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xv

Preface

The purpose of this book is to help students understand and use calculus. Everything has been aimed toward 
making this easier, especially for students with limited background in mathematics or for readers who have 
forgotten their earlier training in mathematics. The topics covered include all the material of standard courses 
in elementary and intermediate calculus. The direct and concise exposition typical of the Schaum Outline 
series has been amplified by a large number of examples, followed by many carefully solved problems.  
In choosing these problems, we have attempted to anticipate the difficulties that normally beset the beginner. 
In addition, each chapter concludes with a collection of supplementary exercises with answers. 

This fifth edition has enlarged the number of solved problems and supplementary exercises. Moreover, we 
have made a great effort to go over ticklish points of algebra or geometry that are likely to confuse the student. 
The author believes that most of the mistakes that students make in a calculus course are not due to a deficient 
comprehension of the principles of calculus, but rather to their weakness in high-school algebra or geometry. 
Students are urged to continue the study of each chapter until they are confident about their mastery of the 
material. A good test of that accomplishment would be their ability to answer the supplementary problems.

The author would like to thank many people who have written to me with corrections and suggestions, in 
particular Danielle Cinq-Mars, Lawrence Collins, L. D. De Jonge, Konrad Duch, Stephanie Happ, Lindsey 
Oh, and Stephen B. Soffer. He is also grateful to his editor, Charles Wall, for all his patient help and guidance.

Elliott Mendelson
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1

CHAPTER 1

Linear Coordinate Systems.  
Absolute Value. Inequalities.

LINEAR COORDINATE SYSTEM

A linear coordinate system is a graphical representation of the real numbers as the points of a straight line. To 
each number corresponds one and only one point, and to each point corresponds one and only one number.

To set up a linear coordinate system on a given line: (1) select any point of the line as the origin and let 
that point correspond to the number 0; (2) choose a positive direction on the line and indicate that direc-
tion by an arrow; (3) choose a fixed distance as a unit of measure. If x is a positive number, find the point 
corresponding to x by moving a distance of x units from the origin in the positive direction. If x is negative, 
find the point corresponding to x by moving a distance of -x units from the origin in the negative direction. 
(For example, if x = -2, then -x = 2 and the corresponding point lies 2 units from the origin in the negative 
direction.) See Fig. 1-1.

Fig. 1-1

The number assigned to a point by a coordinate system is called the coordinate of that point. We often 
will talk as if there is no distinction between a point and its coordinate. Thus, we might refer to “the point 3” 
rather than to “the point with coordinate 3.”

The absolute value |x| of a number x is defined as follows:

 =
−






x

x x

x x
| |

if is zero or a positive number

if is a negative number

For example, |4| = 4, | -3| = -(-3) = 3, and |0| = 0. Notice that if x is a negative number, then -x is positive. 
Thus, |x| ≥ 0 for all x.

The following properties hold for any numbers x and y.

(1.1) | -x| = |x|
 When x = 0, | -x| = | -0| = |0| = |x|.
 When x > 0, -x < 0 and | -x|  = -(-x) = x = |x|.
 When x < 0, -x > 0, and | -x| = -x = |x|.
(1.2) | x - y|  = | y - x| 
 This follows from (1.1), since y - x = -(x - y).
(1.3) |x| = c implies that x = ±c.
 For example, if |x| = 2, then x = ±2. For the proof, assume |x| = c.
 If x ≥ 0, x = |x| = c. If x < 0, -x = |x| = c; then x = -(-x) = -c.
(1.4) |x|2 = x2

 If x ≥ 0, |x| = x and |x|2 = x2. If x ≤ 0, |x| = -x and |x|2 = (-x)2 = x2.
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2 CHAPTER 1 Linear Coordinate Systems

(1.5) |xy| = |x| ⋅ |y|
 By (1.4), |xy|2 = (xy)2 = x2y2 = |x|2|y|2 = (|x| ⋅ |y|)2. Since absolute values are nonnegative, taking square 

roots yields |xy| = |x| ⋅ |y|.

(1.6) = ≠x
y

x
y

y
| |
| |

if 0

 By (1.5), y
x
y

y
x
y

x y| | | | . Divide by | |.= ⋅ =

(1.7) |x| = |y| implies that x = ±y.
 Assume |x| = |y|. If y = 0, |x| = |0| = 0 and (1.3) yields x = 0. If y ≠ 0, then by (1.6),

 
x
y

x
y
| |
| |

1= =

 So, by (1.3), x/y = ±1. Hence, x = ±y.
(1.8) Let c ≥ 0. Then |x| ≤ c if and only if -c ≤ x ≤ c. See Fig. 1-2.
 Assume x ≥ 0. Then |x| = x. Also, since c ≥ 0, -c ≤ 0 ≤ x. So, |x| ≤ c if and only if -c ≤ x ≤ c. Now 

assume x < 0. Then |x| = -x. Also, x < 0 ≤ c. Moreover, -x ≤ c if and only if -c ≤ x. (Multiplying 
or dividing an equality by a negative number reverses the inequality.) Hence, |x| ≤ c if and only if 
-c ≤ x ≤ c.

(1.9) Let c ≥ 0. Then |x| < c if and only if -c < x < c. See Fig. 1-2. The reasoning here is similar to that for (1.8).

Fig. 1-2

(1.10) -|x| ≤ x ≤ |x|
 If x ≥ 0, x = |x|. If x < 0, |x| = -x and therefore, x = -|x|.
(1.11) |x + y| ≤ |x| + |y| (triangle inequality)
 By (1.8), -|x| ≤ x ≤ |x| and -|y| ≤ y ≤ |y|. Adding, we obtain -(|x| + |y|) ≤ x + y ≤ |x| + |y|. Then  

|x + y| ≤ |x| + |y| by (1.8). [In (1.8), replace c by |x| + |y| and x by x + y.]

Let a coordinate system be given on a line. Let P1 and P2 be points on the line having coordinates x1 and x2. 
See Fig. 1-3. Then:

(1.12) |x1 - x2| = P1 P2 = distance between P1 and P2.
 This is clear when 0 < x1 < x2 and when x1 < x2 < 0. When x1 < 0 < x2, and if we denote the origin 

by O, then P1P2 = P1O + OP2 = (-x1) + x2 = x2 - x1 = |x2 - x1| = |x1 - x2|.

As a special case of (1.12), when P2 is the origin (and x2 = 0):
(1.13) |x1| = distance between P1 and the origin.

Fig. 1-3

FINITE INTERVALS

Let a < b.
The open interval (a, b) is defined to be the set of all numbers between a and b, that is, the set of all x such 

that a < x < b. We shall use the term open interval and the notation (a, b) also for all the points between the 
points with coordinates a and b on a line. Notice that the open interval (a, b) does not contain the endpoints 
a and b. See Fig. 1-4.

The closed interval [a, b] is defined to be the set of all numbers between a and b or equal to a or b, that is, 
the set of all x such that a ≤ x ≤ b. As in the case of open intervals, we extend the terminology and notation 
to points. Notice that the closed interval [a, b] contains both endpoints a and b. See Fig. 1-4.
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3CHAPTER 1 Linear Coordinate Systems

Fig. 1-4

By a half-open interval we mean an open interval (a, b) together with one of its endpoints. There are two 
such intervals: [a, b) is the set of all x such that a ≤ x < b, and (a, b] is the set of all x such that a < x ≤ b.

INFINITE INTERVALS

Let (a, ∞) denote the set of all x such that a < x.
Let [a, ∞) denote the set of all x such that a ≤ x.
Let (-∞, b) denote the set of all x such that x < b. 
Let (-∞, b] denote the set of all x such that x ≤ b.

INEQUALITIES

Any inequality, such as 2x - 3 > 0 or 5 < 3x + 10 ≤ 16, determines an interval. To solve an inequality means 
to determine the corresponding interval of numbers that satisfy the inequality.

EXAMPLE 1.1: Solve 2x - 3 > 0.

 

− >

>

>

x

x

x

2 3 0

2 3 (Adding 3)

(Dividing by 2)3
2

Thus, the corresponding interval is ∞( , ).3
2

EXAMPLE 1.2: Solve 5 < 3x + 10 ≤ 16.

 

< + ≤

− < ≤

− < ≤

x

x

x

5 3 10 16

5 3 6 (Subtracting 10)

2 (Dividing by 3)5
3

Thus, the corresponding interval is −( , 25
3 ].

EXAMPLE 1.3: Solve -2x + 3 < 7.

 

− + <

− <

> − −

x

x

x

2 3 7

2 4 (Subtracting 3)

2 (Dividing by 2)

(Recall that dividing by a negative number reverses an inequality.) Thus, the corresponding interval is (-2, ∞).

 SOLVED PROBLEMS

 1. Describe and diagram the following intervals, and write their interval notation: (a) -3 < x < 5; (b) 2 ≤ x ≤ 6;  
(c) -4 < x ≤ 0; (d) x > 5; (e) x ≤ 2; (f ) 3x - 4 ≤ 8; (g) 1 < 5 - 3x < 11.

(a) All numbers greater than -3 and less than 5; the interval notation is (-3, 5):
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4 CHAPTER 1 Linear Coordinate Systems

(b) All numbers equal to or greater than 2 and less than or equal to 6; [2, 6]:

(c) All numbers greater than -4 and less than or equal to 0; (-4, 0]:

(d) All numbers greater than 5; (5, ∞):

(e) All numbers less than or equal to 2; (-∞, 2]:

(f) 3x - 4 ≤ 8 is equivalent to 3x ≤ 12 and therefore, to x ≤ 4. Thus, we get (-∞, 4]:

(g)  x

x

x

1 5 3 11

4 3 6 (Subtracting 5)

2 (Dividing by 3; note the reversal of inequalities)4
3

< − <

− < − <

− < < −

 Thus, we obtain −( 2, ):4
3

 2. Describe and diagram the intervals determined by the following inequalities: (a) |x| < 2; (b) |x| > 3; (c) |x - 3| < 1; 
(d) |x - 2| < d where d > 0; (e) |x + 2| < 3; (f ) 0 < |x - 4| < d where d > 0.

(a) By property (1.9), this is equivalent to -2 < x < 2, defining the open interval (-2, 2).

(b) By property (1.8), |x| ≤ 3 is equivalent to -3 ≤ x ≤ 3. Taking negations, |x| > 3 is equivalent to x < -3 or x > 3, 
which defines the union of the intervals (-∞, -3) and (3, ∞).

(c) By property (1.12), this says that the distance between x and 3 is less than 1, which is equivalent to 2 < x < 4. 
This defines the open interval (2, 4).

 We can also note that |x - 3| < 1 is equivalent to -l < x - 3 < 1. Adding 3, we obtain 2 < x < 4.

(d) This is equivalent to saying that the distance between x and 2 is less than d, or that 2 - d < x < 2 + d, which 
defines the open interval (2 - d, 2 + d ). This interval is called the d-neighborhood of 2:
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5CHAPTER 1 Linear Coordinate Systems

(e) |x + 2| < 3 is equivalent to -3 < x + 2 < 3. Subtracting 2, we obtain -5 < x < 1, which defines the open 
interval (-5, 1):

(f) The inequality |x - 4| < d determines the interval 4 - d < x < 4 + d. The additional condition 0 < |x - 4| tells 
us that x ≠ 4. Thus, we get the union of the two intervals (4 - d, 4) and (4, 4 + d ). The result is called the 
deleted d-neighborhood of 4:

 3. Describe and diagram the intervals determined by the following inequalities: (a) |5 - x| ≤ 3; (b) |2x - 3| < 5;  
(c) |1 - 4x| < .1

2

(a) Since |5 - x| = |x - 5|, we have |x - 5| ≤ 3, which is equivalent to -3 ≤ x - 5 ≤ 3. Adding 5, we get 2 ≤ x ≤ 8, 
which defines the closed interval [2, 8]:

(b) |2x - 3| < 5 is equivalent to -5 < 2x - 3 < 5. Adding 3, we have -2 < 2x < 8; then dividing by 2 yields  
-1 < x < 4, which defines the open interval (-1, 4):

(c) Since |1 - 4x| = |4x - 1|, we have |4x - 1| < ,1
2  which is equivalent to − 1

2  < 4x - 1 < .1
2  Adding 1, we get  

1
2
 < 4x < .3

2  Dividing by 4, we obtain < <x ,1
8

3
8  which defines the open interval ( , ) :1

8
3
8 :

 4. Solve the inequalities: (a) 18x - 3x2 > 0; (b) (x + 3)(x - 2)(x - 4) < 0; (c) (x + l)2(x - 3) > 0, and diagram the solutions.

(a) Set 18x - 3x2 = 3x(6 - x) = 0, obtaining x = 0 and x = 6. We need to determine the sign of 18x - 3x2 on each 
of the intervals x < 0, 0 < x < 6, and x > 6, to determine where 18x - 3x2 > 0. Note that it is negative when 
x < 0 (since x is negative and 6 - x is positive). It becomes positive when we pass from left to right through 
0 (since x changes sign but 6 - x remains positive), and it becomes negative when we pass through 6 (since x 
remains positive but 6 - x changes to negative). Hence, it is positive when and only when 0 < x < 6.

(b) The crucial points are x = -3, x = 2, and x = 4. Note that (x + 3)(x - 2)(x - 4) is negative for x < -3 (since 
each of the factors is negative) and that it changes sign when we pass through each of the crucial points. 
Hence, it is negative for x < -3 and for 2 < x < 4:

(c) Note that (x + 1) is always positive (except at x = -1, where it is 0). Hence (x + 1)2 (x - 3) > 0 when and only 
when x - 3 > 0, that is, for x > 3:

 5. Solve |3x - 7| = 8.
By (1.3), |3x - 7| = 8 if and only if 3x - 7 = ±8. Thus, we need to solve 3x - 7 = 8 and 3x - 7 = -8. Hence, we 

get x = 5 or x = -  .1
3
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6 CHAPTER 1 Linear Coordinate Systems

 6. Solve 
+

+ >x
x
2 1

3
3.

Case 1: x + 3 > 0. Multiply by x + 3 to obtain 2x + 1 > 3x + 9, which reduces to -8 > x. However, since x + 3 > 0, 
it must be that x > -3. Thus, this case yields no solutions.

Case 2: x + 3 < 0. Multiply by x + 3 to obtain 2x + 1 < 3x + 9. (Note that the inequality is reversed, since we 
multiplied by a negative number.) This yields -8 < x. Since x + 3 < 0, we have x < -3. Thus, the only solutions 
are -8 < x < -3.

 7. Solve 
x
2

3 5.− <

The given inequality is equivalent to -5 < 2/x - 3 < 5. Add 3 to obtain -2 < 2/x < 8, and divide by 2 to get  
-1 < l/x < 4.

Case 1: x > 0. Multiply by x to get -x < 1 < 4x. Then x > 1
4
 and x > -1; these two inequalities are equivalent to 

the single inequality x > .1
4

Case 2: x < 0. Multiply by x to obtain -x > 1 > 4x. (Note that the inequalities have been reversed, since we 
multiplied by the negative number x.) Then x < 1

4
 and x < -1. These two inequalities are equivalent to x < -1.

Thus, the solutions are x > 1
4
 or x < -1, the union of the two infinite intervals ( ,1

4
 •) and (-•, -1).

 8. Solve |2x - 5| ≥ 3.
Let us first solve the negation |2x - 5| < 3. The latter is equivalent to -3 < 2x - 5 < 3. Add 5 to obtain 2 < 2x < 8,  

and divide by 2 to obtain 1 < x < 4. Since this is the solution of the negation, the original inequality has the 
solution x ≤ 1 or x ≥ 4.

 9. Solve: x2 < 3x + 10.

         x2 < 3x + 10
 x2 - 3x - 10 < 0  (Subtract 3x + 10)
  (x - 5)(x + 2) < 0

The crucial numbers are -2 and 5. (x - 5)(x + 2) > 0 when x < -2 (since both x - 5 and x + 2 are negative); 
it becomes negative as we pass through -2 (since x + 2 changes sign); and then it becomes positive as we pass 
through 5 (since x - 5 changes sign). Thus, the solutions are - 2 < x < 5.

 SUPPLEMENTARY PROBLEMS

10. Describe and diagram the set determined by each of the following conditions:

(a) -5 < x < 0 (b) x ≤ 0
(c) -2 ≤ x < 3 (d) x ≥ 1
(e) |x | < 3 (f ) |x | ≥ 5
(g) |x - 2| < 1

2  (h) |x - 3| > 1
(i) 0 < |x - 2| < 1 ( j) 0 < |x + 3| < 1

4

(k) |x - 2| ≥ 1.

Ans. (e)  -3 < x < 3;  (f ) x ≥ 5 or x ≤ -5;  (g) 3
2  < x < ;5

2   (h) x < 2 or x > 4;  (i) x ≠ 2 and 1 < x < 3;  
( j)  − 13

4  < x < − ;11
4   (k) x ≥ 3 or x ≤ 1

11. Describe and diagram the set determined by each of the following conditions:

(a) |3x - 7| < 2
(b) |4x - l| ≥ 1

(c) − ≤x
3

2 4
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7CHAPTER 1 Linear Coordinate Systems

(d) − ≤
x
3

2 4

(e) + >
x

2
1

1

(f ) <
x
4

3

Ans. (a) 5
3  < x < 3; (b) x ≥ 1

2  or x ≤ 0; (c) -6 ≤ x ≤ 18; (d) x ≤ − 3
2  or x ≥ ;1

2  (e) x > 0 or x < -1 or − 1
3  < x < 0;  

(f ) x > 4
3  or x < − 4

3

12. Describe and diagram the set determined by each of the following conditions:

(a) x(x - 5) < 0
(b) (x - 2)(x - 6) > 0
(c) (x + l)(x - 2) < 0
(d) x(x - 2)(x + 3) > 0
(e) (x + 2)(x + 3)(x + 4) < 0
(f ) (x - 1)(x + 1)(x - 2)(x + 3) > 0 
(g) (x - l)2(x + 4) > 0
(h) (x - 3)(x + 5)(x - 4)2 < 0
(i) (x - 2)3 > 0
( j) (x + 1)3 < 0
(k) (x - 2)3(x + l) < 0
(l) (x - 1)3(x + 1)4 < 0
(m) (3x - l)(2x + 3) > 0
(n) (x - 4)(2x - 3) < 0

Ans. (a) 0 < x < 5; (b) x > 6 or x < 2; (c) -1 < x < 2; (d) x > 2 or -3 < x < 0; (e) -3 < x < -2 or x < -4;  
(f ) x > 2 or - 1 < x < 1 or x < -3; (g) x > -4 and x ≠ 1; (h) -5 < x < 3; (i) x > 2; ( j) x < -1;  
(k) -1 < x < 2; (l) x < 1 and x ≠ -1; (m) x > 1

3
 or x < − ;3

2  (n) 3
2  < x < 4

13. Describe and diagram the set determined by each of the following conditions:

(a) x2 < 4
(b) x2 ≥ 9
(c) (x - 2)2 ≤ 16
(d) (2x + 1)2  > 1
(e) x2 + 3x - 4 > 0
(f ) x2 + 6x + 8 ≤ 0
(g) x2 < 5x + 14
(h) 2x2 > x + 6
(i) 6x2 + 13x < 5
( j) x3 + 3x2 > 10x

Ans. (a) -2 < x < 2; (b) x ≥ 3 or x ≤ -3; (c) -2 ≤ x ≤ 6; (d) x > 0 or x < -1; (e) x > 1 or x < -4; (f ) -4 ≤ x ≤ -2; 
(g) -2 < x < 7; (h) x > 2 or x < - ;3

2  (i) − < <x ;5
2

1
3  ( j) -5 < x < 0 or x > 2

14. Solve: (a) -4 < 2 - x < 7 (b) 
− <x

x
2 1

3  (c) + <x
x 2

1

    (d) 
−
+ >x

x
3 1
2 3

3        (e) x
x

2 1
2

− >    (f) 
+ ≤x

x 2
2

Ans. (a) -5 < x < 6; (b) x > 0 or x < -1; (c) x > -2; (d) − < <x ;10
3

3
2  (e) x < 0 or 0 < x < ;1

4  (f ) x ≤ -4 or x ≥ -1
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8 CHAPTER 1 Linear Coordinate Systems

15. Solve:

(a) |4x - 5| = 3 
(b) |x + 6| = 2
(c) |3x - 4| = |2x + 1|
(d) |x + 1| = |x + 2|
(e) |x + 1| = 3x - 1
(f ) |x + 1| < |3x - 1|
(g) |3x - 4| ≥ |2x + 1|

Ans. (a) x = 2 or x = ;1
2  (b) x = -4 or x = -8; (c) x = 5 or x = 3

5 ; (d) x = − ;3
2  (e) x = 1; (f ) x > 1 or x < 0;  

(g) x ≥ 5 or x ≤ 3
5

16. Prove: 

(a) |x2| = |x|2;
(b) |xn| = |x|n for every integer n;
(c) |x| = x ;2

(d) |x - y| ≤ |x| + |y|;
(e) |x - y| ≥ ||x| - |y||
[Hint: In (e), prove that |x - y| ≥ |x| - |y| and |x - y| ≥ |y| - |x|.]
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CHAPTER 2

Rectangular Coordinate  
Systems

COORDINATE AXES

In any plane , choose a pair of perpendicular lines. Let one of the lines be horizontal. Then the other line 
must be vertical. The horizontal line is called the x-axis, and the vertical line the y-axis. (See Fig. 2-1.)

Fig. 2-1

Now choose linear coordinate systems on the x-axis and the y-axis satisfying the following conditions: 
The origin for each coordinate system is the point O at which the axes intersect. The x-axis is directed from 
left to right, and the y-axis from bottom to top. The part of the x-axis with positive coordinates is called the 
positive x-axis, and the part of the y-axis with positive coordinates is called the positive y-axis.

We shall establish a correspondence between the points of the plane  and pairs of real numbers.

COORDINATES

Consider any point P of the plane (Fig. 2-1). The vertical line through P intersects the x-axis at a unique 
point; let a be the coordinate of this point on the x-axis. The number a is called the x-coordinate of P (or the 
abscissa of P). The horizontal line through P intersects the y-axis at a unique point; let b be the coordinate 
of this point on the y-axis. The number b is called the y-coordinate of P (or the ordinate of P). In this way, 
every point P has a unique pair (a, b) of real numbers associated with it. Conversely, every pair (a, b) of real 
numbers is associated with a unique point in the plane.

The coordinates of several points are shown in Fig. 2-2. For the sake of simplicity, we have limited them 
to integers.
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10 CHAPTER 2 Rectangular  Coord inate  Systems 

Fig. 2-2

EXAMPLE 2.1: In the coordinate system of Fig. 2-3, to find the point having coordinates (2, 3), start at the origin, 
move two units to the right, and then three units upward.

Fig. 2-3

 To find the point with coordinates (−4, 2), start at the origin, move four units to the left, and then two units upward.
 To find the point with coordinates (−3, −1), start at the origin, move three units to the left, and then one unit downward.

 The order of these moves is not important. Hence, for example, the point (2, 3) can also be reached by starting 
at the origin, moving three units upward, and then two units to the right.

QUADRANTS

Assume that a coordinate system has been established in the plane . Then the whole plane , with the 
exception of the coordinate axes, can be divided into four equal parts, called quadrants. All points with both 
coordinates positive form the first quadrant, called quadrant I, in the upper right-hand corner (see Fig. 2-4). 
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11CHAPTER 2 Rectangular Coordinate Systems 

Quadrant II consists of all points with negative x-coordinate and positive y-coordinate. Quadrants III and IV 
are also shown in Fig. 2-4.

Fig. 2-4

The points on the x-axis have coordinates of the form (a, 0). The y-axis consists of the points with coor-
dinates of the form (0, b).

Given a coordinate system, it is customary to refer to the point with coordinates (a, b) as “the point  
(a, b).” For example, one might say, “The point (0, 1) lies on the y-axis.”

THE DISTANCE FORMULA

The distance P1P2 between poinits P1 and P2 with coordinates (x1, y1) and (x2, y2) in a given coordinate system 
(see Fig. 2-5) is given by the following distance formula:

 = − + −P P x x y y( ) ( )1 2 1 2
2

1 2
2  (2.1)

Fig. 2-5

To see this, let R be the point where the vertical line through P2 intersects the horizontal line through P1. The 

x-coordinate of R is x2, the same as that of P2. The y-coordinate of R is y1, the same as that of P1. By the Pythago-

rean theorem, = +P P P R P R( ) ( ) ( )1 2
2

1
2

2
2. If A1 and A2 are the projections of P1 and P2 on the x-axis, the segments 

P1R and A1A2 are opposite sides of a rectangle, so that =P R A A1 1 2 . But = −A A x x| |1 2 1 2  by property (1.12).  

So, = −P R x x| |1 1 2 . Similarly, = −P R y y| |2 1 2 . Hence, = − + − = − + −P P x x y y x x y y( ) | | | | ( ) ( )1 2
2

1 2
2

1 2
2

1 2
2

1 2
2. 

02_Mendelson_ch02_p009-018.indd   11 27/07/21   10:54 AM



12 CHAPTER 2 Rectangular  Coord inate  Systems 

Taking square roots, we obtain the distance formula. (It can be checked that the formula also is valid when 
P1 and P2 lie on the same vertical or horizontal line.)

EXAMPLES:

(a) The distance between (2, 5) and (7, 17) is

 − + − = − + − = + = =(2 7) (5 17) ( 5) ( 12) 25 144 169 132 2 2 2

(b) The distance between (1, 4) and (5, 2) is

 − + − = − + = + = = =(1 5) (4 2) ( 4) (2) 16 4 20 4 5 2 52 2 2 2

THE MIDPOINT FORMULAS

The point M(x, y) that is the midpoint of the segment connecting the points P1(x1, y1) and P2(x2, y2) has the 
coordinates

 =
+

=
+

x
x x

y
y y

2 2
1 2 1 2  (2.2)

Thus, the coordinates of the midpoints are the averages of the coordinates of the endpoints. See Fig. 2-6.

Fig. 2-6

To see this, let A, B, C be the projections of P1, M, P2 on the x-axis. The x-coordinates of A, B, C are  
x1, x, x2. Since the lines P1A, MB, and P2C are parallel, the ratios P M MP/1 2  and AB BC/  are equal. Since 

= =P M MP AB BC,1 2 . Since = −AB x x1 and = −BC x x2 ,

− = −

= +

= +

x x x x

x x x

x
x x

2

2

1 2

1 2

1 2

(The same equation holds when P2 is to the left of P1, in which case = −AB x x1  and = −BC x x2.)  
Similarly, y = (y1 + y2)/2.

EXAMPLES:

(a) The midpoint of the segment connecting (2, 9) and (4, 3) is 
+ + 

 =


2 4
2

,
9 3

2
(3, 6).

(b) The point halfway between (−5, 1) and (1, 4) is ( )− + +



 = −5 1

2
,

1 4
2

2, 5
2 .
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13CHAPTER 2 Rectangular Coordinate Systems 

PROOFS OF GEOMETRIC THEOREMS

Proofs of geometric theorems can often be given more easily by use of coordinates than by deductions from 
axioms and previously derived theorems. Proofs by means of coordinates are called analytic, in contrast to 
so-called synthetic proofs from axioms.

EXAMPLE 2.2: Let us prove analytically that the segment joining the midpoints of two sides of a triangle is  
one-half the length of the third side. Construct a coordinate system so that the third side AB lies on the positive x-axis, 
A is the origin, and the third vertex C lies above the x-axis, as in Fig. 2-7.

Fig. 2-7

 Let b be the x-coordinate of B. (In other words, let =b AB.) Let C have coordinates (u, v). Let M1 and M2 be the 

midpoints of sides AC and BC, respectively. By the midpoint formulas (2.2), the coordinates of M1 are ( )u
2 , 2

v , and 

the coordinates of M2 are u b
2 , 2( )+ v . By the distance formula (2.1),

= − +



 + −



 = 



 =M M

u u b b b
2 2 2 2 2 21 2

2 2 2v v

which is half the length of side AB.

SOLVED PROBLEMS

 1. Show that the distance between a point P(x, y) and the origin is +x y .2 2

Since the origin has coordinates (0, 0), the distance formula yields − + − = +x y x y( 0) ( 0) .2 2 2 2

 2. Is the triangle with vertices A(1, 5), B(4, 2), and C(5, 6) isosceles?

= − + − = − + = + =

= − + − = − + − = + =

= − + − = − + − = + =

AB

AC

BC

(1 4) (5 2) ( 3) (3) 9 9 18

(1 5) (5 6) ( 4) ( 1) 16 1 17

(4 5) (2 6) ( 1) ( 4) 1 16 17

2 2 2 2

2 2 2 2

2 2 2 2

Since =AC BC, the triangle is isosceles.

 3. Is the triangle with vertices A(-5, 6), B(2, 3), and C(5, 10) a right triangle?

02_Mendelson_ch02_p009-018.indd   13 27/07/21   10:54 AM



14 CHAPTER 2 Rectangular  Coord inate  Systems 

= − − + − = − + = + =

= − − + − = − + −

= + =

= − + − = − + − = + =

AB

AC

BC

( 5 2) (6 3) ( 7) (3) 49 9 58

( 5 5) (6 10) ( 10) ( 4)

100 16 116

(2 5) (3 10) ( 3) ( 7) 9 49 58

2 2 2 2

2 2 2 2

2 2 2 2

Since = +AC AB BC ,
2 2 2

 the converse of the Pythagorean theorem tells us that ∆ ABC is a right triangle, with 
right angle at B; in fact, since =AB BC, ∆ ABC is an isosceles right triangle.

 4. Prove analytically that, if the medians to two sides of a triangle are equal, then those sides are equal. (Recall that 
a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side.)

In ∆ ABC, let M1 and M2 be the midpoints of sides AC and BC, respectively. Construct a coordinate system 
so that A is the origin, B lies on the positive x-axis, and C lies above the x-axis (see Fig. 2-8). Assume that 

=AM BM2 1. We must prove that =AC BC. Let b be the x-coordinate of B, and let C have coordinates (u, v). 

Then, by the midpoint formulas, M1 has coordinates ( )u
2 , 2

v , and M2 has coordinates ( )+u b
2 , 2

v . 

 Hence,

Fig. 2-8

= +



 + 



AM

u b
2 22

2 2v
 and BM

u
b

2 21

2 2

= −



 + 





v

Since =AM BM2 1 ,

+



 + 



 = −



 + 



 = −



 + 





u b u
b

u b
2 2 2 2

2
2 2

2 2 2 2 2 2v v v

Hence, + + = − +u b u b( )
4 4

( 2 )
4 4

2 2 2 2v v  and therefore, (u + b)2 = (u − 2b)2. So, u + b = ±(u − 2b). If u + b =  

u − 2b, then b = -2b, and therefore, b = 0, which is impossible, since A ≠ B. Hence, u + b = - (u - 2b) = -u + 2b, 
whence 2u = b. Now = − + = − + = − + = +BC u b u u u u( ) ( 2 ) ( )2 2 2 2 2 2 2 2v v v v , and = +AC u .2 2v  Thus, 

=AC BC.

 5. Find the coordinates (x, y) of the point Q on the line segment joining P1(1, 2) and P2(6, 7), such that Q divides the 

segment in the ratio 2 : 3, that is, such that =PQ QP/1 2
2
3 .

Let the projections of P1, Q, and P2 on the x-axis be A1, Q′, and A2, with x-coordinates 1, x, and 6, respectively 

(see Fig. 2-9). Now ′ ′ = =A Q Q A PQ QP/ /1 2 1 2
2
3 . (When two lines are cut by three parallel lines, corresponding 
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segments are in proportion.) But ′ = −A Q x 11 , and ′ = −Q A x62 . So −
− =x

x
1

6
2
3 , and cross multiplying yields  

3x - 3 = 12 - 2x. Hence 5x = 15, whence x = 3. By similar reasoning, −
− =y

y
2

7
2
3

, from which it follows that y = 4.

Fig. 2-9

SUPPLEMENTARY PROBLEMS

 6. In Fig. 2-10, find the coordinates of points A, B, C, D, E, and F.

Fig. 2-10

Ans. (A) = (-2, 1); (B) = (0, -1); (C) = (1, 3); (D) = (-4, -2); (E) = (4, 4); (F ) = (7, 2).

 7. Draw a coordinate system and show the points having the following coordinates: (2, -3), (3, 3), (-1, 1), (2, -2), 
(0, 3), (3, 0), (-2, 3).

 8. Find the distances between the following pairs of points:

(a) (3, 4) and (3, 6) (b) (2, 5) and (2, -2)  (c) (3, 1) and (2, 1)

(d) (2, 3) and (5, 7) (e) (-2, 4) and (3, 0)  (f ) ( )−2, 1
2  and (4, -1)

Ans. (a) 2; (b) 7; (c) 1; (d) 5; (e) 41; (f) 173
2

 9. Draw the triangle with vertices A(2, 5), B(2, -5), and C(-3, 5), and find its area. 

Ans. Area = 25

02_Mendelson_ch02_p009-018.indd   15 27/07/21   10:54 AM



16 CHAPTER 2 Rectangular  Coord inate  Systems 

10. If (2, 2), (2, -4), and (5, 2) are three vertices of a rectangle, find the fourth vertex. 

Ans. (5, -4)

11. If the points (2, 4) and (-1, 3) are the opposite vertices of a rectangle whose sides are parallel to the coordinate 
axes (that is, the x- and y-axes), find the other two vertices.

Ans. (-1, 4) and (2, 3)

12. Determine whether the following triples of points are the vertices of an isosceles triangle: (a) (4, 3), (1, 4),  
(3, 10); (b) (-1, 1), (3, 3), (1, -1); (c) (2, 4), (5, 2), (6, 5).

Ans. (a) no; (b) yes; (c) no

13. Determine whether the following triples of points are the vertices of a right triangle. For those that are, find the 
area of the right triangle: (a) (10, 6), (3, 3), (6, -4); (b) (3, 1), (1, -2), (-3, -1); (c) (5, -2), (0, 3), (2, 4).

Ans. (a) yes, area = 29; (b) no; (c) yes, =area 15
2

14. Find the perimeter of the triangle with vertices A(4, 9), B(-3, 2), and C(8, -5). 

Ans. + +7 2 170 2 53

15. Find the value or values of y for which (6, y) is equidistant from (4, 2) and (9, 7).

Ans. 5

16. Find the midpoints of the line segments with the following endpoints: (a) (2, -3) and (7, 4); (b) ( )5
3 , 2  and  

(4, 1); (c) ( 3,0) and (1, 4).

Ans. (a) ( )9
2 , 1

2
; (b) ( )17

6 , 3
2

; (c) 
+





1 3
2 , 2

17. Find the point (x, y) such that (2, 4) is the midpoint of the line segment connecting (x, y) and (1, 5).

Ans. (3, 3)

18. Determine the point that is equidistant from the points A(-1, 7), B(6, 6), and C(5, -1).

Ans. (2, 3)

19. Prove analytically that the midpoint of the hypotenuse of a right triangle is equidistant from the three vertices.

20. Show analytically that the sum of the squares of the distance of any point P from two opposite vertices of a 
rectangle is equal to the sum of the squares of its distances from the other two vertices.

21. Prove analytically that the sum of the squares of the four sides of a parallelogram is equal to the sum of the 
squares of the diagonals.
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22. Prove analytically that the sum of the squares of the medians of a triangle is equal to three-fourths the sum of the 
squares of the sides.

23. Prove analytically that the line segments joining the midpoints of opposite sides of a quadrilateral bisect each 
other.

24. Prove that the coordinates (x, y) of the point Q that divides the line segments from P1(x1, y1) to P2(x2, y2) in the 
ratio r1 : r2 are determined by the formulas

= +
+ = +

+x
r x r x

r r
y

r y r y
r r

and1 2 2 1

1 2

1 2 2 1

1 2

(Hint: Use the reasoning of Problem 5.)

25. Find the coordinates of the point Q on the segment P1P2 such that =PQ QP/1 2
2
7 , if (a) P1 = (0, 0), P2 = (7, 9);  

(b) P1 = (-1, 0), P2 = (0, 7); (c) P1 = (-7, -2), P2 = (2, 7); (d) P1 = (1, 3), P2 = (4, 2).

Ans. (a) ( ), 214
9 ; (b) ( )− ,7

9
14
9 ; (c) ( )−5, 28

9 ; (d) ( ),13
9

32
9
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CHAPTER 3

Lines

THE STEEPNESS OF A LINE

The steepness of a line is measured by a number called the slope of the line. Let  be any line, and let P1(x1, y1)  

and P2(x2, y2) be two points of . The slope of  is defined to be the number =
−
−m

y y
x x

2 1

2 1

. The slope is the 

ratio of a change in the y-coordinate to the corresponding change in the x-coordinate. (See Fig. 3-1.)

Fig. 3-1

For the definition of the slope to make sense, it is necessary to check that the number m is independent 
of the choice of the points P1 and P2. If we choose another pair P3(x3, y3) and P4(x4, y4), the same value of m 
must result. In Fig. 3-2, triangle P3P4T is similar to triangle P1P2Q. Hence,

=
QP

PQ

TP

P T
2

1

4

3

    or    
−
− =

−
−

y y
x x

y y
x x

2 1

2 1

4 3

4 3

Therefore, P1 and P2 determine the same slope as P3 and P4.

EXAMPLE 3.1: The slope of the line joining the points (1, 2) and (4, 6) in Fig. 3-3 is −
− =6 2

4 1
4
3 . Hence, as a point 

on the line moves 3 units to the right, it moves 4 units upwards. Moreover, the slope is not affected by the order in 

which the points are given: −
− = −

− =2 6
1 4

4
3

4
3 . In general, 

−
− = −

−
y y
x x

y y
x x

2 1

2 1

1 2

1 2
.

THE SIGN OF THE SLOPE

The sign of the slope has significance. Consider, for example, a line  that moves upward as it moves to the 

right, as in Fig. 3-4(a). Since y2 > y1 and x2 > x1, we have =
−
− >m

y y
x x 02 1

2 1
. The slope of  is positive.

Now consider a line  that moves downward as it moves to the right, as in Fig. 3-4(b). Here y2 < y1 while 

x2 > x1; hence, =
−
− <m

y y
x x 02 1

2 1

. The slope of  is negative.
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 Fig. 3-2 Fig. 3-3

Now let the line  be horizontal, as in Fig. 3-4(c). Here y1 = y2, so that y2 − y1 = 0. In addition, x2 − x1 ≠ 0. 

Hence, = − =m x x
0 0

2 1
. The slope of  is zero.

Line  is vertical in Fig. 3-4(d), where we see that y2 − y1 > 0 while x2 − x1 = 0. Thus, the expression 
−
−

y y
x x

2 1

2 1
 is undefined. The slope is not defined for a vertical line . (Sometimes we describe this situation by 

saying that the slope of  is “infinite.”)

Fig. 3-4

SLOPE AND STEEPNESS

Consider any line  with positive slope, passing through a point P1(x1, y1); such a line is shown in Fig. 3-5. 
Choose the point P2(x2, y2) on  such that x2 − x1 = 1. Then the slope m of  is equal to the distance AP2. 
As the steepness of the line increases, AP2  increases without limit, as shown in Fig. 3-6(a). Thus, the slope 
of  increases without bound from 0 (when  is horizontal) to +∞ (when the line is vertical). By a similar 
argument, using Fig. 3-6(b), we can show that as a negatively sloped line becomes steeper, the slope steadily 
decreases from 0 (when the line is horizontal) to −∞ (when the line is vertical).
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Fig. 3-5

Fig. 3-6

EQUATIONS OF LINES

Let  be a line that passes through a point P1(x1, y1) and has slope m, as in Fig. 3-7(a). For any other point 
P(x, y) on the line, the slope m is, by definition, the ratio of y − y1 to x − x1. Thus, for any point (x, y) on ,

 =
−
−m

y y
x x

1

1
 (3.1)

Conversely, if P(x, y) is not on line  as in Fig. 3-7(b), then the slope 
−
−

y y
x x

1

1

 of the line PP1 is different 

from the slope m of ; hence (3.1) does not hold for points that are not on . Thus, the line consists of only 
those points (x, y) that satisfy (3.1). In such a case, we say that  is the graph of (3.1).

Fig. 3-7
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22 CHAPTER 3 Lines

A POINT–SLOPE EQUATION

A point–slope equation of the line  is any equation of the form (3.1). If the slope m of  is known, then 
each point (x1, y1) of  yields a point–slope equation of . Hence, there is an infinite number of point–slope 
equations for . Equation (3.1) is equivalent to y − y1 = m(x − x1).

EXAMPLE 3.2: (a) The line passing through the point (2, 5) with slope 3 has a point–slope equation 
−
− =y

x
5
2 3.  

(b) Let  be the line through the points (3, −1) and (2, 3). Its slope is = − −
− = − = −m 3 ( 1)

2 3
4
1 4. Two point–slope 

equations of  are 
+
− = −y

x
1
3 4 and 

−
− = −y

x
3
2 4.

SLOPE–INTERCEPT EQUATION

If we multiply (3.1) by x − x1, we obtain the equation y − y1 = m(x − x1), which can be reduced first to y − y1 =  
mx − mx1, and then to y = mx + (y1 − mx1). Let b stand for the number y1 − mx1. Then the equation for line 
 becomes

 = +y mx b  (3.2)

Equation (3.2) yields the value y = b when x = 0, so the point (0, b) lies on . Thus, b is the y-coordinate 
of the intersection of  and the y-axis, as shown in Fig. 3-8. The number b is called the y-intercept of , and 
(3.2) is called the slope–intercept equation for .

Fig. 3-8

EXAMPLE 3.3: The line through the points (2, 3) and (4, 9) has slope

= −
− = =m

9 3
4 2

6
2

3

Its slope–intercept equation has the form y = 3x + b. Since the point (2, 3) lies on the line, (2, 3) must satisfy this equation. 
Substitution yields 3 = 3(2) + b, from which we find b = −3. Thus, the slope–intercept equation is y = 3x − 3.

Another method for finding this equation is to write a point–slope equation of the line, say −
− =y

x
3
2

3. Then 
multiplying by x − 2 and adding 3 yields y = 3x − 3.

PARALLEL LINES

Let 1 and 2 be parallel nonvertical lines, and let A1 and A2 be the points at which 1 and 2 intersect the 
y-axis, as in Fig. 3-9(a). Further, let B1 be one unit to the right of A1, and B2 one unit to the right of A2. Let 
C1 and C2 be the intersections of the verticals through B1 and B2 with 1 and 2. Now, triangle A1B1C1 is 

congruent to triangle A2B2C2 (by the angle-side-angle congruence theorem). Hence, =B C B C1 1 2 2  and

= = =+ +
B C B C

Slopeof
1 1

slopeof1
1 1 2 2

2

Thus, parallel lines have equal slopes.
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23CHAPTER 3 Lines

Fig. 3-9

Conversely, assume that two different lines 1 and 2 are not parallel, and let them meet at point P, as in 
Fig. 3-9(b). If 1 and 2 had the same slope, then they would have to be the same line. Hence, 1 and 2 
have different slopes.

Theorem 3.1: Two distinct nonvertical lines are parallel if and only if their slopes are equal.

EXAMPLE 3.4: Find the slope–intercept equation of the line  through (4, 1) and parallel to the line  having 
the equation 4x − 2y = 5.

By solving the latter equation for y, we see that  has the slope–intercept equation = −y x2
5
2

. Hence, 

 has slope 2. The slope of the parallel line  also must be 2. So the slope–intercept equation of  has the 
form y = 2x + b. Since (4, 1) lies on , we can write 1 = 2(4) + b. Hence, b = −7, and the slope–intercept 
equation of  is y = 2x − 7.

PERPENDICULAR LINES

In Problem 5 we shall prove the following:

Theorem 3.2: Two nonvertical lines are perpendicular if and only if the product of their slopes is −1.

If m1 and m2 are the slopes of perpendicular lines, then m1m2 = −1. This is equivalent to = −m
m
1

2
1
; hence, 

the slopes of perpendicular lines are negative reciprocals of each other.

SOLVED PROBLEMS

 1. Find the slope of the line having the equation 3x − 4y = 8. Draw the line. Do the points (6, 2) and (12, 7) lie on 
the line?

Solving the equation for y yields = −y x 23
4 . This is the slope–intercept equation; the slope is 3

4  and the y 
intercept is −2.

Substituting 0 for x shows that the line passes through the point (0, −2). To draw the line, we need another 

point. If we substitute 4 for x in the slope–intercept equation, we get = − =y (4) 2 13
4 . So, (4, 1) also lies on the 

line, which is drawn in Fig. 3-10. (We could have found other points on the line by substituting numbers other 
than 4 for x.)

To test whether (6, 2) is on the line, we substitute 6 for x and 2 for y in the original equation, 3x − 4y = 8. 
The two sides turn out to be unequal; hence, (6, 2) is not on the line. The same procedure shows that (12, 7) lies 
on the line.
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 Fig. 3-10 Fig. 3-11

 2. Let  be the perpendicular bisector of the line segment joining the points A(−1, 2) and B(3, 4), as shown in 
Fig. 3-11. Find an equation for .

 passes through the midpoint M of segment AB. By the midpoint formulas (2.2), the coordinates of M are (1, 3).  

The slope of the line through A and B is 
−

− − = =4 2
3 ( 1)

2
4

1
2

. Let m be the slope of . By Theorem 3.2, = −m 11
2 , 

whence m = −2.
The slope–intercept equation for  has the form y = −2x + b. Since M (1, 3) lies on , we have 3 = −2(1) + b. 

Hence, b = 5, and the slope–intercept equation of  is y = −2x + 5.

 3. Determine whether the points A(1, −1), B(3, 2), and C(7, 8) are collinear, that is, lie on the same line.

A, B, and C are collinear if and only if the line AB is identical with the line AC, which is equivalent to the 

slope of AB being equal to the slope of AC. The slopes of AB and AC are 
− −

− =2 ( 1)
3 1

3
2

 and 
− −

− = =8 ( 1)
7 1

9
6

3
2

. 
Hence, A, B, and C are collinear.

 4. Prove analytically that the figure obtained by joining the midpoints of consecutive sides of a quadrilateral is a 
parallelogram.

Locate a quadrilateral with consecutive vertices, A, B, C, and D on a coordinate system so that A is the origin, B 
lies on the positive x-axis, and C and D lie above the x-axis. (See Fig. 3-12.) Let b be the x-coordinate of B, (u, v) the 
coordinates of C, and (x, y) the coordinates of D. Then, by the midpoint formula (2.2), the midpoints M1, M2, M3, and 

M4 of sides AB, BC, CD, and DA have coordinates 






b
2

, 0 , 
+





u b
2

,
2
v

, 
+ +





x u y
2

,
2

,
v

 and 






x y
2

,
2 , respectively. 

We must show that M1M2M3M4 is a parallelogram. To do this, it suffices to prove that lines M1M2 and M3M4 are 
parallel and that lines M2M3 and M1M4 are parallel. Let us calculate the slopes of these lines:

 
=

−
+ −

= =M M u b b u u
slope( ) 2

0

2 2

2

2

1 2

v v
v

 
=

− +

− + =
−

−
=M M

y y

x x u u u
slope( ) 2 2

2 2

2

2

3 4

v v
v

 =
+ −

+ − + = − = −M M

y

x u u b

y

x b
y

x b
slope( ) 2 2

2 2

2

2

2 3

v v

  =
−

−
= −M M

y

x b
y

x b
slope( ) 2

0

2 2

1 4

Since slope(M1M2) = slope(M3M4), M1M2 and M3M4 are parallel. Since slope(M2M3) = slope(M1M4), M2M3 and 
M1M4 are parallel. Thus, M1M2M3M4 is a parallelogram.
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Fig. 3-12

 5. Prove Theorem 3.2.
First we assume 1 and 2 are perpendicular nonvertical lines with slopes m1 and m2. We must show that 

m1m2 = −1. Let 1 and 2 be the lines through the origin O that are parallel to 1 and 2, as shown in Fig. 3-13(a). 
Then the slope of 1 is m1, and the slope of 2 is m2 (by Theorem 3.1). Moreover, 1 and 2 are perpendicular, 
since 1 and 2 are perpendicular.

Fig. 3-13

Now let A be the point on 1 with x-coordinate 1, and let B be the point on 2 with x-coordinate 1, as in 
Fig. 3-13(b). The slope–intercept equation of 1 is y = m1x; therefore, the y-coordinate of A is m1, since its 
x-coordinate is 1. Similarly, the y-coordinate of B is m2. By the distance formula (2.1),

= − + − = +

= − + − = +

= − + − = −

OB m m

OA m m

BA m m m m

(1 0) ( 0) 1

(1 0) ( 0) 1

(1 1) ( ) ( )

2
2

2
2
2

2
1

2
1
2

2
2 1

2
2 1

2

Then by the Pythagorean theorem for right triangle BOA,

= +BA OB OA
2 2 2

             or
 

 

− = + + +

− + = + +

= −

m m m m

m m m m m m

m m

( ) (1 ) (1 )

2 2

1

2 1
2

2
2

1
2

2
2

2 1 1
2

2
2

1
2

2 1
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Now, conversely, we assume that m1m2 = −1, where m1 and m2 are the slopes of nonvertical lines 1 and 2. 
Then 1 is not parallel to 2. (Otherwise, by Theorem 3.1, m1 = m2 and therefore, = −m 11

2 , which contradicts the 
fact that the square of a real number is never negative.) We must show that 1 and 2 are perpendicular. Let P be 
the intersection of 1 and 2 (see Fig. 3-14). Let 3 be the line through P that is perpendicular to 1. If m3 is the 
slope of 3, then by the first part of the proof, m1m3 = −1 and therefore, m1m3 = m1m2. Since m1m3 = −1, m1 ≠ 0; 
therefore, m3 = m2. Since 2 and 3 pass through the same point P and have the same slope, they must coincide. 
Since 1 and 3 are perpendicular, 1 and 2 are also perpendicular.

Fig. 3-14

 6. Show that if a and b are not both zero, then the equation ax + by = c is the equation of a line and, conversely, 
every line has an equation of that form.

Assume b ≠ 0. Then, if the equation ax + by = c is solved for y, we obtain a slope–intercept equation  
y = (−a/b) x + c/b of a line. If b = 0, then a ≠ 0, and the equation ax + by = c reduces to ax = c; this is equivalent to 
x = c/a, the equation of a vertical line.

Conversely, every nonvertical line has a slope–intercept equation y = mx + b, which is equivalent to −mx + y = b, 
an equation of the desired form. A vertical line has an equation of the form x = c, which is also an equation of the 
required form with a = 1 and b = 0.

 7. Show that the line y = x makes an angle of 45° with the positive x-axis (that is, that angle BOA in Fig. 3-15 
contains 45°).

Fig. 3-15

Let A be the point on the line y = x with coordinates (1, 1). Drop a perpendicular AB to the positive x-axis. 
Then =AB 1 and =OB 1. Hence, angle OAB = angle BOA, since they are the base angles of isosceles triangle 
BOA. Since angle OBA is a right angle,

+ = °− = °− °= °OAB BOA OBAAngle angle 180 angle 180 90 90

Since angle BOA = angle OAB, they each contain 45°.
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 8. Show that the distance d from a point P(x1, y1) to a line  with equation ax + by = c is given by the formula 

= + −
+

d
ax by c

a b

| |
2 2

.

Let  be the line through P that is perpendicular to . Then  intersects  at some point Q with coordinates 
(u, v), as in Fig. 3-16. Clearly, d is the length PQ, so if we can find u and v, we can compute d with the distance 
formula. The slope of  is −a/b. Hence, by Theorem 3.2, the slope of  is b/a. Then a point–slope equation of 

 is 
−
− =y y

x x
b
a

1

1

. Thus, u and v are the solutions of the pair of equations au + bv = c and 
−
− =y

u x
b
a

1

1

v
. Tedious 

algebraic calculations yield the solution

= + +
+u

ac b x aby
a b

2
1 1

2 2      and     = − +
+

bc abx a y
a b

1
2

1
2 2v

The distance formula, together with further calculations, yields

= = − + − = + −
+

d PQ x u y
ax by c

a b
( ) ( )

| |
1

2
1

2 1 1

2 2
v

Fig. 3-16

SUPPLEMENTARY PROBLEMS

 9. Find a point–slope equation for the line through each of the following pairs of points: (a) (3, 6) and (2, −4);  
(b) (8, 5) and (4, 0); (c) (1, 3) and the origin; (d) (2, 4) and (−2, 4).

