point at (2,6) where g stops increasing and 

begins to decrease is the highest point in its immedi¬ 

ate area and is called a local maximum. The point at 

(8,3) is similarly a local minimum, the lowest point in 

its neighborhood. These points tend to be the most 

interesting points on a graph. 

The concavity of gis trickier to estimate. Clearly 

gis concave down in the vicinity of x = 2 and concave 

up around x = 7 and x = 8. The exact point where the 

concavity changes is called a point of inflection. On this 

graph, it seems to be at the point (5,4), though some 

people might imagine it a bit earlier or later. Thus, we 

say that g is concave down on (—oo,5) and concave up 

on (5,oo). 

To be completely honest, any information 

obtained by looking at a graph is going to be a rough 

estimate. Is the local maximum at (2,6), or is it at 

(2.0003,5.9998)? There is no way to tell the difference. 

Graphs made up by people, like the ones in this lesson, 

tend to have everything interesting happen at whole 

numbers. Graphs formed using real-world data tend to 

be much less kind. 

Example 

Use the graph in Figure 2.6 to identify the domain of 

h, where it is increasing and decreasing, where it has 

local maxima and minima, where it is concave up and 

down, and where it has points of inflection. 

Solution 

The first thing to notice is that h has three breaks, or 

discontinuities. If we wanted to trace the graph of h 

with a continuous motion of a pencil, then we would 

have to lift up the pencil at x = — 2, x = 2, and at 

x = 5. The little circle at (5,3) indicates a hole in the 

graph where a single point has been taken out. This 

means that x = 5 is not in the domain, just as x = — 1 

has no point above or below it. The situation at x = 2 

is more interesting because x = 2 is in the domain, 
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GRAPHS 

with the point (the shaded-in circle) at (2,-2) repre¬ 

senting h(2) = —2. All of the points immediately 

before x = 2 have y-values close to y = 3, but then 

there is an abrupt jump down to x = 2. Such jumps 

look awkward on a graph, but occur often in real life, 

like the way the cost of postage leaps up as soon as a 

letter weighs more than one ounce. 

Because of the discontinuities, we have to name 

each interval separately, as in: h increases on 

(—oo,—2), (—2,2), (2,5), and on (5,oo). As well, h is 

concave up on (—oo,—2), (2,5), and on (5,oo), and 

concave down on (—2,2). 

There is a local minimum at (2,-2), because the 

point there is the lowest in its immediate vicinity, 1 < 

x < 3. There is no local maximum in that range 

because the y-values get really close to y = 3; there is 

no highest point in the range. 

Similarly, a point of inflection can be seen at x = 

2 but not at x = —2 because there can’t be a point of 

inflection where there is no point! 

The situation at x = —2 is called an asymptote 

because the graph begins to flatten out like a straight 

line. The more we would continue to draw the graph 

off the top and bottom, the straighter this line would 

become. In this case, x = —2 is a vertical asymptote 

because it approximates a vertical line at x = —2. 

Because the graph appears to flatten out like the 

straight horizontal line y— 0 (the x-axis) as the graph 

goes off to the left, this means that the graph of 

y = h(x) appears to have a horizontal asymptote at 

y = 0. 

► Practice 

Use the graph of each function to determine the 

domain, the discontinuities, where the function is 

increasing and decreasing, the local maximum and 

minimum points, where the function is concave up 

and down, the points of inflection, and the asymptotes. 
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GRAPHS 

13- 15. 
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GRAPHS 

17, 

18. 

19. 

20. 

► Note 

We can obtain all sorts of useful information from a 

graph, such as its maximal points, where it is increas¬ 

ing and decreasing, and so on. Calculus will enable us 

to get this information directly from the function. We 

will then be able to draw graphs intelligently, without 

having to calculate and plot thousands of points (the 

method graphing calculators use). 
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► Straight Lines 

The easiest and most beloved of all graphs are straight 

lines. Human beings tend to build, move, and even 

think in straight lines. There is something calming and 

reassuring about straight lines. With any two points, 

we can immediately tell how much a line is increasing 

or decreasing, as seen in Figure 2.7. 

Figure 2.7 

“How much a line is increasing or decreasing” is 

called the slope and is calculated by dividing “rise over 
5) 

run : 

, rise 
slope = - 

r run 

y-change 

x-change 

- ft ~ ft 
%2 ~ Xx 

Example 

What is the slope of the line through points (2,7) and 

(-1,5)? 

► Practice 

Find the slope between the following points. 

21. (1,5) and (2,8) 

22. (2,5) and (6,7) 

23. (7,3) and (-2,3) 

24. (-2,-4) and (-6,5) 

25. (2,7) and (5,w) 

26. (4,10) and (x,y) 

► Point-Slope Formula 

The most wonderful thing about straight lines is that 

their slopes are always the same. Thus, if a straight 

line has slope m and goes through the point (x^yf), 

then any other point (x,y) on the line will calculate 

the same slope: 

y-y\ -= m 
x — xx 

By cross-multiplying, we get the point-slope formula 

for finding the equation of a straight line: 

y - Ti = m(x - *0 
or equivalently 

y — m(x — xj + yx 

Here, y is a function of x, which could be written as 

y(x) — m(x — xx) + yx. 

Example 

Find the equation of the line with slope —2 through 

point (-1,8). Graph the line. 

Solution 

5-7 -2 2 
slops = rr32 -35-7 
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Solution 

y= -2(* - (-1)) + s 

y = — 2x + 6 

This form of the equation is called the slope- 

intercept form because —2 is the slope and 6 is where 

the line intercepts the y-axis (see Figure 2.8): 

The slope of — 2 = —— means the y-value goes 

down 2 with every 1 increase in the x-value. 

The slope of — means the y-value goes up 1 

when the x- value increases by 3. 

► Practice 

Find the equation of the straight line with the given 

information and then graph the line. 

27. slope 2 through point (1,-2) 
2 

28. slope —— through point (6,1) 

29. through points (5,3) and (-1,-3) 

30. through points (2,5) and (6,5) 

Example 

Find the equation of the straight line through (2,6) 

and (5,7). Graph the line. 

Solution y _ g 
The slope is — _ ^ = —, so the equation is 

1 116 
y = ~(x — 2) + 6 = —x + (see Figure 2.9). 
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LESSON 

Exponents and 
Logarithms 

► Exponents 

Because exponents form such an important part of calculus, we shall briefly review them. Generally, an means 

“multiply the base a as many times as the exponent n.” 

an = a - a - a-- - a 

n times 

Note: The exponent formulas in this lesson all assume that a is a positive number. 

Examples 

Review the following examples by multiplying out. 

34 = 3 • 3 • 3 • 3 = 81 

25 = 2 • 2 • 2 • 2 • 2 = 32 
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EXPONENTS AND LOGARITHMS 

51 = 5 

106 = 1,000,000 

A number to the first power is just that number: 

a1 — a 

When two numbers with the same base are multiplied, 

their exponents are added. 

an • am = (a - a - a-” a)-(a‘ a‘ a-- - a) = an+m 

n times m times 

Examples 

Review and simplify the following. 

410.47 = 417 

102•105 = 107 

53-5 = 53 • 51 = 54 

72 • 74 • 73 = 79 

The rule about adding exponents has an inter¬ 

esting consequence. We know that \/5 • t/5 = 5 

because this is what “square root” means. Also, how¬ 

ever, 53-53 = 53+3 = 51 = 5. Because \/5 and 5~2 

act exactly the same, they are equal: \/~5 = 52. This 

works for square roots, cube roots, and so on: 

a2 = V a, a3 = V a, a4 = v a, ... 

Examples 

Simplify the following. 

92 = \J~9 = 3 

633 = ^64 = 4 

When two numbers with the same base are divided, 

their exponents are subtracted. 

Examples 

Work through the following simplifications. 

3! 
32 

11 

3 • 3 • 3 • 3 • 3 3 • 3 • 3 • ^5 

15 

IT 

3-3 

ll9 

= 3 • 3 • 3 = 33 

The rule about subtracting exponents has two inter- 

54 
esting consequences. First, = 1 because any 

nonzero number divided byitself is one. Also, 

s4 
__ _ ^4-4 _ 5°/p]luS) 50 = l. In general: 

a0 = 1 

Simplify the following. 

3° = 1 

200° = 1 

The second consequence follows from: 

23 1 1 
— =-—-=--- = — while 
27 2 • 2 • 2 • 2 • 2>-2^ 2 • 2 • 2 • 2 24 

23 1 
also —^ = 23~7 = 2~4.Thus, 2-4 — . In general: 

Examples 

Work through the following simplifications. 

1 
55 
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EXPONENTS AND LOGARITHMS 

► Practice ► Exponential Functions 

Simplify the following. 

1. 23 • 22 

We can form an exponential function by leaving the 

base fixed and varying the exponent. 

2. 4 • 42 

5. 6° 

6. 38 • 3 • 3~5 

7. 91 

8. 25' 

9. 5"1 

10. 8' 

11. 2~3 

12. 8* 

13. 

14. 1(T5 

16. 
1 

16"' 

Example 

The function /(x) = 2X has the graph shown in Fig¬ 

ure 3.1. Note that 2X is quite different from x2. For 

example, when x= 10, the value of 2X is 

210 = 2*2*2*2*2‘2*2*2*2*2 = 1,024, while the 

value of x2 is 102 = 10*10 = 100. 

Example 

The function g(x) = 3X has the graph shown in Fig¬ 

ure 3.2. For reasons that will become clear later, a very 

nice base to use is the number e = 2.71828..., which, 

just like 7t = 3.14159..., can never be written out 

completely. 
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Exponents and Logarithms 

The exponential function takes x to e* and the natural logarithm takes it right back to x, so ln(ex) = x. 

Similarly, eln(x) = x. 

Because 2 < e < 3, the graph of y = e* fits 

between y= 2X and y = 3* (see Figure 3.3). 

Other than the strange base, everything about e* 

is normal. 

e°= 1 

e"* em = en+m 

Another useful function is the opposite of e*, 

known as the natural logarithm ln(x). Just as subtract¬ 

ing undoes adding, dividing undoes multiplying, and 

taking a square root undoes squaring, the natural log¬ 

arithm undoes ex. 

If y= e?, then ln(y) = ln(e*),so ln(y) = x. 

The graph of y= ln(x) comes from flipping the 

graph of y = e* across the line y = x, as depicted in 

Figure 3.4. 
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EXPONENTS AND LOGARITHMS 

The laws of ln(x) are rather unusual. 

ln(fl) + In (b) — In (a* b) 

Divide both sides by ln(10). 

. ln(7) 

* ln(10) 

A calculator can be used to find a decimal approxima- 

ln(7) 
tion: , . ~ 0.84509, if desired. 

ln(10) 

Example 

Simplify ln(25) + ln(4) — ln(2). 

Solution 

Use ln(a) + In(b) — ln(a* b). 

ln(25 • 4) - ln(2) 

Use ln(a) — In(b) = In 

In 
25 -A 

2 ) — ln(50) 

ln(a) — In(b) - In 

In (an) = n*ln(a) 

► Practice 

Simplify the following. 

17. e3 • es 

The last of the three preceding laws is useful for 

turning an exponent into a matter of multiplication. 

Example 

Solve for x when 10x = 7 . 

19. e° 

20. ln(V) 

Solution 

Take the natural logarithm of both sides. 

In(l0*) = ln(7) 

21. 
22.ln(7) + ln(2) 

Use ln(a") = n • ln(a). 

x- ln(10) = ln(7) 

23.ln(24) - ln(6) 

24. Solve for x when 2X — 10. 

25. Solve for x when 8X= 11. 

26. Solve for x when 3X* 35 = 100. 
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LESSON 

Trigonometry 

Some very interesting and important functions are formed by dividing the length of one side of a right 

triangle by the length of another side. These functions are called trigonometric because they come from 

the geometry of a triangle. The domain consists of the measures x of angles. Let H represent the length 

of the hypotenuse, A represent the length of the side adjacent to the angle x, and the letter O represent the 

length of the side opposite (away) from the angle x. A right triangle with angle x is depicted in Figure 4.1. 
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Mnemonic Hint 

Some people remember the first three trigonometric functions by saying “Oliver Had A Heap Of Apples” 

to remember the and of sin(x), cos(x), and tan(x). Others say SOA CAH TOA to remember 
H H A 

sin(x) = j, cos(x) = jj, and tan(x) = j. 

The six trigonometric functions, sine (abbrevi¬ 

ated sin), cosine (cos), tangent (tan), secant (sec), cose¬ 

cant (esc), and cotangent (cot), are defined for each 

angle x by dividing the following sides: 

• n O 
sin(x) = — 

cos(x) = — 

tan(x) = ° 

/ x H 
sec(x) = — 

v ' A 

csc(x) = — 

cotO) - o 

The first thing to notice is that all of the func¬ 

tions can be obtained from just sin(x) and cos(x) using 

the following trigonometric identities. 

tan(x) 
O _j[ _ sin(x) 

A A cos(x) 

sec(x) 
1_ 

cos(x) 

csc(x) 
H = 1_ _ 1 

O ^ sin(x) 

cot(x) 
A 

O 

A_ 
H_ 

O 
H 

cos(x) 

sin(x) 

Thus, all of the trigonometric functions can be evalu¬ 

ated for an angle x if the sin(x) and cos(x) are known. 

The next thing to notice is that the Pythagorean 

theorem, which, stated in terms of the sides O, A, and 

H, is O2 + A2 = H2. And, if we divide everything by 

H2, we get the following: 

H2 + H2 H2 

Thus, (sin(x))2 + (cos(x))2 = 1. To save on paren¬ 

theses, we often write this as sin2(x) + cos2(x) = 1. 

Because no particular value of x was used in the cal¬ 

culations, this is true for every value of x. 

Drawing triangles and measuring their sides is an 

impractical and inaccurate method to calculate the 

values of trigonometric functions. Most people use 

calculators instead. Although, when using a calculator, 

it is very important to make sure that it is set to the 

same format for measuring angles that you are already 

using: that is, degrees or radians. 
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Conversion Hint 

To convert from degrees to radians, multiply by 

To convert from radians to degrees, multiply by 

.A 'MglQ?: 

277 77 

360 ” 180 

360  180 

277 77 

There are 360 degrees in a circle, possibly because 

ancient peoples thought that there were 360 days in a 

year. As the earth went around the sun, the position of 

the sun against the background stars moved one degree 

every day. The 2tt radians in a circle correspond to the 

distance around a circle of radius 1. Because radians 

already correspond to a distance, there is no need for 

conversions when calculating with radians. Mathe¬ 

maticians thus use radians almost exclusively. 

■ To convert from degrees to radians, multiply by 

277 _ 77 

360 “ 180 ' 

■ To convert from radians to degrees, multiply by 

360 = 180 

277 77 

Example 

Convert 45° into radians. 

Solution 
77 77 

45° = 45 • ——r radians = — radians 
180 4 

► Practice 

Convert the following into radians. 

1. 30° 

2. 180° 

3. 270° 

4. 300° 

5. 135° 

Convert the following into degrees. 

8. 277 

9. 
77 

To 

10. 477 

~2 

Example 
277 

Convert — radians into degrees. 
► Trigonometric Values of 

Nice Angles 

Solution 
277 ,. 277 180° „ 
— radians = — •-— 120 

3 3 77 

There are a few nice angles for which the trigonomet- 
77 o 

ric functions can be easily calculated. If x = — = 45 , 

then the two legs of the triangle are equal. If the 

hypotenuse is H = 1, then we have what you can see in 

Figure 4.2. 



TRIGONOMETRY 

0 = A 

Figure 4.2 

By the Pythagorean theorem, A2 + A2 — 1, so 
, 1 

2A~ = 1 and A2 = —. This means that 0 = A = 

1 1 

V2 V2 
If we rationalize the denominator, we 

get 

sin 

1 1 V2 V2 
V2 \4 V2 2 

V2 

. Thus: 

cos 

77 

77 

o 
H 

A 
H 

V2 
2 

1 

x= Vi 
1 2 

Another nice angle is x = 60° = —, because it is 

found in equilateral triangles such as those seen in Fig¬ 

ure 4.3. This triangle can be cut in half to form the tri¬ 

angle shown in Figure 4.4. 

Figure 4.3 

Figure 4.4 

36 



TRIGONOMETRY 

By the Pythagorean theorem, 

so O2 = 1 - \ = 4. Thus, O = 
4 4 

means that: 

'[l = yr-ms 

Use x = 
7r 

sec 
7T 

cos(f) 

Use cos 
77 Vi 

sec 
77 

V2 

Simplify. 

sec 
77 

V2 
= Vi 

► Practice 

Use the trigonometric identities to evaluate the 

following. 

11- tan(f) 

We can flip that last triangle around to calculate 

the trigonometric functions for the other angle 

x = 30° = (see Figure 4.5). 

Example 

Use the trigonometric identities to find sec 

12‘ tan(f) 

13‘ CSC(f) 

14. sec(f) 

15. co«(f) 

16‘ cot(f) 

Solution 

Use the trigonometric identity for sec. 

1 
sec(x) 

cos(x) 

17. sec(f) 

18' csc(f) 
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TRIGONOMETRY 

► Trigonometric Values for 
Angles Greater Than 90° = ^ 

Notice that when the hypotenuse has length 1, the sine 

of the angle is the height of the triangle and the cosine 

is the width. Equivalently, the sine is the y-value of the 

point where a ray of the given angle intersects with the 

circle of radius 1. Similarly, the cosine is the x-value. 

Example 
77 

For example, when x = — = 30°, we have the picture 

shown in Figure 4.6. 

x-axis, and every other angle is measured counter¬ 

clockwise up from this. 

This can be used to find the trigonometric values 
77 

of nice angles greater than 90° — —. The trick is to 

77 77 ' i i 

use either a 30°, 60°, 90° triangle (a —, —, — trian- 
6 3 2 

gle) or else a 45°, 45°, 90° triangle (a y, y, y 

triangle) to find the y-value(sine) and x-value (cosine) 

of the appropriate point on the unit circle. As before, 

calculating the trigonometric values for non-nice 

angles requires the help of either much more mathe¬ 

matics or the use of a calculator. 

The circle of radius 1 around the origin is called 

the unit circle. Note in Figure 4.7 that the angle of 

measure 0 runs straight to the right along the positive 

-1 
y 

Figure 4.6 

Example 
277 

Find the sine and cosine of 120° = —. 

Solution 
• 77 77 77 

For this angle, we use a y, y, y triangle, as 

shown in Figure 4.8 to find the x- and y-values. The 
277 

y-value of the point where the ray of angle y- hits 
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Figure 4.8 

Example 
577 

Find the sine and cosine of ~~ = 225° 
4 

Solution 

Because 225° is a multiple of 45°, we use a 

45°, 45°, 90° triangle to find the x- and y-values. As 

seen in Figure 4.9, both of the coordinates are 

V2 

point on the unit circle. See Figure 4.10. We conclude 

that cos^y^ = 0 andsin^y^j = 1 from the x-and 

y-values of the point. Using the trigonometric identi- 

X 71 
ties, we can calculate that esc 

sin(f) 
= 1 and 

77-\ cos(f) o 
cotl — ) = . /7T, = y = 0. The tangent and secant 

sin(f) 

. ( 577 
negative, so sin I — 

2 a"d cos(t\ 

Vi 
are both negative. 

Example 

Find all of the trigonometric values for 90° 
77 

2 

Figure 4.10 

39 



TRIGONOMETRY 

functions, however, involve division by 0 and thus are 
TT 

left undefined. The angle x = — is not in the domain 

of tan and sec. 

Notice that all of the trigonometric functions are 

the same at 0° = 0 and 360° = 277. This is because 

turning around 360° leaves you facing in your origi¬ 

nal direction. Thus, everything repeats at this point. 

Using the table along with the fact that every¬ 

thing repeats, we can sketch the graphs of sin(x) and 

cos(x). See Figures 4.11 and 4.12. 

The functions sine and cosine are classic exam¬ 

ples of repeating, or oscillating, functions because of 

the way they wave up and down forever. 

Figure 4.11 
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► Practice 

Use the unit circle and the trigonometric identities to complete the following table. Find the answers to questions 

19 through 36. 

sin(x) cos(x) tan(x) sec(x) csc(x) cot(x) 

0° = 0 0 1 0 1 undef. undef. 

30° =? 
1 2 Vi 

2 *19* 2 Vi 
3 2 V3 

45° = f Vi 
2 

Vi 
2 1 V2 V2 1 

60° = f 
V3 

2 
1 
2 V3 2 2Vi 

3 
Vi 

3 

90° = f 1 0 undef. undef. 1 0 

120° = t 
Vi 
2 

1 
2 -VS -2 *20* Vi 

3 

135° = 3~f *21* *22* *23* *24* *25* *26* 

150° = 5f 
1 
2 

Vi 
2 

Vi 
3 

2 Vi 
3 2 -vs 

180° - 7T *27* -1 0 -1 *28* undef. 

210° = 7~f 
1 
2 

Vi 
2 

Vi 
3 

2V3 
3 -2 *29* 

225° = x 
Vi 

2 
Vi 

2 1 -V2 -V2 1 

240° = x *30* *31* *32* *33* *34* *35* 

270° = x -1 0 undef. undef. -1 0 

300° = x 
Vi 

2 
1 
2 -vs 2 2 Vi 

3 

Vi 
3 

315° = 7-f 
Vi 

2 
Vi 

2 -1 *36* -VS -1 

360° = 2tt 0 1 0 1 undef. undef. 

Note: The numbers appearing in bold with asterisks are questions 19 through 36. 
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19. Find the value that goes in the position in the 

table where you see *19*. 

20. Find the value that goes in the position in the 

table where you see *20*. 

21. Find the value that goes in the position in the 

table where you see *21*. 

22. Find the value that goes in the position in the 

table where you see *22*. 

23. Find the value that goes in the position in the 

table where you see *23*. 

24. Find the value that goes in the position in the 

table where you see *24*. 

25. Find the value that goes in the position in the 

table where you see *25*. 

26. Find the value that goes in the position in the 

table where you see *26*. 

27. Find the value that goes in the position in the 

table where you see *27*. 

28. Find the value that goes in the position in the 

table where you see *28*. 

29. Find the value that goes in the position in the 

table where you see *29*. 

30. Find the value that goes in the position in the 

table where you see *30*. 

31. Find the value that goes in the position in the 

table where you see *31*. 

32. Find the value that goes in the position in the 

table where you see *32*. 

33. Find the value that goes in the position in the 

table where you see *33*. 

34. Find the value that goes in the position in the 

table where you see *34*. 

35. Find the value that goes in the position in the 

table where you see *35*. 

36. Find the value that goes in the position in the 

table where you see *36*. 
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LESSON 

Limits 

Mathematicians, just like children, like to see what happens when we push limits. We are told not 

to divide by zero, so the temptation overwhelms us to see what happens when we divide by almost 

zero. The process of using almost numbers underlies the concept of a limit. 

Limits can be most easily seen graphically. For example, look at the graph of y — f(x) in Figure 5.1. 
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The domain of /is x V 2. We can’t plug x = 2 

into f. However, the hole is in a clear place, at (2,3). 

How do we know the hole has a y-value of 3? Well, the 

points on the curve with x-values near x = 2 have 

y-values close to y = 3. The closer we get to x = 2, the 

closer the y-values of the points come to y = 3. 

The mathematical shorthand for this is 

lim fix) = 3, which is pronounced “the limit as x 
x—>2 

approaches 2 of /(x) is 3.” 

We don’t have to just approach discontinuities, 

though. For example, lim /(x) = 4. Note that this is a 

statement about the points near x = 0 having /(x) 

near 4. The exact point at (0,4) isn’t used in evaluating 

the limit. 

We can also approach points from either the left 

or from the right. For example, take Figure 5.2 to be 

the graph of y = g(x). 

Here, lim g(x) — 4 and lim g(x) = 2. 

The little minus in lim means that we approach 
x->l+ rr 

x = 1 using numbers less than (to the left) of x = 1. As 

we approach x = 1 from the left-hand side, we slide up 

the graph through y-values that approach 4. Similarly, 

the plus in lim means “approach from the right.” 

From the right, the height of the graph slides down to 

y = 2 as x approaches 1. 

In this example, lim g(x) does not exist because 
X—»1 

there is no single y-value to which all of the points near 

x — 1 get close. Some are close to 4, and others are 

close to 2. Because there is no agreement, there is no 

limit. 

As another example, let Figure 5.3 be the graph 

of y = h(x).Here, lim h(x) = 2 because sliding up 

to x = 3 from the left has us pass through points with 

y-values near 2. Similarly, lim h(x) = 2. Because 

there is agreement from the left and right, we have the 

general limit, lim h(x) = 2 . Once again, notice that 
x—>3 

what happens at exactly x = 3 is irrelevant. Here 

h(3) = 5 , but the resulting point at (3,5) has no bear¬ 

ing on the limit of points approaching x = 3. 

Vertical asymptotes correspond with infinite 

limits. For example, take the graph in Figure 5.4 of 

y = k{x). 
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Here, lim k(x) — oo, lim k(x) = -oo,and 
x->2~ x—>2+ v ' 

lim k(x) does not exist. 

All of these examples involve discontinuities. We 

can rule them out in the following manner. If 

lim_ fix) — /(a) = lim fix), then / is continuous 
x—>a x—>a 

at x = a. In other words, if /(a) exists (there is a point 

Figure 5.5 

at x= a) and the limit from either side goes up to the 

same value, then the function flows continuously 

through that point. 

► Practice 

Use Figure 5.5 to evaluate the following. 

1. lim f(x) 

2. lim f(x) 

3. lim f{x) 
x-» - 1 y v ' 

4. /(-I) 

5. Is/continuous at x = — 1? 

6. lim f(x) 
x—>3“ J v 7 

7. lim fix) 
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8. lim /(x) 
x—>3 

that the limits approach the points obtained by plug¬ 

ging in values. 

9. /(3) 

10. Is/continuous at x = 1? 

Example 
x + 5 . 2 

Evaluate lim —;-and lim 3xr + x — 7. 
*->4 X + 10x x—>~2 

11. lim g(x) 
x—>1 

12- «(l) 

13. lim g(x) 
x—>3 

14. lim g(x) 
x—*3 

15. lim <Tx) 

16. lim g(x) 

Solution 
x + 5 

Because 4 can be plugged into , without 
XT i 1 \JX 

x -|- 5 
there being a division by zero, the limit lim -——— 

*-►4 X + lOx 

= ^ + ~. Similarly, lim 3X2 + x — 7 = 
16 + 40 56 *->-2 

3(—2)2 + (-2) -7 = 3. 

► Practice 

Evaluate the following limits. 

► Evaluating Limits 
Algebraically 

It is not necessary to have the graph of a function to 

evaluate its limits. If the limit can be plugged in with¬ 

out dividing by zero, that is how the limit is calculated. 

Technically, this works only with functions that 

are polynomials (formed by a variable added and mul¬ 

tiplied with constants) like Ax’ — lOx3 — 7, roots like 

Vx, rational functions (formed by dividing two poly- 

3x — 5 
nomials) like ^ + ^ ^ >and transcendental func¬ 

tions like the trigonometric functions, ln(x), and ex. 

Because this works for any combination of these func¬ 

tions added, subtracted, multiplied, divided, or com¬ 

posed, it works also for every function considered in 

this book. The reason is that all of these functions are 

continuous on their domains, and continuity ensures 

17. lim lOx3 + 4X2 — 5x + 7 
X—► ! 

of — 4 
18. lim * * 

x->2 lOx + 3 

19. lim 4—“ 
*-»3 XT + X 

sin(x) 
20. lim —— 

21. lim 2x + a + 1 
a—>0 

22. lim 3X2 + 3xa + a2 
a—>-0 

Dividing by a tiny number is equivalent to mul¬ 

tiplying by an enormous number. For example: 

_1_ _ 10,000 

10,000 5' 1 
50,000 

It is for this reason that if the denominator of a frac¬ 

tion approaches zero while the numerator goes to 

something nonzero, the result is an infinite limit. 
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The classic example is /(x) = — (graphed in 

Figure 5.6). This has the following limits at zero: 

lim — = — oo, lim — = oo, and lim — does 
x—>0 X x—^0 + X x—>0 X 

not exist. 

Because the denominator goes to zero while the 

numerator stays one in all of these cases, there is a ver¬ 

tical asymptote at x = 0. The function therefore 

approaches either positive or negative infinity from 

either side. When x is less than zero, as it always is when 

x—>0“, the function — is also negative. Thus, 

lim — — — oo. Similarly, as x—»0+, — is always 
X X 

positive, so lim — = oo. Finally, because the limit 
r x->0+ X 

from the two sides are different, the undirected limit 

lim — does not exist. 
x—>0 X 

Example 

x + 3 
Evaluate lim 7 , 

x—*2 (x - 2)(x - 4) 

Solution 

The numerator approaches 5 while the denominator 

approaches 0. Therefore, this limit from the right is 

either 00 or —00. What we need to figure out is 

whether the function is positive or negative at x-values 

just slightly larger than 2. We do this by looking at each 

factor individually. 

