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C H A P T E R  O N E  

What Must You Know to Learn 
Calculus ? 

In mathematics, a certain surprising thing happens again and again. 
Someone poses a simple question, a question so simple that it seems 
no useful result can come from answering it. And yet it turns out that 
the answer opens the door to all kinds of interesting developments, and 
gives great power to the person who understands it. 

Calculus is an example of this. Calculus begins with an apparently 
simple and harmless question, “What is speed and how can we calculate 
it?’ This question arose very naturally round about the year 1600 
A.D., when all kinds of moving objects-from planets to pendulums- 
were being studied. Men were then just starting to study the material 
world intensively. From that study the modern world has developed, 
with the knowledge of stars and atoms, of machines and genes, that we 
have today, for good and for ill. One might have expected the study 
of speed to have very limited applications-to machinery, to falling 
objects, to the movements of the heavenly bodies. But it has not been 
so. Practically every development in science and mathematics, from 
1600 to 1900 A.D., was connected with calculus. From this single root, 
in a most unexpected way, knowledge grew out in all directions. You 
find calculus applied to the theory of gravitation, heat, light, sound, 
electricity, magnetism; to the flow of water and the design of airplanes. 
Calculus enables Maxwell to predict radio twenty years before any 
physicist can demonstrate radio experimentally ; calculus still plays 
a vital role in Einstein’s theory of 1916 and in the new atomic theories 
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of the nineteen-twenties. Apart from these, and many other applications 
in science, calculus stimulates the appearance of interesting new 
branches of pure mathematics. In the present century, a few branches 
of mathematics have developed that do not use calculus. Yet even these 
are mixed up with subjects related to calculus. Someone studying these 
branches without a background of calculus would be at a terrible dis- 
advantage; he would meet allusions to calculus; there would be results 
suggested by theorems in calculus. No person intending to study 
mathematics seriously could possibly leave calculus out. 

Calculus, then, is an indispensable topic, both for the pure and 
applied mathematician.? And calculus grows from a quite simple idea, 
the idea of speed. 

In the past, people often thought of calculus as an extremely difficult 
subject. Then, particularly in England, teachers began to realize that 
many things could be done by calculus in a way that was much simpler 
and more interesting than anything in algebra. In English high schools 
a student may have two or even three years of calculus. But then some 
mathematicians say that this is not good; that calculus is really more 
complicated than it appears, and that it should only be taught by a very 
well qualified mathematician. Where does the truth lie in all these 
conflicting views? 

A comparison may be helpful. An old lady lives in a quiet village, 
and every Sunday she drives herself to church. You ask her if it is easy 
to drive a car. “Oh, yes,” she says, “I have no mechanical aptitude, and 
I find it quite simple.” She might find it less simple if she had to drive 
in the middle of New York, or take a heavy truck across the Rockies. 
But there is no denying the fact; she can drive a car. And, if she ever 
did have to drive in heavy traffic, her experience of handling a car 
would be of some use to her. She would not be so helpless as someone 
who bad never driven at all. 

The situation in calculus is somewhat similar. Elementary calculus 
is like elementary car driving, not difficult to learn and it enables you 
to do many things you could never manage otherwise. But if you wish 
to push calculus as far as it will go, you will run into things that are 
more complicated. 
How should calculus be taught then? Should we bother the beginner 

with warnings that only become important in more advanced work? 

t A pure mathematician is one who studies mathematics for its own sake. An a p  
plied mathematician is one who studies mathematics in order to deal with some 
aspect of the actual world-science, engineering, medicine, economics, history, etc. 
Most of the greatest mathematicians of the past were interested in both pure and 
applied mathematics, and the same is true of some of the best mathematicians liv- 
ing today. 
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If we do so, the beginner will be confused because he will not see any 
need for these warnings. If we do not, we shall be denounced by mathe- 
maticians for deceiving the young. 

I believe the correct approach is to do one thing at a time. When 
you take a student into a quiet road to drive a car for the first time, 
he has plenty to do in learning which is the brake and which the 
accelerator, how to steer, and how to park. You do not discuss with 
him how to deal with heavy traffic which is not there, nor what he would 
do if it were winter and the road were covered with ice. But you might 
very well warn him that such conditions exist, so that he does not over- 
estimate what he knows. 

If you try to tell him the whole truth, he probably cannot take it in 
all at once. An even more important objection is-we do not know 
the whole truth. Our student is young. Perhaps he will live to drive a 
car in the first Martian expedition. And who knows what difference 
in driving technique will be needed on Mars? 

Mathematics also is an exploration. As we push out further, we meet 
new and unexpected situations and we have to revise our ideas. Rules 
we have used, theorems we have proved turn out to have unforeseen 
weaknesses. If I were asked to write on a sheet of paper all the state- 
ments that I was absolutely sure of, statements that would be true at 
every time and place, I should leave the paper blank. 

In this book I begin with the simple ideas of calculus, with country 
driving. I do not look for awkward exceptions. In the main, I look 
at things as mathematicians did in the 17th century when calculus was 
being developed. I have found that 9th- and 10th-grade students, who 
are interested in mathematics, can follow this treatment of calculus 
without difficulty. Towards the end of the book, in the chapter Intuition 
and Logic, I give some examples to show you how things become as you 
approach the heavier traffic of the big cities. This is to warn you of 
complexities that can arise. But you should not think of these complexi- 
ties simply as being di5culties. They are not so by any means. Some of 
the complications are very strange and unexpected and interesting. 

Now, the question of what you need to know to read this book; you 
require the following three things. 

(1) Basic arithmetic. You must be able to add, subtract, multiply, 
and divide whole numbers, fractions, and decimals. No knowledge of 
business arithmetic, percentages, discount, etc. is needed at all. You 
should have met exponents, and know that, for example, 4’ is short for 
4 x 4 x 4 x 4  x 4. 

(2) Basic algebra. You should know how symbols such as x are used, 
and be able to add, subtract, multiply, and divide simple algebraic 
expressions. You should be able to substitute in a formula, for example 



6 W H A T  IS C A L C U L U S  A B O U T ?  

to put 3 for x in x2 - I and get the answer 8. Negative numbers such 
as - 5  should have been met. 

(3) Gruplts. How to go about drawing a graph should be known. 
You should have drawn several graphs, and remembered something of 
what they looked like; for instance, the graphs ofy = x and y = 2x + 1 
are straight lines, while those of 

It is particularly important that you have not merely learned algebra 
as a set of rules, but have some understanding of what algebra is about, 
how it grows out of arithmetic, and how it is used to say things about 
arithmetic. A few examples will show what this means. 

= x2 and J’ = I/x are not. 

For instance, the following statements belong to arithmetic: 

32 is 1 bigger than 2 x 4; 
42 is 1 bigger than 3 x 5 ;  
52 is 1 bigger than 4 X 6. 

But these results suggest “the square of any whole number is 1 bigger 
than the result of multiplying the number before by the number after.” 
For instance, we should guess that 872 would be 1 bigger than 86 X 88. 
The general result is stated most conveniently in the language of algebra. 
If n is short for “any number,” then “the number before” will be written 
as n - 1 and “the number after” as n + 1. Instead of the sentence 
above, we shall now say, “n2 is 1 bigger than 

(I2 - 1) - (n + 1)” 

n2 = 1 + (17 - 1) (17 + 1). 

or, completely in symbols, 

This equation, which holds for every number tt, expresses what we 
guessed by looking at particular results in arithmetic. Further, it enables 
us to prove that our guess is correct. By the usual procedures of algebra, 
we can multiply out and see that the two sides are always the same. 

Symbols are thus useful, both for stating what we have guessed, and 
for proving it correct. 

In algebra itself, we often pass from particular results to more general 
ones. For instance, if you do some algebraic multiplications, such as 

(x + 3) (x + 4) = x2 + 7 x  + 12 
and 

( X  + 5 )  ( X  + 6 )  = X* + IIx + 30, 
you probably notice something. In the first example, you find on the 
right-hand side both 7, the sum of 3 and 4, and 12, the product of 3 
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and 4. In the second example, the same thing happens; 11 is 5 plus 6, 
while 30 is 5 times 6. We guess that this happens, whatever numbers 
occur on the left-hand side. In algebraic symbols, we guess that multi- 
plying out (x + a) (x + b) will always give us Q + b as the coefficient 
of x, and ab as the constant term. Our guess, written as an equation, is 

(x  + a) (x  + b) = x2 + (a + b)x + ab. 

We can now easily prove that our guess is correct. This type of thinking 
will often be used in this book. We shall collect some evidence. We 
shall look at it. We shall try to guess some general law. 

In doing this, we shall need to observe laws, and to write them in 
algebraic symbols. For instance, if we are shown the table 

x o 1 2 3 4  
~ 0 2 4 6 8 ,  

we easily guess the law that lies behind it. Each number in the bottom 
row is twice the number that lies above it. The law behind the table is 
y = 2x. In the same way, the law behind the table 

x o 1 2 3  4 5 
y 0 1 4  9 16 25 

is y = x*. Each number in the bottom row is the square of the number 
above it. 

Incidentally, as a rule, there is little point in putting a law into words. 
It is far easier to see what the formula y = 3x2 - 2x + 7 means, than 
it is to understand the same formula expressed in words. Algebra is 
the best language for thinking about laws. Algebra puts the law into 
a small space. The formula is shorter to write, easier to read, quicker 
to say, and simpler to understand than the corresponding sentence in 
ordinary English. If I wanted to be sure that you understood the 
formula, I would not ask you to turn it into English; I would ask you 
to work out the table. If you did this correctly, 1 should know that you 
understood the instructions contained in the formula. 

We cannot always guess straight away the law behind a table. For 
instance, if I ask you to guess the law behind the table 

x o 1  2 3 4 5 
y 0 3 12 27 48 75 , 

you may not be able to do this at once. You should be ready to make 
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one or two wrong guesses before you hit on the right one. There is 
a certain amount of luck in guessing. But if you persist, you should 
in time hit a trail that leads you home. Here you might, for instance, 
notice that every number in the bottom row divides exactly by 3. The 
values of y in fact are 

3 times 0, 
3 times 1, 
3 times 4, 
3 times 9, 
3 times 16, 
3 times 25. 

We notice the square numbers 0, 1, 4, 9, 16, 25 now. The law, in fact, 
is y = 3 ~ 2 . 7  

This law, y = 3x2, is in fact one that we shall meet later in this book. 
We shall need to guess it from a table. 

There are systematic procedures for discovering a law to fit a table of 
numbers,$ but we shall not go into that here. We shall only be con- 
cerned with simple laws, for which plain guessing is good enough. 

The Purpose and Limitations of This Book 

There are two things that an introductory book should not be; it 
should not be a cookbook; it should not simply be a collection of 
theorems with proofs. Both types of book conceal mathematics from 
the student. 

A cookbook is simply a list of rules for solving certain types of 
problems. The student is expected to learn these rules. But why do 
these rules work? How were they discovered? What do you do with a 
problem that does not fit any of the rules? 

The theorem-proof-theorem-proof type of book does, in a certain 
limited sense, explain mathematics to the student. Theorem 1 is at least 
followed by a proof of Theorem 1, which may throw some light on why 
Theorem 1 holds. But  very much is still left hidden. How did the writer 
decide that Theorem 1 should come first? How did he decide which 

t Note the distinction between 3 x 2  and ( 3 4 2 .  In 3 x 2  the squaring applies only to  x; 
that is, we take any number for x, we square it, and then multiply by 3 .  Students 
sometimes take the number forx ,  multiply by 3 ,  and square the result. This procedure 
however has the symbol (3x)z. 

Thus for x = 10, 3 x 2  has the value 3 . (10)2 = 3 . 100 = 300, while (3 .92 has 
the value ( 3  . 10)2 = (30)2 = 900. 

$ See The Mutltetmtics Strident Jortrtiul, November 1958 and January 1959. “A 
Method of Discovery in Algebra.” 
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theorems to include and which to omit? What is the book trying to do? 
What is the line of thought that lies behind it? How did all these 
theorems come to be discovered? What should the student do if he 
wishes to discover further theorems for himself? This last question is 
perhaps the most important of all. It is a very strange thing that many 
eminent mathematicians, who think the only thing really worth doing 
in life is to discover new theorems, often write books which give no hint 
at all of how a student should try to make his own discoveries. 

There are at least four stages in mastering a mathematical result. 
(1) You must see clearly and understand what the result states. 

It is not enough to have memorized certain words. You must know 
what the result means. 

(2) You should collect evidence which shows that it is reasonable 
that this result should be so; you should feel that this result agrees 
with your experience of mathematics. 

( 3 )  You should know what you can do with the result. It may 
have applications in science, or it may simply lead to other inter- 
esting theorems in pure mathematics. You ought to know what 
these are. 

(4) You should know and understand the formal proof of the 
result. 
I want to make it quite clear that this book does not attempt to provide 

formal proof of an-v result whatever. I have not attempted to deal with 
stage (4) at all. My concern is entirely with stages (l), (2), and(3). I want 
you to see that the ideas of calculus arise quite naturally, and indeed I 
want you to discover them for yourself. If we were in a room together, 
I would confine myself to asking you questions, and you would find 
that you arrived at calculus by clarifying ideas that you already have in 
a vague and shadowy form. Between the covers of a book I cannot 
follow that procedure. But I keep to it as nearly as I can. I am not trying 
to tell you any particular result. I am trying to call your attention to 
certain things that you can experiment with for yourself. The evidence 
that you collect will suggest certain conclusions to you. More than 
that, I do not claim. I do believe, however, that this experience will 
make it much easier for you when you begin to learn calculus in real 
earnest. You will have some idea of the direction in which you are 
traveling. 

The first seven chapters differ in some respects from the last three. 
Chapters 1 through 7 deal with certain topics in some detail. These 
chapters you may reasonably expect to read and master thoroughly. 
The last three chapters are much less detailed. They are put there to 
show you that there is still something to learn when you have mastered 
the contents of Chapters 1 through 7. Chapters 8 and 9 indicate, in bare 
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outline, some questions that arise in the first year’s work on citlculus. 
Chapter 10 raises some more profound questions; it calls your attention 
to some things that (you would think) could not possibly happen, and 
yet which do actually happen. Some students find this the most exciting 
chapter in the book. 

Chapters 8,9, and 10, then, are something in the nature of a preview, 
a sample of things to come. Their aim is more to indicate the kind of 
question that lies ahead than to give you a thorough account. So do 
not be surprised if these chapters leave some unanswered questions in 
your mind. 

After Chapter 10 you will find a “Guide to Further Study.” This 
begins with quite elementary texts on calculus and goes on to quite 
advanced topics. The later parts of this “Guide” will mainly be of 
interest to the rather exceptional student, who reads this little book 
while in the 9th grade, and works steadily at calculus for the remainder 
of his high-school career. Only a few students are capable of doing 
this, but those who can do it should be given every encouragement to 
go ahead. 

The book concludes with a list of technical terms. This list was 
compiled after the rest of the book had been written. So far as under- 
standing the book is concerned, this list could have been omitted. It 
was felt, however, that readers might like to know the official names of 
the ideas they had met, and also that this would be helpful in reading 
more formal books on calculus. 
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The Study of Speed 

I -  

We are going to investigate speed, the speed of a moving object. How 
can we see clearly what a moving object is doing? We might make a 
“movie” of an object moving along a straight line. Suppose we have 
a camera that makes a picture every tenth of a second. Suppose succes- 
sive pictures are as shown in Fig. 1. What is the little object doing? 
Every tenth of a second, it moves up 1 inch. It seems to be moving with 
a steady speed of 10 inches a second. 

On another occasion, we might obtain the pictures shown in Fig. 2. 
Here, the object advances 2 inches between each picture and the next. 
It has a steady speed of 20 inches a second. 

Let us look at something with a varying speed. Suppose an object is 
accelerating. Between the first and second pictures it might cover 1 

0 

Figure 1 
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Figure ~ 2 
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- 

inch; between the second and third, 2 inches; between the third and 
fourth pictures, 3 inches. Its record would be as shown in Fig. 3. 

:j 
Figure 3 

Already we notice certain things. (1) With steady speeds the dots lie 
on a straight line, (2) with accelerated motion, the dots lie on a curve. 

QUESTION 1. Figures 1 and 2 both represent objects moving with steady 
speeds. How could one tell, by examining these pictures, which object was 
moving faster? It is not necessary to bring numbers into the answer. It is 
possible to tell, at a single glance, which object is the faster. How?t 

We can also make an object record its own motion. In Fig. 4, the 
object moves up and down the line PQ. Paper passes underneath from 
right to left at a steady speed; the object is inked so that it leaves a 
trail on the paper. If the object has a steady speed, its trail will be a 
straight line. 
t Answers to problems will be found at the back of the book. 
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Figure 4 

QUESTION 2. Fit the records shown in Fig. 5 to the descriptions: 
(a) Moving up rapidly. 
(b) Moving up slowly. 
(c) Stationary. 
(d) Moving down slowly. 
(e) Moving down fast. 

Figure 5 

QUESTION 3. Fit the records shown in Fig. 6 to the descriptions: 
(f) Starting from rest and gradually gaining speed upwards. 
(g) Rising fast at first and gradually slowing down to rest. 
(h) Starting from rest and gradually acquiring speed downwards. 
(i) Falling fast at first and gradually being brought to rest. 

Figure 6 

No special equipment is needed, if you want to demonstrate the 
connection between curves and movement. The simplest thing is to draw 
the curve first, and then pass it behind a narrow slit; the arrangement is 
similar to that of Fig. 4. You will only be able to see a small part of 
the curve through the slit, and this will give you the impression of a 
point rising and falling. 

This has an engineering application. If we want to make an object 
behave in a particular way, we can do so by means of a suitably shaped 
cam. 
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In Fig. 7, for example, the cam moves to the left at a steady pace. 
The rod AB remains at rest, until the point C reaches B. It will then 
begin to gather speed upward until D reaches B. When in  contact with 
the straight part DE, the rod will move upwards with steady speed. 
The rod loses speed when in contact with the curve EF. Finally, it again 
is at rest when the section FG reaches it. 

I 
CAM 

Figure 7 

Curves like those in Figs. 5, 6, and 7 help us to think about move- 
ment. We can see the curves; details appear in the curves that might 
not be apparent in the actual movement; the curves give us something 
definite to look at and think about. 

The work we have done also tells us something about the scope of 
calculus. Calculus begins as the study of speed. But in thinking about 
speed, we have been led to the curves drawn above. These curves could 
be described in terms of speed. For example, curve (viii) could be 
described as the curve that records the movement, when an object 
moves upward faster and faster. So calculus can be used not only to 
describe movement but also to describe the shapes of curves. Calculus 
was in fact so used in its earliest days. Kepler, in 1609-1619, discovered 
the paths in which the Earth and planets move around the Sun, and the 
way in which their speeds varied as they went round. Isaac Newton, 
in the years 1665-1687, was able to show that this was what the planets 
ought to do, if the sun attracted them according to the inverse-square 
law. Thus, with the help of calculus, he accounted for both the speeds 
and the curves. It impressed men very much that the complicated 
behavior of the solar system could be deduced from three or four very 
simple assumptions-Newton’s laws of motion and his law of gravity. 
Newton’s laws, and his application of calculus to astronomy, have a 
renewed interest today, when not only can we look at the planet Mars 
but some of us may be able actually to go there. Calculus would be 
used to calculate the possible orbits from the Earth to Mars, and to 
decide which orbit would require the least fuel. 
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Calculating Velocity 

Now let us turn to some simple calculation. How do we work out 
the velocity of an object? Suppose, for example, a car is traveling along 
a straight road, a turnpike say. At 2 o’clock the mileage recorder shows 
70 miles. At 5 o’clock, the mileage is 220 miles. Suppose the car Ras 
been traveling all the tinie at a steady speed (this is most unlikely in 
practice!). How fast has it been going? This is not a difficult question. 
Subtracting 70 from 220, we see that the car has gone 150 miles. Sub- 
tracting 2 from 5 ,  we see that it has taken 3 hours to do this. We divide 
150 by 3 and get 50. So the speed is 50 mph. 

Our reason for doing this simple piece of arithmetic is to study the 
method, rather than the answer. We want to extract from it a formula 
for velocity. We bring some symbols in. Let s miles be the reading of 
the mileage recorder at the time t hours. Thus, t = 2 would indicate 
that the time was 2 o’clock, and s = 70 would indicate that the car 
had gone a total distance of 70 miles. The information we had in the 
question above could be put in a table like this: 

t 2  5 
s 70 220 . 

But we want to get away from the particular numbers 2, 5 ,  70, 220. 
We want a formula for giving the velocity between any two times and 
any two places. So we bring in some more symbols. 

Generalized probleni. “At a hours, the mileage is p miles. At b 
hours, the mileage is 4 miles. The car moves at  a steady speed. Find 
its velocity, v miles an hour.” 
We do the same steps as we did in the particular arithmetical prob- 

lem, but we replace the particular numbers by the corresponding 
symbols. a should appear now, where 2 appeared i n  the arithmetic; 
b replaces 5, p replaces 70, q replaces 220. The table is: 

t a b  
S P 9  * 

In the arithmetic, we began by subtracting 70 from 220. In the algebra, 
we subtract p from q. So the car has gone (q - p )  miles. How long has 
it taken to do this? Instead of subtracting 2 from 5 ,  we subtract a from 
b. The car has taken (b - a)  hours. To find the velocity, we divide the 
number of miles gone by the number of hours taken. This gives us 

4 - P  For/nula (1) y = -. b - a  
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It is most important to remember that this formula holds only yrhe car 
has a steady s p e e 6 v i t  moves at a constant velocity. 

Suppose, for example, a car driver drove 30 miles in one hour, then 
spent 3 hours having dinner, suddenly realized how late it was, drove 
for an hour at 95 mph, and then had an accident. It would be no good 
for this driver to say, “I have been out for 5 hours and have covered 
125 miles. So my speed can only have been 25 mph. The accident was 
not my fault.” At the moment of the accident, his speedometer was 
showing 95 mph. That is what we mean by velocity; what the speed- 
ometer shows at a particular instant. It has nothing to do with ancient 
history. Maybe this driver had not used his car for a year. Then he 
could say that he had only covered 125 miles in a year, which is 0.014 
miles an hour. Everyone would call this a ridiculous defense. I only 
emphasize this point because many students of calculus behave exactly 
like this man. They remember formula (1). It is so simple that they use 
it even in situations where it gives the most ridiculous results. 

Formula (1) works only when an object travels with constant velocity. 
If the velocity varies a little, then formula (1) gives us, not the exact 
velocity, but a reasonably close estimate of it. For example, the speed 
of a car does not vary much in one second. Formula (1) would give u 
reasonable estimate of a car’s speed, if one observed the distance the 
car went in a second. Such evidence might be available if someone had 
been taking a movie when a car crashed, and it would be quite reason- 
able to produce that movie in a law court. In calculus, we use something 
of the same procedure. We are mainly interested in cases where the 
velocity is varying all the time. So we cannot simply quote formula (1). 
That would be quite wrong. What we do, is to use formula (I) to 
estimate the velocity; by using shorter and shorter times, we try to 
arrive at some conclusion. 

Negative Velocity 

One curious result can be drawn from formula (1) even in the case 
of steady velocity. Suppose the car is going backwards. This happens 
rarely or never with cars, so our example is somewhat unreal. However, 
in science the situation frequently occurs; for example, a stone, thrown 
straight up into the air, rises for a certain time, and then falls. When 
falling, it is returning to its original position, like a car backing. Suppose 
then, a car capable of driving backwards at a steady speed for two or 
three hours. How would its table look? Something like this- 

t 3  5 
s 80 60 . 
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At 3 o’clock, it would be 80 miles from home; at 5 o’clock, only 60 
miles. In 2 hours, it has returned 20 miles; evidently, it has been backing 
at 10 mph. 