Ans. (a) −
− =y

x
6
3

10; (b) −
− =y

x
5
8

5
4

; (c) −
− =y

x
3
1

3; (d) −
− =y

x
4
2

0

10. Find the slope–intercept equation of each line:

(a) Through the points (4, −2) and (1, 7)
(b) Having slope 3 and y-intercept 4
(c) Through the points (−1, 0) and (0, 3)
(d) Through (2, −3) and parallel to the x-axis
(e) Through (2, 3) and rising 4 units for every unit increase in x
(f) Through (−2, 2) and falling 2 units for every unit increase in x
(g) Through (3, −4) and parallel to the line with equation 5x − 2y = 4
(h) Through the origin and parallel to the line with equation y = 2
(i) Through (−2, 5) and perpendicular to the line with equation 4x + 8y = 3
(j) Through the origin and perpendicular to the line with equation 3x − 2y = 1
(k) Through (2, 1) and perpendicular to the line with equation x = 2
(l) Through the origin and bisecting the angle between the positive x-axis and the positive y-axis

Ans. (a) y = −3x + 10; (b) y = 3x + 3; (c) y = 3x + 3; (d) y = −3; (e) y = 4x − 5; (f) y = −2x − 2; (g) = −y x5
2

23
2 ; 

(h) y = 0; (i) y = 2x + 9; ( j) = −y x2
3 ; (k) y = 1; (l) y = x
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11. (a)  Describe the lines having equations of the form x = a.
(b) Describe the lines having equations of the form y = b.
(c) Describe the line having the equation y = −x.

12. (a)   Find the slopes and y intercepts of the lines that have the following equations: (i) y = 3x − 2; (ii) 2x − 5y = 3; 

(iii) y = 4x − 3; (iv) y = −3; (v) + =y x
2 3

1.

(b) Find the coordinates of a point other than (0, b) on each of the lines of part (a).

Ans. (a) (i) m = 3, b = −2; (ii) =m 2
5  = −b 3

5 ; (iii) m = 4, b = −3; (iv) m = 0, b = −3; (v) = −m 2
3 ; b = 2;  

(b) (i) (1, 1); (ii) (−6, −3); (iii) (1, 1); (iv) (1, −3); (v) (3, 0)

13. If the point (3, k) lies on the line with slope m = −2 passing through the point (2, 5), find k.

Ans. k = 3

14. Does the point (3, −2) lie on the line through the points (8, 0) and (−7, −6)?

Ans. Yes.

15. Use slopes to determine whether the points (7, −1), (10, 1), and (6, 7) are the vertices of a right triangle.

Ans. They are.

16. Use slopes to determine whether (8, 0), (−1, −2), (−2, 3), and (7, 5) are the vertices of a parallelogram.

Ans. They are.

17. Under what conditions are the points (u, v + w), (v, u + w), and (w, u + v) collinear?

Ans. Always.

18. Determine k so that the points A(7, 3), B(−1, 0), and C(k, −2) are the vertices of a right triangle with right angle at B.

Ans. k = 1

19. Determine whether the following pairs of lines are parallel, perpendicular, or neither:

(a) y = 3x + 2 and y = 3x − 2
(b) y = 2x − 4 and y = 3x + 5
(c) 3x − 2y = 5 and 2x + 3y = 4
(d) 6x + 3y = 1 and 4x + 2y = 3
(e) x = 3 and y = −4
(f) 5x + 4y = 1 and 4x + 5y = 2
(g) x = −2 and x = 7

Ans. (a) parallel; (b) neither; (c) perpendicular; (d) parallel; (e) perpendicular; (f) neither; (g) parallel

20. Draw the line determined by the equation 2x + 5y = 10. Determine whether the points (10, 2) and (12, 3) lie on 
this line.
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21. For what values of k will the line kx − 3y = 4k have the following properties: (a) have slope 1; (b) have y-intercept 2; 
(c) pass through the point (2, 4); (d) be parallel to the line 2x − 4y = 1; (e) be perpendicular to the line x − 6y = 2?

Ans. (a) k = 3; (b) = −k 3
2 ; (c) k = −6; (d) =k 3

2 ; (e) k = −18

22. Describe geometrically the families of lines (a) y = mx − 3 and (b) y = 4x + b, where m and b are any real 
numbers.

Ans. (a) lines with y-intercept −3; (b) lines with slope 4

23. In the triangle with vertices A(0, 0), B(2, 0), and C(3, 3), find equations for (a) the median from B to the 
midpoint of the opposite side; (b) the perpendicular bisector of side BC; and (c) the altitude from B to the 
opposite side.

Ans. (a) y = −3x + 6; (b) x + 3y = 7; (c) y = −x + 2
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CHAPTER 4

Circles

EQUATIONS OF CIRCLES

For a point P(x, y) to lie on the circle with center C(a, b) and radius r, the distance PC  must be equal to r  
(see Fig. 4-1). By the distance formula (2.1),

= − + −PC x a y b( ) ( )2 2

Thus, P lies on the circle if and only if

 − + − =x a y b r( ) ( )2 2 2  (4.1)

Equation (4.1) is called the standard equation of the circle with center at (a, b) and radius r.

Fig. 4-1

EXAMPLE 4.1:
(a) The circle with center (3, 1) and radius 2 has the equation (x − 3)2 + (y − 1)2 = 4.
(b) The circle with center (2, −1) and radius 3 has the equation (x − 2)2 + (y + 1)2 = 9.
(c) What is the set of points satisfying the equation (x − 4)2 + (y − 5)2 = 25?

By (4.1), this is the equation of the circle with center at (4, 5) and radius 5. That circle is said to be the graph of 
the given equation, that is, the set of points satisfying the equation.

(d) The graph of the equation (x + 3)2 + y2 = 2 is the circle with center at (−3, 0) and radius 2.

THE STANDARD EQUATION OF A CIRCLE

The standard equation of a circle with center at the origin (0, 0) and radius r is

 + =x y r2 2 2  (4.2)

For example, x2 + y2 = 1 is the equation of the circle with center at the origin and radius 1. The graph of 
x2 + y2 = 5 is the circle with center at the origin and radius 5.
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32 CHAPTER 4 Circles

The equation of a circle sometimes appears in a disguised form. For example, the equation

 + + − + =x y x y8 6 21 02 2  (4.3)

turns out to be equivalent to

 + + − =x y( 4) ( 3) 42 2  (4.4)

Equation (4.4) is the standard equation of a circle with center at (−4, 3) and radius 2.
Equation (4.4) is obtained from (4.3) by a process called completing the square. In general terms, the 

process involves finding the number that must be added to the sum x2 + Ax to obtain a square.

Here, we note that +



 = + + 



x

A
x Ax

A
2 2

2

2

2

. Thus, in general, we must add 






A
2

2

 to x2 + Ax to obtain 

the square +



x

A
2

2

. For example, to get a square from x2 + 8x, we add 






8
2

2

, that is, 16.

The result is x2 + 8x + 16, which is (x + 4)2. This is the process of completing the square.
Consider the original (4.3): x2 + y2 + 8x − 6y + 21 = 0. To complete the square in x2 + 8x, we add 16. To 

complete the square in y2 − 6y, we add −





6
2

2

, which is 9. Of course, since we added 16 and 9 to the left side 

of the equation, we must also add them to the right side, obtaining

+ + + − + + = +x x y y( 8 16) ( 6 9) 21 16 92 2

This is equivalent to

+ + − + =x y( 4) ( 3) 21 252 2

and subtraction of 21 from both sides yields (4.4).

EXAMPLE 4.2: Consider the equation x2 + y2 − 4x − 10y + 20 = 0. Completing the square yields

− + + − + + = +

− + − =

x x y y

x y

( 4 4) ( 10 25) 20 4 25

( 2) ( 5) 9

2 2

2 2

Thus, the original equation is the equation of a circle with center at (2, 5) and radius 3.

The process of completing the square can be applied to any equation of the form

 + + + + =x y Ax By C 02 2  (4.5)

to obtain

or 

+



 + +



 + = +

+



 + +



 = + −

x
A

y
B

C
A B

x
A

y
B A B C

2 2 4 4

2 2
4

4

2 2 2 2

2 2 2 2

 (4.6)

There are three different cases, depending on whether A2 + B2 − 4C is positive, zero, or negative.

Case 1: A2 + B2 − 4C > 0. In this case, (4.6) is the standard equation of a circle with center at − −





A B
2

,
2  

and radius 
+ −A B C4

2

2 2

.

Case 2: A2 + B2 − 4C = 0. A sum of the squares of two quantities is zero when and only when each of the 
quantities is zero. Hence, (4.6) is equivalent to the conjunction of the equations x + A/2 = 0 and y + B/2 = 0 in 
this case, and the only solution of (4.6) is the point (−A/2, −B/2). Hence, the graph of (4.5) is a single point, 
which may be considered a degenerate circle of radius 0.

Case 3: A2 + B2 − 4C < 0. A sum of two squares cannot be negative. So, in this case, (4.5) has no solution at all.
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33CHAPTER 4 Circles

We can show that any circle has an equation of the form (4.5). Suppose its center is (a, b) and its radius 
is r; then its standard equation is

− + − =x a y b r( ) ( )2 2 2

Expanding yields x2 − 2ax + a2 + y2 − 2by + b2 = r2, or

+ − − + + − =x y ax by a b r2 2 ( ) 02 2 2 2 2

SOLVED PROBLEMS

 1. Identify the graphs of (a) 2x2 + 2y2 − 4x + y + 1 = 0; (b) x2 + y2 − 4y + 7 = 0; (c) x2 + y2 − 6x − 2y + 10 = 0.

(a) First divide by 2, obtaining + − + + =x y x y2 02 2 1
2

1
2 . Then complete the squares:

− + + + + + = + =

− + + = − = − =

x x y y

x y

( 2 1) ( ) 1

( 1) ( )

2 2 1
2

1
16

1
2

1
16

17
16

2 1
4

2 17
16

1
2

17
16

8
16

9
16

Thus, the graph is the circle with center −(1, )1
4

 and radius 3
4 .

(b) Complete the square:

+ − + =

+ − = −

x y

x y

( 2) 7 4

( 2) 3

2 2

2 2

Because the right side is negative, there are no points in the graph.

(c) Complete the square:

− + − + = +

− + − =

x y

x y

( 3) ( 1) 10 9 1

( 3) ( 1) 0

2 2

2 2

The only solution is the point (3, 1).

 2. Find the standard equation of the circle with center at C(2, 3) and passing through the point P(−1, 5).
The radius of the circle is the distance

= − + − − = + − = + =CP (5 3) ( 1 2) 2 ( 3) 4 9 132 2 2 2

So the standard equation is (x − 2)2 + (y − 3)2 = 13.

 3. Find the standard equation of the circle passing through the points P(3, 8), Q(9, 6), and R(13, −2).
First method: The circle has an equation of the form x2 + y2 + Ax + By + C = 0. Substitute the values of x and y 

at point P, to obtain 9 + 64 + 3A + 8B + C = 0 or

 + + = −A B C3 8 73  (1)

A similar procedure for points Q and R yields the equations

 + + = −A B C9 6 117  (2)

 − + = −A B C13 2 173  (3)

Eliminate C from (1) and (2) by subtracting (2) from (1):

 − + =A B6 2 44    or    − + =A B3 22  (4)

Eliminate C from (1) and (3) by subtracting (3) from (1):

 − + =A B10 10 100    or   − + =A B 10  (5)

Eliminate B from (4) and (5) by subtracting (5) from (4), obtaining A = −6. Substitute this value in (5) to find that 
B = 4. Then solve for C in (1): C = −87.
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34 CHAPTER 4 Circles

Hence, the original equation for the circle is x2 + y2 − 6x + 4y − 87 = 0. Completing the squares then yields

− + + = + + =x y( 3) ( 2) 87 9 4 1002 2

Thus, the circle has center (3, −2) and radius 10.
Second method: The perpendicular bisector of any chord of a circle passes through the center of the circle. 

Hence, the perpendicular bisector  of chord PQ will intersect the perpendicular bisector  of chord QR at the 
center of the circle (see Fig. 4-2).

Fig. 4-2

The slope of line PQ is − 1
3
. So, by Theorem 3.2, the slope of  is 3. Also,  passes through the midpoint 

(6, 7) of segment PQ. Hence a point–slope equation of  is −
− =y

x
7
6 3, and therefore its slope–intercept equation 

is y = 3x − 11. Similarly, the slope of line QR is −2, and therefore the slope of  is 1
2 , Since  passes through 

the midpoint (11, 2) of segment QR, it has a point–slope equation 
−
− =y

x
2
11

1
2 , which yields the slope–intercept 

equation = −y x1
2

7
2 . Hence, the coordinates of the center of the circle satisfy the two equations y = 3x − 11 and 

= −y x1
2

7
2  and we may write

− = −x x3 11 1
2

7
2

from which we find that x = 3. Therefore,

 = − = − = −y x3 11 3(3) 11 2  

So the center is at (3, −2). The radius is the distance between the center and the point (3, 8):

 − − + − = − = =( 2 8) (3 3) ( 10) 100 102 2 2  

Thus, the standard equation of the circle is (x − 3)2 + (y + 2)2 = 100.

 4. Find the center and radius of the circle that passes through P(1, 1) and is tangent to the line y = 2x − 3 at the point 
Q(3, 3). (See Fig. 4-3.)

Fig. 4-3
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35CHAPTER 4 Circles

The line  perpendicular to y = 2x − 3 at (3, 3) must pass through the center of the circle. By Theorem 3.2, the 
slope of  is − 1

2 . Therefore, the slope–intercept equation of  has the form = − +y x b1
2 . Since (3, 3) is on , we 

have = − + b3 (3)1
2

; hence, =b 9
2, and  has the equation = − +y x1

2
9
2 .

The perpendicular bisector  of chord PQ in Fig. 4-3 also passes through the center of the circle, so the 
intersection of  and  will be the center of the circle. The slope of PQ is 1. Hence, by Theorem 3.2, the slope 
of  is −1. So  has the slope–intercept equation y = −x + b′.  Since the midpoint (2, 2) of chord PQ is a point on 
, we have 2 = −(2) + b′; hence, b′ = 4, and the equation of  is y = −x + 4. We must find the common solution 
of y = −x + 4 and = − +y x1

2
9
2 . Setting

 − + = − +x x4 1
2

9
2

 

yields x = −1. Therefore, y = −x + 4 = − (−1) + 4 = 5, and the center C of the circle is (−1, 5). The radius is  
the distance = − − + − = + =PC ( 1 3) (5 3) 16 4 202 2 . The standard equation of the circle is then  
(x + 1)2 + ( y − 5)2 = 20.

 5. Find the standard equation of every circle that passes through the points P(1, −1) and Q(3, 1) and is tangent to the 
line y = −3x.

Let C(c, d) be the center of one of the circles, and let A be the point of tangency (see Fig. 4-4). Then, because 

=CP CQ, we have

=CP CQ
2 2

    or    − + + = − + −c d c d( 1) ( 1) ( 3) ( 1)2 2 2 2

Expanding and simplifying, we obtain

 + =c d 2  (1)

Fig. 4-4

In addition, =CP CA, and by the formula of Problem 8 in Chapter 3, = +
CA

c d3
10

. Setting =CP CA
2 2

 thus yields 

− + + = +
c d

c d
( 1) ( 1)

(3 )
10

2 2
2

. Substituting (1) in the right-hand side and multiplying by 10 then yields

− + + = +c d c10[( 1) ( 1) ] (2 2)2 2 2     from which    + − + + =c d c d3 5 14 10 8 02 2

By (1), we can replace d by 2 − c, obtaining

− + =c c2 11 12 02     or    − − =c c(2 3)( 4) 0

Hence, =c 3
2  or c = 4. Then (1) gives us the two solutions =c 3

2 , =d 1
2  and c = 4, d = −2. Since the radius 

= +
CA

c d3
10

, these solutions produce radii of =
10

10
2

10
2  and =10

10
10 . Thus, there are two such circles, and 
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36 CHAPTER 4 Circles

their standard equations are

−



 + −



 =x y

3
2

1
2

5
2

2 2

    and    − + + =x y( 4) ( 2) 102 2

SUPPLEMENTARY PROBLEMS

 6. Find the standard equations of the circles satisfying the following conditions:

(a) center at (3, 5) and radius 2 (b) center at (4, −1) and radius 1
(c) center at (5, 0) and radius 3 (d) center at (−2, −2) and radius 5 2
(e) center at (−2, 3) and passing through (3, −2) ( f   ) center at (6, 1) and passing through the origin

Ans. (a) (x − 3)2 + (y − 5)2 = 4; (b) (x − 4)2 + ( y + 1)2 = 1; (c) (x − 5)2 + y2 = 3; (d) (x + 2)2 + ( y + 2)2 = 50;  
(e) (x + 2)2 + (y − 3)2 = 50; (f   ) (x − 6)2 + ( y − 1)2 = 37

 7. Identify the graphs of the following equations:

(a) x2 + y2 + 16x − 12y + 10 = 0 (b) x2 + y2 − 4x + 5y + 10 = 0
(c) x2 + y2 + x − y = 0 (d) 4x2 + 4y2 + 8y − 3 = 0 
(e) x2 + y2 − x − 2y + 3 = 0 (f   ) + + − =x y x2 2 02 2

Ans. (a) circle, center at (−8, 6), radius 3 10 ; (b) circle, center at −(2, )5
2 , radius 1

2 ; (c) circle, center at −( , )1
2

1
2 ,  

radius 2 /2; (d) circle, center at (0, −1), radius 7
2
; (e) empty graph; (f ) circle, center at −( 2 /2,0),  

radius 5/2

 8. Find the standard equations of the circles through (a) (−2, 1), (1, 4), and (−3, 2); (b) (0, 1), (2, 3), and +(1, 1 3); 
(c) (6, 1), (2, −5), and (1, −4); (d) (2, 3), (−6, −3), and (1, 4).

Ans. (a) (x + 1)2 + ( y − 3)2 = 5; (b) (x − 2)2 + ( y − 1)2 = 4; (c) (x − 4)2 + (y + 2)2 = 13; (d) (x + 2)2 + y2 = 25

 9. For what values of k does the circle (x + 2k)2 + (y − 3k)2 = 10 pass through the point (1, 0)?

Ans. =k 9
13  or k = −1

10. Find the standard equations of the circles of radius 2 that are tangent to both the lines x = 1 and y = 3.

Ans. (x + 1)2 + ( y − 1)2 = 4; (x + 1)2 + ( y − 5)2 = 4; (x − 3)2 + ( y − 1)2 = 4; (x − 3)2 + ( y − 5)2 = 4

11. Find the value of k so that x2 + y2 + 4x − 6y + k = 0 is the equation of a circle of radius 5.

Ans. k = −12

12. Find the standard equation of the circle having as a diameter the segment joining (2, −3) and (6, 5).

Ans. (x − 4)2 + ( y − 1)2 = 20

13. Find the standard equation of every circle that passes through the origin, has radius 5, and is such that the 
y-coordinate of its center is −4.

Ans. (x − 3)2 + ( y + 4)2 = 25 or (x + 3)2 + ( y + 4)2 = 25
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14. Find the standard equation of the circle that passes through the points (8, −5) and (−1, 4) and has its center on the 
line 2x + 3y = 3.

Ans. (x − 3)2 + ( y + 1)2 = 41

15. Find the standard equation of the circle with center (3, 5) that is tangent to the line 12x − 5y + 2 = 0.

Ans. (x − 3)2 + ( y − 5)2 = 1

16. Find the standard equation of the circle that passes through the point +(1, 3 2)  and is tangent to the line x + y = 2  
at (2, 0).

Ans. (x − 5)2 + ( y − 3)2 = 18

17. Prove analytically that an angle inscribed in a semicircle is a right angle. (See Fig. 4-5.)

18. Find the length of a tangent from (6, −2) to the circle (x − 1)2 + ( y − 3)2 = 1. (See Fig. 4-6.)

Ans. 7

  

 Fig. 4-5 Fig. 4-6

19. Find the standard equations of the circles that pass through (2, 3) and are tangent to both the lines 3x − 4y = −l 
and 4x + 3y = 7.

Ans. (x − 2)2 + ( y − 8)2 = 25 and −



 + −



 =x y

6
5

12
5

1
2 2

20. Find the standard equations of the circles that have their centers on the line 4x + 3y = 8 and are tangent to both 
the lines x + y = −2 and 7x − y = − 6.

Ans. (x − 2)2 + y2 = 8 and (x + 4)2 + ( y − 8)2 = 18

21. Find the standard equation of the circle that is concentric with the circle x2 + y2 − 2x − 8y + 1 = 0 and is tangent to 
the line 2x − y = 3.

Ans. (x − 1)2 + ( y − 4)2 = 5

22. Find the standard equations of the circles that have radius 10 and are tangent to the circle x2 + y2 = 25 at the point (3, 4).

Ans. (x − 9)2 + (y − 12)2 = 100 and (x + 3)2 + (y + 4)2 = 100
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23. Find the longest and shortest distances from the point (7, 12) to the circle x2 + y2 + 2x + 6y − 15 = 0. 

Ans. 22 and 12

24. Let 1 and 2 be two intersecting circles determined by the equations x2 + y2 + A1x + B1y + C1 = 0 and x2 + y2 + 
A2x + B2y + C2 = 0. For any number k ≠ −1, show that

+ + + + + + + + + =x y A x B y C k x y A x B y C( ) 02 2
1 1 1

2 2
2 2 2

is the equation of a circle through the intersection points of 1 and 2. Show, conversely, that every such circle 
may be represented by such an equation for a suitable k.

25. Find the standard equation of the circle passing through the point (−3, 1) and containing the points of intersection 
of the circles x2 + y2 + 5x = 1 and x2 + y2 + y = 7.

Ans. (Use Problem 24.)  ( )( )+ + + =x y1
3

10
569
100

2
2

26. Find the standard equations of the circles that have centers on the line 5x − 2y = −2l and are tangent to both 
coordinate axes.

Ans. (x + 7)2 + ( y + 7)2 = 49 and (x + 3)2 + ( y − 3)2 = 9

27. (a)   If two circles x2 + y2 + A1x + B1y + C1 = 0 and x2 + y2 + A2x + B2y + C2 = 0 intersect at two points, find an 
equation of the line through their points of intersection.

(b) Prove that if two circles intersect at two points, then the line through their points of intersection is 
perpendicular to the line through their centers.

Ans. (a) (A1 − A2)x + (B1 − B2)y + (C1 − C2) = 0

28. Find the points of intersection of the circles x2 + y2 + 8y − 64 = 0 and x2 + y2 − 6x − 16 = 0.

Ans. (8, 0) and ( ),24
15

24
5

29. Find the equations of the lines through (4, 10) and tangent to the circle x2 + y2 − 4y − 36 = 0.

Ans. y = −3x + 22 and x − 3y + 26 = 0

30. (GC) Use a graphing calculator to draw the circles in Problems 7(d), 10, 14, and 15. (Note: It may be necessary 
to solve for y.)

31. (GC) (a) Use a graphing calculator to shade the interior of the circle with center at the origin and radius 3.  
(b) Use a graphing calculator to shade the exterior of the circle x2 + ( y − 2)2 = 1.

32. (GC) Use a graphing calculator to graph the following inequalities: (a) (x − l)2 + y2 < 4; (b) x2 + y2 − 6x − 8y > 0.
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CHAPTER 5

Equations and Their Graphs

THE GRAPH OF AN EQUATION

The graph of an equation involving x and y as its only variables consists of all points (x, y) satisfying the equation.

EXAMPLE 5.1: (a) What is the graph of the equation 2x − y = 3?
The equation is equivalent to y = 2x − 3, which we know is the slope–intercept equation of the line with slope 2 

and y-intercept −3.
(b) What is the graph of the equation x2 + y2 − 2x + 4y − 4 = 0?

Completing the square shows that the given equation is equivalent to the equation (x − 1)2 + ( y + 2)2 = 9. Hence, 
its graph is the circle with center (1, −2) and radius 3.

PARABOLAS

Consider the equation y = x2. If we substitute a few values for x and calculate the associated values of y, we 
obtain the results tabulated in Fig. 5-1. We can plot the corresponding points, as shown in the figure. These 
points suggest the heavy curve, which belongs to a family of curves called parabolas. In particular, the 
graphs of equations of the form y = cx2, where c is a nonzero constant, are parabolas, as are any other curves 
obtained from them by translations and rotations.

Fig. 5-1

In Fig. 5-1, we note that the graph of y = x2 contains the origin (0, 0) but all its other points lie above the 
x-axis, since x2 is positive except when x = 0. When x is positive and increasing, y increases without bound. 
Hence, in the first quadrant, the graph moves up without bound as it moves right. Since (−x)2 = x2, it follows 
that if any point (x, y) lies on the graph in the first quadrant, then the point (−x, y) also lies on the graph in 
the second quadrant. Thus, the graph is symmetric with respect to the y axis. The y-axis is called the axis of 
symmetry of this parabola. The vertex is the intersection of the parabola and its axis of symmetry.
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ELLIPSES

To construct the graph of the equation + =x y
9 4

1,
2 2

 we again compute a few values and plot the correspond-
ing points, as shown in Fig. 5-2. The graph suggested by these points is also drawn in the figure; it is a 

member of a family of curves called ellipses. In particular, the graph of an equation of the form + =x
a

y
b

1
2

2

2

2  
is an ellipse, as is any curve obtained from it by translation or rotation.

Note that, in contrast to parabolas, ellipses are bounded. In fact, if (x, y) is on the graph of + =x y
9 4

1
2 2

, then 

≤ + =x x y
9 9 4

1,
2 2 2

 and therefore, x2 ≤ 9. Hence, −3 ≤ x ≤ 3. So, the graph lies between the vertical lines x = −3 
and x = 3. Its rightmost point is (3, 0), and its leftmost point is (−3, 0). A similar argument shows that the 
graph lies between the horizontal lines y = −2 and y = 2, and that its lowest point is (0, −2) and its highest point 
is (0, 2). In the first quadrant, as x increases from 0 to 3, y decreases from 2 to 0. If (x, y) is any point on the 
graph, then (−x, y) also is on the graph. Hence, the graph is symmetric with respect to the y-axis. Similarly, if 
(x, y) is on the graph, so is (x, −y), and therefore the graph is symmetric with respect to the x-axis.

Fig. 5-2

When a = b, the ellipse + =x
a

y
b

1
2

2

2

2  is the circle with the equation x2 + y2 = a2, that is, a circle with center 

at the origin and radius a. Thus, circles are special cases of ellipses.

HYPERBOLAS

Consider the graph of the equation − =x y
9 4

1.
2 2

 Some of the points on this graph are tabulated and plotted in 

Fig. 5-3. These points suggest the curve shown in the figure, which is a member of a family of curves called 

hyperbolas. The graphs of equations of the form − =x
a

y
b

1
2

2

2

2  are hyperbolas, as are any curves obtained from 
them by translations and rotations.

Fig. 5-3

Let us look at the hyperbola − =x y
9 4

1
2 2

 in more detail. Since = + ≥x y
9

1
4

1,
2 2

 it follows that x2 ≥ 9, and 

therefore, |x| ≥ 3. Hence, there are no points on the graph between the vertical lines x = −3 and x = 3. If (x, y) 
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is on the graph, so is (−x, y); thus, the graph is symmetric with respect to the y-axis. Similarly, the graph is 
symmetric with respect to the x-axis. In the first quadrant, as x increases, y increases without bound.

Fig. 5-4

Note the dashed lines in Fig. 5-3; they are the lines =y x2
3  and = −y x,2

3  and they are called the asymptotes 

of the hyperbola: points on the hyperbola get closer and closer to these asymptotes as they recede from the 

origin. In general, the asymptotes of the hyperbola − =x
a

y
b

1
2

2

2

2  are the lines =y
b
a

x and = −y
b
a

x.

CONIC SECTIONS

Parabolas, ellipses, and hyperbolas together make up a class of curves called conic sections. They can be 
defined geometrically as the intersections of planes with the surface of a right circular cone, as shown in 
Fig. 5-4.

SOLVED PROBLEMS

 1. Sketch the graph of the cubic curve y = x3.
The graph passes through the origin (0, 0). Also, for any point (x, y) on the graph, x and y have the same sign; 

hence, the graph lies in the first and third quadrants. In the first quadrant, as x increases, y increases without 
bound. Moreover, if (x, y) lies on the graph, then (−x, −y) also lies on the graph. Since the origin is the midpoint 
of the segment connecting the points (x, y) and (−x, −y), the graph is symmetric with respect to the origin. Some 
points on the graph are tabulated and shown in Fig. 5-5; these points suggest the heavy curve in the figure.

x

x

y
y

0

1

2

–1

–2

1/2

3/2

–1/2

–3/2

0

1

8

–1

–8

1/8

27/8

–1/8

–27/8

1–1
–2

–4

–6

–8

8

6

4

2

–2–3–4 2 3 4

Fig. 5-5
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 2. Sketch the graph of the equation y = −x2.
If (x, y) is on the graph of the parabola y = x2 (Fig. 5-1), then (x, −y) is on the graph of y = −x2, and vice 

versa. Hence, the graph of y = −x2 is the reflection in the x-axis of the graph of y = x2. The result is the parabola 
in Fig. 5-6.

 3. Sketch the graph of x = y2.
This graph is obtained from the parabola y = x2 by exchanging the roles of x and y. The resulting curve is a 

parabola with the x-axis as its axis of symmetry and its “nose” at the origin (see Fig. 5-7). A point (x, y) is on 
the graph of x = y2 if and only if (y, x) is on the graph of y = x2. Since the segment connecting the points (x, y)  

and (y, x) is perpendicular to the diagonal line y = x (why?), and the midpoint 
+ +





x y x y
2

,
2  of that segment 

is on the line y = x (see Fig. 5-8), the parabola x = y2 is obtained from the parabola y = x2 by reflection in the 
line y = x.

Fig. 5-6

Fig. 5-7
Fig. 5-8

 4. Let  be a line, and let F be a point not on . Show that the set of all points equidistant from F and  is a 
parabola.

Construct a coordinate system such that F lies on the positive y-axis, and the x-axis is parallel to  and 
halfway between F and . (See Fig. 5-9.) Let 2p be the distance between F and . Then  has the equation y = −p, 
and the coordinates of F are (0, p).
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Consider an arbitrary point P(x, y). Its distance from  is |y + p|, and its distance from F is + −x y p( ) .2 2  
Thus, for the point to be equidistant from F and , we must have + = + −y p x y p| | ( ) .2 2 . Squaring yields  
(y + p)2 = x2 + (y −p)2, from which we find that 4py = x2. This is the equation of a parabola with the y-axis as its 
axis of symmetry. The point F is called the focus of the parabola, and the line  is called its directrix. The chord 
AB through the focus and parallel to  is called the latus rectum. The “nose” of the parabola at (0, 0) is called its 
vertex.

Fig. 5-9

 5. Find the length of the latus rectum of a parabola 4py = x2.
The y-coordinate of the endpoints A and B of the lactus rectum (see Fig. 5-9) is p. Hence, at these points, 4p2 = x2 

and therefore, x = ±2p. Thus, the length AB of the latus rectum is 4p.

 6. Find the focus, directrix, and the length of the latus rectum of the parabola =y x1
2

2, and draw its graph.
The equation of the parabola can be written as 2y = x2. Hence, 4p = 2 and =p .1

2  Therefore, the focus is 
at (0, 1

2 ), the equation of the directix is = −y 1
2 , and the length of the latus rectum is 2. The graph is shown in 

Fig. 5-10.

Fig. 5-10

 7. Let F and F′ be two distinct points at a distance 2c from each other. Show that the set of all points P(x, y) such 
that + ′ = >PF PF a a c2 ,  is an ellipse.
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Construct a coordinate system such that the x-axis passes through F and F′, the origin is the midpoint of the 
segment FF′, and F lies on the positive x-axis. Then the coordinates of F and F′ are (c, 0) and (−c, 0).

Fig. 5-11

(See Fig. 5-11.) Thus, the condition + ′ =PF PF a2  is equivalent to − + + + + =x c y x c y a( ) ( ) 2 .2 2 2 2   
After rearranging and squaring twice (to eliminate the square roots) and performing indicated operations, we 
obtain

 − + = −a c x a y a a c( ) ( )2 2 2 2 2 2 2 2  (1)

Since a > c, a2 − c2 > 0. Let = −b a c .2 2  Then (1) becomes b2x2 + a2y2 = a2b2, which we may rewrite as 

+ =x
a

y
b

1,
2

2

2

2  the equation of an ellipse.

When y = 0, x2 = a2; hence, the ellipse intersects the x-axis at the points A′(−a, 0), and A(a, 0), called the 
vertices of the ellipse (Fig. 5-11). The segment A′A is called the major axis; the segment OA is called the 
semimajor axis and has length a. The origin is the center of the ellipse. F and F′ are called the foci (each is 
a focus). When x = 0, y2 = b2. Hence, the ellipse intersects the y-axis at the points B′(0, −b) and B(0, b). The 
segment B′B is called the minor axis; the segment OB is called the semiminor axis and has length b. Note that 

= − < =b a c a a.2 2 2  Hence, the semiminor axis is smaller than the semimajor axis. The basic relation among 
a, b, and c is a2 = b2 + c2.

The eccentricity of an ellipse is defined to be e = c/a. Note that 0 < e < 1. Moreover, = − = −/e a b a b a1 ( / ) .2 2 2  
Hence, when e is very small, b/a is very close to 1, the minor axis is close in size to the major axis, and the ellipse 
is close to being a circle. On the other hand, when e is close to 1, b/a is close to zero, the minor axis is very small in 
comparison with the major axis, and the ellipse is very “flat.”

 8. Identify the graph of the equation 9x2 + 16y2 = 144.
The given equation is equivalent to x2/16 + y2/9 = 1. Hence, the graph is an ellipse with semimajor axis 

of length a = 4 and semiminor axis of length b = 3. (See Fig. 5-12.) The vertices are (−4, 0) and (4, 0). Since 
= − = − =c a b 16 9 7,2 2  the eccentricity e is = ≈c a/ 7 /4 0.6614.

 9. Identify the graph of the equation 25x2 + 4y2 = 100.
The given equation is equivalent to x2/4 + y2/25 = 1, an ellipse. Since the denominator under y2 is larger 

than the denominator under x2, the graph is an ellipse with the major axis on the y-axis and the minor axis on 

the x axis (see Fig. 5-13). The vertices are at (0, −5) and (0, 5). Since = − =c a b 21,2 2  the eccentricity is 
≈21/5 0.9165.
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Fig. 5-12 Fig. 5-13

10. Let F and F′ be distinct points at a distance of 2c from each other. Find the set of all points P(x, y) such that 
PF PF a2 ,− ′ =  for a < c.

Choose a coordinate system such that the x-axis passes through F and F′, with the origin as the midpoint of 
the segment FF′ and with F on the positive x-axis (see Fig. 5-14). The coordinates of F and F′ are (c, 0) and (−c, 0). 
Hence, the given condition is equivalent to − + − + + = ±x c y x c y a( ) ( ) 2 .2 2 2 2  After manipulations required to 
eliminate the square roots, this yields

 − − = −c a x a y a c a( ) ( )2 2 2 2 2 2 2 2  (1)

Since c > a, c2 − a2 > 0. Let = −b c a .2 2  (Notice that a2 + b2 = c2.) Then (1) becomes b2x2 − a2y2 = a2b2, which 

we rewrite as − =x
a

y
b

1
2

2

2

2 , the equation of a hyperbola.

When y = 0, x = ±a. Hence, the hyperbola intersects the x-axis at the points A′(−a, 0) and A(a, 0), which are 

called the vertices of the hyperbola. The asymptotes are = ±y
b
a

x. The segment A′A is called the transverse axis. 

The segment connecting the points (0, −b) and (0, b) is called the conjugate axis. The center of the hyperbola is 

the origin. The points F and F′ are called the foci. The eccentricity is defined to be = = + = + 



e

c
a

a b
a

b
a

1 .
2 2 2

 

Since c > a, e > 1. When e is close to 1, b is very small relative to a, and the hyperbola has a very pointed “nose”; 
when e is very large, b is very large relative to a, and the hyperbola is very “flat.”

Fig. 5-14
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11. Identify the graph of the equation 25x2 − 16y2 = 400.
The given equation is equivalent to x2/16 − y2/25 = 1. This is the equation of a hyperbola with the x-axis as its 

transverse axis, vertices (−4, 0) and (4, 0), and asymptotes = ±y x5
4 . (See Fig. 5.15.)

Fig. 5-15

12. Identify the graph of the equation y2 − 4x2 = 4.

The given equation is equivalent to − =y x
4 1

1.
2 2

 This is the equation of a hyperbola, with the roles of x and y 
interchanged. Thus, the transverse axis is the y-axis, the conjugate axis is the x-axis, and the vertices are (0, −2) 
and (0, 2). The asymptotes are = ±x y1

2  or, equivalently, y = ±2x. (See Fig. 5-16.)

Fig. 5-16

12a. Find the asymptotes of the hyperbola −x2/p2 + y2/q2 = 1.
The asymptotes of this more general vertically oriented hyperbola are the lines: 

y = −q/px and y = q/px. 

13. Identify the graph of the equation y = (x - 1)2.
A point (u, v) is on the graph of y = (x − 1)2 if and only if the point (u − 1, v) is on the graph of y = x2. Hence, 

the desired graph is obtained from the parabola y = x2 by moving each point of the latter one unit to the right. 
(See Fig. 5-17.)

14. Identify the graph of the equation 
− + − =x y( 1)
4

( 2)
9

1.
2 2

A point (u, v) is on the graph if and only if the point (u − 1, v − 2) is on the graph of the equation x2/4 + y2/9 = 1. 
Hence, the desired graph is obtained by moving the ellipse x2/4 + y2/9 = 1 one unit to the right and two units 
upward. (See Fig. 5-18.) The center of the ellipse is at (1, 2), the major axis is along the line x = 1, and the minor 
axis is along the line y = 2.
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Fig. 5-17

Fig. 5-18

15. How is the graph of an equation F(x − a, y − b) = 0 related to the graph of the equation F(x, y) = 0?
A point (u, v) is on the graph of F(x − a, y − b) = 0 if and only if the point (u − a, v − b) is on the graph of 

F(x, y) = 0. Hence, the graph of F(x − a, y − b) = 0 is obtained by moving each point of the graph of F(x, y) = 0 
by a units to the right and b units upward. (If a is negative, we move the point |a| units to the left. If b is negative, 
we move the point |b| units downward.) Such a motion is called a translation.

16. Identify the graph of the equation y = x2 − 2x.
Competing the square in x, we obtain y + 1 = (x − 1)2. Based on the results of Problem 15, the graph is 

obtained by a translation of the parabola y = x2 so that the new vertex is (1, −1). [Notice that y + 1 is y − (−1).] It 
is shown in Fig. 5-19.

Fig. 5-19

05_Mendelson_ch05_p039-050.indd   47 27/07/21   10:55 AM



48 CHAPTER 5 Equat ions  and Thei r  Graphs

17. Identify the graph of 4x2 − 9y2 − 16x + 18y − 29 = 0.
Factoring yields 4(x2 − 4x) − 9( y2 − 2y) − 29 = 0, and then completing the square in x and y produces  

4(x − 2)2 − 9( y − 1)2 = 36. Dividing by 36 then yields 
− − − =x y( 2)
9

( 1)
4

1.
2 2

 By the results of Problem 15, the 

graph of this equation is obtained by translating the hyperbola − =x y
9 4

1
2 2

 two units to the right and one unit 

upward, so that the new center of symmetry of the hyperbola is (2, 1). (See Fig. 5-20.)

18. Draw the graph of the equation xy = 1.
Some points of the graph are tabulated and plotted in Fig. 5-21. The curve suggested by these points is shown 

dashed as well. It can be demonstrated that this curve is a hyperbola with the line y = x as transverse axis, the line 
y = −x as converse axis, vertices (−1, −1) and (1, 1), and the x-axis and y-axis as asymptotes. Similarly, the graph 
of any equation xy = d, where d is a positive constant, is a hyperbola with y = x as transverse axis and y = −x as 
converse axis, and with the coordinate axes as asymptotes. Such hyperbolas are called equilateral hyperbolas. 
They can be shown to be rotations of hyperbolas of the form x2/a2 − y2/a2 = 1.

Fig. 5-20

Fig. 5-21
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SUPPLEMENTARY PROBLEMS

19. (a)  On the same sheet of paper, draw the graphs of the following parabolas:

(i) y = 2x2 (ii) y = 3x2 (iii) y = 4x2

(iv) =y x1
2

2 (v) =y x1
3

2

(b) (GC) Use a graphing calculator to check your answers to (a).

20. (a) On the same sheet of paper, draw the graphs of the following parabolas and indicate points of intersection:

(i) y = x2 (ii) y = −x2 (iii) x = y2

(iv) x = −y2

(b) (GC) Use a graphing calculator to check your answers to (a).

21. Draw the graphs of the following equations:

(a) y = x3 − 1 (b) y = (x − 2)3 (c) y = (x + 1)3 − 2
(d) y = −x3 (e) y = −(x − 1)3 (f ) y = −(x − 1)3 + 2

22. (GC) Use a graphing calculator to answer Problem 21.

23. Identify and draw the graphs of the following equations:

(a) y2 − x2 = 1 (b) 25x2 + 36y2 = 900 (c) 2x2 − y2 = 4
(d) xy = 4 (e) 4x2 + 4y2 = 1 (f ) 8x = y2

(g) 10y = x2 (h) 4x2 + 9y2 = 16 (i) xy = −1
( j) 3y2 − x2 = 9

Ans. (a) hyperbola, y-axis as transverse axis, vertices (0, ±1), asymptotes y = ± x; (b) ellipse, vertices (±6, 0) 
foci ±( 11, 0); (c) hyperbola, x-axis as transverse axis, vertices ±( 2, 0), asymptotes = ±y x2 ;  
(d) hyperbola, y = x as transverse axis, vertices (2, 2) and (−2, −2), x- and y-axes as asymptotes; (e) circle, 
center (0, 0), radius 1

2; (f ) parabola, vertex (0, 0), focus (2, 0), directrix x = −2; (g) parabola, vertex (0, 0), 
focus (0, )5

2
, directrix = −y 5

2; (h) ellipse, vertices (±2, 0), foci ±( 5,0)2
3 ; (i) hyperbola, y = −x as transverse 

axis, vertices (−1, 1) and (1, −1), x- and y-axes as asymptotes; ( j) hyperbola, y-axis as transverse axis, vertices 
±(0, 3) , asymptotes = ±y x3 /3

24. (GC) Use a graphing calculator to draw the graphs in Problem 23.

25. Identify and draw the graphs of the following equations:

(a) 4x2 − 3y2 + 8x + 12y − 4 = 0 (b) 5x2 + y2 − 20x + 6y + 25 = 0 (c) x2 − 6x − 4y + 5 = 0
(d) 2x2 + y2 − 4x + 4y + 6 = 0 (e) 3x2 + 2y2 + 12x − 4y + 15 = 0 (f ) (x − 1)( y + 2) = 1
(g) xy − 3x − 2y + 5 = 0 [Hint: Compare (f).] (h) 4x2 + y2 + 8x + 4y + 4 = 0
(i) 2x2 − 8x − y + 11 = 0 ( j) 25x2 + 16y2 − 100x − 32y − 284 = 0

Ans. (a) empty graph; (b) ellipse, center at (2, −3); (c) parabola, vertex at (3, −1); (d) single point (1, −2); 
(e) empty graph; (f ) hyperbola, center at (1, −2); (g) hyperbola, center at (2, 3); (h) ellipse, center at 
(−1, 2); (i) parabola, vertex at (2, 3); ( j) ellipse, center at (2, 1)

26. (GC) Use a graphing calculator to draw the graphs in Problem 25.
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27. Find the focus, directrix, and length of the latus rectum of the following parabolas: (a) 10x2 = 3y; (b) 2y2 = 3x; 
(c) 4y = x2 + 4x + 8; (d) 8y = −x2.

Ans. (a) focus at (0, )3
40 , directrix = −y 3

40 , latus rectum 3
10 ; (b) focus at ( ,0)3

8 , directrix = −x 3
8 , latus rectum 3

2 ;  
(c) focus at (−2, 2), directrix y = 0, latus rectum 4; (d) focus at (0, −2), directrix y = 2, latus rectum 8

28. Find an equation for each parabola satisfying the following conditions:

(a) Focus at (0, −3), directrix y = 3    (b) Focus at (6, 0), directrix x = 2
(c) Focus at (1, 4), directrix y = 0      (d) Vertex at (1, 2), focus at (1, 4)
(e) Vertex at (3, 0), directrix x = 1
(f) Vertex at the origin, y-axis as axis of symmetry, contains the point (3, 18)
(g) Vertex at (3, 5), axis of symmetry parallel to the y-axis, contains the point (5, 7)
(h) Axis of symmetry parallel to the x-axis, contains the points (0, 1), (3, 2), (1, 3)
(i) Latus rectum is the segment joining (2, 4) and (6, 4), contains the point (8, 1)
(j) Contains the points (1, 10) and (2, 4), axis of symmetry is vertical, vertex is on the line 4x − 3y = 6

Ans. (a) 12y = −x2; (b) 8(x − 4) = y2; (c) 8( y − 2) = (x − 1)2; (d) 8( y − 2) = (x − 1)2; (e) 8(x − 3) = y2; 

(f ) y = 2x2; (g) 2( y − 5) = (x − 3)2; (h) ( ) ( )− = − −x y2 5121
40

21
10

2
; (i) 4( y − 5) = −(x − 4)2;  

( j) y − 2 = 2(x − 3)2 or ( )− = −y x262
13

21
13

2

29. Find an equation for each ellipse satisfying the following conditions:

(a) Center at the origin, one focus at (0, 5), length of semimajor axis is 13
(b) Center at the origin, major axis on the y-axis, contains the points (1, 2 3)  and ( , 15)1

2

(c) Center at (2, 4), focus at (7, 4), contains the point (5, 8)
(d) Center at (0, 1), one vertex at (6, 1), eccentricity 2

3

(e) Foci at ( )±0, 4
3

, contains ( ), 14
5

(f) Foci (0, ±9), semiminor axis of length 12

Ans. (a) + =x y
144 169

1
2 2

; (b) + =x y
4 16

1
2 2

; (c) 
− + − =x y( 2)
45

( 4)
20

1
2 2

; (d) + − =x y
36

( 1)
20

1;
2 2

 (e) + =x
y9

25
12

2

; 

(f) + =x y
144 225

1
2 2

30. Find an equation for each hyperbola satisfying the following conditions:

(a) Center at the origin, transverse axis the x-axis, contains the points (6, 4) and (−3, 1)
(b) Center at the origin, one vertex at (3, 0), one asymptote is =y x2

3

(c) Has asymptotes = ±y x2 , contains the point (1, 2)
(d) Center at the origin, one focus at (4, 0), one vertex at (3, 0)

Ans. (a) − =x y5
36 4

1
2 2

; (b) − =x y
9 4

1
2 2

; (c) − =y
x

2
1

2
2 ; (d) − =x y

9 7
1

2 2

31. Find an equation of the hyperbola consisting of all points P(x, y) such that PF PF| | 2 2,− ′ =  where =F ( 2, 2) 
and ′ = − −F ( 2, 2).

Ans. xy = 1

32. (GC) Use a graphing calculator to draw the hyperbola − =x y
9 4

1
2 2

 and its asymptotes = ±y x2
3 .

33. (GC) Use a graphing calculator to draw the ellipses x2 + 4y2 = 1 and (x − 3)2 + 4( y − 2)2 = 1. How is the latter 
graph obtained from the former one?
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CHAPTER 6

Functions

We say that a quantity y is a function of some other quantity x if the value of y is determined by the value of x. 
If f denotes the function, then we indicate the dependence of y on x by means of the formula y = f  (x). The letter 
x is called the independent variable, and the letter y is called the dependent variable. The independent variable 
is also called the argument of the function, and the dependent variable is called the value of the function.

For example, the area A of a square is a function of the length s of a side of the square, and that function can 
be expressed by the formula A = s2. Here, s is the independent variable and A is the dependent variable.

The domain of a function is the set of numbers to which the function can be applied, that is, the set of 
numbers that are assigned to the independent variable. The range of a function is the set of numbers that the 
function associates with the numbers in the domain.

EXAMPLE 6.1: The formula f  (x) = x2 determines a function f that assigns to each real number x its square. The 
domain consists of all real numbers. The range can be seen to consist of all nonnegative real numbers. [In fact, each 
value x2 is nonnegative. Conversely, if r is any nonnegative real number, then r appears as a value when the function 

is applied to r , since r r( ) .2= ]

EXAMPLE 6.2: Let g be the function defined by the formula g(x) = x2 − 4x + 2 for all real numbers. Thus,

g(1) (1) 4(1) 2 1 4 2 12= − + = − + = −

and

g( 2) ( 2) 4( 2) 2 4 8 2 142− = − − − + = + + =

Also, for any number a, g(a + 1) = (a + l)2 − 4(a + 1) + 2 = a2 + 2a + 1 − 4a − 4 + 2 = a2 − 2a − 1.

EXAMPLE 6.3: (a) Let the function h(x) = 18x − 3x2 be defined for all real numbers x. Thus, the domain is the set of 
all real numbers. (b) Let the area A of a certain rectangle, one of whose sides has length x, be given by A = 18x − 3x2.  
Both x and A must be positive. Now by completing the square, we obtain

A x x x x3( 6 ) 3[( 3) 9] 27 3( 3)2 2 2= − − = − − − = − −

Since A > 0, 3(x − 3)2 < 27, (x − 3)2 < 9, |x − 3| < 3. Hence, −3 < x − 3 < 3, 0 < x < 6. Thus, the function  
determining A has the open interval (0, 6) as its domain. The graph of A = 27 − 3(x − 3)2 is the parabola shown  
in Fig. 6-1. From the graph, we see that the range of the function is the half-open interval (0, 27).

Notice that the function of part (b) is given by the same formula as the function of part (a), but the domain of 
the former is a proper subset of the domain of the latter.
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52 CHAPTER 6 Functions

Fig. 6-1

The graph of a function f is defined to be the graph of the equation y = f (x).

EXAMPLE 6.4: (a) Consider the function f (x) = |x|. Its graph is the graph of the equation y = |x|, and is indicated in 
Fig. 6-2. Notice that f  (x) = x when x ≥ 0, whereas f  (x) = −x when x ≤ 0. The domain of f consists of all real numbers.  
In general, if a function is given by means of a formula, then if nothing is said to the contrary, we shall assume 
that the domain consists of all numbers for which the formula is defined. From the graph in Fig. 6-2, we see that 
the range of the function consists of all nonnegative real numbers. (In general, the range of a function is the set of  
y-coordinates of all points in the graph of the function.) (b) The formula g(x) = 2x + 3 defines a function g. The graph 
of this function is the graph of the equation y = 2x + 3, which is the straight line with slope 2 and y-intercept 3. The 
set of all real numbers is both the domain and range of g.

Fig. 6-2

EXAMPLE 6.5: Let a function g be defined as follows:

g x
x x

x x
( )

if 2 4

1 if1 2

2

=
≤ ≤

+ ≤ <







A function defined in this way is said to be defined by cases. Notice that the domain of g is the closed interval [1, 4].

In a rigorous development of mathematics, a function f is defined to be a set of ordered pairs such that, if 
(x, y) and (x, z) are in the set f, then y = z. However, such a definition obscures the intuitive meaning of the 
notion of function.
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SOLVED PROBLEMS

 1. Given f x
x

x
( )

1
2

,2= −
+  find (a) f  (0); (b) f  (−l); (c) f  (2a); (d) f  (1/x); (e) f  (x + h).