As x—>2+ , the factor (x + 3)—»5+ (a posi¬ 

tive number), (x — 2)—»0+ (a positive number), 

and (x — 4)—> —2+ (a negative number). Because 

x + 3 
the function ^ ^ is made of two positive 

parts and one negative part, the result will be negative, 

x + 3 
Thus, lim 

X^2+ (x — 2)(x - 4) 
= —00. 

There are other, perhaps easier, ways to evaluate 

such limits. One is to plug into the function a repre¬ 

sentative number. In the previous example, for 

instance, when x = 2.01, the function is 

(2.01) + 3 

((2.01) - 2)((2.01) - 4) “ “25‘ • BeC3USe thi$ i$ 

negative, the limit is —00. Another method will be cov¬ 

ered in Lesson 13. 

Example 

Evaluate lim 
x—> — 3 

(x + 1)(2 — x) 

(x + 3)(x + 5)' 

Solution 

Here, the numerator approaches —10, which isn’t zero, 

while the denominator approaches zero, so the limit is 

either 00 or —00. While x —> — 3 ~, the factors: 

(x + 1) —> — 2 (negative) 
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(2 — x) —»5+ (positive) 

(x + 3)—>0 (negative) 

(x + 5)—»2“ (positive) 

The combination of two negative factors and two pos¬ 

itive factors is positive, thus: 

(x + l)(2 - x) _ 

^im3- (x + 3)(x +5) °° 

► Practice 

Evaluate the following limits. 

1 
23. lim 

x-H~ X 1 

24. lim 
x + 5 

x->4+ X 

25. lim 
x 

x—>3 + X + 3 

26. lim 

27. lim 

(x + 2)(x - 5) 

x->3 + (x + 6)(x — 3) 

(x + 5)(x - 5) 

x->2 (x — 3)(x + 4) 

28. lim 7—~ 
X-+-5 (x + 5)2 

When both the numerator and the denominator 

go to zero, then there are two common tricks for sim¬ 

plifying the limit. The first is to factor. The second is to 

rationalize. The following example utilizes the first 

trick—factoring. 

Example 

Evaluate lim 
x2 — 2x — 8 

*-»4 x2 + x — 20 

Solution 

Here, both the numerator and denominator go to zero, 

so we aren’t guaranteed an infinite limit. First, factor 

the numerator and denominator. 

x2 —2x-8 (x-4)(x+2) 

x2 + x - 20 (x - 4)(x + 5) 

Because x =£ 4 as x- 

.. x2 — 2x — 8 
lim —;-= 
*->4 x2 + x — 20 

4, we can cancel 
x 

x 
= 1 

lim 
fyc-^-"4)(x + 2) 

lim 
(x + 2) 

x—>4 fyt-=>"'4j(x + 5) x—>4 (x + 5) 

Now we can plug in without dividing by zero. 

x2 — 2x — 8 
lim -7- 
*-►4 xr + x — 20 

lim 
(x + 2) 6 

9 

2 
3 x—>4 (x + 5) 

The following example utilizes the trick of 

rationalizing. 

Example 

x — 3 
Evaluate lim 

X—>9 X 

Solution 

Because both numerator and denominator go to zero, 

a trick is necessary. First, multiply the top and bottom 

by the part with the square root, but with the opposite 

sign between them. 

,. Vx — 3 .. ( Vx — 3\ ( Vx + 3^ 
lim -— = hm 
x—>9 X — 9 x—>9 

Simplify. 

lim 
x — 3 

x->9 X 
lim 

x 

J V\4+3, 

+ 3 Vx - 3Vx - 9 

9 x~*9 (x — 9)( Vx + 3) 

Eliminate —-- = 1. 
x — 9 
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lim 
x — 3 

— lim 
x->9 x 9 x-+9 + 3) 

Plug in. 

y2 — 9 
31. lim ——■— 

x—>4 X + 3 

x2 — 4x + 3 

lim 
x->9 X 

x — 3 
lim 
x->9 (Vx + 3) 

l 

6 

► Practice 

Evaluate the following limits. 

0 ~ 6Xx + 2) 29. lim t—, —;—7T 
x—» — 2+ (x + 2)(x + 1) 

32. lim 
x—>3 

33. lim 
x— 

34. lim 

35. lim 
a—y 0 

36. lim 
a—>0 

x2 + 2x - - 15 

x + 5 

x — 3 

Vx - 5 

(x - 25)(x + 1) 

(x + a)2 — x2 

a 

Vx + a — Vx 

a 

30. lim 
x — 2 

x—>2 X2 — 4 
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Derivatives 

Straight lines may be ideal to human beings, but most functions have curved graphs. This does not stop 

us from projecting straight lines on them! For example, at the point marked x on the graph in Figure 

6.1, the function is clearly increasing. However, exactly how fast is the function increasing at that point? 

Since “how fast” refers to a slope, we draw in the tangent line, the line straight through the point that heads 

in the same direction as the curve (see Figure 6.2). The slope of the tangent line tells us how fast the func¬ 

tion is increasing at the given point. 
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We can figure out the y-value of this point by 

plugging x into /and getting (x,/(x)). However, we 

can’t get the slope of the tangent line when we have just 

one point. To get a second point, we go ahead a little 

further along the graph (see Figure 6.3). If we go ahead 

by distance a, the second point will have an x-value of 

x + a and ay-value of f(x + a). 

Because this second point is on the curve and not 

on the tangent line, we get a line that is not quite the 

tangent line. Still, its slope will be close to the one we 

want, so we calculate as follows: 

/(x + a) - f(x) f{x + a) - f(x) 
slope = . .-=- 

(x + a) — x a 

To make things more accurate, we pick a second 

point that is closer to the first one by using a smaller a. 

This is depicted in Figure 6.4. 

In fact, if we take the limit as a goes to zero, we 

will get the slope of the tangent line exactly. This is 

called the derivative of /(x) and is written f'{x). 

f'(x) = lim 
a—>0 

f(x + a) - /(x) 

a 

Example 

What is the derivative of /(x) = x2 ? 

Solution 

Start with the definition of the derivative. 

/ (x) = lim- 
' a—>o a 

= slope of the tangent line at point (x,/(x)) Use /(x) = x2. 

f(x) = lim 
a—>0 

(x + a)2 — x2 

a 
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Multiply out and simplify. 

/'(*) = lin/+2a*+*2 
a—»0 a 

Factor and simplify. 

(2x + a)d 
f(x) = lim-j- 

v ' a—>o /t 

Plug in for the limit. 

f'(x) = lim 2x + a = 2x 
y v ' a—>0 

The derivative is /'(x) = 2x. This means that 

the slope at any point on the curve y = x2 is exactly 

twice the x-coordinate. The situation at x = —2, 

x = 0, and x = 1 is shown in Figure 6.5. 

Use g(x) = W 

\ Vx + a — Vx 
g (x) = lim- 

7 a—>0 a 

Rationalize the numerator. 

g'(x) = lim 
a—» 0 

/ Vx + a - VV / Vx + a + VxA 

V a / V Vx + a + Vx/ 

Multiply and simplify. 

S'M = lim 

4 + a + _V^' — y/^'^xr^a — 

a( Vx + a + Vx) 

Example 

What is the slope of the line tangent to g(x) = Vx 

at x = 9? 

Simplify. 

g'(x) = lim 
4 

a^° /f( Vx + a + Vx) 

Plug in to evaluate the limit. 

1 
Sf(x) - lim 

fl^° Vx + a + Vx 

=_1 

Vx + 0 + Vx 

1 

2 Vx 

The derivative of g(x) = Vx is thus 

g'(x) = —“=. This means that at x = 9, the slope of 
2 Vx 

the tangent line is g'( 9) = —^7= = —. This is illus- 
2V9 6 

trated in Figure 6.6. 

Solution 

Start with the definition of the derivative. 

</(x) = lim 
5 V ’ a—»0 

g(x+ a) ~ g(x) 

a 

Example 

Find the equation of the tangent line to 

h(x) = 2X2 — 5x + 1 at x = 3. 
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Solution 

To find the equation of the tangent line, we need a 

point and a slope. The y-value at x = 3 is 

h(3) = 2(3)2 — 5(3) + 1 = 4, so the point is (3,4). 

And to get the slope, we need the derivative. Start with 

the definition of the derivative. 

h(x + a) — h(x) 
h'(x) = lim- 

ci—>0 a 

Thus, the derivative of h(x) = 2X2 — 5x + 1 is 

h'(x) = 4x — 5. The slope at x = 3 is 

h'(3) = 4(3) — 5 = 7. The equation of the tangent 

line is therefore y = 7(x — 3) + 4 = 7x — 17. This 

is shown in Figure 6.7. 

Use h(x) = 2X2 — 5x + 1. 

/ x . 2(x + a)2 — 5(x + a) + 1 — (2X2 
h'(x) = lim - 

v 7 a-> o a 

5x + 1) 

Multiply out and simplify. 

, . , 2** + 4ax + 2a2-^-5a + /-p? + ^-/ 
h (x) = lim - 

a 

Factor out and simplify. 

h'(x) = lim 
v 7 a-> 0 

(4x + 2a — 5)/i 

Evaluate the limit. 

h'(x) — lim4x + 2a — 5 = 4x — 5 
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► Practice 

1. Find the derivative of /(x) = 8% + 2. 

2. If h(x) = x2 4- 5, then what is h'(x)? 

3. Find the derivative of g(x) — 10. 

4. What is the derivative of g(x) - 3 — 5x ? 

5. Find the derivative of f(x) = 3 Vx. 

6. If k(x) = x3, then what is k'(x)? 

7. Find the slope of f(x) — 3x* + x at x = 2. 

8. Where does the graph of g(x) = x2 — 4x + 1 

have a slope of 0? 

9. Find the equation of the tangent line to 

h(x) = 1 — x2 at (2,-3). 

10. What is the equation of the tangent line of 

k(x) = 5X2 + 2x at x = 1? 
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LESSON 

Basic Rules of 
Differentiation 

Using the limit definition to find derivatives can be very tedious. Luckily, there are many shortcuts 

available. For example, if function/is a constant, like f(x) = 5 or f(x') = 18, then f(x) — O.This 

can be proven for all constants c at the same time in the following manner. 

If: 

/(*) = c 

then: 

f\x) = Urn 
a—>0 

f(x + a) - f(x) 

a 
lim --- = lim - = 0 

>o a >o a 

All of the general rules in this chapter can be proven in such a manner, using the limit definition of the deriv¬ 

ative, though we shall not bother to do so. The first rule is the Constant Rule, which says that if f(x) = c 

where c is a constant, then f(x) = 0. 

Before we go any further, a word needs to be said about notation. The concept of the derivative was dis¬ 

covered by both Isaac Newton and Gottfried Leibniz. Newton would put a dot over an object to represent its 

derivative, much like the way f(x) represents the derivative of f(x). Leibniz would write the derivative of 

dy 
y (where x is the variable) as —. Newton’s notation is certainly more convenient, but Leibniz’s enables us 
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If f(x) = c where c is a constant, then f'(x) = 0. 

And, using Leibnez’s notation, if c is a constant, then “(c) = 0 . 

■ ■ Power Rule 

dx 
(x”) = n-xP' 

to represent “take the derivative of something” as — 

dy 
(something). Thus, if y = f(x), then = 

A 
dx 

(/(x)) = f'(x). Using Leibniz’s notation, the Con¬ 

stant Rule where c is a constant is J^-(c) = 0 . 

We will use both forms of the Constant Rule, 

depending on the situation . The next rule is the Power 

Rule, which is stated: -^-(x”) = n*x"_1. This rule says 

“multiply the exponent in front and then subtract one 

from it.” 

Example 

Differentiate f(x) = x2. 

Solution 

f(x) = 2X2-1 = 2xx - 2x 

Example 

Differentiate y = x5. 

Solution 
dy 

dx 
= 8X7 

Example 

Differentiate g(x) = Vx. 

Solution 

To use the Power Rule, we need g(x) expressed as x 

raised to a power, or: 

g(x) = x^ 

g'(x) = |x> 1 
J. 1 

2'\4 

1 

2Vx 

Notice how much easier it is to use the Power 

Rule to solve this problem than it was using the limit 

definition of the derivative in Lesson 6. 
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The Constant Coefficient Rule 

If a function has a constant multiplied in front, leave it while you take the derivative of the rest. 

Example 

Differentiate y = —5-. 
XT 

► Practice 

Differentiate each of the following. 

Solution 

Again, we have to rewrite y as x~2 so that it becomes 

x raised to a power. 

fy = A(l\ 
dx dx\^ J 

= -j~(x~2) = —2x~2~1 = ~2x~3 - —y 
dx XT 

Example 

Differentiate y = . 

Solution 

= P) - 

1 I _ 1 1 _2 1 
—P — — t 3 = -7 
3 3 3tl 

Notice that -7- means “take the derivative with 
dt 

respect to variable t” Usually, our variable is x, so the 

dy 
derivative of y = /(x) is ^ = f(x), but sometimes, 

we have other variables. If y — f(u), then 

dy 
— = f'(u) is the derivative with respect to u, for 
du 

example. 

1. /(x) = x5 

2. y — x7 

3. g(u) = iT5 

4. h(x) = 8 

5. y ~ t4 

6. y = x5 

7. /(x) = x100 

8. /(0 = -11 

9. /z(x) = x 

10. y = x> 

11. g(x) = x“* 

12. k(x) = 3^x 

13. y = \/m 

14. y = - 
x 

15. 

16. *(*) = ^ 
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The Additive Rule 

If parts of a function are added together, differentiate the parts separately. 

► The Constant Coefficient Rule 

The Constant Coefficient Rule is stated as follows: If a 

function has a constant multiplied in front, leave it 

while you take the derivative of the rest. This means 

that because -^(x8) = 8X7, then the derivative 

of 5X8 is 5 • (8x7) = 40x7. Just imagine that the con¬ 

stant steps aside and waits while you differentiate the rest. 

Examples 

Differentiate the following. 

h'(t) = —241 7 = 
24 

t7 

A'(r) = 27rr 

/(x) = llx4 

y = lOx2 

g(x) = J>\Tx = 3x5 

m = | = 4 r6 

y = 12x 

k(u) 

A(r) = 77 r2 

In that last example problem, don’t forget that 77 

is a constant, and thus 2tt r should be treated just as 

20r or 712r would. 

Remember that x° = 1. This means that a con¬ 

stant function such as /(x) = 5 could also be written 

/(x) = 5*1 = 5x°. Using both the Power Rule and 

the Constant Coefficient Rule, it would look like this: 

f{x) = 5(0 • x0_1) = 5-0-x-1 = 0 

This shows that the Constant Rule really isn’t 

necessary, because the Power Rule and the Constant 

Coefficient Rule together say that the derivative of a 

constant is zero. 

Solutions 

/'(x) = 44X3 

dy 
= 20x 

dx 

► The Additive Rule 

Next, we will examine the Additive Rule, which says 

that if parts of a function are added together, dif¬ 

ferentiate the parts separately. We know that 
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BASIC RULES OF DIFFERENTIATION 

“(lOx2) = 20x and ~(12x) = 12. The Additive 

Rule then says that if y = lOx2 + 12x, then 

d^ = ^10x2+12^= + = 
20x + 12. Because the lOx2 and 12x are added 

together, we differentiate them separately. 

Example 

Differentiate /(x) = Ax’ + 30X2. 

Solutions 

dy = l 

2'\/x 
+ 0 = 

2 Vx 

h'{x) = 40x4 + 40X3 - 9X2 + 14x - 5 

~i f / \ 12 _ i _ 2 12 2 
k(t)-Tt’-2t - ^ - 7 

► Practice 

Solution 

/'(x) = 20x4 + 60x 

Example 

Differentiate g(x) = x3 — 4X2. 

Differentiate the following. 

17. y = 3X7 

18. /(*) = 
A 

Solution 

This can be rewritten as addition: 

S(x) = x3 + (-4)x2 

thus: 

g'(x) = 3X2 + (—4) • 2x = 3X2 — 8x. 

The previous example shows that the Additive 

Rule applies to cases of subtraction as well. 

19. V(r) — \itt3 

20. g(f) 
l2d 

5 

21. k(x) = 1 — x2 

22. y = Ad - St + 70 

23. /(x) = 8X3 + 3X2 

Examples 

Differentiate the following. 

y = Vx + 4 = x1 + 4 

fz(x) = 8X5 + 10x4 - 3X3 + 7X2 - 5x + 4 

k(t) = 3T + 2 + 11 = 3f* + 2f1 + 11 

24. y = x2 — 3x + 5 

25. s(t) = -16? + 5t + 200 

26. F(x) = 6xm + lOx50 — Ax25 + 2x10 - 9 

27. g(x) = 3x + 5X3 

28. h(u) = u5 + 4k4 - 7u3 - 2u2 + 8u - 2 

29. y = 3 + | ^ 
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BASIC RULES OF DIFFERENTIATION 

30. y — id — u 2 Example 

Find all the derivatives of f(x) = x3 — 4od + 5x — 7. 

31. fix) = 4X2 — 8x + 5 + — 

Solution 

32. y = 4Vx + 9d/~x f(x) = od — 4 od + 5x — 7 

The derivative of the derivative is called the sec¬ 

ond derivative. The derivative of that is the third deriv¬ 

ative, and so on. This is where Newton’s notation really 
dy 

shines. If y = f(x), then the derivative lsffx = f'\x) 

cdy 
and the second derivative is —y = f"{x). The third 

doc 

d5y 
derivative is = f"'(x), and the tenth derivative, 

dl0y 
for example, is 10 = f w\x). We put the 10 in 

dx 

parentheses like that because counting the ten primes 

in fx) gets ridiculous. 

f(x) = 3 od — 8x + 5 

f"(x) = 6x — 8 

/'"(*) = 6 

r(x) = o 

All of the subsequent derivatives will also be zero, so 

we can write 

f-n\x) = 0 for n S: 4. 

Example 

Find the first three derivatives of y = \fx. 

► Practice 

33. Find the first four derivatives of f(x) — 

Solution 34. Find the second derivative of 

y=oe 
s(f) = -16 d + 20t + 150. 

35. Find the third derivative of 

dy l _i 

dx 2X ' 

y = 10x4 — 7od + 6x — 1. 

d2y i _i 

dod 4X 

36. Find the first three derivatives of y = 6^/t. 

d3y 3 

dx3 8X 2 

When working on multiple derivatives like this, 

it makes sense to leave the exponents negative and 

fractional. 
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LESSON 

Rates of Change 

I 
t is useful to contemplate slopes in practical situations. For example, suppose the following graph in Fig¬ 

ure 8.1 is for y = f(x), a function that gives the price y for various amounts x of cheese. Because the 

4-2 2 
straight line goes through the points (1 lb.,$2) and (2 lbs.,$4), the slope = 

per pound. 
2 lbs. — 1 lb. 1 lb. 

= $2 

Costs of Cheese 

Amount (in pounds) 

Figure 8.1 
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RATES OF CHANGE 

The slope is therefore the rate at which the cheese 

is sold, in dollars per pound. Because slope = 

y-change 
---, a slope will always be a rate measured in 
x-cnange 

y-units per x-unit. 

For example, suppose a passenger on a bus writes 

down the exact time she passes each highway mile 

marker. She then sketches the graph shown in Figure 

8.2 of the bus’s position on the highway over time. The 

slope at any point on this graph will be measured in y- 

units per f-unit, or miles per hour. The steepness of the 

slope represents the speed of the bus. 

► Practice 

For each of the following four graphs, give the rate that 

a slope represents. 

1. 

2. 
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RATES OF CHANGE 

3. 

Growth of a Baby 

Growth of a Sunflower 

Because the derivative of a function gives the 

slope of its tangent lines, these practice problems show 

that the derivative of a function gives its rate of change. 

An excellent example comes from position func¬ 

tions. A position function s( t) states where an object is 

at any given time. The derivative s'(f) states the rate at 

which that object’s position is changing—that is, the 

speed or velocity of the function. Thus, s'(t) = v(t). 

The second derivative s"(t) — v'(f) tells how the 

velocity is changing, or the acceleration. Thus, 

s"(f) = v'(t) = a(t) where s(f) is the position func¬ 

tion, v(f) is the velocity function, and a(t) is the 

acceleration function. 

Example 

Suppose an object rolls along beside a tape measure so 

that after t seconds, it is next to the inch marked 

s(f) = Af + 8t + 5 . Where is the object after 1 sec¬ 

ond? After 3 seconds? What is the velocity function? 

How fast is the object moving after 2 seconds? What is 

the acceleration function? 

Solution 

The position function s(t) = 4f + 8f + 5 tells us 

where the object is. After 1 second, the object is next to 

the s(l) = 17-inch mark on the tape measure. After 3 

seconds, the object is at the s(3) = 65-inch mark. 

The velocity function is v(f) = s'(f) = 81 + 8 . 

Thus, after 2 seconds, the object is moving at the rate 

of v(2) = 24 inches per second. Do realize that this 

velocity of 24 inches per second is an instantaneous 

velocity, the speed just at a single moment. If a car’s 

speedometer reads 60 miles per hour, this does not 

mean that it will drive for 60 miles or even for a full 

hour. The car might speed up, slow down, or stop. 

However, at that instant, the car is traveling at a rate 

that, if unchanged, will take it 60 miles in one hour. A 

derivative is always an instantaneous rate, telling you 
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RATES OF CHANGE 

the slope at a particular point, but not making any 

promises about what will happen next. 

The acceleration function is a(t) = v'(t) = 

s"( t) = 8 . Because this is a constant, it tells us that the 

object increases in speed by 8 inches per second every 

second. 

The most popular example of constant accelera¬ 

tion is gravity, which accelerates objects downward by 

32— every second. Because of this, an object 
sec 

thrown with a velocity of b feet per second from a 

height of h feet above the ground will have (after t sec¬ 

onds) a height of s(t) = — 16? + bt + h feet. 

The starting time is t = 0, at which point the 

object is s(0) — h feet off the ground, the correct 

initial height. The velocity function is v(f) = s'(t) 

= —321 + b. At the starting time t = 0, the velocity is 

v(0) = b, the desired initial velocity. The function 

v(f) = —321+ b means that 32 feet per second 

are subtracted from the initial velocity b every second. 

The acceleration function is a(t) = v'(t) = 

s"{t) = — 32. This is the desired constant acceleration. 

Example 

Suppose a brick is thrown upward at 10— from a 

150-foot rooftop. What are its position, velocity, and 

acceleration functions? 

Solution 

Because the initial velocity is b = 10— and the ini- 
sec 

tial height is h — 150 feet, the position function is 

s(t) = —1612 + lOf + 150. The velocity function is 

v(f) = s'(t) = — 32 f + 10. The acceleration is 

a(t) = — 32, a constant 32 feet per second downward 

each second. The negative sign indicates that gravity is 

acting to decrease the height of the brick, pulling it 

downward. 

Example 

Suppose a rock is dropped from a 144-foot tall bridge. 

When will the rock hit the water? How fast will it be 

going then? 

Solution 

Because the rock is dropped, the initial velocity is 

b — 0. The initial height is h = 144. Thus, 

s(t) = — 16? + 144 gives the height function. The 

rock will hit the water (have a height of zero) when: 

—16? + 144 = 0 

144 = 16? 

t = ±3 

And because — 3 seconds doesn’t make any sense, the 

rock will hit after 3 seconds. 

The velocity function is v(t) — s'(t) = —321; 

therefore, the rock will have a velocity of v(3) = — 96 

after 3 seconds. It will be traveling at a rate of 96 feet 

per second downward when it hits the water. 

Example 
A 

If p(t) — — — 80f + 50,000 gives the value, in 

thousands of dollars, of a start-up company after t 

days, then how fast is its value changing after 30 days? 

After 500 days? 
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RATES OF CHANGE 

Solution 

The derivative p'(t) = — - 80 gives the rate of 

change in value, measured in thousands of dollars per 

day. After 30 days, p'{30) = —74, so the company 

will be losing $74,000 of value every day. After 500 

days, p'(500) = 20, so the company will be gaining 

value at the instantaneous rate of $20,000 a day. 

► Practice 

25 
5. The height of a tree after t years is h(t) = 30-— 

feet when t > 1. How fast is the tree growing after 

5 years? 

6. The level of a river t days after a heavy rainstorm 

is L(t) = — t2 + 8t + 26 feet. How fast is the 

river’s level changing after 7 days? 

7. When a company makes and sells x cars, its 
y3 

profit is P(x) = — - 60X2 + 9,000x dollars. 

How fast is its profit changing when the com¬ 

pany makes 50 cars? Should the company make 

more cars? 

8. When a container is made x inches wide, it costs 
24 

C(x) = 0.8X2 4-dollars to make. How is the 
X 

cost changing when x = 3 inches? Would it be 

cheaper to increase or decrease the width? 

9. An electron in a particle accelerator is 

s(f) = t3 + 2? + 10 f meters from the start 

after t seconds. Where is it after 3 seconds? How 

fast is it moving then? How fast is it accelerating 

then? 

10. A brick is dropped from 64 feet off the ground. 

What is its position function? What is its velocity 

function? What is its acceleration? When will it 

hit the ground? How fast will it be traveling 

then? 

11. A bullet is fired upward at 800 feet per second 

from the ground. How high is it when it stops 

rising and starts to fall? 

12. A rock is thrown 10 feet per second down a 

1,000-foot cliff. How far has it gone down in the 

first 4 seconds? How fast is it traveling then? 

► Derivatives of Sine and Cosine 

It is by examining rates and slopes that we can find the 

derivative of sin(x). Look at the slopes at various 

points on its graph in Figure 8.2. It appears that the 

derivative function of sin(x) must oscillate between 

— 1 and 1, and must go through the following points 

(see Figure 8.3). The function cos(x) is exactly such 

an oscillating function (see Figure 8.4). This leads us to 

conclude -J~(sin(x)) = cos(x). 

A similar study of the slopes of cos(x) would 

show that ~(cos(x)) = —sin(x). The slopes of the 

cosine function are not the values of the sine function, 

but rather their exact negatives. 

Examples 

Differentiate the following examples. 

/(x) = 5sin(x) + 4X2 

y — 2 + cos(f) 

g(x) = sin(x) — cos(x) 
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Figure 8.2 
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Figure 8.3 
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Solutions 

/'(x) = 5cos(x) + 8x 

dy 

it= _sin(,) 

g'(x) = cos(x) + sin(x) 

► Practice 

Differentiate the following practice problems. 

13. y = Ax' + 10cos(x) + 3 

14. f(t) = 3sin(t) + j 

15. g(x) = 8x + 3 - cos(x) 

16. r(0) = ^-sin(0) + ^cos(0) 

17. h(x) = cos(x) + cos(5) 

18. Find the equation of the tangent line to 

/(x) = sin(x) + cos(x) at x 
77 

► Derivatives of the Exponential 
and Natural Logarithm 
Functions 

The reason why the nicest exponential function is e* 

where e = 2.71828 ... is because this makes for the 

following very nice derivative: 

' 

It is only with this exact base that the derivative of the 

exponential function is itself (see Figure 8.5). 

As for the inverse function ln(x), the natural 

logarithm is written as follows: 

^(lnW) = X 

Lesson 11 will contain a proof for this. 
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Examples 

Differentiate the following. 

► Practice 

/(x) — 4e* 
Differentiate the following. 

y= lOe* + 10 
19. f(x) = l+ x+ x2 + x3 + e* 

g(t) — 3e' + 2ln(f) 
20. g(t) = 12ln(f) + t2 + 4 

y = 8ln(«) - eu + 7u 
21. 7 = cos(x) — 10e* + 8x 

Solutions 
22. h(x) — Vx — 8ln(x) 

%
 

II 

'x
' 

23. k(u) = 3x? + 5e* + 11 

dy 
-f = 10e* 
dx 

24. Find the second derivative of f(x) = e* + ln(x). 

25. Find the 100th derivative of g(x) = 3ex. 

g'(t) = U + | 26. What is the slope of the tangent line to 

/(x) - ln(x) at x = 10? 

^ 8 « . 7 -t" =-e + 7 
AM u 
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LESSON 

The Product 
and Quotient 
Rules 

► The Product Rule 

When a function consists of parts that are added together, it is easy to take its derivative: Simply take the deriv¬ 

ative of each part and add them together. We are inclined to try the same trick when the parts are multiplied 

together, but it does not work. 

For example, we know that -—(x2) = 2x and J^x3) = 3X2. The derivative of their product is 

= 5x4. This shows that the derivative of a product is not the product of the derivatives: 

5x4 = ^ * lx^ ' lx^ = ^ ‘ ^ = 6x3 

Instead, we take the derivative of each part, multiply by the other part left alone, and add the results together: 

ix^ ■ ^= ^+ ^= (2x) ■r3 +13*2) ■ ^= 5x4 
This time, we did get the correct answer. 
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The Product Rule 

The Product Rule can be stated “the derivative of the first times the second, plus the derivative of the sec¬ 

ond times the first.” It can be proven directly from the limit definition of the derivative, but only with a few 

tricks and a lot of algebra. The Product Rule is given as follows: 

~(f(x) • g(x)) = f'(x) • g(x) + g'(x) • f(x) 

Example 

Differentiate y = x3sin(x). 

Solution 

Here, the “first part” is x3 and the “second part” is 

sin(x). Thus, by using the Product Rule, 

+ |(sin(*)W = 

3x2sin(x) + cos(x) • x3. This could be simplified as 

dy 
= x%3sin(x) + xcos(x)), but that’s not really all 

that’s necessary. 