What does formula (1) give? We have to put 

a = 3, b = 5, p = 80, q = 60. 

This gives 
q - p  60- 80 -20 y = - = - = - -  - -10. b - a  5 - 3  

We know the car is backing at 10 mph. The formula gives Y = - 10. 
There are two ways of dealing with this situation. 

(1) We might say, “It is absurd to have negative velocities. A 
velocity cannot be less than zero. If a car is going backwards, you 
must use a different formula. Formula (1)just does not apply then.” 

(2) We might say, “We will use formula (1) always when some- 
thing moves with a steady speed. If formula (1) gives us a negative 
answer, we shall know that the object is moving backwards.” 
Policy (2) has been found to be much the most convenient. If we 

used policy (l), it would double our work; we should have one set of 
rules for things that are rising, another set for things that are falling. 
Policy (2) allows us to have a single formula. If, at the end, the answer 
comes out negative, we know what that means. Usually, in a car, the 
speedometer shows only speeds forward. What we are doing now is 
rather more like what happens on a ship, where you have “full speed 
ahead” and “full speed astern.” One could imagine a car with an ex- 
tended speedometer, that went past zero to show “ - 5  mph” when the 
car was backing at 5 mph, “-10 mph” when it was backing at 10 
mph, and so on. 

In physics, the word velocity is commonly used when direction is 
being taken into account; speed is used when you are simply concerned 
with how fast an object is moving, and not bothering whether it is 
moving forwards or backwards. Thus a car advancing at 10 mph has 
a velocity of +10 mph; when backing at 10 mph, it has a velocity of 
-10 mph. In both these cases, the speed is 10 mph. This distinction 
will not play any part in this book. We shall always be concerned with 
velocity. For example, we might record various movements as in Fig. 8. 

t l O O m p h  + IOmph 0 mph -10mph - 1 0 0 m p h  
Figure 8 
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Rates of Change 

If we are traveling in a car, the velocity of the car is the rate at which 
the mileage increases. Velocity is the rate of change of distance gone. 
Calculus is concerned with how fast things change. The thing changing 
need not be a distance. We may ask, “How fast is that man growing 
rich?” “How fast is this car’s tank being filled with gas?’ These are 
rates of change-the rate of change of a bank account; the rate of 
change of the amount of gas in the tank. 

It is convenient to have a symbol for “the rate of change of.” We 
shall use a very simple one, the symbol 

IfJmeasures any quantity,f’ measures the rate at which that quantity 
is growing (f’ is read “f prime” or ‘ydashed”). 

For example, if a boy is h inches in height when he is n years old, h‘ 
means the rate at which he is growing, in inches a year. 

If a car goes s miles in t hours, s‘ means the rate, in mph, at which 
the mileage grows. s‘ miles an hour is in fact the velocity of the car. 

If there are g gallons of gas in  a tank after t seconds of filling, g’ 
means the rate at which gas is entering the tank, measured in gallons 
a second. 

If a man has nz dollars when he is n years old, nr‘ is the rate at which 
his wealth is increasing, in dollars a year. 

Note here the distinction we made earlier: ni’ is not the same as nt/n. 
If a man has $3000 when he is 30 years old, it does not in the least 
follow that his wealth is increasing at the rate of $100 a year. You 
could only draw this conclusion if you knew that, from the time he was 
born, he had been saving money at a steady rate. It might be that he 
had nothing at all until he was 27, and in the last three years he has 
been saving steadily at $1000 a year. In that case, m’ would be 1OOO. 
On the other hand, it may be that he is having a difficult time now, 
and is actually losing money at $500 a year. In that case nt’ = -500. 
m’ has nothing to do with ancient history. It measures what is happen- 
ing now. 

If s miles is the distance a car has gone in t hours, s’ denotes the 
velocity of the car in miles an hour. Again, you cannot assume that 
s’ = s/t. If I tell you that I have been driving for 3 hours and have 
covered 90 miles, you cannot work out from this how fast I am moving 
at this moment. You can only see what s’ is by looking at the speedome- 
ter. I may be traveling at sixty. In this case, s = 90, t = 3, s’ = 60. 
Or my car may be at rest. In that case s = 90, t = 3, s‘ = 0. I may 
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even be backing at 10 miles an hour. Then s = 90, t = 3, s’ = -10. 
All this merely amounts to saying that, if I tell you what time it is 

and where 1 am, you cannot tell me how fast I am moving. However it 
is necessary to emphasize this. Students seem to have had drilled into 
them “velocity is distance divided by time.” This is so only in the case 
ofsteady velocity. But the whole point of calculus is to study variable 
velocity, as when a ball is falling to the earth or a rocket taking off 
from the earth. 
s‘ then is the number to which the speedometer is pointing at any 

particular moment. 

EXAMPLES. Translate into calculus symbolism: 
(1) After 1 had been traveling for 5 hours, I had covered 120 miles and was 

ANSWER. For t = 5, s = 120 and s’ = 40. 

(2) After 2 hours’ driving, my speedometer showed 50 mph and after 3 hours 

ANSWER. For t = 2, s’ = 50. For I = 3, s’ = 45. 

driving at 40 rnph. 

it showed 45 rnph. 

(3) For the first two hours, 1 drove at a steady speed of 40 mph. 

ANSWER. s’ = 40 for every value off from 0 to 2. 

Finding Velocity in Simple Cases 

There are some cases in which velocity can be found by arithmetic 
alone. These cases are, of course, not very interesting or exciting; the 
interesting results come in the problems where new methods are 
needed. These simple cases, however, can get us used to the s’ symbolism. 

Suppose the mileage on my car is zero, and I drive at a steady velocity 
of 10 mph for a certain time. The table giving my mileage at any time is 

t o 1 2 3 4  
s 0 10 20 30 40 . 

Here, s = 10t is the law. What is s’? We said at the outset that my 
velocity was steady at 10 mph, and s’ measures my velocity. So s’ = 10. 
Let us set this out formally. 

Result A. If 

s = 101, 

s’ = 10. 
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Since my velocity is 10 mph all the time, s’ = 10 does not simply 
mean that s‘ is 10 at some particular instant, but that at any instant 
during the motion s‘ has the value 10. s = 101 is a law for the motion 
in the sense that it tells you where the car is at any time. If you ask, 
“Where is the car after 13 hours?” I substitute t = 1* in the formula 
s = 10t and get s = 15. s’ = 10 is also a law, in the sense that it tells 
me the velocity at any time; it says that the velocity is always 10. 

Here we have an example of one of the first problems of calculus: 
given a law that tells you where an object is at any time, find a law for 
its velocity at any time. 

Exercises 

1. To begin with, the mileage of my car is zero. I drive at a steady velocity of 
20 mph. What law gives my position at any time? What is my velocity at 
any time? Write the answers to both questions as equations. 

2. The position of a car at any time is given by the equation s = 30r. What is 
the mileage when t = O? when t = l ?  when r = 2? when t = 31 What 
is the velocity of the car? What equation gives s‘? 

3. The position of a car at any time is given by the equation s = 40t. Find 
the equation for the velocity of the car. 

4. Complete the statement, “if s = Sot, s‘ = . . .”. 
5. If k stands for any fixed number (like 20, 30, 40, 50 in the preceding 

examples) and s = kt, then s‘ = . . . ? 

In the examples just considered, we started each time with zero 
mileage. This however is not necessary. Consider the law s = 10t + 3. 
The table for this is 

t o 1 2 3 4  
s 3 13 23 33 43 . 

Here, the mileage recorder showed 3 at the beginning. The table shows 
that the car covers 10 miles with every hour that passes. The velocity 
is 10 mph, and so s‘ = 10. We thus have 

Result B. If 

s = 101 + 3, 

s’ = 10. 
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Exercises 
Investigate in the same way the velocity s' corresponding to the laws 

(1) s = lot + 5, (2) s = 10t + 7, (3) s = 101 + 9. 
If s = 101 + c, where c is any fixed number, what is s'? What is the value 

of s' for (4) s = 201 + 3, (5 )  s = 20t + 5, (6) s = 20t + 7, (7) s = 20t + 91 
Can you draw any conclusion from the above examples? Can you write 

down straight away the velocity s' corresponding to the laws (8) s - 30r + 7, 
(9) s = 50t + 9, (10) s = 40t + 23, (11) s 30t + 20, (12) s = 50t + l50? 

If you drew illustrations of the motions considered in these examples, such 
as we had in Figs. 1 through 8, what would these illustrations look like? 
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The Simplest Case of Varying Speed 

Velocity at an Instant 

Steady velocity is too simple to be very exciting. We now turn to 
the real problem, the question of variable velocity. 

It should be emphasized that the quantity Y or s’, for which we 
are seeking, is intended to measure velocity at an instant. In everyday 
life we find this quite simple; we glance at the speedometer of a car; 
the needle points to 60 mph and we conclude that 60 mph is our speed 
at this instant. But when we start to examine what this means, we meet 
a certain paradox. The very idea of velocity seems to involve titv times, 
the beginning and end of an interval. We measure velocity in miles 
an hour, and these words imply that we see how far an object goes in 
a certain time. If the time allowed is zero, the distance the object goes 
is zero. However fast it may be going, two photographs of it taken at 
the same time will show it at the same place. 

If in formula (1) we were to try to discover the velocity at an instant, 
by making a and b coincide, then p and y also would coincide, and the 
formula would give us 0 + 0 as the velocity-which does not help us 
at all. 

We have ued curves to record the movement of objects. A steep 
line corresponds to an object moving fast; a gentle slope to an object 
moving slowly (Figs. 5 and 6). So our question could be posed in terms 
of curves. Instead of saying, “What is the velocity at this instant?’ we 
could ask, “What is the steepness of the curve at the point P?” (see 
Fig. 9). This seems a sensible sort of question. We would agree, for 

22 
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Figure 9 Figure 10 

example, that, for the curve shown in Fig. 10, the steepness at the 
point R is greater than at  the point Q. We know what we mean when 
we say this. But suppose the curve were covered up in such a way that 
we could only see the point Q itself (Fig. 11). We should have no idea 
how steep the curve was at Q. Suppose the screens are moved a little 
apart, so that we see just a little bit of the curve near Q (Fig. 12). 

Figure 11 Figure 12 

Now we can see what the steepness is at Q; it does not matter how 
little of the curve is exposed, so long as we can see a piece of curve on 
each side of Q. 

Accelerated Motion 

Let us now take a particular case of motion with variable velocity, 
and see how the velocity at any instant can be calculated. This example 
that we are going to study is in  fact of importance in physics; it is 
the type of motion usually studied at  the beginning of a course in 
mechanics. It could be produced by the apparatus shown in Fig. 13. 

 WEIGHT 
Figure 13 

If the wagon weighed 15 ounces, the weight would have to be somewhat 
more than 1 ounce. “Somewhat more” because there would be friction 
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acting at the wheels of the wagon; by adjusting the weight, the desired 
motion could be obtained, namely, that given by the table 

t o 1 2 3 4  
~ 0 1 4 9 1 6 .  

It is understood that s feet is the distance gone by the wagon in t 
seconds. The table of course fits the law 

You will notice that the table above agrees with my statement that 
we have accelerated motion. In the first second, between t = 0 and 
r = 1, the wagon advances 1 foot only. But between t = 1 and t = 2, 
the wagon advances 3 feet. Between t = 2 and t = 3, the wagon 
advances 5 feet (for 5 = 9 - 4). Between t = 3 and t = 4, the wagon 
advances 7 feet (7 = 16 - 9). These numbers are consistent with the 
belief that the wagon is accelerating, is going faster and faster, as the 
weight pulls it forward. 

Suppose now we try to estimate the velocity at the instant when 
r = 3. In the second before this instant, from t = 2 to t = 3, the wagon 
covers 5 feet. In the second after this instant, from t = 3 to t = 4, the 
wagon covers 7 feet. It seems reasonable to guess that the velocity at 
the instant t = 3 lies between 5 and 7 feet a second. 

Students nearly always ask, “Couldn’t we take the average of 5 and 
7, and say that the velocity is 6 feet a second?” Unfortunately, this 
answer is correct for this particular example. I say, “Unfortunately,” 
because, as a rule, taking the average does not give the correct velocity. 
In fact it hardly ever gives the correct velocity. Only when the law is 
of the type 

s = at2 + bt + c 

does taking the average work. We shall see below that averaging gives 
a wrong result for the law s = 13. 

If you will take my word for this, for the time being, we shall set 
aside the guess that the true velocity is exactly halfway between our 
estimates 5 and 7, and merely use our concIusion that the velocity lies 
somewhere between 5 and 7. 

How can we narrow down this margin? We agreed earlier that the 
shorter the time interval was, the better estimate one should get for 
the velocity. It seems a good idea to take a shorter interval. Instead of 
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one second before and after t = 3, we try half a second before and 
after. By substituting in the formula s = t*, we obtain the little table 

t 23 3 34 
s 6) 9 12) 

What use has the wagon made of these half seconds? In the half second 
between t = 24 and t = 3, s has grown from 6f to 9. That is, the 
wagon has covered 2$ feet. Two and three-quarters feet in 3 second 
suggests a velocity of 22 t 3, which equals 54 feet a second. 

In the half second after t = 3, the wagon covers 12f - 9, that is, 
3f feet. Three and one-quarter feet in 3 second suggests the velocity 
3f t 4, that is, 63 feet a second. 

So we now think the velocity should lie between 54 and 63 feet a 
second. 

But why stop at a half? Why not go to shorter and shorter intervals, 
getting better and better estimates? 

If we take one-tenth of a second before and after t = 3, we get the 
little table 

t 2.9 3 3.1 
s 8.41 9 9.61 

by means of the formula s = t? In the tenth of a second before t = 3, 
the wagon advances 0.59 feet; this suggests a velocity of 0.59 t 0.1 = 
5.9 feet a second. In the tenth of a second after t = 3, the wagon 
advances 0.61 feet, which suggests a velocity of 0.61 t 0.1 = 6.1 feet 
a second. We now think the velocity should lie between 5.9 and 6.1 
feet a second. 

By exactly the same method, if we take one-hundredth of a second 
before and after t = 3, we are led to believe that the velocity lies between 
5.99 and 6.01 feet a second. By taking one-thousandth of a second, we 
are led to believe the velocity is between 5.999 and 6.001 feet a second. 

We collect these results in the form of a table: 

We are led to believe that v, the 
By ‘Onsidering Of velocity in feet per second, lies between 

1 second 
0.1 second 
0.01 second 
0.001 second 

5 and 7 
5.9 and 6.1 
5.99 and 6.01 
5.999 and 6.001 
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Our last estimate here, using 0.001 second, pins v down to a very 
narrow region, since 5.999 and 6.001 differ by only 0.002. But of course 
there is no need to stop at an interval of 0.001 second. We could use a 
millionth or a billionth of a second, and get even more accurate esti- 
mates of v. In fact, there seems to be no limit to how accurately we can 
estimate v. For the table above shows a very marked pattern. I should 
imagine you can guess how the table would continue. 

Exercise 

Without making any calculations, guess the estimates of Y that would 
correspond to intervals of O.OOO1 second and 0.00oOl second. Check your 
guesses by actual calculation. 

I imagine you had no difficulty i n  seeing how the table would con- 
tinue. Each row we go down, we find one more 9 in 5.99 . . . 9 and one 
more zero in 6.00 . . . 01. The estimates are coming closer and closer 
together. Any particular estimate leaves some uncertainty about the 
value of v,  even though this uncertainty may be very small. But if we 
take all the estimates into account, this uncertainty disappears. There 
is only one number that is bigger than 5.999 . . . 9, however many nines 
are written, and smaller than 6.000 . . . 01, however many zeros are 
written. That number is 6. 
So, although we spoke of estimating the velocity, and an estimate 

usually implies some degree of error or uncertainty, yet there is no 
uncertainty at all in our final answer. 6 is the only number that satisfies 
all the estimates, as they close in from the right and the left. 

All this arithmetic thus leads us to the conclusion that, if a body 
moves according to the law s = 12, when t = 3 its velocity is given 
by v = 6. 

The purpose of this explanation is that you should now be able to 
work out for yourself the values of v corresponding to t = 1, t = 2, 
t = 4, and t = 5. When you look at your answers you should notice 
a certain law. 

I must make sure that you understand the method for finding v 
corresponding to any given value of t .  In classes, some students see 
the point of the method straight away; but there are always some who 
have to have it explained more than once. So, for readers who need it, 
I will indicate how to get clear about the method. It is important that 
you should understand this method, for the next stage of the work 
requires you to discover the first result of calculus; you will feel much 
happier and more confident if you discover it for yourself, than if I 
have to tell you. 
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First of all, you must be clear as to the idea behind the method. 
Formula (l), which is often spoken in the form “velocity is distance 
divided by time,” applies only to constant velocities. When the velocity 
is varying, distance divided by time gives the average velocity only; the 
actual velocity at any instant may be more or less than the average 
velocity. However, we consider shorter and shorter intervals of time; 
we hope that this gives less and less opportunity for the velocity to 
vary, so that the average velocity, over a very short interval, should be 
a good estimate of the true velocity. 

Second, you need to be able to carry through the actual calculation. 
I f  you find difficulty in organizing the work, you may find it helpful 
to adapt the argument of pages 24-25; go through the same kind of 
steps, but work out the velocity for t = 2 instead of t = 3. Then go 
through the steps again, but this time find v for t = 4. Of course, do 
not be content just to go through the arithmetic. Think all the time 
what you are doing and why that should be done. 

When you have worked out v corresponding to t = 1, t = 2, t = 4 
and t = 5 ,  complete the following table: 

t 1 2  3 4 5  
v ...... 6 . . . . . . .  

After completing the table, you should notice a law connecting v 

It is best if you do not read further until you have successfully com- 
and t .  The law is v = ........ 
pleted this work. 

* * *  
The Law for the Velocity 

If you carry through the arithmetic correctly, you should arrive at 
the following result: 

t 1 2 3 4  5 
~ 2 4 6 8 1 0 .  

Each number in the second row is exactly twice the number above it, 
So the law is v = 2t. If we use the sign ‘ introduced on page 18, we 
may use s’ instead of v. We then have a new result to put beside our 
results A and B on pages 19, 20. 

Result C. If 
s = t2, 

s’ = 2t. 
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This very simple result has come out of long calculations. We shall 
in a moment consider how it might be found more shortly. However, 
these long calculations have in no way been wasted. This work should 
have given you a feeling for what is happening. Many students read 
short proofs of this result in calculus texts; they pass quickly over the 
algebra, and they never realize what it really means. 

Let us now see how algebra could be used to reduce our work, and 
also to make the argument more convincing. 

When we considered how far the object went according to the law 
s = 12 between the times f = 2.99 and 3, we had the messy arithmetical 
task of finding the square of 2.99. This work can be simplified by 
algebra. There is a standard result of algebra 

Formula (2) (a + b)2 = a2 + 2ab + b2. 
If we put u = 3, b = -0.01, we get a + b = 2.99. So formula (2) 
gives us 

(2.99)2 = 32 + 2 3 (-0.01) + (0.01)2 
= 9 - 0.06 + O.OOO1 
= 8.9401. 

This method involves less work, and is less likely to lead to a mistake 
than the usual method of elementary arithmetic. 

However, we can make greater use of algebra than simply to shorten 
the calculations. On page 25, we observed a column containing the 
numbers 5 ;  5.9; 5.99; 5.999; and we made a guess as to how this 
column would continue. By using algebraic symbols, we can avoid this 
guess. Instead of considering, one at a time, the intervals 

between 3 and 3 + 0.1; 
between 3 and 3 - 0.1; 
between 3 and 3 + 0.01; 
between 3 and 3 - 0.01; etc., 

we can notice that all these intervals are particular cases of the interval 

between 3 and 3 +h. 

The particular cases can be got by substituting 0.1; -0.1; 0.01; 
-0.01 ; respectively for h. Since we can equally well substitute0.0000001 
or 0.000000001 for h, we are thus enabled to deal with the intervals of 
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one-millionth or one-billionth, or any other number for that matter, 
all at one blow, by an algebraic calculation. 

We now carry this idea into practice. We want to find the velocity 
at t = 3. So we consider a short interval, from t = 3 to t = 3 + h. 
We must find where the object is at these times. The position is deter- 
mined by the formula s = t? When t = 3, s = 9.  When t = 3 + h, 
s = (3 + h)2 = 9 + 6h + h2. So we have the table 

2 3  3 + h  
s 9 9 + 6 h + h 2  . 

We now use “distance divided by time” to estimate the velocity. How 
far has the object gone during this interval of time? We take the 
difference between the numbers in the row giving s. The object has gone 
6h + h2 feet during the interval. How long is the interval of time? We 
take the difference between the numbers for t. The interval is of length 
h seconds. Division gives us our estimate of v, namely, 

6h + h2 
h 

___. 

The expression can be simplified. Since 

6h + h2 = h * (6 + h), 

on dividing both sides by h we have 

-= 6 h +  h2 6 + h .  
h 

Exercise 

In the above expression substitute in turn, the values 1; 0.1; 0.01; -1; 
-0.1; -0.01 for h, and check that the results agree with numbers in the 
table on page 25, the positive values of h giving one column and the negative 
values of h the other. 

When h is positive, we are considering a little interval just after f = 3. 
Our estimate of v is then 6 + h, just a little more than 6. 

When h is negative, we are considering a little interval just before 
t = 3. Our estimate of v is then just a little less than 6. (For example, 
if h = -0.01, the estimate 6 + It is 6 + (-O.Ol), that is 5.99, just less 
than 6.) 
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The shorter we make the interval, the closer our estimate comes to 6. 
We are thus led to the conclusion that v = 6. 

We have just found, by algebra, the velocity corresponding to I = 3. 
Now there is nothing special about the number 3. The work would 
have been just as easy for any other number. Here again is the sort of 
situation where algebra can help; we can use a symbol for “any number” 
and find v corresponding to any value of t. 

Suppose then, we try to find the velocity when I = a, where a stands 
for “any number.” The work will follow exactly the same plan as it 
did for t = 3. We can go through this work, step by step, but writing 
a wherever 3 came before. 

Exercise 

Do this, if you can, before reading it below. 
* * *  

We shall have the table 

t a  a + h  
s a2 a2 + 2ah + h2 . 

Distance gone during the interval is found from the difference between 
the two numbers in the row for s; the distance is 2ah + h 2  feet. The 
time taken is found from the difference between the numbers in the 
row for t .  The time taken is h seconds. Division gives the estimate 

for v, and this simplifies to 
2a + k.  

Now li is a very small number; it represents the length in seconds 
of the interval during which we observe the motion; the shorter this 
interval, the better the estimate of v. As h gets smaller and smaller, 
2a + h approaches 2a. We conclude 

v = 2a. 

Thus, if t = a, v = 2a. In  words, “If t is any number, v is twice that 
number.” This confirms the guess we made on page 27. But there our 
evidence was limited to the numbers 1, 2, 3, 4, 5. By using algebra, we 
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see that v = 2r holds for every value of 1. Of course a need not be a 
whole number; the laws of algebra hold equally well for fractions and 
irrational numbers. 

You may wonder why we bother to bring the number a into the 
discussion. Why write t = a, v = 2a instead of just v = 21? The reason 
is that, at the beginning of our work we had to consider an interval of 
/t seconds, from t = a to t = a + h. If we had tried to do without 
a, we might have found ourselves talking about the interval from t = t 
to t = t + h, which sounds somewhat peculiar! 