(a) f (0)
0 1
0 2

1
2

= −
+ = −  (b) f ( 1)

1 1
1 2

2
3

− = − −
+ = −  (c) f a

a
a

(2 )
2 1

4 22= −
+

(d) f x
x

x
x x

x
(1/ )

1/ 1
1/ 2 1 22

2

2= −
+ = −

+  (e) f x h
x h

x h
x h

x hx h
( )

1
( ) 2

1
2 22 2 2+ = + −

+ + = + −
+ + +

 2. If f  (x) = 2x, show that (a) f x f x f x( 3) ( 1) ( )15
2+ − − =  and (b) 

f x
f x

f
( 3)
( 1)

(4).
+
− =

(a) f x f x f x( 3) ( 1) 2 2 2 (2 ) ( )x x x3 1 3 1
2

15
2+ − − = − = − =+ −  (b) 

f x
f x

f
( 3)
( 1)

2
2

2 (4)
x

x

3

1
4+

− = = =
+

−

 3. Determine the domains of the functions

(a) y x4 2= −   (b) y x 162= −  (c) y
x

1
2

= −
(d) y

x
1

92= −
 (e) y

x
x 42= +

(a) Since y must be real, 4 − x2 ≥ 0, or x2 ≤ 4. The domain is the interval −2 ≤ x ≤ 2.
(b) Here, x2 − 16 ≥ 0, or x2 ≥ 16. The domain consists of the intervals x ≤ −4 and x ≥ 4.
(c) The function is defined for every value of x except 2.
(d) The function is defined for x ≠ ±3.
(e) Since x2 + 4 ≠ 0 for all x, the domain is the set of all real numbers.

 4. Sketch the graph of the function defined as follows:

f x x f x x

f x x f x x

( ) 5 when 0 1 ( ) 10 when 1 2

( ) 15 when 2 3 ( ) 20 when 3 4 etc.

= < ≤ = < ≤

= < ≤ = < ≤

Determine the domain and range of the function.
The graph is shown in Fig. 6-3. The domain is the set of all positive real numbers, and the range is the set of 
integers, 5, 10, 15, 20, . . ..

Fig. 6-3

 5. A rectangular plot requires 2000 ft of fencing to enclose it. If one of its dimensions is x (in feet), express its area 
y (in square feet) as a function of x, and determine the domain of the function.

Since one dimension is x, the other is x x(2000 2 ) 10001
2 − = − . The area is then y = x(1000 − x), and the 

domain of this function is 0 < x < 1000.

 6. Express the length l of a chord of a circle of radius 8 as a function of its distance x from the center of the circle. 
Determine the domain of the function.
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From Fig. 6-4 we see that l x64 ,1
2

2= −  so that l x2 64 .2= −  The domain is the interval 0 ≤ x < 8.

Fig. 6-4

 7. From each corner of a square of tin, 12 inches on a side, small squares of side x (in inches) are removed, and 
the edges are turned up to form an open box (Fig. 6-5). Express the volume V of the box (in cubic inches) as a 
function of x, and determine the domain of the function.

Fig. 6-5

The box has a square base of side 12 − 2x and a height of x. The volume of the box is then V = x(12 − 2x)2 = 
4x(6 − x)2. The domain is the interval 0 < x < 6.

As x increases over its domain, V increases for a time and then decreases thereafter. Thus, among such boxes 
that may be constructed, there is one of greatest volume, say M. To determine M, it is necessary to locate the 
precise value of x at which V ceases to increase. This problem will be studied in a later chapter.

 8. If f (x) = x2 + 2x, find f a h f a
h

( ) ( )+ −  and interpret the result.

f a h f a
h

a h a h a a
h

a h
( ) ( ) [( ) 2( )] ( 2 )

2 2
2 2+ − = + + + − + = + +

On the graph of the function (Fig. 6-6), locate points P and Q whose respective abscissas are a and a + h.
The ordinate of P is f (a), and that of Q is f (a + h). Then

f a h f a
h

PQ
( ) ( ) difference of ordinates

difference of abscissas
slope of

+ − = =

Fig. 6-6

“x-coordinate” is commonly used for abscissa and 
“y-coordinate” is commonly used for ordinate.
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55CHAPTER 6 Functions

 9. Let f  (x) = x2 − 2x + 3. Evaluate (a) f (3); (b) f (−3); (c) f (−x); (d) f (x + 2); (e) f  (x −2); (f) f (x + h); (g) f (x + h) − 

f (x); (h) f x h f x
h

( ) ( )
.

+ −

(a) f (3) = 32 − 2(3) + 3 = 9 − 6 + 3 = 6
(b) f (−3) = (−3)2 − 2(−3) + 3 = 9 + 6 + 3 = 18
(c) f (−x) = (−x)2 − 2(−x) + 3 = x2 + 2x + 3
(d) f (x + 2) = (x + 2)2 − 2(x + 2) + 3 = x2 + 4x + 4 − 2x − 4 + 3 = x2 + 2x + 3
(e) f (x − 2) = (x − 2)2 − 2(x − 2) + 3 = x2 − 4x + 4 − 2x + 4 + 3 = x2 − 6x + 11
(f ) f (x + h) = (x + h)2 − 2(x + h) + 3 = x2 + 2hx + h2 − 2x − 2h + 3 = x2 + (2h − 2)x + (h2 − 2h + 3)
(g) f (x + h) − f (x) − [x2 + (2h − 2)x + (h2 − 2h + 3)] − (x2 − 2x + 3) = 2hx + h2 − 2h = h(2x + h − 2)

(h) f x h f x
h

h x h
h

x h
( ) ( ) (2 2)

2 2
+ − = + − = + −

10. Draw the graph of the function f x x( ) 4 ,2= −  and find the domain and range of the function.
The graph of f is the graph of the equation y x4 2= − . For points on this graph, y2 = 4 − x2; that is, x2 + y2 = 4. 

The graph of the last equation is the circle with center at the origin and radius 2. Since y x4 0,2= − ≥  the 
desired graph is the upper half of that circle. Fig. 6-7 shows that the domain is the interval −2 ≤ x ≤ 2, and the 
range is the interval 0 ≤ y ≤ 2.

Fig. 6-7

SUPPLEMENTARY PROBLEMS

11. If f (x) = x2 − 4x + 6, find (a) f (0); (b) f (3); (c) f (−2). Show that f f( ) ( )1
2

7
2=  and f (2 − h) = f (2 + h).

Ans. (a) −6; (b) 3; (c) 18

12. If f x
x
x

( )
1
1

,= −
+  find (a) f (0); (b) f (l); (c) f (−2). Show that f

x
f x

1
( )



 = −  and f

x f x
1 1

( )
.−



 = −

Ans. (a) −1; (b) 0; (c) 3

13. If f (x) = x2 − x, show that f (x + 1) = f  (−x).

14. If f (x) = 1/x, show that f a f b f
ab

b a
( ) ( )− = −





 .

15. If y f x
x
x

( )
5 3
4 5

= = +
− , show that x = f ( y).
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16. Determine the domain of each of the following functions:

(a) y = x2 + 4 (b) y x 42= +  (c) y x 42= −  (d) y
x

x 3
= +

(e) y
x

x x
2

( 2)( 1)
= − +  (f ) y

x

1

9 2
=

−
 (g) y

x
x

1
1

2

2= −
+  (h) y

x
x2

= −

Ans. (a), (b), (g) all values of x; (c) |x| ≥ 2; (d) x ≠ −3; (e) x ≠ −1, 2; (f ) −3 < x < 3; (h) 0 ≤ x < 2

17. Compute f a h f a
h

( ) ( )+ −  in the following cases:

(a) f x
x

( )
1

2
= −  when a ≠ 2 and a + h ≠ 2

(b) f x x( ) 4= −  when a ≥ 4 and a + h ≥ 4

(c) f x
x

x
( )

1
= +  when a ≠ −1 and a + h ≠ −1

Ans. (a) a a h
1

( 2)( 2)
;

−
− + −  (b) 

a h a

1
4 4

;
+ − + −

 (c) a a h
1

( 1)( 1)+ + +

18. Draw the graphs of the following functions, and find their domains and ranges:

(a) f (x) = −x2 + 1 (b) f x
x x

x x
( )

1 if 0 1

2 if1
=

− < <

≤






(c) f (x) = [x] = the greatest integer less than or equal to x

(d) f x
x
x

( )
4
2

2

= −
−  (e) f (x) = 5 − x2 (f ) f x x( ) 4= −

(g) f (x) = |x − 3| (h) f (x) = 4/x (i) f (x) = |x|/x

( j) f (x) = x − |x| (k) f x
x x

x
( )

if 0

2 if 0
=

≥

<






Ans. (a) domain, all numbers; range, y ≤ 1
 (b) domain, x > 0; range, −l < y < 0 or y ≥ 2
 (c) domain, all numbers; range, all integers
 (d) domain, x ≠ 2; range, y ≠ 4
 (e) domain, all numbers; range, y ≤ 5
 (f ) domain, x ≥ 0; range, y ≤ 0
 (g) domain, all numbers; range, y ≥ 0
 (h) domain, x ≠ 0; range, y ≠ 0
 (i) domain, x ≠ 0; range, {−1, 1}
 ( j) domain, all numbers; range, y ≤ 0
 (k) domain, all numbers; range, y ≥ 0

19. (GC) Use a graphing calculator to verify your answers to Problem 18.

20. Evaluate the expression 
f x h f x

h
( ) ( )+ −

 for the following functions f  :

(a) f (x) = 3x − x2 (b) f x x( ) 2=
(c) f (x) = 3x − 5 (d) f (x) = x3 − 2

Ans. (a) 3 − 2x − h (b) 
x h x

2
2( ) 2+ +

 (c) 3 (d) 3x2 + 3xh + h2

21. Find a formula for the function f whose graph consists of all points satisfying each of the following equations. 
(In plain language, solve each equation for y.)

(a) x5y + 4x − 2 = 0 (b) x
y
y

2
2

= +
−  (c) 4x2 − 4xy + y2 = 0

Ans. (a) f x
x

x
( )

2 4
5= − ; (b) f x

x
x

( )
2( 1)

1
= −

+ ; (c) f (x) = 2x
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22. Graph the following functions and find their domain and range:

(a) f x
x x

x x
( )

2 if 1 0

if 0 1
=

+ − < <

≤ <






 (b) g x

x x

x x
( )

2 if 0 2

1 if 3 4
=

− < <

− ≤ <






 (c) h x

x
x

x

x
( )

4
2

if 2

4 if 2

2

=
−
− ≠

=







Ans. (a) domain = (−1, 1], range = [0, 2)
(b) domain = union of (0, 2) and [3, 4), range = (0, 3)
(c) domain and range are both equal to the set of all real numbers

23. (GC) Verify your answers to Problem 22 by means of a graphing calculator.

24. In each of the following cases, define a function that has the given set  as its domain and the given set  as its 
range: (a)  = (2, ∞) and  = (0, ∞) (b)  = (0, 1) and  = (1, ∞).

Ans. (a) One such function is f x
x

( )
1

( 2)
= −  (b) One such function is f x

x
( )

1
1

= − .

25. (a)   Prove the vertical line test: A set of points in the xy-plane is the graph of a function if and only if the set 
intersects every vertical line in at most one point.

(b) Determine whether each set of points in Fig. 6-8 is the graph of a function.

Ans. Only (b) is the graph of a function.

Fig. 6-8
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CHAPTER 7

Limits

LIMIT OF A FUNCTION

If f is a function, then we say:

A is the limit of f (x) as x approaches a

if the value of f (x) gets arbitrarily close to A as x approaches a. This is written in mathematical notation as:

lim
x a→

 f (x)  =  A

For example, lim
x 3→

x2 = 9, since x2 gets arbitrarily close to 9 as x approaches as close as one wishes to 3. The 

definition of lim
x a→

 f (x) = A was stated above in ordinary language. The definition can be stated in more precise 

mathematical language as follows: lim
x a→

 f (x) = A if and only if, for any given positive number ∈∈, however 

small, there exists a positive number d such that whenever 0 < |x - a| < d , then | f (x) - A| < ∈∈.
The gist of the definition is illustrated in Fig. 7-1. After ∈∈ has been chosen [that is, after interval (ii) has been 

chosen], then d can be found [that is, interval (i) can be determined] so that whenever x ≠ a is on interval (i),  
say at x0, then f (x) is on interval (ii), at f (x0). Notice the important fact that whether or not f x Alim ( )

x a
=

→
 is 

true does not depend upon the value of f (x) when x = a. In fact, f (x) need not even be defined when x = a.

Fig. 7-1

EXAMPLE 7.1: 
x
x

lim
4
2

4,
x 2

2 −
− =

→
 although x

x
4
2

2 −
−

 is not defined when x = 2. Since

x
x

x x
x

x
4
2

( 2)( 2)
2

2
2 −
− = − +

− = +

we see that 
x
x

4
2

2 −
−  approaches 4 as x approaches 2.

EXAMPLE 7.2: Let us use the precise definition to show that xlim (4 5) 3.
x 2

− =
→

 Let ∈∈  > 0 be chosen. We must pro-

duce some d > 0 such that whenever 0 < |x - 2| < d, then − − < ∈x|(4 5) 3| .
First we note that |(4x - 5) - 3| = |4x - 8| = 4|x - 2|.
If we take d to be ∈∈/4, then, whenever 0 < |x - 2| < d, x x|(4 5) 3| 4| 2| 4δ ∈∈− − = − < = .
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60 CHAPTER 7 Limits

RIGHT AND LEFT LIMITS

Next we want to talk about one-sided limits of f (x) as x approaches a from the right-hand side or from the 

left-hand side. By lim
x a→ −

 f (x) = A we mean that f is defined in some open interval (c, a) and f (x) approaches A 

as x approaches a through values less than a, that is, as x approaches a from the left. Similarly, lim
x a→ +

 f (x) = A 

means that f is defined in some open interval (a, d) and f (x) approaches A as x approaches a from the right.  
If  f  is defined in an interval to the left of a and in an interval to the right of a, then the statement lim

x a→
 f (x) = A is 

equivalent to the conjunction of the two statements lim
x a→ −

 f (x) = A and lim
x a→ +

 f (x) = A. We shall see by examples below 

that the existence of the limit from the left does not imply the existence of the limit from the right, and conversely.
When a function is defined only on one side of a point a, then we shall identify f xlim ( )

x a
= −∞

→
 f (x) with the one-

sided limit, if it exists. For example, if f (x) = x , then f is defined only at and to the right of 0. Hence, since  
lim
x 0→ +

 x = 0, we will also write lim
x 0→

 x = 0. Of course, lim
x 0→ −

 x  does not exist, since x  is not defined when 
x < 0. This is an example where the existence of the limit from one side does not entail the existence of the 
limit from the other side. As another interesting example, consider the function g(x) = x1/ , which is defined 
only for x > 0. In this case, lim

x 0→ +
x1/  does not exist, since 1/x gets larger and larger without bound as x 

approaches 0 from the right. Therefore, lim
x 0→

x1/  does not exist.

EXAMPLE 7.3: The function f (x) = x9 2−  has the interval -3 ≤ x ≤ 3 as its domain. If a is any number on the  

interval (-3, 3), then lim
x a→

x9 2−  exists and is equal to a9 .2−  Now consider a = 3. Let x approach 3 from the left; then  

lim
x 3→ −

x9 2−  = 0. For x > 3, x9 2−  is not defined, since 9 - x2 is negative. Hence, lim
x 3→

x9 2−  = lim
x 3→ −

 x9 2−  = 0. 

Similarly, lim
x 3→ −

x9 2−  = lim
x 3→ − +

 x9 2− = 0.

THEOREMS ON LIMITS 

The following theorems are intuitively clear. Proofs of some of them are given in Problem 11.

Theorem 7.1: If f (x) = c, a constant, then f x clim ( ) .
x a

=
→

For the next five theorems, assume f x Alim ( )
x a

=
→

 and g x Blim ( ) .
x a

=
→

Theorem 7.2: c f x c f x cAlim ( ) lim ( ) .
x a x a

⋅ = =
→ →

Theorem 7.3: f x g x f x g x A Blim [ ( ) ( )] lim ( ) lim ( ) .
x a x a x a

± = ± = ±
→ → →

Theorem 7.4: f x g x f x g x A Blim [ ( ) ( )] lim ( ) lim ( ) .
x a x a x a

= ⋅ = ⋅
→ → →

Theorem 7.5: 
f x
g x

f x

g x
A
B

lim
( )
( )

lim ( )

lim ( )
,

x a

x a

x a





 = =

→

→

→

 if B ≠ 0.

Theorem 7.6: f x f x Alim ( ) lim ( ) ,
x a

n

x a
n

n= =
→ →

 if An  is defined.

INFINITY

Let
f xlim ( )

x a
= +∞

→

mean that as x approaches a, f (x) eventually becomes greater than any preassigned positive number, however 
large. In such a case, we say that f (x) approaches +∞ as x approaches a. More precisely, f xlim ( )

x a
= +∞

→
 if and only 

if, for any positive number M, there exists a positive number d such that whenever 0 < |x - a| < d, then f (x) > M.
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61CHAPTER 7 Limits

Similarly, let
f xlim ( )

x a
= −∞

→

mean that as x approaches a, f (x) eventually becomes less than any preassigned number. In that case, we say 
that f (x) approaches -∞ as x approaches a.

Let
f xlim ( )

x a
= ∞

→

mean that as x approaches a, |f (x)| eventually becomes greater than any preassigned positive number. Hence, 
f xlim ( )

x a
= ∞

→
 if and only if f xlim | ( )|

x a
= +∞

→
.

These definitions can be extended to one-sided limits in the obvious way.

EXAMPLE 7.4:

(a) 
x

lim
1

x 0
2 = +∞

→
 (b) 

x
lim

1
( 1)x 1

2

−
− = −∞

→
 (c) 

x
lim

1
x 0

= ∞
→

EXAMPLE 7.5:

(a)  
x

lim
1

x 0
= +∞

→ +
. As x approaches 0 from the right (that is, through positive numbers), 1/x is positive and even-

tually becomes larger than any preassigned number.

(b)   
x

lim
1

x 0
= −∞

→ −
 since as x approaches 0 from the left (that is, through negative numbers), 1/x is negative and 

eventually becomes smaller than any preassigned number.

The limit concepts already introduced can be extended in an obvious way to the case in which the variable 
approaches +∞ or -∞. For example,

f x Alim ( )
x

=
→+∞

means that f (x) approaches A as x → +∞, or, in more precise terms, given any positive ∈∈, there exists a 
number N such that whenever x > N, then f x A| ( ) | ∈∈− < . Similar definitions can be given for the statements 

f x Alim ( ) ,
x

=
→−∞

 f xlim ( )
x

= +∞
→+∞

, f xlim ( )
x

= −∞
→−∞

, f xlim ( )
x a

= −∞
→

, and f xlim ( )
x

= +∞
→−∞

.

EXAMPLE 7.6: 
x

lim
1

0
x

=
→+∞

  and  
x

lim 2
1

2.
x

2+



 =

→+∞

 Caution:  When f xlim ( )
x a

= ±∞
→

 and g xlim ( )
x a

= ±∞
→

, Theorems 7.3-7.5 do not make sense and cannot be used.

 For example, 
x

lim
1

x 0
2 = +∞

→
 and 

x
lim

1
x 0

4 = +∞
→

, but

x
x

xlim
1/
1/

lim 0
x x0

2

4
0

2= =
→ →

 Note: We say that a limit, such as f xlim ( )
x a→

 or 
→+∞

f xlim ( )
x

, exists when the limit is a real number, but not when the  

limit is +∞ or -∞ or ∞. For example, since 
x
x

lim
4
2

4,
x 2

2 −
− =

→
 we say that 

x
x

lim
4
2x 2

2 −
−→

 exists. However, although 
x

lim
1

x 0
2 = +∞

→
,  

we do not say that 
x

lim
1

x 0
2→
 exists.

SOLVED PROBLEMS

 1. Verify the following limit computations:

(a) x xlim 5 5 lim 5 2 10
x x2 2

= = ⋅ =
→ →
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(b) x xlim (2 3) 2 lim lim 3 2 2 3 7
x x x2 2 2

+ = + = ⋅ + =
→ → →

(c) x xlim ( 4 1) 4 8 1 3
x 2

2 − + = − + = −
→

(d) 
x
x

x

x
lim

2
2

lim( 2)

lim( 2)
1
5x

x

x
3

3

3

−
+ =

−
+ =

→

→

→

(e) 
x
x

lim
4
4

4 4
4 4

0
x 2

2

2

−
+ = −

+ =
→ −

(f ) − = − = =
→ →

x xlim 25 lim(25 ) 9 3
x x4

2

4

2

[Note: Do not assume from these problems that f xlim ( )
x a→

 is invariably f (a).]

(g) 
x
x

xlim
25
5

lim ( 5) 10
x x5

2

5

−
+ = − = −

→ − → −

 2. Verify the following limit computations:

(a) 
x

x x
x

x x x
lim

4
12

lim
4

( 3)( 4)
lim

1
3

1
7x x x4

2
4 4

−
− − = −

+ − = + =
→ → →

The division by x - 4 before passing to the limit is valid since x ≠ 4 as x → 4; hence, x - 4 is never zero.

(b) 
x
x

x x x
x x

x x
x

lim
27
9

lim
( 3)( 3 9)

( 3)( 3)
lim

3 9
3

9
2x x x3

3

2
3

2

3

2−
− = − + +

− + = + +
+ =

→ → →

(c) 
x h x

h
x hx h x

h
hx h

h
x h xlim

( )
lim

2
lim

2
lim (2 ) 2

h h h h0

2 2

0

2 2 2

0

2

0

+ − = + + − = + = + =
→ → → →

Here, and again in Problems 4 and 5, h is a variable, so that it might be thought that we are dealing with 
functions of two variables. However, the fact that x is a variable plays no role in these problems; for the moment, 
x can be considered a constant.

(d) 
x

x

x x

x x

x x
x

xlim
4

3 5
lim

(4 )(3 5)

(3 5)(3 5)
lim

(4 )(3 5)
4

lim (3 5) 6
x x x x2

2

2 2

2 2

2 2 2

2 2

2
2

2−
− +

= − + +
− + + +

= − + +
− = + + =

→ → → →

(e) 
x x

x
x x

x
x
x

lim
2

( 1)
lim

( 1)( 2)
( 1)

lim
2
1x x x1

2

2
1

2
1

+ −
− = − +

− = +
− = ∞

→ → →
; no limit exists.

 3. In the following (a-c), you can interpret lim
x→±∞

 as either lim
x→+∞

 or lim
x→ −∞

; it will not matter which. Verify the limit 
computations.

(a) 
−
+ = −

+ = −
+ =

→±∞ →±∞

x
x

x
x

lim
3 2
9 7

lim
3 2/
9 7/

3 0
9 0

1
3x x

(b) 
+ +
− + = + +

− + = + +
− + =

→±∞ →±∞

x x
x x

x x
x x

lim
6 2 1
5 3 4

lim
6 2/ 1/
5 3/ 4/

6 0 0
5 0 0

6
5x x

2

2

2

2

(c) 
+ −

− = + −
− = =

→±∞ →±∞

x x
x

x x x
x

lim
2

4 1
lim

1/ 1/ 2/
4 1/

0
4

0
x x

2

3

2 3

3

(d) + = + = −∞
→ −∞ → −∞

x
x

x
x

lim
2

1
lim

2
1 1/x x

3

2 2

(e) + = + = +∞
→+∞ →+∞

x
x

x
x

lim
2

1
lim

2
1 1/x x

3

2 2

(f ) − − + = − − +



 = +∞

→+∞ →+∞
x x x x

x x x
lim ( 7 2 5) lim 1

7 2 5
x x

5 4 5
4 5  since

 − − +



 = − − + =

→+∞ x x x
lim 1

7 2 5
(1 0 0 0) 1

x
4 5  and xlim

x

5 = +∞
→+∞

(g) − − + = − − +



 = −∞

→ −∞ → −∞
x x x x

x x x
lim ( 7 2 5) lim 1

7 2 5
x x

5 4 5
4 5  since

 
x x x

lim 1
7 2 5

(1 0 0 0) 1
x

4 5− − +



 = − − + =

→−∞
 and xlim

x

5 = −∞
→−∞
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63CHAPTER 7 Limits

 4. Given f (x) = x2 - 3x, find 
f x h f x

h
lim

( ) ( )
.

h 0

+ −
→

 Since f (x) = x2 - 3x, we have f (x + h) = (x + h)2 - 3(x + h) and

 

f x h f x
h

x hx h x h x x
h

hx h h
h

x h x

lim
( ) ( )

lim
( 2 3 3 ) ( 3 )

lim
2 3

lim (2 3) 2 3.

h h h

h

0 0

2 2 2

0

2

0

+ − = + + − − − − = + −

= + − = −

→ → →

→

 5. Given f x x( ) 5 1= + , find 
f x h f x

h
lim

( ) ( )
h 0

+ −
→

 when x
1
5

.> −

 

f x h f x
h

x h x
h

x h x
h

x h x

x h x

x h x

h x h x

x h x x

lim
( ) ( )

lim
5 5 1 5 1

lim
5 5 1 5 1 5 5 1 5 1

5 5 1 5 1

lim
(5 5 1) (5 1)
( 5 5 1 5 1)

lim
5

5 5 1 5 1
5

2 5 1

h h

h

h

h

0 0

0

0

0

+ − = + + − +

= + + − + + + + +
+ + + +

= + + − +
+ + + +

=
+ + + +

=
+

→ →

→

→

→

 6. (a) In each of the following, (a-e), determine the points x = a for which each denominator is zero. Then see what 
happens to y as x → a– and as x → a+, and verify the given solutions.

(b) (GC) Check the answers in (a) with a graphing calculator.

(a) y = f (x) = 2/x: The denominator is zero when x = 0. As x → 0–, y → -∞; as x → 0+, y → +∞.

(b) y f x
x

x x
( )

1
( 3)( 2)

:= = −
+ −  The denominator is zero for x = -3 and x = 2. As x → -3–, y → -∞; as x → -3+,  

y → + ∞. As x → 2–, y → - ∞; as x → 2+, y → +∞.

(c) y f x
x

x x
( )

3
( 2)( 1)

:= = −
+ −  The denominator is zero for x = -2 and x = 1. As x → -2–, y → -∞; as x → -2+,  

y → + ∞. As x → 1–, y → + ∞; as x → 1+, y → - ∞.

(d) y f x
x x

x
( )

( 2)( 1)
( 3)

:2= = + −
−  The denominator is zero for x = 3. As x → 3–, y → + ∞; as x → 3+, y → + ∞.

(e) y f x
x x

x
( )

( 2)(1 )
3

:= = + −
−  The denominator is zero for x = 3. As x → 3–, y → + ∞; as x → 3+, y → - ∞.

 7. For each of the functions of Problem 6, determine what happens to y as x → -∞ and x → +∞.

(a) As x → ±∞, y = 2/x → 0. When x < 0, y < 0. Hence, as x → -∞, y → 0–. Similarly, as x → +∞, y → 0+.

(b) Divide numerator and denominator of x
x x

1
( 3)( 2)

−
+ −

 by x2 (the highest power of x in the denominator), 
obtaining

 x x
x x

1/ 1/
(1 3/ )(1 2/ )

2−
+ −

 Hence, as x → ± ∞,

 y
0 0

(1 0)(1 0)
0
1

0→ −
+ − = =

 As x → - ∞, the factors x - 1, x + 3, and x - 2 are negative, and therefore, y → 0-. As x → + ∞, those factors 
are positive, and therefore, y → 0+.

(c) Similar to (b).
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(d) x x
x

x x
x x

x x
x x

( 2)( 1)
( 3)

2
6 9

1 1/ 2/
1 6/ 9/2

2

2

2

2

+ −
− = + −

− + = + −
− +

, after dividing numerator and denominator by x2 (the highest 

power of x in the denominator). Hence, as x → ±∞, y
1 0 0
1 0 0

1
1

1.→ + −
− + = =  The denominator (x - 3)2 is 

always nonnegative. As x → -∞, both x + 2 and x - 1 are negative and their product is positive; hence,  
y → 1+. As x → +∞, both x + 2 and x - 1 are positive, as is their product; hence, y → 1+.

(e) 
x x

x
x x

x
x x

x
( 2)(1 )

3
2

3
1 2/

1 3/
,

2+ −
− = − − +

− = − − +
−  after dividing numerator and denominator by x (the highest 

power of x in the denominator). As x → ±∞, 2/x and 3/x approach 0, and - x - 1 approaches ± ∞. Thus, the 
denominator approaches 1 and the numerator approaches ± ∞. As x → -∞, x + 2 and x - 3 are negative and 
1 - x is positive; so, y → + ∞. As x → + ∞, x + 2 and x - 3 are positive and 1 - x is negative; so, y → - ∞.

 8. Examine the function of Problem 4 in Chapter 6 as x → a– and as x → a+ when a is any positive integer.
Consider, as a typical case, a = 2. As x → 2–, f (x) → 10. As x → 2+, f (x) → 15. Thus, f xlim ( )

x 2→
 does not exist. 

In general, the limit fails to exist for all positive integers. (Note, however, that f x f xlim ( ) lim ( ) 5,
x x0 0

= =
→ → +

 since f (x) 
is not defined for x ≤ 0.)

 9. Use the precise definition to show that x xlim ( 3 ) 10.
x 2

2 + =
→

Let 0∈∈>  be chosen. Note that (x - 2)2 = x2 - 4x + 4, and so x2 + 3x - 10 = (x - 2)2 + 7x - 14 = (x - 2)2 +  

7(x - 2). Hence |(x2 + 3x) - 10| = |(x - 2)2 + 7(x - 2)| ≤ |x - 2|2 + 7|x - 2|. If we choose d to be the minimum of 1 

and /8,∈∈  then d 2 ≤ d, and therefore, 0 < |x - 2| < d implies x x|( 3 ) 10| 7 7 82 2δ δ δ δ δ ∈∈+ − < + ≤ + = ≤ .

10. If g x Blim ( ) 0,
x a

= ≠
→

 prove that there exists a positive number d such that 0 < |x - a| < d implies g x
B

| ( )|
| |
2

.>

Letting B| |/2∈∈ =  we obtain a positive d such that 0 < |x - a| < d implies |g(x) - B| < |B|/2. Now, if 0 < |x - a| < d, 
then |B| = |g(x) + (B - g(x))| ≤ |g(x)| + |B - g(x)| < |g(x)| + |B|/2 and therefore, |B|/2 < |g(x)|.

11. Assume (I) f x Alim ( )
x a

=
→

 and (II) g x Blim ( )
x a

=
→

. Prove:

(a) f x g x A Blim [ ( ) ( )]
x a

+ = +
→

 (b) f x g x ABlim ( ) ( )
x a

=
→

 (c) 
f x
g x

A
B

lim
( )
( )x a

=
→

  if B ≠ 0

(a) Let 0∈∈ >  be chosen. Then /2 0∈∈ > . By (I) and (II), there exist positive d1 and d2 such that 0 < |x - a| < d1 

implies f x A| ( ) | /2∈∈− <  and 0 < |x - a| < d2 implies g x B| ( ) | /2.∈∈− <  Let d be the minimum of d1 and d2. 

Thus, for 0 < |x - a| < d, f x A| ( ) | /2∈∈− <  and g x B| ( ) | /2∈∈− < . Therefore, for 0 < |x - a| < d,

f x g x A B f x A g x B

f x A g x B

|( ( ) ( ) ( )| |( ( ) ) ( ( ) )|

| ( ) | | ( ) |
2 2
∈∈ ∈∈ ∈∈

+ − + = − + −

≤ − + − < + =

(b) Let 0∈∈>  be chosen. Choose *∈∈  to be the minimum of /3∈∈  and 1 and B/(3 | |)∈∈  (if B ≠ 0), and A/(3 | |)∈∈   

(if A ≠ 0). Note that ( )* 2 *∈∈ ∈∈≤  since 1*∈∈ ≤ . Moreover, B| | /3*∈∈ ∈∈≤  and A| | /3*∈∈ ∈∈≤ . By (I) and (II), there exist 

positive d1 and d2 such that 0 < |x - a| < d1 implies f x A| ( ) | *∈∈− <  and 0 < |x - a| < d2 implies g x B| ( ) | *∈∈− < . 

Let d be the minimum of d1 and d2. Now, for 0 < |x - a| < d,

f x g x AB f x A g x B B f x A A g x B

f x A g x B B f x A A g x B

f x A g x B B f x A A g x B

B A

| ( ) ( ) | |( ( ) )( ( ) ) ( ( ) ) ( ( ) )|

| ( ) )( ( ) )| | ( ( ) )| | ( ( ) )|

| ( ) || ( ) | | || ( ) | | || ( ) |

( ) | | | |
3 3 3 3 3

* 2 * * *∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈

− = − − + − + −

≤ − − + − + −

= − − + − + −

≤ + + ≤ + + ≤ + + =

(c) By part (b), it suffices to show that 
g x B

lim
1
( )

1
.

x a
=

→
 Let 0∈∈>  be chosen. Then B /2 0.2 ∈∈ >  Hence, there  

exists a positive d1 such that 0 < |x - a| < d1 implies g x B
B

| ( ) |
| |

2
.

2 ∈∈− <
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65CHAPTER 7 Limits

By Problem 10, there exists a positive d2 such that 0 < |x - a| < d2 implies |g(x)| > |B|/2. Let d be the minimum 
of d1 and d2. Then 0 < |x - a| < d implies that

 
g x B

B g x
B g x

B
B

1
( )

1 | ( )|
| || ( )|

| |
2

2
| |

2

2

∈∈ ∈∈− = − < ⋅ =

12. Prove that, for any polynomial function

f x a x a x a x a f x f a( ) , lim ( ) ( )n
n

n
n

x a1
1

1 0= + + ⋅⋅⋅+ + =−
−

→

This follows from Theorems 7.1-7.4 and the obvious fact that x alim .
x a

=
→

13. Prove the following generalizations of the results of Problem 3. Let f x a x a x a x a( ) n
n

n
n

1
1

1 0= + + ⋅⋅⋅+ +−
−  and 

g x b x b x b x b( ) k
k

k
k

1
1

1 0= + + ⋅⋅⋅+ +−
−  be two polynomials.

(a) 
f x
g x

a
b

lim
( )
( )x

n

k

=
→±∞

 if n = k

(b) 
f x
g x

lim
( )
( )

0
x

=
→±∞

 if n < k

(c) 
f x
g x

lim
( )
( )x

= ±∞
→+∞

 if n > k. (It is +∞ if and only if a
n
 and b

k
 have the same sign.)

(d) 
f x
g x

lim
( )
( )x

= ±∞
→−∞

 if n > k. [The correct sign is the sign of anbk(-1)n - k.]

14. Prove (a) x
lim

1
( 2)x 2

3− = −∞
→ −

; (b) 
x

x
lim

1
1;

x + =
→+∞

 (c) 
x

x
lim

1x

2

− = +∞
→+∞

.

(a) Let M be any negative number. Choose d positive and equal to the minimum of 1 and 
M
1

| |
.  Assume x < 2  

and 0 < |x - 2| < d. Then x
M

| 2|
1

| |
.3 3δ δ− < ≤ ≤  Hence, x

M M
1

| 2|
| | .3− > = −  But (x - 2)3 < 0.

 Therefore, 
x x

M
1

( 2)
1

| 2|
.3 3− = − − <

(b) Let ∈∈ be any positive number, and let M 1/∈∈= . Assume x > M. Then

 
x

x x x x M1
1

1
1

1
1

1 1 ∈∈+ − = + = + < < =

(c) Let M be any positive number. Assume x > M  + 1. Then 
x

x
x
x

x M
1

.
2 2

− ≥ = >

15. Evaluate: (a) 
x
x

lim
| |

;
x 0→ +

 (b) 
x
x

lim
| |

;
x 0→ −

 (c) 
x
x

lim
| |

x 0→

(a) When x > 0, |x| = x. Hence, 
x
x

lim
| |

lim 1 1.
x x0 0

= =
→ →+ +

(b) When x < 0, |x| = - x. Hence, 
x
x

lim
| |

lim 1 1.
x x0 0

= − = −
→ →− −

(c) 
x
x

lim
| |

x 0→
 does not exist, since 

x
x

x
x

lim
| |

lim
| |

.
x x0 0

≠
→ →− +

SUPPLEMENTARY PROBLEMS

16. Evaluate the following limits:

(a) x xlim ( 4 )
x 2

2 −
→

(b) x x xlim ( 2 3 4)
x 1

3 2+ − −
→−

(c) x
x

lim
(3 1)
( 1)x 1

2

3

−
+→

07_Mendelson_ch07_p059-068.indd   65 27/07/21   10:56 AM



66 CHAPTER 7 Limits

(d) lim
3 3
3 3x

x x

x x
0

−
+→

−

−

(e) 
x
x

lim
1
1x 2

2

−
−→

(f ) 
x

x x
lim

4
5 6x 2

2

2

−
− +→

(g) x x
x x

lim
3 2
4 3x 1

2

2

+ +
+ +→−

(h) 
x
x

lim
2
4x 2

2

−
−→

(i) 
x

x
lim

2

4x 2 2

−
−→

(j) x
x

lim
2
4x 2

2

−
−→

(k) 
x h x

h
lim

( )
h 0

3 3+ −
→

(l) 
x

x
lim

1

3 2x 1 2

−
+ −→

Ans. (a) -4; (b) 0; (c) ;1
2  (d) 0; (e) ;1

3  (f ) -4; (g) ;1
2  (h) ;1

4  (i) 0; ( j) ∞, no limit; (k) 3x2; (l) 2

17. Evalute the following limits:

(a) 
x x x
x x x x

lim
7 4 2 13
3 5 2x

9 5

9 8 2

− + −
− + − +→+∞

(b) 
x x
x

lim
14 5 27

10x

3

4

− +
+→+∞

(c) 
x x

x
lim

2 12 5
7 6x

5

3

+ +
+→−∞

(d) 
x

x x
lim

2 7
5 3 4x

3

2

− +
− −→+∞

(e) x x xlim (3 25 12 17)
x

3 2− − −
→+∞

(f ) x x xlim (3 25 12 17)
x

3 2− − −
→−∞

(g) x xlim (3 25 8)
x

4 3− −
→−∞

Ans. (a) ;7
3−  (b) 0; (c) +∞; (d) -∞; (e) +∞; (f) -∞; (g) +∞

18. Evaluate the following limits:

(a) 
x
x

lim
2 3
4 5x

+
−→+∞

(b) 
x
x x

lim
2 1

6 3x

2

2

+
+ −→+∞

(c) 
x

x
lim

5x
2 +→+∞

(d) 
x x

x
lim

5 6
1x

2 + +
+→+∞

(e) 
x

x x
lim

3
5 6x

2

+
+ +→+∞

(f ) lim
3 3
3 3x

x x

x x

−
+→+∞

−

−
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(g) lim
3 3
3 3x

x x

x x

−
+→−∞

−

−

Ans. (a) ;1
2  (b) ;2

3−  (c) 0; (d) +∞; (e) 0; (f ) 1; (g) -1

19. Find f a h f a
h

lim
( ) ( )

h 0

+ −
→

 for the functions f in Problems 11, 12, 13, 15, and 16(a, b, d, g) of Chapter 6.

Ans. (11) 2a - 4; (12) 
a

2
( 1)

;2+  (13) 2a - 1; (15) 
a
27

(4 5)2− −
; (16) (a) 2a, (b) a

a 4
,

2 +
 (d) 

a
3

( 3)2+
,  

(g) a
a

4
( 1)2 2+

20. (GC) Investigate the behavior of

f x
x x
x x

( )
if 0

1 if 0
=

>
+ ≤







as x → 0. Draw a graph and verify it with a graphing calculator.

Ans. f xlim ( ) 0
x 0

=
→ +

; f xlim ( ) 1
x 0

=
→ −

; f xlim ( )
x 0→

 does not exist.

21. Use Theorem 7.4 and mathematical induction to prove x alim
x a

n n=
→

 for all positive integers n.

22. For f (x) = 5x - 6, find d > 0 such that, whenever 0 < |x - 4| < d, then f x| ( ) 14| ∈∈− < , when (a) 
1
2

∈∈=  and  

(b) 0.001∈∈ = .

Ans. (a) 1
10

; (b) 0.0002

23. Use the precise definition to prove: (a) xlim 5 15
x 3

=
→

;  (b) xlim 4
x 2

2 =
→

;  (c) x xlim( 3 5) 3
x 2

2 − + =
→

.

24. Use the precise definition to prove:

(a) 
x

lim
1

x 0
= ∞

→
 (b) 

x
x

lim
1x 1 − = ∞

→
 (c) 

x
x

lim
1

1
x − =
→+∞

 (d) 
x

x
lim

1x

2

+ = −∞
→ −∞

25. Let f (x), g(x), and h(x) be such that (1) f (x) ≤ g(x) ≤ h(x) for all values in certain intervals to the left and right of 
a, and (2) f xlim ( ) lim

x a x a
=

→ →
 h(x) = A. Prove g x Alim ( ) .

x a
=

→

 [Hint: For 0∈∈> , there exists d > 0 such that, whenever 0 < |x - a| < d, then f x A| ( ) | ∈∈− <  and h x A| ( ) | ∈∈− <  and 
therefore, A f x g x h x A( ) ( ) ( )∈∈ ∈∈− < ≤ ≤ < + .]

26. Prove: If f (x) ≤ M for all x in an open interval containing a and if f x Alim ( )
x a

=
→

, then A ≤ M.

[Hint: Assume A > M. Choose A M
1
2

( )∈∈= −  and derive a contradiction.]

27. (GC) Use a graphing calculator to confirm the limits found in Problems 1(d, e, f ), 2(a, b, d), 16, and 18.

28. (a) Show that x xlim ( 1) 0.
x

2− − =
→+∞

(Hint: Multiply and divide by x x 1.2+ − )

(b) Show that the hyperbola 
x
a

y
b

1
2

2

2

2− =  gets arbitrarily close to the asymptote y
b
a

x=  as x approaches ∞.

29. (a) Find 
x

x
lim

3 3
.

x 0

+ −
→

(Hint: Multiply the numerator and denominator by x 3 3+ + .)
(b) (GC) Use a graphing calculator to confirm the result of part (a).
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30. Let f (x) = x  - 1 if x > 4 and f (x) = x2 - 4x + 1 if x < 4. Find:

(a) lim
x 4→ +

 f (x) (b) lim
x 4→ −

 f (x) (c) lim
x 4→

 f (x)

Ans. (a) 1; (b) 1; (c) 1

31. Let g(x) = 10x - 7 if  x > 1 and g(x) = 3x + 2 if x < 1. Find:

(a) lim
x 1→ +

 g(x) (b) lim
x 1→ −

 g(x) (c) lim
x 1→

 g(x)

Ans. (a) 3; (b) 5; (c) it does not exist.
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CHAPTER 8

Continuity

CONTINUOUS FUNCTION

A function f is defined to be continuous at x0 if the following three conditions hold:

 (i)   f (x0) is defined;

(ii)  f xlim ( )
x x0→

 exists;

(iii) f x f xlim ( ) ( )
x x 0

0

=
→

.

For example, f (x) = x2 + 1 is continuous at 2, since f x flim ( ) 5 (2).
x 2

= =
→

 Condition (i) implies that a func-

tion can be continuous only at points of its domain. Thus, f x x( ) 4 2= −  is not continuous at 3 because f (3) 
is not defined.

Let f be a function that is defined on an interval (a, x0) to the left of x0 and/or on an interval (x0, b) to the 
right of x0. We say that f is discontinuous at x0 if f is not continuous at x0, that is, if one or more of the con-
ditions (i) to (iii) fails.

EXAMPLE 8.1:
(a) f x

x
( )

1
2

= −  is discontinuous at 2 because f (2) is not defined and also because f xlim ( )
x 2→

 does not exist  

[since f xlim ( )
x 2

= ∞
→

]. See Fig. 8-1.

Fig. 8-1

(b) f x
x
x

( )
4
2

2

= −
−  is discontinuous at 2 because f (2) is not defined. However, f x

x x
x

lim ( ) lim
( 2)( 2)

2x x2 2
= + −

− =
→ →

 

xlim( 2) 4
x 2

+ =
→

so that condition (ii) holds.

The discontinuity at 2 in Example 8.1(b) is said to be removable because if we extended the function f  
by defining its value at x = 2 to be 4, then the extended function g would be continuous at 2. Note that g(x) = 
x + 2 for all x. The graphs of f x

x
x

( )
4
2

2

= −
−  and g(x) = x + 2 are identical except at x = 2, where the former has 

a “hole.” (See Fig. 8-2.) Removing the discontinuity consists simply of filling the “hole.”
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70 CHAPTER 8 Continuity

Fig. 8-2

The discontinuity at 2 in Example 8.1(a) is not removable. Redefining the value of f at 2 cannot change 

the fact that 
x

lim
1

2x 2 −→
 does not exist.

We also call a discontinuity of a function f at x0 removable when f (x0) is defined and changing the value 
of the function at x0 produces a function that is continuous at x0.

EXAMPLE 8.2: Define a function f as follows:

f x
x x

x
( )

if 2
0 if 2

2

=
≠
=







Here f xlim ( ) 4
x 2

=
→

, but f (2) = 0. Hence, condition (iii) fails, so that f has a discontinuity at 2. But if we change the 

value of f at 2 to be 4, then we obtain a function h such that h(x) = x2 for all x, and h is continuous at 2. Thus, the 
discontinuity of f at 2 was removable.

EXAMPLE 8.3: Let f be the function such that f x
x
x

( )
| |=  for all x ≠ 0. The graph of f is shown in Fig. 8-3.  f is 

discontinuous at 0 because f (0) is not defined. Moreover,

f x
x
x

f x
x

x
lim ( ) lim 1 and lim ( ) lim 1
x x x x0 0 0 0

= = = − = −
→ → → →+ + − −

Thus, f x f xlim ( ) lim ( ).
x x0 0

≠
→ →− +

 Hence, the discontinuity of f at 0 is not removable.

Fig. 8-3

The kind of discontinuity shown in Example 8.3 is called a jump discontinuity. In general, a function f 
has a jump discontinuity at x0 if f xlim

x x0

( )
→ −

 and f xlim ( )
x x0→ +

 both exist and f x f xlim ( ) lim ( ).
x x x x0 0

≠
→ →− +

 Such a discontinuity 
is not removable.

EXAMPLE 8.4: The function of Problem 4 in Chapter 6 has a jump discontinuity at every positive integer.

Properties of limits lead to corresponding properties of continuity.
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71CHAPTER 8 Continuity

Theorem 8.1: Assume that f and g are continuous at x0. Then:
(a) The constant function h(x) = c for all x is continuous at every x0.
(b) cf is continuous at x0, for any constant c. [Recall that cf has the value c · f (x) for each argument x.]
(c) f + g is continuous at x0.
(d) f − g is continuous at x0.
(e) fg is continuous at x0.
(f) f/g is continuous at x0 if g(x0) ≠ 0.

(g) fn  is continuous at x0 if f x( )n
0  is defined.

These results follow immediately from Theorems 7.1–7.6. For example, (c) holds because

f x g x f x g x f x g xlim ( ( ) ( )) lim ( ) lim ( ) ( ) ( )
x x x x x x 0 0

0 0 0

+ = + = +
→ → →

Theorem 8.2: The identity function I(x) = x is continuous at every x0.

This follows from the fact that x xlim
x x 0

0

=
→

.

We say that a function f is continuous on a set A if f is continuous at every point of A. Moreover, if we just 
say that f is continuous, we mean that f is continuous at every real number.

The original intuitive idea behind the notion of continuity was that the graph of a continuous function was 
supposed to be “continuous” in the intuitive sense that one could draw the graph without taking the pencil off 
the paper. Thus, the graph would not contain any “holes” or “jumps.” However, it turns out that our precise 
definition of continuity goes well beyond that original intuitive notion; there are very complicated continuous 
functions that could certainly not be drawn on a piece of paper.

Theorem 8.3: Every polynomial function

f x a x a x a x a( ) n
n

n
n

1
1

1 0= + + ⋅⋅⋅ + +−
−

is continuous.

This is a consequence of Theorems 8.1 (a–e) and 8.2.

EXAMPLE 8.5: As an instance of Theorem 8.3, consider the function x2 − 2x + 3. Note that, by Theorem 8.2, the 
identity function x is continuous and therefore, by Theorem 8.1(e), x2 is continuous, and, by Theorem 8.1(b), −2x is con-
tinuous. By Theorem 8.1(a), the constant function 3 is continuous. Finally, by Theorem 8.1(c), x2 − 2x + 3 is continuous.

Theorem 8.4: Every rational function H x
f x
g x

( )
( )
( )

,=  where f (x) and g(x) are polynomial functions, is continuous 
on the set of all points at which g(x) ≠ 0.

This follows from Theorems 8.1(f) and 8.3. As examples, the function H x
x

x
( )

12= −  is continuous at all 

points except 1 and −1, and the function G x
x
x

( )
7
12= −

+  is continuous at all points (since x2 + 1 is never 0).

We shall use a special notion of continuity with respect to a closed interval [a, b]. First of all, we say that 

a function f is continuous on the right at a if f (a) is defined and f xlim ( )
x a→ +

 exists, and f x f alim ( ) ( )
x a

=
→ +

. We say 

that f is continuous on the left at b if f (b) is defined and f xlim ( )
x b→ −

 exists, and f x f blim ( ) ( )
x b

=
→ −

.

Definition: f is continuous on [a, b] if f is continuous at each point on the open interval (a, b), f is continuous on 
the right at a, and f is continuous on the left at b.

Note that whether f is continuous on [a, b] does not depend on the values of f, if any, outside of  
[a, b]. Note also that every continuous function (that is, a function continuous at all real numbers) must 
be continuous on any closed interval. In particular, every polynomial function is continuous on any 
closed interval.
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We want to discuss certain deep properties of continuous functions that we shall use but whose proofs are 
beyond the scope of this book.

Theorem 8.5 (Intermediate Value Theorem): If f is continuous on [a, b] and f (a) ≠ f (b), then for any number c 
between f (a) and f (b), there is at least one number x0 in the open interval (a, b) for which f (x0) = c.

Figure 8-4(a) is an illustration of Theorem 8.5. Fig. 8-5 shows that continuity throughout the interval 
is essential for the validity of the theorem. The following result is a special case of the Intermediate Value 
Theorem.

Fig. 8-4

Fig. 8-5

Corollary 8.6:  If f is continuous on [a, b] and f (a) and f (b) have opposite signs, then the equation f (x) = 0 has at 
least one root in the open interval (a, b), and therefore, the graph of f crosses the x-axis at least once between a and b. 
[See Fig. 8-4(b).]

Theorem 8.7 (Extreme Value Theorem): If f  is continuous on [a, b], then f takes on a least value m and a greatest 
value M on the interval.

As an illustration of the Extreme Value Theorem, look at Fig. 8-6(a), where the minimum value m occurs 
at x = c and the maximum value M occurs at x = d. In this case, both c and d lie inside the interval. On 
the other hand, in Fig. 8-6(b), the minimum value m occurs at the endpoint x = a and the maximum value 
M occurs inside the interval. To see that continuity is necessary for the Extreme Value Theorem to be true, 
consider the function whose graph is indicated in Fig. 8-6(c). There is a discontinuity at c inside the interval; 
the function has a minimum value at the left endpoint x = a, but the function has no maximum value.
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Fig. 8-6

Another useful property of continuous functions is given by the following result.

Theorem 8.8: If f is continuous at c and f (c) > 0, then there is a positive number d such that whenever  
c − d < x < c + d, then f (x) > 0.

This theorem is illustrated in Fig. 8-7. For a proof, see Problem 3.

Fig. 8-7

SOLVED PROBLEMS

 1. Find the discontinuities of the following functions. Determine whether they are removable. If not removable, 
determine whether they are jump discontinuities. (GC) Check your answers by showing the graph of the function 
on a graphing calculator.

(a) f x
x

( )
2= . Nonremovable discontinuity at x = 0.

(b) f x
x

x x
( )

1
( 3)( 2)

= −
+ − . Nonremovable discontinuities at x = −3 and x = 2.
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(c) f x
x x

x
( )

( 2)( 1)
( 3)2= + −

−
. Nonremovable discontinuity at x = 3.

(d) f x
x
x

( )
27
9

3

2= −
−

.  Has a removable discontinuity at x = 3. [Note that x3 − 27 =  
(x − 3)(x2 + 3x + 9).] Also has a nonremovable discontinuity at x = −3.

(e) f x
x

x
( )

4

3 5

2

2
= −

− +
.  Has a removable discontinuity at x = ±2. Note that 

x

x

x

x
x

4

3 5

3 5

3 5
3 5.