Example 

Differentiate /(x) = ln(x) • cos(x). 

Solution 

/'(*) = j~(lnO))' cos(x) + ^(cos(x)) • ln(x) 

= ~ • cos(x) — sin(x) • ln(x) 

Thus, the derivative is: 

f(x) = - ln(x) • sin(x) 

Example 

Differentiate g(x) = 5X7 • eK. 

d (x,sin(xj) = —(x3) • sin(x) 
dx 

Solution 

= 35X6 • e* + e* • 5X7 = 5x?e*(7 + x) 

Using the product rule with e* can be a little bit 

confusing because there is no difference between the 

derivative of e* and e* “left alone.” Still, if you write 

everything out, the correct answer should fall into 

place, even if it looks weird. 

Example 

Differentiate y = t2ln( t). 

Solution 

I - + iww 
= 2f • ln(f) + ~ * f2 

= 2f • In (t) + t 

= t{ 2 + ln(f)) 

Example 

Differentiate y = x5sin(x)cos(x). 

Solution 

We’ll use the Product Rule with x5 as the first part and 

sin(x)cos(x) as the second part. However, in taking 

the derivative of sin(x)cos(x), we’ll have to use the 
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The Quotient Rule 

d_( f(x)\ = f'{x)g(x) - g'{x)f{x) 

dx\g(x)J (g(x)f 

Product Rule a second time. It might get messy, but it 

will work if everything is written down carefully. 

dx = ’ sin(*)cos(*) + ^(sin(x)cos(x)) ‘ ** 

dy 
= 4x5sin(x)cos(x) + ^(sin(x)) • cos(x) + 

^(cos(x)) • sin(x) • x5 

dy 

dx 
- 4x5sin(x)cos(x) + 

cos(x) • cos(x) — sin(x) • sin(x) x5 

dy 
— = 4x5sin(x)cos(x) + (cos2(x) — sin2(x)) • x5 

7. y ~ 8ln(x)sin(x) + cos(x) 

8. h(t) = tsin(f) — tcos(t) 

9. y = 5X3 — xln(x) 

10. /(x) = sin2(x) = sin(x) • sin(x) 

11. y — xexsin(x) 

12. g(x) = 3x4ln(x)cos(x) 

13. What is the slope of the tangent line to 

/(x) = xV + x + 2 at (0,2)? 

14. Find the equation of the tangent line to 

y = xsin(x) at x = it . 

► Practice ^ The Quotient Rule 

Differentiate the following. 

1. /(x) = x2cos(x) 

2. y = 8iV 

The Quotient Rule for functions where the parts are 

divided is even more complicated than the Product 

Rule. The Quotient Rule can be stated: 

d_(f{x)\ = /'(x)g(x) - ^/(x) 

dx\g(x)J (g(x))2 

3. y = sin(x)cos(x) 

4. g(x) = 3x2ln(x) — 5x4 + 10 

5. h(u) = ueu - eu 

6. k(x) = sin(x) + x4 — x2sin(x) 

Just as with the Product Rule, each part is differ¬ 

entiated and multiplied by the other part. Here, how¬ 

ever, they are subtracted, so it matters which one is 

differentiated first. It is important to start with the 

derivative of the top. 
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THE PRODUCT AND QUOTIENT RULES 

Example 

Differentiate y — 
x5 — 3.x2 + 1 

cos(x) 

Solution 

Here, the top part is x5 — 3X2 + 1 and the bottom 

part is cos(x). Therefore, by the Quotient Rule: 

dy ik*5 ~ 3X2 + l)-cos(x) — 

dx (cos(x))2 

^(cos(x)) • (x5 - 3X2 + 1) 

(cos(x))2 

dy 

dx 

(5x4 — 6x) • cos(x) — (—sin(x)) • (x5 — 3X2 + l) 

cos2(x) 

dy 

dx 

(5x4 — 6x) • cos(x) + sin(x) • (x5 — 3X2 + l) 

Example 

Differentiate /(x) 

Solution 

cos2(x) 

x3 

lOx2 — 1 ' 

f 0) = 

f(x) 

fix) 

^(x3) • (lOx2 — Q-KlOx2- 1) • x3 

(lOx2 - l)2 

(3X2) • (lOx2 ~ 1) ~ (20x) • x3 

(lOx2 - l)2 

3Ox4 - 3X2 - 20x4 = 10x4 - 3X2 

(lOx2 - l)2 (lOx2 - l)2 

Example 

Differentiate y — 
x2sin(x) 

ln(x) 

Solution 

Here, the Product Rule is necessary to differentiate 

the top. 

dy = ^(x2sin(x)) • ln(x) - ^(ln(x)) • x2sin(x) 

dx (ln(x))2 

dy 

dx 

^(x2) • sin(x) + 

(ln(x))2 

£(sin(x)) • x2 • ln(x) — \ • x2sin(x) 

(ln(x))2 

2x* sin(x) + cos(x) • x2 
dy_ = L__ 
dx (ln(x))2 

ln(x) — xsin(x) 

Example 

Differentiate y = 
ln(t) 

Solution 

dy = j(\n(t))-t - 

dt e 

dy \ • t — 1 • ln( t) 

It = J 

dy 1 — ln(t) 

dt f 
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Some people remember the Quotient Rule as 

d( Hl\_ HO-d(HI) - HI- d(HO) 

dx\HO) ~ HO-HO 

just so they can say “HI d’HO” and “HO HO,” but 

they’re silly. 

► Practice 

26. /(x) 
xV 

cos(x) 

27. Find the second derivative of y = 
x + 1 

x — 4' 

28. What is the slope of the tangent line to 

f(x) = ~atx=5? 

Differentiate the following. 

15. h(x) 
x3 + lOx - 7 

3X2 + 5x + 2 

16. y 
4e< + t 

t’ + 2t + 1 

► Derivatives of Trigonometric 
Functions 

With the Quotient Rule, we can find the derivatives of 

all of the rest of the trigonometric functions. 

17. /(x) 
x + ln(x) 

f? - 1 

Example 

Differentiate y — tan(x). 

18. y = 

19. /(x) 

20. £t) 

21. y = 

x5 

ln(x) 

_ x2 — 1 

_ x2 + 1 

= z3 
5sin(t) 

x + 1 

x — 1 

22. *(«) 

23. y = 

sin(u) 

x2 ~F 2x + g* 

sin(x) + 1 

Solution 

sin(x) 
Use tan(x) =-rr 

cosix 

dy 

dx 
A 
dx 

(tan(x)) 
d_( sin(x) 

dx\ cos(x) 

Differentiate with the Quotient Rule. 

dy cos(x) • cos(x) — (—sin(x)) • sin(x) 

dx cos2(x) 

Simplify. 

dy cos2(x) + sin2(x) 

dx cos2(x) 

24. h(t) 
ln(t) + t 

7~ 

25. y 
xln(x) 

Use sin2(x) + cos2(x) = 1. 

dy =_1_ 

dx cos2(x) 
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Use sec(x) =-7—r. 
cos(x) 

dy 2/ \ — — sec'(x) 
dx 

Thus: 

~(tan(x)) = sec2(x) 

Example 

Differentiate y = sec(x). 

Solution 

Use sec(x) = 
cos(x) ’ 

dy d, . u d 

dx = Tx(x<x)) = Tx 

Differentiate with the Quotient Rule. 

dy 0 • cos(x) — (—sin(x)) • 1 

dx cos2(x) 

Simplify. 

dy sin(x) 1 sin(x) 

dx cos2(x) cos(x) cos(x) 

Use sec(x) 
cos(x) 

and tan(x) 

dy 

dx 
= sec(x)tan(x) 

sin(x) 

cos(x) ’ 

Thus: 

s(secW) sec(x)tan(x) 

► Practice 

Differentiate the following. 

29. y = csc(x) 

30. y = cot(x) 

31. /(x) = xtan(x) 

32. g(x) 
sec(x) 
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LESSON 

Chain Rule 

We have found how to take derivatives of functions that are added, subtracted, multiplied, and 

divided. Next, we will cover how to work with a function that is put inside another simply by 

composition. 

For example, it would be difficult to multiply out /(x) = (x3 + lOx + 4)5 just to take the derivative. 

Instead, notice that /(x) looks like g(x) — x3 + lOx + 4 put inside h(x) — x5. Therefore, in terms of 

composition, /(x) = h ° g(x) = h(g(x)). 

The trick to differentiating composed functions is to take the derivative of the outermost layer first, while 

leaving the inner part alone, then multiplying by the derivative of the inside. 

The Chain Rule can be stated as follows: 

^0(g(*))) = h'(g(x))-g,(x) 

If this is confusing, try stating the Chain Rule in this way: 

something) = h!(something) • something) 
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The Chain Rule 

^(%0))) = h'(g(x))-g'(x) or ^(fi(something)) = ^'(something) • ^(something) 

The usual key to figuring out what is inside and 

what is outside is to watch the parentheses. Imagine 

that the parentheses form the layers of an onion, and 

that you must peel (differentiate) the outermost layers 

before reaching the inside. 

g'(x) = cos(8x4 + 3X2 — 2x + 1) • 

^(8x4 + 3X2 - 2x + 1) 

g'(x) = cos(8x4 + 3X2 — 2x + 1)- 

Example 

Differentiate f(x) = (x3 + lOx + 4)5. 

(32X3 + 6x - 2) 

Example 

Solution 
Differentiate y = cos3(x). 

Here, /(x) = (something)5 where the something = 

x3 + lOx + 4. Because ^(x5) = 5x4, the Chain 

Rule states the following: 

Solution 

This is tricky because of the laziness of mathematicians 

who like to skimp on parentheses. It might look like 

/'(x) = 5(something)4 •—(something) 

the “outside” function is cos (something), but it is actu¬ 

ally y = cos3(x) = (cos(x))3. Thus, this function is 

really (something)3. 

/'(x) = 5(x3 + lOx + 4)4*-^(x3 + lOx + 4) 
dy d 

= 3(something) -—(something) 

/'(x) = 5(x3 + lOx + 4)4 • (3X2 + 10) 
% = 3(cos(x))2 • ^(cos(x)) 

Example 

Differentiate g(x) = sin(8x4 + 3X2 — 2x + 1). -£ = 3(cos(x))2 • (—sin(x)) 

Solution 

Here, the function is essentially sin(something) where 

the “something” = 8x4 + 3X2 - 2x + 1. The deriva¬ 

tive of sine is cosine, so: 

f (x) = cos(something) • -J^( something) 

dy 
~dx = ~3cos (^)sm(x) 

Example 

Differentiate y = cos(x3). 
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It is important that the “something” in the parentheses appear somewhere in the derivative, just as it does 

in the original function. If it doesn’t appear, then a mistake has been made. 

Solution 

In this example, our function is cos(something). 

Because -^(cos(x)) = —sin(x), the Chain Rule states 

that 

= — sin(something) • -J^(something) 

tr -sin 

t = -sinf*3)' 3X2 

And because there was an (x3) in the original 

function, an (x3) must appear in the derivative. 

Example 

Differentiate h(x) = ix. 

Solution 

h(x) = ^something) 

so: 

h'{x) = g(something). -^(something) 

h\x)) = e^-j^Sx) = (?x-5 = 5c?x 

► Practice 

Differentiate the following. 

1. /(x) = (8X3 + 7)4 

2. y = (x2 4- 8x + 9)3 

3. h(t) = (t8 - 9? + 3t + 2)10 

4. y = (u5 - 3u4 + 7f 

5. g(x) = a/x2 + 9x + 1 

6. y = V7TT 

7. /(x) = sh^x2) 

8. g(x) = sin2(x) 

9. y = ln(3t + 5) 

10. h(x) — cos(3x) 

11. y = ^ 

12. y = ln(x + 1) 

13. s(u) = cos5(u) 

14. y = (ln(x))5 

15. /(x) = e* + e2* + e3* 

16. y = tan(ex) 

17- *(*) = 

is. m = 

e* - 

2 

sin(20) 

~~e 

19. y = xe2x 

20. /(x) = sec(10x2 + (?) 
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CHAIN RULE 

This rule is called the Chain Rule because it works in 

long succession when there are many layers to the 

function. It helps to write out the function using lots 

of parentheses, and then work patiently to take the 

derivative of each outermost layer. 

Example 

Differentiate f(x) = sin^e5*). 

Solution 

With all of its parentheses, this function is 

f(x) = (sin(V5x)))7. The outermost layer is “some¬ 

thing to the seventh power,” the second layer is “the 

sine of something,” the third layer is “e raised to the 

something,” and the last layer is 5x. Thus: 

/'(*) 

/'(*) 

/'(*) 

fix) 

f(*) 

7(sin(e(5x)))6-^(sin(e(5x))) 

7(sin(^5x)))6 • cos(^5x)) • 

7(sin(^5x)))6 • cos(^5x)) • ^ • J^(5x) 

7(sin(^5x)))6-cos(^5x))-^5x)-5 

35e(5x)sin6(^5x))cos(^5x)) 

Notice once again that every part except the out¬ 

ermost layer (the natural logarithm) appears some¬ 

where in the derivative. 

► Practice 

Differentiate the following. 

21. /(x) = cos3(8x) 

22. y = (d3x2 + 2"+1)4 

23. g(f) = ln(tan(ef +1)) 

24. y — sin(sin(sin(x))) 

25. k(u) = sec(ln(8n3)) 

26. h(x) = ln(cos(x + e3*)) 

Example 

Differentiate y = h^x3 + tan(3x2 + x)). 

Solution 

fx = x3 + tan(3V + *)’l(^ + + x)) 

t = x> + ta„(3V + x)' (3x* + $ec2(3a[2 + X) -|(3x2 + *>) 

dy =_l_ 
dx x3 + tan(3x2 + x) 

(3X2 + sec2(3x2 + x) • (6x + 1)) 

dy 3X2 + sec2(3x2 + x) • (6x + l) 

dx x3 + tan(3x2 + x) 
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LESSON 

Implicit 

Differentiation 

A common complaint about the Chain Rule is “I don’t know where to stop!” For example, why do we 

use the Chain Rule for f(x) = sh^x3) to get /'(x) = cos(x3) • 3X2, but not for g(x) = sin(x), which 

has g'(x) = cos(x)? The honest answer is that we could use the Chain Rule everywhere including in 

the following: 

g'(x) = COs(x)*"(x) = cos(x)• 1 = cos(x) 

/'(x) = cos(x3) • ^(x1) = cos(x3) • 3X2 • = cos(x3) • 3X2 • 1 = cos(x3) • 3X2 
dx 

When we get down to ~^(x) = 1 > we know we are done. The advantage to this way of thinking is that it 

dy 
explains what — really means. This isn’t merely a symbol that says “we took the derivative.” This is the result 

of differentiating both sides of an equation. 
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IMPLICIT DIFFERENTIATION 

Example 

Differentiate y = Ax’ + e*. 

Solution 

Start with the equation. 

y — Ax’ + e* 

Differentiate both sides of the equation. 

|(r) - + 0 

Solving for y is not always possible, though. If our 

equation were ln(y) + cos(y) = 3e? — x\ then we 

would not be able to solve for y. 

Fortunately, we can still find the slope of the tan- 

dy 
gent line, —, without having to solve the original 

equation for y. The trick is to use implicit differentia¬ 

tion by taking the derivative of both sides and making 

sure to include 

dictates. 

dy 

dx 
wherever the Chain Rule 

TT d( \ ^ 
Use vM = Tx- dx 

-f- = 20x4 • -y-(x) 
dx dx 

Simplify. 

= 20x4 • 1 
dx 

e* • 1 = 20x4 + C 

Example 

Find the slope of the tangent line to x2 + y2 = 1. 

Solution 

Start with the equation. 

x2 + y2 = 1 

Now if y = Ax5 + e*, then there is a relationship 

between y and x. This relationship is given explicitly 

because we know exactly what y is in terms of x. How¬ 

ever, if the variables x and y are all mixed up on both 

sides of the equals sign, then the relationship is given 

implicitly. The relationship is implied, but it is up to us 

to figure out what the relationship is explicitly. For 

example, the equation of the unit circle is: 

x2 + y2 = 1 

There is a relationship between the values of x 

and y, because what y can be depends on the value of 

x. If x = 0, for instance, then y could be either 1 or — 1. 

We could take the implicit description of y in 

x2 + y2 = 1 and make it explicit by solving for y: 

y2 = 1 — x2 

y = ±\/l — x2 

Differentiate both sides. 

+ >>> = 

Use the Chain Rule everywhere. 

2*-^M + 2r|(7) = ° 

Use -~r(x) = 1 and 
axv 7 

dy 
2x-1 + 2y^ = 0 

dy 

dx' 

Solve for 
dy 

dx' 

dy = —2x 

dx 2 y 

dy 
It might feel unpleasant to have — given in 

terms of both x and y, but this is necessary. If we were 
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IMPLICIT DIFFERENTIATION 

asked, “What is the slope of the tangent line to 

x2 + y2 = 1 at x = — ?” We would have to reply, 

“Which one?” There are two tangent lines with x = 

See Figure 11.1. If we want the slope of the tangent 

'l V3S 
line at 

2’ 

, then 

dy_ = _x =_i_ _ J_ = V3 

dx y _V3 3 

Example 

dy 
Find -j- when ln(y) + cos(y) = 3e* — x3. 

Use the Chain Rule everywhere. 

yfx(y) ~ sm(y)-£(y) = 

3S-fax)-}*-fax) 

Use -y-(x) = 1 and -y-(y) 
ax 7 ax 

dy 

dx' 

J. ^ 

y dx 
sin(r)*^ = 3^ - 3X2 

dy 
Factor out a -7-. 

ax 

(j “ sinM)t = 3c“ “ ^ 

Solve for -7-. 
dx 

dy = 3e* - 3X2 

dx I - sin(y) 

To get rid of the fraction-in-a-fraction, we can 

multiply the top and bottom by the denominator y 

that we want to eliminate: 

dy = 3c* - 3X2 

dx i - sin(y) 

3g* - 3X2 y f y 

y - sin(y)J \r 

3y<? - 3x2y 

1 - ysin(y) 

Solution 

Start with the equation. 

ln(y) + cos(y) = 3 c* — x3 

Differentiate both sides of the equation. 

J^(ln(» + cos(y)) = ■£(3e* - x3) 
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IMPLICIT DIFFERENTIATION 

Example 

Find the slope of the tangent line to fa\n(x) = y + 5 

at (1,-5). 

Example 

dy 
Find when tan(y) = xy + 7. 

Solution 

Start with the equation. 

y2 ln(x) = y + 5 

Solution 

Start with the equation. 

tan(y) = xy + 7 

Differentiate both sides of the equation. 

= fay + s) 

Differentiate both sides of the equation. 

s(,a nM) = ^+ 7) 

Use the product rule on ydn(x). 

2yfay)M^)+1--fax)-y! = fay) + o 

Use the product rule on xy. 

stc\y)-£(y) = £x(x)-y + £(y)-x + o 

Use -y-(x) = 1 and -y-(y) = 
dxv chc ' dx 

0 dr , / x , i , 
2r^.ln(x)+ -•/ = - 

Use -fax) = 1 and fay) = fa 

sec2(y) • ~ = y + • x 
dx 7 dx 

Plug in x = 1 and y = —5. 

2(-5).|.l„(l)+f( — 5)2 = | 

dy 
Bring both instances of — to the same side. 

2/ \ 
sec^-dx~TxX=y 

Use ln(l) = 0. 

dy 
25 = -7- 

dx 

dy 
Factor out a -7-. 

dx 

dy 
(sec (y) - x)^~ = y 

Thus, the slope of the tangent line at (1,-5) is 

dy 
— = 25 
dx 

dy 
Solve for ~r. 

dx 

dy y 

dx sec2(y) — x 
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- IMPLICIT DIFFERENTIATION 

Example 

Now we are able to use implicit differentiation and the 

fact that -J^(e*) = e* to prove that ~(\n(x)) — —. 

Solution 
ay 

If y = ln(x), then the derivative will be —. 

y = ln(x) 

► Practice 

dy 
Find in the following equations. 

1. (y + l)3 = x4 - 8x 

2. y3 + y = sin(x) 

3. sin(y) = 4x + 7 

Raise both sides as powers of e. 

# = <W*) 

Since ln(x) and e* are inverses, = x, 

e? — x 

Differentiate both sides. 

= &*> 

4. y — Vy = ln(x) 

5. y2 + x = 3x4 + 8y 

6. e* + ^ = x3 

7. tan(y) = cos(x) 

8. y = Vx + y 

9. sin(x) — sin(y) = x 

Use the Chain Rule. 

v dr . p? •- = 1 
dx 

10. y — ln(y) = lOx3 — 6X2 + 4 

11. (y + x2)4 = lOx 

Solve for 
dy 

dx ' 

dy = J_ 

dx e? 

Use C = e1"^ = x. 

dy = i_ 

dx x 

12. x2y = y4x4 

x 
13. —bxy=x+y y 

14. sec(y) + 9 y = x3cos(y) 

15. Find the tangent line slope of 

y3 + x2 = y2 — 5y + 14 at ( — 3,1). 

16. Find the tangent line slope of x3 + y3 = 3y — x 

at (1,-2). 
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IMPLICIT DIFFERENTIATION 

17. Find the slope of the tangent line to 

ln(3y — 5) + x — y2 at (4,2). 

18. Find the slope of the tangent line at (2,3) on the 

graph of £y + y^x = 30 . 

19. Find the equation of the tangent line to 

sin(y) 
. . / 1 7T 

x at the point ( — 

20. Find the equation of the tangent line to 

x2 + 6y = xy + 3 at (3,-2). 
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LESSON 

Related Rates 

o nee you have gotten the hang of implicit differentiation, it should not be difficult to take the deriv¬ 

ative of both sides with respect to the variable t. This enables us to see how x and y vary with 
d dx d dy d 

respect to time f. The only difference is that —(x) = —, yy^(y) = yyy, and so on. Only yy;( t) — 1 
dt ’ dr dt dr 

can be simplified, but this generally never occurs. 

Example 

Differentiate y2 + cos(x) = 4ody with respect to t. 

Solution 

Start with the equation. 

y2 + cos(x) = Aody 

Differentiate both sides with respect to t. 

+ cos(x)) = |(4 *V) 
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RELATED RATES 

Use the Chain Rule everywhere. Solution 

2rj,M ~ = 

8x-{(*)-r + jtM-4x! 

jPa + «2) = 1(f) 
. dA , dB f T-f-A 

dt dt r2 

Use l(x) = fand J,M = tf 

n dy • , \ dx Q dx dy 
2 y—.— sin(x)*^- = 8 xy~r + 

7 dt v ' dt 7 dt dt 

Example 

Differentiate A = 7T r2 with respect to f. 

Example 

Differentiate e* + y = y3 + Vx with respect to t. 

Solution 

= V7) 

Solution 

Start with the equation. 

P + y = y3 + Vx 

dA . dr 
T~ = 2 7rf-7 
dt dt 

Don’t forget that 7r is a constant, not a variable! 

Differentiate both sides with respect to t. 

jA + y) = jy + Vx) 
► Practice 

Use the Chain Rule everywhere. 

^ ■ dt{xv yv if ■ dy + 2^rx-dy 

Differentiate with respect to f. 

1. y = (x3 + x — l)5 

2. y4 — 3X2 = cos(y) 

tt d, s dx , d, s dy 
Use ~r{x) — —r and -riy) = ~r. 

dr ’ dt dty/ dt 

v dx dy dy i dx 

dt dt 3y'dt 2V^' dt 

3. y3 — y = 3x4 — lOx2 + 3x + 1 

4. Vx + Vy = lOx3 — 7x 

The variables need not be x and y. 
5. ln(y) + e* = x2)/2 

Example 

Differentiate 3A + 4B2 — — with respect to t. 

6. 5X2 + 2x+1 = w2 + 7 

7 2 7 , 2 9 , 3 7.2 = ^ + -r + - 

8. A2 + B2 = C2 

9. V = ~tt r3 
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RELATED RATES 

10. A 

11. C 

12. A 

= 477^ 

= 27r r 

= \bh 

dy y-change . dx dy 
Just as ~y- = —\- is a rate, so are ~r, 

dx x- change dt dt 

~~, and so on. Because t usually represents time, 

dy y-change 

~dt ~ t change rePresents h°w ^ast T 1S changing 

over time. Thus, if A is a variable that represents an 

area, represents how fast that area is increasing or 

decreasing. 

Differentiating an equation with respect to t 

results in a new equation, which shows how the rates 

of change of the variables are related. For example, the 

area and radius of a circle are related by: 

A = 77 r2 

If we differentiate with respect to t, we get: 

dA „ dr 
~Y~ — 277 r • “T” 
dt dt 

If a circle is growing in size, this equation details how 
dr 

the rate at which the radius is changing, , 

dA 
relates to the rate at which the area is growing, . 

Example 

A rock thrown into a pond makes a circular ripple that 

travels at 4 feet per second. How fast is the area of the 

circle increasing when the circle has a radius of 12 feet? 

Solution 
dA dr 

We know that for circles, —r- = iTrr'—r. And we 
dt dt 

know that the radius is increasing at the rate of 

dr 

dt 
4 feet per second, so when the radius is r = 12 

feet, the area is increasing at: 

rt A 
= 277(12 feet) • 4 

feet 

second 

= 9677 
ft2 

sec 

= 9677 ~ 301.6 square feet per second 

Example 

A spherical balloon is inflated with 40 cubic inches of 

air every second. When the radius is 12 inches, how fast 

is the radius of the balloon increasing? (Hint: The vol¬ 

ume of a sphere with radius r is V = |77 r3.) 

Solution 

We know that the volume of the balloon is increasing 

at the rate of = 40”. We want to know what 
dt sec 

dr 

dt 
is when r = 12 inches. If we differentiate 

V = —77 r3 with respect to t, we get: 

dV 9 dr 
~Y~ = 477 T * 
dt dt 

When we plug in = 40^- and r = 12 in, we get: 
dt see 

40— = 477 (12 in)2 • ^ 
sec 

dr _ 40 in 

dt 477 • 144 sec 

5in 

7277sec 

The radius of the balloon is increasing at the very 

slow rate of ~ 0.022 inches per second. 
7277 
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RELATED RATES 

Example 

Suppose the base of a triangle is increasing at a rate of 

8 feet per minute while the height is decreasing by 1 

foot every minute. How fast is the triangle’s area 

changing when the height is 5 feet and the base is 20 

feet? 

Solution 

If we represent the length of the base by b, the height 

of the triangle as h, and the area of the triangle as A, 

then the formula that relates them all is A = — bh. The 

base is increasing at ^ and the height is 

changing at ~ ^ rriTri * ~ * imP^es that 1 

foot is subtracted from the height every minute, that is, 
dA 

the height is decreasing. We are trying to find —, 

which is the rate of change in area. When we differen¬ 

tiate our formula A = ^bh with respect to t, we get: 

dA __ _1 db . dh 1. 

dt ~ 2 * ~dt ‘ h + ~dt * 2'b 

When we plug in all of our information, includ¬ 

ing the h = 5 feet and b = 20 feet, we get: 

§ = i-(8).(5) + (-l).t.(20) 
dt 

= 20 - 10 = 10 

Thus, at the exact instant when the height is 5 feet and 

the base is 20, the area of the triangle is increasing at a 

rate of 10 square feet every minute. 

Example 

A 20 foot ladder slides down a wall at the rate of 2 feet 

per minute (see Figure 12.1). How fast is it sliding 

along the ground when the ladder is 16 feet up the 

wall? 

Solution 
dy ft 

Here, ~r = —2—— because the ladder is sliding 
dt mm 

down the wall at 2 feet per minute. We want to know 

dx 
-7-, the rate at which the bottom of the ladder is mov- 
dt 

ing away from the wall. The equation to use is the 

Pythagorean theorem. 

x2 + y2 = 202 

Jfi*2 + /) = 1(2°2) dr 

dx 

dt 
2x • ^ + 2y • -f- = 0 

dy 

dt 

dy 
If we plug in y = 16 and = —2 , we get: 

2x-~ + 2(16)-(~2) = (S 

We still need to know what x is at the particular instant 

that y = 16, and for this, we go back to the 

Pythagorean theorem. 

x2 + (16)2 = (20)2 

x2 = 144 so x = ±12 
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Changing Values Hint 

It is important to use variables for all of the values that are changing. Only after differentiation can they 

be replaced by numbers. 

Using x = 12 (a negative length here makes no sense), 

we get: 

2-(12)-^ + 2-(16)(-2) = 0 

dx _ 8 

dt 3 

At the moment that y = 16, the ladder is sliding along 

the ground at — feet per minute. 

In the previous example, it was okay to say that the 

hypotenuse was 20 because the length of the ladder did¬ 

n’t change. However, if we replace y with 16 in the equa¬ 

tion before differentiating, we would have implied that 

the height was fixed at 16 feet. Because the height does 

change, it needs to be written as a variable, y. In general, 

anything that varies needs to be represented with a vari¬ 

able. Only after the derivative has been taken can the 

information for the given instant, like y = 16, 

be substituted. 