A Useful Symbolism 

In discussing motion, we continually use phrases such as “where the 
body is at a certain time,” or the corresponding algebraic phrase, 
“the value of s corresponding to a particular value of 1.’’ Seeing this 
phrase is used so often, it is convenient to have an abbreviation for it. 
We shall use s(a) to stand for “the value of s corresponding to t = a.” 
Thus, in the table 

t o 1 2 3  
s o 1 4 9  

9 is the value of s corresponding to t = 3; we can save a lot of space 
by expressing this in the abbreviated form 43) = 9. For the same 
table, s(0) = 0, s(1) = 1, 4 2 )  = 4. 

When we are discussing velocities, we consider the interval of time 
from t = a to t = a + h. We then examine where the object is at the 
beginning and end of this interval. Its position is specified by the value 
of s. The value of s corresponding to t = a can now be indicated by 
s(a), and the value of s corresponding to t = a + h by s(a + h). 

Thus, in this interval, the object covers a distance of s(a + h) - s(a) 
feet. The time taken is (a + h) - a = h seconds. Thus the average 
velocity during the interval is 

s(a + h) - s(a) 
h Fortnrilu (3) 

feet per second. 

Procedure f6r Determining Velocity 

We are now able to describe the steps by which we found the law 
for velocity in our work above. The purpose of describing the procedure 
is, of course, so that we can apply it to other laws besides s = 12. 
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(1) We began with a law giving s in terms of 1. 
(2) We then considered the average velocity during the interval 

between t = a and t = a + h. This led us to the expression given in 
formula (3) above, namely, 

s(a + 12) - s(a) 
h 

(3) We allowed h to become smaller and smaller. Thus h approached 
the value zero. We then found that 

approached a certain value. 
(4) That value we regarded as giving the velocity at  the instant t = a. 
In our symbolism, this result would be written v(a) or s'(a), for it 

gives the value of v or s' at t = a. 
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The Higher Powers 

We have spent several pages on a very detailed study of the law 
s = 12. The reason for doing this is that no new principle is involved 
in finding the velocity for s = t 3  or s = t4 or any higher power. I hope 
you will be able to find the laws for s' for yourself, as is suggested in 
the exercises below. 

Exercises 

1. Fill in the spaces in the table below, for the law s = f3. 

f 1 1.001 2 2.001 3 3.001 4 4.001 5 5.001 
S 

It will simplify the task if you work to three places of decimals only. From 
this table, estimate the velocity at the times f = 1, 2, 3, 4, 5. (Hinf. Each 
of these velocities is given by a whole number.) What law would give 
these? (If you cannot guess the law, look back to page 8.) Conclusion: if 
s = t3,  then v = s' = -. -. 

2. Investigate the velocity belonging to s = f 3  algebraically by considering 
how far the object moves between t = u and f = u + h (adapt the argu- 
ment of page 30). 

3. By whichever method you find easier, investigate the law for the velocity 
whens = 14. 

4. The velocity law for s = 12 was found in the text; if you solved questions 
1,2, and 3, you found the velocity laws for s = 13 and s = t4. Examine 
these results. Do they enable you to guess the law for s = ts? for s = fa? 
for s = t", where n is any whole number? Does your guess give the correct 
result for n = l? 

33 
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The Law s = I" 

Exercise 1, 1 hope, led you to the conclusion that, if s = t3, then 
s' = 312. Exercise 2 should lead to the same conclusion by an algebraic 
argument. For the little table will read 

t a  a + h  
s a3 a3 + 3a2h + 3ah2 + h3 . 

Thus the estimate for v is 

3a2h + 3ah2 + h3 
h = 3a2 + 3ah + h2. 

As h approaches zero, both 3ah and h* approach zero. So the expression 
above approaches 3a2. Thus, when t = a, v = 3a2, as we hoped. 

In Exercise 3, the algebraic argument involves much less work than 
the arithmetical. It leads to the little table for s = 14, 

t a  0 3 - h  

s a4 a4 + 4a3h + 6a2h2 + 4ah3 + hs , 

and hence to the estimate for v, 

4a3h + 6a2h2 + 4ah3 + h4 
h = 4a3 + 6a2h + 4ah2 + h3. 

When h approaches zero, all the terms except 4a3 approach zero, so 
we conclude that v = 4a3 at the instant t = a. Thus, for the law s = 14, 
the velocity is given by the law s' = 4t3. 

Suppose we collect the results we have found. 

Law for s: t2 t3 t 4 .  

Low f o r d :  2t 312 4t3. 

Most students notice the following. In the law for s' the exponent 
of t is one less than in the law for s. For example, when s = 117, we 
expect s' to contain P. SO, quite generally, for s = tf, we expect s' 
to contain t"-'. The other number in the formula is even easier to 
guess; we notice that s = t2  leads to s' = 21; s = 13 leads to s' = 312. 
The number written first in the formula for s' is just copied from the 
exponent in the formula for s. Thus for s = t'', we expect s' = 17t". 
Quite generally, we guess that s = tff will give s' = n P 1 .  

This then is the answer to Exercise 4. It is an inportant result. So 
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we set it out as formula. 

Formula (4) If s = P, then s’ = ~d’ -~ .  

Exercise 4 also suggested that we check our guess by testing it for 
n = 1. When n = 1, tn is simply t ,  and we know that s = t is the law 
for a body moving with velocity 1, so s’ ought to be 1. Does the formula 
make it so? If it does not, our guess has been faulty. Putting n = 1 in 
formula (4), we get s’ = 1 - to. Here we have to.  Some readers will 
know what this means, others will not, so I had better discuss it briefly. 
Consider the following expressions: 

2 5, t4, f .  1, 

Each expression is derived from the previous one by dividing by t .  But 
if we look at  the exponents, these begin 5, 4, 3, 2. The exponent falls 
by 1 at each step. This suggests that the expressions might also be written 

t5 ,  14, t 3 ,  12, t l ,  to,  11, t-2. 

So it seems that t o  should mean 1. Then s’= 1 - 1 0  will mean s‘= 1 . 1 = 1, 
and this is what we hoped it would be. 

The argument we have just had gives a meaning to to, t-1, and 2-2. 
Does formula (4) work for these powers also? Can we, say, put n = 0 
or n = - 1 in formula (4) and get a correct result? This is a sheer guess, 
but let us try it out. 

Putting n = 0 in formula (4) would give us the statement, “If s = to, 
s’ = 0 - t-1.” Is this a true statement? As we saw above, to means 1. 
Also t-1 means l / t ,  but that does not matter much, because it gets 
multiplied by zero. So the result is zero. (I assume that t does not have 
the value zero; that would lead to all kinds of complications.) The 
statement thus becomes, “For the law s = 1, s‘ = 0.” 

What does th.is mean? s‘ = 0 means the velocity is zero; that is, the 
object is at  rest. What does “the law s = 1” mean? It means that at 
all times, the object is distant 1 from some fixed place. If I keep my car 
all day just 1 foot from the door to my garage, surely it is at rest. The 
record of its progress is shown in Fig. 14. The graph neither rises nor 
falls. Its steepness or slope is zero: s‘ = 0. 

I 

$A.M. NOON 3 P.M. 6P.M. 
Figure 14 
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Now, what about n = - 1 ? By comparing the two sequences, 

I 
I 

1 1  
t 3' t5, r4, t3, r2, t, 1, - 9  

15, t4, 13, t2, t1, to, r-1, r-2, 

we were led to think that r-1 should mean l/t, and 1-2 should mean 
l/r% If we put n = -1 in formula (4), we obtain the result that the 
motion s = t-* should have the velocity s' = (-1) - r-2. We can 
translate this by using the meanings for r-1 and r-2. We thus reach the 
statement: to the law s = l/t there should correspond the velocity 
s' = -l/t2. Is this reasonable? The graph of s = l/t is shown in Fig. 
15. The graph falls very steeply at first, then moderately; it continues 

Figure IS 

to fall, but it reaches a stage where it falls so gradually that you might 
almost think it was flat. Does our formula for s' agree with this type 
of behavior? The graph always falls. This means that s' should be 
negative throughout; and it is so. Whatever value of t you may choose, 
s' - -1/t2 and s' is always negative. 

In the earlier part of the graph, the curve falls very steeply. Sup- 
pose we try t = 0.1. Then t2 = 0.01 and l/t2 = 100. So, for t = 0.1, 
s' = -1p = -100. This is the sort of value we should expect for a 
graph falling very steeply. Later, we reach the value t = 1. Then 
s' = -1p = - 1. This represents a moderate rate of fall, as we hoped. 
Still later we reach t = 10. Then s' = -l/t2 = -1/100 = -0.01. This 
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represents, again as we hoped, an almost imperceptible rate of fall. 
Our guesses seem to be working out well. We guessed first that we 

could find a satisfactory meaning for tn even when n was -1 or -2, 
and we guessed second that formula (4) could still be used with such 
values of n. On the basis of these guesses, we predicted the steepness 
at various places on the graph of s = l/t, and we got results in good 
agreement with the actual appearance of this graph. 

We often do this in mathematics-we take more than we are strictly 
entitled to. We may know that a method works in certain circumstances; 
we then experiment to see if, perhaps, it may not work in other circum- 
stances as well; we try to push our laws out and out, until they cover 
as many cases as possible. Let us carry this idea a bit further. 

Earlier we considered the sequence t5, 24, t3, . . ., in which we divide 
by t at each step. What happens if instead we write down a power of 
t and divide again and again by di? We would obtain a series such as 

Some of these we already know how to express in the form t". We 
write this information in, leaving gaps for results still unknown: 

t2 t d i  t fi 1 114 l/t 

t2 ... tl ... to ... y l .  

In the lower row, we see the numbers 2,1,0, - 1 with spaces between. 
What numbers should go in the spaces? The entries in the upper row 
are obtained by doing one operation again and again; divide by di, 
divide by d;, divide by 47. This suggests that the numbers in the 
lower row may also be obtained by doing some operation again and 
again. The numbers 2, 1, 0, - 1  go down by equal steps. Thus it is 
suggested that the operation is one of repeated subtraction. What 
must we subtract at each step, if we are to have 2, 1, 0 and -1 at the 
first, third, fifth, and seventh places? Clearly we must subtract 1/2, 
and the full sequence will be 2, 3/2, 1, 1/2, 0, -1/2, -1. This guess 
seems to give the simplest and most natural way of filling the gaps. We 
are thus led to the following table: 

We can now attach a meaning to I" when I I  has one of the values 3/2, 
1/2, -1/2. 
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What happens if we try putting n = 1/2 in formula (4)? Does it give 
sensible results? It would lead us to believe that, when s = tl”, the 
velocity s‘ = (1/2)t-”2; that is to say, when s = d;, we obtain 
s’ = (1/2) (l/dfi = 1/2d;. Is this reasonable? The graph of s = 47 
for positive values o f t  is shown in Fig. 16. 

S)’ 

Figure I6 

What do we expect for s‘ from looking at the graph? The graph rises 
throughout; we expect s’ to be positive for all positive values of 1. 
This is so, if s‘ = 1 / 2 4 .  The graph rises steeply at first, then moder- 
ately, and finally the slope becomes very gentle indeed. So we expect 
s’ to be large at first, then of medium size, and finally very small. The 
formula s’ = 1/24; agrees with these expectations. If you take for 
example t = 0.O001, then v/t = 0.01 and s’ = 50. For t = 1, 
s’ = 1/2. For t = 100, fi = 10 and s’ = 1/20 = 0.05. 

It thus seems that we get correct results by using formula (4) even 
when n is fractional or negative. This is in fact true and can be proved. 
I shall not try to prove it here. A strict, logical proof would have to 
approach things in quite a different order. We should not grope our 
way forward from x2 and x3 to x-’ and x ’ ’ ~  by guesswork; we should 
begin with a definition of x“ that held equally well whether n was 2 or 
-1 or 1/2 or 4 2  or T. From this definition we should deduce formula 
(4), so that all possible cases would be dealt with at one blow. But this 
proof would use some calculus ideas; you would certainly not see what 
the proof was aiming at, unless you had some familiarity with calculus 
already. Since we are not going to give a genuine proof, it seems better 
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not to give a phony argument that appears to be a proof and is not. It 
is better to say plainly-we have made some guesses; we have produced 
evidence to show that these guesses lead to some reasonable results. 
They are in fact correct.? 

In  high-school algebra, students usually meet t"* and t-l before thcy 
know anything about calculus. Fractional and negative exponents may 
seem rather futile and aimless. The work wc have just done shows the 
value of such exponents. The three expressions 22, l/t, d: look entirely 
different. If you were asked to find the velocity corresponding to each 
of them, you would think you had three quite different problems. But 
if you know enough about exponents to see these three expressions as 
12, 2-I, t"*, the three apparently distinct problems merge into one- 
they are all special cases of finding s' for s = 1". Formula (4) covers 
them all: we solve all three problems at one blow. Thus our work on 
fractional and negative indices bears useful fruit; it saves us the 
trouble of learning three separate rules for these three cases. There are 
many places in calculus where it will have a similar labor-saving effect. 

t For the benefit of students who intend to follow the subject further, I ought to 
indicate the line of proof I have in mind. It is possible to define log x by means of 
the integral calculus, and to deduce the properties of logarithms and antilogarithms. 
P can then be defined as aniiiug (n log x). 



C H A P T E R  F I V E  

Extending Our Results 

Let us look back for a moment and take stock. What have we 
learned in all these pages? Not much! A good deal of our discussion 
has been concerned with rather general ideas--that calculus studies 
speed, velocity, rates of growth; that there are difficulties in thinking 
about variable velocity; that graphs can help us to visualize our prob- 
lems. When you ask what exactly we have learned to calculate, the 
answer can be given very briefly-we have arrived at formula (4). We 
have learned how to calculate the velocity s' for the laws = r". Just that. 

Now of course it is rare that we have to deal with such a simple 
formula as s = r". Mathematical and scientific formulas alike tend to 
be rather more complicated than this. However, s = t" gives us a kind 
of building block, from which many more elaborate formulas can be 
constructed. For example, s = 1612 is the law for a stone falling from 
rest under gravity. If a stone is thrown upwards with a beginning speed 
of 40 feet a second, its height after r seconds is given by the formulat 
s = 40r - 16t2. In these formulas, powers o f t  occur, but other things 
occur as well; we cannot find s' by using formula (4) alone; we must 
know how to deal correctly with the minus sign and the numbers 40 
and 16 in s = 40t - 16r2, and with the number 16 in the formula 
s = 16r2. 

It is therefore natural to seek for principles that will allow us to 
t The formulas s = 160 and s = 40t - 16r2 could be obtained experimentally 

by observing actual stones. In practice, it is more convenient to make certain other 
experiments, guess certain general laws of mechanics, and deduce these particular 
results mathematically. 

40 
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answer questions such as “What is s’ for s = St3 - 1 1 2 2  + 81 + 9?, 
Here we have a simple expression, such as we meet frequently in school 
algebra. It is quite easy to find s’ for any such expression. 

In discussing this question, it is convenient to use an idea mentioned 
on page 18; we think of s‘ as being the rate of growth of s. Now imagine 
a bar made up of two parts, of lengths y and z inches (Fig. 17). - Y ‘  I- 

+y-=----4 
Figure 17 

These parts are perhaps made of different metals; the metals are being 
heated and so each part is expanding. What would be appropriate 
symbols for the rates at which they are expanding? The first part is 
of length y inches. y’ is the natural symbol for representing the rate at 
which y is growing. In the same way, z‘ represents the rate at which z 
is growing. Suppose we know these numbers y‘ and z‘. How would 
you find out the rate at which the total length of the bar is growing? 
Most people say at once, “I would add the rates at which the two parts 
are growing.” That is, y‘ + z‘ gives the rate at which the total length is 
growing. The rate at which the whole grows can be found by  adding 
together the rates at which the parts grow. 

One can think of many illustrations. For example, if we use m for 
the total number of males in the world and f for the total number of 
females, we shall naturally use m‘ for the rate at which the male popula- 
tion is increasing, andf for the rate at which the female population is 
increasing. If w stands for the total population of the world, then 
w = m +f; and w is increasing at the rate w’ = m’ +f’. You can devise 
other examples for yourself. 

For purposes of future reference we will record this simple principle 
in the shape of a formula: 

For s = y +z, 
Formula (5)  

s‘ = y’ + 2’. 
But, for goodness’ sake, do not learn this formula by rote. Think 
through for yourself several times the way in which we arrived at this 
result. You should then remember it without any effort. 

We can apply our principle to make calculations. For example, if 
s = t2 + t3, what is s’? Here s is the sum of two parts, 12 and 13.  We 
found earlier the rates of growth of these two parts. We know that t* 
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grows at  the rate 21, and 23 grows at the rate 32. The rate of growth 
of the whole is found by adding these together. So we have: 

For s = 12 + t j ,  

s’ = 2t + 3 t 2 .  

EXAMPLES. Find s’ for the following cases. 
(2) s = 13 + 16, (1) s = f* + f4, (3) s = 12 + 15 + 17. 

(Thc last example here does not follow irnniediately from formula (S), but 
rcqiii:.es you to carry the same kind of thinking a stage further.) 

A very similar principle holds for expressions involving minus signs. 
Suppose a man has 37 dollars to his credit in the bank, but debts amount- 
ing to z dollars. His wealth is then represented by y - z dollars. If his 
bank credit is increasing at the rate of y’ dollars a day and his debts 
are increasing at z’ dollars a day, at what rate is his wealth increasing? 
Most people arrive, without difficulty, at the answer y’ - z’, and are 
prepared to admit the reasonableness of the formula below. 

Forrtiula (5a) 
For s = y  -2, 

s‘ = I>’ - z‘. 

By an extension of such ideas, we can deal with formulas containing 
several plus and minus signs. For example, we have: 

For s = t 2  - t 3  + 14 + 15 - 16, 

S’ = 2f - 3 t 2  + 413 + 514 - 615.  

We now know how to deal with 12 + t )  - 17, but we cannot yet 
find s’ for s = 512 or any similar expression. We need a further principle 
to deal with such cases. 

Imagine a plant growing, and a lamp so placed that the shadow of 
the plant falls on the wall. It is possible to arrange the lamp in such a 
way that the shadow of the plant is always five times as high as the 
plant itself (Fig. 18). If h is the height of the plant in  inches, the shadow 
will be 5/1 inches high. Thc plant is growing. h’ represents the rate 
at which It is growing. How fast is the shadow growing? The shadow 
is always 5 times as high as the plant. If the plant grows by one inch, 
tlie shadow must grow by 5 inches. It secms reasonable that the shadow 
must be growing just 5 times as fast as the plant. Its rate of growth 
must then be 5h’. So we arrive at the following conclusion: 
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Figure 18 

When h is growing at the rate h’, 
5h is growing at the rate 5h’. 

Now there is nothing special about the number 5. If the lamp had been 
so placed that the shadow was 3 times as high as the plant, we should 
have arrived at the conclusion 

3h grows at the rate 3h’, 

and by shifting the lamp’s position we could arrive at a whole series 
of statements such as 

2h grows at the rate 2h’, 
4h grows at the rate 4h‘, 
7h grows at the rate 7h’. 

Here we have a whole series of arithmetical statements, obviously 
crying out to be replaced by a single algebraic statement. If instead 
of choosing particular numbers 5 ,3 ,2 ,4 ,7 ,  . . . more or less at random, 
we use the single algebraic symbol c, we shall be able to write all the 
statements given above simultaneously in the form : 

h is growing at the rate h‘, 
c - h is growing at the rate c . h’. Formula (6) 

it is understood here that c stands for any fixed number you may like to 
choose, such as 5, 3 ,2,  4, 7 etc. 

We are now able to deal with the question, “What is s’ for s = 512?” 
For 512 is always just 5 times as big as t2. We know that t2 grows at 
the rate 2t;  so 512 grows at the rate 5 - 2 4  that is to say, at the rate lot. 
Hence, if s = 512, s’ = 101. 

Another example: what is s’ for s = 714? 14 grows at the rate 413. 
So 714 grows at the rate 7 - 413, that is, 2813. So, if s = 714, s’ = 2813. 

When 
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Exercises 

Find s‘ in the following cases. (1) s = 1012, (2) s = 2013, (3) s = 414, 
(4) s = 81100, (5 )  s = 213, (6)  s = 312. 

Finding s’ in examples such as those given above is a fairly simple 
mechanical process, which nearly all students learn quite easily. One 
does not need to use the formula (6).  I n  fact, there must be many 
students in colleges who could do the examples just given quite correctly, 
but who would not even recognize formula (6)  if ii were put before them. 

I could show you how to find s’ for s = 5t2 without ever mentioning 
formula (6). In fact, I have done so; if you will look at the paragraph 
beginning “We are now able to deal with the question: What is s’ for 
s = 512?” you will see that it makes no mention of the formula (6). Why 
then did I bother to mention formula (6) at all? Mainly for purposes 
of easy reference; if at any future time I shall say, “By formula (6),” 
I shall not mean that I want you to write down formula (6) and make 
some mechanical substitution into it. Rather this will be shorthand for 
a sentence like the following: “Do you remember the picture of the 
plant and its shadow, and how we used that picture to think out the 
rate of growth of 5t2? Well, think along those lines now.” In the same 
way, “By formulas (5) and (5a)” will be used to remind you of the 
way we thought about the metal bars joined end to end, and to  suggest 
that the same line of thought will enable you to understand whatever 
problem or process it is that I am discussing. Indeed throughout mathe- 
matics, this is what formulas should mean to you-not a recipe to be 
carried out blindly, but to remind you that here is another example of 
something that you have already studied and understood. 

In practice, the formulas (or ideas) (5) and (6) are usually combined. 
For example, we may want to find s’ for 

s = 512 i- 714. 

Here s breaks up into two parts, 512 and 714. Formula (6) tells us how 
quickly each of these parts grows; in fact we calculated these rates 
of growth on page 43. Formula (5) tells us that we can find the rate of 
growth of s by adding together the rates of growth of the two parts. 

The argument might be written out as follows- 

By (6), 5t2 grows at the rate lot. 

By (6), 7t4 grows at the rate 2823. 
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We can combine these results by using (5).  Therefore 512 + 7t4 grows 
at the rate 101 + 28t3. 

In practice, finding such rates of growth is a very simple mechanical 
process, and you never see the argument written out in full. 

Exercises 
Find s’ in the following cases: (1) s = 1012 + 2013, (2) s = 213 + 312, 

(3) s = 517 + 214, (4) s = 517 - 214, (5) s = 1012 + 2 0 ~  - 5t4. 

Rate of Growth of Any Polynomial 

An expression such as 1014 + 713 - 3t2 + 5t + 11 is called a 
polynoniial. All the expressions used in recent examples have been 
po1ynom;als. In fact, the information contained in formulas (4), (5). 
@a), (6) is sufficient to enable us to find the rate of growth of any 
polynomial. 

It is a curious fact that the simplest part of the work causes the 
largest number of errors. Most students can deal with the higher 
powers. They begin quite happily- 

lot4 grows at the rate 40t3, 
7t3 grows at the rate 2112, 
3t2 grows at the rate 6t. 

Then the troubles seem to begin. Many students are puzzled to know 
how fast 5t grows. And the constant term, 11, gives most trouble of all. 

If you will look back to Chapter 2 in the section “Finding velocity 
in simple cases,” you will find that we worked out the rate of growth 
of various simple expressions. Result A, for instance, shows that lot 
grows at the rate 10. On page 20 I hope you discovered for yourself that 
20t grows at the rate 20; that 30t grows at the rate 30, and so on. In 
Exercise 5 of page 20, I hope you managed to collect the results of 
earlier questions into tht  dgebraic generalizaticn that k: grows at the 
rate k. So, in our question, 5r grows at the rate 5. 