2

2

2

2
2−

− +
+ +
+ +

= + +

(f ) f x
x x

x
( )

2
( 1)

2

2= + −
−

. Has a nonremovable discontinuity at x = 1.

(g) f (x) = [x] = the greatest integer ≤ x. Has a jump discontinuity at every integer.
(h) f (x) = x − [x]. Has a nonremovable discontinuity at every integer.
(i) f (x) = 3x3 − 7x2 + 4x − 2. A polynomial has no discontinuities.

( j) f x
x
x

( )
0 if 0
2 if 0

=
=
≠






 Removable discontinuity at x = 0.

(k) f x
x x
x x

x x
( )

if 0.
if 0 1

2 if 1.

2=
≤
< <

− ≥









 No discontinuities.

 2. Show that the existence of 
f a h f a

h
lim

( ) ( )
h 0

+ −
→

 implies that f is continuous at x = a.

f a h f a
f a h f a

h
h

f a h f a
h

h
f a h f a

h

lim( ( ) ( )) lim
( ) ( )

lim
( ) ( )

lim lim
( ) ( )

0 0

h h

h h h

0 0

0 0 0

+ − = + − ⋅



 =

+ − ⋅ = + − ⋅ =

→ →

→ → →

But

f a h f a f a h f a f a h f alim ( ( ) ( )) lim ( ) lim ( ) lim ( ) ( )
h h h h0 0 0 0

+ − = + − = + −
→ → → →

Hence, f a h f alim ( ) ( ).
h 0

+ =
→

 Note that f a h f xlim ( ) lim ( ).
h x a0

+ =
→ →

 So, f x f alim ( ) ( ).
x a

=
→

 3. Prove Theorem 8.8.
By the continuity of f at c, f x f clim ( ) ( )

x c
=

→
. If we let f c( )/2 0,∈∈= >  then there exists a positive d such that  

0 < |x − c| < d implies that |f (x) − f (c)| < f (c)/2. The latter inequality also holds when x = c. Thus, |x − c| < d  

implies |f (x) − f (c)| < f (c)/2. The latter implies −f (c)/2 < f (x) − f (c) < f (c)/2. Adding f (c) to the left-hand 
inequality, we obtain f (c)/2 < f (x).

SUPPLEMENTARY PROBLEMS

 4. Determine the discontinuities of the following functions and state why the function fails to be continuous at those 
points. (GC) Check your answers by graphing the function on a graphing calculator.

(a) f x
x x

x
( )

3 10
2

2

= − −
+

 (b) f x
x x
x x

( )
3 if 2
1 if 22=

+ ≥
+ <







(c) f (x) = |x| − x (d) f x
x x

x x
x x

4 if 3
2 if 0 3
1 if 0

( ) =
− <
− < <
− ≤





 

(e) f x
x
x

( )
1
1

4

2= −
−  (f ) f x

x x x
x x

( )
17 15

2 15

3 2

2= + − +
+ −
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(g) f (x) = x3 − 7x (h) f x
x

x x
( )

4
5 6

2

2= −
− +

(i) f x
x x
x x

( )
3 2
4 3

2

2= + +
+ +

 ( j) f x
x
x

( )
2
42= −

−
(k) f x

x

x
( )

1

3 22
= −

+ −

Ans. (a)  Removable discontinuity at x = −2. [Note that x2 − 3x − 10 = (x + 2)(x − 5).] 
(b, c, g)   None.
(d) Jump discontinuity at x = 0.
(e) Removable discontinuities at x = ± 1.
(f)  Removable discontinuities at x = 3, x = −5. [Note that x2 + 2x − 5 = (x + 5)(x − 3) and x3 + x2 − 17x + 

15 = (x + 5)(x − 3)(x − 1).]
(h) Removable discontinuity at x = 2 and nonremovable discontinuity at x = 3.
(i) Removable discontinuity at x = −1 and nonremovable discontinuity at x = −3.
(j) Removable discontinuity at x = 2 and nonremovable discontinuity at x = −2.
(k) Removable discontinuity at x = 1 and nonremovable discontinuity at x = −1.

 5. Show that f (x) = |x| is continuous.

 6. If Fig. 8-5(a) is the graph of f x
x x

x
( )

4 21
7

,
2

= − −
−  show that there is a removable discontinuity at x = 7 and that 

c = 10 there.

 7. Prove: If f is continuous on the interval [a, b] and c is a number in (a, b) such that f (c) < 0, then there exists a 
positive number d such that, whenever c − d < x < c + d, then f (x) < 0.

(Hint: Apply Theorem 8.8 to −f.)

 8. Sketch the graphs of the following functions and determine whether they are continuous on the closed interval 
[0, 1]:

(a) f x
x

x
x

( )
1 if 0
0 if 0 1
1 if 1

=
− <

≤ ≤
>






 (b) f x x

x

x
( )

1
if 0

1 if 0
= >

≤







(c) f x
x x
x x

( )
if 0
if 0

2

2=
− ≤

>





 (d) f (x) = 1 if 0 < x ≤ 1

(e) f x
x x

x
x x

( )
if 0

0 if 0 1
if 1

=
≤
< <
≥







Ans. (a) Yes. (b) No. Not continuous on the right at 0. (c) Yes. (d) No. Not defined at 0. (e) No. Not continuous 
on the left at 1.
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CHAPTER 9

The Derivative

DELTA NOTATION

Let  f  be a function. As usual, we let x stand for any argument of  f,  and we let y be the corresponding value 
of  f. Thus, y = f (x). Consider any number x0 in the domain of f. Let ∆x (read “delta x”) represent a small 
change in the value of x, from x0 to x0 + ∆x, and then let ∆y (read “delta y”) denote the corresponding change 
in the value of y. So, ∆y = f (x0 + ∆x) − f (x0). Then the ratio

y
x

y
x

f x x f x
x

change in
change in

( ) ( )0 0∆
∆ = =

+ ∆ −
∆

is called the average rate of change of the function f  on the interval between x0 and x0 + ∆x.

EXAMPLE 9.1: Let y = f (x) = x2 + 2x. Starting at x0 = 1, change x to 1.5. Then ∆x = 0.5. The corresponding change 

in y is ∆y = f (1.5) − f (1) = 5.25 − 3 = 2.25. Hence, the average rate of change of y on the interval between x = 1 and 

x = 1.5 is 
y
x

2.25
0.5

4.5.
∆
∆ = =

THE DERIVATIVE

If y = f (x) and x0 is in the domain of f, then by the instantaneous rate of change of f at x0 we mean the limit 
of the average rate of change between x0 and x0 + ∆ x as ∆ x approaches 0:

y
x

f x x f x
x

lim lim
( ) ( )

x x0 0

0 0∆
∆ =

+ ∆ −
∆∆ → ∆ →

provided that this limit exists. This limit is also called the derivative of f at x0.

NOTATION FOR DERIVATIVES

Let us consider the derivative of f at an arbitrary point x in its domain:

y
x

f x x f x
x

lim lim
( ) ( )

x x0 0

∆
∆ =

+ ∆ −
∆∆ → ∆ →

The value of the derivative is a function of x, and will be denoted by any of the following expressions:

D y
dy
dx

y f x
d
dx

y
d
dx

f x
y
x

( ) ( ) limx x 0
= = ′ = ′ = = = ∆

∆∆ →

The value f ′(a) of the derivative of f  at a particular point a is sometimes denoted by 
dy
dx

x a=
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78 CHAPTER 9 The Derivative

DIFFERENTIABILITY

A function is said to be differentiable at a point x0 if the derivative of the function exists at that point. 
Problem 2 of Chapter 8 shows that differentiability implies continuity. That the converse is false is shown 
in Problem 11.

SOLVED PROBLEMS

 1. Given y = f (x) = x2 + 5x – 8, find ∆y and ∆y/∆ x as x changes (a) from x0 = 1 to x1 = x0 + ∆ x = 1.2 and (b) from 
x0 = 1 to x1 = 0.8.

(a) ∆x = x1 − x0 = 1.2 − 1 = 0.2 and ∆y = f (x0 + ∆ x) – f (x0) = f (1.2) – f (1) = –0.56 – (–2) = 1.44. 

So 
y
x

1.44
0.2

7.2
∆
∆ = = .

(b) ∆ x = 0.8 – 1 = –0.2 and ∆y = f (0.8) – f (1) = –3.36 – (–2) = –1.36. So 
y
x

1.36
0.2

6.8
∆
∆ = −

− = .

Geometrically, ∆y/∆ x in (a) is the slope of the secant line joining the points (1, –2) and (1.2, –0.56) of the 
parabola y = x2 + 5x – 8, and in (b) is the slope of the secant line joining the points (0.8, –3.36) and (1, –2) of the 
same parabola.

 2. If a body (that is, a material object) starts out at rest and then falls a distance of s feet in t seconds, then physical 
laws imply that s = 16t2. Find ∆s/∆t as t changes from t0 to t0 + ∆t. Use the result to find ∆s/∆t as t changes: 
(a) from 3 to 3.5, (b) from 3 to 3.2, and (c) from 3 to 3.1.

s
t

t t t
t

t t t
t

t t
16( ) 16 32 16( )

32 160
2

0
2

0
2

0

∆
∆ =

+ ∆ −
∆ =

∆ + ∆
∆ = + ∆

(a) Here t0 = 3, ∆t = 0.5, and ∆s/∆t = 32(3) + 16(0.5) = 104 ft/sec.
(b) Here t0 = 3, ∆t = 0.2, and ∆s/∆t = 32(3) + 16(0.2) = 99.2 ft/sec.
(c) Here t0 = 3, ∆t = 0.1, and ∆s/∆t = 97.6 ft/sec.

Since ∆s is the displacement of the body from time t = t0 to t = t0 + ∆t,

s
t

displacement
time

average velocity of the bodyover the time interval
∆
∆ = =

 3. Find dy/dx, given y = x3 − x2 − 4. Find also the value of dy/dx when (a) x = 4, (b) x = 0, (c) x = −1.

y y x x x x

x x x x x x x x x x

y x x x x x x

y
x

x x x x x

dy
dx

x x x x x x x

( ) ( ) 4

3 ( ) 3 ( ) ( ) 2 ( ) ( ) 4

(3 2 ) (3 1)( ) ( )

3 2 (3 1) ( )

lim [3 2 (3 1) ( ) ] 3 2
x

3 2

3 2 2 3 2 2

2 2 3

2 2

0

2 2 2

+ ∆ = + ∆ − + ∆ −

= + ∆ + ∆ + ∆ − − ∆ − ∆ −

∆ = − ∆ + − ∆ + ∆

∆
∆ = − + − ∆ + ∆

= − + − ∆ + ∆ = −
∆ →

(a) 
dy
dx

3(4) 2(4) 40;
x 4

2= − =
=

 (b) dy
dx

3(0) 2(0) 0;
x 0

2= − =
=

   (c)   
dy
dx

3( 1) 2( 1) 5
x 1

2= − − − =
=−
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79CHAPTER 9 The Derivative

 4. Find the derivative of y = f (x) = x2 + 3x + 5.

y f x x f x x x x x x x

x x x x x x x x x x x x

x x x

y
x

x x

( ) ( ) [( ) 3( ) 5)] [ 3 5]

[ 2 ( ) 3 3 5] [ 3 5] 2 ( ) 3

(2 3)

2 3

2 2

2 2 2 2

∆ = + ∆ − = + ∆ + + ∆ + − + +

= + ∆ + ∆ + + ∆ + − + + = ∆ + ∆ + ∆

= + ∆ + ∆

∆
∆ = + ∆ +

So, 
dy
dx

x x xlim (2 3) 2 3.
x 0

= + ∆ + = +
∆ →

 5. Find the derivative of y f x
x

( )
1

2
= = −  at x = 1 and x = 3.

y f x x f x
x x x

x x x
x x x

x
x x x

y
x x x x

( ) ( )
1

( ) 2
1

2
( 2) ( 2)
( 2)( 2)

( 2)( 2)

1
( 2)( 2)

∆ = + ∆ − = + ∆ − − − =
− − + ∆ −
− + ∆ −

=
−∆

− + ∆ −

∆
∆ = −

− + ∆ −

So, 
dy
dx x x x x

lim
1

( 2)( 2)
1

( 2)
.

x 0
2= −

− + ∆ − = −
−∆ →

At x = 1, 
dy
dx

1
(1 2)

1.2= −
− = −  At x = 3, 

dy
dx

1
(3 2)

1.2= −
− = −

 6. Find the derivative of f x
x
x

( )
2 3
3 4

.= −
+

f x x
x x
x x

f x x f x
x x
x x

x
x

x x x x x x
x x x

x x x
x x x

x
x x x

f x x f x
x x x x

f x
x x x x

( )
2( ) 3
3( ) 4

( ) ( )
2 2 3
3 3 4

2 3
3 4

(3 4)[(2 3) 2 ] (2 3)[(3 4) 3 ]
(3 4)(3 3 4)

(6 8 6 9)
(3 4)(3 3 4)

17
(3 4)(3 3 4)

( ) ( ) 17
(3 4)(3 3 4)

( ) lim
17

(3 4)(3 3 4)
17

(3 4)x 0
2

+ ∆ =
+ ∆ −
+ ∆ +

+ ∆ − =
+ ∆ −
+ ∆ + − −

+

=
+ − + ∆ − − + + ∆

+ + ∆ +

=
+ − + ∆

+ + ∆ + =
∆

+ + ∆ +

+ ∆ −
∆ = + + ∆ +

′ = + + ∆ + = +∆ →

 7. Find the derivative of y f x x( ) 2 1= = + .

y y x x

y x x x

x x x
x x x
x x x

x x x
x x x

x
x x x

y
x x x x

dy
dx x x x x

(2 2 1)

(2 2 1) (2 1)

[(2 2 1) (2 1) ]
(2 2 1) (2 1)
(2 2 1) (2 1)

(2 2 1) (2 1)
(2 2 1) (2 1)

2
(2 2 1) (2 1)

2
(2 2 1) (2 1)

lim
2

(2 2 1) (2 1)
1

(2 1)x

1/2

1/2 1/2

1/2 1/2
1/2 1/2

1/2 1/2

1/2 1/2 1/2 1/2

1/2 1/2

0
1/2 1/2 1/2

+ ∆ = + ∆ +

∆ = + ∆ + − +

= + ∆ + − +
+ ∆ + + +
+ ∆ + + +

=
+ ∆ + − +

+ ∆ + + + =
∆

+ ∆ + + +

∆
∆ = + ∆ + + +

= + ∆ + + + = +∆ →
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80 CHAPTER 9 The Derivative

 8. Find the derivative of f (x) = x1/3. Examine f ′(0).

f x x x x

f x x f x x x x

x x x x x x x x x
x x x x x x

x x x
x x x x x x

f x x f x
x x x x x x x

f x
x x x x x x x

( ) ( )

( ) ( ) ( )

[( ) ][( ) ( ) ]
( ) ( )

( ) ( )

( ) ( ) 1
( ) ( )

( ) lim
1

( ) ( )
1

3x

1/3

1/3 1/3

1/3 1/3 2/3 1/3 1/3 2/3

2/3 1/3 1/3 2/3

2/3 1/3 1/3 2/3

2/3 1/3 1/3 2/3

0
2/3 1/3 1/3 2/3 2/3

+ ∆ = + ∆

+ ∆ − = + ∆ −

= + ∆ − + ∆ + + ∆ +
+ ∆ + + ∆ +

= + ∆ −
+ ∆ + + ∆ +

+ ∆ −
∆ = + ∆ + + ∆ +

′ = + ∆ + + ∆ + =
∆ →

The derivative does not exist at x = 0 because the denominator is zero there. Note that the function f is 
continuous at x = 0.

 9. Interpret dy/dx geometrically.
From Fig. 9-1 we see that ∆y/∆x is the slope of the secant line joining an arbitrary but fixed point P(x, y) and  

a nearby point Q(x + ∆x, y + ∆y) of the curve. As  ∆x → 0, P remains fixed while Q moves along the curve toward 
P, and the line PQ revolves about P toward its limiting position, the tangent line PT moves to the curve at P. 
Thus, dy/dx gives the slope of the tangent line at P to the curve y = f (x).

Fig. 9-1

For example, from Problem 3, the slope of the cubic y = x3 − x2 − 4 is m = 40 at the point x = 4; it is m = 0 at 
the point x = 0; and it is m = 5 at the point x = −1.

10. Find ds/dt for the function of Problem 2 and interpret the result.

s
t

t t32 16 .0

∆
∆ = + ∆  Hence, 

ds
dt

t t tlim (32 16 ) 32
t 0 0 0= + ∆ =

∆ →

As ∆t → 0, ∆s/∆t gives the average velocity of the body for shorter and shorter time intervals ∆t. Then we can 
consider ds/dt to be the instantaneous velocity v of the body at time t0.

For example, at t = 3, v = 32(3) = 96 ft/sec. In general, if an object is moving on a straight line, and its position 
on the line has coordinate s at time t, then its instantaneous velocity at time t is ds/dt. (See Chapter 19.)

11. Find f ′(x) when f (x) = |x|.
The function is continuous for all values of x. For x < 0, f (x) = –x and

f x
x x x

x
x

x
( ) lim

( ) ( )
lim lim 1 1

x x x0 0 0
′ = − + ∆ − −

∆ = −∆
∆ = − = −

∆ → ∆ → ∆ →
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81CHAPTER 9 The Derivative

Similarly, for x > 0, f (x) = x and

f x
x x x

x
x
x

( ) lim
( )

lim lim 1 1
x x x0 0 0

′ = + ∆ −
∆ = ∆

∆ = =
∆ → ∆ → ∆ →

At x = 0, f (x) = 0 and 
f x f

x
x
x

lim
(0 ) (0)

lim
| |

.
x x0 0

+ ∆ −
∆ = ∆

∆∆ → ∆ →

As ∆x → 0−, 
x
x

x
x

| |
1 1.

∆
∆ = −∆

∆ = − → −  But, as ∆x → 0+, 
x
x

x
x

| |
1 1

∆
∆ = ∆

∆ = → . Hence, the derivative does not exist 
at x = 0.

Since the function is continuous at 0, this shows that continuity does not imply differentiability.

12. Compute 
y
x

dy
dx

∈∈= ∆
∆ −  for the function of (a) Problem 3 and (b) Problem 5. Verify that 0∈∈  →  as ∆x → 0.

(a) x x x x x x x x x x[3 2 (3 1) ( ) ] (3 2 ) (3 1 )2 2 2∈∈= − + − ∆ + ∆ − − = − + ∆ ∆

(b) 
x x x x

x x x
x x x x x x

x
1

( 2)( 2)
1

( 2)
( 2) ( 2)
( 2) ( 2)

1
( 2) ( 2)2 2 2∈∈  = −

− + ∆ − − −
− = − − + + ∆ −

− + ∆ − = − + ∆ − ∆

Both obviously go to zero as ∆x → 0.

13. Interpret y
dy
dx

x x∈∈∆ = ∆ + ∆  of Problem 12 geometrically.

In Fig. 9-1, ∆y = RQ and 
dy
dx

x PR TPR RStan∆ = ∠ = ; thus, x SQ∈∈∆ = . For a change ∆x in x from P(x, y), ∆y 

is the corresponding change in y along the curve while dy
dx

x∆  is the corresponding change in y along the tangent 

line PT. Since their difference x∈∈∆  is a multiple of (∆x)2, it goes to zero faster than ∆x, and dy
dx

x∆  can be used as 

an approximation of ∆y when |∆x| is small.

SUPPLEMENTARY PROBLEMS

14. Find ∆y and ∆y/∆x, given:

(a) y = 2x − 3 and x changes from 3.3 to 3.5.
(b) y = x2 + 4x and x changes from 0.7 to 0.85.
(c) y = 2/x and x changes from 0.75 to 0.5.

Ans. (a) 0.4 and 2; (b) 0.8325 and 5.55; (c) 4
3
 and 16

3−

15. Find ∆y, given y = x2 − 3x + 5, x = 5, and ∆x = −0.01. What then is the value of y when x = 4.99?

Ans. ∆y = −0.0699;  y = 14.9301

16. Find the average velocity (see Problem 2), given: (a) s = (3t2 + 5) feet and t changes from 2 to 3 seconds; 
(b) s = (2t2 + 5t − 3) feet and t changes from 2 to 5 seconds.

Ans. (a) 15 ft/sec; (b) 19 ft/sec

17. Find the increase in the volume of a spherical balloon when its radius is increased (a) from r to r + ∆r inches; 
(b) from 2 to 3 inches. (Recall that volume V r4

3
3π= .)

Ans. (a) r r r r r[3 3 ( ) ] in4
3

2 2 3π + ∆ + ∆ ∆ ; (b) in76
3

3π
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82 CHAPTER 9 The Derivative

18. Find the derivative of each of the following:

(a) y = 4x − 3 (b) y = 4 − 3x (c) y = x2 + 2x − 3
(d) y = 1/x2 (e) y = (2x − 1)/(2x + 1) (f ) y = (1 + 2x)/(1 − 2x)
(g) y x=  (h) y x1/=  (i) y x1 2= +
( j) y x1/ 2= +

Ans. (a) 4; (b) −3; (c) 2(x + 1); (d) −2/x3; (e) 
x

4
(2 1)2+

; (f ) 
x

4
(1 2 )2−

; (g) 
x

1
2

; (h) 
x x
1

2
− ; (i) 

x

1
1 2+

; 

( j) 
x

1
2(2 )3/2− +

19. Find the slope of the tangent line to the following curves at the point x = 1 (see Problem 9): (a) y = 8 − 5x2; 

(b) y
x

4
1

= + ; (c) 
x

2
3+ .

Ans. (a) −10; (b) −1; (c) 1
8−

20. (GC) Use a graphing calculator to verify your answers in Problem 19. (Graph the curve and the tangent line that 
you found.)

21. Find the coordinates of the vertex (that is, the turning point) of the parabola y = x2 − 4x + 1 by making use of 
the fact that, at the vertex, the slope of the tangent line is zero. (See Problem 9.) (GC) Check your answer with a 
graphing calculator.

Ans. (2, −3)

22. Find the slope m of the tangent lines to the parabola y = −x2 + 5x − 6 at its points of intersection with the x-axis.

Ans. At x = 2, m = 1. At x = 3, m = −1.

23. When an object is moving on a straight line and its coordinate on that line is s at time t (where s is measured in 
feet and t in seconds), find the velocity at time t = 2 in the following cases:

(a) s = t2 + 3t (b) s = t3 − 3t2 (c) s t 2= +
(See Problem 10.)

Ans. (a) 7 ft/sec; (b) 0 ft/sec; (c) ft/sec1
4

24. Show that the instantaneous rate of change of the volume V of a cube with respect to its edge x (measured in 
inches) is 12 in3/in when x = 2 in.
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CHAPTER 10

Rules for Differentiating Functions

DIFFERENTIATION

Recall that a function f is said to be differentiable at x0 if the derivative f  ′(x0) exists. A function is said to be 
differentiable on a set if the function is differentiable at every point of the set. If we say that a function is 
differentiable, we mean that it is differentiable at every real number. The process of finding the derivative of 
a function is called differentiation.

Theorem 10.1 (Differentiation Formulas): In the following formulas, it is assumed that u, v, and w are functions 
that are differentiable at x; c and m are assumed to be constants.

(1)  =d
dx

c( ) 0 (The derivative of a constant function is zero.)

(2)  =d
dx

x( ) 1 (The derivative of the identity function is 1.)

(3)  =d
dx

cu c
du
dx

( )

(4)  v
vd

dx
u

du
dx

d
dx

( )º º+ + = + +  (Sum Rule)

(5)  v
v− = −d

dx
u

du
dx

d
dx

( )  (Difference Rule)

(6)  
d
dx

u u
d
dx

du
dx

( ) = +v
v

v  (Product Rule)

(7)  
v

v
v

v




 =

−d
dx

u
du
dx

u
d
dx

2
 provided that v ≠ 0 (Quotient Rule)

(8)  ( ) = −d
dx x x

1 1
2

 provided that x ≠ 0

(9)  ( ) = −d
dx

x mxm m 1 (Power Rule)

Note that formula (8) is a special case of formula (9) when m = -1. For proofs, see Problems 1–4.

EXAMPLE 10.1: D x x D x D x D

x D x

x

( 7 5) ( ) (7 ) (5) (Sum Rule)

3 7 ( ) 0 [Power Rule, formulas (3) and (1)]

3 7 [formula (2)]

x x x x

x

3 3

2

2

+ + = + +

= + +

= +

 Every polynomial is differentiable, and its derivative can be computed by using the Sum Rule, Power Rule, and 
formulas (1) and (3).
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84 CHAPTER 10 Rules for Differentiating Functions

COMPOSITE FUNCTIONS. THE CHAIN RULE.

The composite function °f g of functions g and f is defined as follows: ° =f g x f g x( )( ) ( ( )). The function g 
is applied first and then g is called the inner function, and f is called the outer function. °f g is called the 
composition of g and f.

EXAMPLE 10.2: Let f (x) = x2 and g(x) = x + 1. Then:

° = = + = + = + +

° = = = +

f g x f g x f x x x x

g f x g f x g x x

( )( ) ( ( )) ( 1) ( 1) 2 1

( )( ) ( ( )) ( ) 1

2 2

2 2

Thus, in this case, ° ≠ °f g g f .

When f and g are differentiable, then so is their composition °f g. There are two procedures for finding 
the derivative of °f g. The first method is to compute an explicit formula for f (g(x)) and differentiate.

EXAMPLE 10.3: If f (x) = x2 + 3 and g(x) = 2x + 1, then

    = = + = + + = + +y f g x f x x x x( ( )) (2 1) (2 1) 3 4 4 42 2   and  = +dy
dx

x8 4

Thus, ° = +D f g x( ) 8 4.x

The second method of computing the derivative of a composite function is based on the following rule.

CHAIN RULE

Dx(f (g(x)) = f  ′(g(x)) · g′(x)

Thus, the derivative of f  g is the product of the derivative of the outer function f (evaluated at g(x)) and the derivative  
of the inner function (evaluated at x). It is assumed that g is differentiable at x and that f is differentiable at g(x).

EXAMPLE 10.4: In Example 10.3, f ′(x) = 2x and g′(x) = 2. Hence, by the Chain Rule,

 = ′ ⋅ ′ = ⋅ = = + = +D f g x f g x g x g x g x x x( ( ( )) ( ( )) ( ) 2 ( ) 2 4 ( ) 4(2 1) 8 4x

ALTERNATIVE FORMULATION OF THE CHAIN RULE

Let u = g(x) and y = f (u). Then the composite function of g and f is y = f (u) = f (g(x)), and we have the formula:

 
dy
dx

dy
du

du
dx

(Chain Rule)=

EXAMPLE 10.5: Let y = u3 and u = 4x2 - 2x + 5. Then the composite function y = (4x2 - 2x + 5)3 has the derivative

 = = − = − + −dy
dx

dy
du

du
dx

u x x x x3 (8 2) 3(4 2 5) (8 2)2 2 2

Warning. In the Alternative Formulation of the Chain Rule, 
dy
dx

dy
du

du
dx

,=  the y on the left denotes the 

composite function of x, whereas the y on the right denotes the original function of u. Likewise, the two 
occurrences of u have different meanings. This notational confusion is made up for by the simplicity of the 
alternative formulation.
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85CHAPTER 10 Rules for Differentiating Functions

INVERSE FUNCTIONS

Two functions f and g such that g(f (x)) = x and f (g(y)) = y are said to be inverse functions. Inverse functions 
reverse the effect of each other. Given an equation y = f (x), we can find a formula for the inverse of f by 
solving the equation for x in terms of y.

EXAMPLE 10.6:

(a)  Let f (x) = x + 1. Solving the equation y = x + 1 for x, we obtain x = y - 1. Then the inverse g of f is given by 
the formula g( y) = y - 1. Note that g reverses the effect of f and f reverses the effect of g.

(b)  Let f (x) = -x. Solving y = -x for x, we obtain x = -y. Hence, g( y) = -y is the inverse of f. In this case, the 
inverse of f is the same function as f.

(c)  Let =f x x( ) .  f is defined only for nonnegative numbers, and its range is the set of nonnegative numbers. 
Solving =y x  for x, we get x = y2, so that g( y) = y2. Note that, since g is the inverse of f, g is only defined 
for nonnegative numbers, since the values of f are the nonnegative numbers. [Since y = f (g( y)), then if we  
allowed g to be defined for negative numbers, we would have -1 = f (g(-1)) = f (1) = 1, a contradiction.]

(d)  The inverse of f (x) = 2x - 1 is the function = +
g y

y
( )

1
2

.

Notation
The inverse of f will be denoted f  -1.

Do not confuse this with the exponential notation for raising a number to the power -1. The context will 
usually tell us which meaning is intended.

Not every function has an inverse function. For example, the function f (x) = x2 does not possess an  
inverse. Since f (1) = 1 = f (-1), an inverse function g would have to satisfy g(1) = 1 and g(1) = -1, which is 
impossible. [However, if we restricted the function f (x) = x2 to the domain x ≥ 0, then the function g y y( ) =  
would be an inverse function of f.]

The condition that a function f must satisfy in order to have an inverse is that f is one-to-one, that is, for 
any x1 and x2, if x1 ≠ x2, then f (x1) ≠ f (x2). Equivalently, f is one-to-one if and only if for any x1 and x2, if  
f (x1) = f (x2), then x1 = x2.

EXAMPLE 10.7: Let us show that the function f (x) = 3x + 2 is one-to-one. Assume f (x1) = f (x2). Then 3x1 + 2 =  

3x2 + 2, 3x1 = 3x2, x1 = x2. Hence, f is one-to-one. To find the inverse, solve y = 3x + 2 for x, obtaining = −
x

y 2
3

.  

Thus, = −−f y
y

( )
2

3
.1  [In general, if we can solve y = f (x) for x in terms of y, then we know that f is one-to-one.]

Theorem 10.2 (Differentiation Formula for Inverse Functions): Let f be one-to-one and continuous on an 
interval (a, b). Then:

(a) The range of f is an interval I (possibly infinite) and f is either increasing or decreasing. Moreover, f  -1 is continu-
ous on I.

(b) If f is differentiable at x0 and f  ′(x0) ≠ 0, then f  -1 is differentiable at y0 = f (x0) and ′ = ′
−f y

f x
( ) ( )

1
( )

.1
0

0

  The latter equation is sometimes written

 =dx
dy dy

dx

1

 where x = f  -1( y). 

For the proof, see Problem 69.

EXAMPLE 10.8:

(a) Let y = f (x) = x2 for x > 0. Then = =−x f y y( ) .1  Since =dy
dx

x2 , = =dx
dy x y

1
2

1
2

. Thus, =D y
y

( )
1

2
.y  [Note that 

this is a special case of Theorem 8.1(9) when =m 1
2 .]
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86 CHAPTER 10 Rules for Differentiating Functions

(b) Let y = f (x) = x3 for all x. Then = = =−x f y y y( )1 3 1/3 for all y. Since =dy
dx

x3 ,2  = =dx
dy x y

1
3

1
3

.2 2/3  This holds 

for all y ≠ 0. [Note that f  -1(0) = 0 and f  ′(0) = 3(0)2 = 0.]

HIGHER DERIVATIVES

If y = f (x) is differentiable, its derivative y′ is also called the first derivative of f. If y′ is differentiable, its 
derivative is called the second derivative of f. If this second derivative is differentiable, then its derivative is 
called the third derivative of f, and so on.

Notation

First derivative:  y f x
dy
dx

D y, ( ), , x′ ′

Second derivative:  y f x
d y
dx

D y, ( ), , x

2

2
2′′ ′′

Third derivative:  y f x
d y
dx

D y, ( ), , x

3

3
3′′′ ′′′

nth derivative:   y f
d y
dx

D y, , ,n n
n

n x
n( ) ( )

SOLVED PROBLEMS

 1. Prove Theorem 10.1, (1) to (3): (1) =d
dx

c( ) 0; (2) =d
dx

x( ) 1; (3) =d
dx

cu c
du
dx

( ) .

Remember that = + ∆ −
∆∆ →

d
dx

f x
f x x f x

x
( ) lim

( ) ( )
.

x 0

(1) = −
∆ = =

∆ → ∆ →

d
dx

c
c c

x
lim lim 0 0

x x0 0

(2) = + ∆ −
∆ = ∆

∆ = =
∆ → ∆ → ∆ →

d
dx

x
x x x

x
x
x

( ) lim
( )

lim lim 1 1
x x x0 0 0

(3) = + ∆ −
∆ = + ∆ −

∆

= + ∆ −
∆ =

∆ → ∆ →

∆ →

d
dx

cu
cu x x cu x

x
c

u x x u x
x

c
u x x u x

x
c

du
dx

( ) lim
( ) ( )

lim
( ) ( )

lim
( ) ( )

x x

x

0 0

0

 2. Prove Theorem 10.1, (4), (6), (7):

(4) v
v+ +… = + +…d

dx
u

du
dx

d
dx

( )

(6) v
v

v= +d
dx

u u
d
dx

du
dx

( )

(7) 
v

v
v

v v



 =

−
≠d

dx
u

du
dx

u
d
dx provided that 02

(4) It suffices to prove this for just two summands, u and v. Let f (x) = u + v. Then

f x x f x
x

u x x x x u x x
x

u x x u x
x

x x x
x

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

+ ∆ −
∆ = + ∆ + + ∆ − −

∆

= + ∆ −
∆ + + ∆ −

∆

v v

v v

Taking the limit as ∆ x → 0 yields v
v+ = +d

dx
u

du
dx

d
dx

( ) .
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(6) Let f (x) = uv. Then

 

v v

v v v v

v v
v

+ ∆ −
∆ = + ∆ + ∆ −

∆

= + ∆ + ∆ − + ∆ + + ∆ −
∆

= + ∆ + ∆ −
∆ + + ∆ −

∆

f x x f x
x

u x x x x u x x
x

u x x x x x u x x x u x x u x x
x

u x x
x x x

x
x

u x x u x
x

( ) ( ) ( ) ( ) ( ) ( )

[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]

( )
( ) ( )

( )
( ) ( )

  Taking the limit as ∆ x → 0 yields

 
d
dx

u u x
d
dx

x x
d
dx

u x u
d
dx

du
dx

( ) ( ) ( ) ( ) ( )= + = +v v v
v

v

  Note that + ∆ =
∆ →

u x x u xlim ( ) ( )
x 0

 because the differentiability of u implies its continuity.

(7) Set v v= =f x
u u x

x
( )

( )
( )

, then

 

f x x f x
x

u x x
x x

u x
x

x
u x x x u x x x

x x x x

u x x x u x x u x x x u x x
x x x x

x
u x x u x

x
u x

x x x
x

x x x

( ) ( )
( )
( )

( )
( ) ( ) ( ) ( ) ( )

[ ( ) ( )]

[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]
[ ( ) ( )]

( )
( ) ( )

( )
( ) ( )

( ) ( )

+ ∆ −
∆ =

+ ∆
+ ∆ −

∆ = + ∆ − + ∆
∆ + ∆

= + ∆ − − + ∆ −
∆ + ∆

=
+ ∆ −

∆ − + ∆ −
∆

+ ∆

v v v v
v v

v v v v
v v

v
v v

v v

and for ∆ x → 0, v
v v

v
v

v

v
d
dx

f x
d
dx

u x
d
dx

u x u x
d
dx

x

x

du
dx

u
d
dx( )

( ) ( ) ( ) ( )

[ ( )]2 2= 



 =

−
=

−

 3. Prove Theorem 10.1(9): Dx(x m) = mx m-1, when m is a nonnegative integer.
Use mathematical induction. When m = 0,

 = = = = ⋅ =− −D x D x D x mx( ) ( ) (1) 0 0x
m

x x
m0 1 1

Assume the formula is true for m. Then by the Product Rule,

 
= ⋅ = + = ⋅ + ⋅

= + = +

+ −D x D x x x D x xD x x x mx

x mx m x

( ) ( ) ( ) ( ) 1

( 1)

x
m

x
m m

x x
m m m

m m m

1 1

Thus, the formula holds for m + 1.

 4. Prove Theorem 10.1(9): Dx(x m) = mx m-1, when m is a negative integer.
Let m = -k, where k is a positive integer. Then by the Quotient Rule and Problem 3,

 

= = 





=
− ⋅

= ⋅ −

= − = − =

−

−

−
− − −

D x D x D
x

x D D x
x

x kx
x

k
x
x

kx mx

( ) ( )
1

(1) 1 ( )
( )

0

x
m

x
k

x k

k
x x

k

k

k k

k

k

k
k m

2

1

2

1

2
1 1
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88 CHAPTER 10 Rules for Differentiating Functions

    5. Differentiate y = 4 + 2x - 3x2 - 5x3 - 8x4 + 9x5.

 = + − − − + = − − − +dy
dx

x x x x x x x x0 2(1) 3(2 ) 5(3 ) 8(4 ) 9(5 ) 2 6 15 32 452 3 4 2 3 4

    6. Differentiate = + + = + +− − −y
x x x

x x x
1 3 2

3 2 .2 3
1 2 3

 = − + − + − = − − − = − − −− − − − − −dy
dx

x x x x x x
x x x

3( 2 ) 2( 3 ) 6 6
1 6 62 3 4 2 3 4

2 3 4

    7. Differentiate y = 2x1/2 + 6x1/3 - 2x3/2.

 = 



 + 



 − 



 = + − = + −− − − −dy

dx
x x x x x x

x x
x2

1
2

6
1
3

2
3
2

2 3
1 2

31/2 2/3 1/2 1/2 2/3 1/2
1/2 2/3

1/2

    8. Differentiate = + − − = + − −− − − −y
x x x x

x x x x
2 6 2 4

2 6 2 4 .1/2 1/3 3/2 3/4
1/2 1/3 3/2 3/4

 
= −



 + −



 − −



 − −





= − − + + = − − + +

− − − −

− − − −

dy
dx

x x x x

x x x x
x x x x

2
1
2

6
1
3

2
3
2

4
3
4

2 3 3
1 2 3 3

3/2 4 /3 5/2 7/4

3/2 4 /3 5/2 7/4
3/2 4 /3 5/2 7/4

    9. Differentiate = − = − −y x
x

x x3
1
5

(3 ) (5 ) .23 2 1/3 1/2

 = − −



 = + = +− −dy

dx
x x x

x
x x x x x x

1
3

(3 ) (6 )
1
2

(5 ) (5)
2

(9 )
5

2(5 )(5 )
2
9

1

2 5
2 2/3 3/2

4 1/3 1/2 3

10. Prove the Power Chain Rule: Dx(y m) = my m-1Dx  y.
This is simply the Chain Rule, where the outer function is f (x) = xm and the inner function is y.

11. Differentiate s = (t2 - 3)4.
By the Power Chain Rule, = − = −ds

dt
t t t t4( 3) (2 ) 8 ( 3) .2 3 2 3

12. Differentiate (a)  = − = − −z
a y

a y
3

( )
3( ) ;2 2 2

2 2 2  (b)  = + + = + +f x x x x x( ) 6 3 ( 6 3) .2 2 1/2

 (a) = − − − = − − − = −
− −dz

dy
a y

d
dy

a y a y y
y

a y
3( 2)( ) ( ) 3( 2)( ) ( 2 )

12
( )

2 2 3 2 2 2 2 3
2 2 3

 (b) ′ = + + + + = + + + = +
+ +

− −f x x x
d
dx

x x x x x
x

x x
( ) ( 6 3) ( 6 3) ( 6 3) (2 6)

3

6 3)
1
2

2 1/2 2 1
2

2 1/2
2

13. Differentiate y = (x2 + 4)2(2x3 - 1)3.
Use the Product Rule and the Power Chain Rule:

 

′ = + − + − +

= + − − + − + +

= + − + − +

= + − + −

y x
d
dx

x x
d
dx

x

x x
d
dx

x x x
d
dx

x

x x x x x x

x x x x x

( 4) (2 1) (2 1) ( 4)

( 4) (3)(2 1) (2 1) (2 1) (2)( 4) ( 4)

( 4) (3)(2 1) (6 ) (2 1) (2)( 4)(2 )

2 ( 4)(2 1) (13 36 2)

2 2 3 3 3 3 2 2

2 2 3 2 3 3 3 2 2

2 2 3 2 2 3 3 2

2 3 2 3
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89CHAPTER 10 Rules for Differentiating Functions

14. Differentiate = −
+y

x
x

3 2
3 2

.

Use the Quotient Rule:

 y
x

d
dx

x x
d
dx

x

x
x x

x x

(3 2 ) (3 2 ) (3 2 ) (3 2 )

(3 2 )
(3 2 )( 2) (3 2 )(2)

(3 2 )
12

(3 2 )2 2 2′ =
+ − − − +

+ = + − − −
+ = −

+

15. Differentiate =
−

= −y
x

x

x
x4 (4 )

.
2

2

2

2 1/2

 
=

− − −
− = − − − −

−

= − + −
−

−
− = − +

− = −
−

−

−

dy
dx

x
d
dx

x x
d
dx

x

x
x x x x x

x

x x x x
x

x
x

x x x
x

x x
x

(4 ) ( ) (4 )

4
(4 ) (2 ) ( )( )(4 ) ( 2 )

4

(4 ) (2 ) (4 )
4

(4 )
(4 )

2 (4 )
(4 )

8
(4 )

2 1/2 2 2 2 1/2

2

2 1/2 2 1
2

2 1/2

2

2 1/2 3 2 1/2

2

2 1/2

2 1/2

2 3

2 3/2

3

2 3/2

16. Find dy
dx

, given = −x y y1 .2

By the Product Rule,

 = ⋅ − − + − = −
−

−dx
dy

y y y y
y

y

1
2

(1 ) ( 2 ) (1 )
1 2

1
2 1/2 2 1/2

2

2

By Theorem 10.2,

 = =
−

−
dy
dx dx dy

y
y

1
/

1
1 2

2

2

17. Find the slope of the tangent line to the curve x = y2 - 4y at the points where the curve crosses the y-axis.

The intersection points are (0, 0) and (0, 4). We have = −dx
dy

y2 4 and so = = −
dy
dx dx dy y

1
/

1
2 4

.  
At (0, 0) the slope is − ,1

4  and at (0, 4) the slope is .1
4

18. Derive the Chain Rule: Dx( f (g(x)) = f  ′(g(x)) · g′(x)).
Let H f g.= °  Let y = g(x) and K = g(x + h) - g(x). Also, let = + − − ′F t

f y t f y
t

f y( )
( ) ( )

( ) for t ≠ 0.  

Since 
→

lim
t 0

 F (t) = 0, let F (0) = 0. Then f ( y + t) - f ( y) = t(F (t) + f  ′( y)) for all t. When t = K,

 
+ − = + ′

+ − = + ′

f y K f y K F K f y

f g x h f g x K F K f y

( ) ( ) ( ( ) ( ))

( ( )) ( ( )) ( ( ) ( ))

Hence,   + − = + ′
H x h H x

h
K
h

F K f y
( ) ( )

( ( ) ( ))

Now, = + − = ′
→ →

K
h

g x h g x
h

g xlim lim
( ) ( )

( )
h h0 0

Since 
→

lim
h 0

 K = 0, 
→

lim
h 0

 F (K) = 0. Hence,

 ′ = ′ ′ = ′ ′H x f y g x f g x g x( ) ( ) ( ) ( ( )) ( ).

19. Find dy
dx

, given = −
+y

u
u

1
1

2

2
 and = +u x 2.23

 = +
dy
du

u
u

4
( 1)2 2

 and = + =du
dx

x
x

x
u

2
3( 2)

2
32 2/3 2
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90 CHAPTER 10 Rules for Differentiating Functions

Then = = + = +
dy
dx

dy
du

du
dx

u
u

x
u

x
u u

4
( 1)

2
3

8
3 ( 1)2 2 2 2 2

20. A point moves along the curve y = x3 - 3x + 5 so that = +x t 3,1
2  where t is time. At what rate is y changing 

when t = 4?
We must find the value of dy/dt when t = 4. First, dy/dx = 3(x2 - 1) and =dx dt t/ 1/(4 ). Hence,

 = = −dy
dt

dy
dx

dx
dt

x
t

3( 1)
4

2

When t = 4, = + =x 4 3 4,1
2  and = − =dy

dt
3(16 1)

4(2)
45
8

 units per unit of time.

21. A point moves in the plane according to equations x = t2 + 2t and y = 2t3 - 6t. Find dy/dx when t = 0, 2, and 5.

Since the first equation may be solved for t and this result substituted for t in the second equation, y is a 
function of x. We have dy/dt = 6t2 - 6. Since dx/dt = 2t + 2, Theorem 8.2 gives us dt/dx = 1/(2t + 2). Then

 = = − + = −dy
dx

dy
dt

dt
dx

t
t

t6( 1)
1

2( 1)
3( 1).2

The required values of dy/dx are -3 at t = 0, 3 at t = 2, and 12 at t = 5.

22. If y = x2 - 4x and = +x t2 1,2  find dy/dt when =t 2.

 = −dy
dx

x2( 2)  and = +
dx
dt

t
t

2
(2 1)2 1/2

So = = −
+

dy
dt

dy
dx

dx
dt

t x
t

4 ( 2)
(2 1)2 1/2

When =t 2,  =x 5  and = − = −dy
dt

4 2( 5 2)
5

4 2
5

(5 2 5).

23. Show that the function f (x) = x3 + 3x2 - 8x + 2 has derivatives of all orders and find them.
f  ′(x) = 3x2 + 6x - 8, f  ′′(x) = 6x + 6, f  ′′′(x) = 6, and all derivatives of higher order are zero.

24. Investigate the successive derivatives of f (x) = x4/3 at x = 0.

 ′ =f x x( ) 4
3

1/3  and ′ =f (0) 0

 ′′ = =−f x x
x

( )
4

9
4
9

2/3
2/3  and ′′f (0) does not exist

f  (n)(0) does not exist for n ≥ 2.

25. If = − = − −f x
x

x( )
2

1
2(1 ) ,1  find a formula for f  (n)(x).

 

′ = − − − = − = −

′′ = − − − = −

′′′ = − − − = −

− − −

− −

− −

f x x x x

f x x x

f x x x

( ) 2( 1)(1 ) ( 1) 2(1 ) 2(1!)(1 )

( ) 2(1!)( 2)(1 ) ( 1) 2(2!)(1 )

( ) 2(2!)( 3)(1 ) ( 1) 2(3!)(1 )

2 2 2

3 3

4 4

 which suggest f  (n)(x) = 2(n!)(1 - x)-(n + 1). This result may be established by mathematical induction by showing 
that if f  (k)(x) = 2(k!)(1 - x)-(k + 1), then

 = − + − − = + −+ − + − +f x k k x k x( ) 2( !)( 1)(1 ) ( 1) 2[( 1)!](1 )k k k( 1) ( 2) ( 2)

10_Mendelson_ch10_p083-094.indd   90 27/07/21   12:11 PM



91CHAPTER 10 Rules for Differentiating Functions

SUPPLEMENTARY PROBLEMS

26. Prove Theorem 10.1 (5): Dx(u - v) = Dxu - Dxv.

Ans. Dx(u - v) = Dx(u + (-v)) = Dxu + Dx(- v) = Dxu + Dx((-1)v) = Dxu + (-1)Dxv = Dxu - Dxv by  
Theorem 8.1(4, 3)

 In Problems 27 to 45, find the derivative.

27. y = x5 + 5x4 - 10x2 + 6 Ans. = + −dy
dx

x x x5 ( 4 4)3 2

28. y = 3x1/2 - x3/2 + 2x-1/2 Ans. = − −dy
dx x

x x
3

2
1 /3

2
3/2

29. = + = +− −y
x x

x x
1

2
4 1

2
42

2 1/2  Ans. = − −dy
dx x x

1 2
3 3/2

30. = +y x x2 2  Ans. ′ = +y x(1 2)/ 2

31. = +f t
t t

( )
2 6

3
 Ans. ′ = − +

f t
t t

t
( )

21/2 2/3

2

32. y = (1 - 5x)6 Ans. y′ = -30(1 - 5x)5

33. f (x) = (3x - x3 + 1)4 Ans. f  ′(x) = 12(1 - x2)(3x - x3 + 1)3

34. y = (3 + 4x - x2)1/2 Ans. y′ = (2 - x)/ y

35. θ = +
+

r
r

3 2
2 3

 Ans. θ = +
d
dr r

5
(2 3)2

36. = +




y

x
x1

5

 Ans. 
( )

′ =
+

y
x

x

5

1

4

6

37. = −y x x2 22  Ans. ′ = −
−

y
x x

x

(8 5 )
2

38. = −f x x x( ) 3 2 2  Ans. ′ = −
−

f x
x

x
( )

3 4

3 2

2

2

39. ( )= − − +y x x x1 2 22  Ans. = − +
− +

dy
dx

x x

x x

2 4 3

2 2

2

2

40. =
−

z
w

w1 4 2
 Ans. = −

dz
dw w

1
(1 4 )2 3/2

41. = +y x1  Ans. ′ =
+

y
x x

1

4 1

42. = −
+f x

x
x

( )
1
1

 Ans. ′ =
+ −

f x
x x

( )
1

( 1) 12

43. y = (x2 + 3)4(2x3 - 5)3 Ans. y′ = 2x(x2 + 3)3(2x3 - 5)2(17x3 + 27x - 20)

44. = +
−s

t
t
2

3

2

2
 Ans. 

( )
=

−
ds
dt

t

t

10

3 2 2

45. = −
+







y
x
x

1
2 1

2

3

4

 Ans. ′ = + − −
+y

x x x x
x

8 (1 3 )( 1)
(2 1)

3 2 3

3 5
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92 CHAPTER 10 Rules for Differentiating Functions

46. For each of the following, compute dy/dx by two different methods and check that the results are the same:  

(a) x = (1 + 2y)3  (b) = +x
y

1
2 .

In Problems 47 to 50, use the Chain Rule to find dy
dx

.

47. = −
+y

u
u

1
1

, =u x  Ans. =
+

dy
dx x x

1
(1 )2

48. y = u3 + 4, u = x2 + 2x Ans. = + +dy
dx

x x x6 ( 2) ( 1)2 2

49. = + =y u u x1 ,  Ans. See Problem 41.

50. =y u , u = v (3 - 2v), v = x2 Ans. See Problem 38.

 =



v

v
Hint

dy
dx

dy
du

du
d

d
dx

: .

In Problems 51 to 54, find the indicated derivative.

51. y = 3x4 - 2x2 + x - 5; y′′′ Ans. y′′′ = 72x

52. =y
x

1
;  y(4) Ans. =y

x
105

16
(4)

9/2

53. = −f x x( ) 2 3 ;2   f  ′′(x) Ans. ′′ = − −f x
x

( )
6

(2 3 )2 3/2

54. =
−

y
x

x 1
; y′′ Ans. 

( )
′′ = −

−
y

x

x

4

4 1 5 2

In Problems 55 and 56, find a formula for the nth derivative.

55. =y
x
1

2  Ans. = − +
+y
n

x
( 1) [( 1)!]n

n

n
( )

2

56. = +f x
x

( )
1

3 2
 Ans. = − + +f x

n
x

( ) ( 1)
3 ( !)

(3 2)
n n

n

n
( )

1

57. If y = f (u) and u = g(x), show that

 (a)  = ⋅ + 





d y
dx

dy
du

d u
dx

d y
du

du
dx

2

2

2

2

2

2

2

 (b)  = ⋅ + ⋅ ⋅ + 





d y
dx

dy
du

d u
dx

d y
du

d u
dx

du
dx

d y
du

du
dx

3
3

3

3

3

2

2

2

2

3

3

3

58. From = ′
dx
dy y

1
, derive = − ′′

′
d x
dy

y
y( )

2

2 3  and = ′′ − ′ ′′′
′

d x
dy

y y y
y

3( )
( )

3

3

2

5 .

In Problems 59 to 64, determine whether the given function has an inverse; if it does, find a formula for the 
inverse f  -1 and calculate its derivative.

59. f (x) = 1/x Ans. x = f  -1( y) = 1/y; dx/dy = -x2 = -1/y2

60. = +f x x( ) 41
3  Ans. x = f  -1( y) = 3y - 12; dx/dy = 3.