► Practice 

dy 
13. Suppose y2 + 3y = 6 — 4X3 and — 5. What 

dx 
is 

dt 
when x = — 1 and y = 2? 

dy 
14. Suppose xy2 = x2 + 3. What is when 

— = 8 , x = 3, and y = —2? 
dt 

15. Let K + = L + 72. If ^ = 5 and ^ = 4, 
dt dt 

what is when L = 0 and 7=3? 
dt 

3 — t>2 a r$- 16. Suppose A — B + 4C 
dt 

= 8,and 

~ — —2. What is yp when A = 2, B = 2, 
dt dt 

and C = 1? 

17. Suppose A = I2 + 6R. If I increases by 4 feet 

per minute and R increases by 2 square feet every 

minute, how fast is A changing when I = 20? 

18. Suppose K5 = —y + 11. Every hour, K increases 
R 

by 2. How fast is R changing when K = 3 and 

19. The height of a triangle increases by 2 feet every 

minute while its base shrinks by 6 feet every 

minute. How fast is the area changing when the 

height is 15 feet and the base is 20 feet? 

20. The surface area of a sphere with radius r is 

A = 477 r2. If the radius is decreasing by 2 inches 

every minute, how fast is the surface area shrink¬ 

ing when the radius is 20 inches? 

21. A circle increases in area by 20 square feet every 

hour. How fast is the radius increasing when the 

radius is 4 feet? 

22. The volume of a cube grows by 1,200 square 

inches every minute. How fast is each side grow¬ 

ing when each side is 10 inches? 

23. The height of a triangle grows by 5 inches each 

hour. The area is increasing by 100 square inches 
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RELATED RATES 

each hour. How fast is the base of the triangle 

increasing when the height is 20 inches and the 

base is 12 inches? 

24. One end of a 10-foot long board is lifted straight 

off the ground at 1 foot per second (see figure 

below). How fast will the other end drag along 

the ground after 6 seconds? 

/tv 

25. A kite is 100 feet off the ground and moving hor¬ 

izontally at 13 feet per second (see figure below). 

How quickly must the string be let out when the 

string is 260 feet long? 
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LESSON 

Limits at 
Infinity 

This lesson will serve as a preparation for the graphing in the next lesson. Here, we will work on ways 

to identify asymptotes from the formula of a rational function. Rational functions are quotients, with 

a clear numerator and denominator. 

Vertical asymptotes are easy to recognize, because they occurwhere the denominator is undefined. For 

(3x + 2)(x ~ 1) 
example, /(x) = ^ ^as vertical asymptotes at x = —3 and x — 4. 

Horizontal asymptotes take a bit more work to identify. The graph will flatten out like a horizontal line 

if large values of x all have essentially the same y-value. 

In this graph of y — /(x), for example, if x is bigger than 5, then y will be very close to y — 1 (see Fig¬ 

ure 13.1). Thus, y = 1 is a horizontal asymptote. Similarly, if x is a large negative number, the corresponding 

y-value will be close to zero. Thus, y — 0 is another horizontal asymptote. Horizontal asymptotes are related 

to the limits as x gets really big. For /(x) given in the graph: 

lim/(x) — 1 and lim f{x) — 0 
x—»oo X—* — 00 
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Asymptote Hint 

Notice that the graph of y = fix) crosses both asymptotes. Vertical asymptotes cannot be crossed 

because they are, by definition, not in the domain. Horizontal asymptotes can be crossed, as illustrated 

in this example. Think of “asymptote” as meaning “flattens out like a straight line” and not “a line not to 

be crossed.” 

These limits at infinity (and negative infinity) identify 

what the ends of the graph do. For example, if 

lim g(x) = 3, then the graph of y = s(x) will look 
X—>oo 

something like that in Figure 13.2. If lim h(x) — oo, 
x—> — OO 

then the graph of y = h(x) will look like that in Fig¬ 

ure 13.3. 

Notice that the infinite limits say only what hap¬ 

pens way off to the left and to the right. Other calcu¬ 

lations must be done to know what happens in the 

middle of the graph. 

The general trick to evaluating an infinite limit is 

to focus on the most powerful part of the function. 

Take lim 2x? - lOOx2 - lOx - 5,000, for example. 
X—XX) r 

There are a lot of negative elements to this function. 

However, the most powerful part is the positive lx". 

When x gets big enough, like when x = 1,000,000, then 

2X3 - lOOx2 - lOx - 5,000 

= 2,000,000,000,000,000,000 - 

100,000,000,000,000 - 10,000,000 - 5,000 

= 1,999,899,999,989,995,000 

This clearly rounds to 2,000,000,000, 

000,000,000, which is the 2x\ It is in this sense that 
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Rules for Infinite Limits 

The rules for Infinite Limits of Rational Functions are as follows: 

■ If the numerator is more powerful, the limit goes to oo or -oo. 

■ If the denominator is more powerful, the limit goes to 0. 

■ If the numerator and denominator are evenly matched, the limit is formed by the coefficients of 

the most powerful parts. 

y* 

5 - 

4 - 

levels out like y = 3 

2 - 

1 " 
_ y=g(x) 

V. / 
X 

-1-  toward ^ 

N t 

Figure 13.2 

2X3 is called the most powerful part of the function. 

As x gets big, 2X3 is the only part that counts, 

lim 2X3 — lOOx2 — lOx — 5,000 = lim 2.x3 = oo 
X—>00 x-»oo 

As x gets huge, x3 is clearly even larger, and 2X3 is 

twice that. Thus, as x goes to infinity, so does 2x\ Basi¬ 

cally, the higher the exponent of x, the more powerful 

it is. With that in mind, the rules for infinite limits of 

rational functions are fairly simple: 

■ If the numerator is more powerful, the limit goes 

to oo or —oo. 

■ If the denominator is more powerful, the limit 

goes to 0. 

■ If the numerator and denominator are evenly 

matched, the limit is formed by the coefficients of 

the most powerful parts. 
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Going to Infinity 

The whole concept of “going to infinity” might be a bit confusing. This really means “going toward infin¬ 

ity,” because infinity is not something that a real number can reach. So don’t wander off pondering the 

one number that is bigger than all the rest (unless you enjoy that). Just know that “going to infinity” means 

using really big numbers, and that “going to negative infinity” means using really big negative numbers. 

Example 

Evaluate lim 
x—»oo 

1 — x2 

x3 + 3x + 2 ’ 

The limit is formed by the coefficients of the 

most powerful parts: 3 in the numerator and —8 in the 

denominator. 

Solution 

The most powerful part of the numerator is — x2, and 

in the denominator is x3. Thus: 

1 — x2 — x2 1 
lim r- - lim —y = lim-= 0 
x-^-oox’ + 3x + 2 x-x» X X-+0O X 

This goes to zero because the numerator is clearly out¬ 

classed by the more powerful denominator. Also, as x 

gets really big, ~ gets really close to zero. For example, 

when x = 1,000, then — = 77— = 0.001. 
x 1,000 

Example 
3 V2 -4- 2x — 5 1 . 1 • -J -A, I Z-A J 

Evaluate lim -,—. 
*->-«> 1 - 8X2 

Example 

Evaluate lim 
X—KX) 

5x10 - 4X5 + 7 

1 — x2 

Solution 

Here, 

lim 
X—>00 

5X10 - 4X5 + 7 

1 — x2 

5x10 
hm-7 
x—»oo —XT 

lim 
X—>OQ 

-5X8 — 00 

As x goes to infinity, x8 also gets really large, but the 

negative in the —5 reverses this and makes — 5X8 

approach negative infinity. 

Solution 

Here, the numerator and denominator are evenly 

matched, with each having x2 as its highest power 

of x. 

lim 
X—> ~ OO 

3X2 + 2x — 5 

1 - 8X2 
lim 

x—> — OO 

3X2 

-8X2 

lim 
x—> — OO 

3 

8 

► Practice 

Evaluate the following infinite limits. 

5X3 + lOx2 - 2 
1. lim 

x—►OO 8x4 + 1 

Ax’ + lOx2 + 3x 

x-^-oo 5X3 + 8x — 1 
2. lim 

5x 
3. lim 

X KX) ZX ~ 1 

96 



LIMITS AT INFINITY 

4. 
lOx3 - 3x - 100 

lim- , - 
x—xx> ZX + 5 

5. lim f + ^- 
t-*~ oo r + 3f — 4 

c 8 f4 — 3 f3 + 11 
6. lim-- 

t-xx) 1 — 9Z4 

_ .. 5.x3 + x — 9 
7. lim-^— 

x->oo 1 — x: 

8. lim 
x—> OO 

x1 + 3X2 — 8x + 4 

x2 + 2x + 1 

9. lim 
X—» — OO 

x2 — 1 

x2 + 1 

10. lim 
x—>oo 

t10 + 4? - 11 

2P - It 

The infinite limits of e* and ln(x) can be seen 

from their graphs in Figure 13.4. 

lim £*=00 lim e* = 0 lim ln(x) = oo 
x—>oo x—> — oo x—>oo 

In general, as x goes to infinity, is more pow¬ 

erful than x raised to any number. The natural loga¬ 

rithm, however, goes to infinity slower than just about 

anything else. It may look as though y = ln(x) is 

beginning to level out into a horizontal asymptote, but 

actually, it will eventually surpass any height as it 

slowly goes up to infinity. 

In more complicated situations, we use L’Hopi- 

tal’s rule. This states that if the numerator and 

denominator both go to infinity (positive or negative), 

then the limit remains the same after taking the deriv¬ 

ative of the top and the bottom. 

Figure 13.4 
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L’Hdpital’s Rule 

If the numerator and denominator both go to infinity (positive or negative), the limit remains the same after 

taking the derivative of the top and bottom, OR: 

f(x) f'(x) 
lim = lim —7-7- if lim Kx) = i°° and lim 9(x) = ±°o 

x—>±oogf(x) x—>±oog (x) x—>±oo X—>±00 

Example 
ln(x) 

Evaluate lim 
x—>oo 1 

Solution 

Since lim ln(x) = oo and lim 1 — x = — oo, we 
x—>oo x—>oo 

can use L’Hopital’s Rule. 

ln(x) h £(ln(x)) 
lim -- = lim 

1 — x 3^(1 - x) 

= lim —= lim — — = 0 
X—>0O — 1 x—>oo X 

Note: The little H over the equals sign indicates that 

L’Hopital’s Rule as been used at that point. Examples 

like this demonstrate how ln(x) goes to infinity even 

slower than x does. 

Example 

Evaluate lim 
x3 + 2X2 + 5x + 2 

Solution 

Here, lim ^=00 and lim x3 + 2X2 + 5x 
X—>00 X—KX) 

so we use L’Hopital’s Rule. 

lim —r-- 
x-s-oox3 + 2X2 + 5x + 2 

+ 2 = 00, 

H Ly (O 
lim -r—- 
x-***Up? + 2X2 + 5x + 2) 

= lim —, 
x->°° 3x + 4x + 5 

Notice that we don’t use the Quotient Rule, because we 

take the derivative of the numerator and denominator 

separately. Here, we need to use L’Hopital’s Rule sev¬ 

eral more times: 

e* H e* 
lim 

H 

= lim 
x->oo 3X2 + 4x + 5 x-»oo 6x + 4 

H v e*6 
= lim 

x—>00 — OO 
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LIMITS AT INFINITY 

This example shows how e* is more powerful than 

x3. If the denominator had an x100, we’d have to use 

L’Hopital’s Rule 100 times, but in the end, the e* 

would take everything to infinity. 

Example 

Evaluate lim 
x-^-oox5 + 7X — 1 

Solution 

This is a trick question! The limit lim e? — 0 is not 
X—> ~ OO 

infinite, so we can’t use L’Hopital’s Rule. The function 

ex is only powerful when x goes to positive infinity. 

Instead, we use the old “plug in” method (or common 

sense). 

e* 0 
lim —7 

+ 7x — 1 

Example 
sin(x) 

Evaluate lim —y— 
x—xx) XT 

something not zero 
0 

Solution 

This has the same problem as the previous example. 

No matter what x may be, sin(x) will always be 

between —1 and l.Thus, — 1 < sin(x) < 1 and so 

-1 

x2 

sin(x) 

x2 x2 

Because lim — = 0 and lim —- = 0, the 
x—>oo X x—too X 

sin(x) 
function —y— is squeezed between them to zero as 

XT 

sin(x) 
well: lim —y— = 0. This is called the Squeeze Theo- 

x—>oo x 

rem or the Sandwich Theorem because of the way 
sin(x) 
—y— is squished between something above it going 

XT 
to zero and something below it going to zero. 

► Practice 

Evaluate the following limits. 

11 1- ln^ 

12. lim * + 5 
X^°° V X - 1 

x2 + 5x — 10 
13. hm --——- 

x-»-oo 4x + 2 

14. lim 
3X2 + 2 

x—kx>x — ln(x) 

15. lim 
4X3 - lOx + 7 

x—>—c« lSx3 + 4X2 — 2x + 1 

16. lim 
4x + 6 

X-+003X2 — 2x + 5 

17. lim 3* + 7 

18. lim 

ln(x) 

cos(x) 

x—>co X 

4X3 + 5X2 + 2 
19. hm---r— 

x kx) f — 7xr 

OA .. 4X3 + 5X2 + 2 
20. lim ----r- 

x->-oo t — lx 

^ Sign Diagrams 

In order to calculate the limits at vertical asymptotes, 

it is necessary to know where the function is positive 

and negative. The key to everything is this: A continu¬ 

ous function cannot switch between positive and neg¬ 

ative without being zero or undefined. Functions are 
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LIMITS AT INFINITY 

generally zero when the numerator is zero and unde¬ 

fined where the denominator is zero. Mark these 

points on a number line. Between these points, the 

function must be entirely positive or negative. This can 

be found by testing any point in each interval. 

x — 4 
For example, consider /(x) = ^ + 2)(l - x)' 

This function is zero at x = 4 and undefined at both 

x= — 2 and x = 1. We mark these on a number line 

(see Figure 13.5). 

In between x = — 2 and x = 1, the function is 

either always positive or always negative. To find out 

which it is, we test a point between —2 and 1, such as 
— 4 

0. Because /(0) = vt-t = -2 is negative, the func- 
A V 

tion is always negative between —2 and 1. Similarly, we 

check a point between 1 and 4, such as 

— 2 l 
f[2) = —jy = —, a point after 4, such as 

/(5) = , * = — —, and a point before —2, such 
7( —4) 28 

— 7 7 
as ff — 3) =-77T = t- These calculations can be 

JK ' -1(4) 4 

made very roughly, because it matters only if the func¬ 

tion is positive or negative at the selected point. In any 

case, the sign diagram for this function is shown in Fig¬ 

ure 13.6. 

This makes calculating the limits at the 

vertical asymptotes very easy. Not only does 

K*) 
x — 4 

(x + 2)(1 - x) 

x = — 2 and x = 1, but the limits are: 

have vertical asymptotes at 

x — 4 

xilin2-(x + 2)(1 - x) 
= oo 

x — 4 
lim 7-, -7 = — OO 

x->-2 + (x + 2)(1 ~ X) 

x — 4 
lim 7 , , 

x->i" (x + 2)(1 — x) 

,. x - 4 
x->i+ (x + 2)(1 — x) 

= —oo 

= oo 

At the same time, we can calculate the limits at infinity: 

lim = lim . .=0 
>(x + 2)(l — x) x-k» — x2 — x + 2 

x - 4 
lim 7 , , 

x—► — oo (x + 2)(1 — x) 
= 0 

Thus, f[x) has a horizontal asymptote of y = 0. 

With all of this, we begin to get a picture of 

x - 4 

^ (x + 2)(1 — x) 

Figure 13.7. 

, which can be seen in 

-2 

Figure 13.5 

fix) 

<- 
© © © © 

-2 

Figure 13.6 

100 



LIMITS AT INFINITY 

Notice that the horizontal asymptote y = 0 is 

approached from above as x —> — oo, because f[x) is 

always positive when x < —2. At the other end, the 

asymptote is approached from below as x—>oo 

because the function is negative when x > 4. 

We shall deal with graphing more thoroughly in 

the next lesson. 

► Practice 

Name all the asymptotes, vertical and horizontal, of 

the following functions. Also, make a sign diagram for 

each. 

21. Kx) = 

22. «(*) = 

x + 2 

x — 4 

x — 3 

x2 — 4 
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LIMITS AT INFINITY 

23- **) = 

24. k(x) = , 2X+-— 
w x2 - 4x + 3 

Evaluate the following limits. 

25. lim ^~r 
x->4 + X — 4 

26. lim — 
x->2 X 

27. lim 
x—► 3 

28. lim — 
x-+3 x 

: - 3 

2 - 4 

x2 — 1 

(x + 3)2 

x + 1 

- - 4x + 3 
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LESSON 

Graphs 

Here is where everything comes together. We know how to find the domain, how to identify asymp¬ 

totes, and how to plot points. With the help of the sign diagrams from the previous lesson, we shall 

be able to tell where a function is increasing and decreasing, and where it is concave up and down. 

Quite simply, where the derivative is positive, the function is increasing. The derivative gives the slope 

of the tangent line at a point, and when this is positive, the function is heading upward, viewed from left to 

right. When the derivative is negative, the function slopes downward and decreases. 

When the second derivative is positive, the function is concave up. This is because the second deriva¬ 

tive says how the first derivative is changing. If the second derivative is positive, then the slopes are increas¬ 

ing. If the slopes, from left to right, increase from 22, to 21, to 0, to 1, to 2, and so on, then the graph must 

curve like the one in Figure 14.1. In other words, the curve must be concave up. 

Similarly, if the second derivative is negative, the function curves downward like the one in Figure 14.2 

and is concave down. 
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GRAPHS 

The concavity governs the shape of the graph, 

depending on whether the function f[x) is increasing 

or decreasing. If f[x) is increasing and concave up 

(thus, both /'(x) and /"(x) are positive), then the 

graph has the shape shown in Figure 14.3. 

X + 
increasing concave up 

Figure 14.3 

If f[x) is increasing and concave down (thus, 

f'{x) is positive and /"(x) is negative), then the 

graph has the shape shown in Figure 14.4. 

X + 
increasing concave down 

Figure 14.4 

If f[x) is decreasing and concave down (thus, 

both /'(x) and /"(x) are negative), then the graph 

has the shape of the one in Figure 14.5. 

X + r\ 
decreasing concave down 

Figure 14.5 

If f[x) is decreasing and concave up (thus, 

f(x) < 0 and /"(x) > 0 ), the graph has the shape 

of the one in Figure 14.6. 

X ♦ w 
decreasing concave up 

Figure 14.6 

Example 

Graph f[x) = x3 + 6X2 — 15x + 10. 

Solution 

This function is defined everywhere and thus has no 

vertical asymptotes. Because lim x3 + 6X2 — 15x + 
X—KX> 

10 = oo and lim x3 + 6X2 — 15x + 10 = —oo, 
x-^> — oo 

there are no horizontal asymptotes. 

The derivative /'(x) = 3X2 + 12x — 15 = 

3(x2 + 4x — 5) = 3(x + 5)(x — 1) is zero at x = 

— 5 and x = 1. To form the sign diagram, we test: 

/'( —6) = 21, /'(0) = 15, and /'(2) = 21. Note: 

These points were chosen arbitrarily. Any point less 

than —5 will give the same information as the value 

x = —6, for instance, and any point between —5 

and — 1 will give the same information as the value at 

x = 0. Thus, the sign diagram for f(x) is shown in 

Figure 14.7. 
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Increasing or Decreasing 

Remember, the sign of f'(x) determines whether f(x) is increasing or decreasing. 

Note: We use f'(x) to see if the graph is increasing or decreasing, but f(x) to find they-value at a point. 

© G © 

Figure 14.7 

Because the function increases up to x = — 5 and 

then decreases immediately afterward, there is a local 

maximum at x = —5. The corresponding y-value is 

y — f[~5) = 110. Thus, (-5,110) is a local maxi¬ 

mum. Similarly, the graph goes down to x = 1 and 

then goes up afterward, so x = 1 is a local minimum. 

The corresponding y-value is f{ 1) = 2, so (1,2) is a 

local minimum, /'(x) and f[x) 

local maximum 

A guideline for identifying local minimum and 

maximum points is shown in Figure 14.8. 

The second derivative is /"(x) = 

6x + 12 = 6(x + 2), which is zero at x = —2. If we 

test the sign at x = —3 and x = 0, we get 

/"( — 3) = —6 and /"(0) = 12 . Thus, the sign dia¬ 

gram for /"(x) is as shown in Figure 14.9. 

increasing decreasing 

Figure 14.8 

concave down concave up 

Figure 14.9 
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GRAPHS 

Clearly x = —2 is a point of inflection, because 

this is where the concavity switches from concave 

down to concave up. The y-value of this point is 

K-2) = 56. 

Before we draw the axes for the Cartesian plane, 

we should consider the three interesting points we 

have found: the local maximum at ( — 5,110), the local 

minimum at (1,2), and the point of inflection at 

(—2,56). If our x-axis runs from x = —10 to x = 10, 

and our y-axis runs from 0 to 120, then all of these can 

be plotted easily (see Figure 14.10). 

Example 

Graph g(x) = 
x + 3 

x — 2 ' 

Solution 

The domain is x + 2. There is a vertical asymptote at x 

= 2. The sign diagram or g(x) is shown in Figure 14.11. 

oc ~I- 3 oc HI- 3 
Thus, lim-- = — oo and lim,-- = oo . 

x—>2“ X — 2 x—>2 + X — 2 

oc “f" 3 oc “f“ 3 
Because lim-— = 1 and lim -— = 1, there 

x—>-oo X — 2 X—¥ - OO X — Z 

g(*) © © © 
<-1-1-» 

—3 -2 
above x-axis below x-axis above x-axis 

Figure 14.11 

Figure 14.10 
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GRAPHS 

is a horizontal asymptote at y - 1, both to the left 

and to the right. The derivative g'(x) = 

1 • (x — 2) — 1 • (x + 3) —5 

= y has the sign 

diagram shown in Figure 14.12. 

*■(*) © 

concave down 

+ 
2 

Figure 14.13 

© 
w 

concave up 

decreasing decreasing 

Figure 14.12 

The second derivative #"(*) 
10 

(* - 2)3 
has 

sign diagram shown in Figure 14.13. 

Because we have no points plotted at all, it makes 

sense to pick one or two to the left and right of the ver¬ 

tical asymptote at x = 2. At x = 1, g(l) = -4, so 

(1,-4) is a point. At x = 3, g(3) = 6, so (3,6) is 

another point. At x = -3, g(-3) = 0, so (-3,0) is 

another nice point to know. Judging by these, it will be 

useful to have both the x- and y-axes run from —10 

to 10. 

To graph g(x), it helps to start with the points 

and the asymptotes as shown in Figure 14.14. 
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GRAPHS 

Then we establish the shapes of the lines through 

these points using the concavity and the intervals of 

decrease (see Figure 14.15). 

Example 
G -f- 1 

Graph h{x) = —- 

Solution 

^ , f N X2 + 1 x2 + 1 
To start, h(x) = -- - 7— lV-tt- Thus, 

w x2 - 1 (x + l)(x - 1) 

h(x) is undefined with a vertical asymptote at x = 1 

and x = — 1. The sign diagram for h(x) is shown in 

Figure 14.16. 

<- 

concavity 

Figure 14.15 

2 

4 
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GRAPHS 

K*) © © © 
4-f-1- 

above x-axis ' below x-axis * above x-axis 

Figure 14.16 

Note: x2 + 1 can never be zero. The limits at the ver¬ 

tical asymptotes are thus: 

x2 + 1 
lim —;-= 00 

*->-1 x — 1 

.. x2 + 1 
lirn —;- 

*->-l+ x2 - 1 
■00 

The second derivative is as follows: 

4(x2 - l)2 - 2(x2 - 1) • 2x(—4x) 

4(x2 - 1) - 2 • 2x(—4x) 

(x2 - l)3 

12X2 + 4 = 12X2 + 4 

(x2 - l)3 (x - l)3(x + l)3' 

The sign diagram is shown in Figure 14.18. It looks like 

there ought to be points of inflection at x = — 1 and x 

= 1, but these are asymptotes not in the domain, so 

there are no points where the concavity changes. 

lim 
x2 + 1 

1- x2 - 1 
— 00 

lim 
x2 + 1 

1+ x2 - 1 
= 00 

x2 + 1 x2 + 1 
Because lim —i—— = 1 and lim —5-= 1, 

x—toc XT — 1 x—>-00 XT — 1 

there is a horizontal asymptote at y = 1. 

The derivative is as follows: 

2x(x2 - 1) — 2x(x21) — 4x 

k(x2-!)2 (x-l)2(x+l)2 

It has the sign diagram shown in Figure 14.17. This 

indicates that there is a local maximum at x = 0. The 

corresponding y-value is y = h{0) = — 1. 

increasing increasing decreasing decreasing 

Figure 14.17 

h"(x) © © © 
«-1-1-> 

-1 1 
concave up concave down concave up 

Figure 14.18 

Before we graph the function, it will be useful to 

have a few more points. When x = —2, then 
5 5 

y = h( — 2) -- — and when x = 2, y = h(2) — — as 

well. Thus, it will be useful to have the x- and y-axes 

run from —3 to 3. We start with just the points and 

asymptotes (see Figure 14.19). 

Then we add in the actual curves, guided by the 

concavity and the intervals of increase and decrease 

(see Figure 14.20). 
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— GRAPHS 

► Practice 

Use the asymptotes, concavity, and intervals of increase 

and decrease to graph the following functions. 

1. f{x) = x2 - 30x + 10 

2. g(x) = — 4x — x2 

3. h(x) — 2X3 — 3X2 — 36x + 5 

4. k(x) = 3x - x3 

5. f[x) = x4 — 8X3 + 5 

6- g(x) 

7. h(x) 

8. k(x) 

9. j(x) 

x + 2 

1 

x2 — 9 

x 

x2 — 1 

x2 + 1 

X 

t#. M = 

Figure 14.20 



LESSON 

Optimization 

Knowing the minimum and maximum points of a function is useful for graphing and even more use¬ 

ful in real-life situations. Businesses want to maximize their profits, builders want to minimize their 

costs, drivers want to minimize distances, and people want to get the most for their money. If we can 

represent a situation with a function, then the derivative will help find the optimal point. 

If the derivative is zero or undefined at exactly one point, then this is very likely to be the optimal point. 

The first derivative test states that if the function increases before that point and decreases afterward, it is max¬ 

imal (see Figure 15.1). Similarly, if the function decreases before the point and increases afterward, then the 

point is an absolute minimum. 

The second derivative test states that if the second derivative is positive, then the function curves up, so 

a point of slope zero must be a minimum (see Figure 15.2). Similarly, if the second derivative is negative, the 

point of slope zero must be the highest point on the graph. Remember that we are assuming that only one 

point has slope zero or an undefined derivative. 

If there are several points of slope zero and the function has a closed interval for a domain, then plug 

all the critical points (points of slope zero, points of undefined derivative, and the two endpoints of the inter¬ 

val) into the original function. The point with the highest y-value will be the absolute maximum, and the one 

with the smallest y-value will be the absolute minimum. 



OPTIMIZATION 

slope — 0 

-•-> 

Figure 15.1 

decreasing increasing 

MIN 

-•-> 
slope = 0 

slope = 0 

concave down 

Figure 15.2 

Example 

A manager calculates that when x employees are work¬ 

ing at the same time, the store makes a profit of 

P(x) = 15X2 — 48x — x3 dollars each hour. If there 

are ten employees and at least one must be working at 

any given time, how many employees should be sched¬ 

uled to maximize profit? 

Solution 

This is an instance of a function on a closed interval 

because 1 < x ^ 10 limits the options for x. The 

derivative of the profit function is P'(x) 

= 30x — 48 — 3X2 which factors into P'(x) = 

-3(x2 - lOx + 16) = —3(x - 2)(x - 8). Thus, 

the derivative is zero at x = 2 and at x = 8. 

Because more than two points have a slope of 

zero, we cannot use the first or second derivative tests. 

Instead, we evaluate each of our critical points. These 

are the points of slope zero, x = 2 and x = 8, plus the 

concave up 

endpoints of our interval x = 1 and x = 10. These are 

evaluated as follows: P(l) = —34, P(2) = —44, 

P( 8) = 64, and P( 10) = 20 . If the manager wants to 

maximize the store profit, eight employees should be 

scheduled at the time, because this will result in a max¬ 

imal profit of $64 each hour. 

Example 

A coffee shop owner calculates that if she sells cookies 

at $p each, she will sell —y cookies each day. If it costs 

her 204 to make each cookie, what price p will give her 

the greatest profit? 

Solution 

The function for profit is Profit = Revenue — Costs. If 

she charges $p per cookie, then she’ll make and sell 

—y cookies each day. Thus, her revenue will be 
P 

2 



OPTIMIZATION 

200 \ 200 

Trp = T 
200' 

and her costs will be 

(0.20). Therefore, her profit function is 
\ r / 

n r-*/ \ _ 200 40 _. _ ... . . 
Profit(p) — —-—. We limit this to p > 0.20 

because the only optimal situation would be when the 

cookies were sold for more than it cost to make them. 