The constant term 11 is the simplest of all. 11 is a fixed number. It 
does not grow at all. If s = 11, s‘ = 0. If you look back again to pages 
19 through 21, you will see that the constant term contributed nothing 
at all to the final answer. Compare for example 

Result A :  when s = lot, s‘ = 10 

Result B:  when s = 10t + 3, s’ = 10. 
with 
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The +3 in s = 10t + 3 makes no difference at all in the answer for s’. 
If one car were moving according to the law s = 10t and another car 
were moving according to the law s = 10t + 3, the second car would 
always be exactly 3 feet ahead of the first car. The distance between 
them does not change. This means that they are both moving at the 
same speed. That is why, although the laws for s are different, the laws 
for s‘, in Results A and B, are the same. 

AccordingIy, the full argument for the problem, to find s’ for 
s = lot4 + 7t3 - 312 + 5t + 11, is the fo!!owing: 

lot4 grows s t  the rate 40t3, 
7t3 grows at the rate 21t2, 
3t2 grows at the rate 6t, 
5t grows at the rate 5, 
11 grows at the rate 0. 

These are the rates at which the various parts grow; combining these 
in accordance with the principles of formulas (5 )  and (5a), we find that 
lot4 + 7t3 - 312 + 5t + 11 grows at the rate 40t3 + 21r2 - 6t + 5 + 0. 

In practice, it is rather more convenient to write the rates of growth 
Thus S’ = 4013  + 21t2 - 6t + 5. 

of the various parts underneath the formula for s, like this: 

s = lot4 + 7t3 - 3t2 + 5t + 11 
4013 21t2 61 5 0. 

We can then form the expression for s‘ simply by copying down the 
plus and minus signs from the formula for s, thus 

= 10t4 + 7t3 - 3t2 + 5t + 11 
S’ = 4023 + 21t2 - 6t + 5 + 0. 

Of course, the final +O makes no difference to the answer. Beginners, 
however, would be wise to put it in, until they are expert at this type 
of operation. The commonest mistake that students make is simply 
to copy down the 11, so that they obtain the incorrect answer, 

S’ 40t3 + 21t2 - 6t + 5 + 1 1 .  
This is quite wrong. 11 does not grow at the rate 11.  The number 11 
stays the same always; it does not change; it does not grow; its rate 
of growth, therefore, is zero. 
You are less likely to make this mistake if you think what you are 
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doing. Underneath each term in the expression for s you are writing 
the rate at which that part grows; you are then combining these to find 
the rate at which the whole grows. A constant, such as the term 11 in 
our example, represents a part of fixed size, a part whose rate of growth 
is zero: 

Time, t 0 1 2 3 4 
Sizeofpart 11 11 11 11 11. 

On the other hand, the term 51 represents a part that is growing: 

Time, t 0 1 2 3 4 
Sizeof5t 0 5 10 15 20. 

The part represented by 51 is growing steadily at the rate 5. 
It is wise at first to work slowly. Do not be afraid to spend quite 

a lot of time thinking about the difference between a variable term like 
51 and a constant term like 11. Make tables like those above; or draw 
pictures showing a bar of fixed length, 11 inches, joined to an expanding 
bar, of length 52 inches. However slowly you go, make sure that you 
are talking sense. As you continue with the work, you will form correct 
habits and, without your noticing it, your speed of work will increase. 
There are plenty of students who can write down the iorong answer 
quickly! Their work has no value at all. 

Exercises 
1. I f  s = 12, what is s'? If s = 21, what is s'? If s = 21 + 12, what is s'? 
2. If s = 7, what is s'? If s = 13, what is s'? I f  s = 13 + 7, what is s'? 
3. If  s = 8, what is s'? If s = 3t, what is s'? If s = f2, what is s'? 

4. s = 512 + 41 + 3. 
5. s = 512 - 41 + 3. 
6. s = 213 - 312 - 10t + 100. 

I f  s = t2 + 3t + 8, what is s'? Find s' in the following cases: 

7. = 4120 + 2115 - 3110 + 51 + 17. 
8. s = 1016 + 1215 - 1514 + 2013 - 30r2 + 60r + 60. 

You may need to practice with further examples of this type, to 
acquire speed and accuracy of working. But so far as ideas are con- 
cerned, there is nothing more to say; if you understand how to do all 
the exercises above, you have mastered this particular topic. If you are 
given any polynomial for s, you can find its rate of growth s'. 
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An Application of s' 
On page 40 it was mentioned that, if a stone is thrown vertically 

upwards with a beginning speed of 40 feet a second, its height thereafter 
(so long as it remains in the air) is given by the law s = 40r - 1622. 
We know from experience that the stone would rise at first, after a cer- 
tain time would come to rest, and then would begin to fall. We might 
ask questions such as the following. (1) How long does the stone 
continue to rise? (2) At what time does it come to rest at the top of its 
path, just before it begins to fall? (3) What is its velocity when it has 
been in the air for 1 second? (4) What is its velocity when it has been 
in the air for 2 seconds? 

It would be possible to answer some of these questions in a primitive 
way without using calculus. By making a table and perhaps sketching 
a graph one could find-after a certain amount of guesswork-how long 
the stone continued to rise, and when it reached its highest point. For 
questions (3) and (4), which are concerned with velocity, we should 
have to go through the rather tedious arithmetical process that we 
used earlier for estimating velocities. 

All four questions have something to do with velocity, so calculus 
is the natural method to use.t The calculus approach is simple and 
uses very little in the way of calculation. 

First ofall, weobtain aformulaforthevelocitys'. Sinces = 40r - 1622, 
it follows that s' = 40 - 32r. We answer question (2) first; when does 
the stone come to rest before it starts on its downward path? When the 
stone is at rest, its velocity is zero; that is, s' = 0. When is s' zero? 
Since s' = 40 - 32r, we have to find when 40 - 32t equals zero. So 
we have the equation 40 - 321 = 0. This is easily solved and gives 
t = la. So the stone reaches its highest point after la seconds. 

Question (3); what is the velocity after 1 second? In algebraic terms, 
what is s' when t = 11 This is just a matter of substituting t = 1 in 
the equation s' = 40 - 321. We find that s' = 8 when t = 1. This 
t gives the velocity of the stone after 1 second, namely 8 feet a second. 

Question (4); what is the velocity after 2 seconds? We substitute 
r = 2 in s' = 40 - 32r and find s' = -24. There is a minus sign in 
this last answer; what does that mean? We discussed the interpretation 
of negative velocity on page 17. Positive velocity indicates that the 
stone is rising; negative velocity that it is falling. We have had one of 
each; for r = 1, we found s' = 8, indicating that the stone was rising 
at a speed of 8 feet a second; for t = 2, we found s' = -24, indicating 
that the stone is now falling at a speed of 24 feet a second. 

t Some students avoid calculus by quoting formulas from mechanics, but as 
calculus methods give the simplest way of proving these formulas in mechanics, this 
does not really make much difference. 
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These results are reasonable. If the stone reaches its highest point 
at t = la, we should expect it to be rising at all times before t = 14 
and falling at all times after t = I&. Because t = 1 comes before 
t = 14 and f = 2 comes after t = 14, all our results fit together to 
make a reasonable and consistent picture. 

In  discussing the other questions we have just about answered 
question (1). The stone rises between t = 0 and t = la. This checks 
with our algebraic information. The equation s' = 40 - 32t could be 
written as s' = 32. (14 - t). So long as t is less than la, the value of 
s' will be positive, and so the stone will be rising. 

Here we have used a simple formula to answer a simple question. 
In the application of calculus to mechanics and astronomy, much 
more complicated formulas and much harder problems arise. But this 
example may give a faint indication of the way in which calculus is 
used in scientific applications. 
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Calculus and Graphs 

Earlier in this book, we saw that there was a close connection be- 
tween movement and curves. A moving object could be made to leave 
an inked trail on the paper; this curve then gave us a record of how the 
object had moved. By passing the curve past a narrow slit, we could 
again see the movement of the point rising and falling. Alternatively, 
we could make a cam to the shape of the curve. (See pages 13 and 1%) 

The curve i s  a complete record of the motion. Anything that can 
be said about the motion can be deduced by examining the curve. 

Until now, we have spoken mainly in terms of motion. We have 
thought of s‘ as measuring the velocity of a moving object. But the 
velocity of the object at any moment must somehow or other be shown 
by the shape of the corresponding curve. So it ought to be possible to 
interpret s’ as describing some geometrical property of the curve. 

We have already touched on this question twice (pages 13 and 22). 
We came to the conclusion that the velocity of the object was related 
to the steepness of the curve. So s’ should measure the steepness of a 
curve. The general idea here is clear enough. If s’ is large, say s’ = 100, 
we should be dealing with a very steep curve; if s‘ is small, say s’ = 4, 
the curve should be not very steep. If s’ = 0, the curve should be flat. 
But “very steep” and “not very steep” are rather vague terms. On the 
other hand, the values of s’ are perfectly precise. There is no vagueness 
at all in  saying s’ = 100 or s‘ = ). Is there any way in which we can 
measure the steepness of a graph with the same perfect precision? To 
answer this question, we look through our earlier work and try at each 
step to interpret in  terms of graphs rather than in terms of moving 
objects. 

50 
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We began our investigation of velocity by thinking about constant 
velocity. When a body moves with constant velocity, the corresponding 
graph is a straight line. We now follow through the argument used to 
derive formula (l), on page 15. 

We began there with the little table 

The information contained in this table appears on the graph in Fig. 19. 

I 0 
a 
- 

Figure 19 

The line CD records the motion of the object. The point Con the graph 
has co-ordinates (a, p )  and shows that when t = a, s = p. In the same 
way, the fact that the graph passes through the point D shows that 
when t = b, s = q. In formula (1) we used v to measure the velocity. 
Since then, we have become used to the symbol s’ so we may rewrite 
formula (1) as 

This result was originally obtained by considering velocity as “distance 
divided by time”. Can we interpret the above equation geometrically? 
Can we find lines whose lengths are q - p and b - a and consider 
their ratio? 

This is not a difficult problem. Since OF = a and OC = b, evidently 
FG = b - a. As FGEC is a rectangle, the lengths CE and FG are equal. 
So, as a geometrical interpretation of the number b - a, we can use 
either the length FG or CE, whichever we find more convenient. Again, 
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the lines CF and EG are both of length p. As DG = q, we have 
q - p  = DG - EG = DE. Hence 

The ratio of DE to CE does in fact give us a way of measuring the 
steepness of the line CD. The larger this ratio is, the steeper the line 
will be. Accordingly, we will adopt this ratio as a measurement of 
steepness, and refer to it as the slope of the line. 

EXAMPLE. What is the slope of the line y = 2x + l?  The graph of 
y = 2r + 1 is shown in Fig. 20. Choose any two points on the line for C and D. 

Figure 20 

I have chosen (1, 3) and (2, 5). Then CE = 1 and DE = 2. Therefore 
DEICE = 211 = 2. Any other pair of points will lead to the same result. The 
slope of the line is 2. 

Exercises 
Find the slopes of the lines (1) y = x, (2) y = x + 1, (3) y = 2x, and 

(4 )y  = 3x. 

In all the examples given above, the slope turns out to be a positive 
number. But of course the graph may be like Fig. 21. In this case, 
a = 3, b = 5, p = 4, q = 2, and 

2 - 4  -2 4--p,---= - 1. b - a  5 - 3 -  2 
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So this line has slope - 1. We shall say that the line CD in Fig. 19 goes 
“uphill,” the line CD in Fig. 21 goes “downhill.” Whenever you have 
a line going downhill, you must expect a negative value for the slope, 
just as we got a negative value for the velocity of a falling object. 

Exercises 

Find the slopes of the following lines: (5 )  y = 5 - x, (6) y = 10 - 2x. 

Slopes of Curves 

When we were studying velocity, we began with the simple procedure 
that is used in arithmetic lessons; see how many miles the object has 
traveled; see how many hours it has taken to do this; divide the first 
number by the second. This procedure is briefly indicated by saying 
“velocity is distance divided by time.” It leads to formula (l), 

We then saw that this formula was not helpful for an object that 
moved in an irregular way, now stopping, now starting, now moving 
fast, now moving slow. For such an object, the total number of miles 
gone, divided by the total number of hours taken, gave us only the 
average velocity, which might be very different from the actual velocity 
at any instant of the journey. We got round this difficulty by considering 
average velocity over shorter and shorter intervals. If, as the interval 
became shorter and shorter, the average velocity approached some 
fixed value, we called that value the true velocity at an instant. 

We can follow the same procedure when we try to find the slope at 
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a point of a curve. It will now be natural to use the letters x, y rather 
than s, r, since x and y are commonly used for drawing graphs. We 
suppose we have a curve joining the point x = a, y = p to the point 
x = b, y = q (Fig. 22). The expression (q - p)l(b - a) measures the 

Figure 22 

slope of the line CD. We can put this expression into words. Since D 
is at height q while C is at height p, the quantity q - p measures the 
height risen in going from C to D. The quantity b - a measures the 
length CE. If we move from C to D, the length CE tells us how far we 
have moved across the paper. If C and D were two actual places, b - a 
would be the distance between them as shown on a map, because a 
map is made as if someone were looking down on a country from 
above. The height of a place does not affect where it appears on a map. 
Thus we could say that (q - p)l(b - a) represents “height risen 
divided by map distance”. For instance, if a person traveled 2000 miles 
East and rose through a height of 3 miles, the fraction (q - p)/(b - a) 
would be 3/2000. This fraction involves the total height risen and the 
total distance traveled; it would not tell us anything about how steeply 
the traveler’s plane was climbing at any moment. In the same way, in 
Fig. 22, the fraction (q - p)l(b - a) gives the slope of the line CD; 
this does not coincide with the steepness of the curve either at C or at D. 

However, for the curve shown in Fig. 22, it appears reasonable that 
if D were to approach closer and closer to C, then the slope of the line 

DIRECTION OF 
CURVE AT C 

” 
Figure 23 
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CD might approach closer and closer to the slope of the curve at C 
(see Fig. 23). D1 is the first position we try for D ;  D2 is the second 
position and D j  is the third. The picture suggests that, the closer we 
take D to C, the closer will the line CD come to the true direction of 
the curve at C. But in this picture it is not possible to choose D so that 
the line CD actually coincides with the dotted line. We can get as near 
as we like, but we never actually arrive. 

For example, suppose we want to find the slope of the parabola 
y = x2 at the point where x = 3, as shown in Fig. 24. C is the point 

1 

C 

-3 

i 9 

I F 

3 + hI2 

;_. 
+3+h+ 

Figure 24 

(3, 9), so OF = 3 and FC = 9. D is to be chosen somewhere neai C. 
So we take x = 3 + h for D .  For the moment, we shall leave it undecided 
what h is going to be. We shall certainly choose fairly small values for 
h, because we want D to be close to C. So OG = 3 + h. Now what 
about GD? How do we graph the curve y = x2? We choose any value 
for x ;  we square it; that gives us the value of y, which we measure 
vertically upwards. We have already followed this procedure for C. We 
measure the distance FC equal to 9, because OF equals 3, and 9 is the 
square of 3. In the same way OG equals 3 + h, so the vertical distance 
GD must be made equal to the square of 3 + h. Thus C D  = (3 + h)2. 

Finding DEICE is now straightforward. 

C E =  FG = OG- OF= (3 + h )  - 3 = h, 
DE = GD - GE = GD - FC = (3  + h)2- 9 = 6h + h2. 



56 

Hence 

W H A T  IS C A L C U L U S  A B O U T ?  

- 6 f h. DE 611 +- h2 
CE- h 

So the slope of the line CD is 6 + h. I can make this as near to 6 as I 
like by choosing h small enough. For example, if I want the slope to 
be 6.001, I can choose Iz = 0.001. The smaller h is, the closer will the 
slope of CD come to 6. So the number 6 comes quite clearly out of 
our work; it is indicated as being the slope of the dotted line. But we 
can never make CD actually coincide with the dotted line. For to make 
the slope of CD equal to 6, we should have to choose h = 0. Then 
6 + h would be 6 .  But h = 0 means that D coincides with C, and there 
is no longer any sense in talking about the line CD; the line joining C 
to itself is meaningless. 

You will probably have noticed that the algebra just done in finding 
the slope of y = x2 at x = 3 is identical with the algebra used on page 
29 to find the velocity for s = t 2  at t = 3. This helps to emphasize that 
the motion of an object and the shape of a curve are two different ways 
of illustrating the same mathematical idea. When you are thinking 
about a calculus problem, you can use whichever illustration you find 
more convenient. 

Needless to say, all the formulas we have found for movement, in 
terms of s and t, apply equally well to graphs i n  terms of x and y. Thus 
our basic result, formula (4), 

If s = tn, then s’ = nf)l-’, 

could equally well be written as 

If y = x”, then y’ = nx”-’. 

All the examples we have done to calculate s‘ immediately give us 
corresponding results about y’. 

The Extra Information Given by Calculus 

If we plot the graph y = x* by the usual, elementary method, we 
just find points that the graph goes through. Putting x = 3 gives y = 9, 
so the graph goes through the point (3,9). But nothing is known about 
the direction in which it passes through this point; you just have to 
guess that by looking at the other points and seeing how the curve 
seems to run. 
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Calculus provides us with information about direction. If y = 9, 
we know that y' = 2x. For x = 3, y = 9 and y' = 6.  So the curve 
passes through the point (3,9) with slope 6. 

A line of slope 6 is one that rises six units for every unit across. It 
appears as in Fig. 25. For our purpose we shall not need such a long 

Figure 25 Figure 26 

piece of line; a small sample of i, will be quite sufficient to show the 
direction. Then instead of simp:y plotting the point (3,9) on the graph 
paper, we shall be able to plot a point and a small arrow, as shown in 
Fig. 26. The curve goes through the point (3, 9) in the direction indi- 
cated by the arrow. 

-SLOPE 0 

SLOPE 4 

SLOPE 2 SLOPE-2 BSLopE-. 
SLOPE rn 

Figure 21 

m SLOPE - f 

For drawing graphs we shall need arrows representing other slopes. 
A selection of these is shown in Fig. 27. 
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Now suppose we wish to plot the graph y = x2 from x = -2  to 
x = +2. We first calculate the tables below: 

y = x2 yf = 2x 
x -2  - 1  0 1 2 x - 2 - 1 0 1 2  
y +4 + 1  0 1 4 yf -4  -2  0 2 4 

We then plot the points of the graph, by using the table for y, and 
through each point we put an arrow, by using the table for y’. We 
arrive at the diagram of Fig. 28. 

Figure 28 

We then join the points by a curve; the direction of this curve, as it 
passes through each point, should agree with the direction of the arrow. 

If, in any exercise of this kind, you obtain points that seem to lie on 
a curve, but the arrows run across that curve as in Fig. 29, the chances 

Figure 29 

are that you have made some kind of mistake. You should check your 
arithmetic and the way you have plotted the points and the way you 
have drawn the arrows. In simple problems about graphs, you would 
expect to get the points and arrows fitting snugly to a smooth curve. 

It is boring to plot a large number of curves. One of the beauties of 
calculus is that it tells us the general appearance of a curve without 
our having to go through all the arithmetic of plotting points. However, 
it is good to plot just one or two curves by the method just described, 
in order to make yourself thoroughly familiar with the meaning of yf 
as a slope measurer. 
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Exercises 

1. If y = lox - x2, then y’ = 10 - 2x. Plot the graph of y = lox - x2 
from x = 0 to x = 10 by the primitive method, that is, using the values 
of x and y only. Then use the values ofy‘ to insert the arrows. Check that 
these arrows do touch the curve. 

2. In the graph of y = x2, prepared as in Fig. 28, insert the points and arrows 
corresponding to x = - 1/2 and x = + 1/2. Check that these fit the curve. 

3. Sketch the graph y = 4x - x2 from x = 0 through x = 4 by the method 
described in the text; that is to say, by drawing the points and arrows first, 
and then drawing a smooth curve through them. 

A possible misunderstanding should be guarded against here. Some- 
times students set out to graph y = x2 by this method. They find 
y‘ = 2x. Then they see this last expression, 2x;and they think, “The 
graph of 2x is a straight line.” So they draw a straight line, and regard 
this as the answer to the problem. 

So it should be emphasized that all the work we did under the head- 
ing “The extra information given by calculus” was aimed at plotting 
the graph of y = x2. You know that the graph of y = x2 is a parabola. 
So what we get at the end of our work must be this same parabola. The 
graph of y = x2 is something fixed; it does not depend on which 
student is drawing it, or what that student knows. And yet some 
students seem prepared to believe that when you draw this graph in 
an algebra class the correct answer is a parabola, and when you draw 
it in a calculus class the correct answer is a line. Perhaps students 
simply feel that one teacher is pleased when you draw a parabola and 
another teacher is pleased when you draw a straight line, so the students 
try to please everybody. But the aim of mathematics is not to please 
people. The aim of mathematics is to find out the truth for yourself and 
to know the truth as it really is. If you have once become convinced that 
the graph of y = x2 is a curve, then in no circunlstances should you 
be willing to draw it as a straight line. 

The equation y’ = 2x does precisely what the heading of the section 
promises; it gives some extra information about the parabola y = x2. 
The equation y’ = 2x does not in any way contradict the equation 
y = x2. The equation y = x2, taken by itself, allows you to plot points. 
The equation y’ = 2x then allows you to put little arrows through these 
points, showing the direction in which the parabola passes through 
these points. The two equations give different kinds of information. 
The quantity y tells you how high a point is above the axis OX; the 
quantity y‘ tells you the direction of the curve. 

The same distinction can be made in terms of moving objects. We 



60 W H A T  IS C A L C U L U S  A B O U T ?  

have the two equations s = t2 and s’ = 2t. The quantity s tells you 
where the object is; the quantity s’ tells you how fast it is moving. 

The confusion seems to arise in students’ minds because they use 
sentences beginning with “it”. They will ask, “How can it be t2 when 
It is 2t?” By using the word “it” they manage to mix up two quite 
Wercnt thing. The distance gone is given by t2; the speed is given 
by 2t. Later on we shall meet yet a third quantity, the acceleratkm, so 
that there will be three possible meanings for “it.” It will then be even 
more important to say what you are talking about, and to avoid the 
vague use of “it.” 

Really I suppose the students who draw straight-line graphs arc 
answering a different question. If I ask you to draw the graph of s = t2, 
I am really asking you to draw a graph from which the position of the 
object at any time can be read off. This graph is a parabola. But I 
could instead have asked the questicn : draw a graph from which I can 
read off the speed at any time. This is quite a different question. The 
velocity is given by 2t, and the graph of vehcity against time is a 
straight line. So a straight-line graph is the correct answer to this 
second question, but it is the wrong answer to the first question. 

Both inside mathematics and outside of it, people seem to make 
mistakes because their minds flit from one question to another; they 
start to answer question A, and part way through their thinking they 
begin answering question B. The answer, needless to say, is nonsense. 
We all do this to some extent. An important part of mental training 
is to learn to avoid this. Most people rush to answer a question or 
solve a problem. But really it pays, before even attempting an answer, 
to tix firmly in your mind what the question is; jot down a sentence or 
two, giving the essence of the question; or make a little sketch, showing 
what the question means; if you can see in part what the answer is 
going to be, make a note of that too. That will save you many errors. 
For instance, the present section began by discussing how calculus 
helps us to plot the graph of y = x2; you know something about the 
graph of y = x2 already; you know that it is a parabola, or at the very 
least you know it is not a straight line, but something shaped rather 
like the letter U. Very well then; the final answer must be something 
like the letter U, and if the linear expression 2x turns up part way 
through the work, and it should occur to you that the graph of 2x is a 
straight line, you will not be misled. You know you are looking for 
somethhg U-shaped, not for something straight. ”his general feeling 
of what you are looking for is of great importance in mathematics; we 
all make errors of calculation and of thought, and it is only because 
we have this shadowy idea of what to expect that we are able to detect 
these errors. At a certain stage after an error, the results are usually 
so ridiculous that we know we must have made a slip somewhere. 
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Graphs Without Plotting 

The plotting of points is a tedious business, and even the method of 
plotting points with arrows is not much better, once the first novelty has 
worn off. As was mentioned earlier, calculus enables us to get a general 
idea of the graph of an equation without plotting any points at all, and 
without using squared paper. 