61. = −f x x( ) 5  Ans. x = f  -1( y) = y2 + 5; = = −dx dy y x/ 2 2 5
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93CHAPTER 10 Rules for Differentiating Functions

62. f (x) = x2 + 2 Ans. no inverse function

63. f (x) = x3 Ans. = =−x f y y( ) ;1 3  = = −dx
dy x

y
1

3
1
32

2/3

64. = −
+f x

x
x

( )
2 1

2
 Ans. = = − +

−
−x f y

y
y

( )
2 1

2
;1  = −

dx
dy y

5
( 2)2

65. Find the points at which the function f (x) = |x + 2| is differentiable.

Ans. all points except x = -2

66. (GC) Use a graphing calculator to draw the graph of the parabola y = x2 - 2x and the curve y = |x2 - 2x|. Find all 
points of discontinuity of the latter curve.

Ans. x = 0 and x = 2

67. Find a formula for the nth derivative of the following functions: (a)  = +f x
x

x
( )

2
;  (b)  =f x x( ) .

Ans. (a) = − +
+

+f x
n

x
( ) ( 1)

2 !
( 2)

n n
n

( ) 1
1

 (b) = −
⋅ ⋅ ⋅ … ⋅ −+ − −f x

n
x( ) ( 1)

3 5 7 (2 3)
2

n n
n

n( ) 1 (2 1)/2

The answer can also be expressed in factorials as follows:

 
n

n x
[( 1) ]( 1)!

[2 ]( 1)!

n

n n

( 1)

( 1) [(2 1)/2]

− +
−
+

+ −

68. Find the second derivatives of the following functions:
(a)  f (x) = 2x - 7 (b)  f (x) = 3x2 + 5x - 10

(c) f x
x

( )
1

4
= +  (d) f x x( ) 7= −

Ans. (a) 0; (b) 6; (c) 
+x
2

( 4)
;3
 (d) − − x

1
4

1
(7 )3/2

69. Prove Theorem 10.2.

Ans. Hints: (a) Use the intermediate value theorem to show that the range is an interval. That f is increasing 
or decreasing follows by an argument that uses the extreme value and intermediate value theorems. The 
continuity of f  -1 is then derived easily.

 (b) 
−
− = −

−

= −
−

− −

− −

− −

f y f y
y y f f y f f y

f y f y
f x f x

x x

( ) ( ) 1
( ( )) ( ( ))

( ) ( )

1
( ) ( )

1 1
0

0
1 1

0
1 1

0

0

0

 By the continuity of f  -1, as y → y0, x → x0, and we get ′ = ′
−f y

f x
( ) ( )

1
( )

.1
0

0
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CHAPTER 11

Implicit Differentiation

IMPLICIT FUNCTIONS

An equation f (x, y) = 0 defines y implicitly as a function of x. The domain of that implicitly defined function 
consists of those x for which there is a unique y such that f (x, y) = 0.

EXAMPLE 11.1:
(a) The equation xy + x − 2y − 1 = 0 can be solved for y, yielding = −

−y
x

x
1

2
. This function is defined for x ≠ 2.

(b) The equation 4x2 + 9y2 − 36 = 0 does not determine a unique function y. If we solve the equation for y, we 

obtain = ± −y x9 .2
3

2  We shall think of the equation as implicitly defining two functions, = −y x92
3

2  and 

= − −y x9 .2
3

2  Each of these functions is defined for x| | 3.≤  The ellipse determined by the original equation 
is the union of the graphs of the two functions.

If y is a function implicitly defined by an equation f (x, y) = 0, the derivative y′ can be found in two dif-
ferent ways:

1. Solve the equation for y and calculate y′ directly. Except for very simple equations, this method is usually 
impossible or impractical.

2. Thinking of y as a function of x, differentiate both sides of the original equation f (x, y) = 0 and solve the 
resulting equation for y′. This differentiation process is known as implicit differentiation.

EXAMPLE 11.2:

(a) Find y′, given xy + x − 2y − 1 = 0. By implicit differentiation, xy′ + y Dx(x) − 2y′ − Dx(1) = Dx(0). Thus, xy′ + y − 2y′ =  

0. Solve for ′ ′ = +
−y y

y
x

:
1
2

. In this case, Example 11.1(a) shows that we can replace y by −
−

x
x
1

2
 and find y′ in 

terms of x alone. We see that it would have been just as easy to differentiate = −
−y

x
x
1

2
 by the Quotient Rule. 

However, in most cases, we cannot solve for y or for y′ in terms of x alone.
(b) Given 4x2 + 9y2 − 36 = 0, find y′ when =x 5. By implicit differentiation, 4D

x
(x2) + 9D

x
(y2) − D

x
(36) = D

x
(0). 

Thus, 4(2x) + 9(2yy′) = 0. [Note that D
x
(y2) = 2yy′ by the Power Chain Rule.] Solving for y′, we get y′ = −4x/9y.  

When =x 5, = ±y .4
3  For the function y corresponding to the upper arc of the ellipse [see Example 11.1(b)],  

= −y 4
3  and ′ = −y 5 /3. For the function y corresponding to the lower arc of the ellipse, = −y 4

3  and ′ = −y 5 /3.

DERIVATIVES OF HIGHER ORDER

Derivatives of higher order may be obtained by implicit differentiation or by a combination of direct and 
implicit differentiation.

CHAPTER 11
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96 CHAPTER 11 Implicit Differentiation

EXAMPLE 11.3: In Example 11.2(a), ′ = +
−y

y
x

1
2

. Then

′′ = ′ = +
−





 = − ′ − + −

−

= − ′ + +
− =

− +
−





 + +

− = +
−

y D y D
y
x

x y y
x

x y y
x

x
y
x

y

x
y

x

( )
1
2

(2 ) (1 )( 1)
(2 )

(2 ) 1
(2 )

(2 )
1
2

1

(2 )
2 2

(2 )

x x 2

2 2 2

EXAMPLE 11.4: Find the value of y″ at the point (−1, 1) of the curve x2y + 3y − 4 = 0.
We differentiate implicitly with respect to x twice. First, x2y′ + 2xy + 3y′ = 0, and then x2y″ + 2xy′ + 2xy′ + 2y + 3y″ = 0.  

We could solve the first equation for y″ and then solve the second equation for y″. However, since we only wish 
to evaluate y″ at the particular point (−1, 1), we substitute x = −1, y = 1 in the first equation to find ′ =y 1

2  and then 
substitute x = −1, y = 1, ′ =y 1

2  in the second equation to get y″ −1 −1 + 2 + 3y′ = 0, from which we obtain y″ = 0. 
Notice that this method avoids messy algebraic calculations.

SOLVED PROBLEMS

 1. Find y′, given x2y − xy2 + x2 + y2 = 0.

− + + =

′ + − − + + ′ =

′ + − ′ − + + ′ =

− + ′ + − + =

′ = − −
− +

D x y D xy D x D y

x y yD x xD y y D x x yy

x y xy x yy y x yy

x xy y y xy y x

y
y xy x
x xy y

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) 2 2 0

2 (2 ) 2 2 0

( 2 2 ) 2 2 0

2 2
2 2

x x x x

x x x

2 2 2 2

2 2 2 2

2 2

2 2

2

2

 2. If x2 − xy + y2 = 3, find y′ and y″.

− + =

− ′ − + ′ =

D x D xy D y

x xy y yy

( ) ( ) ( ) 0

2 2 0

x x x
2 2

Hence, ′ = −
−y
x y

x y
2

2 . Then

′′ =
− − − − −

−

= − − ′ − − − ′
−

= − ′ − + ′ − + ′ + − ′
− = ′ −

−

=

−
−





 −

− = − − −
− = − +

−

= −

y
x y D x y x y D x y

x y

x y y x y y
x y

x xy y yy x xy y yy
x y

xy y
x y

x
x y

x y
y

x y
x x y y x y

x y
x xy y

x y

x y

( 2 ) (2 ) (2 ) ( 2 )
( 2 )

( 2 )(2 ) (2 )(1 2 )
( 2 )

2 4 2 2 4 2
( 2 )

3 3
( 2 )

3
2

2
3

( 2 )
3 (2 ) 3 ( 2 )

( 2 )
6( )

( 2 )

18
( 2 )

x x
2

2

2 2

2 3

2 2

3

3
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97CHAPTER 11 Implicit Differentiation

 3. Given x3y + xy3 = 2, find y′ and y″ at the point (1, 1).

By implicit differentiation twice,

′ + + ′ + =x y x y x y y y3 (3 ) 03 2 2 3

and     ′′ + ′ + ′ + + ′′ + ′ ′ + + ′ =x y x y x y xy xy y y xyy y y y3 3 6 3 [6 3 ] 3 03 2 2 2 2 2

Substituting x = 1, y = 1 in the first equation yields y′ = −1. Then substituting x = 1, y = 1, y′ = −1 in the 
second equation yields y″ = 0.

SUPPLEMENTARY PROBLEMS

 4. Find y″, given: (a) x + xy + y = 2; (b) x3 − 3xy + y3 = 1.

Ans. (a) ′′ = +
+y

y
x

2(1 )
(1 )

;2
 (b) ′′ = − −y

xy
y x

4
( )2 3

 5. Find y′, y″, and y″′ at: (a) the point (2, 1) on x2 − y2 − x = 1; (b) the point (1, 1) on x3 + 3x2y − 6xy2 + 2y3 = 0.

Ans. (a) 3
2 , − 5

4 , ;45
8  (b) 1, 0, 0

 6. Find the slope of the tangent line at a point (x0, y0) of: (a) b2x2 + a2y2 = a2b2; (b) b2x2 − a2y2 = a2b2;  
(c) x3 + y3 − 6x2y = 0.

Ans. (a) −
b x
a y

;
2

0
2

0

 (b) b x
a y

;
2

0
2

0

 (c) −
−

x y x
y x

4
2

0 0 0
2

0
2

0
2

 7. Prove that the lines tangent to the curves 5y − 2x + y3 − x2y = 0 and 2y + 5x + x4 − x3y2 = 0 at the origin intersect at 
right angles.

 8. (a)     The total surface area of a closed rectangular box whose base is a square with side y and whose height is x is 
given by S = 2y2 + 4xy. If S is constant, find dy/dx without solving for y.

(b) The total surface area of a right circular cylinder of radius r and height h is given by S = 2πr2 + 2πrh. If S is 
constant, find dr/dh.

Ans. (a) − +
y

x y
;  (b) − +

r
r h2

 9. For the circle x2 + y2 = r2, show that 
y
y r[1 ( ) ]

1
.2 3/2

′′
+ ′ =

10. Given S = πx(x + 2y) and V = πx2y, show that dS/dx = 2π(x − y) when V is a constant, and dV/dx = −πx(x − y) 
when S is a constant.

11. Derive the formula D
x
(xm) = mxm−1 of Theorem 10.1(9) when m = p/q, where p and q are nonzero integers. You 

may assume that xp/q is differentiable. (Hint: Let y = xp/q. Then yq = xp. Now use implicit differentiation.)

12. (GC) Use implicit differentation to find an equation of the tangent line to + =x y 4  at (4, 4), and verify your 
answer on a graphing calculator.

Ans. y = −x + 8
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CHAPTER 12

Tangent and Normal Lines

An example of a graph of a continuous function f is shown in Fig. 12-1(a). If P is a point of the graph having 

abscissa x, then the coordinates of P are (x, f (x)). Let Q be a nearby point having abscissa x + ∆ x. Then the 

coordinates of Q are (x + ∆x, f (x + ∆ x)). The line PQ has slope f x x f x
x

( ) ( )+ ∆ −
∆

. As Q approaches P along 

the graph, the lines PQ get closer and closer to the tangent line  to the graph at P. [See Fig. 12-1 (b).]  
Hence, the slope of PQ approaches the slope of the tangent line. Thus, the slope of the tangent line is 

f x x f x
x

lim
( ) ( )

x 0

+ ∆ −
∆∆ →

, which is the derivative f x( )′ .

Fig. 12-1

If the slope m of the tangent line at a point of the curve y = f (x) is zero, then the curve has a horizontal 
tangent line at that point, as at points A, C, and E of Fig. 12-2. In general, if the derivative of f is m at a point 
(x0, y0), then the point–slope equation of the tangent line is y − y0 = m(x − x0). If f is continuous at x0, but 

f xlim ( )
x x0

′ = ∞
→

, then the curve has a vertical tangent line at x0, as at points B and D of Fig. 12-2.

Fig. 12-2
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100 CHAPTER 12 Tangent  and Normal  L ines

The normal line to a curve at one of its points (x0, y0) is the line that passes through the point and is perpen-
dicular to the tangent line at that point. Recall that a perpendicular to a line with nonzero slope m has slope −1/m. 
Hence, if m ≠ 0 is the slope of the tangent line, then y − y0 = −(1/m)(x − x0) is a point–slope equation of the 
normal line. If the tangent line is horizontal, then the normal line is vertical and has equation x = x0. If the 
tangent line is vertical, then the normal line is horizontal and has equation y = y0.

THE ANGLES OF INTERSECTION

The angles of intersection of two curves are defined as the angles between the tangent lines to the curves at 
their point of intersection.

To determine the angles of intersection of the two curves:

1. Solve the equations of the curves simultaneously to find the points of intersection.

2. Find the slopes m1 and m2 of the tangent lines to the two curves at each point of intersection.

3.  If m1 = m2, the angle of intersection is 0°, and if m1 = −l/m2, the angle of intersection is 90°; otherwise, 
the angle of intersection φ  can be found from the formula

m m
m m

tan
1

1 2

1 2

φ = −
+

φ  is the acute angle of intersection when tan 0φ > , and 180° − φ  is the acute angle of intersection when 
tan 0.φ <

SOLVED PROBLEMS

 1. Find equations of the tangent and normal lines to y = f (x) = x3 − 2x2 + 4 at (2, 4).
f  ¢ (x) = 3x2 − 4x. Thus, the slope of the tangent line at (2, 4) is m = f  ¢ (2) = 4, and an equation of the tangent 

line is y − 4 = 4(x − 2). The slope–intercept equation is y = 4x − 4.
An equation of the normal line at (2, 4) is y x4 ( 2).1

4− = − −  Its slope–intercept equation is y x1
4

9
2= − + .

 2. Find equations of the tangent and normal lines to x2 + 3xy + y2 = 5 at (1, 1).

By implicit differentiation, 2x + 3xy¢ + 3y + 2yy¢ = 0. So, y
x y
x y

2 3
3 2′ = − +

+ . Then the slope of the tangent line 

at (1, 1) is −1. An equation of the tangent line is y − 1 = −(x − 1). Its slope–intercept equation is y = −x + 2. An 
equation of the normal line is y − 1 = x − 1, that is, y = x.

 3. Find the equations of the tangent lines with slope m 2
9= −  to the ellipse 4x2 + 9y2 = 40.

By implicit differentiation, y¢ = −4x /9y. So, at a point of tangency (x0, y0), m x y4 /90 0
2
9= − = − . Then y0 = 2x0.

Since the point is on the ellipse, x y4 9 400
2

0
2+ = . So, x x4 9(2 ) 400

2
0

2+ = . Therefore, x 10
2 = , and x0 = ±1. The 

required points are (1, 2) and (−1, −2).
At (1, 2), an equation of the tangent line is y x2 ( 1)2

9− = − − .
At (−1, −2), an equation of the tangent line is y x2 ( 1)2

9+ = − + .

 4. Find an equation of the tangent lines to the hyperbola x2 − y2 = 16 that pass through the point (2, −2).
By implicit differentiation, 2x − 2yy¢ = 0 and therefore, y¢ = x/y. So, at a point of tangency (x0, y0), the slope of 

the tangent line must be x0 /y0. On the other hand, since the tangent line must pass through (x0, y0) and (2, −2), the 

slope is 
y
x

2
2

0

0

+
− .

Thus, 
x
y

y
x

2
2

0

0

0

0

=
+
− . Hence, x x y y2 20

2
0 0

2
0− = + . Thus, x y x y2 2 160 0 0

2
0
2+ = − = , yielding x0 + y0 = 8, and therefore,  

y0 = 8 − x0.

If we substitute 8 − x0 for y0 in x y 160
2

0
2− =  and solve for x0, we get x0 = 5. Then y0 = 3. Hence, an equation of 

the tangent line is y x3 ( 5)5
3− = − .
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101CHAPTER 12 Tangent and Normal Lines

 5. Find the points of tangency of horizontal and vertical tangent lines to the curve x2 − xy + y2 = 27.

By implicit differentiation, 2x − xy¢ − y + 2yy¢ = 0, whence y
y x

y x
2

2′ = −
− .

For horizontal tangent lines, the slope must be zero. So, the numerator y − 2x of y¢ must be zero, yielding y = 2x. 
Substituting 2x for y in the equation of the curve, we get x2 = 9. Hence, the points of tangency are (3, 6) and (−3, −6).

For vertical tangent lines, the slope must be infinite. So, the denominator 2y − x of y¢ must be zero, yielding x = 2y. 
Replacing x in the equation of the curve, we get y2 = 9. Hence, the points of tangency are (6, 3) and (−6, −3).

 6. Find equations of the vertical lines that meet the curves (a) y = x3 + 2x2 − 4x + 5 and (b) 3y = 2x3 + 9x2 − 3x − 3 in 
points at which the tangent lines to the two curves are parallel.

Let x = x0 be such a line. The tangent lines at x0 have slopes:
For (a): y¢ = 3x2 + 4x − 4; at x0, m x x3 4 41 0

2
0= + −

For (b): 3y¢ = 6x2 + 18x − 3; at x m x x, 2 6 10 2 0
2

0= + −

Since ml = m2, x x x x3 4 4 2 6 10
2

0 0
2

0+ − = + − . Then x x2 3 00
2

0− − = , (x0 − 3)(x0 + 1) = 0. Hence, x0 = 3 or x0 = −1. 
Thus, the vertical lines are x = 3 and x = −1.

 7. (a)   Show that the slope–intercept equation of the tangent line of slope m 0≠  to the parabola y2 = 4px is y = mx + p/m.
(b) Show that an equation of the tangent line to the ellipse b2x2 + a2y2 = a2b2 at the point P0(x0, y0) on the ellipse 

is b2x0x + a2y0y = a2b2.

(a) y¢ = 2p/y. Let P0(x0, y0) be the point of tangency. Then y px40
2

0=  and m = 2p/y0. Hence, y0 = 2p/m and 
x y p p m/ /0

1
4 0

2 2= = . The equation of the tangent line is then y − 2p/m = m(x − p/m2), which reduces to  
y = mx + p/m.

(b) y
b x
a y

2

2′ = − . At P0, m
b x
a y

2
0

2
0

= − . An equation of the tangent line is y y
b x
a y

x x( )0

2
0

2
0

0− = − − , which reduces to 

b x x a y y b x a y a b2
0

2
0

2
0
2 2

0
2 2 2+ = + =  [since (x0, y0) satisfies the equation of the ellipse].

 8. Show that at a point P0(x0, y0) on the hyperbola b2x2 − a2y2 = a2b2, the tangent line bisects the angle included 
between the focal radii of P0.

At P0 the slope of the tangent to the hyperbola is b2x0/a
2y0 and the slopes of the focal radii P0F¢ and P0F (see 

Fig. 12-3) are y0/(x0 + c) and y0/(x0 − c), respectively. Now

b x
a y

y
x c

b x
a y

y
x c

b x a y b cx
a b x y a cy

a b b cx
c x y a cy

b a cx
cy a cx

b
cy

tan
1 .

( )
( )

( )
( )

2
0

2
0

0

0
2

0
2

0

0

0

2
0
2 2

0
2 2

0
2 2

0 0
2

0

2 2 2
0

2
0 0

2
0

2 2
0

0
2

0

2

0

α =
− +

+ +

=
− +

+ + =
+
+ =

+
+ =

since b x a y a b2
0
2 2

0
2 2 2− =  and a2 +  b2 = c2, and

y
x

b x
a y

b x
a x

y
x c

b cx b x a y
a b x y a cy

b cx a b
c x y a cy

b
cy

tan
1 .

( )
( )

c

0

0

2
0

2
0

2
0

2
0

0

0

2
0

2
0
2 2

0
2

2 2
0 0

2
0

2
0

2 2

2
0 0

2
0

2

0

β =
−

+ +

=
− −

+ − =
−
− =−

Hence, a = b because tan a = tan b.

Fig. 12-3
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102 CHAPTER 12 Tangent  and Normal  L ines

 9. One of the points of intersection of the curves (a) y2 = 4x and (b) 2x2 = 12 − 5y is (1, 2). Find the acute angle of 
intersection of the curves at that point.

For (a), y¢ = 2/y. For (b), y¢ = −4x/5. Hence, at (1, 2), m1 = 1 and m2
4
5= − . So,

m m
m m

tan
1

1
1

91 2

1 2

4
5
4
5

φ =
−

+ = +
− =

Then 83 40φ ≈ ° ′ is the acute angle of intersection.

10. Find the angles of intersection of the curves (a) 2x2 + y2 = 20 and (b) 4y2 − x2 = 8.
Solving simultaneously, we obtain y2 = 4, y = ±2. Then the points of intersection are ( 2 2, 2)±  and ( 2 2, 2)± − .  

For (a), y¢ = −2x/y, and for (b), y¢ = x/4y. At the point m m(2 2, 2), 2 2 and 21 2
1
4= − = . Since m1m2 = −1, the 

angle of intersection is 90° (that is, the curves are orthogonal). By symmetry, the curves are orthogonal at each of 
their points of intersection.

11. A cable of a certain suspension bridge is attached to supporting pillars 250 ft apart. If it hangs in the form of a 
parabola with the lowest point 50 ft below the point of suspension, find the angle between the cable and the pillar.

Take the origin at the vertex of the parabola, as in Fig. 12-4. The equation of the parabola is y x2
625

2=  and  
y¢ = 4x/625.

At (125, 50), m = 4(125)/625 = 0.8000 and q = 38°40¢. Hence, the required angle is 90 51 20φ θ= ° − = ° ′.

Fig. 12-4

SUPPLEMENTARY PROBLEMS

12. Examine x2 + 4xy + 16y2 = 27 for horizontal and vertical tangent lines.

Ans. Horizontal tangents at (3, )3
2−  and ( 3, )3

2− . Vertical tangents at (6, )3
4−  and ( 6, )3

4− − . 

13. Find equations of the tangent and normal lines to x2 − y2 = 7 at the point (4, −3).

Ans. 4x + 3y = 7 and 3x − 4y = 24

14. At what points on the curve y = x3 + 5 is its tangent line: (a) parallel to the line 12x − y = l7; (b) perpendicular to 
the line x + 3y = 2?

Ans. (a) (2, 13), (−2, −3); (b) (1, 6), (−1, 4)

15. Find equations of the tangent lines to 9x2 + 16y2 = 52 that are parallel to the line 9x − 8y = l. 

Ans. 9x − 8y = ±26
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103CHAPTER 12 Tangent and Normal Lines

16. Find equations of the tangent lines to the hyperbola xy = 1 that pass through the point (−1, 1).

Ans. y x y x(2 2 3) 2 2 2; (2 2 3) 2 2 2= − + − = − + − −

17. For the parabola y2 = 4px, show that an equation of the tangent line at one of its points P(x0, y0) is y0y = 2p(x + x0).

18. For the ellipse b2x2 + a2y2 = a2b2, show that the equations of its tangent lines of slope m are 

y mx a m b2 2 2= ± + .

19. For the hyperbola b2x2 − a2y2 = a2b2, show that (a) an equation of the tangent line at one of its points P(x0, y0) is 
b2x0x − a2y0y = a2b2; and (b) the equations of its tangent lines of slope m are y mx a m b2 2 2= ± − .

20. Show that the normal line to a parabola at one of its points P bisects the angle included between the focal radius 
of P and the line through P parallel to the axis of the parabola.

21. Prove: Any tangent line to a parabola, except at the vertex, intersects the directrix and the latus rectum (produced 
if necessary) in points equidistant from the focus.

22. Prove: The chord joining the points of contact of the tangent lines to a parabola from any point on its directrix 
passes through the focus.

23. Prove: The normal line to an ellipse at any of its points P bisects the angle included between the focal radii of P.

24. Prove: (a) The sum of the intercepts on the coordinate axes of any tangent line to x y a+ =  is a constant.  
(b) The sum of the squares of the intercepts on the coordinate axes of any tangent line to x2 / 3 + y2/3 = a2/3 is a 
constant.

25. Find the acute angles of intersection of the circles x2 − 4x + y2 = 0 and x2 + y2 = 8. 

Ans. 45°

26. Show that the curves y = x3 + 2 and y = 2x2 + 2 have a common tangent line at the point (0, 2) and intersect at the 
point (2, 10) at an angle φ such that tan 4

97φ = .

27. Show that the ellipse 4x2 + 9y2 = 45 and the hyperbola x2 − 4y2 = 5 are orthogonal (that is, intersect at a right angle).

28. Find equations of the tangent and normal lines to the parabola y = 4x2 at the point (−1, 4).

Ans. y + 8x + 4 = 0; 8y − x − 33 = 0

29. At what points on the curve y = 2x3 + 13x2 + 5x + 9 does its tangent line pass through the origin?

Ans. x 3, 1, 3
4= − −
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CHAPTER 13

Law of the Mean. Increasing and 
Decreasing Functions.

RELATIVE MAXIMUM AND MINIMUM

A function f is said to have a relative maximum at x0 if f (x0) ≥ f (x) for all x in some open interval containing 
x0 [and for which f (x) is defined]. In other words, the value of f at x0 is greater than or equal to all values of 
f at nearby points. Similarly, f is said to have a relative minimum at x0 if f (x0) ≤ f (x) for all x in some open 
interval containing x0 [and for which f (x) is defined]. In other words, the value of f at x0 is less than or equal 
to all values of f at nearby points. By a relative extremum of f we mean either a relative maximum or a relative 
minimum of f.

Theorem 13.1: If f has a relative extremum at a point x0 at which f ′(x0) is defined, then f ′(x0) = 0.
Thus, if f is differentiable at a point at which it has a relative extremum, then the graph of f has a horizontal 

tangent line at that point. In Fig. 13-1, there are horizontal tangent lines at the points A and B where f attains a 
relative maximum value and a relative minimum value, respectively. See Problem 5 for a proof of Theorem 13.1.

Fig. 13-1

Theorem 13.2 (Rolle’s Theorem): Let  f be continuous on the closed interval [a, b] and differentiable on the open 
interval (a, b). Assume that f (a) = f (b) = 0. Then f ′(x0) = 0 for at least one point x0 in (a, b).

This means that if the graph of a continuous function intersects the x-axis at x = a and x = b, and the 
function is differentiable between a and b, then there is at least one point on the graph between a and b 
where the tangent line is horizontal. See Fig. 13-2, where there is one such point. For a proof of Rolle’s 
Theorem, see Problem 6.

CHAPTER 13
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106 CHAPTER 13 Law of the Mean. Increasing and Decreasing Functions.

Fig. 13-2

Corollary 13.3 (Generalized Rolle’s Theorem): Let g be continuous on the closed interval [a, b] and differentiable 
on the open interval (a, b). Assume that g(a) = g(b). Then g′(x0) = 0 for at least one point x0 in (a, b).

See Fig. 13-3 for an example in which there is exactly one such point. Note that Corollary 13.3 follows 
from Rolle’s Theorem if we let f (x) = g(x) − g(a).

Fig. 13-3

Theorem 13.4 [Mean Value Theorem (for Derivatives)]†: Let f be continuous on the closed interval [a, b] and 
differentiable on the open interval (a, b). Then there is at least one point x0 in (a, b) for which

f b f a
b a

f x
( ) ( )

( )0

−
− = ′

See Fig. 13-4. For a proof, see Problem 7. Geometrically speaking, the conclusion says that there is some 
point inside the interval where the slope f ′(x0) of the tangent line is equal to the slope (f (b) − f (a))/(b − a) 
of the line P1P2 connecting the points (a, f (a)) and (b, f (b)) of the graph. At such a point, the tangent line is 
parallel to P1P2, since their slopes are equal.

Fig. 13-4

† Mean Value Theorem (for Derivatives) is also called the Law of the Mean.
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107CHAPTER 13 Law of the Mean. Increasing and Decreasing Functions.

Theorem 13.5 (Extended Law of the Mean): Assume that f (x) and g(x) are continuous on [a, b], and differen-
tiable on (a, b). Assume also that g′(x) ≠ 0 for all x in (a, b). Then there exists at least one point x0 in (a, b) for which

f b f a
g b g a

f x
g x

( ) ( )
( ) ( )

( )
( )

0

0

−
− = ′

′

For a proof, see Problem 13. Note that the Law of the Mean is the special case when g(x) = x.

Theorem 13.6 (Higher-Order Law of the Mean): If f and its first n − 1 derivatives are continuous on [a, b] and 
f  (n)(x) exists on (a, b), then there is at least one x0 in (a, b) such that

 

f b f a
f a

b a
f a

b a

f a
n

b a
f x

n
b a

( ) ( )
( )

1!
( )

( )
2!

( )

( )
( 1)!

( )
( )
!

( )
n

n
n

n

2

( 1)
1

( )
0

= + ′ − + ′′ − + ⋅⋅⋅

+ − − + −
−

−

 (1)

(For a proof, see Problem 14.)
When b is replaced by x, formula (1) becomes

 

f x f a
f a

x a
f a

x a

f a
n

x a
f x

n
x a

( ) ( )
( )

1!
( )

( )
2!

( )

( )
( 1)!

( )
( )
!

( )
n

n
n

n

2

( 1)
1

( )
0

= + ′ − + ′′ − + ⋅⋅⋅

+ − − + −
−

−

 (2)

for some x0 between a and x.
In the special case when a = 0, formula (2) becomes

 

f x f
f

x
f

x

f
n

x
f x

n
x

( ) (0)
(0)

1!
(0)

2!

(0)
( 1)!

( )
!

n
n

n
n

2

( 1)
1

( )
0

= + ′ + ′′ + ⋅⋅⋅

+ − +
−

−

 (3)

for some x0 between 0 and x.

INCREASING AND DECREASING FUNCTIONS

A function f is said to be increasing on an interval if u < v implies f (u) < f (v) for all u and v in the interval. 
Similarly, f is said to be decreasing on an interval if u < v implies f (u) > f (v) for all u and v in the interval.

Theorem 13.7: (a) If f ′ is positive on an interval, then f is increasing on that interval. (b) If f ′ is negative on an 
interval, then f is decreasing on that interval.

For a proof, see Problem 9.

SOLVED PROBLEMS

 1. Find the value of x0 prescribed in Rolle’s Theorem for f (x) = x3 − 12x on the interval x0 2 3≤ ≤ .
Note that f f(0) (2 3) 0= = . If f ′(x) = 3x2 − 12 = 0, then x = ± 2. Then x0 = 2 is the prescribed value.

 2. Does Rolle’s Theorem apply to the functions (a) f x
x x
x

( )
4
2

2

= −
− , and (b) f x

x x
x

( )
4
2

2

= −
+  on the interval (0, 4)?

(a) f (x) = 0 when x = 0 or x = 4. Since f has a discontinuity at x = 2, a point on [0, 4], the theorem does not 
apply.
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108 CHAPTER 13 Law of the Mean. Increasing and Decreasing Functions.

(b) f (x) = 0 when x = 0 or x = 4. f has a discontinuity at x = −2, a point not on [0, 4]. In addition,  
f ′(x) = (x2 + 4x − 8)/(x + 2)2 exists everywhere except at x = −2. So, the theorem applies and x 2( 3 1)0 = − , 
the positive root of x2 + 4x − 8 = 0.

 3. Find the value of x0 prescribed by the law of the mean when f (x) = 3x2 + 4x − 3 and a = 1, b = 3.

f (a) = f (1) = 4, f (b) = f (3) = 36, f ′(x0) = 6x0 + 4, and b − a = 2. So, x6 4
36 4

2
160 + = − = . Then x0 = 2.

 4. Find a value x0 prescribed by the extended law of the mean when f (x) = 3x + 2 and g(x) = x2 + 1, on [1, 4].
We have to find x0 so that

f b f a
g b g a

f f
g g

f x
g x x

( ) ( )
( ) ( )

(4) (1)
(4) (1)

14 5
17 2

3
5

( )
( )

3
2

0

0 0

−
− = −

− = −
− = = ′

′ =

Then x0
5
2= .

 5. Prove Theorem 13.1: If f has a relative extremum at a point x0 at which f ′(x0) is defined, then f ′(x0) = 0.

Consider the case of a relative maximum. Since f has a relative maximum at x0, then for sufficiently small 

|∆ x|, f (x0 + ∆ x) < f (x0), and so f (x0 + ∆ x) − f (x0) < 0. Thus, when ∆ x < 0, 
f x x f x

x
( ) ( )

00 0+ ∆ −
∆ > .

So,

f x
f x x f x

x

f x x f x
x

( ) lim
( ) ( )

lim
( ) ( )

0

x

x

0 0

0 0

0

0 0

′ =
+ ∆ −

∆

=
+ ∆ −

∆ ≥

∆ →

∆ → −

When ∆ x > 0, 
f x x f x

x
( ) ( )

00 0+ ∆ −
∆ < . Hence,

f x
f x x f x

x

f x x f x
x

( ) lim
( ) ( )

lim
( ) ( )

0

x

x

0 0

0 0

0

0 0

′ =
+ ∆ −

∆

=
+ ∆ −

∆ ≤

∆ →

∆ → +

Since f ′(x0) ≥ 0 and f ′(x0) ≤ 0, it follows that f ′(x0) = 0.

 6. Prove Rolle’s Theorem (Theorem 13.2): If f is continuous on the closed interval [a, b] and differentiable on the 
open interval (a, b), and if f (a) = f (b) = 0, then f ′(x0) = 0 for some point x0 in (a, b).

If f (x) = 0 throughout [a, b], then f ′(x) = 0 for all x in (a, b). On the other hand, if f (x) is positive (negative) 
somewhere in (a, b), then by the Extreme Value Theorem (Theorem 8.7), f has a maximum (minimum) value at 
some point x0 on [a, b]. That maximum (minimum) value must be positive (negative), and therefore, x0 lies on 
(a, b), since f (a) = f (b) = 0. Hence, f has a relative maximum (minimum) at x0. By Theorem 13.1, f ′(x0) = 0.

 7. Prove the Law of the Mean (Theorem 13.4): Let f be continuous on the closed interval [a, b] and differentiable on 
the open interval (a, b). Then there is at least one point x0 in (a, b) for which (f (b) − f (a))/(b − a) = f ′(x0).

Let F x f x f a
f b f a

b a
x a( ) ( ) ( )

( ) ( )
( )= − − −

− − .

Then F(a) = 0 = F(b). So, Rolle’s Theorem applies to F on [a, b]. Hence, for some x0 in (a, b), F′(x0) = 0.

But F x f x
f b f a

b a
( ) ( )

( ) ( )
′ = ′ − −

− . Thus, f x
f b f a

b a
( )

( ) ( )
00′ − −

− = .

 8. Show that, if g is increasing on an interval, then −g is decreasing on that interval.
Assume u < v. Then g(u) < g(v). Hence, −g(u) > −g(v).
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109CHAPTER 13 Law of the Mean. Increasing and Decreasing Functions.

 9. Prove Theorem 13.7: (a) If f ′ is positive on an interval, then f is increasing on that interval, (b) If f ′ is negative on 
an interval, then f is decreasing on that interval.

(a) Let a and b be any two points on the interval with a < b. By the Law of the Mean, ( f (b) − f (a))/(b − a) = 
f ′(x0) for some point x0 in (a, b). Since x0 is in the interval, f ′(x0) > 0. Thus, ( f (b) − f (a))/(b − a) > 0. But, 
a < b and therefore, b − a > 0. Hence, f (b) − f (a) > 0. So, f (a) < f (b).

(b) Let g = −f. So, g′ is positive on the interval. By part (a), g is increasing on the interval. So, f is decreasing on 
the interval.

10. Show that f (x) = x5 + 20x − 6 is an increasing function for all values of x.
f ′(x) = 5x 4 + 20 > 0 for all x. Hence, by Theorem 13.7(a), f is increasing everywhere.

11. Show that f (x) = 1 − x3 − x7 is a decreasing function for all values of x.
f ′(x) = −3x2 − 7x6 < 0 for all x ≠ 0. Hence, by Theorem 13.7(b), f is decreasing on any interval not 

containing 0. Note that if x < 0, f (x) > 1 = f (0), and, if x > 0, f (0) = 1 > f (x). So, f is decreasing for all real 
numbers.

12. Show that f (x) = 4x3 + x − 3 = 0 has exactly one real solution.
f (0) = −3 and f (1) = 2. So, the intermediate value theorem tells us that f (x) = 0 has a solution in (0, 1). Since 

f ′(x) = 12x2 + 1 > 0, f is an increasing function. Therefore, there cannot be two values of x for which f (x) = 0.

13. Prove the Extended Law of the Mean (Theorem 13.5): If f (x) and g(x) are continuous on [a, b], and differentiable 
on (a, b), and g′(x) ≠ 0 for all x in (a, b), then there exists at least one point x0 in (a, b) for which
f b f a
g b g a

f x
g x

( ) ( )
( ) ( )

( )
( )

0

0

−
− = ′

′ .

Suppose that g(b) = g(a). Then by the generalized Rolle’s Theorem, g′(x) = 0 for some x in (a, b), 
contradicting our hypothesis. Hence, g(b) ≠ g(a).

Let F x f x f b
f b f a
g b g a

g x g b( ) ( ) ( )
( ) ( )
( ) ( )

( ( ) ( ))= − − −
− − .

Then          F(a) = 0 = F(b) and F x f x
f b f a
g b g a

g x( ) ( )
( ) ( )
( ) ( )

( )′ = ′ − −
− ′

By Rolle’s Theorem, there exists x0 in (a, b) for which f x
f b f a
g b g a

g x( )
( ) ( )
( ) ( )

( ) 00 0′ − −
− ′ = .

14. Prove the Higher-Order Law of the Mean (Theorem 13.6): If f and its first n − 1 derivatives are continuous on 
[a, b] and f  (n)(x) exists on (a, b), then there is at least one x0 in (a, b) such that

 f b f a
f a

b a
f a

b a
f a
n

b a
f x

n
b a( ) ( )

( )
1!

( )
( )

2!
( )

( )
( 1)!

( )
( )
!

( )
n

n
n

n2
( 1)

( 1)
( )

0= + ′ − + ′′ − + ⋅⋅⋅+ − − + −
−

−  (1)

Let a constant K be defined by

 f b f a
f a

b a
f a

b a
f a
n

b a K b a( ) ( )
( )

1!
( )

( )
2!

( )
( )

( 1)!
( ) ( )

n
n n2

( 1)
( 1)= + ′ − + ′′ − + ⋅⋅⋅+ − − + −

−
−  (2)

and consider

F x f x f b
f x

b x
f x

b x
f x
n

b x K b x( ) ( ) ( )
( )
1!

( )
( )

2!
( )

( )
( 1)!

( ) ( )
n

n n2
( 1)

1= − + ′ − + ′′ − + ⋅⋅⋅+ − − + −
−

−
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Now F(a) = 0 by (2), and F(b) = 0. By Rolle’s Theorem, there exists x0 in (a, b) such that

F x f x f x b x f x
f x

b x f x b x

f x
n

b x
f x

n
b x Kn b x

f x
n

b x Kn b x

( ) ( ) [ ( )( ) ( )]
( )

2!
( ) ( )( )

( )
( 1)!

( )
( )

( 2)!
( ) ( )

( )
( 1)!

( ) ( ) 0

n
n

n
n n

n
n n

0 0 0 0 0
0

0
2

0 0

( )
0

0
1

( 1)
0

0
2

0
1

( )
0

0
1

0
1

′ = ′ + ′′ − − ′ + ′′′ − − ′′ −





+ ⋅⋅⋅+ − − − − −





− −

= − − − − =

−
−

− −

− −

Then K
f x

n
( )
!

n( )
0= , and (2) becomes (1).

15. If f ′(x) = 0 for all x on (a, b), then f is constant on (a, b).

Let u and v be any two points in (a, b) with u < v. By the Law of the Mean, there exists x0 in (u, v) for which 
v
v

f f u
u

f x
( ) ( )

( )0

−
− = ′ . By hypothesis, f ′(x0) = 0. Hence, f (v) − f (u) = 0, and therefore, f (v) = f (u).

SUPPLEMENTARY PROBLEMS

16. If f (x) = x2 − 4x + 3 on [1, 3], find a value prescribed by Rolle’s Theorem.

Ans.  x0 = 2

17. Find a value prescribed by the Law of the Mean, given:

(a) y = x3 on [0, 6] Ans. x 2 30 =
(b) y = ax2 + bx + c on [x1, x2] Ans. x x x( )0

1
2 1 2= +

18. If f ′(x) = g′(x) for all x in (a, b), prove that there exists a constant K such that f (x) = g(x) + K for all x in (a, b). 
[Hint: Dx(f (x) − g(x)) = 0 in (a, b). By Problem 15, there is a constant K such that f (x) − g(x) = K in (a, b).]

19. Find a value x0 precribed by the extended law of the mean when f (x) = x2 + 2x − 3, g(x) = x2 − 4x + 6 on the 
interval [0, 1].

Ans.  1
2

20. Show that x3 + px + q = 0 has: (a) one real root if p > 0, and (b) three real roots if 4p3 + 27q2 < 0.

21. Show that f x
ax b
cx d

( ) = +
+  has neither a relative maximum nor a relative minimum. (Hint: Use Theorem 13.1.)

22. Show that f (x) = 5x3 + 11x − 20 = 0 has exactly one real solution.

23. (a)   Where are the following functions (i –vii) increasing and where are they decreasing? Sketch the graphs.
(b) (GC) Check your answers to (a) by means of a graphing calculator.

(i) f (x) = 3x + 5 Ans. Increasing everywhere
(ii) f (x) = −7x + 20 Ans. Decreasing everywhere
(iii) f (x) = x2 + 6x − 11 Ans. Decreasing on (−∞, −3), increasing on (−3, +∞)
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111CHAPTER 13 Law of the Mean. Increasing and Decreasing Functions.

(iv) f (x) = 5 + 8x − x2 Ans. Increasing on (−∞, 4), decreasing on (4, +∞)

(v) f x x( ) 4 2= −  Ans. Increasing on (−2, 0), decreasing on (0, 2)

(vi) f (x) = |x − 2| + 3 Ans. Decreasing on (−∞, 2), increasing on (2, +∞)

(vii) f x
x

x
( )

42= −  Ans. Decreasing on (−∞, −2), (−2, 2), (2, +∞); never increasing

24. (GC) Use a graphing calculator to estimate the intervals on which f (x) = x5 + 2x3 − 6x + 1 is increasing, and the 
intervals on which it is decreasing.

25. For the following functions, determine whether Rolle’s Theorem is applicable. If it is, find the prescribed values.

(a) f (x) = x3/4 − 2 on [−3, 3] Ans. No. Not differentiable at x = 0.
(b) f (x) = |x2 − 4| on [0, 8] Ans. No. Not differentiable at x = 2.
(c) f (x) = |x2 − 4| on [0, 1] Ans. No. f (0) ≠ f (1)

(d) f x
x x

x
( )

3 4
5

2

= − −
−

 on [−1, 4] Ans. Yes. x 5 60 = −
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CHAPTER 14

Maximum and Minimum Values

CRITICAL NUMBERS

A number x0 in the domain of f such that either f ′(x0) = 0 or f  ′(x0) is not defined is called a critical number of f.
Recall (Theorem 13.1) that if f has a relative extremum at x0 and f  ′(x0) is defined, then f ′(x0) = 0 and 

therefore, x0 is a critical number of f. Observe, however, that the condition that f ′(x0) = 0 does not guarantee 
that f has a relative extremum at x0. For example, if f (x) = x3, then f ′(x) = 3x2, and therefore, 0 is a critical 
number of f  ; but f has neither a relative maximum nor a relative minimum at 0. (See Fig. 5-5.)

EXAMPLE 14.1:

(a) Let f (x) = 7x2 - 3x + 5. Then f  ′(x) = 14x - 3. Set f  ′(x) = 0 and solve. The only critical number of   f   is 3
14 .

(b) Let f  (x) = x3 - 2x2 + x + 1. Then f  ′(x) = 3x2 - 4x + 1. Solving f  ′(x) = 0, we find that the critical numbers are 1 and 1
3.

(c) Let f  (x) = x2/3. Then f x x
x

( )
2
3

2
3

1/3
1/3′ = =− . Since f  ′(0) is not defined, 0 is the only critical number of f.

We shall find some conditions under which we can conclude that a function f has a relative maximum 
or a relative minimum at a given critical number.

SECOND DERIVATIVE TEST FOR RELATIVE EXTREMA

Assume that f  ′(x0) = 0 and that f  ″(x0) exists. Then:

  (i) if f  ″(x0) < 0, then f has a relative maximum at x0;
 (ii) if f  ″(x0) > 0, then f has a relative minimum at x0;
(iii) if f  ″(x0) = 0, we do not know what is happening at x0.

A proof is given in Problem 9. To see that (iii) holds, consider the three functions f (x) = x4, g(x) = -x4, and 
h(x) = x3. Since f  ′(x) = 4x3, g ′(x) = -4x3, and h ′(x) = 3x2, 0 is a critical number of all three functions. Since 
f  ″(x) = 12x2, g ″(x) = -12x2, and h ″(x) = 6x, the second derivative of all three functions is 0 at 0. However, 
f has a relative minimum at 0, g has a relative maximum at 0, and h has neither a relative maximum nor a 
relative minimum at 0.

EXAMPLE 14.2:

(a)  Consider the function f (x) = 7x2 - 3x + 5 of Example 1(a). The only critical number was 3
14 . Since f  ″(x) = 14, 

f ( ) 14 03
14′′ = > . So, the second derivative test tells us that f has a relative minimum at 3

14 .

(b)  Consider the function f (x) = x3 - 2x2 + x + 1 of Example 1(b). Note that f  ″(x) = 6x - 4. At the critical numbers 1 
and 1

3 , f  ″(1) = 2 > 0 and f ( ) 2 01
3′′ = − < . Hence f has a relative minimum at 1 and a relative maximum at 1

3 .
(c) In Example 1(c), f  (x) = x2/3 and f x x( ) 2

3
1/3′ = − . The only critical number is 0, where f  ′ is not defined. Hence, f  ″(0) 

is not defined and the second derivative test is not applicable.

If the second derivative test is not usable or convenient, either because the second derivative is 0, or does 
not exist, or is difficult to compute, then the following test can be applied. Recall that f  ′(x) is the slope of 
the tangent line to the graph of f at x.
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FIRST DERIVATIVE TEST

Assume f  ′(x0) = 0.

Case {+, −}

If f  ′ is positive in an open interval immediately to the left of x0, and negative in an open interval immediately 
to the right of x0, then f has a relative maximum at x0. [See Fig. 14-1(a).]

Case {−, +}

If f  ′ is negative in an open interval immediately to the left of x0, and positive in an open interval immediately 
to the right of x0, then f has a relative minimum at x0. [See Fig. 14-1(b).]

Cases {+, +} and {−, −}

If f  ′ has the same sign in open intervals immediately to the left and to the right of x0, then f  has neither a 
relative maximum nor a relative minimum at x0. [See Fig. 14-1(c, d).]

For a proof of the first derivative test, see Problem 8.

Fig. 14-1

EXAMPLE 14.3: Consider the three functions f (x) = x4, g(x) = -x4, and h(x) = x3 discussed above. At their critical 
number 0, the second derivative test was not applicable because the second derivative was 0. Let us try the first 
derivative test.

(a)  f  ′(x) = 4x3. To the left of 0, x < 0, and so f  ′(x) < 0. To the right of 0, x > 0, and so f  ′(x) > 0. Thus, we have the 
case {-, +} and f must have a relative minimum at 0.

(b) g ′(x) = -4x3. To the left of 0, x < 0, and so g ′(x) > 0. To the right of 0, x > 0, and so g ′(x) < 0. Thus, we have 
the case {+, -} and g must have a relative maximum at 0.

(c) h ′(x) = 3x2 .  h ′(x) > 0 on both sides of 0. Thus, we have the case {+, +} and h has neither a relative maximum 
nor a relative minimum at 0. There is an inflection point at x = 0.

 These results can be verified by looking at the graphs of the functions.
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ABSOLUTE MAXIMUM AND MINIMUM 

An absolute maximum of a function f on a set S occurs at x0 in S if f (x) ≤ f (x0) for all x in S. An absolute 
minimum of a function f on a set S occurs at x0 in S if f (x) ≥ f (x0) for all x in S.

TABULAR METHOD FOR FINDING THE ABSOLUTE MAXIMUM AND MINIMUM
Let f be continuous on [a, b] and differentiable on (a, b). By the Extreme Value Theorem, we know that f has 
an absolute maximum and minimum on [a, b]. Here is a tabular method for determining what they are and 
where they occur. (See Fig. 14-2.)

Fig. 14-2

First, find the critical numbers (if any) c1, c2, . . . of f in (a, b). Second, list these numbers in a table, along 
with the endpoints a and b of the interval. Third, calculate the value of f for all the numbers in the table.

Then:

1. The largest of these values is the absolute maximum of f on [a, b].
2. The smallest of these values is the absolute minimum of f on [a, b].

EXAMPLE 14.4: Let us find the absolute maximum and minimum of f (x) = x3 - x2 - x + 2 on [0, 2].

 f  ′(x) = 3x2 - 2x - 1 = (3x + 1)(x - 1). Hence, the critical numbers are x 1
3= −  and x = 1. The only critical number 

in [0, 2] is 1. From the table in Fig. 14-3, we see that the maximum value of f on [0, 2] is 4, which is attained at the 

right endpoint 2, and the minimum value is 1, attained at 1.

Fig. 14-3

Let us see why the method works. By the Extreme Value Theorem, f achieves maximum and minimum 
values on the closed interval [a, b]. If either of those values occurs at an endpoint, that value will appear in 
the table and, since it is actually a maximum or minimum, it will show up as the largest or smallest value. If 
the maximum or minimum is assumed at a point x0 inside the interval, f has a relative maximum or minimum 
at x0 and therefore, by Theorem 13.1, f  ′(x0) = 0. Thus, x0 will be a critical number and will be listed in the 
table, so that the corresponding maximum or minimum value f (x0) will be the largest or smallest value in 
the right-hand column.

Theorem 14.1:  Assume that f is a continuous function defined on an interval J. The interval J can be a finite or infinite 
interval. If f has a unique relative extremum within J, then that relative extremum is also an absolute extremum on J.

To see why this is so, look at Fig. 14-4, where f is assumed to have a unique extremum, a relative max-
imum at c. Consider any other number d in J. The graph moves downward on both sides of c. So, if f (d) 
were greater than f (c), then by the Extreme Value Theorem for the closed interval with endpoints c and  
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d, f  would have an absolute minimum at some point u between c and d. (u could not be equal to c or d.)  
Then f  would have a relative minimum at u, contradicting our hypothesis that f has a relative extremum only 
at c. We can extend this argument to the case where f has a relative minimum at c by applying the result we 
have just obtained to -f.

Fig. 14-4

SOLVED PROBLEMS

 1. Locate the absolute maximum or minimum of the following functions on their domains:

(a) y = -x2; (b) y = (x - 3)2; (c) y x25 4 2= − ; (d) y x 4= − .

(a) y = -x2 has an absolute maximum (namely, 0) when x = 0, since y < 0 when x ≠ 0. It has no relative 
minimum, since its range is (-∞, 0). The graph is a parabola opening downward, with vertex at (0, 0).

(b) y = (x -3)2 has an absolute minimum, 0, when x = 3, since y > 0 when x ≠ 3. It has no absolute maximum, 
since its range is (0, +∞). The graph is a parabola opening upward, with vertex at (3, 0).

(c) y x25 4 2= −  has 5 as its absolute maximum when x = 0, since 25 - 4x2 < 25 when x ≠ 0. It has 0 as its 
absolute minimum, when x 5

2=  and x 5
2= −  . The graph is the upper half of an ellipse.

(d) y x 4= −  has 0 as its absolute minimum when x = 4. It has no absolute maximum. Its graph is the upper 
half of a parabola with vertex at (4, 0) and the x-axis as its axis of symmetry.

 2. Let f x x x x( ) 6 81
3

3 1
2

2= + − + . Find: (a) the critical numbers of f; (b) the points at which f has a relative maximum 
or minimum; (c) the intervals on which f is increasing or decreasing.