The derivative is Profit'(p) = - + ^7, 
P P 

which is zero when ^7 = and therefore 
P P 

80p2 = 200p3, so either p = 0 or else p = 

80 
= 0.40. Because p = 0 is not in the domain, 

the only place where the derivative is zero is at p — 404. 

Using the first derivative test, we see that 

Profit'(0.30) = 740 and Profit'(0.50) = -160 , 

therefore our sign diagram for Profit’ is as shown in 

Figure 15.3. So the absolute maximal profit occurs 

when the cookies are sold at 404. 

Example 

At $1 per cup of coffee, a vendor sells 500 cups a day. 

When the price is increased to $1.10, the vendor sells 

only 480 cups. If every 14 increase in price reduces the 

sales by two cups, what price per cup of coffee will 

maximize income? 

Solution 

Here, the income is Income = Price X Cups Sold. So 

if x = the number of pennies the price is increased, 

then Income(x) = (1 + 0.01x)*(500 - 2x). This 

simplifies to Income(x) = 500 + 3x — 0.02X2. And, 

the derivative is Income'(x) = 3 — 0.04x. This is 

3 
zero only when x = —7 = 75. The second derivative 

’ 0.04 

is Income"(x) = —0.04, which is negative, so 

x = 75 is maximal by the second derivative test. Thus, 

the maximal income will occur when the price is raised 

by x = 754 to $1.75 per cup. 

increasing decreasing 

Figure 15.3 
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OPTIMIZATION 

Example 

A farmer wants to build a rectangular pen with 80 feet 

of fencing. The pen will be built against the side of a 

barn, so one side won’t need a fence. What dimensions 

will maximize the area of the pen? See Figure 15.4. 

barn wall 

y PEN y 

□ 

(overhead view) 

Figure 15.4 

Solution 

The area of the pen is Area = x • y. We can’t take the 

derivative of this just yet because there are two vari¬ 

ables. We need to use the additional information 

regarding how much fencing exists; there are 80 feet of 

fencing. Because no fencing will be required against 

the barn wall, the total lengths of the fence will be 

y + x + y = 80, thus x = 80 — 2y. We can plug 

this into the formula for area in order to obtain 

Area = x*y — (80 — 2y)*y. Now we have a func¬ 

tion of one variable Area(y) = 80y — 2y2. The deriv¬ 

ative is Area'(y) = 80 — 4y. This is zero only when 

y = 20. Using the second derivative test, 

Area"(y) = — 4, thus the curve is concave down and 

the point y = 20 is the absolute maximum. The corre¬ 

sponding x-value is x = 80 — 2y = 80 — 2(20) 

=40. Therefore, the pen with the maximal area will be 

x = 40 feet wide (along the barn) and y = 20 feet out 

from the barn wall. 

Example 

A manufacturer needs to design a crate with a square 

bottom and no top. It must hold exactly 32 cubic feet 

of shredded paper. What dimensions will minimize the 

material needed to make the crate (the surface area)? 

See Figure 15.5. 

Figure 15.5 

Solution 

We want to minimize the surface area of the crate. The 

area of the box consists of four sides, each of area x • y, 

plus the bottom, with an area of x • x = x2. Thus, the 

surface area is Area = 4xy + x2. Again, we need to 

reduce this to a formula with only one variable in 

order to differentiate. We know that the volume must 

be 32 cubic feet, so Volume = x^y = 32. Thus, 

y = . When we plug this into the surface area func¬ 

tion, we get: 

Area = 4xy + x2 = 4 + x2 
128 

x 
+ x2. 



OPTIMIZATION 

The derivative is: 

Area'(x) = —+ 2x, 

which is zero when 

128 

x2 
+ 2x = 0 or x3 = 64, so x = 4. 

The second derivative is: 

. , 256 
Area (x) = —y- + 2, 

x 
which is positive when x = 4. So the curve is concave 

up and the sole point of slope zero is the absolute min¬ 

imum. Thus, the surface area of the crate will be min- 
32 32 

imized if x = 4 feet and y = —r = —r = 2 feet. 
7 x2 42 

► Practice 

1. Suppose a company makes a profit of 
_ , 1,000 5,000 
P{x) —-2-f 100 dollars when it 

X x 

makes and sells x > 0 items. How many items 

should it make to maximize profit? 

2. Suppose the profit of a company is 

P(x) = 9X2 + 40x — —x1 + 1,000 when it 

makes x items a day. What level of production 

will maximize profits? 

3. When 30 orange trees are planted on an acre, 

each will produce 500 oranges a year. For every 

additional orange tree planted, each tree will 

produce 10 fewer oranges. How many trees 

should be planted to maximize the yield? 

4. An artist can sell 20 copies of a painting at $100 

each, but for each additional copy she makes, the 

value of each painting will go down by a dollar. 

Thus, if 22 copies are made, each will sell for $98. 

How many copies should she make to maximize 

her sales? 

5. A garden has 200 pounds of watermelons grow¬ 

ing in it. Every day, the total amount of water¬ 

melon increases by 5 pounds. At the same time, 

the price per pound of watermelon goes down 

by 14. If the current price is 904 per pound, how 

much longer should the watermelons grow in 

order to fetch the highest price possible? 

6. A farmer has 400 feet of fencing to make three 

rectangular pens. What dimensions x and y will 

maximize the total area? 

y 

4 x 4 

7. Four pens will be built along a river by using 150 

feet of fencing. What dimensions will maximize 

the area of the pens? 

river (no fence needed) 

<- x -> 

8. A rectangular pen will be built using 100 feet of 

fencing. What dimensions will maximize the 

area? 

5 



OPTIMIZATION 

9. The surface area of a can is Area = 

277 r2 + 277 rh, where the height is h and the 

radius is r. The volume is Volume = it fh. 

What dimensions minimize the surface area of a 

can with volume I677 cubic inches? 

10. A painter has enough paint to cover 600 square 

feet of area. What is the largest square-bottom 

box that could be painted (including the top, 

bottom, and all sides)? 

11. A box with a square bottom will be built to con¬ 

tain 40,000 cubic feet of grain. The sides of the 

box cost 104 per square foot to build, the roof 

costs $1 per square foot to build, and the bottom 

will cost $7 per square foot to build. What 

dimensions will minimize the building costs? 

12. A printed page will have a total area of 96 square 

inches. The top and bottom margins will be 1 

inch each, and the left and right margins will be 

1~ inches each. What overall dimensions for the 

page will maximize the area of the space inside 

the margins? 

l~ 

1 

I 

4 

1 printed 

1 

1 1-L 
2 

1 

y 1 

l 

1 

area 1 

1 

\ / 

1 

1 
1 

1 

1 

<- x -> 
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LESSON 

Areas under 
Curves 

Around the same time that so many great mathematicians devoted themselves to figuring out the 

slopes of tangent lines, other mathematicians were working on an entirely different problem. They 

wanted to be able to figure out the area underneath any curve y = f(x), such as the one shown in 

Figure 16.1. 

Figure 16.1 



AREAS UNDER CURVES 

They used the shorthand notation 

•b 
f(x)dx to 

represent the area between, or bound by, the curve 

y = f[x), the x-axis, and the lines x = a and x = b. 

This symbol is generally referred to as an integral. 

Note: The dx is merely to indicate which letter is the 

variable. If the horizontal axis represented time, for 

instance, then this would end in dt. 

Example 

Evaluate the integral xdx. 

Solution 
1 

This represents the area between the curve y = — x, 

the x-axis, the line x = 0, and the line x = 4 (see Fig¬ 

ure 16.2). This area happens to be a triangle with a 

height of 2 and a base of 4. The area of the triangle is 

^xdx = 4. 2’(2)(4) = 4. Thus, 

Also, just to be sporting, area below the x-axis is 

counted negatively. Therefore, really f{x)dx repre¬ 

sents “the area between the curve y = f(x), the x-axis, 

x — a, and x = b, where area below the x-axis is 

counted negatively.” 

Example 
f3 r 4 r 6 

Evaluate the integrals /(x) dx, f[x)dx, f[x)dx, 

n 
and f(x) dx where the graph of y = /(x) is given as 

shown in Figure 16.3. 

Solution 

First, 
"3 

j{x)dx 4 because this area is a square 
Ji 

above the x-axis (see Figure 16.4). 

8 



AREAS UNDER CURVES 

Next, 
l 

f(x) dx = 4 + — • (1) • 2 = 5 because this 

area is a square plus a triangle (see Figure 16.5). 

Figure 16.5 

For f[x)dx, we must calculate how much area is 

above the x-axis and how much is below (see Figure 

16.6). 

There are 5 units of area above the x-axis and 4 units 
f6 

below, so /(x) dx = 5 — 4=1. 

Finally, f[x) dx represents a rectangle of area 
■>6 

4 that is entirely below the x-axis. Thus, 

f(x)dx = —4 (see Figure 16.7). 

9 



AREAS UNDER CURVES 

► Practice 

Evaluate the following integrals. 

Use the following graph to solve practice problems 1, 

2, and 3. 

Use the following graph for practice problems 7, 8, 

and 9. 

7. 
"6 

h( t) dt 8. 
"4 

h(t)dt 9. 

'6 

h( t) dt 
J-i J-i J4 

Use the following graph for practice problems 10 

through 18. 

r 2 

1. f[x)dx 2. f(x)dx 3. f[x)dx 

Use the following graph for practice problems 4,5, and 

6. 

10. 
•7 

k(x)dx 
Jo 

11. 
*6 

k(x)dx 12. 
J4 

*5 

k(x)dx 
J4 

13. 

'4 

(x + 2 )dx 14. 
• o 

-4 

2 dx 
-l 

'5 

15. (f 
■1 

3)df 

4. 
•4 

g(x)dx 
Jo 

5. 
'6 

g(x)dx 
4 

6. 
-6 

six)dx 
Jo 

16. 
-2 

17. 
"6 

2xdx 18. 
'8 

(2x — 2)dx 
Jo 
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You may have noticed: 

AREAS UNDER CURVES 

Example 

rb rc rc 

f{x)dx+ f[x)dx— f[x)dx 

The area between a and c is the area from a to b plus 

the area from b to c, assuming, of course, that 

a< b < c (see Figure 16.8). 

rc 

Similarly, f(x) dx f(x) dx f{x) dx. 

We can use these to make calculations, even when the 

exact functions are unknown. 

rs 

If f[x) dx = 7 and 
10 

f[x)dx = 15, then what is 

r 10 

f{x) dx ■ 

Solution 

r io r 5 

f(x) dx = f{x)dx + 

10 

f{x)dx 

= 7 + 15 = 22 

Example 

r io 

If 
r io 

g{x)dx~ 38 and g(x)dx= —12, then 

what is g(x)dx ? 
Jo 

Solution 

r 8 r io no 

g(x) dx = g(x) dx — 
o 

g(x)dx 

38 - (-12) = 50 
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AREAS UNDER CURVES 

► Practice ii 
Suppose h(x)dx = 20, h(x)dx= 12, and 

’-2 

*6 *7 

* 

Suppose j{x)dx = 10, 
0 

/(x) dx = —5 , and 
6 

h(x) dx = — 5 . Evaluate the following. 

ii 
f(x)dx — 2. Evaluate the following. 

J" 7 r 11 rn 

f{x)dx 20. f(x)dx 21. f{x)dx 
o h Jo 

25. 

n no 
h(x) dx 26. 

r n 
h(x) dx 27. h(x) dx 

10 

r i4 

Suppose 
r 14 

g(t)dt= —3, g(f)df = 8, and 
10 

g(t)dt — —10 . Evaluate the following. 

' 14 

22. £t)dt 23. 
no r 1° 

g(t)dt 24. g(t)dt 
i J5 

122 



The 
Fundamental 
Theorem of 
Calculus 

Here comes the resounding climax of calculus. It would be best to read this lesson with some 

bombastic orchestral music like that of Wagner or Orff. This, however, is not necessary. The initial 

question here is innocent enough: If we make a function from that “area under a curve” stuff, what 

would its derivative be? So suppose that our curve is y — j[ t) (see Figure 17.1). We use the variable t in order 

to save x for something more important. 
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THE FUNDAMENTAL THEOREM OF CALCULUS 

Now let our “area under the curve function” be 

g(x) — the area under the curve y = /(f) between 0 

fx 
and some point x. Therefore, g(x) = \ f[t)dt. This 

Jo 
area is illustrated in Figure 17.2. 

► Practice 

Suppose /(f) = ^rt + 1 and g(x) = 

ate the following. 

f[t)dt. Evalu- 
Jo 

Example 

If /(f) — 2f and g(x) 
"X 

f{t)dt, then what is g(3)? 
Jo 

Solution 

g(3) = f{t)dt 
r 3 

2 tdt = the area beneath the 

curve y = 2t from 0 to 3. The graph of j{t) = 21 is 

shown in Figure 17.3. This area is a triangle with base 

3 and height 6, so g( 3) 2tdt=-(3)(6) = 9, 

1- 5(1) 

2. 5(2) 

3- 5(3) 

4- 5(4) 

5- 5(5) 

6. g(0) 

Now suppose /(f) = 7 and g(x) 

ate the following. 

‘X 

f[t)dt. Evalu- 
Jo 

7- m 
*• s(i) 
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THE FUNDAMENTAL THEOREM OF CALCULUS 

9- 5(2) 

10- 5(3) 

11- 5(4) 

12- 5(5) 

Now that the concept of g(x) = f{ t) dt is clear, we 

can answer the next question: What is the derivative of 

$(*)? 

Begin with the definition of the derivative. 

,, \ r 5{x+ h)- g(x) 
g(x) = hm- 

o h 

17.4). This is almost a rectangle with a base of h and a 

height of f[x), so the integral 

x+h 

f[t)dt is almost 

h • f[x). As h gets really small, this area gets closer to 

being a rectangle (see Figure 17.5). 

Therefore, as h approaches zero, this integral 

approaches h-f(x), thus: 

fx+h 

f[t) dt 

g'(x) = lim——T~ 

h • fix) 
lim—7-= lim fix) = fix) 
h-+ o h h^oJX ' JV ' 
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The Fundamental Theorem of Calculus 

The Fundamental Theorem of Calculus can be written as follows: 

■b 

f(x)dx = 
da 

'b 

f(x)dx - 
Jo 

'a 
f(x)dx = g(b) - g(a), where g'(x) = f(x) 

0 

What does this mean? It means that the deriva¬ 

tive of the function g(x), which represents “the area 

under the curve,” is the very function f[x) used to 

draw the curve. It came as an amazing surprise to the 

world of mathematics that the process of finding the 

slope of a tangent line and the process of finding the 

area under a curve were exact opposites. In order to 

find the area under a curve y = f(x), we need to find 

a function g(x) whose derivative is f[x). 

fb 
We can use this to evaluate f(x)dx by the 

da 
Fundamental Theorem of Calculus (see Figure 17.6). 

For example, the derivative of g(x) — x2 is 

g'(x) = 2x. Thus, the area under /(x) = 2x between 

f5 
x = 3 and x = 5 is 2xdx = g(5) — g(3) = 

J3 

52 — 32 — 16. This is exactly the area of the trapezoid 

under the line y — 2x between x = 3 and x = 5. FIow- 

ever, here the Fundamental Theorem of Calculus saves 

us from having to draw out the graph of y — 2x. 

Example 

The derivative of g(x) = ^-x3 is g'(x) = x2. Use this 

to evaluate x2 dx. 

Solution 

By the Fundamental Theorem of Calculus, 

•b 

Kx) dx = g(b) — g(a), where g'(x) = J{x). Thus, 

“ 2 

x?dx = g{2) - g(-1) 
J-i 

= |<2)3-J(-D3 = f+ | = 3. 

Even if we had drawn out the graph of y = x2, 

how would we have been able to guess that the area of 

the two shaded curves add up to exactly three? This is 

why the Fundamental Theorem of Calculus is so 

powerful! (See Figure 17.7.) 
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THE FUNDAMENTAL THEOREM OF CALCULUS 

Figure 17.7 

Example 

If g(x) = x4, then g'(x) = Ax’. Use this to evaluate 

Ax’ dx. 
--i 

Solution 

-i 

4x?dx = g(l) - s(-l) 
J-i 

= l4 - (-1)4 =1-1=0 

The answer is zero because there is exactly as much 

area above the x-axis (which counts positively) as there 

is below the x-axis (which counts negatively). 

14. (2x + 1 )dx 
J-3 

15. 

16. 

(2x + 1 )dx 

(2x + 1)dx 

Use ix\¥, 
Vx to evaluate the following. 

17. Vxd: x 

r 4 

18. Vxd. X 

19. Vxd. X 

r ioo 

20. Vxd* 

Use 

21. 

22. 

A 1 
dx\ x. 

= to evaluate the following. 

r 2 

dx 

^dx 

► Practice 

If g(x) = x2 + x then g'(x) = 2x + 1. Use this to 

evaluate the following. 

13. 
"3 

(2x + 1) dx 
h 

c 4 

23. 

24. 

^-dx 
x^ 

-i 

-3 

-^dx 
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Antidifferentiation 

T 
r b 

he Fundamental Theorem of Calculus shows that the area under the curve, 

with a function fix) whose derivative is g'(x) = fix): 

fix) dx, can be calculated 

f[x)dx = [fix)\a = fib) - fia) 

Because of this, the symbol 

taking the derivative. An integral like 

, without the limits of integration, is used to represent the opposite of 

r b 

f[x) dx is called a definite integral because it represents a definite area. 

An integral like fix) dx is called an indefinite integral because it represents another function. 

pie, 

Thus, j fix) dx means the antiderivative of fix) or “the function whose derivative is fix).” For exam- 

2xdx asks “whose derivative is 2x ?” This could be x2 because -^(x2) = 2x. However, it could also 

be x2 + 5 because "HV + 5) = 2x as well. In fact, because the derivative of a constant is zero, 
dx 

2 xdx 

could be x2 plus any constant. Therefore, we write 2xdx = x2 + c where c is any constant. 
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Bracket Note 

The brackets J ... are just a way of keeping track of the limits of integration a and b before they are 

plugged into g(x) and subtracted. 

Again, because mathematicians are lazy, we usu- Solution 

ally simply write 2xdx = x2 + c and assume that 
* 

everyone knows that the c stands for “some constant.” 

In many ways, the “plus c” is the trademark of the 

indefinite integral because every problem that begins 

with | (••..) dx ends with + c. 

If we are dealing with a definite integral like 

2xdx, then it does not matter what constant we 

use. For example: 

r 5 

2 xdx = [x2 + c| 

= (52 + c) - (32 + c) 

= 25 + c— 9 — c — 16 

The “plus c will always cancel out in the subtraction, 

so we may as well simply use c = 0 and write: 

2xdx = [x2! = 52 - 32 = 25 - 9 = 16 

Example 

Use ^(x3 + lOx2 + 3x) = 3X2 + 20x + 3 to 

evaluate (3X2 + 20x +3 )dx and 

f (3X2 + 20x + 3)dx. 

Because "(x3 + lOx2 + 3x) = 3X2 + 20x + 3, 

know that: 

we 

J (3X2 + 20x +3)dx = x3 + 10x2 + 3x + c 

Similarly, 

2 

(3 x2 + 20x + 5)dx — [x3 + lOx2 + 3x]2 

2 

(3X2 + 20x + 3) dx = 

((2)3 + 10 - (2)2 + 3-(2)) - 

((l)3 + 10 • (1) + 3.(1)) 

f (3X2 + 20x + 3)dx = 
'i 

8 + 40 + 6 - (l + 10 + 3) = 54 - 14 = 40 

The general rules for antiderivatives are fairly 

simple. To take the derivative of f[x) = x5, we first 

multiply by the exponent 5, and then we subtract one 

from the exponent. Thus, f'{x) = 5x4. 

To antidifferentiate j 5x4dx, we must do the 

exact opposite of this process. First, we add one to the 

exponent, and then we divide the result by the new 
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Verification Hint 

You can verify your answer by taking its derivative. If the derivative of your answer is what you were try¬ 

ing to integrate, then you are correct. 

2 3 

The derivative of -x2 + c 
O 

is 
d ( 2 a 

— -x2 + c 
dx\ 3 

2 3 i 
= - • -x2 + 0 

3 2 
x2 = Vx. This verifies that 

Vxdx "x2 + c 

exponent. Thus, — 5 xdx 
5x .4 + 1 

4 + 1 
+ c = x5 + c. In 

Solution 

general, we write: "2 

X^X = 
1 2 
7X4 

/• J 0 L4 Jo 

x!'dx = 
x"' 

n + 1 
+ c if n ^ — 1 

Example 

Evaluate x7dx. 

Solution 

x^1 

x'dx = 
7 + 1 

+ c = -Xs + 

Example 

Evaluate Vxd. X. 

Solution 

Vxc/x 

x 

x2dx 

l + i 

+ 1 

x2 , 2 3 
+ C = -r- + c = -X2 + C 

I 3 

Example 
r 2 

Evaluate x^x. 

r 2 

x^x = 7 • 24 — 7 • 04 
4 4 

1 

7 • 16 — 7 • 0 — 4 
4 4 

-0 = 4 

► Practice 

Evaluate the following integrals. 

1. 

2. 

x’dx 

xdx 

3. u6du 

r 6 

4. x1 dx 

5. xdx 

6. t 3dt 
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ANTIDIFFERENTIATION 

9. 

Example 

Evaluate (2^ -81+ 7)dt. 

Solution 
* 

(2J3 -81+ 7)dt = 2-|f4 - 8-jt2 + 7t + c 

10. 
|" (2^ — 8t + 7) dt — ~t4 — At2 + 7t + c 

11. 5dx 

12. 5 dt 

13. j 8 dx 

f4 

14. 
x2 

dx 

Just as with derivatives, constants can stand aside, 

and the terms of sums can be dealt with separately. 

Example 

Evaluate 5 x2 dx. 

Solution 

1 
5X2 dx = 5 ( —x3 I + c 

5x*dx = —x3 4- c 

Example 
"4 / 

Evaluate ( 6Vx 

Solution 

It always helps to write everything in exponential form. 
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ANTI DIFFERENTIATION 

► Practice 

Evaluate the following integrals. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

9 yd dx 

8U2 du 

(x — Vx) dx 

(6X2 — lOx + 5) dx 

12.x3 dx 
o 

"2 

( 
h 

n 

(3X2 + 4 )dx 

(6x — 4) dx 

(3111 + 9? + t) dt 

(1 — d)dt 

(8X3 + lOx2 - 4x + 2) dx 

-2 

0 

r 9 

(10u4 — 4 u + 1 )du 

12 Vxdx 

jdx 

, 10 4. 
(3x3 — 8 x7)dx 

The integrals of e*, sin(x), and cos(x) follow 

directly from their derivatives: 

e*dx = e* + c because e?) = e* 

cos(x)dx = sin(x) + c because 

^(sin(x)) = cos(x) 

sin(x)dx = —cos(x) + c because 

^(-cos(x)) = sin(x) 

The integral of ln(x) will have to wait until Les¬ 

son 20, though we can use the fact that -y-(ln(x)) = — 
&X X 

right now. We are inclined to say that 

— dx = ln(x) + c, but this is not entirely correct. 

The derivative of ln(—x) is —(ln(—x)) 

= —-—( — x) = 
—x dx 

—— • (— 1) = — as well. It 

does not matter if the x inside the natural logarithm is 

positive or negative, so we can generalize with the 

absolute value |x|. 

I 

x 
dx = lnlxl + c 

Incidentally, this nicely fills a hole in an earlier 

formula: 

x"+1 
x'Wx 

n + 1 
+ c if n =£ — 1 
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ANTIDIFFERENTIATION 

and if n = — 1 then 

x 1 dx = dx = ln|x| + c 

Example 

Evaluate (3sin(x) + 5cos (x))dx. 

Solution 

(3sin(x) + 5cos (x))dx = 

—3cos(x) + 5sin(x) + c 

Example 
r 1 

Evaluate (312 - 5 ef)dt. 

Solution 

r i 
(3? — 5 ef)dt = [t3 — 5e‘ ,f|i 

o 

r i 
(312 - 5i)dt = (l3 - 5e‘) - (03 - 5e°) 

(3^ - 5 e')dt = \-5e+5 = 6-5e 

Example 

Evaluate x2 + x+ 1 + — 4- —^ J 

Solution 

I ( x2 + x+ 1 + — + dx = 

(x2 + x1 + x° + x 1 + x 2)dx 

f x2 + x+ 1 + — + j dx — 

“X3 + “X2 + x1 + lnlxl — x_1 + c 
3 2 

^ x2 + x+ 1 + ~ dx — 

~x? + “"X2 + x + lnlxl — — + c 
3 2 x 

► Practice 

Evaluate the following integrals. 

29. 

30. 

31. 

32. 

33. 

34. 

(x2 — 5cos(x))dx 

(3e* + 2 x?)dx 

— du 
u 

(d + 2sin(0))d# 

(sin(x) + 2e*)dx 

r l 

(x + e*) dx 

35. ±dx 

36. (8cos(x)) dx 
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Integration by 
Substitution 

T 
he opposite of the Chain Rule is an integration technique called substitution. Using the Chain Rule, 

for example, the derivative of 8(3x2 + 7)5 is ^;(8(3x2 + 7)5) = 8 • 5(3x2 + 7)4*6x = 

* 

240x(3x27)4. The corresponding antiderivative is thus 240x(3x2 + 7 )4 dx — 8(3^ + 7)5 + c.It 

is easy to recognize this after seeing the derivative worked out, but how should we know this otherwise? 

The mantra of the Chain Rule is “multiply by the derivative of the inside.” So the first step to undoing 

it is to identify what “the inside” must have been. We substitute a new variable u for this and then try to rewrite 

the whole integral in terms of u. 

For example, when confronted by 240x(3x2 + 7)4 dx, we first notice that this is not an easy integral 

to solve. If we multiplied out the fourth power, then it would be a polynomial that we know how to evalu¬ 

ate, but that would be quite difficult. Instead, we guess that “the inside” is the stuff inside the parentheses, and 

substitute u = 3X2 + 7. 
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INTEGRATION BY SUBSTITUTION 

To convert the integral entirely over to u, we will 

need to replace the dx into a du. Because 

u = 3X2 + 7, we know that = 6x. It is techni¬ 

cally wrong to cross-multiply and say du = 6xdx, but 

this does result in the correct answer, so we’ll go with 

it. Thus, dx = . The process of substitution works 
6x 

as follows. 

Start with the original integral. 

240x(3x2 + 7)4dx 

Substitute u = 3.x2 + 7 and dx = 
du 

6x ' 

24(ta(“)4fe 

Simplify. 

40 u4du 

Evaluate. 

8 u5 + c 

Replace u = 3X2 + 7. 

8(3^ + 7)5 + c 

Thus, 240x(3x2 + 7)4dx = 8(3x2 + 7)5 + c, as 

we already knew. 

In general, try using something inside parenthe¬ 

ses with u. If every x doesn’t cancel out when replacing 

dx with du, then try using something else as u. Some¬ 

times, the entire denominator can be used as u. 

Sometimes, nothing works and a different technique 

must be tried. 

Example 

Evaluate x2sin(x3)dx. 

Solution 

If we use the stuff inside the only set of parentheses, 

then u = x3, and thus du = 3X2 dx and dx — 

Start with the original integral. 

x2sin(x3)dx 

du 

3X2 

Substitute u = 

du 

3X2 

x3 and dx = . 

x2sin( u) 

Simplify. 

^sin( u) du 

Every x is gone, so we can evaluate. 

—^-cos(u) + c 

Replace u = x3. 

—^-cos(x3) + c 

Thus, x2sin(x3)dx = — — cos(x3) + c. This can be 

verified by differentiating = 

—^(—sin(x3) • 3X2) + 0 = x2sin(x3). 
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INTEGRATION BY SUBSTITUTION 

If we had been faced with sin(x’)dx in the last 

example, then substituting u = x3 would have 

du 
resulted in sin(u)-^j. This cannot be evaluated 

because it is not entirely in terms of u. In fact, this inte¬ 

gral is very difficult to solve and requires the advanced 

technique of replacing sin(x3) with an infinitely long 

polynomial called a power series. Many such integrals 

exist that are difficult to solve, and some have com¬ 

pletely baffled every effort to solve them so far. This 

book will focus on the ones that can be evaluated with 

basic techniques. 

Example 

Evaluate 
2x + 7 

dx. 

Solution 

Because there are no parentheses, try using the 

denominator: u = 2x + 7. Here, 4^ = 2, so 
dx 

du = 2 dx and dx = . 

Start with the original integral, 

f 3 

2x + 7 
dx 

Substitute u = 2x + 7 and dx 

3 du 

u 2 

du 

Simplify. 

3ml 
2 u 

du 

Every x is gone, so we can evaluate. 

—lnlwl + c 

Replace u = 2x + 7. 

4lnl2x +71 + c 

Thus, -—dx = 4lnl2x +71 + c. 
2x + 7 2 

Basically, the dream is to find a u whose deriva¬ 

tive is elsewhere in the integral, so that between the 

u and the du, every x goes away. This leads to some 

clever tricks, as will be demonstrated in the following 

examples. 

Example 

Evaluate 
ln(x) 

x 
dx. 