The method depends on the remark made earlier, that the slope y' 
is positive when a curve is rising, zero when the curve is flat for a 
moment, and negative when the curve is falling (Fig. 30). 

Figure. 30 

This can be illustrated from the graph of y = x2 as shown in Fig. 
28. y' = Sx, so y' is negative when x is negative; zero when x = 0; 
positive when x is positive. This agrees with the shape of the curve, 
which is falling so long as x is negative; is flat for a moment when 
x = 0;  and rises when x is positive. Simply by examining the equation 
y' = 2x it would have been possible to describe the general appearance 
of the graph. We would study the sign of y'. When is y' positive? Only 
when x is positive. So the slope is uphill only when x'is positive. When 
is y' negative? Only when x is negative. So the slope is downhill only 
for negative x. When is y' zero? Only for x = 0. So the curve is flat 
only at x = 0. 

This method is really more powerful than plotting points. We 
plotted the graph between x = -2 and x = +2. For all we know, all 
kir,ds of things may happen outside that interval. Between x = 100 
and x = 200 the curve might twist and turn in a most complicated 
manner; plotting the values between -2 and +2 tells us nothing about 
what happens for large values of x. But the calculus method gives us 
this information. y' = 2x; and 2x is positive for every positive value of 
x. So we can be sure that the curve continues to climb however far we 
may go to the right. It always goes uphill, because y' is positive 
throughout this region. In the same way, we can be sure that the curve 
is downhill at all points to the left of the origin, because y' = 2x, and 
2x is negative for all negative values of x. 
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We have used a certain convention in speaking of “uphill” and 
“downhill.” We always think of ourselves as moving in the direction 
of increasing x, that is to say, from left to right. In our earlier diagram 
showing moving bodies this convention was used throughout. The 
earlier times were shown on the left, the later times were shown on the 
right. Thus a graph such as that of Fig. 31 represented a point moving 
up the page. 

Figure 3 1 

Suppose now we want to get an idea of the graph y = l00x - x2. 
If we used the primitive method, and simply plotted the curve from 
x = -2 to x = $2, we should arrive at the table: 

x - 2  - 1 0 1  2 
-V -204 -101 0 99 196 

The numbers for y are steadily rising and if we plotted the curve simply 
on the basis of this evidence we might guess that the curve always went 
uphill. But in fact the significant things happen a long way from the 
interval studied above. Calculus tells us where things happen and what 
happens there. From y = l00x - x* we find y’ = 100 - 2x. We may 
ask first, “Is the curve flat anywhere?” The curve is flat when y‘ is zero. 
So this leads us to examine whether we can choose x to make y’ zero. 
We certainly can. x = 50 does the trick. That suggests that we examine 
what happens on either side of the flat position. If x is bigger than 50, 
2x will be bigger than 100 and 100 - 2x will be negative. So the curve 
goes steadily downhill to the right of x = 50. In the same way, we can 
see that y’ is positive whenever x is less than 50. So the curve is steadily 
uphill until x = 50 is reached. So we have an outline of the behavior 
of the curve, as shown in the following table: 

Value of x Less than 50 Equal to 50 More than 50 
Value of y’ Positive Zero Negative 
Meaning Curve rising Curve flat Curve falling 

This suggests that the curve may look something like that in Fig. 32. 
This shows the general shape of the curve. But the curve is still very 

much up in the air. We have not shown the axes OX and OY at all. If  
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I s 
I 

x . 5 0  

Figure 32 

we want to show how the curve lies in relation to the axes, we have to 
return, but only briefly, to the more primitive method. That is, we look 
at the original equation for y, not at the calculus result for y'. We plot 
one or two key points to tie the curve down. A certain judgment is 
called for, to decide which points will give useful information about the 
position of the curve, without involving too much arithmetic. Since 
the original equation y = l00x - x2 may also be written in the factored 
form y = x (100 - x), it is natural to consider the two values of x that 
make y zero, namely x = 0 and x = 100. It is also natural to consider 
x = 50, the value corresponding to the top of the hill. Taking the three 
values 0, 50, and 100 for x,  we get the little table: 

x 0 50 100 
y 0 2500 0 . 

This gives us three useful points on the curve, and in Fig. 33 we make 
a rough sketch of the graph with the help of this extra information. 

I 

X 

Figure 33 
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There is perhaps a slight element of guesswork in our drawing of the 
curve. All the evidence we have collected is consistent with the shape 
of the curve shown in Fig. 34. This curve also rises when x is less than 
50, is flat for x = 50, and falls for x larger than 50. Also it goes through 
the three points. So, for all we have yet proved, the graph might be 

Figure 34 

Fig. 34 and not Fig. 33. Later, we shall discuss a method that helps to 
exclude the possibility of Fig. 34 being the graph. Without waiting for 
this method, you may be able to convince yourself that the graph we 
want is much more like Fig. 33 than Fig. 34. The wobbles in Fig. 34 
mean that the steepness of the graph is perpetually wavering, increasing 
and decreasing by turns. But we found earlier the formula for the 
slope of the graph, y' = 100 - 2x. This formula contains nothing to 
suggest a wavering of the steepness. As x grows, 2x grows steadily and 
in consequence 100 - 2x decreases steadily. Between x = 0 and 
x = 50, the value of y' decreases steadily from 100 to 0. y' measures 
the steepness of the curve, so, in this part of the curve the steepness 
gets steadily less. Be careful to avoid the confusion between y and y' 
mentioned earlier. Between x = 0 and x = 50, y is increasing, y' is 
decreasing. If this graph represented a mountain, a person going from 
the point (0, 0) to the point (50, 2500) would be rising all the time. 
This corresponds to the fact that y is increasing. But the climbing 
would become steadily easier. At first the mountain is almost vertical, 
the slope y' is 100. But the top of the mountain is flat, the slope y' is 
zero. The fact that the slope becomes gentler as you proceed corre- 
sponds to the fact that y' is decreasing. In Fig. 34, as you go from 
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x = 0 to x = 50, you meet in turn easy and difficult pieces of climbing. 
In Fig. 34, the slope does not become steadily gentler in this section 
of the curve. So this graph does not correspond to the equation 
y = l00x - x2. In the same way, if you investigate how the downhill 
steepness varies between x = 50 and x = 100, you will find that Fig. 33 
gives a better picture of the situation than Fig. 34. The same type of 
argument, of course, could be used for the rest of the graph, which we 
have not shown in Fig. 33, that is, for negative values of x to the left 
and for values of x greater than 100 to the right. 

As a rule, in sketching simple graphs, the best procedure is first to 
calculate y‘ and to see for what values of x the quantity y’ becomes 
zero. One can then study what happens in between these values of x. 

For example, we might wish to sketch y = x3 - 12x. Here 
y’ = 3x2 - 12. When is y‘ zero? We form the equation 3x2 - 12 = 0 
and solve it. We find the values x = -2 and x = 2. So we have the 
information: 

x ........ -2 .......... 2 .......... 
y’ ....... 0 .......... 0 .......... 

We now have three intervals to cogsider. What is y‘ like when x is less 
than -21 What is y’ like when x is between -2 and 2? What is y‘ like 
when x is larger than 21 

It is natural to consider these intervals, because if y’ is changing from 
positive to negative, you would expect it to pass through the value zero. 
This does not always happen; if you plot the graph of y = 1/x2, you 
will find that the curve goes uphill (y’ positive) for negative x and down- 
hill (y’ negative) for positive x (Fig. 35). So as x passes through the 
value zero, y‘ changes from positive to negative. But y’ never takes the 

Figure 35. The graph of y = l/x2. 
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value zero; the curve is never flat. As we pass through x = 0, the curve 
jumps suddenly from being very steep uphill to being very steep 
downhill. 

Such jumps then can occur with even such a simple expression as 
l/xX y = $2 is another expression whose graph changes suddenly 
from steep downhill to steep uphill without having any flat part be- 

Figure 36. The graph of y = = 
tween (Fig. 36). But the very simplest algebraic expressions, such as 
y = x2 or y = x3 - 12x, do not behave in this way. They do not jump, 
but creep from one situation to another. So, if y' is given by a simple 
formula of this kind (in technical language, if we are dealing with 
polynomials), the changes of value are gradual. If y' is going from 
positive to negative it must pass through the value zero; the same 
holds if it is changing from negative to positive. 

Our question, with y' = 3x2 - 12, illustrates this kind of behavior. 
We may write y' = 3 (x2 - 4). If x is to the right of 2, or to the left of 
-2, x2 will be bigger than 4, and y' will be positive. So y' is positive 
at the beginning and the end. But between x = -2 and x = 2, the 
square of x is less than 4. (Satisfy yourself that this is so.) So, in this 
middle section, y' is negative. We can thus complete our table as 
follows: 

X ..... -2 .... 2 ..... 
Y' positive 0 negative 0 positive 

curve curve curve curve curve 
rising I flat I falling 1 flat I rising meaning 

This gives us quite a good idea of the general shape of the curve. As 
with our earlier example, we still have no idea how the curve lies in 
relation to the axes. In order to tie it down, we again calculate and plot 
some of the key points. It will certainly be most helpful to know the 
places where the curve is flat-the hilltops and valley bottoms of this 
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curve. So we calculate the value of y for x = -2 and for x = 2. It is 
easily seen from the equation y = x3 - 12x that the graph goes 
through the origin, for x = 0 gives y = 0. Are there any other points 
with y = O? What are thq?  

EXAMPLE. Complete the investigation started above, and draw a sketch 
showing the curve y = x3 - 12x. 

In any such work, if you find yourself getting contradictory informa- 
tion, if the points and directions can only be fitted together by drawing 
an extremely complicated curve, it is wise to check and see if your work 
contains any errors. All the information from the various sources should 
fit neatly together to give a simple curve. 

It may sometimes happen that, when we seek for places where 
y' = 0, we do not find any. Consider, for example, the graph of 
y = x3 + x. Here y' = 3x2 + 1. If we seek for places where y' is zero, 
by trying to solve the equation 3x2 + 1 = 0, we do not find any solu- 
tions.? Students are sometimes at a loss how to proceed. But the mean- 
ing is quite simple. There are no flat places on this curve; y' is never 
zero and never changes sign. Whatever value you care to choose for x, 
you get a positive value for y'. This means that the curve is always rising 
and in fact looks like the curve shown in Fig. 37. There is nothing 

y' POSITIVE 
THROUGHOUT 7 F  

Figure 37 

mysterious in the fact that we cannot find any solutic of th equation 
y' = 0. In fact, when you consider what the graph looks like, it would 
be very astonishing if we could find values of x to satisfy this equation. 
For such values would correspond to flat places on the curve, and there 
are none. 

In all the examples considered so far, flat places, places where 
y' = 0, have occurred only at the tops of hills and at the bottoms of 
valleys. There is however another possibility. In the graph of Fig. 38, 

t For readers acquainted with complex numbers, this means only that there is no 
real solution. On graph paper we cannot show points with imaginary co-ordinates, 
so, for graphical purposes, only real numbers can be considered as solutions of an 
equation. 
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Figure 38 

the curve rises at first, hesitates, and then rises again. Thus y’ is positive 
a t  first, then just for a moment it is zero, then again it becomes positive. 
In terms of motion, such a curve might represent a person or a car 
moving forward, meeting some obstacle and being brought t o  rest, and 
then struggling forward again. 

Exercises 

1. Show that the graph of y = x3 gives a curve resembling Fig. 38. 
2. Sketch the graph of y = 6x - x2. 
3. Sketch the graph of y = x2 - 6x. 
4. Sketch the graph of y = x2 - 2x - 8. 
5. Sketch the graph of y = x3 - 6x2. 
6. Are there any (real) numbers that satisfy the equation 3x2 - 6x + 9 = O? 

Can you find any value of x for which 3x2 - 6x + 9 is negative? Find y’ 
corresponding to y = x3 - 3x2 + 9x. Are there any places on the curve 
where y’ is zero? Are there any places where y’ is negative? The graph of 
y = x3 - 3x2 + 9x resembles, in its main features, one of the curves shown 
in Figs. 30, 37, 38. Which of the three do you think it is? To check your 
conclusion, make a table of values of y for x from - 3  through +3 and 
plot the graph by the methods you used before you met calculus. 

7. Show that the curve y = x4 - 2x2 + 1 has a hilltop at the point (0, I )  
and valley bottoms at the points ( - I ,  0) and ( I ,  0). Sketch the curve. 

8. A paradox-it can be shown that y = l / x  has y’ = - l/x2. x* is positive 
whether x is positive or negative. Soy‘ is always negative. That is to say, 
this curve always falls, never rises. The curve y = I / x  passes through the 
points (- 1, - 1) and (2,4) as you can easily check. If  you plot these points 
on graph paper, you will see the second is further to the right and is higher 
than the first. But, if the curve is continually falling, as we move to the 
right we should find that we get continually lower. HQW, by falling steadily, 
have we managed to end up higher than we started? If you plot the curve 
carefully between x = - 1 and x = +2, you should see how this strange 
result is to be explained. 
(The result for y‘ above is found by writing y = I/x as y = x-1 and 
using formula (4). Compare page 36, where we discussed s‘ for s = lh.) 
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The Best Way of Doing Things 
Nearly every text on elementary calculus contains some examples of 

the following kind. “A farmer has 100 yards of fencing material. A 
river runs through his property. He wishes to enclose as large an area 
as possible, with the river as one boundary, and without buying any 
more material. How should he arrange his fence? The river is straight, 
and the area enclosed must form a rectangle.” (See Fig. 39.) 

KIVER w Figure 39 

Whether farmers ever bother about such a problem I do not know, 
but problems of this type do occur in industrial design. We want the 
most efficient way of doing something. The actual problems may be 
rather complicated and may call for technical and scientific knowledge. 
The problem of the farmer’s fence can be understood by anybody, and 
it should be regarded as a particularly simple example of a wide and 
important class of problems. It illustrates the kind of thing that can 
be done with calculus. 

Really, the farmer has only one thing to decide-how long A B  is to 
be. If, for instance, he decides to have AB 10 yards long, then CD also 
must be 10 yards long, and there will be 80 yards left for BC. The fence 
will then enclose 800 square yards. 

There are two extreme cases of what the farmer might do. He might 
choose AB of zero length. Then C D  would also be zero and the whole 
100 yards would be available for the side BC. This would give the 
greatest river frontage, but the area enclosed would be zero. If he went 
to the other extreme, and made A D  and BC both 50 yards long, he 
would have nothing for BC. Once again, the area enclosed would be 
zero. Clearly, to get the best results, he should go somewhere in between, 
neither try to make the enclosure as long as possible, nor as deep as 
possible, but somehow to balance the claims of length and breadth. 

It would be quite possible to solve this problem without calculus, 
by drawing a graph or even simply by making a table. We would choose 
different values for AB, see what area each gave, and thus, by trial and 
error, see which was the best arrangement. If we drew a graph, we could 
see where the highest point of the graph came; this would represent the 
maximum area obtainable. 

But calculus, as we have seen, gives a quick way of sketching graphs, 
without the trouble of making a table. So calculus gives a very neat 
way of solving the problem. 
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As we have seen, the farmer has only to choose the length of AB. 
Suppose then that AB is x yards long. CD also is x yards long. These 
two sides use up 2x yards and thus leave 100 - 2x yards for BC. The 
enclosure then is of length 100 - 2x yards and breadth x yards. Its 
area is accordingly x(100 - 2x) square yards, or, multiplied out, 
lOOx - 2x2 square yards. If we call the area y square yards, we have 

y = loox - 2x2. 

We want to make y as large as possible. That is, we want to choose the 
hilltop of this graph. By the methods used earlier we see that 

y’ = 100 - 4x. 
So y’ is zero for x = 25. y’ is positive so long as x is less than 25, but 
negative when x exceeds 25 (Fig. 40). 

vr 
I250 - 

Figure 40 

Thus the graph goes uphill until x reaches 25; it is flat for x = 25; 
and it falls once this point is passed. Clearly we have a hilltop, a 
maximum, where x = 25. Then AB and CD are each 25 yards long. 
CD is 50 yards and the area enclosed is 1250 square yards. This is the 
best that can be done. 

As was mentioned earlier, many problems of this kind exist. Most 
texts on beginning calculus state and solve the well-known problem of 
designing a can that will hold, say, a pint of canned soup, and use as 
little metal as possible. Soup cans hardly ever are made in the most 
efficient shape; even in wartime, when it was extremely urgent not to 
waste metal, the less efficient shapes were still used. Some people say 
that it would be harder to pack and transport the cans if the design 
were simply based on the consideration of saving metal. Whether this 
is really so, or whether the soupcan manufacturers do not take 
calculus seriously, I have never been able to discover. 
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Acceleration and Curvature 

If we have any expression such as 4x3 + 5x2, we know how to 
calculate its rate of growth. We find the rate of growth is 12x2 + lox. 
This new expression belongs to the same general type as the one 
we started with; someone might ask us, “At what rate does 12x2 + lox 
grow?” We should have no difficulty in answering 24x + 10. The 
calculation is quite easy to carry out. But what is the significance of 
this calculation? What does the answer tell us? 

We can discuss this question in terms of movement or of shapes. 
We will consider some examples of movement first. We begin with 
the law we studied in great detail earlier, s = t2 .  For this law s‘ = 2 4  
where s’, the rate at which s grows, is the same thing as the velocity 
v of the object. It does not matter whether we write s‘ = 21 or v = 2r. 
Now, we ask, “How fast is 21 growing?’ This could equally well be 
phrased, “How fast is v growing?’ The natural symbol for the answer 
is accordingly v’, the rate at which v grows. As 2t grows at the rate 2, 
we have v‘ = 2. Putting all this together, we have 

s = t2, 
v = s’ = 2r, 
v’ = 2. 

This last equation, v‘ = 2, tells us how fast the velocity is increasing. 
The rate of increase of velocity is usually called the acceleration. 
Acceleration is usually denoted by the symbol a ;  some books usef. We 
shall use a. 

71 
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Now we have three things to bear in mind, distance, velocity, and 
acceleration; in any statement we read, we must be careful to see 
whether it is a statement about s, v or Q. 

In a car, where would you look if you wanted to know the value 
of s? You would look at the mileage recorder, or at the milestones by 
the side of the road. s tells you how far you have come. How would 
you tell the value of v? The simplest way would be to look at the 
speedometer. If that was out of action, you might look at the mileage 
recorder and see how fast the numbers were clicking over, or you might 
look out of the window and see how quickly the milestones were 
whizzing past. The speedometer gives you directly the value of v (unless 
it is out of order); the other methods depend on your estimating s’, the 
rare at which your distance from home is increasing. Now, what about 
the acceleration a? Wherc would you look for that? So far as 1 know, 
no car has a dial to tell the driver the value of Q. But as a = v’, the 
rate of growth of velocity, we can estimate a by looking at the speed- 
ometer needle and seeing how fast it is moving. We do not find a simply 
by reading the speedometer. A car traveling at a steady 100 mph is 
going quite fast; nevertheless, its acceleration is zero. The needle is at 
rest at the mark 100 mph. On the other hand, a car can be moving 
quite slowly and yet have a large acceleration a. If your car is starting 
from rest, at first the speedometer needle points to 0 mph; soon after 
it points to 5 mph, then to 10 mph, and so on. The velocity is small but 
it is growing. If you are one of those people who accelerate fiercely 
from rest, the car’s velocity might climb from 5 mph to 10 mph in a 
very short time; in that case the acceleration a might be quite large 
although the velocity is still quite small. 

There is another way of estimating acceleration. When a car acceler- 
ates hard, the passengers tend to be thrown back in their seats. In the 
same way, if the driver suddenly jams on the brakes the passengers 
tend to fly through the windshield. Braking is negative acceleration. 
So acceleration is something you can feel. When a car accelerates 
positively, you can feel your seat pressing you forward. If it accelerates 
negatively, you may feel the windshield pushing your head back. 
Acceleration is what hurts. It does not hurt you to travel at 200 mph. 
Plenty of people have done that in an airplane. It is quite all right so 
long as you know that you have plenty of room to keep moving. What 
hurts is if you hit a wall when you are traveling at 200 mph. Then you 
are suddenly brought to rest; you have a large negative acceleration. 
It is just as bad for someone sitting on the wall when you hit him. He 
is at rest and suddenly you try to make him travel at 200 mph like 
yourself. He experiences a sharp positive acceleration. This is just as 
painful for him. It is the same if I suddenly give you a vicious kick. 
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You, or the part of you that gets kicked, suddenly experiences a large 
acceleration; it may hurt my foot too, because my foot is suddenly 
brought to rest. Large accelerations mean large forces. It is not surpris- 
ing that in mechanics the force acting on a body is not measured by 
the position s of the body, nor by its velocity v, but by its acceleration 
a. The Earth rushes along its orbit round the Sun at about lo00 miles 
a minute, but we do not feel this at all. We should feel it indeed, if we 
banged into some object that was at rest relative to the Sun and we 
were suddenly brought down from loo0 miles a minute to a much 
smaller speed. 

It is good to think of all kinds of situations, and see how they would 
be described in terms of s, v, and a. For example: 

1. A breakdown. The car is parked at the side of the road. The mileage 
recorded does not change. That is, s is constant. The velocity is zero. 
So is the acceleration. In equations, 

s = c, a constant, 
v = 0, 
a = 0. 

2. Touring at a steady speed. The car is traveling at 60 mph on a 
straight, deserted parkway. The law could be s = 60t. (It could also 
be other things, for example, 60t + 100 or 60t - 30, depending on 
what instant we measure our time from.) The velocity is 60. Since the 
velocity is steady, there is no acceleration. 

s = 60t, 
v = 60, 
a = 0. 

Note that each expression gives the rate of growth of the one above it, 
and we are reminded again that the rate of growth of a constant is zero. 

3. Accelerated motion. A car is moving forward with increasing 
speed. I do not want to go into questions of engine performance, so I 
shall just use our stock example for an object gathering speed, s = t2. 
Then we have 

s = t2, 
v = 2t, 
a = 2. 

The acceleration here is constant, which means that the car is being 
driven forward by a constant force. 1 very much doubt if an internal 
combustion engine would behave in this way. Perhaps we had better 
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suppose that the car is in neutral, and is just being allowed to roll 
forward on a gentle slope. And I suppose, in this example, we had better 
use feet and seconds as units. It is most inconvenient to measure acceler- 
ation in “mph an hour”. 

4. Braked motion. A car is drawing smoothly to a stop. There are 
many laws that would fit this situation. 1 choose the simplest one I can 
think of that will give the required type of motion, say, s = 10t - 12 
between the times t = 0 and t = 5. (The work below shows that this 
does in fact represent braked motion.) By considering rates of change, 
we get the following: 

s = lot - t2, 
Y = 10 - 2r, 
a =  -2 .  

I think the middle equation gives the clearest picture of what is happen- 
ing. At the beginning, t = 0 and v = 10. So to begin with, the car is 
moving at 10 feet a second. Five seconds later, t = 5 and so Y = 0; 
the car has come to rest. I f  you calculate the velocity v at times between 
you will obtain the following table: 

t 0 1 2 3 4 5  
~ 1 0 8 6 4 2 0 .  