(a) f  ′(x) = x2 + x - 6 = (x + 3)(x - 2). Solving f  ′(x) = 0 yields the critical numbers -3 and 2.
(b) f  ″(x) = 2x + 1. Thus, f  ″(-3) = -5 < 0 and f  ″(2) = 5. Hence, by the second derivative test, f has a relative 

maximum at x = -3, where f ( 3) 43
2− = . By the second derivative test, f has a relative minimum at x = 2, 

where f (2) 2
3= .

(c) Look at f  ′(x) = (x + 3)(x - 2). When x > 2, f  ′(x) > 0. For -3 < x < 2, f  ′(x) < 0. For x < -3,  f  ′(x) > 0. Thus, by 
Theorem 13.7, f is increasing for x < -3 and 2 < x, and decreasing for -3 < x < 2.

A sketch of part of the graph of f is shown in Fig. 14-5. Note that f has neither absolute maximum nor absolute 
minimum.
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Fig. 14-5

 3. Let f (x) = x4 + 2x3 - 3x2 - 4x + 4. Find: (a) the critical numbers of f; (b) the points at which f has a relative 
extremum; (c) the intervals on which f is increasing or decreasing.

(a) f  ′(x) = 4x3 + 6x2 - 6x - 4. It is clear that x = 1 is a zero of f  ′(x). Dividing f  ′(x) by x - 1 yields 4x2 + 10x + 4, 
which factors into 2(2x2 + 5x + 2) = 2(2x + 1)(x + 2). Thus, f  ′(x) = 2(x - 1)(2x + 1)(x + 2), and the critical 

numbers are 1, 1
2− , and -2.

(b) f  ″(x) = 12x2 + 12x - 6 = 6(2x2 + 2x - 1). Using the second derivative test, we find: (i) at x = 1, f  ″(1) = 18 > 0, 
and there is a relative minimum; (ii) at x 1

2= − , f ( ) 9 01
2′′ − = − < , so that there is a relative maximum; (iii) at  

x = -2, f  ″(-2) = 18 > 0, so that there is a relative minimum.
(c) f  ′(x) > 0 when x > 1, f  ′(x) < 0 when x 11

2− < < ,   f  ′(x) > 0 when x2 1
2− < < − , and f  ′(x) < 0 when x < -2. 

Hence,  f is increasing when x > 1 or x2 1
2− < < − , and decreasing when x 11

2− < <  or x < -2.

The graph is sketched in Fig. 14-6.

Fig. 14-6

 4. Examine f x
x

( )
1

2
= −  for relative extrema, and find the intervals on which f is increasing or decreasing.

f   (x) = (x - 2)-1, so that f x x
x

( ) ( 2)
1

( 2)
2

2′ = − − = − −
− . Thus, f  ′ is never 0, and the only number where f  ′ is not 

defined is the number 2, which is not in the domain of f. Hence, f has no critical numbers. So, f has no relative 
extrema. Note that f  ′(x) < 0 for x ≠ 2. Hence, f is decreasing for x < 2 and for x > 2. There is a nonremovable 
discontinuity at x = 2. The graph is shown in Fig. 14-7.

Fig. 14-7
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 5. Locate the relative extrema of f (x) = 2 + x2/3 and the intervals on which f is increasing or decreasing.

f x x
x

( ) 2
3

2
3

1/3
1/3′ = =− . Then x = 0 is a critical number, since f  ′(0) is not defined (but 0 is in the domain of f     ). 

Note that f  ′(x) approaches ∞ as x approaches 0. When x < 0, f  ′(x) is negative and therefore, f is decreasing. When 
x > 0, f  ′(x) is positive and therefore, f is increasing. The graph is sketched in Fig. 14-8. f has an absolute minimum 
at x = 0.

Fig. 14-8

 6. Use the second derivative test to examine the relative extrema of the following functions: (a) f (x) = x(12 - 2x)2; 

(b) f x x
x

( )
2502= + .

(a)  f  ′(x) = x(2)(12 - 2x)(-2) + (12 - 2x)2 = (12 - 2x)(12 - 6x) = 12(x - 6)(x - 2). So, 6 and 2 are the critical 
numbers. f  ″(x) = 12(2x - 8) = 24(x - 4). So, f  ″(6) = 48 > 0, and f  ″(2) = -48 < 0. Hence, f has a relative 
minimum at x = 6 and a relative maximum at x = 2.

(b) f x x
x

x
x

( ) 2
250

2
125

2

3

2′ = − = −




. So, the only critical number is 5 (where x3 - 125 = 0). f  ″(x) = 2 + 500/x3. 

Since f  ″(5) = 6 > 0,  f has a relative minimum at x = 5.

 7. Determine the relative extrema of f (x) = (x - 2)2/3.

f x
x

( )
2

3( 2)2/3′ = −
. So, 2 is the only critical number. Since f  ′(2) is not defined, f  ″(2) will be undefined. 

Hence, we shall try the first derivative test. For x < 2,  f  ′(x) < 0, and, for x > 2,  f  ′(x) > 0. Thus, we have the case 
{-, +} of the first derivative test, and f has a relative minimum at x = 2.

 8. Prove the first derivative test.
Assume f  ′(x0) = 0. Consider the case {+, -}: If f  ′ is positive in an open interval immediately to the left of x0, 

and negative in an open interval immediately to the right of x0, then f has a relative maximum at x0. To see this, 
notice that, by Theorem 13.7, since f  ′ is positive in an open interval immediately to the left of x0,  f is increasing 
in that interval, and, since f  ′ is negative in an open interval immediately to the right of x0,  f is decreasing in that 
interval. Hence,  f has a relative maximum at x0. The case {-, +} follows from the case {+, -} applied to - f. In 
the case {+, +},  f will be increasing in an interval around x0, and, in the case {-, -},  f will be decreasing in an 
interval around x0. So, in both cases,  f has neither a relative maximum nor minimum at x0.

 9. Prove the second derivative test: If f (x) is differentiable on an open interval containing a critical value x0 of f, and 
f  ″(x0) exists and f  ″(x0) is positive (negative), then f has a relative minimum (maximum) at x0.

Assume f  ″(x0) > 0. Then by Theorem 13.7,  f  ′ is increasing at x0. Since  f  ′(x0) = 0, this implies that  f  ′ is 
negative nearby and to the left of x0, and  f  ′ is positive nearby and to the right of x0. Thus, we have the case {-, +} 
of the first derivative test and therefore,  f has a relative minimum at x0. In the opposite situation, where f  ″(x0) < 0, 
the result we have just proved is applicable to the function g(x) = - f (x). Then g has a relative minimum at x0 and 
therefore,  f has a relative maximum at x0.

10. Among those positive real numbers u and v whose sum is 50, find that choice of u and v that makes their product 
P as large as possible.

P = u(50 - u). Here, u is any positive number less than 50. But we also can allow u to be 0 or 50, since in 
those cases, P = 0, which will certainly not be the largest possible value. So, P is a continuous function u(50 - u), 
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defined on [0, 50]. P = 50u - u2 is also differentiable everywhere, and dP/du = 50 - 2u. Setting dP/du = 0 yields 
a unique critical number u = 25. By the tabular method (Fig. 14-9), we see that the maximum value of P is 625 
when u = 25 (and therefore, v = 50 - u = 25).

Fig. 14-9

11. Divide the number 120 into two parts such that the product P of one part and the square of the other is a maximum.
Let x be one part and 120 - x the other part. Then P = (120 - x)x2 and 0 ≤ x ≤ 120. Since dP/dx = 3x(80 - x), 

the critical numbers are 0 and 80. Using the tabular method, we find P(0) = 0, P(80) = 256,000 and P(120) = 0. 
So, the maximum value occurs when x = 80, and the required parts are 80 and 40.

12. A sheet of paper for a poster is to be 18 ft2 in area. The margins at the top and bottom are to be 9 inches, and the 
margins at the sides 6 inches. What should be the dimensions of the sheet to maximize the printed area?

Let x be one dimension, measured in feet. Then 18/x is the other dimension. (See Fig. 14-10.) The only 

restriction on x is that x > 0. The printed area in square feet is A x
x

( 1)
18 3

2
= − −



 , and 

dA
dx x

18 3
22= − .

Fig. 14-10

Solving dA/dx = 0 yields the critical number x 2 3= . Since d 2A/dx2 = -36/x3 is negative when x 2 3= , the 

second derivative test tells us that A has a relative maximum at x 2 3= . Since 2 3  is the only critical number in 

the interval (0, +∞), Theorem 14.1 tells us that A has an absolute maximum at x 2 3= . Thus, one side is 2 3 ft  

and the other side is 18/(2 3) 3 3 ft= .

13. At 9 a.m., ship B is 65 miles due east of another ship A. Ship B is then sailing due west at 10 mi/h, and A is 
sailing due south at 15 mi/h. If they continue on their respective courses, when will they be nearest one another, 
and how near? (See Fig. 14-11.)

Let A0 and B0 be the positions of the ships at 9 a.m., and A
t
 and B

t
 their positions t hours later. The distance 

covered in t hours by A is 15t miles; by B, 10t miles. The distance D between the ships is determined by D2 = 
(15t)2 + (65 - 10t)2. Then

D
dD
dt

t t2 2(15 )(15) 2(65 10 )( 10);= + − −  hence, dD
dt

t
D

325 650= −

Fig. 14-11
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Solving dD/dt = 0 yields the critical number t = 2. Since D > 0 and 325t - 650 is negative to the left of 2 and 
positive to the right of 2, the case (-, +) of the first derivative test tells us that t = 2 yields a relative minimum for D. 
Since t = 2 is the only critical number, Theorem 14.1 implies that there is an absolute minimum at t = 2.

Setting t = 2 in D2 = (15t)2 + (65 - 10t)2 yields D 15 13=  miles. Hence, the ships are nearest at 11 a.m., at 

which time they are 15 13  miles apart.

14. A cylindrical container with circular base is to hold 64 in3. Find its dimensions so that the amount (surface area) 
of metal required is a minimum when the container is (a) an open can and (b) a closed can.

Let r and h be, respectively, the radius of the base and the height in inches, A the amount of metal, and V the 
volume of the container.

(a) Here V = πr2h = 64, and A = 2πrh + πr2. To express A as a function of one variable, we solve for h in the first 
relation (because it is easier) and substitute in the second, obtaining

A r
r

r
r

r2
64 128

and2
2 2π π π π= + = +   

dA
dr r

r
r
r

128
2

2( 64)
2

3

2π π= − + = −

 and the critical number is r 4/ 3 π= . Then h r64/ 4/2 3π π= = . Thus, r h 4/ 3 π= =  in.
 Now dA/dr > 0 to the right of the critical number, and dA/dr < 0 to the left of the critical number. So, by 
the first derivative test, we have a relative minimum. Since there is no other critical number, that relative 
minimum is an absolute minimum.

(b) Here again V = πr2h = 64, but A = 2πrh + 2πr2 = 2πr(64/πr2) + 2πr2 = 128/r + 2πr2. Hence,

dA
dr r

r
r
r

128
4

4( 32)
2

3

2π π= − + = −

 and the critical number is r 2 4/3 π= . Then h r64/ 4 4/2 3π π= = . Thus, h r2 4 4/3 π= =  in. That we have 
found an absolute minimum can be shown as in part (a).

15. The total cost of producing x radio sets per day is x x$( 35 25)1
4

2 + + , and the price per set at which they may be 

sold is x$(50 )1
2− .

(a) What should be the daily output to obtain a maximum total profit?
(b) Show that the cost of producing a set is a relative minimum at that output.

(a) The profit on the sale of x sets per day is P x x x x(50 ) ( 35 25)1
2

1
4

2= − − + + . Then dP/dx = 15 - 3x/2; solving 
dP/dx = 0 gives the critical number x = 10.
 Since d P dx/ 02 2 3

2= − < , the second derivative test shows that we have found a relative maximum. Since 
x = 10 is the only critical number, the relative maximum is an absolute maximum. Thus, the daily output that 
maximizes profit is 10 sets per day.

(b) The cost of producing a set is C
x x

x
x

x
35 25 1

4 35
251

4
2

= + + = + + . Then 
dC
dx x

1
4

25
2= − ; solving dC/dx = 0 

gives the critical number x = 10.
 Since d2C/dx2 = 50/x3 > 0 when x = 10, we have found a relative minimum. Since there is only one critical 
number, this must be an absolute minimum.

16. The cost of fuel to run a locomotive is proportional to the square of the speed and $25 per hour for a speed of  
25 miles per hour. Other costs amount to $100 per hour, regardless of the speed. Find the speed that minimizes 
the cost per mile.

Let v be the required speed, and let C be the total cost per mile. The fuel cost per hour is kv2, where k is a 
constant to be determined. When v = 25 mi/h, kv2 = 625k = 25; hence, k = 1/25.

v
v

v
vC

cost in$/h
speed in mi/h

/25 100
25

1002

= = + = +
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Then v v
v v

v
dC
d

1
25

100 ( 50)( 50)
252 2= − = − +

Since v > 0, the only relevant critical number is v = 50. Since d2C/dv2 = 200/v3 > 0 when v = 50, the second 
derivative test tells us that C has a relative minimum at v = 50. Since v = 50 is the only critical number in (0, +∞), 
Theorem 14.1 tells us that C has an absolute minimum at v = 50. Thus, the most economical speed is 50 mi/h.

17. A man in a rowboat at P in Fig. 14-12, 5 miles from the nearest point A on a straight shore, wishes to reach a point B, 
6 miles from A along the shore, in the shortest time. Where should he land if he can row 2 mi/h and walk 4 mi/h?

Fig. 14-12

Let C be the point between A and B at which the man lands, and let AC = x. The distance rowed is 

PC x25 2= + , and the rowing time required is t
xdistance

speed
25

21

2

= = +
. The distance walked is CB = 6 - x, and 

the walking time required is t2 = (6 - x)/4. Hence, the total time required is

= + = + + −
t t t

x x25
2

6
41 2

2

 Then 
dt
dx

x

x

x x

x2 25

1
4

2 25

4 25
.

2

2

2
=

+
− = − +

+

The critical number obtained from setting x x2 25 02− + =  is x 3 ~ 2.895
3= . Thus, he should land at a 

point about 2.89 miles from A toward B. (How do we know that this point yields the shortest time?)

18. A given rectangular area is to be fenced off in a field that lies along a straight river. If no fencing is needed along 
the river, show that the least amount of fencing will be required when the length of the field is twice its width.

Let x be the length of the field, and y its width. The area of the field is A = xy. The fencing required is F = x + 2y, 
and dF/dx = 1 + 2 dy/dx. When dF/dx = 0, dy dx/ 1

2= − .

Also, dA/dx = 0 = y + x dy/dx. Then y x 01
2− = , and x = 2y as required.

To see that F has been minimized, note that dy/dx = - y2/A and

d F
dx

d y
dx

y
A

dy
dx

y
A

y
A

2 2 2 4
1
2

2 0
2

2

2

2= = −



 = − −



 = >  when 

dy
dx

1
2

= −

Now use the second derivative test and the uniqueness of the critical number.

19. Find the dimensions of the right circular cone of minimum volume V that can be circumscribed about a sphere of 
radius 8 inches.

Let x be the radius of the base of the cone, and y + 8 the height of the cone. (See Fig. 14-13.) From the similar 
right triangles ABC and AED, we have

x y

y
x

y
y8

8

64
and therefore

64( 8)
64

.
2

2
2

2= +
−

= +
−

Also, V
x y y

y
dV
dy

y y
y

( 8)
3

64 ( 8)
3( 8)

. So,
64 ( 8)( 24)

3( 8)
.

2 2

2

π π π= + = +
− = + −

−
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B
C

E
D

y
y2–64

A

Fig. 14-13

 The relevant critical number is y = 24. Then the height of the cone is y + 8 = 32 inches, and the radius of the base 
is 8 2  inches. (How do we know that the volume has been minimized?)

20. Find the dimensions of the rectangle of maximum area A that can be inscribed in the portion of the parabola  
y2 = 4px intercepted by the line x = a.

 Let PBB ′P ′ in Fig. 14-14 be the rectangle, and (x, y) the coordinates of P. Then

Fig. 14-14

A y a x y a
y
p

ay
y
p

2 ( ) 2
4

2
2

2 3

= − = −





= −  and 
dA
dy

a
y
p

2
3
2

2

= −

 Solving dA/dy = 0 yields the critical number y ap4 /3= . The dimensions of the rectangle are y ap2 34
3=  and  

a - x = a - ( y 2/4p) = 2a/3.
Since d 2A/dy2 = -3y/p < 0, the second derivative test and the uniqueness of the critical number ensure that we 

have found the maximum area.

21. Find the height of the right circular cylinder of maximum volume V that can be inscribed in a sphere of radius R. 
(See Fig. 14-15.)

h

h

R

Fig. 14-15
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Let r be the radius of the base, and 2h the height of the cylinder. From the geometry, V = 2πr2h and r2 + h2 = R2. 
Then

dV
dr

r
dh
dr

rh2 22π= +





 and r h
dh
dr

2 2 0+ =

 From the last relation, dh
dr

r
h

= − , so 
dV
dr

r
h

rh2 2
3

π= − +




. When V is a maximum, dV

dr
0= , from which r2 = 2h2.

Then R2 = r2 + h2 = 2h2 + h2, so that h R/ 3=  and the height of the cylinder is h R2 2 / 3= . The second 
derivative test can be used to verify that we have found a maximum value of V.

22. A wall of a building is to be braced by a beam that must pass over a parallel wall 10 ft high and 8 ft from the 
building. Find the length L of the shortest beam that can be used.

See Fig. 14-16. Let x be the distance from the foot of the beam to the foot of the parallel wall, and let y be the 

distance (in feet) from the ground to the top of the beam. Then L x y( 8)2 2= + + .

Fig. 14-16

Also, from similar triangles, 
y x

x10
8= +

 and therefore, y
x
x

10( 8)= +
. Hence,

L x
x
x

x
x

x

dL
dx

x x x x x x x
x

x

x x

( 8)
100( 8) 8

100

[( 100) ( 8)( 100) ] ( 8)( 100) 800

100

2
2

2
2

2 1/2 2 1/2 2 1/2

2

3

2 2

= + + + = + +

= + + + + − + + = −
+

−

The relevant critical number is x 2 1003= . The length of the shortest beam is

2 100 8

2 100
4 10,000 100 ( 100 4) ft

3

3
3 3 3/2+ + = +

The first derivative test and Theorem 14.1 guarantee that we really have found the shortest length.

SUPPLEMENTARY PROBLEMS

23. Examine each of the following for relative maximum and minimum values, using the first derivative test.

(a) f (x) = x2 + 2x - 3 Ans. x = -1 yields relative minimum -4
(b) f (x) = 3 + 2x - x2 Ans. x = 1 yields relative maximum 4
(c) f (x) = x3 + 2x2 - 4x - 8 Ans. x 2

3=  yields relative minimum 256
27− ; x = -2 yields relative  

   maximum 0
(d) f (x) = x3 - 6x2 + 9x - 8 Ans. x = 1 yields relative maximum -4; x = 3 yields relative  

   minimum -8
(e) f (x) = (2 - x)3 Ans. neither relative maximum nor relative minimum
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(f) f (x) = (x2 - 4)2 Ans. x = 0 yields relative maximum 16; x = ±2 yields relative  
  minimum 0

(g) f (x) = (x - 4)4(x + 3)3 Ans. x = 0 yields relative maximum 6912; x = 4 yields relative  
  minimum 0; x = -3 yields neither

(h) f (x) = x3 + 48/x Ans. x = -2 yields relative maximum -32; x = 2 yields relative  
  minimum 32

(i) f (x) = (x - 1)1/3(x + 2)2/3 Ans. x = -2 yields relative maximum 0; x = 0 yields relative  
   minimum 4;3−  x = 1 yields neither

24. Examine the functions of Problem 23(a-f ) for relative maximum and minimum values, using the second 
derivative test.

25. Show that = − + − +…+ −y a x a x a x( ) ( ) ( )n1
2

2
2 2 has an absolute minimum when x

a a a
n

n1 2=
+ + ⋅⋅⋅+

.

26. Examine the following for absolute maximum and minimum values on the given interval.

(a) y = -x2 on -2 < x < 2  Ans. maximum (= 0) at x = 0
(b) y = (x - 3)2 on 0 ≤ x ≤ 4  Ans. maximum (= 9) at x = 0; minimum (= 0) at x = 3
(c) y x25 4 2= −  on -2 ≤ x ≤ 2  Ans. maximum (= 5) at x = 0; minimum (= 3) at x = ±2

(d) y x 4= −  on 4 ≤ x ≤ 29  Ans. maximum (= 5) at x = 29; minimum (= 0) at x = 4

27. The sum of two positive numbers is 20. Find the numbers if: (a) their product is a maximum; (b) the sum of their 
squares is a minimum; (c) the product of the square of one and the cube of the other is a maximum.

Ans. (a) 10, 10; (b) 10, 10; (c) 8, 12

28. The product of two positive numbers is 16. Find the numbers if: (a) their sum is least; (b) the sum of one and the 
square of the other is least.

Ans. (a) 4, 4; (b) 8, 2

29. An open rectangular box with square ends is to be built to hold 6400 ft3 at a cost of $0.75/ft2 for the base and 
$0.25/ft2 for the sides. Find the most economical dimensions.

Ans. 20 × 20 × 16

30. A wall 8 ft high is 3 ft3
8  from a house. Find the shortest ladder that will reach from the ground to the house when 

leaning over the wall.

Ans. 15 ft5
8

31. A company offers the following schedule of charges: $30 per thousand for orders of 50,000 or less, with the 
charge decreased by 37 c1

2 / for each thousand above 50,000. Find the order size that makes the company’s receipts 
a maximum.

Ans. 65,000

32. Find an equation of the line through the point (3, 4) that cuts from the first quadrant a triangle of minimum area.

Ans. 4x + 3y - 24 = 0
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33. At what point in the first quadrant on the parabola y = 4 - x2 does the tangent line, together with the coordinate 
axes, determine a triangle of minimum area?

Ans. (2 3 /3, 8/3)

34. Find the minimum distance from the point (4, 2) to the parabola y2 = 8x.

Ans. 2 2

35. (a) Examine 2x2 - 4xy + 3y2 - 8x + 8y - 1 = 0 for maximum and minimum values of y. (b) (GC) Check your 
answer to (a) on a graphing calculator.

Ans. (a) Maximum at (5, 3); (b) minimum at (-1, -3)

36. (GC) Find the absolute maximum and minimum of f (x) = x5 - 3x2 - 8x - 3 on [-1, 2] to three-decimal-place accuracy.

Ans. Maximum 1.191 at x = -0.866; minimum -14.786 at x = 1.338

37. An electric current, when flowing in a circular coil of radius r, exerts a force F
kx

x r( )2 2 5/2= +  on a small magnet 

located at a distance x above the center of the coil. Show that F is greatest when x r1
2= .

38. The work done by a voltaic cell of constant electromotive force E and constant internal resistance r in passing 
a steady current through an external resistance R is proportional to E2R/(r + R)2. Show that the work done is 
greatest when R = r.

39. A tangent line is drawn to the ellipse 
x y
25 16

1
2 2

+ =  so that the part intercepted by the coordinate axes is a 
minimum. Show that its length is 9.

40. A rectangle is inscribed in the ellipse 
x y

400 225
1

2 2

+ =  with its sides parallel to the axes of the ellipse. Find the 

dimensions of the rectangle of (a) maximum area and (b) maximum perimeter that can be so inscribed.

Ans. (a) 20 2 15 2× ;  (b) 32 × 18

41. Find the radius R of the right circular cone of maximum volume that can be inscribed in a sphere of radius r. 
(Recall that the volume of a right circular cone of radius R and height h is R h1

3
2π .)

Ans. R r 22
3=

42. A right circular cylinder is inscribed in a right circular cone of radius r. Find the radius R of the cylinder if:  
(a) its volume is a maximum; (b) its lateral area is a maximum. (Recall that the volume of a right circular cylinder 
of radius R and height h is πR2h, and its lateral area is 2πRh.)

Ans. (a) R r2
3= ;  (b) R r1

2=

43. Show that a conical tent of given volume will require the least amount of material when its height h is 2 times 
the radius r of the base. [Note first that the surface area A = π(r2 + h2).]

44. Show that the equilateral triangle of altitude 3r is the isosceles triangle of least area circumscribing a circle of radius r.
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45. Determine the dimensions of the right circular cylinder of maximum lateral surface area that can be inscribed in a 
sphere of radius 8.

Ans. h r2 8 2= =

46. Investigate the possibility of inscribing a right circular cylinder of maximum total area (including its top and 
bottom) in a right circular cone of radius r and height h.

Ans. If h > 2r, radius of cylinder 
hr

h r
1
2

= −
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CHAPTER 15

Curve Sketching.  
Concavity. Symmetry.

CONCAVITY

From an intuitive standpoint, an arc of a curve is said to be concave upward if it has the shape of a cup [see 
Fig. 15-1(a)] and is said to be concave downward if it has the shape of a cap [see Fig. 15-1(b)]. Note that a 
more precise definition is available. An arc is concave upward if, for each x0, the arc lies above the tangent 
line at x0 in some open interval around x0. Similarly, an arc is concave downward if, for each x0, the arc lies 
below the tangent line at x0 in some open interval around x0. Most curves are combinations of concave up-
ward and concave downward. For example, in Fig. 15-1(c), the curve is concave downward from A to B and 
from C to D, but concave upward from B to C.

Fig. 15-1

The second derivative of f tells us about the concavity of the graph of f.

Theorem 15.1:

(a) If f     ″(x) > 0 for x in (a, b), then the graph of f is concave upward for a < x < b.
(b) If f     ″(x) < 0 for x in (a, b), then the graph of f is concave downward for a < x < b.

For the proof, see Problem 17.

EXAMPLE 15.1:

(a)  Let f (x) = x2. Then f     ′(x) = 2x, f     ″(x) = 2. Since f     ″(x) > 0 for all x, the graph of f is always concave upward. 
This was to be expected, since the graph is a parabola that opens upward.

(b)  Let f x y x( ) 1 2= = − . Then y2 = 1 − x2, x2 + y2 = 1. So, the graph is the upper half of the unit circle with  
the center at the origin. By implicit differentiation, we obtain x + yy  ′ = 0 and then 1 + yy   ″ + (y  ′)2 = 0. So,  
y   ″ = −[1 + (y  ′)2]/y. Since y > 0 (except at x = 1), y   ″ < 0. Hence, the graph is always concave downward,  
which is what we would expect.
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POINTS OF INFLECTION

A point of inflection on a curve y = f (x) is a point at which the concavity changes, that is, the curve is concave 
upward on one side and concave downward on the other side of the point. So, if y   ″ exists in an open interval 
containing x0, then y   ″ < 0 on one side of x0 and y   ″ > 0 on the other side of x0. Therefore, if y   ″ is continuous 
at x0, then y   ″ = 0 at x0. Thus, we have:

Theorem 15.2: If the graph of f has an inflection point at x0 and f   ″ exists in an open interval containing x0 and f    ″ is 
continuous at x0, then f     ″(x0) = 0.

EXAMPLE 15.2:

(a)  Let  f (x) = x3. Then f     ′(x) = 3x2, and f     ″(x) = 6x. Thus, f     ″(x) < 0 for x < 0, and f     ″(x) > 0 for x < 0. Hence, the 
graph of f  has an inflection point at x = 0. (See Fig. 5-5.) Note that f     ″(0) = 0, as predicted by Theorem 15.2.

(b)  Let  f (x) = x4. Then f     ′(x) = 4x3, and f     ″(x) = 12x2. Solving f     ″(x) = 0 yields x = 0. However, the graph of f does 
not have an inflection point at x = 0. It is concave upward everywhere. This example shows that f     ″(x0) = 0 
does not necessarily imply that there is an inflection point at x0.

(c)  Let f x x x x( ) 6 81
3

3 1
2

2= + − + . Solving f     ″(x) = 2x + 1 = 0, we find that the graph has an inflection point at ( , )1
2

133
12− . 

Note that this is actually an inflection point, since f     ″(x) < 0 for x 1
2< −  and  f     ″(x) > 0 for x 1

2> − . See Fig. 14-5.

VERTICAL ASYMPTOTES

A vertical line x = x0 such that f (x) approaches + ∞ or −∞ as x approaches x0 either from the left or the right 
is called a vertical asymptote of the graph of f. If f (x) has the form g(x)/h(x), where g and h are continuous 
functions, then the graph of f has a vertical asymptote x = x0 for every x0 such that h(x0) = 0 [and g(x0) ≠ 0].

HORIZONTAL ASYMPTOTES

A horizontal line y = y0 is called a horizontal asymptote of the graph of f if either =
→−∞

f x ylim ( )
x 0 or =

→+∞
f x ylim ( )

x 0.  

Thus, a horizontal asymptote is approached by the graph as one moves further and further to the left or further 

and further to the right.

EXAMPLE 15.3:

(a)  Let f x x( ) 1= . Then the graph of f has a vertical asymptote at x = 0, which is approached both from the left and the 

right. The line y = 0 (that is, the x-axis) is a horizontal asymptote both on the left and the right. See Fig. 5-21.

(b)  Let f x x( ) 1
2= − . Then x = 2 is a vertical asymptote of the graph of f, which is approached both from the left and 

the right. The line y = 0 is a horizontal asymptote, which is approached both on the left and the right. See Fig. 14-7.
(c)  Let f x x

x x( ) 2
( 1)( 3)= −

− + . Then the graph of f has vertical asymptotes at x = 1 and x = −3. The line y = 0 is a 

horizontal asymptote, which is approached both on the left and the right.

(d)  Let f x x
x( ) 4

3= +
− . Then the graph of f has a vertical asymptote at x = 3, which is approached both from the left 

and the right. The line y = 1 is a horizontal asymptote, which is approached both on the left and the right.

SYMMETRY

We say that two points P and Q are symmetric with respect to a line l if l is the perpendicular bisector of the line  
segment connecting P and Q. [See Fig. 15-2(a).]

We say that two points P and Q are symmetric with respect to a point B if B is the midpoint of the segment con-
necting P and Q.

A curve is said to be symmetric with respect to a line l (respectively, point B) if for any point P on the curve, there 
is another point Q on the curve such that P and Q are symmetric with respect to l (respectively, B). [See Fig. 15-2(b, c).]

If a curve is symmetric with respect to a line l, then l is called an axis of symmetry of the curve. For ex-
ample, any line through the center of a circle is an axis of symmetry of that circle.
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Fig. 15-2

Fig. 15-3

Points (x, y) and (−x, y) are symmetric with respect to the y-axis, and points (x, y) and (x, −y) are sym-
metric with respect to the x-axis. Points (x, y) and (−x, −y) are symmetric with respect to the origin. See 
Fig. 15-3(a-c).

Consider the graph of an equation F(x, y) = 0. Then:

  (i)    The graph is symmetric with respect to the y-axis if and only if F(x, y) = 0 implies F(−x, y) = 0.
 (ii)   The graph is symmetric with respect to the x-axis if and only if F(x, y) = 0 implies F(x, −y) = 0.
(iii)   The graph is symmetric with respect to the origin if and only if F(x, y) = 0 implies F(−x, −y) = 0.

EXAMPLE 15.4

(a) The parabola y = x2 is symmetric with respect to the y-axis.
(b) The parabola x = y2 is symmetric with respect to the x-axis.

(c)  A circle x2 + y2 = r2, an ellipse x
a

y
b

1
2

2

2

2+ = , and a hyperbola x
a

y
b

1
2

2

2

2− =  are symmetric with respect to the  

y-axis, the x-axis, and the origin.

EXAMPLE 15.5: A point P(a, b) is symmetric to the point Q(b, a) with respect to the line y = x. To see this, note 
first that the line PQ has slope −1. Since the line y = x has slope 1, the line PQ is perpendicular to the line y = x. In 

addition, the midpoint of the segment connecting P and Q is a b b a
2 , 2( )+ + , which is on the line y = x. Hence, the line 

y = x is the perpendicular bisector of that segment.

15_Mendelson_ch15_p127-138.indd   129 27/07/21   11:01 AM



130 CHAPTER 15 Curve Sketching. Concavity. Symmetry. 

INVERSE FUNCTIONS AND SYMMETRY

We say that two curves C1 and C2 are symmetric to each other with respect to a line l if, for any point P on 
one of the curves, the point Q that is symmetric to P with respect to l is on the other curve. (In other words, 
if we “reflect” one of the curves in the line l, the result is the other curve.)

Theorem 15.3: Consider any one-to-one function f and its inverse function f −1. Then the graphs of  f and  f −1 are 
symmetric to each other with respect to the line y = x.

To see this, assume that (a, b) is on the graph of f. Then f (a) = b. Hence, f −1(b) = a, that is, (b, a) is on the 
graph of f −1. By Example 5, (a, b) and (b, a) are symmetric with respect to the line y = x.

EXAMPLE 15.6:

(a) If f (x) = 2x, then f x x( )1 1
2=− . Hence, the lines y = 2x and y x1

2=  are symmetric with respect to the line y = x.
(b)  Let C1 be the parabola that is the graph of the equation y = x2, and let C2 be the parabola that is the graph of the  

equation x = y2. Then C1 and C2 are symmetric with respect to the line y = x, since the equation x = y2 results 
from the equation y = x2 by interchanging x and y.

EVEN AND ODD FUNCTIONS

A function f is said to be even if for any x in its domain, −x is also in its domain and f (−x) = f (x). f is said to 
be an odd function if for any x in its domain, −x is also in its domain and f (−x) = −f (x).

EXAMPLE 15.7: Any polynomial, such as 3x6 − 8x4 + 7, that involves only even powers of x determines an even 
function. Any polynomial, such as 5x9 + 2x5 − 4x3 + 3x, that involves only odd powers of x determines an odd function.

A function f is even if and only if its graph is symmetric with respect to the y-axis. In fact, assume f is 
even and (x, y) is on its graph. Then y = f (x). Hence, y = f (−x) and, therefore, (−x, y) is on the graph. Thus, 
the graph is symmetric with respect to the y-axis. The converse is left as Problem 16(a).

A function f is odd if and only if its graph is symmetric with respect to the origin. In fact, assume f is odd 
and (x, y) is on its graph. Then y = f (x). Hence, −y = f (−x) and, therefore, (−x, −y) is on the graph. Thus, the 
graph is symmetric with respect to the origin. The converse is left as Problem 16(b).

HINTS FOR SKETCHING THE GRAPH G OF y = f (x)

1. Calculate y  ′, and, if convenient, y   ″.
2. Use y  ′ to find any critical numbers (where y  ′ = 0, or y  ′ is undefined and y is defined). Determine whether 

these critical numbers yield relative maxima or minima by using the second derivative test or the first 
derivative test.

3. Use y  ′ to determine the intervals on which y is increasing (when y  ′ > 0) or decreasing (when y  ′ < 0).
4. Use y   ″ to determine where G is concave upward (when y   ″  >  0) or concave downward (when  

y   ″ < 0). Check points where y   ″ = 0 or undefined to determine whether they are inflection points (if y   ″ 
> 0 on one side and y   ″ < 0 on the other side of the point).

5. Look for vertical asymptotes. If y = g(x)/h(x), there is a vertical asymptote x = x0 if h(x0) = 0 and g(x0) ≠ 0.
6. Look for horizontal asymptotes. If f x ylim ( )

x 0=
→+∞

, then y = y0 is a horizontal asymptote on the right. If 
f x ylim ( )

x 0=
→−∞

, then y = y0 is a horizontal asymptote on the left.

7. Determine the behavior “at infinity.” If f xlim ( )
x

= +∞
→+∞

 (respectively, − ∞ ), then the curve moves upward 
(respectively, downward) without bound to the right. Similarly, if f xlim ( )

x
= +∞

→−∞
 (respectively, − ∞), then 

the curve moves upward (respectively, downward) without bound to the left.
8. Find the y-intercepts (where the curve cuts the y-axis, that is, where x = 0) and the x-intercepts (where 

the curve cuts the x-axis, that is, where y = 0).
9. Indicate any corner points where y  ′ approaches one value from the left and another value from the right. 

An example is the origin on the graph of y = |x|.
10. Indicate any cusps where y  ′ approaches + ∞ from both sides or y  ′ approaches − ∞ from both sides. An 

example is the origin on the graph of =y x| | .
11. Find any oblique asymptotes y = mx + b such that − + =

→+∞
f x mx blim ( ( ) ( )) 0

x
 or − + =

→−∞
f x mx blim ( ( ) ( )) 0

x
.  

An oblique asymptote is an asymptote that is neither vertical nor horizontal.
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SOLVED PROBLEMS

 1. Examine y = 3x4 − 10x3 − 12x2 + 12x − 7 for concavity and points of inflection.
We have

y x x x

y x x x x

12 30 24 12

36 60 24 12(3 1)( 2)

3 2

2

′ = − − +

′′ = − − = + −

Set y   ″ = 0 and solve to obtain the possible points of inflection x 1
3= −  and 2. Then:

  When x 1
3< − , y   ″ = +, and the arc is concave upward.

  When x 21
3− < < , y   ″ = −, and the arc is concave downward.

  When x > 2, y   ″ = +, and the arc is concave upward.

The points of inflection are ( , )1
3

322
27− −  and (2, −63), since y   ″ changes sign at x 1

3= −  and x = 2. See Fig. 15-4.

Fig. 15-4

 2. Examine y = x4 − 6x + 2 for concavity and points of inflection, and sketch the graph.
We have y   ″ = 12x2. By Theorem 15.2, the possible point of inflection is at x = 0. On the intervals x < 0 and 

x > 0, y   ″ is positive, and the arcs on both sides of x = 0 are concave upward. The point (0, 2) is not a point of 
inflection. Setting y  ′ = 4x3 − 6 = 0, we find the critical number x 3/23= . At this point, y   ″ = 12x2 > 0 and we have 
a relative minimum by the second derivative test. Since there is only one critical number, there is an absolute 
minimum at this point (where x ~ 1.45 and y ~ − 3.15). See Fig. 15-5.

Fig. 15-5

 3. Examine y = 3x + (x + 2)3/5 for concavity and points of inflection, and sketch the graph.

y
x

3 3
5( 2)2/5′ = + +  and y

x
6

25( 2)7/5′′ = −
+ . The possible point of inflection is at x = −2. When x > −2, y   ″ is 

negative and the arc is concave downward. When x < −2, y   ″ is positive and the arc is concave upward. Hence, 
there is an inflection point at x = −2, where y = −6. (See Fig. 15-6.) Since y  ′ > 0 (except at x = −2), y is an 
increasing function, and there are no relative extrema.
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Fig. 15-6

 4. If f      ″(x0) = 0 and f     ″′ (x0) ≠ 0, then there is an inflection point at x0.

Since f     ″′(x0) = 0, f    ″′(x0) is either positive or negative. Hence, f      ″ is either increasing or decreasing at x0. Since 
f      ″(x0) = 0,  f     ″ has opposite signs to the left and right of x0. So, the curve will have opposite concavity on the two 
sides of x0, and there is an inflection point at x0.

 5. Find equations of the tangent lines at the points of inflection of y = f (x) = x4 − 6x3 + 12x2 − 8x.

A point of inflection exists at x = x0 when f     ″(x0) = 0 and f      ″′(x0) ≠ 0. Here,

f x x x x

f x x x x x

f x x x

( ) 4 18 24 8

( ) 12 36 24 12( 1)( 2)

( ) 24 36 12(2 3)

3 2

2

′ = − + −

′′ = − + = − −

′′′ = − = −

The possible points of inflection are at x = 1 and 2. Since f (1) 0′′′ ≠  and f (2) 0′′′ ≠ , the points (1, −1) and (2, 0) 
are points of inflection.

At (1, −1), the slope of the tangent line is m = f     ′(1) = 2, and its equation is

y y m x x( )1 1= = −     or    y x1 2( 1)+ = −     or    y x2 3= −

At (2, 0), the slope is f     ′(2) = 0, and the equation of the tangent line is y = 0.

 6. Sketch the graph of y = f (x) = 2x3 − 5x2 + 4x − 7.
f    ′(x) = 6x2 − 10x + 4, f     ″(x) = 12x − 10, and f x( ) 12′′′ = . Now, 12x − 10 > 0 when x 5

6>  and 12x − 10 < 0 when 
x 5

6< . Hence, the graph of f is concave upward when x 5
6> , and concave downward when x 5

6< . Thus, there is an 
inflection point at x 5

6= . Since f     ″(x) = 2(3x2 − 5x + 2) = 2(3x − 2)(x − 1), the critical numbers are x 2
3=  and x = 1. 

Since f ( ) 2 02
3′′ = − <  and f     ″(1) = 2, there is a relative maximum at x 2

3=  (where y ~ 5.96161
27= − − ) and a relative 

minimum at x = 1 (where y = − 6). See Fig. 15-7.

 7. Sketch the graph of y f x
x

x
( )

2

2

= = −
.

y
x

x
x
x x

x
x

4 4
2

4
2

4
2

2
4

2

2 2

= − +
− = −

− + − = + + −
. Then y

x
1

4
( 2)2′ = − −

 and y
x

8
( 2)3′′ = −

.

Solving y  ′ = 0, we obtain the critical numbers x = 4 and x = 0. Since f      ″(4) = 1 > 0 and f     ″(0) = −1 < 0, there 
is a relative minimum at x = 4 (where y = 8) and a relative maximum at x = 0 (where y = 0). Since y   ″ is never 0, 
there are no inflection points. The line x = 2 is a vertical asymptote. The line y = x + 2 is an oblique asymptote on 

both sides, since, on the curve, y x
x

( 2)
4

2
0− + = − →  as x → ±∞. See Fig. 15-8.
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2
3

5
6

Fig. 15-7

Fig. 15-8

 8. Sketch the graph of g(x) = 2x3 − 9x2 + 36.
g  ′(x) = 6x2 − 18x = 6x(x − 3) and g ″(x) = 12x − 18 = 6(2x − 3). So, the critical numbers are x = 0 (where y = 36) 

and x = 3 (where y = 9). Since g ″(0) = −18 < 0 and g ″(3) = 18 > 0, there is a relative maximum at x = 0 and a 
relative minimum at x = 3. Setting g ″(x) = 0 yields x 3

2= , where there is an inflection point, since g ″(x) = 6(2x − 3)  
changes sign at x 3

2= .
g(x) → + ∞ as x → + ∞, and g(x) → − ∞ as x → − ∞. Since g(−1) = 29 and g(−2) = −16, the intermediate 

value theorem implies that there is a zero x0 of g between −1 and −2. (A graphing calculator shows x0 ~ −1.70.) 
That is the only zero because g is increasing up to the point (0, 36), decreasing from (0, 36) to (3, 9), and then 
increasing from (3, 9). See Fig. 15-9.
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Fig. 15-9

 9. Sketch the graph of y
x

x x( 2)( 6)

2

= − − .

There are vertical asymptotes at x = 2 and x = 6.

 y
x x x x x

x x
x x

x x
2 ( 2)( 6) 2 ( 4)

( 2) ( 6)
8 (3 )

( 2) ( 6)

2

2 2 2 2′ = − − − −
− − = −

− −

y
x x x x x x x x

x x

x x
x x

( 2) ( 6) (24 16 ) 8 (3 )(2)( 2)( 6)(2 8)
( 2) ( 6)

8(2 9 36)
( 2) ( 6)

2 2

4 4

3 2

3 3

′′ = − − − − − − − −
− −

= − +
− −

The critical numbers are x = 0 (where y = 0) and x = 3 (where y = −3). Calculation shows that y ″(0) > 0 and 
y ″(3) < 0. Hence, there is a relative minimum at x = 0 and a relative maximum at x = 3. Since y → 1 when x → ±∞, 
the line y = 1 is a horizontal asymptote on both the left and the right. Setting y ″ = 0 yields g(x) = 2x3 − 9x2 + 36 = 0. 
By Problem 8, we see that we have a unique inflection point x0 ~ −1.70 (where y ~ 0.10). See Fig. 15-10.

Fig. 15-10

10. Sketch the graph of y2(x2 − 4) = x4.

y
x

x 4
2

4

2= − . Then y
x

x 4

2

2
= ±

−
. The curve exists only for x2 > 4, that is, for x > 2 or x < −2, plus the isolated 

point (0, 0).
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The curve is symmetric with respect to both coordinate axes and the origin. So, from now on, we shall 
consider only the first quadrant. Then

y
x x
x

8
( 4)

3

2 3/2′ = −
−

    and    y
x

x
4 32

( 4)

2

2 5/2′′ = +
−

The only critical number is 2 2  (where y = 4). Since y ″ > 0, the graph is concave upward and there is a 
relative minimum at (2 2, 4). The lines x = 2 and x = −2 are vertical asymptotes. The rest of the graph in the other 
quadrants is obtained by reflection in the axes and origin. Note that there is also an oblique asymptote y = x, since  
y2 − x2 = x4/(x2 − 4) − x2 = 4/(x2 − 4) → 0 as x → ±∞. By symmetry, y = −x is also an asymptote. See Fig. 15-11.

Fig. 15-11

SUPPLEMENTARY PROBLEMS

11. Examine the functions of Problem 23(a−f) of Chapter 14.

Ans. (a)  No inflection point, concave upward everywhere
(b) No inflection point, concave downward everywhere
(c) Inflection point at x 2

3= − , concave upward for x 2
3> − , concave downward for x 2

3< −
(d) Inflection point at x = 2, concave upward for x > 2, concave downward for x < 2
(e) Inflection point at x = 2, concave downward for x > 2, concave upward for x < 2

(f  ) Inflection point at x
2 3

3
= ± , concave upward for x

2 3
3

>  and x
2 3

3
< − , concave downward for 

x
2 3

3
2 3

3
− < <

12. Prove: If f (x) = ax3 + bx2 + cx + d  has two critical numbers, their average is the abscissa at the point of inflection. 
If there is just one critical number, it is the abscissa at the point of inflection.

13. Discuss and sketch the graphs of the following equations:

(a) xy = (x2 − 9)2

Ans. Symmetric with respect to the origin, vertical asymptote x = 0, relative minimum at (3, 0), relative 
maximum at (−3, 0), no inflection points, concave upward for x > 0

(b) y
x

x1

4

2= −

Ans. Symmetric with respect to the y-axis, vertical asymptotes x = ± 1, relative minimum at (0, 0), relative 
maxima at ( 2± , − 4), no inflection points, concave upward for |x| < 1
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(c) y x
x
22= +

Ans. Vertical asymptote x = 0, relative minimum at (1, 3), inflection point at ( 2,0)3− , concave upward for 
x 23< −  and x > 0

(d) y3 = 6x2 − x3

Ans. Relative maximum at (4, 2 4 )3 , relative minimum at (0, 0), where there is a “cusp,” inflection point  
(6, 0), concave upward for x > 6, oblique asymptote y = −x + 2 to the left and the right

(e) y
x

x
1

1

2

= + −

Ans. Vertical asymptote x = 1, relative maximum at (0, 1), relative minimum at (2, 5), concave upward for x > 1 
and downward for x < 1, no inflection points, increasing for x < 0 and x > 2, decreasing for 0 < x < 1 and  
1 < x < 2, oblique asymptote y = x + 2

(f ) y
x

x 12= +

Ans. Symmetric with respect to the origin, relative maximum at (1, 1
2 ), relative minimum at (−1, 1

2− ), 
increasing on −1< x < 1, concave upward on x3 0− < <  and x 3> , concave downward on x 3< −  
and x0 3< < , inflection points at x = 0 and x 3= ± , horizontal asymptote y = 0 on both sides

(g) y x x 1= −

Ans. Defined for x ≥ 1, increasing, concave upward for x 4
3> , and downward for x 4

3< , inflection point 
( , 3)4

3
4
9

(h) y x x23= −

Ans. Relative maximum at x 3
2= , increasing for x 3

2< , concave downward for x < 2 and concave upward for  
x > 2, inflection point (2, 0)

(i) y
x
x

1
2= +

Ans. Vertical asymptote x = 0, horizontal asymptote y = 0 on both sides, relative minimum (−2, 1
4− ), increasing 

for −2 < x < 0, concave upward for −3 < x < 0 and x > 0, inflection point at (−3, 2
9− ), y → + ∞ as x → 0

14. Show that any function F(x) that is defined for all x may be expressed in one and only one way as the sum of an 
even and an odd function. [Hint: Let E x F x F x( ) ( ( ) ( ))1

2= + − .]

15. Find an equation of the new curve C1 that is obtained when the graph of the curve C with the equation x2 − 3xy + 2y2 = 1 
 is reflected in: (a) the x-axis; (b) the y-axis; (c) the origin.

Ans. (a) x2 + 3xy + 2y2 = 1; (b) same as (a); (c) C itself

16. (a) If the graph of f is symmetric with respect to the y-axis, show that f is even. (b) If the graph of f is symmetric 
with respect to the origin, then show that f is odd. [Hint: For (a), if x is in the domain of f, (x, f (x)) is on the graph 
and, therefore, (−x, f (x)) is on the graph. Thus, f (−x) = f (x).]

17. Prove Theorem 15.1: (a) If f      ″(x) > 0 for x in (a, b), then the graph of f is concave upward for a < x < b. (b) If 
f      ″(x) < 0 for x in (a, b), then the graph of f is concave downward for a < x < b.
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[For (a), let x0 belong to (a, b). Since f      ″(x0) > 0,  f      ′ is increasing in some open interval I containing x0. 
Assume x in I and x > x0. By the law of the mean, f (x) − f (x0) = f      ′(x*)(x − x0) for some x* with x0 < x* < x. Since f      ′ 
is increasing, f      ′(x0) < f      ′(x*). Then f (x) = f      ′(x*)(x − x0) + f (x0) > f      ′(x0)(x − x0) + f (x0). But y = f      ′(x0)(x − x0) + f (x0) is 
an equation of the tangent line at x0. A similar argument works when x < x0. Thus, the curve lies above the tangent 
line and, therefore, is concave upward.]

18. (GC) Use a graphing calculator to draw the graph of f (x) = x3 − 3x2 + 4x − 2. Show analytically that f is 
increasing and that there is an inflection point at (−1, 3). Use the calculator to draw the graph of f −1 and y = x, and 
observe that the graphs of f and f −1 are symmetric with respect to y = x.

19. (GC) Try to sketch the graph of y
x

x x3 5

2

3 2= − +  by standard methods and then use a graphing calculator for 

additional information (such as the location of any vertical asymptotes).
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CHAPTER 16

Review of Trigonometry

ANGLE MEASURE

The traditional unit for measuring angles is the degree. 360 degrees make up a complete rotation. However, 
it turns out that a different unit, the radian, is more useful in calculus. Consider a circle of radius 1 and 
with center at a point C. (See Fig. 16-1.) Let CA and CB be two radii for which the arc AB of the circle has 
length 1. Then one radian is taken to be the measure of the central angle ACB.

Fig. 16-1

If u is the number of degrees in angle ACB, then the ratio of u to 360° is equal to the ratio of AB to the 
circumference 2p. Since AB = 1, u/360 = 1/2p and therefore, u = 180/p. So,

 1 radian
180

degreesπ=  (1)

If p is approximated as 3.14, then 1 radian is about 57.3 degrees. Multiplying equation (1) by p/180, we 
obtain:

 1 degree
180

radians
π=  (2)

The table in Fig. 16-2 shows the radian measure of some important degree measures.
Now take any circle of radius r with center O. (See Fig. 16-3.) Let ∠DOE contain q radians and let s be 

the length of arc DE. The ratio of q to the number 2p of radians in a complete rotation is equal to the ratio 
of s to the entire circumference 2pr. So, q/2p = s/2pr. Therefore,

 θ=s r  (3)
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 Fig. 16-2 Fig. 16-3

DIRECTED ANGLES

If an angle is thought of as being generated by a rotation, then its measure will be counted as positive if the 
rotation is counterclockwise and negative if the rotation is clockwise. See, for example, angles of p/2 radians 
and −p/2 radians in Fig. 16-4. We shall also allow angles of more than one complete rotation. For example, 
Fig. 16-5 shows a counterclockwise angle generated by a complete rotation plus another quarter of a com-
plete rotation, yielding an angle of 2p + p/2 = 5p/2 radians, and an angle of 3p radians generated by one and 
a half turns in the counterclockwise direction.