Solution 

Here, we use u = ln(x). This is not because it is in 

parentheses but because its derivative — — — makes 
dx x 

up the rest of the integral. Here, du = —dx, so 
X 

dx — xdu. 

Start with the original integral. 

ln(x) 

x 
dx 

Substitute u = ln(x) and dx = xdu. 

~(xdu) 
X 
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INTEGRATION BY SUBSTITUTION 

Simplify. 

udu 

Every x is gone, so we can evaluate. 

Iw2 + c 

Replace u = ln(x) 

Every x is gone, so we can evaluate. 

;u + C 

Replace u = cos(x). 

-cos4(x) + c 

|(ln(x))2 + c 

fln(x) i _ 
Thus, -dx = —(ln(x))2 + c. 

Thus, |sin(x)cos3(x) dx = —^-cos4(x) + c. 

To use substitution on a definite integral, it is best 

to evaluate the indefinite integral first. 

Example 

Example Evaluate V3x + 1 dx. 

Evaluate sin(x)cos3(x) dx. 

Solution 

Solution 

Here, the trick is to use u = cos(x) so that 

du • / \ , du 
~r~ — —sin(x) and dx = —. . 
dx sin(x) 

First, we evaluate | V3x + 1 dx using u = 3x + 1, 

Start with the original integral. 

sin(x)cos3(x) dx 

Substitute u = cos(x) and dx = 
du 

du = 3dx, and dx — . 

Start with the original integral. 

| \//3x + l dx 

Substitute u = 3x + 1 and dx 

du 

du 

3 

sin(x) 
u~ 

J sin(x) • u3 

Simplify. 

— vddu 

du 

sin(x)/ Simplify. 

1 
u} du 
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Every x is gone, so we can evaluate. 

1 2 3 

yr +c 

Replace u = 3x4- 1 

i(3x + 1)‘ + c 

Because 

lows that 

\/3x + 1 dx = —(3x + l)2 + c, it fol- 
y 

A/3x 4- 1 dx = 
Z, / x 3 

,(3*+ 1)= 

§(16)5 - |(4)^ = |(64 - 8) = -1^. 

If the wrong u is chosen, then either some of the 

variables x will still remain or else the simplified inte¬ 

gral will still be hard to solve. If this happens, go back 

to the beginning and try a different u. Don’t forget that 

many integrals, like those of the previous lesson, don’t 

require substitution at all. Like much of mathematics, 

integration often requires patience and a knack that is 

developed with practice. 

► Practice 

Evaluate the following integrals. 

1. 

2. 

3. 

4. 

5. 

x4(x5 + l)7dx 

(4x + 3)10 dx 

x2(x3 — l)4dx 

(x3 — 9x + 4) dx 

x A/x2 — 1 dx 

6. 

7. 

8. 

3 Vxd. x 

f7 
a/3x +4 dx 

9X2 - 5 

3X3 — 5x 
dx 

9. 12x3cos(x4)dx 

10. 

11. 

12. 

13. 

6X3 - 1 

V3x4 — 2x + 1 
dx 

(8x + 5)(4x2 + 5x — l)3dx 

x 

(4X2 + 5): 
dx 

1 

4x + 10 
dx 

14. sin(x)cos(x) dx 

15. 

16. 

17. 

18. 

19. 

sin2(x)cos(x)dx 

cos(4x) dx 

4cos(x) dx 

sin(7x — 2) dx 

exsin( ex) dx 
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INTEGRATION BY SUBSTITUTION 

20. 

21. 

22. 

f(ln(x))3 
dx 

1 

xln(x 

dx 

dx 

23. 

24. 

tan(x) dx = 
' sin(x) 

cos(x) 
dx 

e 
1 + e* 

dx 
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LESSON 

Integration by 
Parts 

he integral of the product of two things is unfortunately not the product of the integrals. For 

example, the integral x • cos(x)dx is not ^x2sin(x) + c. We know this because the derivative 

of ^■x2sin(x) 4- c is, by the Product Rule, |-x2sin(x) + c J — 2x- sin(x) + cos(x) • ^-x2, 

which is not equal to x* cos(x). It is unfortunate that this does not work because, if it did, evaluating inte¬ 

grals would be simple and would not require so many different techniques. 

The integration technique that undoes the Product Rule is called integration by parts. The derivative of 

u • v, using the Product Rule, can be expressed as du- v + dv u or udv + vdu. The corresponding inte¬ 

gral is: 

(udv + vdu) = uv 

This can be broken up into udv + 
' 

vdu — uv and written as: 

r 
Integration by Parts Formula: udv uv — vdu 
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LIPET Mnemonic 

A good mnemonic for guessing what to use as u is “LIPET.” That is, let u be a Logarithm if there is one. 

If not, let u be the Inverse of a trigonometric function (not covered in this book). If there isn’t either of 

these, then let u be a Polynomial, and if there is none, let it be an Exponential function. Only as the very 

last resort, should you let u be a Trigonometric function. 

This can often be used to transform a difficult 

integral into one that is solvable. For example, take 

x* cos(x)dx. This looks just like udv if u — x 

and dv = cos(x) dx. In order to use the formula, we 

will need to get du by differentiating u. Because 

du 
u = x, we know that — = 1, so du = dx. We will 

dx 

also need to get v from dv by integrating. And because 

dv = cos(x) dx, it must be that v = sin(x). Thus: 

x> cos(x)dx = udv 

x*cos (x)dx= uv — v du 

x* cos(x)dx = xsin(x) sin(x) dx 

- 

x*cos (x)dx = xsin(x) + cos(x) + c 

This is the correct answer, as can be verified by taking 

the derivative ~~ 
dx 

+ cos(x)*x - sin(x) + 0 = x-cos(x). 

(xsin(x) + cos(x) + c) = 1 • sin(x) 

Solution 

This cannot be solved by basic integration or by sub¬ 

stitution, so we try integration by parts. No logarithms 

or inverse trigonometric functions are found here, but 

there is the polynomial x, so we try u = x. The dv 

must then be everything else after the integral sign, so 

dv = e* dx. After differentiating u and integrating dv, 

we get: 

u = x 

du = dx 

And: 

dv = e*dx 

v — e* 

Thus, using the integration by parts formula 

udv ~ uv — vdu, we evaluate as follows: 

xe"dx 

■ 

udv 

xe^dx = uv — vdu 

Example 
xe*dx — xe* — e*dx 

Evaluate xe'dx. 

x^dx = xe* — e* + c 
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INTEGRATION BY PARTS 

Example 

Evaluate x^n^) dx. 

Solution 

Here, we have a logarithm, so we set u = ln(x) and 

dv = x3 dx. Thus: 

u = ln(x) 

du = — dx 
x 

And: 

dv = x3 dx 

1 4 V = —X 
4 

And then we evaluate. 

x3ln(x)dx = udv 

x3ln(x) dx = hv — 

x3ln(x)dx = ln(x)*^x4 — |^x4*-^dx 

x3ln(x) dx = ^x4ln(x) -7X3 dx 
4 

x3ln(x)dx = ^x4ln(x) — -j^x4 + c 

This can even solve the following problem that was 

mentioned in Lesson 18. 

Example 

Evaluate ln(x) dx. 

Solution 

Because there seems to be only one part to this inte¬ 

gral, one wouldn’t think to try integration by parts 

first. However, because nothing else will work, we can 

try u = ln(x). The only thing left for the dv is dx, so 

we use dv — dx, which leads to v = x. 

u = ln(x) 

du = —dx 
x 

And: 

dv = dx 

v = x 

And now evaluate as follows. 

ln(x)dx = udv 

In (x)dx = uv vdu 

ln(x) dx — ln(x) • x — X'—dx 
x 

ln(x)dx= xln(x) — 1 dx 

ln(x) dx = xln(x) — x + c 

Sometimes, integration by parts needs to be done 

more than once to solve a problem. 

Example 

Evaluate x2cos(x) dx. 
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- INTEGRATION BY PARTS 

Solution 

Here, u = x*,so du = 2xdx,and dv = cos(x)dx,so 

v = sin(x). 

r 

x2cos(x)dx - 

x2sin(x) — (2x* (—cos(x)) — (—cos(x)) *2 dx) 

x2cos(x) dx 

x2cos (x)dx 

x2cos(x)dx 

x2sin(x) + 2xcos(x) + — 2cos (x)dx 

x2cos(x)dx = x2sin(x) — sin(x) • 2xdx 

|x2cos(x)dx = x2sin(x) — |2xsin(x)dx 

* 

x2cos(x)dx = 

x2sin(x) + 2xcos(x) — 2sin(x) + c 

In order to solve this j 2xsin(x) dx, we have to 

use integration by parts a second time, but this time, 

with u — 2x and dv = sin(x)dx. 

u — 2x 

du = 2 dx 

And: 

The final example utilizes a clever trick that few 

people have ever figured out on their own. Instead, 

they have seen it done and learned to copy it. Oppor¬ 

tunities to use this trick are few, but it is interesting 

enough to see at least once. 

Example 

Evaluate e*sin(x) dx. 

dv = sin(x) dx 

v = — cos(x) 

Now we evaluate as follows. 

x2cos (x)dx — x2sin(x) — 

* 

2xsin(x) dx 

Solution 

The first letter of LIPET that we reach is E because 

there are neither logarithms nor polynomials, so let 

u = e* and dv = sin(x) dx. 

u — e* 

du = e*dx 

x2cos(x)dx = x2sin(x) udv 

j x2cos(x)dx~ x2sin(x) — (uv 

And: 

dv = sin(x) dx 

v = — cos(x) 
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And now evaluate as follows. 

e*sin(x) dx = udv 

e*sin(x) dx = 

— e*cos(x) + e*sin(x) — sin(x) • e^dx 

^sin(x) dx = uv — vdu 

exsin(x) dx 

ex(—cos(x)) 

exsin(x) dx = 

— e*cos(x) + e*sin(x) — e*sin(x) dx 

( —cos(x)) • e*dx 

exsin(x) dx = — excos(x) + e*cos(x) dx 

e*cos(x) dx, we use integration by parts To evaluate 

again: 

u = e* 

du = e*dx 

And: 

dv = cos(x) dx 

v = sin(x) 

And then the evaluation: 

exsin(x)dx = — excos(x) + 

Here is the moment of despair: To evaluate 

e*sin(x)dx, we need to be able to evaluate 

exsin(x) dx! And yet, the trick here is to bring both 

integrals to one side of the equation: 

e*sin (x)dx + exsin(x)dx = 

— excos(x) + e*sin(x) 

exsin(x)dx = — e*cos(x) + e*sin(x) 

e*sin(x)dx = —e*cos(x) + e*sin(x)) + c 

e*cos(x) dx 

exsin(x)dx = — e*cos(x) + | udv 

e*sin (x)dx = — excos(x) + uv — vdu 
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► Practice 
12. Vx— lc/x 

Evaluate the following integrals using integration by 

parts, substitution, or basic integration. 13. xVx — l dx 

1. x5\n(x)dx 

2. xsin(x) dx 

3. J xsin(x?)dx 

4. |(x + 3)cos(x)ix 

ln(x) 
5. 

6. 

7. 

8. 

x 
dx 

x2sin(x) dx 

(x2 + sin(x)) dx 

x2/+1& 

9. xVdx 

10. (x3 + 3x — l)ln(x)<ix 

11. (x + ln(x)) dx 

14. xe Xdx 

15. Vxln(x) dx 

16. l^dx 

17. dx 

18. j^x2 — l)cos(x)dx 

19. 

20. 

C 1 
—2dx 
XT 

sin(x) Vcos(x)c/x 

21. sin(x) • ln(cos(x)) dx 

22. eccos(x)dx 
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Posttest 

If you have completed all 20 lessons in this book, you are ready to take the posttest to measure your 

progress. The posttest has 50 multiple-choice questions covering the topics you studied in this book. 

Although the format of the posttest is similar to that of the pretest, the questions are different. 

Take as much time as you need to complete the posttest. When you are finished, check your answers with 

the answer key that follow the posttest. Along with each answer is a number that tells you which lesson of this 

book teaches you about the calculus skills needed for that question. Once you know your score on the posttest, 

compare the results with the pretest. If you scored better on the posttest than you did on the pretest, 

congratulations! You have profited from your hard work. At this point, you should look at the questions you 

missed, if any. Do you know why you missed the question, or do you need to go back to the lesson and review 

the concept? 

1. 0 0 0 0 
2. 0 0 0 0 
3. 0 0 0 0 
4. 0 0 0 0 
5. 0 0 0 0 
6. 0 0 © 0 
7. 0 0 0 0 
8. 0 0 0 0 
9. 0 0 0 0 

10. 0 0 0 0 
11. 0 0 © 0 
12. 0 0 0 0 
13. 0 0 © 0 
14. 0 0 0 0 
15. 0 0 © 0 
16. 0 0 0 0 
17. 0 0 0 0 

ANSWER SHEET 

18. 0 0 0 0 
19. (a) 0 © 0 
20. 0 0 0 0 
21. 0 0 0 0 
22. 0 0 0 0 
23. 0 0 0 0 
24. 0 0 0 0 
25. 0 0 0 0 
26. 0 0 0 0 
27. @ 0 0 0 
28. 0 0 0 0 
29. 0 0 0 0 
30. 0 0 0 0 
31. 0 0 0 0 
32. 0 0 0 0 
33. 0 0 0 0 
34. 0 0 0 0 

35. 0 0 0 0 
36. 0 0 0 0 
37. 0 0 0 0 
38. 0 0 0 0 
39. 0 0 0 0 
40. 0 0 0 0 
41. 0 0 0 0 
42. 0 0 0 0 
43. 0 0 0 0 
44. 0 0 0 0 
45. 0 0 0 0 
46. 0 0 0 0 
47 0 0 0 0 
48. 0 0 0 0 
49. 0 0 0 0 
50. 0 0 0 0 
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If your score on the posttest doesn’t show much 

improvement, take a second look at the questions you 

missed. Did you miss a question because of an error 

you made? If you can figure out why you missed the 

problem, then you understand the concept and simply 

need to concentrate more on accuracy when taking a 

test. If you missed a question because you did not 

know how to work the problem, go back to the lesson 

and spend more time working that type of problem. 

Take the time to understand basic calculus thoroughly. 

You need a solid foundation in basic calculus if you 

plan to use this information or progress to a higher 

level. Whatever your score on this posttest, keep this 

book for review and future reference. 

► Posttest 

3. Evaluate g° h{x) when g(x) = x2 + 5x + 1 

and h(x) = —. 

6 
a. — 

x 

b. x + 5 H- 
x 

1 

c‘ x2 + 5x + 1 

d. —j H-hi 
x2 x 

4. What is the domain of f(x) 
Vx + 1 ? 

X 

a. x — 1 

1. Evaluate /( —2) when f[x) = x3 — 2x. 

a. -12 

b. -10 

c. —4 

d. 4 

b. x # 0 

c. x — 1, x =£ 0 

d. x > — 1, x 0 

Use the following graph for problems 5 and 6. 

2. Simplify f[2x +1) when f(x) = x2 + x. 

a. 4X2 + 6x + 2 

b. 4X2 + 2x + 2 

c. 2X2 + 3x 

d. 2X3 + 3X2 + x 
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5. Where does g(x) have a local maximum? 

a. x = 0 

b. x = 1 

c. x = 2 

d. x = 3 

10. What is x if 4X = 10 ? 

ln(10) 

a- to(4)" 

b. 2.5 

c. 104 

6. Where is g(x) decreasing? 

a. (1,2) and (2,3) 

b. (—oo,2) 

c. (—oo,0) 

d. (0,oo) 

7. What is the slope of the line through (2,-4) and 

(1,7)? 

1 

a< IT 
b. -11 

c. 11 

d. 3 

8. Simplify 43. 

a. 7 

b. 12 

c. 16 

d. 64 

9. Simplify 16 

a. —8 

b. 4 

1 

d. In 

77 
11. What is cos^— J ? 

a. 1 

b. - 
2 

d. 

V2 
2 

Vi 

12. What is sin( —) ? 

a. 

b. 

Vi 

Vi 

Vi 
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. _ t, , x2 — 5x 4- 6 
13. Evaluate lim , 

oc - 2x - 3 
17. What is the slope of the tangent line to 

y = 4x — 7 at x = 2? 
a. 0 

b. 1 
a. -7 

b. —3 
2 

C‘ 3 
c. 1 

d. undefined 
d. 4 

r2 — 5x + 6 
14. Simplify lim^-—-7. 

f x2 - 2x - 3 

18. What is the derivative of 

g(x) = 8x4 — lOx3 + 3x — 1 ? 

a. 0 

1 

a* 3 
b. 8x4 — lOx3 + 3x 

b. ~ 
4 

c. 32X3 — lOx2 + 3x — x 

c. 1 d. 32X3 - 30X2 + 3 

d. undefined 
19. Suppose that after t seconds, a falling rock is 

s(f) = —16Z2 + 51 + 200 feet off the ground. 

x + 4 
15. Evaluate lim , 

*->1+ A 1 
How fast is the rock traveling after 2 seconds? 

a. 10 feet per second 

a. 5 b. 59 feet per second 

b. —00 c. 64 feet per second 

c. 00 d. 156 feet per second 

d. undefined 

16. What is the slope of the tangent line to y = x2 

at x = 3? 

20. Differentiate y — Vx + 4sin(x). 

a. r- + 4cos(x) 
a. 2 2 \Tx 

b. 6 

c. 9 b. Vx + 4cos(x) 

d. 2x 

c' 2 + ^S4n(x) 

d. r 4cos(x) 
2 Vx 
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21. What is the derivative of f[x) = 5e* — 2ln(x) ? 

a. — - 
x 

b. 5xe?~l — — 
x 

c. 5xe*_1 — 2x 

d. 5e* — 2x 

22. Differentiate y — xe*. 

a. e* 

b. x? 

c. (x + l)e* 

d. xe*“1 

, x cos(x) 
23. Differentiate e(x) = —5-. 

J x2 + 5x 

sin(x) 

a‘ 2x + 5 

— sin(x) 

b' 2x + 5 

(2x + 5)cos(x) + (x2 4- 5)sin(x) 

C' (x2 + 5)2 

— (x2 + 5x)sin(x) — (2x + 5)cos(x) 

^ (x2 + 5x)2 

24. What is the derivative of f(x) = sec(x) ? 

a. sec(x) 

b. tan2(x) 

c. sec(x)tan(x) 

d. 1 — sec(x) 

25. What is the slope of the line that is tangent to 

y = (x2 — 2)3 at x = 2? 

a. 8 

b. 12 

c. 24 

d. 48 

26. Differentiate xsin(x2). 

a. xcos(x2) + sin(x2) 

b. 2x2cos(x2) + sin(x2) 

c. 2x2cos(x2) 

d. 2xsin(x2) 

27. Find ^ when tan(y) + y — ln(x) — 1. 

a. — — sec2(x) 
x v 7 

h 1 
x(l + sec2(x)) 

x - 
1 + sec2(x) 

d. — — sec2(x) — 1 
x v 
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dy 
28. Find -j- when xry = xyr 

b. 
y — 2x 

x — 2 y 

y2 — 2 xy 
C. —:- 

x: — 2 xy 

y2 + 2 xy 
d. ~;- 

xr + 2 xy 

29. What is the slope of the curve y3 — y = 3x + 3 

at (1,2)? 

3 

a‘ IT 

b. 3 

31. If a 10-foot ladder slides down a wall at 2 feet per 

minute (see the figure that follows), how fast 

does the bottom slide when the top is 6 feet up? 

a. — foot per minute 

b. -y foot per minute 

2V3 

30. The volume of a sphere is V = r3. If the 

radius increases by 3 meters per second, how fast 

does the volume change when r = 10 meters? 

c. 2 feet per minute 

d. 12 feet per minute 

3V2 + 7y — 2 
32. What is lim ■ , --? 

*->•00 XT T 5x 1 

a. 3 

a. 40077— 
sec 

c. oo 

d. undefined 

4,00077 m3 

3 sec 

C. 4,00077 
m 

sec 

d. 1,20077 
m 
sec 

33. Where does y = e* have a horizontal 

asymptote? 

a. y = 0 

b. y = 1 

c. y = e 

d. no asymptote 
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Y5 + ^v3 
34. Evaluate lim -3-—. 

x—>00 £T — 1 

a. 5 

b. 0 

c. 00 

d. undefined 

35. On what intervals is f[x) 

decreasing? 

a. (4,5) 

b. (-5,1) 

c. (2,6) and (15,oo) 

d. (—00, —5) and (l,oo) 

b. 

x3 + 6^ - 15x + 2 
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37. If up to 30 apple trees are planted on an acre, 

each will produce 400 apples a year. For every 

tree over 30 on the acre, each tree will produce 

10 apples less each year. How many trees per acre 

will maximize the annual yield? 

a. 5 trees 

b. 32 trees 

c. 35 trees 

d. 40 trees 

■ 10 

39. If f(x) dx = 2 and f[x) dx 

is 
10 

f{x) dx '■ 

a. 6 

b. 9 

c. 10 

d. 16 

8, then what 

38. An enclosure will be built, as depicted, with 100 

feet of fencing. What dimensions will maximize 

40. What is 

-4 

f[x) dx ? 
•Jo 

i- x -> 

the area? 

a. x- 20,y= 12 

b. x= 25,y = 10 

c. x = 30, y = 8 

d. x = 35, y = 6 
a. 0 

b. 2 

c. 4 

d. 6 
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f x 

41. If g(x) = t3 dt, then what is g'(x) ? 

a. x3 

b. + c 
4 

1 4 , C. —X + c 
4 

d. 3X2 

42. Evaluate 

a. 16 

b. 32 

c. 36 

d. 40 

43. Evaluate 

(6X2 — 4x)dx. 

x5-Arjdx. 

a. —x6 H—j + c 
6 x^ 

b. ~x* + -+c 
6 x 

c. 5x4 + 
x3 

d. 5x4 + + c 

44. Evaluate cos(x) dx 

a. — sin(x) + c 

b. sin(x) + c 

c. — cos(x) + c 

d. cos(x) + c 

45. Integrate (3e* - sin(2x))dx, 

a. 3e* + cos(2x) + c 

b. 3e* — cos(2x) + c 

c. 3e* + |cos(2x) + c 

3e* + 1 

d. ——— sinfx2) + c 
x + 1 

46. Evaluate 

a. —l-c 
X 

ln(x) 

x 
dx. 

b. ^x2 + c 

c. (ln(x))2 + c 

d. |(ln(x))2 + c 
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47. Evaluate 

^> + 

dx. 

b. ±<P+c 

c. xef^ + c 

d. + c 

49. Integrate ln(x)dx 

a. ln(l) + c 

b. —he 
x 

c. |(ln(x))2 + c 

d. xln(x) — x + c 

48. Evaluate V4x + 1dx. 
50. Evaluate xexdx. 

62 

3 

248 

3 

125 

6 

d. 124 

a. 

b. 

c. 

a. ~xex + c 

b. -^xV + c 

c. xe* — e* + c 

d. xe* + e* + c 
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► Answers 

1. c. Lesson 1 

2. a. Lesson 1 

3. d. Lesson 1 

4. d. Lesson 1 

5. b. Lesson 2 

6. a. Lesson 2 

7. b. Lesson 2 

8. d. Lesson 3 

9. c. Lesson 3 

10. a. Lesson 3 

11. c. Lesson 4 

12. a. Lesson 4 

13. a. Lesson 5 

14. b. Lesson 5 

15. c. Lesson 5 

16. b. Lessons 6, 7 

17. d. Lessons 6, 7 

18. d. Lesson 7 

19. b. Lesson 8 

20. a. Lesson 8 

21. a. Lesson 8 

22. c. Lesson 9 

23. d. Lesson 9 

24. c. Lesson 9 

25. d. Lesson 10 

26. b. Lessons 9,10 

27. b. Lesson 11 

28. c. Lesson 11 

29. a. Lesson 11 

30. d. Lesson 12 

31. b. Lesson 12 

32. a. Lesson 13 

33. a. Lesson 13 

34. b. Lesson 13 

35. b. Lesson 14 

36. d. Lesson 14 

37. c. Lesson 15 

38. b. Lesson 15 

39. c. Lesson 16 

40. c. Lesson 16 

41. a. Lesson 17 

42. c. Lesson 18 

43. b. Lesson 18 

44. b. Lesson 18 

45. c. Lessons 18,19 

46. d. Lesson 19 

47. b. Lesson 19 

48. a. Lesson 19 

49. d. Lesson 20 

50. c. Lesson 20 
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► Lesson 1 

1. X5) = 9 

2. g( —3) = -20 

4. f{7) — 2 . Because there is no x in the descrip¬ 

tion of f, the 7 never gets used. This is called a 

constant function because it is constantly equal 

to 2. 

5. k{4) = 21 

6. /i(64) = 4 

7. The rock is s(3) = 16 feet high after 3 seconds. 

8. The profit on 100 cookies is P(100) = $39. 

9. j{y) = / + 3y - l 

10. Xr + 1) = / + 5y + 3 

11. Ax + a) = x2 + 2xa + a2 + 3x + 3a — 1 

12. Ho
 

4-
 

■ v7)= 8 
j x2+\4 

6(x2 + Vx) 

13. A2x) - Ax) = 

_8_ 

2x 6(2x) - (~ “ : 

'■O
 

^
 | X

 
1 II 

14. Xx + a) — X*) = (x + a)2 + 

4(x + a) — 5 — (x2 + 

4x — 5) = 2 xfl + a2 + 4 a 

h(x + a) ~ h{x) 

a 

3(x + a) + 2 — (3x + 2) 

a 

g(x + a) - X*) 
16. -= 

a 

(x + a)2 — 2(x + a) + 1 — (x2 — 2x + 1) 

a 
= 2x + a — 2 
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18. «»/(*) = + 1 

19‘ /o h(,) “ 7^4 

20. /<■/(*) = j = x 
X 

21. h o fc(x) = x - Vx - Vx- Vx 

22. £° fc(9) = g(9 - V9) = g(6) = 145 

23. h ° fo £x) = h(J[g{x))) = 

1 

x3 - 2X2 + 1 
1 

x3 — 2X2 + 1 

24. f°h° f{ 2x) = 

25. x ^ — 3, x ^ 5 

26. x > -1 

27. t > — 5 because t =£ — 5 

28. The domain consists of all real numbers. 

29. a =£ 0 

30. The domain consists of all real numbers. 

31. x ^ 2 , x + —8 

4 
32. u > — — is enough, because it already rules out 

4 
u + — 3 and u ^ . 

► Lesson 2 

13. The domain of/is x # 0. There is a discontinu¬ 

ity at x = 0. The graph of /is decreasing on 

(—oo,0) and on (0,oo). The graph of/is concave 

down on (— oo,0) and concave up on (0,oo). 

There are no points of inflection, no local max¬ 

ima, and no local minima. There is a vertical 

asymptote at x = 0 and a horizontal asymptote 

at y = 0. 
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14. The domain of g consists of all real numbers. 

There are no discontinuities. The function 

increases on (-00,-3) and on (0,3), and it 

decreases on ( — 3,0) and on (3,00). There are 

local maxima at (-3,4) and (3,4), and there is a 

local minimum at (2,0). The graph is concave up 

on ( — 1,1) and concave down on (-00,—1) and 

on (l,oo). There are points of inflection at 

(ool,3) and (1,3). There are no asymptotes. 

15. The domain of h is x # 1. There is a discontinu¬ 

ity at x = 1. The function increases on (—1,1) 

and on (1,00), and decreases on (—00, — 1). The 

function is concave up on (—00,1) and on (l,oo). 

There is a local minimum at (1,-2). There are 

no asymptotes, nor any points of inflection. 

16. The domain is x # —2, 2 with discontinuities at 

x = — 2 and x = 2. The function increases on 

(0,2) and (2,00), and decreases on (—00, —2) and 

on ( — 2,0). The point (0,2) is a local minimum. 

The graph is concave up on ( — 2,2) and concave 

down on (—00, —2) and (2,00). There are no 

points of inflection. There are vertical asymp¬ 

totes at x = —2 and x — 2, and a horizontal 

asymptote at y — 0. 

17. The domain consists of all real numbers, though 

there is a discontinuity at x = — 1. The function 

increases on (—00,— 1) and on ( — 1,2), and it 

decreases on (2,00). There are local maxima at 

( — 1,3) and (2,3). The graph is concave up on 

(—1,0) and concave down on (0,oo), so there is a 

point of inflection at (0,2). Because the line is 

straight before x = -1, it does not curve 

upward or downward, and thus has no concavity. 

There are no asymptotes. 

18. The domain is the whole real line, with no dis¬ 

continuities. The graph increases on (—00,00), is 

concave up on (— 00,0), and is concave down on 

(0,00). There is a point of inflection at (0,0). 

There are horizontal asymptotes at y = —2 and 

y = 2. 
19. The domain is (0,00) with no discontinuities. 

The graph increases on (0,2), has a local maxi¬ 

mum at (2,5), and decreases on (2,00). The 

graph is concave down on (0,3) and concave up 

on (3,oo) with a point of inflection at (3,3). 

There is a vertical asymptote at x = 0 and a hori¬ 

zontal asymptote at y — 1. 