So the car is losing speed in a perfectly regular way; v decreases by 2 
with every second that passes. And that is precisely what the third 
equation, a = -2, tells us. What distance does the car travel while 
coming to rest? For this information we must tu rn  to the first equation. 
When t = 0, s = 0. When t = 5 ,  s = 25. So the car advances 25 feet 
while coming to rest; this is very gentle braking. 

If we were to put t = 6 in the equation above, we should find that 
Y = -2; that is to say, the car had started to move in reverse! Of 
course, this would be an incorrect conclusion to draw. Brakes make a 
car slow down so long as it is advancing, but they do not cause it to 
retreat after it has come to rest. The law s = 101 - t 2  applies only 
during the breaking, from t = 0 to t = 5. We have no right to assume 
that it applies either before t = 0 or after t = 5. 

One can however imagine circumstances in which this law would 
apply after t = 5 as well as before. Suppose, instead of the brakes 
being on, the driver sees that the road in front of him is going uphill. 
To save his brakes, he decides to let the hill bring the car to rest; he 
puts in the clutch and waits for the car to slow down under the influence 
of gravity. If he does not remember to put the brake on as soon as the 
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car has come to rest, the car wil! begin to roll back down the hil1;if 
the driver allows it, the car may return to the place where it was when 
we started to observe it. I n  that case, the law s = 10t - t* might apply 
to the car between t = 0 and t = 10. The following table shows the 
position, velocity, and acceleration of the car throughout this process. 

Time, t 0 1 2  3 4 5 6 7 8 9 10 
Position, s 0 9 16 21 24 25 24 21 16 9 0 

Acceleration, a -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 
Velocity, v 10 8 6 4 2 0 -2 -4 -6 -8 -10 

Each row of the table gives its own kind of information. s shows you 
where the car is at any time. You notice that it ends up where it started. 
v shows how fast it is going. To begin with, it is advancing at 10 feet 
a second; after 5 seconds, it has come to rest; at the end, it is rolling 
backwards just as fast as it was rolling forwards to begin with. The third 
row a contains the same number -2 throughout; this means that 
gravity is always dragging the car back with the same force. 

Above we have used the letters s, v, a and have had to remember 
that these measured distance, velocity, and acceleration. Calculus 
notation brings out the fact that v tells us how quickly s grows, and a 
tells us how quickly v grows. This, as we have seen, can be written 
v = s' and a = v'. In the equation Q = v', we could make use of the 
fact that v is equal to s'. If we substitute s' for v, we get a = s". In 
words, this last equation states that a gives the rate of change of the 
rate of change of s. In future, as a rule, instead of using s, v, a for 
distance, velocity, and acceleration, we shall use s, s', s". In  the same 
way, when we are dealing with graphs, we shall meet the symbols y, 
y',"'. .v' tells us how quicklyygrows; y" tells us how quickly y'grows. 
When we are dealing with particular formulas, the procedure for finding 
y' and y" is very simple. For example, suppose y = x5. What is JT'? 

We know from our earlier work that x5 grows at the rate 5x4. So 
y' = 5x4. Now what is y"? y" is the rate at which y' grows. y' is 5x4. 
We know that 5x4 grows at the rate 20x3. Soy" = 20x3. It is no harder 
to get from y' to y" than it was to get from y to y'-that is, so far as 
making calculations is concerned. We still have to interpret these 
calculations to see the meaning of y" for a graph. That is our next job. 
We begin by collecting together the four examples of motion we con- 
sidered above. We describe each type of motion by means of s, s', s"; 
we also describe it in words; we give the corresponding graph, and we 
repeat our information about s, s', s" i n  symbols suitable for a graph, 
that is, in terms of p, y', y". The whole thing now looks like this: 
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Figure 41 

/ 
Figure 42 
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Figure 43 

y = lox -x2 
y' = 10 - 2x 

I y" = -2 
Figure 44 

We already know what y' tells us; it gives information about the 
steepness, the slope of the graph. We want to know what y" signifies. 
First of all, what it does not signify. Students sometimes get confused 
and say, "When y" is zero, the curve is flat." This is certainly not so. 
For the first two graphs above, Figs. 41 and 42, the value of y" is zero 
throughout. Admittedly, Fig. 41 shows a curve that is flat throughout. 
But Fig. 42 also has y" zero, and this certainly represents a curve that 
is climbing, not one that is flat. y" = 0 both for Fig. 41 and for Fig. 42, 
soy" = 0 must represent a property that is common to Figs. 41 and 42. 

INVESTIGATION. Sketch a number of graphs such as the following: y = x; 

y = x - x2; y = x - 2x2. Work out y" for each of these. Collect your 
graphs into the following three groupings: 

Y = ~ x ; Y = ~ x + ~ ; Y = ~ - ~ x ; Y =  -x; y = ~ + 2 ~ 2 ; y p ~ + x 2 ;  

Type A-graphs for which y" = 0 throughout. 
Type B-graphs for which y" has a positive value throughout. 
Type G-graphs for which y" has a negative value throughout. 

All the graphs of type A have a certain property which distinguishes them 
from those in type B and type C. What is this property? In the same way, all 
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the graphs of type B have a distinctive property in common; what is it? And 
again, what is the property that gives a family resemblance to all the graphs 
in Type C? If you can answer these questions, you will be able to tell just by 
looking at a graph whether it belongs to type A, B or C. If you find the 
examples given above are insufficient and you would like to have some more 
material to examine before reaching a decision, sketch further graphs of 
linear and quadratic expressions. That is, choose equations of the form 
y = nix + k or y = ax* + 6x + c. With equations of higher degree you 
may get graphs that do not fall into any of the types A, B, C. 

Classify the graphs shown in Fig. 45 as being in type A, B or C. 

Figure 45 

If you possibly can, complete this investigation before reading on. 

By looking at  graphs of type A, B, C, you should have obtained, 
at the very least, a strong suspicion of what the sign of y" means. We 
shall now approach the same question in a different way. 

The sign ' stands for the "rate of growth of." If z stands for any quan- 
tity whatever, z' stands for the rate of growth of z. If z' is positive, this 
means that z is increasing; that it is changing by having something added 
to i t ;  that it is actually growing in the everyday sense of the word. If z' 
is negative, this means that z is growing in a negative sense; that it is 
changing by having something subtracted from it; that it is decreasing 
or shrinking. Now y" measures the rate of growth of y'. If y' is increas- 
ing, y" will be positive; if y' is decreasing, y" will be negative. 

The curve in Fig. 46 is flat at  first, and at the end has a direction 
pointing to the north-east. In numerical terms, it begins with y' = 0 
and ends with y' = 1. So y' is increasing and y" is positive. 

* * *  

Figure 46 Figure 41 Figure 48 Figure 49 

The opposite happens for the curve in Fig. 47. This begins pointing 
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north-east, and ends flat. y' is 1 at first and 0 at the end. y' has de- 
creased. Its rate of growth is negative, so y" is negative. 

We need to be careful with the two remaining examples. In Fig. 48 
the curve starts off in a south-easterly direction and ends flat. South- 
east corresponds to the slope y' = -1. So in this curve, yf changes 
from - 1  to 0. Is this an increase or a decrease? We have to add 1 to 
- 1 to obtain 0. From - 1 to 0 is an increase (think of temperature, 
for example). So y' is increasing and y" is positive. Compare this with 
your graphs of type B and verify that it does resemble them. 

Finally, consider the curve shown in Fig. 49. This starts off flat and 
ends in a south-easterly direction. y' thus goes from 0 to -1. So yf is 
decreasing, and y" is negative. Compare this curve with your graphs 

If you now examine your graphs of types A, B, C, I think you will 
see what I mean when I say that y" tells us how the curve is bending. 
When y" is zero throughout, we obtain a straight line, no bending at 
all. When y" is positive, we obtain a curve resembling that of a plank 

of type c. 

Figure 50 

with a weight in the middle (Fig. 50). When y" is negative, we obtain 
a curve resembling a plank with weights on the ends (Fig. 51). In fact, 
in reinforced concrete design and in other branches of civil engineering, 
y" appears in just this role, as a measure of bending. 

9 Figure 51 

All the equations that we used when we were drawing graphs of 
type A, B, C were either linear or quadratic. As a result, y" was con- 
stant. For example, y = x + x2 gave y" = 2. Such a curve always 
has the same direction of bending; y = x + x2 always bends like a 
plank weighted at the middle. But if we go to cubic curves, we need 
not find the bending always the same. This we have already met. On 
pages 65-67, we considered the graph of y = x3 - 12x. The final 
sketching of this curve was left as an example for you. By considering 



A C C E L E R A T I O N  A N D  C U R V A T U R E  79 

y‘ = 3x2 - 12, we saw that this graph rises until x = -2, sinks be- 
tween x = -2 and x = 2, and then rises again. In fact, it appears as 
in Fig. 52. What about the bending of this curve? If you looked at the 
part of the curve to the left of the origin, you might well think this was 
a parabola of type C; if you looked at the curve to the right of the 
origin, you might well think this was a parabola of type B. Do not 

’I 

Figure 52 

mistake me; this curve does not in fact consist of two parabolas fitted 
together. It merely has a very general resemblance to what you would 
get by joining two parabolas. To the left of the origin, we see the type 
of bending (“plank with ends loaded”) that we associate with y” 
negative; to the right we see the type of bending we associate with 
y” positive (“plank with middle loaded”). How does this agree with 
the information we obtain from the equation of the curve? From 
y = x3 - 124 we find y’ = 3x2 - 12 and y” = 6x. Now 6xis negative 
when x is negative and positive when x is positive; so y” is negative to 
th,: left of the origin, and positive to the right. This fits in exactly with 
t’ie type of bending we have observed. 

In Fig. 33, we sketched the graph of y = 1OO.u - x2 by studying the 
behavior of y‘. We saw that the graph rose until x = 50 and fell after 
that. Then the question was raised, how do we know that the graph 
does not have a whole lot of little wobbles in it, like the curve in Fig. 
34? We can now answer this question. Since y = lOOx - x2, we have 
y’ = 100 - 2x and y” = -2. So y” is always negative, whatever x. 
That means the bending is always of the same kind, like the plank. 
This cuts out the possibility of wobbles, for wobbles mean that the 
curve bends first one way, then the other. 

In our discussion, we have only considered the sign of y”; we see 
where y” is positive, where negative, where zero. It is possible, by 
considering the actual sizes of y‘ and y” to find out not only which 
way, but how fast, the curve is bending. We can say that, at a particular 
point, a curve is bending in the same way as a circle of radius 3, say. At 
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another point, where the curve has a hairpin bend, it might be bending 
like a circle of radius 0.1. 

There is a branch of mathematics known as differential geometry. It 
applies the methods of calculus to the study of geometrical objects, such 
as curves and surfaces. The question just mentioned, of finding how 
quickly a curve is bending, belongs to the province of differential 
geometry, and is a very simple example of a problem in that subject. 
Differential geometry also deals with the curvature of surfaces. The 
study of curved surfaces leads naturally to a subject known as tensor 
calculus, which in turn is used for the theory of relativity. You may 
have heard rather mysterious references to “curved space-time.” This 
is a good example of the way in which calculus opens the door to all 
kinds of investigations. You start off with some simple devices for 
sketching graphs rapidly; one question leads to another; you study 
curves in the plane, then curves in  space of three dimensions, then 
surfaces; new methods of calculation, new Fymbols, new concepts 
gradually creep in; you end up, in  a way that could never have been 
foreseen at the beginning, with a theory that has revolutionized our 
ideas of space and time, of gravitation and energy. 
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The Reverse Problem 

In elementary arithmetic there are certain simple, direct processes, 
to add, to multiply, to square. These can always be carried out within 
the framework of the natural numbers, the counting numbers 0, 1, 2, 
3,4, . . . . What is 3 added to 4? Answer: 7. What is 3 multiplied by 4? 
Answer: 12. What is the square of 3? Answer: 9. 

Later on, we learn to reverse these operations. We learn to subtract 
by reversing addition. 3 and what make 7? Answer: 4. We divide by 
reversing multiplication. 3 times what is 12? Answer: 4. We reverse 
squaring to extract square root. Which number squared gives 9? 
Answer: 3. 

These reverse operations lead us to extend our ideas. When we try 
to answer the question, “8 and what make 7?’, we may at first say there 
is no answer; later, we discover that one can introduce a new idea, that 
of negative numbers, and then we can answer, -1. In the same way, 
division leads to an idea that was at one time new, the idea of fractions. 
Instead of saying that “2 times what is I?” has no answer, we arrive 
at the answer 1/2. Square root leads to yet new ideas; we cannot write 
down any fraction (in the sense of elementary arithmetic) whose square 
is 2. We are thus led to irrational numbers such as 4 2 .  If we look for 
a number whose square is - 1, we are led to the even more striking idea 
of complex numbers such as d?. 

I n  calculus, exactly the same kind of growth occurs. We began with 
the direct question, “I give you a law which tells you where an object 
is at any time. You are to give me a law for its velocity.” We can easily 
reverse this; I give you a law for the velocity; you are to give me a law 
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for the position. In symbols, I give you a law for s’ and request a law 
for s. Sometimes this question is easily answered. For example, if I 
give the laws‘ = 2r, you might answer with the laws = t* or s = t 2  + 5 
or s = t2  - 3 or in fact with any formula of the type s = t 2  + C, 
where C is a constant. But such questions can lead to new types of 
formula. For example, I might give the law s‘ = l / t  and demand a 
law for s; to answer this question, you have to develop the theory of 
logarithms. If I give the law s’ = l / m ,  to find a law for s you 
have to develop the theory of the trigonometric functions, sine and 
cosine. In high-school work, trigonometry is usually thought of as 
something to do with surveying. It is approached through the geometry 
of triangles. The calculus approach is quite different. There is no 
mention either of geometry or of surveying in the question of finding s 
given s’ = l / m .  Calculus thus brings us into trigonometry by 
what might be called an algebraic approach; I mean by this that we 
are writing equations, not drawing pictures. The calculus approach 
helps to pull our mathematics together. Trigonometry does not appear 
as a separate subject, but arises quite naturally in the development of 
calculus, Also calculus gives us some information about trigonometry 
that would be very hard to obtain without calculus. Students some- 
times ask, “How are the trig tables calculated?” The answer is to be 
found in calculus. 

Trigonometry is only one of the subjects that arises in this way. As 
we continue to study the problem of finding s when s‘ is given, we are 
led to study new types of function which do not occur at all in high- 
school mathematics. 

We are also led to new types of function in another way. In algebra 
we can form equations. We are not confined to simple processes like 
extracting square root. We may ask, for example, for a number whose 
square exceeds the number itself by 20. In symbols, we have to solve 
the equation 

x2 = x + 20 

and this of course is very easily done. Other equations are not so simple 
to solve. For instance, mathematicians spent several centuries before 
they knew all about equations of the type 

x5 = x + 20. 

In calculus we can also form equations. One might ask whether there 
is any law for s such that 
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This question is easy to answer. The law s = t 2  would be a soluiion. 
For, if s = t 2  we have s’ = 21. Then 2slt = 2 t 2 / t  = 2t = s’. So 
the law s = t 2  has the property desired. There are many other solutions 
of this question. s = 5 t 2  or s = 7 t 2  would do just as well; in fact any 
law of the form s = kt2, where k is constant, will do. 

The equation above can be put into words. s‘ is the velocity at any 
time. s/t ,  being the total distance gone divided by the total time taken, 
measures the average velocity. So, the equation asks: “Can you find a 
type of motion in which the velocity, at any moment, is exactly double 
the average velocity for the journey up to that moment?” The answer is 
that our familiar motion with constant acceleration, s = kt*, will do 
the trick. 

You may wonder why I chose this particular problem. The answer 
is simple. I did not want to get involved in long and difficult calculations, 
so I looked for a problem with an easy answer, In fact I started with the 
solution s = t 2  and worked backwards; I looked for an equation that 
would have this as a solution. 
Our problem could be put geometrically. In terms of x and y, the 

corresponding equation would be 

y’ = -. 2Y 
X 

Consider Fig. 53.  Suppose Pis the point (x ,  y)  on the curve AB. PT is 
the tangent at P. OPR is the straight line joining the origin 0 to the 
point P. PQ is a horizontal line and QRT is vertical. We can now 
interpret our equation geometrically. y‘ of course gives the steepness 
of the tangent PT. ylx gives the steepness of the line OP. The equation 
rzquires that y’ be just double the size of y/x ,  that is to say, the slope 
of the tangent PT is to be exactly twice the slope of the chord OP. This 

X 

Figure 53 
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means that QT would have to be exactly twice as long as QR. This 
property has to hold for every point of the curve AB. So the problem 
is to find a curve AB such that for any point P of the curve, the slope 
of the tangent PT is exactly double the slope of the line OP. The solu- 
tion is that any parabola of the form y = kxz has this property. With- 
out calculus this would be an extremely awkward problem to solve. 
This problem is, of course, of no great significance; it was selected 
because it was easy to solve. But problems similar to this do arise in 
the course of actual investigations in engineering, science and pure 
mathematics. 

The problem above had a solution in terms of simple, known laws. 
No new idea enters into the equations s = kt2 or y = kx? In the 
graphical problem we recognize the curve as a parabola. Now there 
are fairly few curves that we know by name; the straight line, the 
circle, the ellipse, the parabola, the hyperbola-this is the whole list 
for many people. Even if you are particularly interested in curves, it 
is unlikely that you know more than twenty by name. There are thou- 
sands that you do not know and would not recognize. It is therefore 
unlikely that a problem will lead to a curve we already know. The 
chances are overwhelming that it will lead to a curve we do not yet 
know. 

This sounds rather disturbing. It looks as if we are going to be pretty 
helpless in the face of problems. However it is not as bad as it sounds. 
It is true that most problems lead to new curves. However, the problem 
itself tells us what the new curve is going to be. In effect, the problem 
defines its own solution. This may be seen by considering an example. 

Suppose we were asked to find a curve with the property that, for 
each point P, the tangent PT makes an angle of 45" with the line OPR, 
as shown in Fig. 54. 1 need not bother you with the details of the 
calculation, but this property would be expressed by the equation 

However we shall not make use of this equation; we shall think in 
terms of the property as originally stated geometrically. It is easy to 
see the sort of curve that has the required property. Imagine a light 
placed at the origin 0. You are standing at P; your shadow will fall 
along the line PR. Suppose you stand facing in the direction PT. Now 
start to walk. As you walk, always make sure that the direction in 
which you are facing makes an angle of 45" with your shadow. In this 
way as you walk you will trace out a curve having the desired property. 
I think you can see that you will describe some kind of spiral; you will 
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Figure 54 

keep going round the light, but always getting further away from it. It 
would also be possible to produce this curve by a mechanical contrivance 
(see Fig. 55). Here, OR is some kind of rod or bar. A nail fastens the 
point 0 to the paper, but the rod OR can revolve about 0. At P we 
have a little sleeve, which can slide freely on the rod. Underneath this 
sleeve there is a little wheel with a sharp edge, so fixed that it always 
makes an angle of 45' with the rod OR. The edge of this wheel cuts 
into the paper, and so forces P to move only in the direction PT. If 
the rod OR is now turned, P will automatically move in the required 
way. It will trace out the curve in the same way as you did by walking 
according to the specifications given above. 

A l l  s L E ev E 

5/ WHEEL 

Figure 55 

A you will see, here the pr blem itself has shown u how to construct 
the curve. The question really is, that we should find some other way 
of specifying the curve. We might find the equation of its graph; this 
might give us a more convenient way of defining this curve. This 
particular question has been investigated, and it has been discovered 
that the curve cannot be specified by elementary algebraic operations. 
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The equation of the curve could not possibly be, say, jj = x.3 + 5x - 2, 
nor even a more complicated expression like 

y5x3 - 1 7 ~ ~ 1 2  + 11x4 - 3 = 0. 

To write the equation of this curve, you have to bring in ideas from 
logarithms and from trigonometry. 

You may notice that this problem has led us back to the same topics 
that were mentioned on page 82-logarithms and trigonometry. In 
fact, an important section of beginning calculus had the two aims- 
to explain what logarithms and the trigonometric functions are, and 
then to show what problems can be solved with their aid. 

1 hope the purpose of this chapter, under the heading “The reverse 
problem”, will be clear to you. Its purpose is not to teach you any 
particular result. Rather, the object is to give you some idea of mathe- 
matics as a growing subject. We began by studying the speed of a 
moving object; the few formulas and the symbols s‘, s” which we met 
now allow us to pose new problems. Some of the problems lead to 
branches of mathematics, the names of which you know, such as 
trigonometry and the theory of logarithms. There are other problems 
which lead on to branches of mathematics of which you have never 
heard even the names. The ideas of elementary calculus, as I mentioned 
earlier, are in fact the key that opens the door to most of the mathe- 
matics and most of the science developed between 1600 and 1900 A.D. 
How it does that, you can only understand when you have actually 
studied the mathematics of these centuries. I have tried to indicate, in  
a very vague and general way, how it is that one idea leads to another. 
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Circles and Spheres, Squares and Cubes 

We have so far used only the letters s, 1, and x, y in our work. In 
algebra, of course, one letter is as good as another. We can pass from 
s = t2  to s' = 2t, and from y = x2 to y' = 2x;  in the same way, we 
can pass fromp = q2 to p' = 29 or J = w* to J' = 2w. 

When you were young, you met the formulas for the area of a circle, 
A = At-2 and the circumference C = 2 ~ r ,  also for the volume of a 
sphere, V = (4/3)7rr3, and the surface of a sphere S = 47rr2. Now that 
you have studied calculus, something may strike you about these 
formulas. Suppose you take A = Ar2 and ask, what is A'? r2 grows 
at the rate 2r. What shall we do about the coefficient A? u, of course, 
is a fixed number, although it is written in this strange way with a 
Greek letter. If we had A = 3r2, we should go easily enough to A' = 6r 
(see formula (6) and the picture of the growing plant, Fig. 18). x is just 
a bit more than 3 and we treat it in the same way. From A = xr2, we 
find A' = 27rr. But we recognize this result; 27rr gives the circumference 
of the circle. So A' = C. 

We find a very similar result for the sphere. From V = (4/3)xr3 we 
obtain V' = 4 x 9 ,  so V' = S. This can hardly be a coincidence. In fact 
it is easy to see why it occurs. Suppose you have a sphere and you want 
to make i t  a little larger. You might spray an even coating of plastic 
all over its surface, thus giving it an extra skin. It is not at all surprising 
that the amount the volume has increased during this operation should 
be closely related to the area of the surface on which the skin has been 
placed. 
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One danger point in this argument is to be noticed. It is absolutely 
essential that the coating should be even; the skin must have the same 
thickness everywhere.? One can reach very strange results by applying 
this argument to an egg-shaped solid. For if you enlarge the scale of 
an egg, you do not add a layer of uniform thickness. 

Areas and Volumes 

The idea that objects grow by forming an extra skin can be illustrated 
without using circles and spheres. Two of our first calculus results can 
be illustrated by means of squares and cubes. 

Figure 56 

Imagine a cube placed in the comer of a room (see Fig. 56). This 
cube is growing, because someone is continually spraying plastic onto 
the exposed faces of the cube. This is done in such a way that the 
points A, B, C move outwards at 1 inch a second. If we begin with no 
cube at all at t = 0, and let it grow from nothing in the way specified, 
after t seconds the side of the cube will be t inches. Its volume will be 
Y = 23. This, we know, grows at the rate Y‘ = 322. The picture shows 
why 3 t 2  should come into it, for the exposed surface consists of three 
squares, each of area 22; each surface is moving outward at unit rate, 
so the surface area 322 gives the rate at which the cube is growing fresh 
skin at any moment. 