  
 Fig. 16-4 Fig. 16-5

SINE AND COSINE FUNCTIONS

Consider a coordinate system with origin at O and point A at (1, 0). Rotate the arrow OA through an angle 
of q degrees to a new position OB. Then (see Fig. 16-6):

1. cos q is defined to be the x-coordinate of the point B.
2. sin q is defined to be the y-coordinate of the point B.

Fig. 16-6
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EXAMPLE 16.1:
(a) If q = p/2, the final position B is (0, 1). Hence, cos(p/2) = 0 and sin(p/2) = 1.
(b) If q = p, then B is (−1, 0). So, cos p = −1 and sin p = 0.
(c) If q = 3p/2, then B is (0, −1). So, cos(3p/2) = 0 and sin(3p/2) = −1.
(d) If q = 0 or q = 2p, then B is (1, 0). Hence, cos 0 = 1 and sin 0 = 0, and cos 2p = 1 and sin 2p = 0.

Let us see that our definitions coincide with the traditional definitions in the case of an acute angle of a tri-
angle. Let q be an acute angle of a right triangle DEF and let ∆OBG be a similar triangle with hypotenuse 1. 
(See Fig. 16-7.) Since the triangles are similar, BG BO EF ED/ /= , that is, BG b c/= , and, likewise, OG a c/= .  
Hence, cos q = a/c and sin q = b/c. This is the same as the traditional definitions:

θ =cos
adjacent side
hypotenuse

 and θ =sin
oppositeside
hypotenuse

Fig. 16-7

TABLE 16.1 

	 q
RADIANS DEGREES cos q sin q

0 0 1 0

p/6 30 √3/2 1/2

p/4 45 √2/2 √2/2

p/3 60 1/2 √3/2

p/2 90 0 1

p 180 −1 0

3p/2 270 0 −1

 We now can use the values obtained from high-school trigonometry. [See Problem 22(a−c).] Table 16-1 
lists the most useful values.

Let us first collect some simple consequences of the definitions.

(16.1) cos(q + 2p) = cos q and sin(q + 2p) = sin q
 This holds because an additional complete rotation of 2p radians brings us back to the same point.
(16.2) cos(−q	) = cos q and sin(−q	) = −sin q (see Fig. 16-8)
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(16.3) sin2 q + cos2 q = 1 [In accordance with traditional notation, sin2 q and cos2 q stand for (sin q	)2 and 
(cos q	)2.]

In Fig. 16-6, θ θ= = +OB1 cos sin2 2  by Problem 1 of Chapter 2. (16.3) implies sin2 q  = 1 − cos2 q  
and cos2 q = 1 − sin2 q.

  

 Fig. 16-8 Fig. 16-9

(16.4) In the four quadrants, the sine and cosine have the signs shown in Fig. 16-9.
(16.5) For any point A(x, y) different from the origin O, let r be its distance from the origin, and let q be 

the radian measure of the angle from the positive x-axis to the arrow OA. (See Fig. 16-10.) The pair 
(r, q) are called polar coordinates of A. Then x = r cos q and y = r sin q. (See Problem 8.)

For the derivation of more complicated formulas, we shall depend on the following result.

(16.6) cos(u − v) = cos u cos v + sin u sin v
 For the proof, see Problem 11.
(16.7) cos(u + v) = cos u cos v − sin u sin v
 Replace v by − v in (16.6) and use (16.2).
(16.8) cos(p/2 − v) = sin v and sin(p/2 − v) = cos v
 Replace u by p/2 in (16.6) and use cos(p/2) = 0 and sin(p/2) = 1. This yields cos(p/2 − v) = sin v. In 

this formula, replace v by (p/2 − v) to obtain cos v = sin(p/2 − v).
(16.9) sin(u + v) = sin u cos v + cos u sin v
 By (16.6) and (16.8),

u u u

u u u u

sin( ) cos[( /2) ( )] cos[( /2 ) ]

cos( /2 )cos sin( /2 )sin sin cos cos sin

π π

π π

+ = − + = − −

= − + − = +

v v v

v v v v

(16.10) sin(u − v) = sin u cos v − cos u sin v
 Replace v by − v in (16.9) and use (16.2).
(16.11) cos 2u = cos2 u − sin2 u = 2 cos2 u − 1 = 1 − 2 sin2 u
 Replace v by u in (16.7) to get cos 2u = cos2 u − sin2 u. Use sin2 u = 1 − cos2 u and cos2 u = 1 − sin2 u  

to obtain the other two forms.
(16.12) sin 2u = 2 sin u cos u
 Replace v by u in (16.9).

(16.13) 




 = +u u

cos
2

1 cos
2

2

= ⋅



 = 



 −u

u u
cos cos 2

2
2cos

2
12
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 by (16.11). Now solve for 





u
cos

2
2 .

Fig. 16-10

(16.14) 



 = −u u

sin
2

1 cos
2

2

 By (16.3) and (16.13),





 = − 



 = − + = −u u u u

sin
2

1 cos
2

1
1 cos

2
1 cos

2
2 2

(16.15) (a) (Law of Cosines). In any triangle ∆ABC (see Fig. 16-11),

θ= + −c a b ab2 cos2 2 2

  For a proof, see Problem 11(a).

 (b) (Law of Sines)

= =A
a

B
b

C
c

sin sin sin

  where sin A is ∠BACsin( ), and similarly for sin B and sin C.

Fig. 16-11
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SOLVED PROBLEMS

 1. Translate the following degree measures into radian measures: (a) 54°; (b) 120°.

(a) 54 54
180

radians
3

10
radians

π π° = 



 =

(b) 120 120
180

radians
2
3

radians
π π° = 



 =

 2. Translate the following radian measures into degree measures: (a) 
π2
5

radians; (b) 
π5
6

radians; (c) 2 radians.

(a) 
π π

π= 



 = °2

5
radians

2
5

180
degrees 72

(b) 
π π

π= 



 = °5

6
radians

5
6

180
degrees 150

(c) π π= 



 = 





°
2 radians 2

180
degrees

360

 3. (a)  In a circle of radius r = 3 centimeters, what arc length s along the circumference corresponds to a central 
angle q of p/6 radians?

(b) In a circle of radius 4 feet, what central angle corresponds to an arc length of 8 feet?

We know that s = rq, where q is measured in radians.

(a) 
π π= 



 =s 3

6 2
centimeters

(b) θ = 



 = =s

r
8
4

2 radians

 4. What rotations between 0 and 2p radians have the same effect as the rotations with the following measures?  

(a) 
π11

4
radians; (b) 405°; (c) 

π−
3

radians; (d) −5p radians.

(a) 
π π π= +11

4
2

3
4

. So, the equivalent rotation is 
π3
4

radians.

(b) 405° = (360 + 45)°. So, the equivalent rotation is 45°.

(c) 
π π π− + =
3

2
5
3

. So, the equivalent rotation is 
π5
3

radians.

(d) −5p + 6p = p. So, the equivalent rotation is p radians.

 5. Find sin q if q is an acute angle such that θ =cos 4
5 .

By (16.3), θ+ =sin 14
5

2 2 . So, θ =sin2 9
25  and therefore, θ = ±sin 3

5 . Since q is acute, sin q is positive. So, 
θ =sin 3

5 .

 6. Show that sin (p − q) = sin q and cos (p − q) = −cos q.
By (16.10), sin (p − q) = sin p cos q − cos p sin q = (0) cos q − (−l)sin q = sin q. By (16.6), cos (p − q) =  

cos p cos q + sin p sin q = (−1) cos q + (0) sin q = −cos q.

 7. Calculate the following values: (a) sin 2p/3; (b) sin
7
3
π

; (c) cos 9p; (d) sin 420°; (e) cos 3p/4; (f) cos p/12; 
(g) sin p/8; (h) sin 19°.

(a) By Problem 6, 
π π π π= −



 = =sin

2
3

sin
3

sin
3

3
2

(b) By (16.1), 
π π π π= +



 = =sin

7
3

sin 2
3

sin
3

3
2

(c) By (16.1), cos 9p = cos (p + 8p) = cos p = −1

(d) By (16.1), °= + °= °=sin390 sin(30 360) sin30 1
2
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(e) By Problem 6, 
π π π π= −



 = − = −cos

3
4

cos
4

cos
4

2
2

(f ) 
π π π π π π π= −



 = + = + = +

cos
12

cos
3 4

cos
3

cos
4

sin
3

sin
4

1
2

2
2

3
2

2
2

2 6
4

(g) By (16.14), sin
8

1 cos( /4)
2

1 ( 2 /2)
2

2 2
4

2 π π



 = − = − = −

. Hence, 
π = ± −

sin
8

2 2
2

. Since 
π π< <0
8 2 , 

π
sin

8  is positive and therefore, 
π = −

sin
8

2 2
2

.

(h) 19° cannot be expressed in terms of more familiar angles (such as 30°, 45°, or 60°) in such a way that any of 
our formulas are applicable. We must then use the sine table in Appendix A, which gives 0.3256; this is an 
approximation correct to four decimal places.

 8. Prove the result of (16.5): If (r, q) are polar coordinates of (x, y), then x = r cos q and y = r sin q.
Let D be the foot of the perpendicular from A(x, y) to the x-axis (see Fig. 16-12). Let F be the point on the ray 

OA at a unit distance from the origin. Then F = (cos q, sin q). If E is the foot of the perpendicular from F to the  
x-axis, then θ=OE cos  and θ=FE sin  Since ∆ADO is similar to ∆FEO (by the AA criterion), we have:

= =OD

OE

OA

OF

AD

FE
,  that is, 

θ θ= =x r y
cos 1 sin

Hence, x = r cos q and y = r sin q. When A(x, y) is in one of the other quadrants, the proof can be reduced to 
the case where A is in the first quadrant. The case when A is on the x-axis or the y-axis is very easy.

Fig. 16-12

 9. Find rectangular coordinates of the point with polar coordinates r = 3, q = p/6.

By (16.5), θ π= = =x r cos 3cos
6

3
3

2 , and θ π= = = 



 =y r sin 3sin

2
3

1
2

3
2

.

10. Find polar coordinates of the point (1, 3 ).
By (16.5), r2 = x2 + y2 = 1 + 3 = 4. Then r =  2. So, θ = =x

r
cos

1
2

, and θ = =y
r

sin
3

2 . Thus, θ π=
3 .

11. (a) Prove the law of cosines [16.15(a)]. (b) Prove the law of sines [16.15(b)].

(a) See Fig. 16-11. Take a coordinate system with C as origin and B on the positive x axis. Then B has 
coordinates (a, 0). Let (x, y) be the coordinates of A. By (16.5), x = b cos q and y = b sin q. By the distance 
formula (2.1),

= − + − = − +c x a y x a y( ) ( 0) ( )2 2 2 2

16_Mendelson_ch16_p139-148.indd   145 27/07/21   11:02 AM



146 CHAPTER 16 Review of  Tr igonometr y

Therefore,

c x a y b a b

b ab a b u u u

a b ab

a b ab

( ) ( cos ) ( sin )

cos 2 cos sin [Algebra: ( ) 2 ]

(cos sin ) 2 cos

2 cos [by (16.3)]

2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2

2 2

θ θ

θ θ θ

θ θ θ

θ

= − + = − +

= − + + − = − +

= + + −

= + −

v v v

(b) See Fig. 16-13. Let D be the foot of the perpendicular from A to side BC, and let =h AD. Then 
B AD AB h csin / /= = . Thus, h = c sin B and so the area of ∆ = × = =ABC ah ac B(base height) sin1

2
1
2

1
2 . 

(Verify that this also holds when ∠B is obtuse.) Similarly, = ∆ =bc A ABC ab Csin the area of sin1
2

1
2 .  

Hence, = =ac B bc A ab Csin sin sin1
2

1
2

1
2 . Dividing by abc1

2 , we obtain the law of sines.

Fig. 16-13

12. Prove the identity (16.6): cos(u − v) = cos u cos v + sin u sin v.
Consider the case where 0 ≤ v < u < v + p. (See Fig. 16-14.) By the law of cosines, 

= + − ∠BC BOC1 1 2(1)(1)cos( )2 2 2 . Thus,

u u u

u u u u u

u u u u u

u u u

u u u

(cos cos ) (sin sin ) 2 2cos( )

cos 2cos cos cos sin 2sin sin sin 2 2cos( )

(cos sin ) (cos sin ) 2(cos cos sin sin ) 2 2cos( )

1 1 2(cos cos sin sin ) 2 2cos( )

cos cos sin sin cos( )

2 2

2 2 2 2

2 2 2 2

− + − = − −

− + + − + = − −

+ + + − + = − −

+ − + = − −

+ = −

v v v

v v v v v

v v v v v

v v v

v v v

All the other cases can be derived from the case above.

Fig. 16-14
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SUPPLEMENTARY PROBLEMS

13. Change the following radian measures into degree measures: (a) 4 radians; (b) p/10 radians; (c) 11p/12 radians.

Ans. (a) (720/p)°; (b) 18°; (c) 165°

14. Change the following degree measures into radian measures: (a) 9°; (b) 75°; (c) (90/p)°.

Ans. (a) p/20 radians; (b) 5p/12 radians; (c) radian1
2

15. Refer to the notation of Fig. 16-3. (a) If r = 7 and q = p/14, find s; (b) If q = 30° and s = 2, find r.

Ans. (a) p/2; (b) 12/p

16. Find the angle of rotation between 0 and 2p that has the same effect as the following rotations: (a) 17p/4; 
(b) 375°; (c) −p/3; (d) −7p/2.

Ans. (a) p/4; (b) 15°; (c) 5p/3; (d) p/2

17. Evaluate: (a) cos (4p/3); (b) sin(11p/6); (c) cos210°; (d) sin315°; (e) cos75°; (f) sin73°.

Ans. (a) − 1
2 ; (b) − 1

2 ; (c) − 3 /2; (d) − 2 /2 ; (e) −( 2 3 )/2; (f) approximately 0.9563

18. Assume q is acute and θ =sin 1
4 . Evaluate: (a) cos q; (b) sin 2q; (c) cos 2q; (d) cos (q/2).

Ans. (a) 15 /4; (b) 15 /8; (c) 7
8

; (d) +( 8 2 15 )/4

19. Assume q is in the third quadrant (p < q < 3p/2) and θ = −cos 4
5 . Find: (a) sin q; (b) cos 2q; (c) sin(q/2).

Ans. (a) − 3
5 ; (b) 

7
25; (c) (3 10) /10

20. In ∆ABC, =AB 5, =AC 7, and ∠ =ABCcos( ) 3
5 . Find BC.

Ans. 4 2

21. Prove the identity 
θ
θ

θ
θ= −sin

cos
1 cos2

sin 2
.

22. Derive the following values: (a) 
π π= =sin
4

cos
4

2
2

; (b) 
π π= =sin
6

cos
3

1
2

; (c) 
π π= =sin
3

cos
6

3
2

[Hints: (a) Look at an isosceles right triangle ∆ABC. (b) Consider an equilateral triangle ∆ABC of side 1.  
The line AD from A to the midpoint D of side BC is perpendicular to BC. Then =BD 1

2 . Since ∠ABD  
contains p/3 radians, π = = =BD ABcos( /3) / (1/2)/1 1

2 . By (16.8), sin (p/6) = cos (p/2 − p/6) = cos (p/3).  
(c) π π= − = − =sin ( /3) 1 cos ( /3) 12 2 1

4
3
4 . So, π =sin( /3) 3 /2  and cos (p/6) = sin (p/3) by (16.8).]
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CHAPTER 17

Differentiation of  
Trigonometric Functions

CONTINUITY OF cos x AND sin x

It is clear that cos x and sin x are continuous functions, that is, for any q,

hlim cos ( ) cos
h 0

θ θ+ =
→

 and  hlim sin ( ) sin
h 0

θ θ+ =
→

To see this, observe that, in Fig. 17-1, as h approaches 0, point C approaches point B. Hence, the x-coordinate  
of C [namely, cos (q + h)] approaches the x-coordinate of B (namely, cos q ), and the y-coordinate of C 
[namely, sin (q + h)] approaches the y-coordinate of B (namely, sin q ).

Fig. 17-1

To find the derivative of sin x and cos x, we shall need the following limits.

(17.1) lim
sin

1
0

θ
θ =

θ→

(17.2) lim
1 cos

0
0

θ
θ

− =
θ→

For a proof of (17.1), see Problem 1. From (17.1), (17.2) is derived as follows:

1 cos 1 cos 1 cos
1 cos

1 cos
(1 cos )

sin
(1 cos )

sin sin
1 cos

.

2

2

θ
θ

θ
θ

θ
θ

θ
θ θ

θ
θ θ

θ
θ

θ
θ

− = − ⋅ +
+ = −

+

= + = ⋅ +
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Hence,

lim
1 cos

lim
sin

lim
sin

1 cos
1

sin 0
1 cos0

1
0

1 1
1 0 0

0 0 0

θ
θ

θ
θ

θ
θ

− = ⋅ + = ⋅ + = ⋅ + = ⋅ =
θ θ θ→ → →

(17.3) D x x(sin ) cosx =

(17.4) D x x(cos ) sinx = −

For a proof of (17.3), see Problem 2. From (17.3) we can derive (17.4), with the help of the Chain Rule 
and (16.8), as follows:

D x D x x x(cos ) sin
2

cos
2

( 1) sinx x

π π= −











= −



 ⋅ − = −

GRAPH OF sin x

Since sin (x + 2p) = sin x, we need only construct the graph for 0 ≤ x ≤ 2p. Setting Dx(sin x) = cos x = 0 
and noting that cos x = 0 in [0, 2p] if and only if x = p /2 or x = 3p /2, we find the critical numbers p /2 and 
3p /2. Since D x D x x(sin ) (cos ) sinx x

2 = = − , and - sin(p /2) = -1 < 0 and -sin(3p/2) = 1 > 0, the second de-
rivative test implies that there is a relative maximum at (p /2, 1) and a relative minimum at (3p /2, -1). Since  
Dx(sin x) = cos x is positive in the first and fourth quadrants, sin x is increasing for 0 < x < p /2 and for  
3p /2 < x < 2p. Since D x x(sin ) sinx

2 = −  is positive in the third and fourth quadrants, the graph is concave 
upward for p < x < 2p. Thus, there will be an inflection point at (p, 0), as well as at (0, 0) and (2p, 0). Part 
of the graph is shown in Fig. 17-2.

GRAPH OF cos x 
Note that sin (p /2 + x) = sin (p /2) cos x + cos (p /2) sin x = 1· cos x + 0 · sin x = cos x. Thus, the graph of  
cos x can be drawn by moving the graph of sin x by p /2 units to the left, as shown in Fig. 17-3.

3π
2

– –π π
2

– π
6

π
4

π
3

π π
2

y

y = sin x

x3π
4

3π
2

2π0

–1

1

Fig. 17-2

 

–π π
2

– π
6

π
4

π
3

π π
2

y

y = cos x

x3π
4

3π
2

5π
2

2π0

–1

1

Fig. 17-3
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The graphs of y = sin x and y = cos x consist of repeated waves, with each wave extending over an interval 
of length 2p. The length ( period) and height (amplitude) of the waves can be changed by multiplying the 
argument and the value, respectively, by constants.

EXAMPLE 17.1: Let y = cos 3x. The graph is sketched in Fig. 17-4. Because cos 3(x + 2p /3) = cos (3x + 2p) = 
cos 3x, the function is of period p = 2p /3. Hence, the length of each wave is 2p /3. The number of waves over an 
interval of length 2p (corresponding to one complete rotation of the ray determining the angle x) is 3. This number is 
called the frequency f of cos 3x. In general, pf = (length of each wave) × (number of waves in an interval of 2p) = 2p.  
Hence, f = 2p /p.

2π
3

–
π
2

– π
6

–π
3

– π
6

π
2

π
3

y

x5π
6

4π
3

2π
3

2π0

–1

1

Fig. 17-4

For any b > 0, the functions sin bx and cos bx have frequency b and period 2p/b.

EXAMPLE 17.2: y = 2 sin x. The graph of this function (see Fig. 17-5) is obtained from that of y = sin x by doubling 
the y values. The period and frequency are the same as those of y = sin x, that is, p = 2p and f = 1. The amplitude,  
the maximum height of each wave, is 2.

3π
3

–
π
2

–− π π
2

y

xπ 3π
2

2π0

–1

–2

2

1

Fig. 17-5

EXAMPLE 17.3: In general, if b > 0, then y = A sin bx and y = A cos bx have period 2p/b, frequency b, and ampli-
tude |A|. Figure 17-6 shows the graph of y = 1.5 sin 4x.
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π−π π
8

π
4

π
2

y

x3π
2

3π
8

2π0

0.5

1

1.5

Fig. 17-6

OTHER TRIGONOMETRIC FUNCTIONS

x
x
x

x
x
x x

x
x

x
x

Tangent tan
sin
cos

Cotangent cot
cos
sin

1
tan

Secant sec
1

cos

Cosecant csc
1

sin

=

= =

=

=

DERIVATIVES

(17.5) D x x(tan ) secx
2=

(17.6) D x x(cot ) cscx
2= −

(17.7) D x x x(sec ) tan secx =

(17.8) D x x x(csc ) cot cscx = −

For the proofs, see Problem 3.

OTHER RELATIONSHIPS

(17.9) x xtan 1 sec2 2+ =

 x
x
x

x x
x x

xtan 1
sin
cos

1
sin cos

cos
1

cos
sec2

2

2

2 2

2 2
2+ = + = + = =

(17.10) x x x xtan( ) tan and cot ( ) cotπ π+ = + =

Thus, tan x and cot x have period p. See Problem 4.

(17.11) x x x xtan( ) tan and cot ( ) cot− = − − = −

 x
x
x

x
x

x
x

x xtan( )
sin( )
cos( )

sin
cos

sin
cos

tan , and similarly for cot− = −
− = − = − = −
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GRAPH OF y = tan x

Since tan x has period p, it suffices to determine the graph in (-p /2, p /2). Since tan (-x) = -tan x, we need 
only draw the graph in (0, p /2) and then reflect in the origin. Since tan x = (sin x)/(cos x), there will be vertical 
asymptotes at x = p /2 and x = -p /2. By (17.5), D

x
(tan x) > 0 and therefore, tan x is increasing.

D x D x x x x x x(tan ) (sec ) 2sec (tan sec ) 2 tan secx x
2 2 2= = = .

Thus, the graph is concave upward when tan x > 0, that is, for 0 < x < p /2, and there is an inflection point 
at (0, 0). Some special values of tan x are given in Table 17-1, and the graph is shown in Fig. 17-7.

TABLE 17-1

      x     tan x

0 0
π
6

3
3

~ 0.58
π
4 1
π
3 3 ~ 1.73

Fig. 17-7

 For an acute angle q of a right triangle,

tan
sin
cos

opposite
hypotenuse

adjacent
hypotenuse

opposite
adjacent

θ θ
θ= = ÷ =
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GRAPH OF y = sec x 

Since sec x = 1/(cos x), the graph will have a vertical asymptote x = x0 for all x0 for which cos x0 = 0, that 
is, for x = (2n + 1)p/2, where n is any integer. Like cos x, sec x has a period of 2p, and we can confine our 
attention to (-p, p). Note that |sec x| ≥ 1, since |cos x| ≤ 1. Setting D

x
(sec x) = tan x sec x = 0, we find critical 

numbers at x = 0 and x = p, and the first derivative test tells us that there is a relative minimum at x = 0 and 
a relative maximum at x = p.

Since

D x D x x x x x x x x x x(sec ) (tan sec ) tan (tan sec ) sec (sec ) sec (tan sec )x x
2 2 2 2= = + = +

there are no inflection points and the curve is concave upward for -p /2 < x < p /2. The graph is shown in 
Fig. 17-8.

Fig. 17-8

ANGLES BETWEEN CURVES 

By the angle of inclination of a nonvertical line , we mean the smaller counterclockwise angle α from 
the positive x-axis to the line. (See Fig. 17-9.) If m is the slope of , then m = tan α. [To see this, look at 
Fig. 17-10, where the line ' is assumed to be parallel to  and therefore, has the same slope m. Then m =  
(sin α - 0)/(cos α - 0) = (sin α)/(cos α) = tan α.]

 
 Fig. 17-9 Fig. 17-10

By the angle between two curves at a point of intersection P, we mean the smaller of the two angles  
between the tangent lines to the curves at P. (See Problems 17 and 18.)
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SOLVED PROBLEMS

 1. Prove (17.1): 
θ

θ =
θ→
lim

sin
1

0
.

Since 
θ

θ
θ

θ
−

− =sin( ) sin
, we need consider only q > 0. In Fig. 17-11, let θ = ∠AOB be a small positive  

central angle of a circle of radius OA = OB = 1. Let C be the foot of the perpendicular from B onto OA. Note 
that OC = cosq and CB = sinq. Let D be the intersection of OB and an arc of a circle with center at O and 
radius OC. So,

COD COB AOBarea of sector area of area of sector≤ ∆ ≤

Fig. 17-11

Observe that area of sector θ θ=COD cos1
2

2  and that area of sector θ=AOB 1
2 . [If W is the area of a sector 

determined by a central angle q of a circle of radius r, then W/(area of circle) = q/2p. Thus, W/pr2 = q/2p and 
therefore, θ=W r1

2
2.]

Hence,

θ θ θ θ θ≤ ≤cos sin cos1
2

2 1
2

1
2

Division by θ θ >cos 01
2  yields

θ θ
θ θ≤ ≤cos

sin 1
cos

As q approaches 0+, cosq  →1, 1/(cos q ) →1. Hence,

θ
θ

θ
θ≤ ≤ =

θ θ→ →
1 lim

sin
1 Thus lim

sin
1

0 0

 2. Prove (17.3): Dx(sin x) = cos x.

Here we shall use (17.1) and (17.2).
Let y = sin x. Then y + ∆y = sin (x + ∆x) and

y x x x x x x x x

x x x x

dy
dx

y
x

x
x

x
x

x
x

x
x

x
x

x
x

x x x

sin( ) sin cos sin sin cos sin

cos sin sin (cos 1)

lim lim cos
sin

sin
cos 1

(cos ) lim
sin

(sin ) lim
cos 1

(cos )(1) (sin )(0) cos

x x

x x

0 0

0 0

∆ = + ∆ − = ∆ + ∆ −

= ∆ + ∆ −

= ∆
∆ = ∆

∆ + ∆ −
∆







= ∆
∆ + ∆ −

∆

= + =

∆ → ∆ →

∆ → ∆ →

 3. Prove: (a) Dx(tan x) = sec2 x (17.5); (b) Dx(sec x) = tan x sec x (17.7).

(a) = 



 = − −

= + = =

d
dx

x
d
dx

x
x

x x x x
x

x x
x x

x

(tan )
sin
cos

cos cos sin ( sin )
cos

cos sin
cos

1
cos

sec

2

2 2

2 2
2
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(b) Differentiating both sides of (17.9), tan2 x + 1 = sec2 x, by means of the Chain Rule, we get

x x x D x2 tan sec 2sec (sec )x
2 =

Hence, D
x
(sec x) = tan x sec x.

 4. Prove (17.10): tan(x + p) = tan x.

π π π

π π π

+ = + = −

+ = − = −

x x x x

x x x x

sin( ) sin cos cos sin sin

cos( ) cos cos sin sin cos

Hence,

π
π
π+ =

+
+ = −

− = =x
x
x

x
x

x
x

xtan( )
sin( )
cos( )

sin
cos

sin
cos

tan

 5. Derive u
u

u
tan( )

tan tan
1 tan tan

− = −
+v

v
v

− = −
− = −

+

=
−

+

= −
+

v
v
v

v v
v v

v
v
v
v

v

v
v

u
u
u

u u
u u

u
u

u
u

u

u
u

tan( )
sin( )
cos( )

sin cos cos sin
cos cos sin sin

sin
cos

sin
cos

1
sin
cos

sin
cos

(divide numerator and denominator by cos cos )

tan tan
1 tan tan

 

 6. Calculate the derivatives of the following functions: (a) 2cos 7x; (b) sin3 (2x); (c) tan (5x); (d) sec (1/x).

(a) Dx(2 cos 7x) = 2(-sin 7x)(7) = -14 sin 7x
(b) Dx(sin3 (2x)) = 3 (sin2 (2x))(cos (2x))(2) = 6 sin2 (2x) cos (2x)
(c) Dx(tan (5x)) = (sec2 (5x))(5) = 5 sec2 (5x)
(d) Dx(sec (1/x)) = tan(1/x) sec(1/x)(-1/x2) = -(1/x2) tan(1/x) sec(1/x)

 7. Find all solutions of the equation =xcos 1
2 .

Solving + =y( ) 11
2

2 2 , we see that the only points on the unit circle with abscissa 1
2  are ( , 3 /2)1

2  and 
−( , 3 /2)1

2 . The corresponding central angles are p/3 and 5p/3. So, these are the solutions in [0, 2p]. Since cos x 
has period 2p, the solutions are p/3 + 2pn and 5p/3 + 2pn, where n is any integer.

 8. Calculate the limits (a) 
x

x
lim

sin5
2x 0→

; (b) 
→

x
x

lim
sin3
sin 7x 0

; (c) 
→

x
x

lim
tan

x 0

(a) = = = =
→ → →

x
x

x
x

u
u

lim
sin5

2
lim

5
2

sin5
5

5
2

lim
sin

(1)
x x u0 0 0

5
2

5
2

(b) = ⋅ ⋅ =

= =

→ → → →

x
x

x
x

x
x

u
u

u
u

lim
sin3
sin 7

lim
sin3

3
7

sin 7
3
7

3
7

lim
sin

lim
sin

(1)(1)

x x u u0 0 0 0

3
7

3
7

(c) = ⋅ = ⋅

= =

→ → → →

x
x

x
x x

x
x x

lim
tan

lim
sin 1

cos
lim

sin
lim

1
cos

(1)( ) 1

x x x u0 0 0 0

1
1
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 9. Let y = x sin x. Find ′′′y .

′ = +

′′ = − + + = − +

′′′ = − − − = − −

y x x x

y x x x x x x x

y x x x x x x x

cos sin

( sin ) cos cos sin 2cos

cos sin 2sin cos 3sin

10. Let y = tan2(3x - 2). Find y″.

′ = − − ⋅ = − −

′′ = − ⋅ − ⋅ − − ⋅ + − − ⋅

= − − + −

y x x x x

y x x x x x x

x x x

2 tan(3 2)sec (3 2) 3 6 tan(3 2)sec (3 2)

6[tan(3 2) 2sec(3 2) sec(3 2) tan(3 2) 3 sec (3 2)sec (3 2) 3]

36 tan (3 2)sec (3 2) 18sec (3 2)

2 2

2 2

2 2 4

11. Assume y = sin (x + y). Find y′.

′ = + ⋅ + ′ = + + + ⋅ ′y x y y x y x y ycos( ) (1 ) cos( ) cos( ) ( )

Solving for y′,

′ = +
− +y

x y
x y

cos( )
1 cos( )

12. Assume sin y + cos x = 1. Find y″.

⋅ ′ − = ′ =

′′ = − − ⋅ ′ = + ⋅ ′

= + = +

y y x y
x
y

y
y x x y y

y
x y x y y

y

x y x y x y
y

x y x y
y

cos sin 0. So
sin
cos

cos cos sin ( sin )
cos

cos cos sin sin
cos

cos cos sin sin (sin )/(cos )
cos

cos cos sin sin
cos

2 2

2

2 2

3

13. A pilot is sighting a location on the ground directly ahead. If the plane is flying 2 miles above the ground at 
240 mi/h, how fast must the sighting instrument be turning when the angle between the path of the plane and the 
line of sight is 30°? See Fig. 17-12.

Fig. 17-12

θ= − =dx
dt

x240 mi/h and 2cot

From the last equation, θ θ= −dx
dt

d
dt

2csc2 . Thus, 
θ− = − d

dt
240 2(4)  when q = 30°

θ
π=d

dt
30 rad/h =

3
2

deg/s
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14. Sketch the graph of f (x) = sin x + cos x.
f (x) has a period of 2p. Hence, we need only consider the interval [0, 2p]. f ′(x) = cos x - sin x, and f ″(x) =  

-(sin x + cos x). The critical numbers occur where cos x = sin x or tan x = 1, x = p/4 or x = 5p/4.  

π′′ = − + = − <f ( /4) ( 2 /2 2 /2) 2 0. So, there is a relative maximum at π= =x y/4, 2.  
π′′ = − − − = >f (5 /4) ( 2 /2 2 /2) 2 0. Thus, there is a relative minimum at π= = −x y5 /4, 2. The  

inflection points occur where f  ″(x) = -(sin x + cos x) = 0, sin x = -cos x, tan x = -l, x = 3p/4 or x = 7p/4, y = 0.  
See Fig. 17-13.

2ππ
4

1
2

y

x
4 4

3π 5π 7π
4

2–

Fig. 17-13

15. Sketch the graph of f (x) = cos x - cos2 x.

′ = − − − = −f x x x x x x( ) sin 2(cos )( sin ) (sin )(2cos 1)
and

′′ = − + −

= − − = − −

f x x x x x

x x x x x

( ) (sin )( 2sin ) (2cos 1)(cos )

2(cos sin ) cos 4 cos cos 22 2 2

 Since f has period 2p, we need only consider [-p, p], and since f is even, we have to look at only [0, p]. The 
critical numbers are the solutions in [0, p] of sin x = 0 or 2 cos x - 1 = 0. The first equation has solutions 0 and p, 
and the second is equivalent to =xcos 1

2, which has the solution p /3. f ″(0) = 1 > 0; so there is a relative minimum 
at (0, 0). f ″(p) = 3 > 0; so there is a relative minimum at π π− ′′ = − <f( , 2). ( /3) 03

2 ; hence there is a relative 
maximum at π( /3, )1

4 . There are inflection points between 0 and p/3 and between p/3 and p; they can be found by 
using the quadratic formula to solve 4 cos2 x - cos x - 2 = 0 for cos x and then using a cosine table or a calculator 
to approximate x. See Fig. 17-14.

2
–

1

–1

–2

2

3
–

4
1

3 2

y

x

Fig. 17-14

16. Find the absolute extrema of f (x) = sin x + x on [0, 2p].
f  ′ (x) = cos x + 1. Setting f  ′ (x) = 0, we get cos x = -1 and therefore, the only critical number in [0, 2p] is  

x = p. We list p and the two endpoints 0 and 2p and compute the values of f (x).

x f (x)

p p
0 0

2p 2p
Hence, the absolute maximum 2p is achieved at x = 2p, and the absolute minimum 0 at x = 0.

17_Mendelson_ch17_p149-162.indd   158 28/07/21   9:28 AM



159CHAPTER 17 Differentiation of Trigonometric Functions 

17. Find the angle at which the lines = +y x: 11�  and = − +y x: 3 52�  intersect.
Let a1 and a2 be the angles of inclination of 1�  and 2�  (see Fig. 17-15), and let m1 and m2 be the 

respective slopes. Then tan a1 = m1 = 1 and tan a2 = m2 = -3. a2 - a1 is the angle of intersection. Now by 
Problem 5,

α α α α
α α− =
−

+ =
−

+ = − −
+ −

= −
− =

m m
m m

tan( )
tan tan

1 tan tan 1
3 1

1 ( 3)(1)

4
2

2

2 1
2 1

1 2

2 1

1 2

From a graphing calculator, α2 - α1 ~ 63.4°.

y

α2 – α1

α2

ℒ2

ℒ1

α1

x

Fig. 17-15

18. Find the angle a between the parabolas y = x2 and x = y2 at (1, 1).
Since Dx(x

2) = 2x and =D x x( ) 1 / (2 )x , the slopes at (1, 1) are 2 and 1
2 . Hence, α = −

+ = =tan
2 ( )

1 2( ) 2
3
4

1
2
1
2

3
2 . 

Thus, using a graphing calculator, we approximate α by 36.9°.

SUPPLEMENTARY PROBLEMS

19. Show that cot(x + p) = cot x, sec(x + 2p) = sec x, and csc(x + 2p) = csc x.

20. Find the period p, frequency f, and amplitude A of 5 sin(x/3) and sketch its graph.

Ans. π= = =p f A6 , , 51
3

21. Find all solutions of cos x = 0.

Ans. π= +x n(2 1)
2

 for all integers n

22. Find all solutions of tan x = 1.

Ans. π= +x n(4 1)
4

 for all integers n
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23. Sketch the graph of = −f x
x

x
( )

sin
2 cos

.

Ans. See Fig. 17-16.

Fig. 17-16

24. Derive the formula u
u

u
tan( )

tan tan
1 tan tan

+ = +
−v

v
v .

25. Find y′.

(a) y = sin 3x + cos 2x Ans. y′ = 3 cos 3x - 2 sin 2x
(b) y = tan(x2) Ans. y′ = 2x sec2 (x2)
(c) y = tan2 x Ans. y′ = 2 tan x sec2 x
(d) y = cot(l - 2x2) Ans. y′ = 4x csc2 (1 - 2x2)
(e) y = x2 sin x Ans. y′ = x2 cos x + 2x sin x
(f) =y

x
x

cos
 Ans. ′ = − −

y
x x x

x
sin cos

2

26. Evaluate: (a)
→

ax
bx

lim
sin
sinx 0

; (b) 
→

x
x x

lim
sin (2 )
sin (3 )x 0

3

2

Ans. (a) a
b

; (b) 8
9

27. lf x = A sin kt + B cos kt, show that = −d x
dt

k x
2

2
2 .

28. (a)  If y = 3 sin(2x + 3), show that y″+ 4y = 0. (b) If y = sin x + 2 cos x, show that ′′′ + ′′ + ′ + =y y y y 0.

29. (i) Discuss and sketch the following on the interval 0 ≤ x < 2p. (ii) (GC) Check your answers to (i) on a graphing 
calculator.

(a) =y xsin 21
2

(b) y = cos2x - cos x
(c) y = x - 2 sin x
(d) y = sin x(l   +   cos x)
(e) y = 4 cos3 x - 3 cos x

Ans. (a)  maximum at x = p/4, 5p/4; minimum at x = 3p/4, 7p/4; inflection point at x = 0, p/2, p, 3p/2
 (b)  maximum at x = 0, p; minimum at x = p/3, 5p/3; inflection point at x = 32°32', 126°23′, 233°37′, 

327°28′
 (c)  maximum at x = 5p/3; minimum at x = p/3; inflection point at x = 0, p
 (d) maximum at x = p/3; minimum at x = 5p/3; inflection point at x = 0, p, 104°29′, 255°31′
 (e)  maximum at x = 0, 2p/3, 4p/3; minimum at x = p/3, p, 5p/3; inflection point at x = p/2, 3p/2, p/6, 

5p/6, 7p/6, 11p/6
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161CHAPTER 17 Differentiation of Trigonometric Functions 

30. If the angle of elevation of the sun is 45° and is decreasing by 1
4  radians per hour, how fast is the shadow cast on 

the ground by a pole 50 ft tall lengthening?

Ans. 25 ft/h

31. Use implicit differentiation to find y′: (a) tan y = x2; (b) cos (xy) = 2y.

Ans. (a) y′ = 2x cos2 y; (b) ′ = − +y
y xy

x xy
sin( )

2 sin( )
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CHAPTER 18

Inverse Trigonometric Functions

The sine and cosine functions and the other trigonometric functions are not one-to-one and, therefore, do 
not have inverse functions. However, it is possible to restrict the domain of trigonometric functions so that 
they become one-to-one.

Looking at the graph of y = sin x (see Fig. 17-2), we note that on the interval - p  /2 ≤ x ≤ p  /2 the restriction 
of sin x is one-to-one. We then define sin-1 x to be the corresponding inverse function. The domain of this 
function is [-1, 1], which is the range of sin x. Thus,

1. sin-1 x = y if and only if sin y = x.
2. The domain of sin-1 x is [-1, 1].
3. The range of sin-1 x is [-p  /2, p  /2].

The graph of sin-1 x is obtained from the graph of sin x by reflection in the line y = x. See Fig. 18-1.

Fig. 18-1

EXAMPLE 18.1: In general, sin-1 x = the number y in [-p  /2, p  /2] such that sin y = x. In particular, sin-1 0 = 0,  
sin-1 1 = p  /2, sin-1 (-1) = -p  /2, sin ( ) /61 1

2 π=− , sin ( 2 /2) /41 π=− , sin ( 3 /2) /31 π=− . Also, sin ( ) /61 1
2 π− =− . In  

general, sin-1 (-x) = -sin-1 x, because sin (-y) = -sin y.

THE DERIVATIVE OF sin-1 x

Let y = sin-1 x. Since sin x is differentiable, sin-1 x is differentiable by Theorem 10.2. Now, sin y = x and, 
therefore, by implicit differentiation, (cos y) y′ = 1. Hence, y′ = 1/(cos y). But cos2 y = 1 - sin2 y = 1 - x2. 

So, y xcos 1 2= ± − . By definition of sin-1 x, y is in the interval [-p/2, p/2] and, therefore, cos y ≥ 0. 
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Hence, y xcos 1 2= − . Thus, y
x

1

1 2
′ =

−
. So, we have shown that

(18.1) D x
x

(sin )
1

1x
1

2
=

−
−

THE INVERSE COSINE FUNCTION

If we restrict the domain of cos x to [0, p], we obtain a one-to-one function (with range [-1, 1]). So we can 
define cos-1 x to be the inverse of that restriction.

1. cos-1 x = y if and only if cos y = x.
2. The domain of cos-1 x is [-1, 1].
3. The range of cos-1 x is [0, p].

The graph of cos-1 x is shown in Fig. 18-2. It is obtained by reflecting the graph of y = cos x in the line 
y = x.

Fig. 18-2

An argument similar to the one above for (18.1) shows that

(18.2) D x
x

(cos )
1

1x
1 = −

−
−

2

THE INVERSE TANGENT FUNCTION

Restricting the domain of tan x to the interval (-p  /2, p  /2), we obtain a one-to-one function (with range the 
set of all real numbers), whose inverse we take to be tan-1 x. Then:

1. tan-1 x = y if and only if tan y = x.
2. The domain of tan-1 x is (-∞, +∞).
3. The range of tan-1 x is (-p  /2, p  /2).

EXAMPLE 18.2: In general, tan-1 x = the number y in (-p  /2, p  /2) such that tan y = x. In particular, tan-1 0 = 0, 
tan-1 1 = p  /4, tan ( 3) /31 π=− , tan ( 3 /3) /61 π=− . Since tan (-x) = -tan x, it follows that tan-1(-x) = -tan-1 x. For 
example, tan-1 (-1) = -p  /4.

The graph of y = tan-1 x is shown in Fig. 18-3. It is obtained from the graph of y = tan x by reflection in 
the line y = x. Note that y = p  /2 is a horizontal asymptote on the right and y = -p  /2 is a horizontal asymptote 
on the left.
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165CHAPTER 18 Inverse Trigonometric Functions

Fig. 18-3

(18.3) D x
x

(tan )
1

1x
1

2= +
−

In fact, if y = tan-1 x, tan y = x and, by implicit differentiation, (sec2 y) y′ = 1. Hence, 

y
y y x

1
sec

1
1 tan

1
12 2 2′ = = + = + .

Inverses of cot x, sec x, and csc x are defined in similar fashion.

cot–1 x. Restrict cot x to (0, p). Then the domain of cot-1 x is (-∞, +∞) and

y xcot 1= −     if and only if    y xcot =

(18.4) D x
x

(cot )
1

1x
1

2= − +
−

The proof is similar to that of (18.3). The graphs of cot x and cot-1 x are shown in Fig. 18-4.

Fig. 18-4
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sec-1 x. Restrict sec x to the union of [0, p  /2) and [p, 3p  /2). Then the domain of sec-1 x consists of all y such 
that y| | 1≥  and

y xsec 1= −     if and only if    y xsec =

(18.5) D x
x x

(sec )
1

1x
1

2
=

−
−

For the proof, see Problem 1. The graph of sec x appeared in Fig. 17-8, and that of sec-1 x is shown in 
Fig. 18-5.

Fig. 18-5

csc–1 x. Restrict csc x to the union of (0, p  /2] and (p, 3p  /2]. Then the domain of csc-1 x consists of all y such 
that y| | 1≥  and

y xcsc 1= −  if and only if y xcsc =

(18.6) D x
x x

(csc )
1

1x
1

2
= −

−
−

The proof is similar to that of (18.5). The graphs of csc x and csc-1 x are shown in Fig. 18-6.

Fig. 18-6
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167CHAPTER 18 Inverse Trigonometric Functions

The apparently arbitrary choices of the domains for the inverse trigonometric functions were made in 
order to obtain simple formulas for the derivatives.

Do not confuse the notation for the inverse trigonometric functions with exponential notation. For exam-
ple, sin-1 x is not the same as (sin x)-1. To avoid the possibility of such confusion, one can use the following 
alternative notation for the inverse trigonometric functions:

x x x xarcsin sin , arccos cos ,1 1= =− −     etc.

SOLVED PROBLEMS

 1. Prove (18.5): D x
x x

(sec )
1

1x
1

2
=

−
− .

Let y = sec-1 x. Then sec y = x and, by implicit differentiation, tan y sec y (y′) = 1. Now tan2 y = sec2 y - 1 = x2 - 1; 

hence, y xtan 12= ± − . By definition of sec-1 x, y is in [0, p/2) or [p, 3p/2), and, therefore, tan y is positive. 

Thus, y xtan 12= −  So,

y
y y x x

1
tan sec

1

12
′ = =

−

In Problems 2–8, find the first derivative y′.

 2. y = sin-1(2x - 3).
By (18.1) and the Chain Rule,

y
x

D x
x x x x

1

1 (2 3)
(2 3)

2

12 4 8

1

3 2x2 2
′ =

− −
− =

− −
=

− −2

 3. y = cos-1(x2).
By (18.2) and the Chain Rule, y

x
D x

x

x

1

1 ( )
( )

2

1x2 2
2

4
′ = −

−
= −

−
.

 4. y = tan-1(3x2).
By (18.3) and the Chain Rule, y

x
D x

x
x

1
1 (3 )

(3 )
6

1 9x2 2
2

4′ = + = + .

 5. y
x
x

cot
1
1

1= +
−







− .

By (18.4) and the Chain Rule,

y
x
x

D
x
x x

x

x x
x

x x x

1

1
1
1

1
1

1

1
1
1

(1 ) (1 )( 1)
(1 )

2
(1 ) (1 )

1
1

x2 2 2

2 2 2

′ = −
+ +

−






+
−





 = −

+ +
−







× − − + −
−

= − − + + = − +

 6. y x a x a
x
a

sin2 2 2 1= − + 





− .

y x a x x a x a
x a a

a x[ ( ) ( 2 )] ( )
1

1 ( / )

1
21

2
2 2 1/2 2 2 1/2 2

2
2 2′ = − − + − +

−
= −−
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 7. y x
x

xcsc
1

11 2= 



 + −−     for 0 < x < 1.

y x
x

x

x
x x

x
1 1

1
1

csc
1

(1 ) ( 2 ) csc
1

2

1 1
2

2 1/2 1′ =
−



















+ 



 + − − = 





− −

 8. y
ab

b
a

x
1

tan tan1= 





− .

y
ab b

a
x

D
b
a

x
ab

a
a b x

b
a

x
x

a b x

a x b x

1 1

1 tan

tan
1

tan
sec

sec
tan

1
cos sin

x2

2

2 2 2
2

2

2 2 2

2 2 2 2

′ =
+ 





























= + = +

= +

 9. If y2 sin x + y = tan-1 x, find y′.
By implicit differentiation, yy x y x y

x
2 sin cos

1
1

2
2′ + + ′ = +  Hence,  

y y x
x

(2 sin 1)
1

1 2′ + = + − y2 cos x and, therefore,

y
x y x

x y x
1 (1 ) cos
(1 )(2 sin 1)

2 2

2′ = − +
+ +

10. Evaluate: (a) sin ( 2 /2)1 −−  (b) cos-1(1); (c) cos-1(0); (d) cos ( )1 1
2

− ; (e) tan ( 3)1 −− ; (f ) sec-1 (2); (g) sec-1 (-2)

(a) sin ( 2 /2) sin ( 2 /2 /41 1 π− = − = −− −

(b) cos-1(1) = 0, since cos(0) = 1 and 0 is in [0, p]
(c) cos-1(0) = p/2, since cos(p /2) = 0 and (p/2) is in [0, p]
(d) cos ( ) /31 1

2 π=−

(e) tan ( 3) tan ( 3) /31 1 π− = − = −− −

(f ) sec-1(2) = p /3, since

 sec
3

1
cos( /3)

1
21

2

π
π





 = = =

(g) sec-1(-2) = 4p /3, since sec (4 /3)
1

cos(4 /3)
1

21
2

π π= = − = −  and 4p/3 is in [p, 3p /2)

11. Show that sin-1 x + cos-1 x
2
π= .

D x x
x x

(sin cos )
1

1

1

1
0x

1 1
2 2

+ =
−

−
−

=− − . Then, by Problem 15 of Chapter 13, sin-1 x + cos-1 x is a 

constant. Since sin 0 cos 0 0
2 2

1 1 π π+ = + =− − , that constant is 
2
π

.

12. (a)  Prove: sin (sin-1(y)) = y; (b) find sin-1(sin p); (c) prove that sin-1(sin x) = x if and only if x is in [-p/2, p/2].

(a) This follows directly from the definition of sin-1(y).
(b) sin-1(sin p) = sin-10 = 0.
(c) sin-1 y is equal to that number x in [-p /2, p /2] such that sin x = y. So, if x is in [-p /2, p /2], sin-1 (sin x) = x. 

If x is not in [-p /2, p /2], then sin-1 (sin x) ≠ x, since, by definition, sin-1 (sin x) must be in [-p /2, p /2].

13. Evaluate: (a) cos(2sin ( ))1 2
5

− ; (b) sin(cos ( ))1 3
4−− .

(a) By (16.11), cos(2sin ( )) 1 2sin (sin ( )) 1 2( ) 1 .1 2
5

2 1 2
5

2
5

2 8
25

17
25= − = − = − =− −
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169CHAPTER 18 Inverse Trigonometric Functions

(b) sin (cos ( )) 1 cos (cos ( )) 1 ( )2 1 3
4

2 1 3
4

3
4

2 7
16− = − − = − − =− − .

Hence, − = ±−sin(cos ( )) 7/41 3
4 . Since cos ( )1 3

4−−  is in the second quadrant, sin(cos ( )) 01 3
4− >− . So, 

sin(cos ( )) 7 /41 3
4− =− .

14. The lower edge of a mural, 12 ft high, is 6 ft above an observer’s eye. Under the assumption that the most 
favorable view is obtained when the angle subtended by the mural at the eye is a maximum, at what distance 
from the wall should the observer stand?

Let q denote the subtended angle, and let x be the distance from the wall. From Fig. 18-7, tan x( ) 18/θ φ+ = , 
xtan 6/φ = , and

x x
x x

x
x

tan tan[( ) ]
tan( ) tan

1 tan( ) tan
(18/ ) (6/ )
1 (18/ )(6/ )

12
1082θ θ φ φ θ φ φ

θ φ φ= + − = + −
+ + = −

+ = +

Fig. 18-7

Then

x
x

tan
12

108
1

2θ = +






−     and    
d
dx

x
x x

12( 108)
360 11664

2

4 2

θ = − +
+ +

The critical number x 6 3 ~ 10.4= . By the first derivative test, this yields a relative maximum. The observer 
should stand about 10.4 ft in front of the wall.

SUPPLEMENTARY PROBLEMS

15. Evaluate: (a) sin ( 3 /2)1 −− ; (b) cos ( 3 /2)1− ; (c) cos ( 3 /2)1 −− ; (d) tan ( 3 /3)1 −− ; (e) sec ( 2)1− ;  
(f ) sec ( 2)1 −− .

Ans. (a) 
3
π− ; (b) 

6
π ; (c) 5

6
π ; (d) 

6
π− ; (e) 

4
π ; (f ) 5

4
π

16. Prove: x xtan cot
2

1 1 π+ =− − .

In Problems 17–24, find y′.