20. The domain is x + 5 with discontinuities at x = 

2 and x = 5. The function increases on (— 00,1), 

(4.5) , and on (5,00). The function decreases on 

(1,2) and on (2,4). There is a local maximum at 

(1,2) and at (2,3). The point (4,2) is a local mini-' 

mum. The graph is concave up on (— 00,1), (1,2), 

(2.5) , and on (5,00). There is a horizontal asymp¬ 

tote at y = 0. 

21. 3 

23. 0 

7 — w 

-3 

10 - y 

4 — x 
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27. 29. 
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► Lesson 3 20. 2 

1. 25 = 32 
21. 5 

2. 43 = 64 
22. ln(7 • 2) - ln(14) 

3. 104 = 10,000 

4‘ = 36 

5. 1 

23. ln(y) = ln(4) 

,, ln(10) 

M'X ln(2) 

6. 34 = 81 

7. 9 

Mu) 

2S,X~ ln(8) 

8. V25 = 5 

9- | 

In(100) 

26' * ln(3) 5 

10. N^8 = 2 ► Lesson 4 

n. ^ = i 
23 8 

2 1 
12. Because — = — • 2, we can calculate 

i 77 

8i = (s')2 = (^8)2 = 22 = 4 or else 2. 77 

8i = (82)! - (64)' = -^54 = 4. 
„ 377 

13. 7=5 

3* 2 

5 577 

14 * 
■ 100,000 

4’ 2 

577 

15. 82 = 64 
5‘ 3 

1 1 
16. j = ! =4 

Vl6 4 

6. 60° 

7. 90° 

17. e11 
8. 360° 

18. e7 
9. 18° 

19. 1 
10. 144° 
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11.1 
"■ ~~2 

12. V3 

32. V3 

13. 2 

14. 2 
33. -2 

15 1 =Vi 
V3 ^ 

16. V3 35. f 

2 _ 2\/i 

V3 ^ 
36. V2 

18. V2 ► Lesson 5 

’•■T 
1.1 

2.1 

21 V5 

3.1 

4. not defined 

22 
LL’ 2 

5. no 

6. -1 

23. -1 7. 4 

24. -Vi 8. not defined 
in

 
CM

 9. -1 

26. -1 10. yes 

27. 0 11. 1 

28. undefined 12. 3 

29. V3 13. 00 

14. 00 

15. 2 

16. -2 
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17. 16 

4 
18. 

23 

19. 0 

2 3 20. £ = f 
6 77 

21. 2x + 1 

22. 3X2 

23. —oo 

24. oo 

25- 6 

26. —oo 

11 \ 
28. —oo 

29. 8 

30. j 
4 

31. 1 

32 — 

33. —oo 

34-^ 

35. 2x 

1 
36. 

2 Vx 

► Lesson 6 

« x 8(x+ a)+ 2- (8x + 2) 
1. / lx) = lim- 

«->0 a 

.. 8x + 8a + 2 — 8x — 2 
= lim-= 8 

«->o a 

2. fc'(x) 
(x + a)2 + 5 - (x2 + 5) 
lim- 
a—> 0 a 

x2 + 2xa +a2 + 5 — x2 — 5 
lim- 
a—>0 (X 

lim 2x + a — 2x 
a—*0 

p(x + a) — p(x) 
3. g'(x) = lim —-1-— 

a—>0 a 

= lim — = 0 
fl—^0 (X a—>-0 (X 

4. g'(x) lim 
a—» 0 

3 — 5(x + a) — (3 — 5x) 

lim —— = — 5 
a—a 

5. /'(*) = lim 
a—>0 

3 V. x + a — x 

lim 
a—>0 

3Vx + a — 3Vx^ 

= lim 

3Vx + a + 3Vx\ 

3\/x_3-_a + 3V/x2 

9(x + a) — 9x 

a—>0 

= lim 

i(3\4Ta + 3\/x) 

9 

a^03Vx + a + 3 Vx 3Vx + 

3 

2Vx 

x 
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(x + a)3 — x3 
6. k'(x) = lim ----- 

ci—>0 Cl 

.. x? + 3x?a + 3 xa2 + a3 
lim- 
ci—>0 Cl 

~ X? 

(3X2 + 3 xa + a2)a 
lim-----— 
«—>o a 

limSx2 + 3 xa + a2 — 3X2 
a—>0 

3(x + aY + (x + a) — (3X2 + x) 
7. f'(x) = lim—---------- 

J V ' a-* 0 a 

6xa + 3a2 + a 
= hm- 

a—>0 & 

= lim 6x + 3a + 1 = 6x + 1. 
a—>0 

Thus, at x = 2, the slope is /'(2) = 13 . 

, (x + a)2 — 4(x + a) + 
8. g'(x) = - 

' a->0 a 

1 - (x2 - 4x + 1) 

= lim 
a—> 0 

2xa + a2 — 4a 

a 

= lim 2x+a—4 = 2x—4. 
a—>0 

Thus, there is a slope of zero when 

g'(x) = 2x — 4 = 0 . This happens 

when x = 2. 

1 — (x + a)2 — (1 — x2) 
9. fc'(x) = lim-2---2-- 

a—>-0 a 

= lim 
a—>o 

-2xn — a2 

lim —2x — a — — 2x. 
a—>0 

The slope at (2,—3) is h'(2) = —4, so 

the equation of the tangent line is 

y = -4(x - 2) - 3 = — 4x + 5. 

10. k'(x) = 

5(x + a)2 + 2(x + a) — (5X2 + 2x) 
lim-= 
a—>o n 

lim 10xtt + 5fl2 + 2a = to 10s + 5a + 2 
fl—>0 ^7 u—>0 

10x +2. The /-value at x — lis fc(l) = 7. 

The slope at x = 1 is k'(l) — 12 . The 

equation of the tangent line is 

y = 12(x - 1) + 7 = 12x - 5. 

► Lesson 7 

-6 _ -5 

u 

1. f'(x) = 5x4 

2. — 7^ 
ax 

3- g'M = ~5u 

4. fr'(x) = 0 

dy 
5. -f = 413 

dt 

r dy 7 I 
6-Tx=5'X 

7. /'(x) = lOOx" 

8. /'(t) = 0 

9. fc'(x) = 1 • x° = 1 

in dy 2 -l- 2 10. = -x 3 =-7= 
3 3^x 

ii \ 4 _s 4 
H. g'(x) = --X 5 - --T 

^ 5x5 

12. fc(x) = x5,so k'(x) = \x * = —7 
4 4xi 
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in \ dy 1 -I 1 13. y ~ m2,so -T- - u 2 = 
du 2 2\7 

dy , 2 
30. -3- = 2m + 2m~3 = 2m + -r 

MM F 

14. y = so = ~xT2 = —~r 
dx x2 

31. f(x) = 8x - 8 - 4 
XT 

15. /(x) - — - x 2, so f'(x) - x 2 = 
x2 2 2x2 

dy 1 223 
32. / = 2x"2 + 3x_J = V + 2 

dx X3 

16* g(*) = x“3,so g'(x) = — 3x~4 = -4 
X 

33. f(x) = ~x~2, f"(x) = 2x~3, /'"(x) = — 6x-4, 

and /""(x) = 24x-5 

17. ^ = 21X6 
dx 

34. s"(f) = -32 

18. f (x) = 30x~u = 4r 
X 

d3y 
35. ~ = 240x - 42 

19. V'(r) = 477-r2 

~~ dy 2_ (?y 4 , d3y 20 * 

36‘ 1t = 2t ,’^=“¥t,’and = 

20. g'(t) = ^ 

► Lesson 8 
21. k'(x) = —2x 

dy 
22. -f = 1222 - 8 

dt 

1. pay rate in dollars per hour 

2. fuel economy in miles per gallon 

3. baby’s growth rate in pounds per month 

23. /'(x) = 24X2 + 6x 
4. sunflower’s growth rate in inches per week 

5. increasing by 1 foot per year 

dy 
24. -j- = 2x — 3 

dx 

6. decreasing by 6 feet per day 

7. The profit is increasing by $3,750 per car, so the 

25. s'(t) = -32f + 5 

company would increase its profits if it made 

more cars. 

26. F(x) = 600x" + 500x49 - lOOx24 + 20^ 

O 
8. C'(3) = 4.8 — — ~ 2.13, so the cost would 

increase by about $2.13 if the width were 

27. e'(x) = 7X5 + 15X2 = ”7 + 15X2 
5 5x5 

increased by an inch. This indicates that the cost 

to make the container would be cheaper if x were 

28. h'{u) = 5u4 + 16w3 - 21m2 - 4m + 8 
decreased from 3. 

9. After 3 seconds, it is at s(3) = 75 meters from 

dy - ,22 
29. -r = —2xT2 - 2xT3 = j j 

flX X^ XT 

the start. At that moment, it is traveling at 

v(3) = 49 meters per second and accelerating at 

a(3) = 22 meters per second per second. 
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10. The position function is s(f) = — 16/ + 64, the 

velocity function is v(t) = — 321, and the accel¬ 

eration is a constant a(t) = — 32 . It will hit the 

ground when t — 2 seconds and be traveling at 

v(2) = —64 feet per second (downward) at that 

instant. 

11. The position function is s(t) = — 16/ + 800f 

and the velocity function is v(f) = — 321 + 800. 

The bullet will stop in the air when the velocity is 

zero. This happens at t = 25 seconds, when the 

bullet is s(25) = 10,000 feet in the air. 

12. The position function is s(f) = — 16/ — lOt + 

1,000, so after 4 seconds, it is s(4) = 704 feet 

off the ground. It has therefore fallen 296 feet by 

this moment. It is traveling v(4) = —138 feet 

per second (downward) at this moment. 

dy 
13. — - 

dx 
= 20 x4 — 10sin(x) 

14. /'(f) = 3cos(f) — -j 

15. g'(x) = 8 + sin(x) 

16. r'(d) = ■~cos(@) - ^sin(0) 

17. h'(x) — —sin(x) because cos(5) is a constant 

77 
18. Because /( -Ta¬ sini f) + cosff ) = 

77 
1 + 0=1, the point is I — ,1 I. The slope is 

/'I 
77 

1, so the equation is y — 

X~f) + 1 “ ~X+J + 1 

19. f'(x) — 1 + 2x + 3X2 + e* 

20. s-'(t) = y + 2t 

21. dy 
dx 

sin(x) — 10c* + 8 

22. W{x) 
1 8 

x 

15 
23. k'(u) = yx'2 + 5e* 

24. f(x) = + / so /”(*) = «■ - ~ 

25. ^m\x) = 3c" 

26. /'(10) = 
10 

► Lesson 9 

1. f(x) = 2xcos(x) — sin(x)*x2 

2. ~ = 24 fV + 8/ = 8fV(3 + t) 

z'Tx = cos2(*) ~~ sin2(x) 

4. g'(x) = 6xln(x) + ^x2) - 20X3 

= 6xln(x) + 3x — 20X3 

5. h\u) = 1 • + eu' u — ew = 

6. fc'(x) = cos(x) + 4X3 — (2xsin(x) + cos(x)x2) 

= cos(x) + 4X3 — 2xsin(x) — x2cos(x) 

7. 
dy 8sin(x) 

dx x 
+ 8ln(x)cos(x) — sin(x) 
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8. h'(t) = (sin(f) + cos(f) • t) - (cos(t) - 

sin( f) • t) = sin( t) + £cos( f) - cos( t) + £sin( t) 

9- ~£ = 15x2 “ (l-ln(x) + ^-x) 

= 15X2 — ln(x) — 1 

10. f{x) = cos(x)sin(x) + cos(x)sin(x) 

= 2cos(x)sin(x) 

dy 

11 ’ ~dx~ + + cos(x)e*)*x 

12. g'(x) = 12x3ln(x)cos(x) + 
(1 

cos(x) — sin(x)ln(x) ) • 3x4 

= 12x3ln(x)cos(x) + 3x3cos(x) - 3x4sin(x)ln(x) 

13. /'(0) = 2(0)e° + e°(0)2 + 1 = 1, so the slope 

is 1. 

14. y = —7r(x —7r) = —irx + tt2 

15. h'(x) = 

16. 
dy 

dt 

(4ef 

(3X2 + 10)(3x2 + 5x + 2) 

(3X2 + 5x + 2)2 

(6x + 5)(x3 + lOx + 7) 

(3X2 + 5x + 2)2 

1)(£3 + 2t + 1) - (3d + 2)(4e* + t) 

(d + 21+ l)2 

(1 + ^)(e* - 1) - e*(x + ln(x)) 

(** - l)2 

17. /'(x) 

18. 
dy 5x4ln(x) — \ • x5 5x4ln(x) — x4 

dx (ln(x))2 (ln(x))2 

19. f{x) 
2x(x2 + 1) — 2x(x2 — 1) 

(x2 + l)2 

4x 

(x2 + l)2 

20. g\t) 
15dsin(t) — 5dcos(t) 

25sin2(t) 

21. dy -2 

dx (x - l)2 

22. g\u) = 
cos(u)(td — eu) - (3u2 - eu)sin(u) 

(u5 - euf 

23. 
dx 

dy (2x + 2 + e*)(sin(x) + l) 

(sin(x) + l)2 

cos(x)(x2 + 2x + e*) 

(sin(x) + l)2 

(7 + 1) • f2 — 2£(ln(f) + f) 
24. h'(t) 

1 — t — 2ln( f) 

~7~ 

25. 
dy (ln(x) + l)e* — xdcln(x) 

dx e* • e* 

ln(x) + 1 — xln(x) 

26. fix) 
(2xe* + cx*x2)cos(x) + sin(x)-x2ex 

cos2(x) 

27. 
lOx - 40 d2y 

dx2 (x2 — 8x + 16)2 

28. The slope is /'(5) = —. 

29‘ d^cscW) dx\ sin(x)/ 

— cos(x) 

sin2(x) 
— csc(x)cot(x) 
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M d , / \\ d (cos(x)' 
30. ^(cot(x)) = ^ — 

—sin2(x) — cos2(x) 

sin2(x) 

= —csc2(x) 
sin2(x) 

31. f(x) = tan(x) + x*sec2(x) 

32. *'(x) 
^sec(x) - sec(x)tan(x) Vx 

sec2(x) 

► Lesson 10 

1. f(x) = 4(8x3 + 7)3-(24x2) 

2. — = 3(x2 + 8x + 9)2 • (2x + 8) 

3. h'(t) = lO^ - 9J3 + 3f + 2)- 

(8J7 - 27J2 + 3) 

4. ^ = |(w5 - 3u4 + 7f‘(5u4 - 12u3) 

5. ^(x) = ^x2 + 9x + l)_i-(2x + 9) 

2x + 9 

2 Vx2 + 9x + 1 

6. ~- = -ke* + = ** 
dx 3V 3(e* + l)5 

7. /'(x) = cos(x2)*2x 

8. ^(x) = 2sin(x) • cos(x) 

9. 
dy =_3_ 

(if 3f + 5 

10. h'(x) = —3sin(3x) 

11. ~ = e^-2x 
dx 

12. dy 

dx x + 1 

13. s'(u) = — 5cos4(u)sin(w) 

14. 
dy 5(ln(x))4 

dx 

15. f(x) = (? + 2(?x + 3(?x 

16. “ = sec2(ex) • e* 

17. dx) = '(<’ -■ e '), so g'(x) = \y- + e ■■) 

18. m 
cos(20) -2*0— 1 • sin(20) 

d2 

20cos(0) — sin(20) 

dy 
19. -f=(?x+ 2xe2x 

dx 

20. f'(x) = 

sec^lOx2 + ex)tan(10x2 + e*)*(20x + e*) 

21. /'(x) = 3cos2(8x)* (—sin(8x))*8 

= — 24cos2(8x)sin(8x) 

22. ^ = 4(^+2x+,)3-(^+2;c+1)-(18x + 2) 

23. g'(f) 
sec2(V + 1) • 

tan(V +1) 

24 
dy 

. ^ = cos(sin(sin(x))) • cos(sin(x)) • cos(x) 
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25. k'(u) = sec(ln(8u3))tan(ln(8u3)) 24td 
8 IT 

3 

= —sec(ln(8w3))tan(ln(8w3)) 
Xt 

26. h'(*) 
cos 

_L_ 

(x + e3*) 

( —sin(x + g3*))*^ + g3*^) 

-(1 + 3e?;c)sin(x + e3*) 

cos(x + e3*) 

► Lesson 11 

1. 3(y + l)2-™ = 4X3 - 8,so 
dy 4X3 - 8 

dx 3(y + l)2 

2. 3/* 
dy 

dx 

dy 

dx 
cos(x), so 

dy 

dx 

cos(x) 

3/ + 1 

dy 4 

dx cos(y) 

dy 1 
X 

dx 1 _ _1_ 
1 2 Vy 

dy 12X3 - 1 

dx 

00 1 

(N
 

dy 3X2 - e* 

dx ey 

dy —sin(x) 

dx sec2(y) 

4sec(y) 

2 Vy 

— sin(x)cos2(y) 

8. dy 

dx 

1 

2Vx~+ 
so 

9. 

10. 

11. 

12. 

13. 

14. 

dy 2 vr+y l 

dx 1 1 
1 2 V* + y 2Vx + y - 1 

dy 1 — cos(x) 

dx —cos(y) 

dy 30X2 — 12x 30x2y — 12xy 

dx 
1 - \ 

y - 1 

dy 5 

dx 2(y + x2)3 
lx 

dy 4X3 — 2xy 

dx 1 

1 

r ~ - *-i , , dy 
• X = 1 + 

dy 

/ + ' + rfx 
-3-, s° 
dx 

1 

dy 
1 - y- 

y y2 - y3 - y 

dx 
+ x - 1 

—x + xy2 — y2 

y 

dy 3x2cos (y) 

dx sec(y)tan(y) + 9 + x3sin(y) 

dy 

dx 
15. 3J/2 • — + 2x = 2y • -f-5 

dy 

dx 

dy 

dx 
, so at 

dy 
the tangent slope xs~^%= 1 • 

dy 4 

16'^=-9at(1’-2) 

H. | = 1 at (4,2) 

dy 21 18-i = ~ i6at(2’3) 
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dy 2V3 (\ tt\ 
19. — = —-— at —, so the tangent equation 

dx 3 \ 2 6 / 

2V3/ 
is y = —5—I * 1 

77 

6~* 

20. dy 

dx 
at (3, —2), so the tangent equation is 

y = -|-(x - 3) - 2 = — ~x + 6. 

► Lesson 12 

1.!=5(*3+ *-!)*■ (3*^ ■ *' 
tit , 

, . ,dy , dx . , Jy 
2- 4>$i? - 6x* = ~smM* 

3. lA-%= 12*4 - 20*$ + 3-* 
7 dt dt dt ' dt dt 

, 1 dx , 1 dy 2 dx n dx 
4, -7 • -7- H-7= • -3- = 3(br -7• -7- 

2vx dt 2Vy dt dt at 

_ 1 dy dx . dx 2,0 dy 

y dt dt dt 7 7 dt 

cm dx dx dw 
6. 10x*3T + 2*—r- = 2r-r 

dt 

_ dz _ 4 dx 4 dy 3 dx 

7- lt-5x'Tt + V"li~^'~dt 

8. 2A-$; + 2B-~ = 2C-~ 
dt dt dt 

a dV 7 dr 
9. — = 477 r • — 

dt dt 

dA dr 
10. -7- = 877 r* -3- 

dC dr 
11. -3- = 277 • -3- 

dt dt 

dA=lJb dh'l 

dt 2 dt dt 2 

13. 

14. 

dx 

dt 

dy 

dt 

35 
12 

4 

3 

15. = 24 
dt 

16. = 28 
dt 

dA 
17. Because ™ = 172 , A is increasing at the rate of 

172 square feet per minute when I = 20. 

18. = — 77, so R is decreasing at the rate of 77 
dt 64 & 64 

per hour at this instant. 

dA 
19. — = — 25 , so the area is decreasing at the rate 

of 25 square feet per minute. 

20. 7— = —32077^—, so the area shrinks by 32077 
dt mm 

square inches per minute. 

21. 7- — , so the radius grows at 77- ~ 0.796 
dt 277 277 

feet per hour. 

22. V = s3, so -7- = thus t^ — 4 when 
dt dt dt 

dV 
—jj = 1,200 and s = 10. Each side is growing at 

the rate of 4 inches per minute. 
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23. — = 7, so the base increases at the rate of 7 

inches per hour. 

24. If the height is y and the base is x, then 

t t -> dx dy 
x2 + y = 10 and 2x~;—f 2y~r~ = 0 . After 6 

7 dt / dt 

seconds, y = 6 and x2 + 62 = 100, so x = 8. 

dy dx 
Because = 1, 2(8)-^ + 2(6)(1) = 0,so 

dx 3 
= — —. The end of the board is moving at 

3 
the rate of — of a foot each hour along the 

ground. 

► Lesson 13 

i. o 

4. oo 

5. 0 

6. 8 

9 

25. If the base is x and the hypotenuse (length of the 

string) is s, then x2 + 1002 = s2. Using this, 
dx 

when s = 260, x must be 240. Because -j- = 13, 
dt 

ds 
we can calculate that —j- — 12 . Thus, the string 

must be let out at 12 feet per second. 

7. —oo 

8. oo 

9. 1 

10. 0 

11. 3 

12. oo 

13. —oo 

14. oo 

16. 0 

17. oo 

18. 0 

19. 0 
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21. vertical asymptote at x = 4, horizontal asymp¬ 

tote at y = 1, sign diagram: 

/«© © © 
«-1-1—» <-t- 

-2 
-1-» 

4 

22. vertical asymptotes at x = 2 and x = — 2, hori¬ 

zontal asymptote at y = 0, sign diagram: 

© © © 
i 1 II © 
( 1 II 

-2 2 3 

23. vertical asymptote at x = —3, horizontal asymp¬ 

tote at y= 1, sign diagram: 

Mx> © © © © 
( III 

-3 -1 1 

24. vertical asymptotes at x = 1 and x = 

tal asymptote at y = 0, sign diagram: 

3, horizon- 

«*> © © © 
<-1-1- 

© 
-A-> 

_i_ 1 3 
2 

► Lesson 14 

1. f(x) has no asymptotes. f(x) — 2x — 30, thus 

there is a local minimum at (15,-210). Because 

f"(x) = 2 , the graph is always concave up. 

*- 
increasing 
decreasing 

<- 

concavity w 

25. oo 

26. Co 

27. oo 

28. —oo 
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2. g(x) has no asymptotes. 

g'(x) = — 4 — 2x = —2(2 + x), so there is a 

local maximum at (-2,4). Because g"(x) = -2, 

the graph is always concave down. 

3. h(x) has no asymptotes. 

h'(x) = 6X2 — 6x — 36 = 6(x — 3)(x + 2), so 

there is a local maximum at ( — 2,49) and a local 

minimum at (3,—76). Because h"(x) = 

-* 

increasing 

decreasing 

-» 
concavity 

12x - 6 = 

inflection at 

there is a point of 

* 

increasing 
decreasing 
<- 

concavity 

/- 
1 
2 

3 

* 

-» 
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4. k(x) has no asymptotes. 

k'(x) = 3 — 3X2 = 3(1 — x)(l + x), so there is 

a local minimum at (—1,-2) and a local maxi¬ 

mum at (1,2). k"{x) = ~6x, so there is a point 

of inflection at (0,0). 

5. f[x) has no asymptotes. 

f(x) — 4X3 - 24X2 = 4x2(x - 6), so there is a 

local minimum at (6,-427). 

f”(x) = 12X2 — 48x = 12x(x — 4), so there are 

points of inflection at (0, —5) and at (4, —251). 

concavity 0 * V/ 0 4 KJ 

concavity^ 
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6. g(x) has a vertical asymptote at x = —2 and a 

horizontal asymptote at y = 1. The first deriva- 
2 

tive is g'(x) = ~—— 2, and the second is 

7. h(x) = 
1 

has vertical asymptotes 

{x + 2 f 

g"(x) 
(x + 2) 3 • 

(x — 3)(x + 3) 

at x = —3 and x = 3, and a horizontal asymptote 

—2x 
aty = 0. Because h’(x) = = 

—2x 
, there is a local maximum at 

(x — 3)2(x + 3)' 
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8. k(x) — 7--T7-rr has vertical asymptotes 
(x — l)(x +1) 

at x = 1 and x = — 1, and a horizontal asymptote 

at y = 0. The first derivative is 

, x2 + 1 x2 + 1 
k (x) = 

(x2 - l)2 

the second derivative is 

2x^x2 + 3) 
k"{x) 

(x — l)3(x + l)3 

inflection at (0,0). 

(x - 1 )2(x + l)2 

There is a point of 

, and 

<■ 

«■ 

9. ;(x) has a vertical asymptote at x = 0 but no 

horizontal asymptotes. Because 

/(x) = 
x2 - 1 (x ~ l)(x + 1) 

, there is a 
x2 x2 

local maximum at (-1,-2) and a local mini¬ 

mum at (1,2). The second derivative is 

/(*)=!• 
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10. fix) has a horizontal asymptote at y = 0 but no 

vertical asymptotes. Because 

f(x) ~ 1 ~ ^ ^ ~ + *) ,1 / (*) — / 7 , i \2 ~ —/ 2 , — > there is a 
(x2 + l)2 (x2 + l)2 

1 
local minimum at I-1,” ) and a local maxi¬ 

1 
mum at 11,- 1. Because /"(x) = 

2x(x - V3)(x + V3) 

2x(x2 — 3) 

(x2 + l)3 

, there are points of 
(x2 + l)3 

inflection at V3,--^-^ , (0,0), and 

V3, 
V? 

«---1-» 

0 

► Lesson 15 

. , 1,000 10,000 
1. P (x) —-2-1-a— = 0 when x = 10. 

X^ XT 

Using the first derivative test, P'( 1) = 9,000 is 

positive, so the function increases to x = 10 and 

P'(IOO) = ™ = ~YoO’s0 the func- 

tion decreases afterward, thus x = 10 maximizes 

the profit. 

2. P'(x) = 18x + 40 - x2 = -(x - 20)(x + 2) 

is zero at x = 20 and at x = —2, although mak¬ 

ing a negative number of items is impossible. 

Thus, x = 20 is the only point of slope zero. The 

second derivative is P"(x) = 18 — 2x, which is 

negative when x = 20, thus this point is an 

absolute maximum according to the second 

derivative test. 

3. If x is the number of trees beyond 30 that are 

planted on the acre, then the number of oranges 

produced will be: 

Oranges(x) = (number of trees) (yield per tree) 

= (30 + x)(500 - lOx) = 15,000 + 200x - lOx2. 

The derivative Oranges'(x) = 200 — 20x is 

zero when x = 10. Using the second derivative 

test, Oranges"(x) = —20 is negative, so this is 

maximal. Thus, x = 10 more than 30 trees 

should be planted, for a total of 40 trees per acre. 

4. The total sales will be figured as follows: 

Sales = (number of copies)(price per copy), so 

Sales(x) = (20 + x)(100 — x) where x is the 

number of copies beyond 20. The derivative 

Sales'(x) = 80 — 2x is zero when x = 40. 

Because Sales"(x) = — 2 , this is maximal by the 

second derivative test. Thus, the artist should 

make x = 40 more than 20 paintings, for a total 

of 60 paintings in order to maximize sales. 

179 



ANSWER KEY 

5. After x days, there will be 200 + 5x pounds of 

watermelon, which will valued at 90 — x cents 

per pound. Thus, the price after x days will be 

Price(x) = (200 + 5x)(90 — x) cents. The 

derivative is Price'(x) = 250 — lOx, which is 

zero when x = 25. Because Price'(x) is clearly 

positive when x is less than 25 and negative after¬ 

ward, this is maximal by the first derivative test. 

Thus, the watermelons will fetch the highest 

price in 25 days. 

6. The area is Area = xy and the total fencing is 

4y + 2x = 400 . Thus, x = 200 — 2y, so the 

area function can be written as follows: 

Area = xy — (200 — 2y) • y. The derivative 

Area'(y) = 200 — 4y is zero when y = 50. 

Because the second derivative is Area"(y) = —4, 

this is an absolute maximum. Thus, the optimal 

dimensions for the pen are y = 50 and 

x = 200 - 2,y = 200 - 2(50) = 100. 

7. Here, Area = xy and the total fencing is 

5y + x = 150 . Because x = 150 — 5y, the area 

function can be written as follows: 

Area(y) = (150 — 5y)y = 150y — 5-/. The 

derivative Area'(y) = 150 — lOy is zero when y 

= 15. Either the first or the second derivative test 

can be used to prove this is maximal. Thus, the 

optimal dimensions are y = 15 and therefore 

x = 150 - 5(15) = 75. 

8. Suppose the height of the rectangle is y and the 

width is x. The area is thus Area = xy, and the 

perimeter is 2x + 2y — 100 . Thus, y = 50 - x, 

so Area(x) = x(50 — x) = 50x — x2. The 

derivative Area'(x) = 50 — 2x is zero when x 

= 25. The second derivative is Area"(x) = — 2, 

so this is maximal by the second derivative test. 

The height y — 50 — x = 50 - 25 = 25 is the 

same as the width. Thus, the rectangle with the 

largest area for a given amount of perimeter is a 

square. 