The cube is a figure in three dimensions. A similar thing happens in 
two dimensions. Imagine you are given the following job. Figure 57 
shows two pointers that move along the lines OX and OY at unit speed. 
You have a pencil, and you must keep shading the paper so that there 

t In effect, we are estimating the increase in the volume by multiplying the surface 
area by the thickness of the skin. This estimate is “reasonable” if the coating is thin. 
One has to think very carefully to show that the argument is in fact logical and gives 
the cxact result. 
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'I 

Figure 57 

is always a square shaded. You have to keep pace with the moving 
pointers; your square must always reach just to the pointers P and Q. 
At first you have a fairly easy job, but as the size of the square grows, 
you have to draw longer and longer lines. At time 1, the square will 
have side of length t inches. The area will be A = 12, and A' = 2t. 
Your pencil line runs round two sides, so the boundary has length 2r. 
Here again the length of the boundary agrees with the value of A'. 

Figure 58 

Suppose we chop our last figure in two by a line OM, the bisector 
of angle YOX. The lower half will be as shown in Fig. 58. The shaded 
area is now +t2, growing at the rate t as the pointer P moves outward. 
If we keep shading in the area of the triangle, we shall at any moment 
be drawing a line such as PR, of length 1. If we now denote the area of 
the shaded triangle by A, we shall have A = +z2 and A' = 1. A' agrees 
with the length of the boundary PR. 

This may make us wonder: does the line OM have to be straight? 
Could we not consider a picture like that of Fig. 59? Here OM is the 
parabola y = x*. Once more, P moves at unit speed, and the shaded 
area grows by developing a skin along the line PR. At time t, the 
distance OP is t. The x co-ordinate of the point R is thus t. Since R lies 
on the graph y = x2, the point R must have y = 12. Thus the line PR 
is of length t2. 
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y = x 2  

A 
X 

Figure 59 

On the analogy of our previous results, we are led to guess that the 
area A will grow at a rate equal to the length of PR. That is, we expect 
to find A’ = t2. This guess is in fact correct. The shaded area is given 
by the law A = 313 and this does make A’ I: 12. 

I am not trying here to discuss the theory of area in any detail. I am 
trying to show how the idea of speed links onto that of area. In many 
cases, when we are trying to determine an unknown area A, we find 
that it is possible to calculate the speed at which this urea grows. That 
is, we can find A‘ and we now have a problem of the reverse type; given 
the law for A’, what possible laws are there for A ?  

You will notice that the problem of finding the area underneath the 
parabola y = x2 is quite different from the elementary problems about 
the areas of triangles, parallelograms, and rectangles. It looks much 
harder. Calculus gives us a way into it. The actual calculation proves 
to be quite simple. You will find the details in any introductory text on 
calculus. 

Finding volumes is much like finding areas. You are doubtless famil- 
iar with the formula V = ( 4 / 3 ) ~ r 3  for the volume of a sphere of radius r. 
This formula was mentioned in the previous section of this book. But, 
although you know this formula, it is unlikely that you know how it 
is obtained; to find the volume of a sphere is in fact a calculus problem. 
It may interest you to have a brief sketch of the idea used. 

We will consider the volume of a sphere of radius one inch. In 
Fig. 60, the circle is supposed to be of radius one inch and centre 0. 
We cannot show a sphere properly on paper. You must imagine the 
picture spinning around the line OX. The circle will then cut out a 
sphere in space. It is this sphere we have to think about. You can 
imagine it as a hollow metal sphere. We are going to fill it up soon. The 
line DOC, as it spins about OX, will sweep out a circular disc. Imagine 
this disc as being a piece of paper that divides the interior of the sphere 
into two parts. We now start to fill the sphere up. We might bring along 
a series of circular discs of paper, and keep pasting these on. The discs, 
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r. 

t-t+ 
Figure 60 

of course, would not all have the same radius. If we had at some stage 
filled the shaded region, the next disc we pasted on would have to have 
the radius PR. This disc would occupy the region of space obtained by 
spinning the line QRP around OX. Or, instead of discs, we might 
imagine plastic sprayed on in layers. Either way, we imagine the shaded 
region to grow out towards the right, so that the distance O P  grows at 
unit rate. Thus after t seconds, the distance OP would be t inches. At 
any stage of the process, the region filled will be that part of the sphere 
lying between two parallel planes. 

Every new skin that comes on is even; it has the same thickness at 
all points. Further, the surface is moving outward at unit rate. So, as 
in our earlier examples, the area of the surface being coated gives us 
the rate of growth of the volume. What is the area of this surface? The 
surface is a circle of radius PR. We must calculate PR. This is not 
difficult. OPR is a right triangle. OR = 1 since the circle is of radius 
1 inch. OP = t ,  as we noted in the previous paragraph. By the Pytha- 
gorean Theorem, we find PR2 = 1 - 22. Fortunately it is the square 
of PR, and not PR itself, that we need. The area of the circle of radius 
PR is u PR2. This is u(1 - 12). If Vstands for the volume that has 
been filled by time t, we have 

V’ = ~ ( l  - 12). 

Here again we have a reverse problem. We know how fast V grows; 
we know that V begins by being zero at t = 0. This information is 
sufficient to give us the answer, 

v = Ir(t - 9 3 ) .  

You may notice that we have arrived at the answer to a harder 
problem than the one we set out to solve; this formula gives us, not the 
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volume of the whole sphere, but the volume lying between two planes. 
However, when the time t = 1 arrives, the point P will have reached B, 
and we shall have filled half the sphere. Putting t = 1 i n  the formula 
above, we find that half the sphere has the volume n(1 - +), that is, 
3.. To find the volume of the whole sphere, we double this, and obtain 
the answer we expected for a sphere of unit radius, namely (4 /3)~ .  

The volume of a sphere of radius r can be found by the same method. 
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Intuition and Logic 

You have now had some samples of the problenis of beginning 
calculus and some indications of the questions that cause calculus to 
develop beyond these. With the background given here, there are many 
texts on calculus that you should be able to read for yourself and under- 
stand without difficulty. There will be others that do not seem to make 
sense to you at al!. And some books will lie halfway between these. You 
will be reading quite happily and then you will come to a page that 
seems to you entirely unnecessary. Perhaps you will not understand 
what it is saying at all; again, you may find that long arguments are 
used to reach a conclusion that seems perfectly obvious. 

To understand this, you need to know something of the history of 
mathematics. During the years 1600-1800 A.D., calculus was concerned 
with very much the kind of problems, and used very much the kind of 
thinking, that you have seen in this book. Then, gradually, 8 crisis 
developed. As mathematicians explored deeper and deeper into the 
subject and studied more and more complicated situations, they began 
to get answers that were evidently wrong. Their way of thinking, which 
had been perfectly satisfactory for dealing with simpler situations, was 
now proving unreliable; they found it necessary to examine very 
carefully things which before they had taken for granted. 

Such a crisis is nothing unusual, and nothing to be ashamed of. In 
fact, a crisis is often a sign of health. A growing boy finds he cannot 
wear his old clothes; he is too large for them; he needs new ones. In 
the same way, a growing subject from time to time needs new ways of 
thinking; it grows out of the old ones. 
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This, of course, creates a problem for teachers. Shall we give beginners 
in calculus the suit of ideas that fitted the mathematician of the year 
17001 If we do, there is the danger that he may become accustomed to 
this suit, and refuse to change into more grown-up garments later on. 
On the other hand, if we give the student the 1961 model, he may find 
that the arms and legs are much too long for him, and prevent his 
moving about at all. 

Mathematicians differ among themselves on the correct answer to 
these questions, and of course students differ too; one student may 
enjoy a type of teaching that is utterly distasteful to another. My own 
belief is that, for the majority of students, it is unwise to begin with the 
latest and most fashionable model. It is better to begin with a more 
modest but better fitting suit. But you should realize that you will not 
wear this all your life. 

What then are these different ways of thinking? If you look back 
through this book, you will find that a large number of ideas have been 
taken from everyday life-moving bodies, velocity, acceleration, slope, 
area, volume. We have not tried to give exact definitions of these ideas; 
we have assumed that we understood more or less what these words 
meant, and we have argued on that basis. 

Mathematicians call this the intuirive approach. In daily life, our 
thinking is nearly always intuitive. Few of us could give an exact 
definition of the word dog. But we recognize dogs when we meet them. 
There may be some doubtful borderlines-just when does an animal 
cease to be a dog and become a wolf?-but we do not trouble ourselves 
too much about these. And with this kind of thinking we do manage 
quite well in practice, so there must be something quite sound in it. 

During the 17th and 18th centuries, as was mentioned earlier, mathe- 
maticians were very much concerned with scientific problems. They 
wanted to determine in which curve the earth moved round the sun, 
and how its velocity varied as it went around. They did not see much 
point in philosophical discussions about velocity. They were sure the 
earth had a velocity and they wanted a formula for it. 

Intuitive thinking, as you see, mixes together mathematics and 
physics. In this book, we have frequently used such a mixture. Our line 
of argumed has been something like this: 

(A) The wagon in Fig. 13 on page 23 moves according to the law 
s = t? 

(B) At any moment, this wagon has a velocity. 
(C) We want to find out what that velocity is. 
We did in fact succeed in finding the formula s’ = 21 for the velocity. 
Look at statement (B) above. This statement seems to imply that, 
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when a body is moving, it must have a velocity; it must be moving at 
some speed. 

It is very natural to assume this. Most people, if they were told 
something was moving, would ask whether it was moving fast or slow. 
They would be most astonished if they were told that the object was 
moving, but was not moving at any speed. 

The earlier mathematicians did not even consider such a possibility. 
However, in the 19th century, mathematicians found themselves con- 
fronted with actual examples of formulas where this happened-a point 
was moving, but not moving at any speed! 

We can state this apparent paradox another way. From the beginning 
of this book, we have used pictures to show the motion of an object. 
In these pictures, the velocity of the object corresponds to the steepness 
of a curve. Thus the direction of the curve corresponds to the velocity 
of the object. If the object does not have a velocity, this means that the 
corresponding curve does not have a direcfion ! 

You may find it very hard to imagine such a thing existing. If so, 
you need not worry; it took the best mathematicians in the human race 
more than two centuries to realize that such a thing was possible. 
Further, when I do give you an example, you may feel that this example 
is rather unfair. That also is to be expected; evidently a curve that 
passes through a point, but does not pass through it in any direction, 
is something rather peculiar; we can hardly expect it to be just like 
the graphs we did in elementary algebra. 
How should we go about making up an example of a curve that does 

not have a direction at a particular point? If we had such a curve and 
we tried to find the slope of the curve at this point, we should not 
arrive at any answer. I do not mean just that we should not be able to 
calculate the slope; I mean that there would be no slope to calculate. 
How could such a situation arise? To answer this, we need to recall 
how we went about finding y’, which measures the slope of a curve. 
This was done on pages 53-56. There, we had the diagram of Fig. 61. 

Y l  

DIRECTION OF 
CURVE AT C 

I-, 
Figure 61 
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We took points D1, D2, D3, . . . on the curve, and worked out the slopes 
of the lines CD1, CD2, CDj, . . . . In the examples we considered, we 
found that these slopes approached a fixed number, which we called 
the slope of the curve at C. We did not prove that these slopes must 
approach a fixed number; we just observed, in particular cases, that 
they did so. Suppose, however, that they do not settle down, but wander 
about endlessly. Can this happen? If so, what would the curve look like? 

Imagine a curve like the one shown in Fig. 62. The dashed lines make 

Figure 62 

angles of 45’ with the horizontal. The points DI,  D2, D3, Dq, Ds, 
D b  . . . are chosen approaching closer and closer to C. But the slopes 
of the lines CD1, CD3, CDs are +1 while the slopes of the lines CDz, 
CD4, CD6 are - 1. Thus the slope waves back and forth between + 1 
and -1 as D approaches C. We suppose this to continue indefinitely. 
This means, of course, that the curve must be very complicated near C. 
There must be an infinity of hilltops and an infinity of valley bottoms 
in the neighborhood of C. Then, as D approaches C, the line CD 
continually oscillates between the two dotted lines; its slope never 
settles down towards any particular value. The curve is approaching the 
point C, but we cannot say from which direction it approaches. We 
cannot attach any meaning whatever to the words “the slope of the 
curve at C.” 

Someone familiar with trigonometry will be able to verify that the 
graph of the equation y = x sin( l/x) near x = 0 behaves like the curve 
we have just been considering. So we are not being particularly unfair 
in requiring a curve to have an infinity of waves near the point C; we 
do not need to go outside the high-school syllabus to give an example 
of such a curve. 

We can also construct such a curve without using trigonometry. The 
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construction should be clear from Fig. 63 and the description that 
follows. CA can be of any convenient length. B is halfway from C to 
A. The triangle ABE is right-angled with angles of 45' at B and A. A 
quadrant of a circle can thus be drawn from A to B, with center E. 
The point G is halfway from C to B. The triangle GFB is like the triangle 
AEB, but to half-scale and the other way up. B and G are connected by 
a quadrant of a circle, center F. Triangle ZHG is obtained by drawing 
GFB to half-scale, and a quadrant of a circle is drawn with center H. 

F 

5 
Figure 63 

This construction is continued indefinitely, so that we have circle 
quadrants alternately above and below the line CAY each quadrant 
being one half the scale of the previous one. 

If we consider the sequence of points, A, B, G, I ,  . . ., each of these 
is half the distance from C that the previous one was. Thus we can 
continue our construction indefinitely, getting always nearer to C, but 
never passing it. 

If a point D moves along this curve towards C, the line CD oscillates 
very much as it did in Fig. 62. The slope of CD takes positive and 
negative values alternately as D approaches C. It can be shown that 
these values range repeatedly from + 1/7 to - 1/7 and back again. So 
the slope never settles down to any particular value as D approaches C. 

I expect you will raise certain objections to this example. (1) You 
may object that this curve is not really constructed at all, because an 
infinity of circles have to be drawn, and it would require an eternity 
to reach C, the point we are interested in. (2) In any case, you may say, 
this is not a curve; it is lots of bits of different curves stuck together. 

In making these objections, you are in good company. The second 
objection was made by some very great mathematicians a century or 
two ago. The first objection is of a kind that still arouses strong feelings 
and fierce argumeqts between mathematicians. 
Your second objection will be considered later on. We take a look 
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at your first objection. It is natural that you should see logical difficulties 
in a construction that takes an eternity to carry out. But have you 
thought what is involved if we are only allowed to speak of things that 
can be constructed in a finite number of steps? 1 imagine you speak, 
from time to time, of the number 7. Will you tell me exactly what 
number K is? Someone may suggest that it is 3+ Is it exactly 3$? No; 
it is more like 3.1416, which is rather less than 3$. Is it exactly 3.1416 
then? No; it has been calculated to thousands of places of decimals, 
but even these do not give it exactly. Well then, what is it?t 

You will find that any way of saying exactly what 7 is uses an 
infinite process in one way or another. We usually define K as the 
circumference of a circle of unit diameter. But what is the circumference 
of such a circle? Archimedes estimated it by inscribing and circum- 
scribing regular polygons of 96 sides. He felt that the distance round 
the circle would be more than the distance round the inscribed polygon, 
and less than the distance round the circumscribed polygon. In this 
way, he was able to calculate that the circumference of the circle lay 
between 

343 and 3$. 

But why stop at polygons of 96 sides? By taking more sides, you could 
get more accurate estimates, But the process is unending. At no actual 
stage is it complete; at any moment, we can only say that a lies between 
certain numbers. The exact number A is only defined by taking all 
these estimates; each estimate gives an interval within which K must 
lie; A is the only number that lies in all these intervals; it is the only 
number that is larger than the perimeter of any inscribed regular 
polygon, and less than the perimeter of any circumscribed regular 
polygon. 

There is another way of calculating A. This is a purely arithmetical 
procedure. In many ways, it is simpler than the geometrical argument 
used above. It has the disadvantage that I cannot explain the proof 
to you. However, within your first year of studying calculus you could 
come to understand how this method was devised. Here then is the 
method. Consider the series 

t You will find a table of r to 4,000 places of decimals in The Lore o i  Large 
Numbers by P. J. Davis, published in this series. 
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Let S,, stand for the sum of the first 17 terms of this series. Thus 

and so on. It can be shown that if you take an odd value for..?, then 
S,, will be larger than &R. I f  you take an even value for n, then S,, will 
be less than &T. Further, this statement fixes the value of &R. There is 
no other number that is smaller than each one of the numbers Sl, S3, 
Sg, . . ., and larger than each one of the numbers S2, S4, s6, . . .. But 
it will take us an eternity to calculate all of these numbers. So this 
method also does not allow us to define +r exactly, without supposing 
an infinite process to have been completed. It does, of course, allow us to 
determine &R us closely us we like; by calculating the sum of the first 
million terms of the series, we could determine &T to about five places 
of decimals; multiplying this result by 4, we should obtain an estimate 
of T. But no such finite procedure ever gives us R exactly. 

Actually, the series is not a very good one for the practical purpose 
of calculating estimates of 1~. However this is not very important for 
our present purpose, which is to show that no one has yet found a 
method of specifying T exactly without appealing to some infinite 
process. 

Accordingly, if you are going to object to my construction for the 
curve on page 97 because it involves an infinity of steps, you have got 
to object to a lot of other things as well! You must object whenever 
anyone mentions the number R, or the length of the circumference of 
a circle, or the area of a circle. All of these can be defined only in terms 
of an unending process. Calculus, in fact, is essentially concerned with 
unending processes. The true speed, s’, was something continually 
approached, but never reached, by the average speed over a small 
interval of length h. The slope of a curve, y’, was something continu- 
ally approached but never reached by the slope of the line CD. If 
we are to allow unending processes in the finding of slopes and 
speeds, why should we exclude them in the construction of curves and 
laws? 

Even in arithmetic, an unfinished process occurs. If you try to express 
the fraction Q as a decimal, you obtain the result 0.111111 1 - . which 
contains an unending sequence of ones. In arithmetic, we usually write 
quite cheerfully Q = 0.111111 . . ., but really some explanation is 
called for when we say that an unending expression is equal to 4. What 
do we mean by such a statement? How can we test it? We can explain 
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our meaning in the following way. Let 

S, = 0.1, 
S2 = 0.11, 
sj = 0.111, 

and so on. S,, will stand for the decimal that has the figure 1 occurring 
n times after the decimal point. In the sequence S1, S2, S3, . , ., each 
number is nearer to Q than the previous one, and by going far enough 
along, you can make the difference as small as you like. For, in fact, 

9s1 = 0.9 

9S3 = 0.999 = 1 - 0.001. 

= 1 - 0.1, 
9s~ = 0.99 = 1 - 0.01, 

By choosing a sufficiently large value of n, we can make 9S, as close 
to 1 as we wish. So, as n gets large, 9S, gets closer and closer to 1, and 
this means that Sn is getting closer and closer to 8. Accordingly, the 
value 9 is picked out from all other possible values when we write down 
the numbers S,, S2, S3, . . . . This sequence settles down to the value 
and to no other value. 

You will notice that I have used the same idea to explain what I 
mean by the unending expression 0.1 11 11. . . as I did a little earlier to 
explain what I meant by the unending expression 

1 -*+2)-$+.... 

Any time in future that I use an unending expression, we will agree that 
this is how it is to be interpreted. We break off the expression at a 
certain point and calculate the value; we then see whether this value 
approaches any fixed number when more and more terms are included 
in the calculation. 

The unending decimal 0.11111 . - . could be written as 

(4) + ($ + (hy + ( y  + . . .. 
The fraction fa is no better than other fractions. We might find 
interesting results by considering the unending expression 
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We could form and investigate many other expressions of this type. 
To avoid the labor of investigating each one separately, we may use 
algebra and do the whole lot at once by investigating the unending 
expression 

This is in fact a standard topic of high-school algebra, where it is shown 
that, provided x is a proper fraction, the above expression settles down 
to the value x / ( l  - x) .  You may notice that, if you substitute & for x, 
this formula does give you the result Q in agreement with our earlier 
work. 

The unending expression x + x2 + x3 + - - -, where x is any proper 
fraction, can thus be replaced by the ordinary algebraic expression 
x/(l - x),  so that we have not obtained anything new. However, in 
many cases an unending expression gives us something that could not be 
got in any other way. For example, the expression, 

m3 m5 m7 m9 
+- 9 -..., rn--+Y-T 3 

where m is any proper fraction, cannot be replaced by any ordinary 
algebraic expression. It gives us the length s in Fig. 64. In this figure, 
APB is part of a circle of radius unity with center at the origin 0. The 
line y = mx, of slope m, cuts the circle in the point P. The arc A P  has 
the length s. 

Figure 64 

There are, in fact, many very interesting laws that can only be ex- 
pressed with the help of infinite series. These have been very successfully 
investigated with the help of calculus. Both in pure mathematics and 
in science, the results so obtained have proved extremely reliable and 
satisfactory. Mathematics would be poorer and science would be 
paralyzed if infinite processes were outlawed. For these reasons, mathe- 
maticians continue to use unending constructions in their work. But 
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we do so with the knowledge that we are handling dynamite; infinity 
can be used, but it must be used with care. 

This discussion arose from an attempt to allay any doubts that you 
might feel about the unending construction used on page 97. We called 
this objection (1). But the discussion also throws light on objection (2), 
that the graph in Fig. 63 is not a single curve, but is obtained by piecing 
together bits of different circles. 

Consider the following equation, 

1 
= 1 + x + x2 + x3 + x4 + * - 

where x is supposed to be positive. I think you will agree that this 
is one equation, and that its graph is accordingly given by one formula. 
What is the graph of this equation? 

First of all, consider the part of the graph corresponding to values 
of x between 0 and 1. Since x is a proper fraction, by the result given 
on page 101, 

X x+x2 +x3 + .  . * =: -. 
1 - X  

Adding 1 to both sides, we find 

I-x x -- - 
1 - x + l - X  

1 
1 - x  

--. - 

Substituting this value for the denominator in our equation, we find 

Now let us see what happens when x is larger than 1. If we take 
that y = 1 - x,  so long as x is a proper fraction. 

x = 2, for example, we find 

1 
= 1 + 2 + 4 + 8 + 16 + ...' 

We find the value of y by taking n terms of the series in the denominator, 
and seeing what number the fraction approaches as n gets larger and 
larger. For example, if we take five terms in the denominator, the 
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fraction equals 1/31; if we take ten terms, the fraction becomes 1/1023; 
if we take twenty terms, it becomes 1/1,048,575. The more terms we 
take, the smaller the fraction becomes; in fact, it is approaching zero, 
and this is the value of y for x = 2. If you take any other number 
larger than 1, you will be led to the same conclusion. For all x larger 
than 1, the value of y is zero. 

Thus this single formula manages to give us pieces of two algebraic 
graphs. For x between 0 and 1, the graph coincides with the line 
y = 1 - x. For x larger than 1, the graph coincides with y = 0. Thus 
the equation has the graph of Fig. 65. 

Figure 65 

With the simple equations studied in elementary algebra, it is im- 
possible to get this kind of effect. But when infinite series are allowed, 
graphs which seem to consist of a number of separate geometrical 
figures become quite commonplace. 

In electronics and other branches of science, a special type of unend- 
ing expression is used. It is called a Fourier series. With a Fourier 
series you can quite easily obtain the graphs of Fig. 66. 

Figure 66 

Graph (c) of the figure is of importance for time bases in television 
and radar. It represents the type of motion in which a spot of light 
moves across a screen at a steady pace, then suddenly goes back to the 
beginning and starts all over again. 
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Curve (d) is a little joke which I found in a book on the theory ot’ 
wusic. Someone took a photograph of a friend, and fed the profile into 
a machine known as a harmonic analyzer. The machine computed a 
formula, the graph of which is the outlin.: of that face repeated agair 
ind again. 

Graph (a) is sometimes called tbe graph of the Parapet Function and 
graph (b) the Sawtooth Function. 