9. Because Volume = rrr2h= 1671, it follows that 
16 

h = —y. Thus, the surface area function is 
r 

Area (r) = 277 r2 + 27= 277 r2 + 
3277 

3277 
The derivative Area'(r) = 47r r-~y~ is zero 

32t^ 
when 477 r = —-y- , so r3 = 8 . Thus, the only 

point of slope zero is when r = 2. The second 
647T 

derivative is Area "(r) = 477 H-, which is 

positive when r = 2. Thus, by the second 

derivative test, r = 2 is the absolute minimum. 

Thus, a radius of r = 2 and a height of 

h = —y = 4 will minimize the surface area, 
r 

10. Because the box has a square bottom, its length 

and width can be both x, while its height is y. 

Thus, the volume is Volume = o?y and the sur¬ 

face area is Area = x2 + 4xy + x2 (the top, the 

four sides, and the bottom). And because 

Area = 2X2 + 4xy = 600, the height 

y = 

600 - 2X2 
4x 

— - f. Thus, the 
x 2 

Volume = x2/ = x2 
150 1 

= 150x — —x3. 

The derivative Volume'(x) = 150 — — x2 is zero 

when x2 = 100 . Negative lengths are impossible, 

therefore this is zero only when x = 10. By the 

second derivative test, Volume"(x) = — 3x is 

negative when x = 10, so this is a maximum. The 
150 10 

corresponding height is y = —-— = 10, 

so the largest box is a cube with all sides of 

length 10. 
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11. Because the box has a square bottom, let x be 

both the length and width, and y be the height. 

The area of each side is thus xy, so the cost to 

build four of them at ten cents a square foot is 

0.10(4xy) = 0.4xy dollars. The area of the top is 

x • x = x2, so it will cost x2 dollars to build. 

Similarly, it will cost 7X2 dollars to build the 

base. The total cost of the box is therefore 

Cost = 0.4xy + 8X2. Because the volume is 

, , 40,000 . 
x2/ = 40,000, we know y =-,—. Thus, the 

x2 
cost function can be written: 

40,000 \ 
Cost(x) = 0.4x1 

16,000 

x 

x2 ) 

+ 8X2. 

8X2 

The derivative: 

Cost'(x) = 
16,000 

x2 
+ 16x 

is zero only when x3 = 1,000 orx= 10. 

By the second derivative test, 
, 32,000 

Cost (x) = —-1- 16 is positive when 

x— 10, so this is the absolute minimum. The 

cheapest box will be built when x = 10 and 

y = 400. 

12. Inside the margins, the area is: 

Area = x 2) 

= (x — 3)(y — 2) = xy — 2x - 3y + 6. 

The total area of the page is xy = 96, so 

96 
y Therefore, 

x 

Area(x) = x( 
96 

x 

- 102 - 2x - 

2x — 3 y + 6 

288 

x 

The derivative Area'(x) — 
„ , 288 . 

-2 + —r is zero 

when x2 = 144, thus when x = 12 (ignore nega¬ 

tive lengths). The second derivative 
° 576 

Area"(x) = —-p is negative when x = 12, 

so this is the absolute maximum. Thus, the 

dimensions that maximize the printed area are 

x = 12 and y = 8. 

► Lesson 16 

1. 2 

4. 277 

5. 3 

6. 3 + 277 

7 -A 
7> 2 

8. 0 

10. 4 

11. 0 

13. 16 

14. 6 

15. 0 

17. 35 

18. 48 
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19. 5 14. -4 

20. -3 15. 36 

21. 7 16. 20 

22. 7 
17f 

23. -11 

24. -1 
18. f 

25. 8 1,f 

26. -17 

27. 25 

„ 2’000 2°. 3 

► Lesson 17 
21- i 

22. | 

! I 
4 

t—H | ^
 

■
 

P
'S

 
CM

 

2. 3 
24. f 

4 

4. 8 ► Lesson 18 

5 ^ 
4 

1. + c 

6. 0 

7. 0 2. + c 

8. 7 
~ 1 7 , 3. — u + c 

9. 14 

10. 21 4. 72 

11. 28 5. 40 

12. 35 6. _2t 2 + c = 

13. 10 

7 ^ 
7i 2 
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« 3 8 
8. —x3 + c 

O 
00 9 11 56 u 
28‘ i3x‘ “ 77* c 

A 4 5 

9. -x4 + c 29. “X3 — 5sin(x) + c 

10. 7W3 + c 
4 30. 3e* + ^x4 + c 

2 

11. 5x + c 31. lnlwl + c 

12. 51 + c 32. ~Q2 — 2cos(0) + c 

13. 40 
33. —cos(x) + 2e* + c 

14,4 34. (j + e1) - (0 + e°) = e - \ 

15. ~x? + c 
35. 4ln(e) — 4ln(l) = 4 — 0 = 4 

16. u3 + c 36. 4V2 

1 2 2 3 
17. — x^ — —x2 + c 

► Lesson 19 

18. lx’ — 5X2 + 5x + c 

19. 48 + !)8 + c 

20. 11 
2. ~(4x + 3)11 + c 

44v ' 

21. 115 

22. 1112 + 3 f3 + ^f2 + c 

3. — 
15 

23. -6 
4. -7X4 — ^x2 + 4x + c 

4 2 

24. 2x4 + —x3 — 2X2 + 2x + c 5. “■(x2 - l)2 + c 

25. 58 
6. 14 

26. 208 7. 26 

27. -1 + c 8. InSx3 — 5x + c 
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9. ysin(x4) + c 

10. V3x4 - 2x + 1 + c 

11. + 5x - l)4 + c 

12. -—}-ry + c 
16(4^ + 5)2 

13. jlnl4x + 101 + c 
4 

14. Using u = sin(x), the solution is 

^sin2(x) + c. Using u = cos(x), the solution 

is —^-cos2(x) + c. Because 

sin2(x) + cos2(x) = 1, these solutions will 

be the same if the second + c is ^ greater 

than the first one. 

15. -^sin3(x) + c 

16. ^sin(4x) + c 

17. 4sin(x) + c 

► Lesson 20 

1. yrx^Wx) — —“X6 + c, done by parts with 
6 36 

u = ln(x) 

2. —xcos(x) + sin(x) + c, by parts with u = x 

3. —^-cos(x2) + c, by the substitution u = x2 

4. (x + 3)sin(x) + cos(x) + c, by parts with 

u = x + 3 

5. ^-(ln(x))2 + c, by substituting u = ln(x) 

6. —x2cos(x) + 2xsin(x) + 2cos(x) + c, using 

parts twice 

7. “X3 — cos(x) + c, by basic integration 

8. j^+1 + c, by substituting u = x3 + 1 

9. x2^* — 2xe* + 2e* + c, using parts twice 

10. ( 7X4 + -g-x2 — x )ln(x) — 7-x4 — 7X2 + x + c, 
\ 4 z / 16 4 

by parts with u = ln(x) 

18. —ycos(7x — 2) + c 

19. —cos(ex) + c 

11. ~x2 + xln(x) 

by parts 

x + c, evaluating ln(x) dx 

20. |(ln(x))4 + c 

21. lnlln(x)l + c 

22. + c 

23. —ln(cos(x)) + c 

24. ln(l + e*) + c 

12. —(x — l)1 + c, substituting u = x — 1 

2 3 4 5 

13. — x(x — l)1 — —(x “ l)2 + c > by parts with 

u = x 

14. — xe_x — + c, by parts with m = x 

2 3 4 3 

15. — xdn(x) — — xJ + c, by parts with u = ln(x) 
3 y 
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ln(x) i 
16. 4^ + c, by parts with u — ln(x) 21. — cos(x) • ln(cos(x)) 4- cos(x) + c, by parts 

with u = ln(cos(x)). This could also be solved 

17. lnlxl + c, by basic integration by substitution with u — cos(x), though it 

18. (x2 — l)sin(x) + 2xcos(x) — 2sin(x) + c, 

using parts twice 

would require knowing ln( u) du. 

22. ^(exsin(x) + excos(x)) + c, by parts twice, plus 

19. — ex + c, by substituting u = — 
% the trick from the previous example 

2 3 
20. — —(cos(x))~2 + c, by substituting u = cos(x) 
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APPENDIX 

Glossary 

acceleration the rate at which the speed of a 

moving object is increasing or decreasing 

additive rule parts of a function added together 

can be differentiated separately: 

+ Ax)) = f(x) + g'(x) 

antiderivative given a function f[x), the anti- 

derivative is a function g(x) such that 

£(x) = Ax)- 

asymptote a place where a graph flattens out like 

an infinite straight line 

Chain Rule ^£(/(g(x))) = f(g(*)) • g'(x) 

closed interval the set of all the numbers 

between and including two endpoints, like all x 

such that a < x ^ b 

composition the process of plugging one func¬ 

tion into another. The composition of functions 

/and g is / ° g(x) = AAX)) ■ 
concave down when the graph of a function 

curves downward, like a frown 

concave up when the graph of a function curves 

upward, like a smile 

concavity the way a graph curves either upward 

or downward 

Constant Coefficient Rule a constant c multi¬ 

plied in front of a function is unaffected by dif¬ 

ferentiation: —(c*/(x)) = C'f\x 

Constant Ride the derivative of a constant is 

zero. 

continuous a graph is continuous between 

breaks. 

cosecant abbreviated esc; see trigonometry 

cosine abbreviated cos; see trigonometry 

cotangent abbreviated cot; see trigonometry 

critical points points of slope zero, points where 

the derivative is undefined, and endpoints of the 

domain 

decreasing when the graph of function goes 

down from left to right 

definite integral the area between a graph 

y = f[x) and the x-axis from x = a to x = b 

where area below the x-axis counts as negative, 

fa written f(x)dx 
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degrees measure the size of angles in such a way 

that a complete circle is 360° 

derivative the derivative of function y = ftx) is 

dy n, N ftx + a)~ ftx) 
~T = / (*) = lim--> ax «->o a 

which is the slope of the tangent line at point 

(*>/(*))• 

discontinuity a break in a graph 

domain the set of all the numbers that can be put 

into a function 

e a number approximately 2.71828 with the prop- 

erty that ^~(V) = e* 

explicit a function is explicit if its formula is 

known exactly. 

exponent an exponent says how many times a 

factor is multiplied by itself, 

first derivative test if a function increases to a 

point and then decreases afterward, then that 

point is the maximum. If the function decreases 

to a point and then increases afterward, then the 

point is the minimum. 

function a mathematical object that assigns one 

number of its range for every number in its 

domain 

Fundamental Theorem of Calculus if 

f X 

six) f(t)dt, theng'(x) = j[x). Thus, 

f b 

f(x)dx = ftb) - fta) where g'(x) = ftx). 

graph a visual depiction of a function where the 

height of each point is the value assigned to the 

number on the horizontal axis 

horizontal asymptote where a graph flattens out 

to run straight off to the right or left 

implicit a function is implicit if it was defined in 

an indirect manner so that its exact formula is 

unknown. 

implicit differentiation the process of taking a 

derivative of both sides of an equation and using 

d d dy 
the Chain Rule with —(x) = 1 > ^;(y) = ^ > 

d, s dx . 
~r( x) = —r, and so on 
dtK ’ dt 

increasing when the graph of a function goes up 

from left to right 

indefinite integral represents the antiderivative: 

ftx)dx = g(x) + c if and only if g’(x) — ftx) 

integral see either definite integral or indefinite 

integral 

L’Hopital’s Rule If limftx) = ±oo and 
x—>oo 

ftx) f(x) 
limgjx) = ±oo,then lim^^r = lim- 

>g(x) 

The same is true when lim . 
X—> ~ OO 

limit the limit limftx) = L means that the values 

of ftx) get very close to L as x gets close to a. 

limit from the left lim ftx) = L means that the 
x—>a 

values of ftx) are close to L when x is close to, 

and less than, a. 

limit from the right lim ftx) = L means that the 

values of ftx) are close to L when x is close to, 

and greater than, a. 

limits at infinity limftx) = L means that the val- 
x—too 

ues of y — ftx) get close to y = L as xgets really 

big. If large negative values of x are used and 

y — ftx) gets close toy = I, then lim ftx) = L. 
X—¥ ~ OO 

limits of integration the limits of the integral 
b 

ftx)dx are a and b. 

local maximum the lowest point on a graph in that 

immediate area 
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local minimum the highest point on a graph in 

that immediate area, like a hilltop 

natural logarithm the inverse ln(x) of the expo¬ 

nential function ec. Thus, y = ln(x) if and only if 

e? = x. 

oscillate to repeatedly go back and forth across a 

range of values 

point of inflection a point on a graph where the 

concavity changes 

point-slope formula the equation of a straight line 

through (xj,y}) with slope m is 

y — m(x — xx) + yx. 

polynomial the sum of powers of a variable, 

complete with constant coefficients. For example, 

x2 + 3x — 5 and 10x7 — 12X5 + 4X2 — x are 

both polynomials. 

position function gives the mark on a line where a 

moving object is at a given time 

Power Rule -J^(x") = • x”_1 

Product Rule 

-£(/(*) • A») = f 0) • &x) + s'(x) - Ax) 

Pythagorean theorem the squares of the legs of a 

right triangle add up to the square of the 

hypotenuse. 

Quotient Rule 

d_f Kx)\ = f(x)-g(x) - ^ix)‘Ax) 
dx\ g(x)J (g(x))2 

radians measure the size of angles in such a way 

that a complete circle is 2tt radians 

range the set of all the numbers that can be the 

value of a function 

rate of change how fast a quantity is increasing or 

decreasing 

secant abbreviated sec; see trigonometry 

rational function a rational function is the quo¬ 

tient of two polynomials. For example, 

8X3 — lOx + 4 . . . r 
----- is a rational function. 

5x — 2 

second derivative the derivative of the derivative 

second derivative test a point of slope zero is the 

maximum if the second derivative is always nega¬ 

tive, and a minimum if the second derivative is 

always positive. 

sign diagram tells where a function is positive and 

negative 

sine abbreviated sin; see trigonometry 

slope the amount a straight line goes up or down 

with each step to the right 

slope-intercept formula the equation of a straight 

line with slope m that crosses the y-axis at y— b is 

y = mx + b. 

Squeeze Theorem if f[x) < A*) — Kx) and 

lim/(x) = L = limh(x),then limAx) = L. 
x-^kx v x—>a x—>a 

substitution an integration technique used to 

reverse the Chain Rule 

tangent abbreviated tan; see trigonometry 

tangent line a straight line that indicates the direc¬ 

tion of a curve at a given point 

third derivative the derivative of the second 

derivative 
sin(x) 

trigonometric identities tan(x) 

1 , , 1 

cos(x) ’ 

sec(x) = 

cot(x) = 

cos(x) 

cos(x) 

sin(x) 

, csc(x) = 
sin(x) ’ 

, and sin2 (x) + cos2 (x) = 1 
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trigonometry the study of functions formed by 

dividing one side of a right triangle by another. 

When the right triangle has angle x, the 

hypotenuse has length H, the side adjacent to x 

has length A, and the side opposite x has length O, 

then 

The derivatives are: 

^(sin(x)) = cos(x) 

~(cos(x)) = -sin(x) 

• , s 0 
sin(x) = — 

-J^(sec(x)) = sec(x)tan(x) 

cos(x) = — 
-^(csc(x)) = — csc(x)cot(x) 

, x H 
sec(x) = — 

v ’ A 

^(tan(x)) = sec2 (x) 

csc(x) = — 
^(cot(x)) = -csc2(x) 

tan(x) = — 

unit circle the circle of radius 1 centered at the 

origin 

cot(x) = — 
velocity the speed of a moving object at a particu¬ 

lar time 

vertical asymptote where a graph looks like a 

straight up-and-down line 
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APPENDIX 

How to 
Prepare for 
a Test 

A standardized test is nothing to fear. Many people clutch and worry about a testing situation, but 

you’re much better off taking that nervous energy and turning it into something positive that will 

help you do well on your test rather than inhibit your testing ability. The following pages include 

valuable tips for combating test anxiety, that sinking or blank feeling some people get as they begin a test or 

encounter a difficult question. Next, you will find valuable tips for using your time wisely and for avoiding 

errors in a testing situation. Finally, you will find a plan for preparing for the test, a plan for the test day, and 

a suggestion for an after-test activity. 

► Combating Test Anxiety 

Knowing what to expect and being prepared for it is the best defense against test anxiety, that worrisome feel¬ 

ing that keeps you from doing your best. Practice and preparation keeps you from succumbing to that feel¬ 

ing. Nevertheless, even the brightest, most well-prepared test takers may suffer from occasional bouts of test 

anxiety. But don’t worry; you can overcome it. 

191 



HOW TO PREPARE FOR A TEST 

Take the Test One Question at a 

Time 

Focus all of your attention on the one question you’re 

answering. Block out any thoughts about questions 

you’ve already read or concerns about what’s coming 

next. Concentrate your thinking where it will do the 

most good—on the question you’re answering. 

Develop a Positive Attitude 

Keep reminding yourself that you’re prepared. You’ve 

studied hard, so you’re probably better prepared than 

most others who are taking the test. Remember, it’s 

only a test, and you’re going to do your best. That’s all 

anyone can ask of you. If that nagging drill sergeant 

inside your head starts sending negative messages, 

combat him or her with positive ones of your own. 

■ “I’m doing just fine.” 

■ “I’ve prepared for this test.” 

■ “I know exactly what to do.” 

■ “I know I can get the score I’m shooting for.” 

You get the idea. Remember to drown out nega¬ 

tive messages with positive ones of your own. 

If You Lose Your Concentration 

Don’t worry about it! It’s normal. During a long test, 

it happens to everyone. When your mind is stressed or 

overexerted, it takes a break whether you want it to or 

not. It’s easy to get your concentration back if you sim¬ 

ply acknowledge the fact that you’ve lost it and take a 

quick break. Your brain needs very little time (seconds 

really) to rest. 

Put your pencil down and close your eyes. Take a 

few deep breaths and listen to the sound of your 

breathing. The ten seconds or so that this takes is really 

all the time your brain needs to relax and get ready to 

focus again. 

Try this technique several times in the days 

before the test when you feel stressed. The more you 

practice, the better it will work for you on the day of 

the test. 

If You Freeze before or during 

the Test 

Don’t worry about a question that stumps you even 

though you’re sure you know the answer. Mark it and 

go on to the next question. You can come back to the 

stumper later. Try to put it out of your mind com¬ 

pletely until you come back to it. Just let your subcon¬ 

scious chew on the question while your conscious 

mind focuses on the other items (one at a time, of 

course). Chances are, the memory block will be gone 

by the time you return to the question. 

If you freeze before you begin the test, here’s what 

to do: 

1. Take a little time to look over the test. 

2. Read a few of the questions. 

3. Decide which ones are the easiest and start there. 

4. Before long, you’ll be “in the groove.” 

► Time Strategies 

Use your time wisely to avoid making careless errors. 

Pace Yourself 

The most important time strategy is to pace yourself. 

Before you begin, take just a few seconds to survey the 

test, making note of the number of questions and of 

the sections that look easier than the rest. Rough out a 

time schedule based upon the amount of time avail¬ 

able to you. Mark the halfway point on your test and 

make a note beside that mark of what the time will be 

when the testing period is half over. 

Keep Moving 

Once you begin the test, keep moving. If you work 

slowly in an attempt to make fewer mistakes, your mind 
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will become bored and begin to wander. You’ll end up 

making far more mistakes if you’re not concentrating. 

As long as we’re talking about mistakes, don’t 

stop for difficult questions. Skip them and move on. 

You can come back to them later if you have time. A 

question that takes you five seconds to answer counts 

as much as one that takes you several minutes, so 

pick up the easy points first. Besides, answering the 

easier questions first helps to build your confidence 

and gets you in the testing groove. Who knows? As 

you go through the test, you may even stumble across 

some relevant information to help you answer those 

tough questions. 

Don’t Rush 

Keep moving, but don’t rush. Think of your mind as a 

seesaw. On one side is your emotional energy. On the 

other side is your intellectual energy. When your emo¬ 

tional energy is high, your intellectual capacity is low. 

Remember how difficult it is to reason with someone 

when you’re angry? On the other hand, when your 

intellectual energy is high, your emotional energy is 

low. Rushing raises your emotional energy. Remember 

the last time you were late for work? All that rushing 

around caused you to forget important things—like 

your lunch. Move quickly to keep your mind from 

wandering, but don’t rush and get flustered. 

Check Yourself 

Check yourself at the halfway mark. If you’re a little 

ahead, you know you’re on track and may even have a 

little time left to check your work. If you’re a little 

behind, you have several choices. You can pick up the 

pace a little, but do this only if you can do it comfort¬ 

ably. Remember—don’t rush! You can also skip around 

in the remaining portion of the test to pick up as many 

easy points as possible. This strategy has one draw¬ 

back, however. If you are marking a bubble-style 

answer sheet, and you put the right answers in the 

wrong bubbles—they’re wrong. So pay close attention 

to the question numbers if you decide to do this. 

► Avoiding Errors 

When you take the test, you want to make as few errors 

as possible in the questions you answer. Here are a few 

tactics to keep in mind. 

Control Yourself 

Remember the comparison between your mind and a 

seesaw that you read a few paragraphs ago? Keeping 

your emotional energy low and your intellectual 

energy high is the best way to avoid mistakes. If you 

feel stressed or worried, stop for a few seconds. 

Acknowledge the feeling (Hmmm! I’m feeling a little 

pressure here!), take a few deep breaths, and send your¬ 

self a few positive messages. This relieves your emo¬ 

tional anxiety and boosts your intellectual capacity. 

Directions 

In many standardized testing situations, a proctor 

reads the instructions aloud. Make certain you under¬ 

stand what is expected. If you don’t, ask. Listen care¬ 

fully for instructions about how to answer the 

questions and make certain you know how much time 

you have to complete the task. Write the time on your 

test if you don’t already know how long you have to 

take the test. If you miss this vital information, ask for 

it. You need it to do well on your test. 

Answers 

Place your answers in the right blanks or the corre¬ 

sponding ovals on the answer sheet. Right answers in 

the wrong place earn no points. It’s a good idea to 

check every five to ten questions to make sure you’re in 
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the right spot. That way you won’t need much time to 

correct your answer sheet if you have made an error. 

► Reading Long Passages 

Frequently, standardized tests are designed to test your 

reading comprehension. The reading sections often 

contain passages of a paragraph or more. Here are a 

few tactics for approaching these sections. 

This may seem strange, but some questions can 

be answered without ever reading the passage. If the 

passage is short, a paragraph around four sentences or 

so, read the questions first. You may be able to answer 

them by using your common sense. You can check 

your answers later after you’ve actually read the pas¬ 

sage. Even if you can’t answer any of the questions, you 

know what to look for in the passage. This focuses your 

reading and makes it easier for you to retain important 

information. Most questions will deal with isolated 

details in the passage. If you know what to look for 

ahead of time, it’s easier to find the information. 

If a reading passage is long and is followed by 

more than ten questions, you may end up spending 

too much time reading the questions first. Even so, take 

a few seconds to skim the questions and read a few of 

the shorter ones. As you read, mark up the passage. If 

you find a sentence that seems to state the main idea of 

the passage, underline it. As you read through the rest 

of the passage, number the main points that support 

the main idea. Several questions will deal with this 

information. If it’s underlined and numbered, you can 

locate it easily. Other questions will ask for specific 

details. Circle information that tells who, what, when, 

or where. The circles will be easy to locate later if you 

run across a question that asks for specific informa¬ 

tion. Marking up a passage in this way also heightens 

your concentration and makes it more likely that you’ll 

remember the information when you answer the ques¬ 

tions following the passage. 

Choosing the Right Answers 

Make sure you understand what the question is asking. 

If you’re not sure of what’s being asked, you’ll never 

know whether you’ve chosen the right answer. So fig¬ 

ure out what the question is asking. If the answer isn’t 

readily apparent, look for clues in the answer choices. 

Notice the similarities and differences in the answer 

choices. Sometimes, this helps to put the question in a 

new perspective and makes it easier to answer. If you’re 

still not sure of the answer, use the process of elimina¬ 

tion. First, eliminate any answer choices that are obvi¬ 

ously wrong. Then reason your way through the 

remaining choices. You may be able to use relevant 

information from other parts of the test. If you can’t 

eliminate any of the answer choices, you might be bet¬ 

ter off to skip the question and come back to it later. If 

you can’t eliminate any answer choices to improve 

your odds when you come back later, then make a 

guess and move on. 

If You’re Penalized for Wrong 

Answers 

You must know whether there’s a penalty for wrong 

answers before you begin the test. If you don’t, ask the 

proctor before the test begins. Whether you make a 

guess or not depends upon the penalty. Some stan¬ 

dardized tests are scored in such a way that every 

wrong answer reduces your score by one-fourth or 

one-half of a point. Whatever the penalty, if you can 

eliminate enough choices to make the odds of answer¬ 

ing the question better than the penalty for getting it 

wrong, make a guess. 

Let’s imagine you are taking a test in which each 

answer has four choices and you are penalized one- 

fourth of a point for each wrong answer. If you have no 
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clue and cannot eliminate any of the answer choices, 

you’re better off leaving the question blank because the 

odds of answering correctly are one in four. This 

makes the penalty and the odds equal. However, if you 

can eliminate one of the choices, the odds are now in 

your favor. You have a one in three chance of answer¬ 

ing the question correctly. Fortunately, few tests are 

scored using such elaborate means, but if your test is 

one of them, know the penalties and calculate your 

odds before you take a guess on a question. 

If You Finish Early 

Use any time you have left at the end of the test or test 

section to check your work. First, make certain you’ve 

put the answers in the right places. As you’re doing 

this, make sure you’ve answered each question only 

once. Most standardized tests are scored in such a way 

that questions with more than one answer are marked 

wrong. If you’ve erased an answer, make sure you’ve 

done a good job. Check for stray marks on your answer 

sheet that could distort your score. 

After you’ve checked for these obvious errors, 

take a second look at the more difficult questions. 

You’ve probably heard the folk wisdom about never 

changing an answer. If you have a good reason for 

thinking a response is wrong, change it. 

► The Days before the Test 

To do your very best on an exam, you have to take con¬ 

trol of your physical and mental state. Exercise, proper 

diet, and rest will ensure that your body works with, 

rather than against, your mind on exam day, as well as 

during your preparation. 

Physical Activity 

Get some exercise in the days preceding the test. You’ll 

send some extra oxygen to your brain and allow your 

thinking performance to peak on the day you take the 

test. Moderation is the key here. You don’t want to 

exercise so much that you feel exhausted, but a little 

physical activity will invigorate your body and brain. 

Balanced Diet 

Like your body, your brain needs the proper nutrients 

to function well. Eat plenty of fruits and vegetables in 

the days before the test. Foods that are high in lecithin, 

such as fish and beans, are especially good choices. 

Lecithin is a mineral your brain needs for peak per¬ 

formance. You may even consider a visit to your local 

pharmacy to buy a bottle of lecithin tablets several 

weeks before your test. 

Rest 

Get plenty of sleep the nights before you take the test. 

Don’t overdo it though or you’ll make yourself as 

groggy as if you were overtired. Go to bed at a reason¬ 

able time, early enough to get the number of hours you 

need to function effectively. You’ll feel relaxed and 

rested if you’ve gotten plenty of sleep in the days before 

you take the test. 

Trial Run 

At some point before you take the test, make a trial run 

to the testing center to see how long it takes. Rushing 

raises your emotional energy and lowers your intel¬ 

lectual capacity, so you want to allow plenty of time 

on the test day to get to the testing center. Arriving 

10 or 15 minutes early gives you time to relax and 

get situated. 

195 



HOW TO PREPARE FOR A TEST 

Test Day 

It’s finally here, the day of the big test. Set your alarm 

early enough to allow plenty of time. Eat a good break¬ 

fast. Avoid anything that’s really high in sugar, such as 

donuts. A sugar high turns into a sugar low after an 

hour or so. Cereal and toast, or anything with complex 

carbohydrates is a good choice. Eat only moderate 

amounts. You don’t want to take a test feeling stuffed! 

Pack a high-energy snack to take with you. You 

may have a break sometime during the test when you 

can grab a quick snack. Bananas are great. They have a 

moderate amount of sugar and plenty of brain nutri¬ 

ents, such as potassium. Most proctors won’t allow you 

to eat a snack while you’re testing, but a peppermint 

shouldn’t pose a problem. Peppermints are like 

smelling salts for your brain. If you lose your concen¬ 

tration or suffer from a momentary mental block, a 

peppermint can get you back on track. Don’t forget the 

earlier advice about relaxing and taking a few deep 

breaths. 

Leave early enough so you have plenty of time to 

get to the test center. Allow a few minutes for unex¬ 

pected traffic. When you arrive, locate the restroom 

and use it. Few things interfere with concentration as 

much as a full bladder. Then find your seat and make 

sure it’s comfortable. If it isn’t, tell the proctor and ask 

to change to something you find more suitable. 

Now relax and think positively! Before you 

know it, the test will be over, and you’ll walk away 

knowing you’ve done as well as you can. 

After the Test 

Two things are important for after the test: 

1. Plan a little celebration. 

2. Go to it. 

If you have something to look forward to after 

the test is over, you may find it easier to prepare well 

for the test and to keep moving during the test. Good 

luck! 
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