We do not need to go to electronics for examples of graphs that 
seem to consist of many different curves. Figure 67 shows the behavior 
of a bouncing ball. 

. 

Figure 67 

It is interesting that-in theory at any rate-a ball makes an infinite 
number of bounces in a finite time. For example, at each bounce it 
may rise to one-fourth the height of the previous bounce, and each 
bounce takes half as long as the previous one. 

A Curve with No Direction Anywhere 

In  Fig. 62 we drew a curve which passed through the point C,  but 
had no direction at that point. Of course, the same could be said of a 
much simpler curve like that of Fig. 68. This curve has a sudden bend 

Figure 68 

at the point P, and we cannot draw a tangent at that point. There is 
nothing very surprising in this figure. The curve simply enters P from 
one direction and leaves it in another. 

In both these examples, there is a single point where the curve mis- 
behaves. In Fig. 62, the curve wobbles at C; in Fig. 68, the curve has 
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a bend at P. But at other points the behavior is entirely normal. For 
several centuries it was thought that wobbles and bends must be 
exceptional things, that could only occur at isolatcd points. However 
in 1875 a paoer waz publisned showing that you could have a curve 
consistinb of nothing but wobbles. You can choose any point on this 
curve you like; the curve passes through that point but does not pass 
through‘it in  any direction! This surprised mathematicians very much. 
It became clear that in calculus we should not begin by asking, “What 
is the slope of this curve at the point P?” but rather, “Does this curve 
have a slope at the point P?” 

You may feel that such a curve is too painful to think about. Let us 
shut it out, and say we will not think about it. In practice, we do this 
to some extent in first-year calculus. With a simple formula like 
v = 2x3 - 3x2, we ask the student to find y’; we do not, as a rule, 
emphasize the question of whether y‘ exists at all. At this stage in 
calculus, we are dealing with simple formulas, for which y‘ is bound 
to exist; there may of course be points like the origin on the curve 
y = &, where the tangent is vertical so that no finite value exists for 
y’. Still, the curve does have a definite direction. In our experience of 
high school graphs, overwhelmingly we meet smooth, well-behaved 
curves. 

So we might try to deal with the situation by outlawing the curves 
that have no direction. We might say that it is unfair to define such a 
curve, and we will not accept such a definition. There are several 
reasons why we do not do so. First of all, it would be cowardly. We 
have come to a region where things behave differently from what we 
have been used to; shall we turn back and go home? The mathema- 
tician has the instincts of the explorer; at all costs, go forward; if 
things aredifferent, so much the better; that will make it more interest- 
ing. 

There are other, more definite reasons. This new, strange region 
borders our own countryside. Often we shall be chasing some mathe- 
matical quarry and it will cross the boundary line. We do not want to 
give up the chase at that point. For in fact the strange curves are 
defined by formulas which look exactly like those we use, not only in 
pure mathematics, but also in engineering and science. They can be 
defined by Fourier series, which are of the utmost importance in science 
and indeed owe their origin to mathematical physics. In life, it is hardly 
ever possible to draw a boundary line between what you will study and 
what you will not; everthing combines to push you across such an 
artificial barrier. 

Suppose, then, we decide to think about directionless curves. We do 
not merely say that such curves exist. We can produce an actual 
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formula and know that this formula gives a directionless curve.? What 
would happen if we tried to draw the graph of a directionless curve? 
Something like the following: Suppose we first decide to calculate the 
values of y corresponding to the whole numbers x = 0, 1, 2, 3. We 

Figure 69 

might get points like those of Fig. 69, and we would think, “The curve 
must run like this.” 

Figure 70 

To make sure, we decide to plot some more points. So we calculate p 
for values of x at intervals of *, say for x = i, +, $, 1, l), . . .. We 
find they lie as in Fig. 71. So we revise our ideas of what the curve 

* *  

* *  
0 

* *  

Figure 71 

t J.L.B. Cooper, in the article “Mathematical Monsters,” Marlrnna/icul Gaze/fe 
(December, 1954) gives the example 

I 1 I 
,fix) = sin x + - sin 2x + - sin 6x + - sin 24x + . . .. 4 9 16 

The general term is 
1 2 sin n! x. 
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looks like. It now seems that it should be something like this: 

I07 

Figure 72 

Again we plot some more points, and we find these indicate yet more 
waves. The extra points (at intervals of &) give us Fig. 73 and suggest 

. . 
9 .  

. 
0. . . 0 .  . . . .. . .. 0 . .  0 '  

.* . .* .. . 
Figure 73 

the curve of Fig. 74. And so it goes on. At each stage, we find evidence 

Figure 74 

of shorter and shorter waves. The curve is infinitely crinkly! And yet it 
is a perfectly good, definite curve. We can work out as many points on it 
as we like, just as when we plot an elementary graph. The more points 
we plot, the more clearly do we see how the curve lies. But we cannot 
sketch the curve with a sweep of a pencil as we do with simpler graphs. 



Guide to Further Study 

As was emphasized at the beginning of this book, the ideas of 
calculus have great powers of growth and development; from this 
small root there come many branches of pure mathematics and ot 
physical science. This growth will seem natural and orderly to anyone 
who traces its development from the root upwards. But the latest fruits 
of this growth may seem very strange and unnatural to someone who 
meets them suddenly without any knowledge of the tree from which 
they came. It is therefore extremly important to read books about 
calculus in the correct order. A student with real genius for mathematics 
might be reduced to despair, if he were required to read a modern text 
on analysis without any previous preparation. It would be a book in a 
foreign language; the words would not convey any ideas. This does 
not mean that the ideas, built up gradually and in the right order, are 
particularly difficult. 

One can recognize three stages in the development of calculus, which 
fit rather neatly into the changes of century. 

(1) 1600-1800. The happy-go-lucky stage. The main emphasis is 
on formulas and results. 
(2) 1800-1900. The analysis or epsilon-delta stage. 
(3) 1900- 
In passing from each stage to the next, new ideas and a new way of 

thinking have to be learned. A student may experience some kind of 
crisis. At first, he feels he cannot grasp these new ideas. If he keeps 
reading about them in different books, and thinks and works problems 

. The stage of abstraction and extreme generalization. 
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for himself, he should reach a stage where everything seems to fall into 
place; he then finds it hard to see why these ideas ever seemed difficult 
to him. He sees that the new ideas are simply the old ideas expressed 
in a different way, perhaps a little more clearly. 

Before 1900, there was a general belief that calculus was much too 
difficult to teach young mathematicians. Many results that could have 
been proved very simply by calculus had to be obtained by more painful 
algebra. This procedure was known as “calculus dodging.” Round 
about 1900, John Perry and others in England began to advocate the 
view that the essential ideas and methods of calculus were simple and 
could be taught in schools. E. H. Moore, professor of mathematics at 
Chicago and the father of modern American mathematics, gave this 
view his b1essing.t One of Moore’s students, F. L. Griffin, pioneered 
the teaching of calculus to first-year college students. This was regarded 
as a very daring thing to do. Griffin’s celebrated book, Introduction to 
Mathematical Analysis, shows how he went about this. The word 
“calculus” did not appear in the title, in case the students were terrified. 
This book, which deals both with trigonometry and calculus, and 
emphasizes the relation of calculus to physics and engineering, can be 
warmly recommended as an introduction to calculus. 

In England, during the past fifty years, the teaching of calculus in 
high schools has become the general practice. It is not possible to say 
just how many years of calculus are done in school as, in the better 
schools, students are encouraged to work ahead at their own pace. 
Whether a student meets calculus at 18 or 16 or 14 depends largely on 
his own ability. As there are no books written in America for teaching 
calculus to 15-year-oldsY it may be of interest to mention some English 
calculus texts. Being much smaller and more concise and plainer than 
American texts, these books are very inexpensive. 

Introductory calculus ideas are usually brought in towards the end of 
the algebra text. See, for example, Durell, Palmer, and Wright, He- 
nientary Algebra (Bell, Portugal Street, London, W.C.2). 

Fawdry and Durell, Calculus for Schools (Arnold, London) gives a 
very simple introduction to calculus. 

Durell and Robson, Elenientary Calculus, volumes I and I1 (Bell), 
introduces calculus in a simple way; the authors make great efforts not 
to make any statement that the student will find to be untrue when he 
reaches a more advanced stage. This book takes the student further 
into calculus than Calculus for Sclzools does. Volume I1 explains, among 
other things, the idea of partial differentiation, which is of importance 
for further mathematics and, in particular, for mathematical physics. 

See the first yearbook of the National Council of Teachers of Mathematics 
(U.S.A.). 
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However, you will need to work far more exercises than are given in 
this book, if you are to remember what you read. You should seek out 
exercises from any book on calculust and work at them in such a way 
that you always keep in good practice. 

Piaggio, Diferential Equations (Bell) is a very readable book that 
might follow Elementary Calculus, Part 11. The earlier chapters, in 
particular, do not delve into underlying theory but give the student an 
idea of how calculus is used. Chapter 1V gives a very quick and simple 
introduction to Fourier series. 

We now wish to pass from the happy-go-lucky stage to the epsilon- 
delta stage. Most texts do this far too suddenly. The book that takes 
the student most gradually and carefully from the old to the new view- 
point seems to me to be Hardy, Pure Mathematics (Cambridge Uni- 
versity Press). 
You may wonder why we call this the “epsilon-delta’* stage. In the 

19th century, many ideas which had been previously accepted as 
sufficiently clear-for example, “continuous”, “approaches”-were 
carefully analyzed and defined. The new definitions usually contained 
the phrase “given any positive C, however small, 6 can be found such 
that . . .”.I People came to think of this phrase as typical of the new 
analysis. 

I t  may help you to acquire these new ideas if you read some general 
accounts of how mathematics developed in this direction; for example: 

Tobias Dantzig, ‘Number, rhe Language of Science (Doubleday 
Anchor, 95 cents). Especially, Chapters 7, 8, 9. 
Felix Klein, Elementary Mathematics from an Advanced Viewpoint; 
Arithmetic, AIgebra, Analysis (Dover). 
W. W. Sawyer, Mathematician’s Delight (Penguin, 85 cents). 
Once you have reached the stage where you can read a book written 

in the epsilon-delta language, there is no doubt what your next book 
should be-Courant, Diferential and Integral Calculus (Interscience, 
N.Y.). This book is admirably clear. As Nathan G. Park says, in his 
Guide to the Literature of Mathematics and Physics, “Courant will give 
the student the best possible balance between vigor and rigor.” 

Where you go after this must depend very much on your personal 
tastes and aims. There is so much mathematics that, unfortunately, no 
one can learn the whole of it. 

t A bad book can contain good exercises. For example, J. Edwards, The Difer- 
ential Calculus (St. Martin’s Press), is famous for the number of illogical and untrue 
statements it contains. But i t  contains an amazing collection of examples for anyone 
wishing to master formal manipulation in calculus. 

$ The symbols 6, c are read “delta” and “epsilon”. They are the letters of the 
Greek alphabet corresponding to our d and e. 
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In every branch of mathematics there are a few central ideas; in the 
following-out of these central ideas, all kinds of detailed investigations 
become necessary. Very many books give you the details without the 
central ideas that illuminate the whole subject. You should not therefore 
be disturbed if, when trying to learn a new branch of mathematics, 
you find the books on it completely incomprehensible. Continue to  
search in libraries or bookshops until you find a book that gives you 
the essential ideas. Sometimes you cannot find one book that gives 
you all you want; you may have to pick up a clue here and a clue there. 

Some of the mathematics of the 20th century, in particular, seems 
most strange if you are suddenly plunged into the middle of it. It 
appears to  be an entirely different subject from the mathematics you 
learned at school. Yet it grew from the older mathematics, This 
happened in something like the following way. The older mathematics 
dealt in the main with definite objects. You had to solve a particular 
equation, or prove a theorem about some particular shape in geometry, 
or study the vibrations of a particular mechanical system. As time 
passed, more and more special results about particular objects accumu- 
lated, and mathematicians began to long for some way of systematizing 
the subject. There were too many details for anyone to remember them 
all. Then it began to be noticed that, very often, the details were only 
obscuring the picture. Of all the information available about some 
object, only a small part might be necessary for solving the problem in 
hand; that aspect was helpful, all the rest was merely distracting. Mathe- 
maticians began to study these special aspects, much as a chemist might 
extract a vitamin from a complex substance. Someone who knew 
nothing about vitamin pills might not realize that such a thing was food 
at all. In the same way, a person new to modern abstract mathematics 
might not realize that it was mathematics at all. 

This extraction of the essential ideas was also made necessary by 
mathematicians going on to more and more complicated problems. 
Some vibrations in mechanics can be represented by the motion of a 
point in two or three dimensions. We are able to visualize the mechan- 
ical problem by means of geometry. Some more complicated problems 
require four or five or six or more dimensions to visualize. So we 
deveIop the geometry of n dimensions, and this helps us to visualize 
the problem, in a somewhat vaguer way, by the analogy with ordinary 
space of 3 dimensions. Some problems require an infinity of dimensions. 
Now space of infinite dimensions in some ways resembles space of 
three dimensions, and in some ways differs from it. So it becomes 
necessary to separate very carefully those ideas we have about ordinary 
geometry which are still true and helpful when we are thinking about 
infinite dimensional space, from those which are untrue and misleading 
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when used as analogies. By this kind of road mathematicians reached 
the concept of Hilbert space. 

The connection between physics and the geometry of space is brought 
out very nicely in Courant and Hilbert, Methods of Matliematical 
Physics (Interscience, N.Y.), Volume 1. 

A book which carries the reader from 19th- to 20th-century mathe- 
matics, without any sense of a sudden break, is Riesz and Nagy, 
Functional Analysis (Ungar, N.Y., 1955). 

By contrast, one may mention Munroe, Introduction to Measure and 
Integration. This book from the start has the flavor of the 20th century. 
For a reader with the necessary background it is extremely clear. 
E. J. McShane, Integration (Princeton) is written for “students of 

little maturity” who are beginning graduate work in mathematics. Any 
student of strong mathematical ability will, of course, be able to read 
it several years earlier than this. 

A student who finds difficulty in passing from traditional calculus 
to the set-theoretical approach may find something of interest in the 
huge book, Hobson, Fumtions ofa Real Variable (Cambridge University 
Press, reprint by Dover). This book has been described as a strange 
mixture of careful rigor and astonishing errors. It was written in the 
years when the new theories were corning in, so you see Hobson (who 
had grown up under the older approach) trying to explain to himself 
and others what these new ideas are. It is a book to browse in, rather 
than to read from cover to cover. The fact that the book contains 
errors? is valuable. Jt means that you cannot accept any statement on 
authority; all the time, you have to ask yourself, “Do I believe this?” 

t See Littlewood, A Marhentaric;an’s Misce/!any (Methuen, London), page 68. 



List of Technical Terms 

Throughout this book, I have explained things as far as possible 
in everyday language. When you read other books on calculus, you will 
need to know the symbols and the special names that mathematicians 
use. 

Derivative. s’ is called the derivative of s. You may also find the sym- 
bols ds/dt, Ds, D,s used for the derivative. These have exactly the same 
meaning as s‘. 

Differentiation. The problem of finding the derivative is called 
dflererttiution. Thus in  Chapter 3 you learned how to differentiate t2 ,  
in  Chapter 4 how to differentiate t”, and in Chapter 5 how to differentiate 
any polynomial. 

Integration. Finding an area or a volume is a problem of integration. 
Integration can be regarded as the reverse of differentiation. The symbol 
J is used in  connection with integration. At the end of Chapter 9 we 
found the volume of a half sphere. A mathematician would write our 
result 

Limit. Many times in this book we have noticed that something 
“approached” or “seemed to be settling down to” a certain value. In 
Chapter 2, the numbers 5,  5.9, 5.99, 5.999, . .. seemed to be ap- 
proaching the value 6. In Fig. 23 on page 54, the slope of the line 
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CD approached closer and closer to the slope of the curve at  C. By 
writing enough ones, you can make 0.1 11 11 . - - 11 1 approach as close 
as you like to the fraction 1/9. In  each of these cases, something is 
tending towards a liniit. While the word has not been stressed, the idea 
of limit runs through everything discussed in this book. 

Function. The meaning of the word fuiiction has developed and 
changed during the last three centuries. At first, “ y  is a function of x” 
meant something very much like “y is related to x by some formula.” 
This would cover, for example, y = 2x + 1 or y = x* or j’ = d w .  
In each of these cases, an 18th-century mathematician sees a formula 
giving y in terms of x. Suppose he has some procedure that can be 
applied to each of these, and to many other formulas as well. He does 
not mind what the particular formula is; he wants to lump them all 
together. He would say, “Let j* be any function of x.” He would write 
this, for short, as y = f (x ) .  
As time passed, this viewpoint proved insufficient. In Fig. 65, we had 

a graph consisting of parts of two lines. Between x = 0 and x = 1, 
the value of y was 1 - x. For x larger than 1, the value of y was zero. 
So two formulas were involved, y = 1 - x and y = 0. What shall 
we say? Do we have two functions here, or part of one function grafted 
onto part of another function, or what? There were furious discussions 
between mathematicians about this question. As time passed, more and 
more strange graphs came to the attention of mathematicians, and it 
was eventually decided that the best thing to do was to forget all about 
the simple formulas of algebra. Instead, it was decided to writey = f ( x )  
if any procedure whatever fixed the value of y so soon as the value of 
x was given. Thus the graph of Fig. 65 defines a function; if I tell you 
any positive number for x, you can read the corresponding value of y 
from the graph. If 1 say x = 2, you answer y = 0. If I say x = 2, 
you answer JJ = a. You are never at a loss for an answer. As soon as 
I say the value of x, that fixes the value of y. Good; we do not inquire 
any further into the matter. Any procedure that associates a single 
value of y with each value of x defines a function. 

The graph of Fig. 65 was drawn only for positive values of x. So the 
function is not defined for all values of x, but only for positive values. 
Mathematicians have decided that this is nothing to worry about. In 
first-year algebra, JJ = di is defined only for positive x. We do not 
know anything about the square root of a negative number. We accept 
this situation. We say that 6 is defined (in beginning algebra) only 
for the doitiain of positive values of x. If y = f ( x )  is defined only for a 
certain set of values of x, these values are said to form the dotnuit1 of 
the function. 
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For example, if x is a whole number, we can define y as the largest 
prime factor of x,  but this definition would not make sense if x was a 
fraction. We have defined a function for the domain of the whole 
numbers. 

In traditional algebra, x and y stand for numbers. But functions can 
be defined which have nothing to do with numbers. For example, 
suppose we consider all the instants of time since the year 1789. These 
form the domain of the function. At any instant during those years, the 
President of the United States had eyes of some color. With some 
historical research, one could find out what that color was, corres- 
ponding to each time. So we have a procedure for associating a definite 
color with each instant of time since 1789. This procedure defines a 
function. We have come a long way from algebraic formulas! The word 
“function” is generally used today in this very wide sense. 

One point arises. Returning to ordinary algebra, we might consider 
the following two procedures. 

Procedure I: Take any number, x. 
Add 1 to it. 
Square the result. 
This gives the value of y. 

Procedure 11: Take any number, x. 
Square it. 
Add twice the number. 
Add 1. 
This gives the value of y. 

Each procedure defines a function. The procedures are different. 
Shall we say that the resulting functions are different? 

If  we take for example x = 5, Procedure I gives y = (5 + 1)2 = 36 
and Procedure 11 gives y = 52 + 2 . 5  + 1 = 36. So either procedure 
leads us to associate y = 36 with x = 5. And the same happens, of 
course, with any number you may choose. Procedure I corresponds to 
the formula y = (x + 1)2, and Procedure I1 to the equivalent formula 
J’ = x2 + 2x + 1. 

Mathematicians have agreed to say that both procedures define the 
same function. We are only interested in the final result, not in the 
details of the calculation. If we have any procedure, which leads you to 
say y = 36 when I say x = 5, and makes you say y = 4 when I say 
x = 1, and quite generally makes you say JJ = (n + 1)’ when I say 
x = / I ,  then that procedure defines the same function as Procedure 
I above. 



116 W H A T  IS C A L C U L U S  A B O U T ?  

You may meet a definition of function which begins: “A function is 
a set of ordered pairs.. .”. This is a very condensed and abstract way 
of saying what I have outlined above. I am not too happy myself with 
any definition that begins “A function is. . .”, any more than 1 should 
be happy with a definition that began “Electricity is. . .”, or “Magnetism 
is.. .”, or “Cold is.. .”. 1 can give you a series of tests, in each case, 
that will enable you to say, “This is probably an electrically charged 
object”, or “This is probably a magnet”, or “This is probably a piece of 
gold”. In the same way, I have given tests above that will enable you 
to tell (i) whether a particular procedure defines a function, and (ii) 
whether two apparently different procedures define the same function. 

It is important to distinguish between the function and the value of 
the function. I f f  stands for the function defined by Procedure I above, 
we may write 36 = f(5). This means that 36 is the value of y that 
Procedure 1 leads us to associate with x = 5. 36 is called the value of 
the function for x = 5.  It would be wrong to say that 36 is thefunction 
f: It would be nearer the truth to say that the letterf, by itself, indicates 
the operation of “adding 1 and then squaring”. f(5) represents the 
result when this operation is applied to the particular number 5 .  



Answers to Questions and Exercises 

p. 12 1. The steeper the line is, the faster the object is moving. 
p. 13 2. (a) is (ii) (d) is (iv) 

(b) is (iii) 
( 4  is (v) 

(s) is (vi) 

(e) is (i) 

3. ( f )  is (viii) (h) is (ix) 
(i) is (vii). 

p. 20 1. s = 20r. s' = 20. 
2. t o 1  2 3 

s 0 30 60 90 
Velocity is 30 mph. s' = 30. 

3. S' = 40. 
4. 50. 
5. k .  

p. 20 (1) 10 (2) 10 (3) 10 
If s = lor + c, 5' = 10. 

p. 21 (4) 20 ( 5 )  20 (6) 20 (7) 20 
Conclusion: If s = 20t + c, s' = 20. 

The illustrations are straight lines. If the scale is kept fixed, 
the larger the velocity s' is, the steeper the line will be. If 
different laws give the same velocity, as in (l), (2), (3), the 
lines will be parallel. 

(8) 30 (9) 50 (10) 40 (11) 30 (12) 50 
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p.33 1. t 1 1.001 2 2.001 3 3.001 4 4.001 5 5.001 
s 1 1.003 8 8.012 27 27.027 64 64.048 125 125.075 

I 1 2 3 4 5  
s' 3 12 27 48 75 

Law: v = s' = 312. 

2. See p. 34. 
3. See p. 34. 
4. 514; 615; ntn-1. See pp. 34-35. 

p. 44 (1) 20t (4) 800W 
(2) 6012 (5) 6tz 

(3) 1613 (6) 6t 

(2) 6rz + 6t 
(3) 396 + 8t3 

p. 45 (1) 20t + 6012 (4) 35t6 - 8t3 
(5) 20t + 6012 - 20t3 

p. 47 1. 0;2;2 5. 101 - 4 
2. 0; 3t2; 3t2 6. 612 - 6t - 10 
3. 0; 3; 2t; 2t + 3 7. 80119 + 30114 - 30t9 + 5 
4. lot + 4 8. 6 0 1 s  + 6014 - 6013 + 6013 - 60r + 60 

p. 52 (1) 1 (2) 1 (3) 2 (4) 3 
p. 53 (5) -1 (6) -2 

p. 68 6. 3x2 - 6x + 9 = 3(x - 1)2 + 6, never zero and never nega- 
tive. If y = x3 - 3x2 + 9x, y' = 3x2 - 6 x  + 9. So y' is always 
positive. Curve uphill; resembles Fig. 37. 
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