17. y = sin-1(3x) Ans.   
x

3

1 9 2−

18. y xcos ( )1 1
2= −  Ans.   

x

1

4 2
−

−

19. y
x

tan
31= 





−  Ans.   
x

3
92− +

20. y = sin-1(x - 1)  Ans.   
x x

1

2 2−
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21. y x
x

cos
22 1= 





−  Ans.   x
x x

2 cos
2 1

4
1

2





 +

−






−

22. y
x

a x
x asin ( )

2 2
1=

−
− −−  Ans.   

x
a x( )

2

2 2 3/2−

23. y x a ax x a
x a

a
( ) 2 sin2 2 1= − − + −





−  Ans.   ax x2 2 2−

24. y
x
x

x
4

sec ( )
2

2
1
2

1 1
2= − + −  Ans. 

x x

8

43 2 −

25. Prove formulas (18.2), (18.4), and (18.6).

26. Let cos ( )1 2
7θ = − . Find: (a) sin q; (b) cos q; (c) tan q; (d) cot q; (e) sec q; (f ) csc q; (g) cos 2q; (h) sin 2q.

Ans. (a) 3 5
7

; (b) 2
7 ; (c) 3 5

2
; (d) 2 5

15
; (e) 7

2
; (f ) 7 5

15
; (g) 41

49
− ; (h) 12 5

49

27. Let sin ( )1 1
5θ = −− . Find: (a) sin q; (b) cos q; (c) tan q; (d) cot q; (e) sec q; (f ) csc q; (g) cos 2q; (h) sin 2q.

Ans. (a) 1
5− ; (b) 2 6

5
; (c) 6

12
− ; (d) 2 6− ; (e) 5 6

12
; (f ) -5; (g) 23

25 ; (h) 4 6
25

−

28. Prove: tan 2
2 tan

1 tan2θ θ
θ= − .

29. Evaluate: (a) cos(sin ( ))1 3
11

− ; (b) tan(sec ( ))1 7
5

− ; (c) sin(cos ( ) sec 4)1 2
5

1+− − ; (d) cos cos
3
2

1 π





− .

Ans. (a) 4 7
11

; (b) 2 6
7

; (c) 21
20

15
10

+ ; (d) 2
π

30. Find the domain and range of the function f (x) = sin(sec-1 x).

Ans. Domain |x| ≥ 1; range (-1, 1)

31. (a)  For which values of x is tan-1(tan x) = x true?

(b) (GC) Use a graphing calculator to draw the graph of y = tan-1(tan x) - x to verify your answer to (a).

Ans. (a) x
2 2
π π− < <

32. A light is to be placed directly above the center of a circular plot of radius 30 ft, at such a height that the edge 
of the plot will get maximum illumination. Find the height if the intensity I at any point on the edge is directly 
proportional to the cosine of the angle of incidence (angle between the ray of light and the vertical) and inversely 
proportional to the square of the distance from the source.

(Hint: Let x be the required height, y the distance from the light to a point on the edge, and q the angle of 

incidence. Then I k
y

kx
x

cos
( 900)2 2 3/2

θ= = + .)

Ans. 15 2 ft

33. Show that x
x

x
sin tan

1
1 1

2
=

−






− −  for |x| < 1. Examine what happens when |x| = 1.
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171CHAPTER 18 Inverse Trigonometric Functions

34. (GC) Evalute sin ( )1 3
5

−  by using a graphing calculator.

Ans. 0.6435

35. (a) Find sec(tan ( ))1 5
7

− . (b) Find an algebraic formula for sec (tan-1 (2x)). (c) (GC) Verify (a) and (b) on a graphing 
calculator.

Ans. (a) 74
7

; (b) x1 4 2+

36. Prove: (a) sec-1x = 
x

cos
11 





−  for x ≥ 1; (b) x
x

sec 2 cos
11 1π= − 





− −  for x ≤ -1.

[The formula of part (a) would hold in general for |x| ≥ 1 if we had defined sec-1 x to be the inverse of the 
restriction of sec x to (-p/2, p/2). However, if we had done that, then the formula for Dx(sec-1x) would have been 

x x1/(| | 1 )2 −  instead of the simpler formula x x1/( 1)2 − .]

18_Mendelson_ch18_p163-172.indd   171 28/07/21   9:32 AM



00_Mendelson_FM_pi-xvi.indd   2 27/07/21   11:55 AM

This page intentionally left blank 



173

CHAPTER 19CHAPTER 19

Rectilinear and Circular Motion

RECTILINEAR MOTION 

Rectilinear motion is motion of an object on a straight line. If there is a coordinate system on that line, and 
s denotes the coordinate of the object at any time t, then the position of the object is given by a function  
s = f (t). (See Fig. 19-1.)

–2 –1 0 1 2 3
s

Fig. 19-1

The position at a time t + Dt, very close to t, is f (t + Dt). The “distance” the object travels between time 
t and time t + Dt is f (t + Dt) - f (t). The time the object has traveled is Dt. So, the average velocity over this 
period of time is

 
f t t f t

t
( ) ( )+ ∆ −

∆

(Note that the “distance” can be negative when the object is moving to the left along the s-axis. So the average 
velocity can be positive or negative or zero.)

As Dt approaches zero, this average velocity approaches what we think of as the instantaneous velocity v  
at time t. So,

 f t t f t
t

f tlim
( ) ( )

( )
t 0

= + ∆ −
∆ = ′

∆ →
v

Hence, the instantaneous velocity v  is the derivative of the position function s, that is, v = ds/dt.
The sign of the instantaneous velocity v  tells us in which direction the object is moving along the line. 

If v  = ds/dt > 0 on an interval of time, then by Theorem 13.7(a), we know that s must be increasing, that is, 
the object is moving in the direction of increasing s along the line. If v = ds/dt < 0, then the object is moving 
in the direction of decreasing s.

The instantaneous speed of the object is defined as the absolute value of the velocity. Thus, the speed 
indicates how fast the object is moving, but not its direction. In an automobile, the speedometer tells us the 
instantaneous speed at which the car is moving.

The acceleration a of an object moving on a straight line is defined as the rate at which the velocity is 
changing, that is, the derivative of the velocity:

 a
d
dt

d s
dt

2

2= =v  

EXAMPLE 19.1: Let the position of an automobile on a highway be given by the equation s = f (t) = t 2 - 5t, where 
s is measured in miles and t in hours. Then its velocity v  = 2t - 5 mi/h and its acceleration a = 2 mi/h2. Thus, its 
velocity is increasing at the rate of 2 miles per hour per hour.
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174 CHAPTER 19 Rect i l inear  and Ci rcu lar  Mot ion

When an object moving along a straight line changes direction, its velocity v  = 0. For, a change in direc-
tion occurs when the position s reaches a relative extremum, and this occurs only when ds/dt = 0. (However, 
the converse is false; ds/dt = 0 does not always indicate a relative extremum. An example is s = t 3 at t = 0.)

EXAMPLE 19.2: Assume that an object moves along a straight line according to the equation s = f (t) = (t - 2)2, 
where s is measured in feet and t in seconds. (The graph of f is shown in Fig. 19-2.) Then v  = f  ′(t) = 2(t - 2) ft/sec 
and a = 2 ft/sec2. For t < 2, v  < 0 and the object is moving to the left. (See Fig. 19-3.) For t > 2, v  > 0 and the object 
is moving to the right. The object changes direction at t = 2, where v  = 0. Note that although the velocity v is 0 at 
time t = 2, the object is moving at that time; it is not standing still. When we say that an object is standing still, we 
mean that its position is constant over a whole interval of time.

2

s

t 

  
0 1 2 3 4

s

 Fig. 19-2 Fig. 19-3

MOTION UNDER THE INFLUENCE OF GRAVITY

If an object has been thrown straight up or down, or just starts from rest, and the only force acting upon it is 
the gravitational pull of the earth, then the resulting rectilinear motion is referred to as free fall.

Put a coordinate system on the vertical line on which the object is moving. Assume that this s-axis is  
directed upward (see Fig. 19-4), and that ground level (the surface of the earth) corresponds to s = 0. It is a 
fact of physics that the acceleration a is a constant approximately equal to - 32 ft/sec 2. (In the metric system,  
this constant is - 9.8 m/sec2. The symbol “m” stands for “meters.”) Note that the acceleration is negative 
because the pull of the earth causes the velocity to decrease.

Since 
d
dt

a 32= = −v
, we have:

Fig. 19-4

(19.1) v = v0 - 32t
 where v0 is the initial velocity when t = 0.† Now 

ds
dt

.=v  Hence,
(19.2) s = s0 + v0 t - 16t 2

 where s0 is the initial position, the value of s when t = 0.‡

†  In fact, Dt(v0 - 32t) = -32 = Dtv. So, by Chapter 13, Problem 18, v and v0 - 32t differ by a constant. Since v and v0 - 32t are equal 
when t = 0, that constant difference is 0.

‡  In fact, Dt(s0 + v0t - 16t 2) = v0 - 32t = Dts. So, by Chapter 13, Problem 18, s and s0 + v0t - 16t 2 differ by a constant. Since s and  
s0 + v0t - 16t 2 are equal when t = 0, that constant difference is 0.
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CIRCULAR MOTION

The motion of a particle P along a circle is completely described by an equation q = f (t), where q is the 
central angle (in radians) swept over in time t by a line joining P to the center of the circle. The x- and  
y-coordinates of P are given by x = r cos q and y = r sin q.

By the angular velocity w of P at time t, we mean 
d
dt

.
θ

By the angular acceleration a of P at time t, we mean 
d
dt

d
dt

.
2

2

ω θ=

SOLVED PROBLEMS

 1. A body moves along a straight line according to the law s t t
1
2

2 .3= −  Determine its velocity and acceleration at 
the end of 2 seconds.

 
ds
dt

t 23
2

2= = −v ; hence, when t = 2, (2) 2 43
2

2= − =v  ft/sec.

 a
d
dt

t3= =v
; hence, when t = 2, a = 3(2) = 6 ft/sec2.

 2. The path of a particle moving in a straight line is given by s = t3 - 6t 2 + 9t + 4.

(a) Find s and a when v = 0.
(b) Find s and v when a = 0.
(c) When is s increasing?
(d) When is v increasing?
(e) When does the direction of motion change?

 We have

 
ds
dt

t t t t a
d
dt

t3 12 9 3( 1)( 3), 6( 2)2= = − + = − − = = −v
v

 

(a) When v = 0, t = 1 and 3. When t = 1, s = 8 and a = - 6. When t = 3, s = 4 and a = 6.
(b) When a = 0, t = 2. At t = 2, s = 6 and v = - 3.
(c) s is increasing when v > 0, that is, when t < 1 and t > 3.
(d) v is increasing when a > 0, that is, when t > 2.
(e) The direction of motion changes when v = 0 and a ≠ 0. From (a), the direction changes when t = 1 and t = 3.

 3. A body moves along a horizontal line according to s = f (t) = t 3 - 9t 2 + 24t.
(a) When is s increasing, and when is it decreasing?
(b) When is v increasing, and when is it decreasing?
(c) Find the total distance traveled in the first 5 seconds of motion.

 We have

 
ds
dt

t t t t a
d
dt

t3 18 24 3( 2)( 4), 6( 3)2= = − + = − − = = −v
v

 

(a) s is increasing when v > 0, that is, when t < 2 and t > 4. 
s is decreasing when v < 0, that is, when 2 < t < 4.

(b) v is increasing when a > 0, that is, when t > 3. 
v is decreasing when a < 0, that is, when t < 3.

(c) When t = 0, s = 0 and the body is at O. The initial motion is to the right (v > 0) for the first 2 seconds; when  
t = 2, the body is s = f (2) = 20 ft from O.

During the next 2 seconds, it moves to the left, after which it is s = f (4) = 16 ft from O.
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It then moves to the right, and after 5 seconds of motion in all, it is s = f (5) = 20 ft from O. The total 
distance traveled is 20 + 4 + 4 = 28 ft (see Fig. 19-5).

Fig. 19-5

 4. A particle moves in a horizontal line according to s = f (t) = t 4 - 6t 3 + 12t 2 - 10t + 3.

(a) When is the speed increasing, and when decreasing?
(b) When does the direction of motion change?
(c) Find the total distance traveled in the first 3 seconds of motion.

 Here
ds
dt

t t t t t a
d
dt

t t4 18 24 10 2( 1) (2 5), 12( 1)( 2)3 2 2= = − + − = − − = = − −v
v

 

(a) v changes sign at t = 2.5, and a changes sign at t = 1, t = 2.
 For t < 1, v < 0 and a > 0. Since a > 0, v is increasing. Since v < 0, the speed |v | = -v is decreasing.
 For 1 < t < 2, v < 0 and a < 0. Since a < 0, v is decreasing. Since v < 0, the speed |v | = -v is increasing.
 For 2 < t < 2.5, v < 0 and a > 0. As in the first case, the speed is decreasing.
 For t > 2.5, v > 0 and a > 0. v is increasing. Since v > 0, the speed |v | = v is increasing.
(b) The direction of motion changes at t = 2.5, since, by the second derivative test, s has a relative extremum 

there.
(c) When t = 0, s = 3 and the particle is 3 units to the right of O. The motion is to the left until t = 2.5, at which 

time the particle is 27
16  units to the left of O. When t = 3, s = 0; the particle has moved 27

16  units to the right. 
The total distance traveled is 3 27

16
27
16

51
8+ + =  units. (See Fig. 19-6.)

Fig. 19-6

 5. A stone, projected vertically upward with initial velocity 112 ft/sec, moves according to s = 112t - 16t 2, where s 
is the distance from the starting point. Compute (a) the velocity and acceleration when t = 3 and when t = 4, and 
(b) when the greatest height reached. (c) When will its height be 96 ft?

 We have v = ds/dt = 112 - 32t and a = dv /dt = - 32.
(a) At t = 3, v = 16 and a = - 32. The stone is rising at 16 ft/sec.
 At t = 4, v = - 16 and a = - 32. The stone is falling at 16 ft/sec.
(b) At the highest point of the motion, v = 0. Solving v = 0 = 112 - 32t yields t = 3.5. At this time, s = 196 ft.
(c) Letting 96 = 112t - 16t 2 yields t 2 - 7t + 6 = 0, from which t = 1 and 6. At the end of 1 second of motion, the 

stone is at a height of 96 ft and is rising, since v > 0. At the end of 6 seconds, it is at the same height but is 
falling since v < 0.

 6. A particle rotates counterclockwise from rest according to q = t 3/50 - t, where q is in radians and t in seconds. 
Calculate the angular displacement q, the angular velocity w, and the angular acceleration a at the end of 
10 seconds.

t
t

d
dt

t d
dt

t
50

10 rad,
3
50

1 5 rad/sec,
6
50

6
5

rad/ sec
3 2

2θ ω θ α ω= − = = = − = = = =  

 7. At t = 0, a stone is dropped from the top of a building 1024 ft high. When does it hit the ground, and with what 
speed? Find the speed also in miles per hour.
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Since s0 = 1024 and v0 = 0, equation (19.2) becomes s = 1024 - 16t 2, and the time of hitting the ground is the 
solution of 1024 - 16t 2 = 0. This reduces to t 2 = 64, yielding t = ± 8. Since the motion occurs when t ≥ 0, t = 8. 
The equation (19.1) is v = - 32t, yielding v = - 32(8) = - 256 ft/sec when t = 8, that is, when the stone hits the 
ground. (The velocity is negative because the stone is moving downward.) The speed is 256 ft/sec. To change to 
miles per hour, note the following:

x x x

x
x

feet per second 60 feet per minute 60(60 ) feet per hour

3600
5280

miles per hour
15
22

miles per hour.

= =

= =

Thus,

(19.3) x xfeet per second milesper hour.15
22=  

In particular, when x = 256, we get 174 6
11  miles per hour.

 8. If a rocket is shot vertically upward from the ground with an initial velocity of 192 ft/sec, when does it reach its 
maximum height above the ground, and what is that maximum height? Also find how long it takes to reach the 
ground again and with what speed it hits the ground.

Equations (19.1) and (19.2) are v = 192 - 32t and s = 192t - 16t 2. At the maximum height, v = 0, and 
therefore, t = 6. So, it takes 6 seconds to reach the maximum height, which is 192(6) - 16(6)2 = 576 ft. The rocket 
returns to ground level when 0 = 192t - 16t 2, that is, when t = 12. Hence, it took 6 seconds to reach the ground 
again, exactly the same time it took to reach the maximum height. The velocity when t = 12 is 192 - 32(12) = 
-192 ft/sec. Thus, its final speed is the same as its initial speed.

SUPPLEMENTARY PROBLEMS

 9. Show that, if an object is moving on a straight line, then its speed is increasing when its velocity v and its 
acceleration a have the same sign, and its speed is decreasing when v and a have opposite sign. (Hint: The speed 
S = |v |. When v > 0, S = v and dS/dt = dv/dt = a. When v < 0, S = -v and dS/dt = - dv/dt = - a.)

10. An object moves in a straight line according to the equation s = t 3 - 6t 2 + 9t, the units being feet and seconds. 
Find its position, direction, and velocity, and determine whether its speed is increasing or decreasing when (a) 
t 1

2= ; (b) t 3
2= ; (c) t 5

2= ; (d) t = 4.

Ans. (a) s ft25
8= ; moving to the right with ft/sec15

4=v ; speed decreasing
  (b) s ft27

8= ; moving to the left with ft/sec9
4= −v ; speed increasing

  (c) s ft5
8= ; moving to the left with ft/sec9

4= −v ; speed decreasing
  (d) s = 4 ft; moving to the right with v = 9 ft/sec; speed increasing

11. The distance of a locomotive from a fixed point on a straight track at time t is 3t 4 - 44t 3 + 144t 2. When is it in 
reverse?

Ans. 3 < t < 8

12. Examine, as in Problem 2, each of the following straight line motions: (a) s = t 3 - 9t 2 + 24t;  (b) s = t 3 - 3t 2 + 3t + 3; 
(c) s = 2t 3 - 12t 2 + 18t - 5;  (d) s = 3t 4 - 28t 3 + 90t 2 - 108t.

Ans. The changes of direction occur at t = 2 and t = 4 in (a), not at all in (b), at t = 1 and t = 3 in (c), and at t = 1 
in (d).

13. An object moves vertically upward from the earth according to the equation s = 64t - 16t 2. Show that it has lost 
one-half its velocity in its first 48 ft of rise.
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14. A ball is thrown vertically upward from the edge of a roof in such a manner that it eventually falls to the street 
112 ft below. If it moves so that its distance s from the roof at time t is given by s = 94t - 16t 2, find (a) the 
position of the ball, its velocity, and the direction of motion when t = 2, and (b) its velocity when it strikes the 
street (s in feet, and t in seconds).

Ans. (a) 240 ft above the street, 32 ft/sec upward; (b) -128 ft/sec

15. A wheel turns through an angle of q radians in time t seconds so that q = 128t - 12t 2. Find the angular velocity 
and acceleration at the end of 3 seconds.

Ans. w = 56 rad/sec; a = - 24 rad/sec2

16. A stone is dropped down a well that is 144 ft deep. When will it hit the bottom of the well?

Ans. After 3 seconds

17. With what speed in miles per hour does an object dropped from the top of a 10-story building hit the ground? 
Assume that each story of the building is 10 ft high.

Ans. 54 m/h6
11

18. An automobile moves along a straight road. If its position is given by s = 8t 3 - 12t 2 + 6t - 1, with s in miles and t 
in hours, what distance does it travel from t = 0 to t = 1?

Ans. 2 miles

19. Answer the same question as in Problem 18, except that s = 5t - t 2 and the car operates from t = 0 to t = 3.

 Ans. 6.5 miles

20. A stone was thrown straight up from the ground. What was its initial velocity in feet per second if it hit the 
ground after 15 seconds?

Ans. 240 ft/sec

21. (GC) Let the position s of an object moving on a straight line be given by s = t 4 - 3t 2 + 2t. Use a graphing 
calculator to estimate when the object changes direction, when it is moving to the right, and when it is moving to 
the left. Try to find corresponding exact formulas.

Ans. Change of direction at t = -1.3660, 0.3660, and 1. The object moves left for t < -1.3660 and for  

0.3660 < t < 1. The exact values of t at which the object changes direction are 1 and 1 3
2

− ± .

22. (GC) An object is moving along a straight line according to the equation s = 3t - t 2. A second object is moving 
along the same line according to the equation s = t 3 - t 2 + 1. Use a graphing calculator to estimate (a) when they 
occupy the same position and (b) when they have the same velocity. (c) At the time(s) when they have the same 
position, are they moving in the same direction?

Ans. (a)  0.3473 and 1.5321; (b) t = ±1; (c) opposite directions at both intersections.
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CHAPTER 20

Related Rates

If a quantity y is a function of time t, the rate of change of y with respect to time is given by dy/dt. When two 
or more quantities, all functions of the time t, are related by an equation, the relation of their rates of change 
may be found by differentiating both sides of the equation.

EXAMPLE 20.1: A 25-foot ladder rests against a vertical wall. (See Fig. 20-1.) If the bottom of the ladder is sliding 
away from the base of the wall at the rate of 3 ft /sec, how fast is the top of the ladder moving down the wall when 
the bottom of the ladder is 7 feet from the base?

Fig. 20-1

Let x be the distance of the bottom of the ladder from the base of the wall, and let y be the distance of the 
top of the ladder from the base of the wall. Since the bottom of the ladder is moving away from the base of 
the wall at the rate of 3 ft /sec, dx/dt = 3. We have to find dy/dt when x = 7. By the Pythagorean Theorem,

 x y (25) 6252 2 2+ = =   (20.1)

This is the relation between x and y. Differentiating both sides with respect to t, we get

 x
dx
dt

y
dy
dt

2 2 0+ =  

Since dx/dt = 3, 6x + 2y dy/dt = 0, whence

 x y
dy
dt

3 0+ =   (20.2)

This is the desired equation for dy/dt. Now, for our particular problem, x = 7. Substituting 7 for x in equation 
(20.1), we get 49 + y2 = 625, y2 = 576, y = 24. In equation (20.2), we replace x and y by 7 and 24, obtaining 
21 + 24 dy/dt = 0. Hence, dy dt/ 7

8= − . Since dy/dt < 0, we conclude that the top of the ladder is sliding down 
the wall at the rate of ft/sec7

8  when the bottom of the ladder is 7 ft from the base of the wall.
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SOLVED PROBLEMS

 1. Gas is escaping from a spherical balloon at the rate of 2 ft3/min. How fast is the surface area shrinking when the 
radius is 12 ft?

A sphere of radius r has volume V r4
3

3π=  and surface area S = 4pr2. By hypothesis, dV/dt = -2. Now 
dV/dt = 4pr2 dr/dt. So, -2 = 4pr2 dr/dt and therefore, dr/dt = -1/(2pr2). Also, dS/dt = 8pr dr/dt. Hence, 
dS/dt = -8pr/2pr2 = -4/r. So, when r = 12, dS dt/ 4

12
1
3= − = − . Thus, the surface area is shrinking at the rate of 

1
3  ft2/min.

 2. Water is running out of a conical funnel at the rate of 1 in3/sec. If the radius of the base of the funnel is 4 in and 
the height is 8 in, find the rate at which the water level is dropping when it is 2 in from the top. (The formula for 
the volume V of a cone is r h1

3
2π , where r is the radius of the base and h is the height.)

Let r be the radius and h the height of the surface of the water at time t, and let V be the volume of the water 
in the cone. (See Fig. 20-2.) By similar triangles, r/4 = h/8, whence r h1

2= .

r

h

8

4

 

Fig. 20-2

Then

 V r h h .1
3

2 1
12

3π π= =  So π=dV
dt

h
dh
dt

.1
4

2  

By hypothesis, dV/dt = -1. Thus,

 h
dh
dt

dh
dt h

1 , yielding
4

.1
4

2
2π π− = = −

 

Now when the water level is 2 in from the top, h = 8 - 2 = 6. Hence, at that time, dh/dt = -1/(9p), and so the 
water level is dropping at the rate of 1/(9p) in/sec.

 3. Sand falling from a chute forms a conical pile whose altitude is always equal to 4
3  the radius of the base. (a) How 

fast is the volume increasing when the radius of the base is 3 ft and is increasing at the rate of 3 in/min? 
(b) How fast is the radius increasing when it is 6 ft and the volume is increasing at the rate of 24 ft3/min?

Let r be the radius of the base, and h the height of the pile at time t. Then

 h r
4
3

=  and V r h r
1
3

4
9

.2 3π π= =  So 
dV
dt

r
dr
dt

4
3

2π=  

(a) When r = 3 and dr dt/ 1
4= , dV/dt = 3p  ft3/min.

(b) When r = 6 and dV/dt = 24, dr/dt = 1/(2p) ft/min.

 4. Ship A is sailing due south at 16 mi/h, and ship B, 32 miles south of A, is sailing due east at 12 mi/h. (a) At what 
rate are they approaching or separating at the end of 1 hour? (b) At the end of 2 hours? (c) When do they cease to 
approach each other, and how far apart are they at that time?
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Let A0 and B0 be the initial positions of the ships, and At and Bt their positions t hours later. Let D be the 
distance between them t hours later. Then (see Fig. 20-3):

 D t t(32 16 ) (12 )2 2 2= − +  and D
dD
dt

t t t2 2(32 16 )( 16) 2(12 )(12) 2(400 512).= − − + = −  

 
Fig. 20-3

Hence, 
dD
dt

t
D

400 512= −
 

(a) When t = 1, D = 20 and 
dD
dt

5.6= − . They are approaching at 5.6 mi/h.

(b) When t = 2, D = 24 and 
dD
dt

12= . They are separating at 12 mi/h.

(c) They cease to approach each other when 
dD
dt

0= , that is, when t 1.28 h512
400= = , at which time they are 

D = 19.2 miles apart.

 5. Two parallel sides of a rectangle are being lengthened at the rate of 2 in/sec, while the other two sides are 
shortened in such a way that the figure remains a rectangle with constant area A = 50 in2. What is the rate 
of change of the perimeter P when the length of an increasing side is (a) 5 in? (b) 10 in? (c) What are the 
dimensions when the perimeter ceases to decrease?

Let x be the length of the sides that are being lengthened, and y the length of the other sides, at time t. 
Then

 P x y
dp
dt

dx
dt

dy
dt

A xy
dA
dt

x
dy
dt

y
dx
dt

2( ), 2 , 50, 0= + = +



 = = = + =  

(a) When x = 5, y = 10 and dx/dt = 2. Then

 
dx
dt

5 10(2) 0+ = . So 
dx
dt

4= −  and 
dp
dt

2(2 4) 4 in/sec (decreasing)= − = −  

(b) When x = 10, y = 5 and dx/dt = 2. Then

 
dy
dt

10 5(2) 0+ = . So 
dy
dt

1= −  and 
dp
dt

2(2 1) 2 in/sec (decreasing)= − =  

(c) The perimeter will cease to decrease when dP/dt = 0, that is, when dy/dt = -dx/dt = -2. Then 
x(-2) + y(2) = 0, and the rectangle is a square of side x y 5 2= =  in.

 6. The radius of a sphere is r when the time is t seconds. Find the radius when the rate of change of the surface area 
and the rate of change of the radius are equal.

The surface area S = 4p2; hence, dS/dt = 8pr dr/dt. When dS/dt = dr/dt, 8pr = 1 and the radius r = 1/8p.

 7. A weight W is attached to a rope 50 ft long that passes over a pulley at a point P, 20 ft above the ground. The 
other end of the rope is attached to a truck at a point A, 2 ft above the ground, as shown in Fig. 20-4. If the truck 
moves away at the rate of 9 ft/sec, how fast is the weight rising when it is 6 ft above the ground?
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Fig. 20-4

Let x denote the distance the weight has been raised, and y the horizontal distance from point A, where the 
rope is attached to the truck, to the vertical line passing through the pulley. We must find dx/dt when dy/dt = 9 
and x = 6.

Now

 y x(30 ) (18)2 2 2= + −  and = +dy
dt

x
y

dx
dt

30
 

When x = 6, y 18 3=  and dy/dt = 9. Then dx
dt

9
30 6

18 3
= + , from which 

dx
dt

9
2

3 ft /sec= .

 8. A light L hangs H ft above a street. An object h ft tall at O, directly under the light, moves in a straight line along 
the street at v ft /sec. Find a formula for the velocity V of the tip of the shadow cast by the object on the street at 
t seconds. (See Fig. 20-5.)

Fig. 20-5

After t seconds, the object has moved a distance vt. Let y be the distance of the tip of the shadow from O. By 
similar triangles, (y - vt)/y = h/H. Hence,

 y
H t

H h
= −

v
 and therefore, V

dy
dt

H
H h h H

1
1 ( / )

= = − = −
v

v  

Thus, the velocity of the tip of the shadow is proportional to the velocity of the object, the factor of 
proportionality depending upon the ratio h/H. As h → 0, V → v, while as h → H, V → + ∞.

SUPPLEMENTARY PROBLEMS

 9. A rectangular trough is 8 ft long, 2 ft across the top, and 4 ft deep. If water flows in at a rate of 2 ft3/min, how fast 
is the surface rising when the water is 1 ft deep?

Ans. ft /min1
8  
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10. A liquid is flowing into a vertical cylindrical tank of radius 6 ft at the rate of 8 ft3/min. How fast is the surface 
rising?

Ans. 2
9 π  ft /min

11. A man 5 ft tall walks at a rate of 4 ft/sec directly away from a street light that is 20 ft above the street. (a) At what 
rate is the tip of his shadow moving? (b) At what rate is the length of his shadow changing?

Ans. (a) ft /sec16
3 ; (b) ft /sec4

3  

12. A balloon is rising vertically over a point A on the ground at the rate of 15 ft/sec. A point B on the ground is level 
with and 30 ft from A. When the balloon is 40 ft from A, at what rate is its distance from B changing?

Ans. 12 ft /sec

13. A ladder 20 ft long leans against a house. If the foot of the ladder is moving away from the house at the rate of 
2 ft/sec, find how fast (a) the top of the ladder is moving downward, and (b) the slope of the ladder is decreasing, 
when the foot of the ladder is 12 ft from the house.

Ans. (a) ft /sec3
2 ; (b) per second25

72  

14. Water is being withdrawn from a conical reservoir 3 ft in radius and 10 ft deep at 4 ft3/min. How fast is the 
surface falling when the depth of the water is 6 ft? How fast is the radius of this surface diminishing?

Ans. 100
81 π  ft /min; 10

27  p ft /min

15. A barge, whose deck is 10 ft below the level of a dock, is being drawn in by means of a cable attached to the deck 
and passing through a ring on the dock. When the barge is 24 ft away and approaching the dock at ft/sec3

4 , how 
fast is the cable being pulled in? (Neglect any sag in the cable.)

Ans. ft /sec9
13  

16. A boy is flying a kite at a height of 150 ft. If the kite moves horizontally away from the boy at 20 ft/sec, how fast 
is the string being paid out when the kite is 250 ft from him?

Ans. 16 ft /sec

17. One train, starting at 11 a.m., travels east at 45 mi/h while another, starting at noon from the same point, travels 
south at 60 mi/h. How fast are they separating at 3 p.m.?

Ans. mi/h105 2
2  

18. A light is at the top of a pole 80 ft high. A ball is dropped at the same height from a point 20 ft from the light. 
Assuming that the ball falls according to s = 16t2, how fast is the shadow of the ball moving along the ground  
1 second later?

Ans. 200 ft /sec

19. Ship A is 15 miles east of O and moving west at 20 mi/h; ship B is 60 mi south of O and moving north at 15 mi/h. 
(a) Are they approaching or separating after 1 h and at what rate? (b) After 3 h? (c) When are they nearest one 
another?

Ans. (a) approaching, mi/h115
82

; (b) separating, mi/h9 10
2 ; (c) 1 h 55 min
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20. Water, at a rate of 10 ft3/min, is pouring into a leaky cistern whose shape is a cone 16 ft deep and 8 ft in diameter 
at the top. At the time the water is 12 ft deep, the water level is observed to be rising at 4 in/min. How fast is the 
water leaking away?

Ans. (10 - 3p) ft3/min

21. A solution is passing through a conical filter 24 in deep and 16 in across the top, into a cylindrical vessel of 
diameter 12 in. At what rate is the level of the solution in the cylinder rising if, when the depth of the solution in 
the filter is 12 in, its level is falling at the rate 1 in/min?

Ans. in/min4
9  

22. Oil from a leaking oil tanker radiates outward in the form of a circular film on the surface of the water. If the 
radius of the circle increases at the rate of 3 meters per minute, how fast is the area of the circle increasing when 
the radius is 200 meters?

Ans. 1200p m2/min

23. A point moves on the hyperbola x2 - 4y2 = 36 in such a way that the x-coordinate increases at a constant rate of 
20 units per second. How fast is the y-coordinate changing at the point (10, 4)?

Ans. 50 units/sec

24. If a point moves along the curve y = x2 - 2x, at what point is the y-coordinate changing twice as fast as the 
x-coordinate?

Ans. (2, 0)
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CHAPTER 21

Differentials.  
Newton’s Method.

If a function f is differentiable at x, then f x y x( ) lim /
x 0

′ = ∆ ∆
∆ →

, where Dy = f (x + D x) - f (x). Hence, for values 

of D x close to 0, Dy/D x will be close to f ′(x). This is often written Dy/D x ~ f ′(x), whence

 y f x x~ ( )∆ ′ ∆   (21.1)

This implies

 f x x f x f x x( ) ~ ( ) ( )+ ∆ + ′ ∆   (21.2)

Formula (21.2) can be used to approximate values of a function.

EXAMPLE 21.1: Let us estimate 16.2. Let f x x( ) = , x = 16, and D x = 0.2. Then x + D x = 16.2, f x x( ) 16.2+ ∆ = , 

and f x( ) 16 4= = . Since f x D x x x( ) ( ) 1/(2 ) 1/(2 16)x
1/2 1

2
1/2 1

8′ = = = = =− , formula (21.2) becomes

 16.2 ~ 4
1
8

(0.2) 4.025+ =  

(This approximation turns out to be correct to three decimal places. To four decimal places, the correct value is 
4.0249, which can be checked on a graphing calculator.)

EXAMPLE 21.2: Let us estimate sin (0.1). Here, f (x) = sin x, x = 0, and D  x = 0.1. Then x + D  x = 0.1,  
f (x + D  x) = sin (0.1), and f (x) = sin 0 = 0. Since f ′(x) = cos x = cos 0 = 1, formula (21.2) yields

 sin(0.1) ~ 0 1(0.1) 0.1+ =  

The actual value turns out to be 0.0998, correct to four decimal places. Note that the method used for this 
problem shows that sin u can be approximated by u for values of u close to 0.

A limitation of formula (21.2) is that we have no information about how good the approximation is. For 
example, if we want the approximation to be correct to four decimal places, we do not know how small D x 
should be chosen.
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THE DIFFERENTIAL

The product on the right side of equation (21.1) is called the differential of f and is denoted by df.

DEFINITION

The differential df of f is defined by

 df f x x( )= ′ ∆  

Note that df is a function of two variables, x and D x. If D x is small, then formula (21.1) becomes

 f x x f x df( ) ( ) ~+ ∆ −   (21.3)

This formula is illustrated in Fig. 21-1. Line  is tangent to the graph of f at P; so its slope is f ′(x). Hence, 
PRf x RT RT x( ) / /′ = = ∆ . Thus, RT f x x df( )= ′ ∆ = . For D x small, Q is close to P on the graph and, therefore, 

RT RQ~ , that is, df ~ f (x + D x) - f (x), which is formula (21.3).

Fig. 21-1

When the function f is given by a formula, say f (x) = tan x, then we often will write df as d (tan x), Thus,

 d x df f x x x x(tan ) ( ) sec2= = ′ ∆ = ∆  

Similarly, d(x3 - 2x) = (3x2 - 2) D x. In particular, if f (x) = x,

 dx df f x x x x( ) (1)= = ′ ∆ = ∆ = ∆  

Since dx = D x, we obtain df = f ′(x) dx. When D x ≠ 0, division by D x yields df / dx = f ′(x). When f (x) is written 
as y, then df is written dy and we get the traditional notation dy/dx for the derivative.

If u and v are functions and c is a constant, then the following formulas are easily derivable:

 

d c d cu c du d u du d

d u u d du d
u du u d

( ) 0 ( ) ( )

( ) 2

= = + = +

= + 



 =

−

v v

v v v v
v v

v
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NEWTON’S METHOD

Assume that we know that x0 is close to a solution of the equation

 f x( ) 0=   (21.4)

where f is a differentiable function. Then the tangent line  to the graph of f at the point with x-coordinate 
x0 will ordinarily intersect the x-axis at a point whose x-coordinate x1 is closer to the solution of (21.4) than 
is x0. (See Fig. 21-2.)

Fig. 21-2

One point–slope equation of the line  is

 y f x f x x x( ) ( )( )0 0 0− = ′ −  

since f ′(x0) is the slope of . If  intersects the x-axis at (x1, 0), then

     f x f x x x0 ( ) ( )( )0 0 1 0− = ′ −  

If f ′(x0) ≠ 0,    x x
f x
f x

( )
( )1 0

0

0

− = − ′  

Hence,             x x
f x
f x

( )
( )1 0

0

0

= − ′  

Now carry out the same reasoning, but beginning with x1 instead of x0. The result is a number x2 that 
should be closer to the solution of (21.4) than x1, where x2 = x1 - f (x1)/f ′(x1). If we keep on repeating this 
procedure, we would obtain a sequence of numbers x0, x1, x2, . . ., xn, . . . determined by the formula

 x x
f x
f x

( )
( )n n

n

n
1 = − ′+   (21.5)

This is known as Newton’s method for finding better and better approximations to a solution of the equa-
tion f (x) = 0. However, the method does not always work. (Some examples of the troubles that can arise are 
shown in Problems 23 and 24.)

EXAMPLE 21.3: We can approximate 3  by applying Newton’s method to the function f (x) = x2 - 3. Here, f ′(x) = 2x  
and (21.5) reads

 x x
x

x
x x

x
x

x
3

2
2 ( 3)

2
3

2n n
n

n

n n

n

n

n
1

2 2 2 2

= −
−

=
− −

=
+

+   (21.6)
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Let the first approximation x0 be 1, since we know that 1 3 2< < . Successively substituting n = 0, 1, 2, . . . in 
(21.6),† we get

 

x

x

x

x

x

x

1 3
2

2

2 3
2(2)

7
4

1.75

(1.75) 3
2(1.75)

1.732 142 857

(1.732 142 857) 3
2(1.732 142 857)

1.732 050 81

(1.732 050 81) 3
2(1.732 050 81)

1.732 050 808

(1.732 050 808) 3
2(1.732 050 808)

1.732 050 808

1

2
2

3

2

4

2

5

2

6

2

= + =

= + = =

= + =

=
+

=

=
+

=

=
+

=

 

Since our calculator yielded x6 = x5, we can go no further, and we have obtained the approximation 3 ~ 1.732 050 808, 
which is, in fact, correct to the indicated number of decimal places.

SOLVED PROBLEMS

 1. Use formula (21.2) to approximate: (a) 1243 ; (b) sin 61°.

(a) Let f x x( ) 3= , x = 125, and D x = -1. Then x + D x = 124, f x x( ) 1243+ ∆ = , and f x( ) 125 53= = . 
Since

 f x D x x( ) ( )
1
3

1
(125)

1
3

1
5

1
75x

1/3 1
3

2/3
2/3 2′ = = = = =−  

 formula (21.2) yields 124 ~ 5 ( )( 1) 5 ~ 4.98671
75

1
75

374
75

3 + − = − = . (To four decimal places, the correct answer 
can be shown to be 4.9866.)

(b) Let f (x) = sin x, x = p/3, and D x = p/180. Then x + D x = 61°, f (x + D x) = sin 61°, and f x( ) 3/2= . 
Since f x x( ) cos cos( /3) 1

2π′ = = = , formula (21.2) yields

 sin61 ~
3

2
1
2 180

~ 0.8660 0.0087 0.8747
π° + 









 + =  

 ( To four decimal places, the correct answer can be shown to be 0.8746.)

 2. Approximate the change in the volume V of a cube of side x if the side is increased by 1%.
Here, D x is 0.01x, f (x) = V = x3, and f ′(x) = 3x2. By formula (21.1), the increase is approximately (3x2)(0.01x) = 

0.03x3. (Thus, the volume increases by roughly 3%.)

 3. Find dy for each of the following functions y = f (x):

(a)    y = x3 + 4x2 - 5x + 6.

 dy d x d x d x d x x dx( ) (4 ) (5 ) (6) (3 8 5)3 2 2= + − + = + −  

(b)    y = (2x3 + 5)3/2.

 dy x d x x x dx x x dx(2 5) (2 5) (2 5) (6 ) 9 (2 5)3
2

3 1/2 3 3
2

3 1/2 2 2 3 1/2= + + = + = +  

† The computations are so tedious that a calculator, preferably a programmable calculator, should be used.
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(c)  y
x x

x
2 1

3

3

2= + +
+ .

 
dy

x d x x x x d x
x

x x dx x x x dx
x

x x x
x

dx

( 3) ( 2 1) ( 2 1) ( 3)
( 3)

( 3)(3 2) ( 2 1)(2 )
( 3)

7 2 6
( 3)

2 3 3 2

2 2

2 2 3

2 2

4 2

2 2

= + + + − + + +
+

=
+ + − + +

+ = + − +
+

 

(d)    y = cos2 2x + sin 3x.

 

dy x d x d x

x x dx x dx

x x dx x dx

x x dx

2cos2 (cos2 ) (sin3 )
(2cos2 )( 2sin 2 ) 3cos3

4sin 2 cos2 3cos3
( 2sin 4 3cos3 )

= +
= − +
= − +
= − +

 

 4. Use differentials to find dy
dx

:

(a) xy + x - 2y = 5.

 

d xy dx d y d

x dy ydx dx dy

x dy y dx
dy
dx

y
x

( ) (2 ) (5)
2 0

( 2) ( 1) 0
1
2

+ − =
+ + − =

− + + =

= − +
−

 

(b) 
x
y

y
x

2 3
8− = .

 

ydx x dy
y

x dy ydx
x

x ydx x dy y x dy ydx

x y y dx x y x dy

dy
dx

y x y
x x y

y
x

2 3 0

2 ( ) 3 ( ) 0

(2 3 ) (2 3 ) 0

(2 3 )
(2 3 )

2 2

2 2

2 3 3 2

2 2

2 2

−





−
−





=

− − − =
+ − + =

= +
+ =

 

(c)     x = 3 cos q - cos 3q, y = 3 sin q - sin 3q.

 
dx d dy d
dy
dx

( 3sin 3sin3 ) , (3cos 3cos3 )
cos cos3

sin sin3

θ θ θ θ θ θ
θ θ
θ θ

= − + = −

= −
− +

 

 5. Approximate the (real) roots of x3 + 2x - 5 = 0.
Drawing the graphs of y = x3 and y = 5 - 2x on the same axes, we see that there must be one root, which lies 

between 1 and 2. Apply Newton’s method, with x0 = 1. Then f (x) = x3 + 2x - 5 and f ′(x) = 3x2 + 2. Equation (21.5)  
becomes

x x
x x

x
x
x

2 5
3 2

2 5
3 2n n

n n

n

n

n
1

3

2

3

2= −
+ −

+ =
+
++  

Thus,

x

x

x

x

x

7
5

1.4

~ 1.330 964 467

~ 1.328 272 82

~ 1.328 268 856

~ 1.328 268 856

1

2

3

4

5

= =

A calculator yields the answer 1.328 2689, which is accurate to the indicated number of places. So, the answer 
obtained by Newton’s method is correct to at least seven decimal places.

21_Mendelson_ch21_p185-192.indd   189 27/07/21   11:05 AM



190 CHAPTER 21 Dif ferent ia ls . Newton’s  Method. 

 6. Approximate the roots of 2 cos x - x2 = 0.
Drawing the graphs of y = 2 cos x and y = x2, we see that there are two real roots, close to 1 and -1. (Since the 

function 2 cos x - x2 is even, if r is one root, the other root is -r.) Apply Newton’s method with x0 = 1. Then 
f (x) = 2 cos x - x2 and f ′(x) = -2 sin x - 2x = -2(x + sin x). Equation (21.5) becomes

x x
x x

x x
x x x x

x x
1
2

2cos
sin

2( sin cos )
2( sin )n n

n n

n n

n n n n

n n
1

2 2

= +
−

+ =
+ +

++  

Then

x

x

x

x

~ 1.021885 93

~ 1.021689 97

~ 1.021689 954

~ 1.021689 954

1

2

3

4

 

A graphing calculator produces 1.021 69, which is correct to the indicated number of places. Thus, the answer 
obtained by Newton’s method is accurate to at least five places.

SUPPLEMENTARY PROBLEMS

 7. Use equation (21.2) to approximate: (a) 174 ; (b) 10205 ; (c) cos 59°; (d) tan 44°.

Ans. (a) 2.031 25; (b) 3.996 88; (c) 0.5151; (d) 0.9651

 8. Use equation (21.1) to approximate the change in (a) x3 as x changes from 5 to 5.01; (b) 
x
1  as x changes from 1  

to 0.98.

Ans. (a) 0.75; (b) 0.02

 9. A circular plate expands under the influence of heat so that its radius increases from 5 to 5.06 inches. Estimate 
the increase in area.

Ans. 0.6p in2 ~ 1.88 in2

10. The radius of a ball of ice shrinks from 10 to 9.8 inches. Estimate the decrease in (a) the volume; (b) the surface area.

Ans. (a) 80p in3; (b) 16p in2

11. The velocity attained by an object falling freely a distance h feet from rest is given by h64.4 ft /sec=v .  
Estimate the error in v due to an error of 0.5 ft when h is measured as 100 ft.

Ans. 0.2 ft/sec

12. If an aviator flies around the world at a distance 2 miles above the equator, estimate how many more miles he 
will travel than a person who travels along the equator.

Ans. 12.6 miles
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13. The radius of a circle is to be measured and its area computed. If the radius can be measured to an accuracy of 0.001 
in and the area must be accurate to 0.1 inches2, estimate the maximum radius for which this process can be used.

Ans. 16 in

14. If pV = 20 and p is measured as 5 ± 0.02, estimate V.

Ans. V 4 0.016= ±  

15. If F = 1/r2 and F is measured as 4 ± 0.05, estimate r.

Ans. 0.5 0.003±  

16. Estimate the change in the total surface of a right circular cone when (a) the radius r remains constant while 
the height h changes by a small amount Dh; (b) the height remains constant while the radius changes by a small 
amount Dr.

Ans. (a) rh h r h/ 2 2π ∆ + ; (b) h r

r h
r r

2
2

2 2

2 2
π +

+
+







∆  

17. Find dy for each of the following:

(a) y = (5 - x)3 Ans. -3(5 - x)2 dx

(b) y
x

x
sin

=   Ans. 
x x x

x
dx

cos sin
2

−
 

(c) y = cos-1 (2x) Ans. 
x

dx
2

1 4 2

−
−

 

(d) y = cos (bx2) Ans. -2bx sin (bx2) dx

18. Find dy/dx in the following examples by using differentials:

(a) 2xy3 + 3x2y = 1 Ans. 
y y x
x y x

2 ( 3 )
3 (2 )

2

2− +
+  

(b) xy = sin (x - y) Ans. 
x y y
x y x

cos( )
cos( )

− −
− +

 

19. (GC) Use Newton’s method to find the solutions of the following equations, to four decimal places:

(a) x3 + 3x + 1 = 0 Ans. -0.3222
(b) x - cos x = 0 Ans. 0.7391
(c) x3 + 2x2 - 4 = 0 Ans. 1.1304

20. (GC) Use Newton’s method to approximate the following to four decimal places:

(a) 34   Ans. 1.3161

(b) 2475   Ans. 3.0098

21. (a) Verify that Newton’s method for calculating r  yields the equation x x
r
x

1
2n n

n
1 = +



+ .

 (b) (GC) Apply part (a) to approximate 5  to four decimal places.

Ans. (b)  2.2361
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22. (GC) Show that x3 + x2 - 3 = 0 has a unique solution in (1, 2) and use Newton’s method to approximate it to four 
decimal places.

Ans. 1.1746

23. Show that Newton’s method does not work if it is applied to the equation x1/3 = 0, with x0 = 1.

24. Show that Newton’s method does not give approximations to the solutions of the following equations, starting 
with the given initial values, and explain why it does not work in those cases.

(a) x3 - 3x2 + 3x + 2 = 0, with x0 = 1.
(b) x3 - 3x2 + x - 1 = 0, with x0 = 1.

(c) f x
x x

x x
( )

2 for 2

2 for 2
=

− ≥

− − <






, with x0 = 3

25. (GC) Approximate p by using Newton’s method to find a solution of cos x + 1 = 0. 

Ans. 3.141 592 654. (Note how long it takes for the answer to stabilize.)

26. (GC) Use Newton’s method to estimate the unique positive solution of x
x

cos
2

= .

Ans. 1.029 866 529
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CHAPTER 1CHAPTER 22

Antiderivatives

If F'(x) = f  (x), then F is called an antiderivative of f.

EXAMPLE 22.1: x3 is an antiderivative of 3x2, since Dx(x3) = 3x2. But x3 + 5 is also an antiderivative of 3x2, since 
Dx(5) = 0.

   (I)  In general, if F(x) is an antiderivative of f  (x), then F(x) + C is also an antiderivative of f (x), where C 
is any constant.

(II)  On the other hand, if F(x) is an antiderivative of f  (x), and if G(x) is any other antiderivative of f (x), 
then G(x) = F(x) + C, for some constant C.

Property (II) follows from Problem 13 of Chapter 18, since F′(x) = f (x) = G′(x).
From Properties (I) and (II) we see that if F(x) is an antiderivative of f (x), then the antiderivatives of f (x) 

are precisely those functions of the form F(x) + C, for an arbitrary constant C.

Notation: f x dx( )∫  will denote any antiderivative of f (x). In this notation, f (x) is called the integrand.

Terminology: An antiderivative f x dx( )∫  is also called an indefinite integral.

An explanation of the peculiar notation f x dx( )∫  (including the presence of the differential dx) will be 
given later.

EXAMPLE 22.2: (a) x dx x C1
2

2∫ = + ; (b) x dx x Csin cos∫ − = + .

LAWS FOR ANTIDERIVATIVES

Law 1. dx C0∫ = .

Law 2. dx x C1∫ = + .

Law 3. a dx ax C∫ = + .

Law 4. x dx
x
r

C
1

r
r 1

∫ = + +
+

 for any rational number r ≠ -1.

 (4) follows from the fact that D
x
r

x
1x

r
r

1

+






=
+

 for r ≠ -1.

Law 5. af x dx a f x dx( ) ( )∫ ∫= .

 Note that D a f x dx aD f x dx af x( ) ( ) ( )x x∫ ∫( ) ( )= = .

Law 6. f x g x dx f x dx g x dx( ( ) ( )) ( ) ( ) .∫ ∫ ∫+ = +

 Note that D f x dx g x dx D f x dx D g x dx f x g x( ) ( ) ( ) ( ) ( ) ( )x x x∫ ∫ ∫ ∫( ) ( ) ( )+ = + = + .

Law 7. f x g x dx f x dx g x dx( ( ) ( )) ( ) ( )∫ ∫ ∫− = − .

 Note that D f x dx g x dx D f x dx D g x dx f x g x( ) ( ) ( ) ( ) ( ) ( )x x x∫ ∫ ∫ ∫( ) ( ) ( )− = − = − .

CHAPTER 22
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EXAMPLE 22.3:

(a) x dx x dx
x

C x C
4/3

3 1/3
4/3

3
4

4/3∫∫ = = + = +  by Law (4).

(b) 
x

dx x dx
x

C
x

C
1

1
1

2
2

1

∫∫ = = − + = − +−
−

 by Law (4).

(c) x dx x dx
x

C x C7 7 7
4

3 3
4

7
4

4∫ ∫= = 





+ = +  by Laws (5), (4).

(d) x dx x dx dx x x C( 4) 4
1
3

42 2 3∫ ∫ ∫+ = + = + +  by Laws (6), (4), and (2).

(e) x x dx x dx x dx x dx x dx x x C x x C(3 4 ) 3 4 3 4 3( ) 4( ) 26 6 6 1
7

7 1
2

2 3
7

7 2∫ ∫ ∫ ∫ ∫− = − = − = − + = − + .

EXAMPLE 22.4: Laws (3)–(7) enable us to compute the antiderivative of any polynomial. For instance,

 
x x x dx x x x x C

x x x x C

(6 7 3) 6( ) ( ) 7( ) 3

3

8 2
3

5 4 1
9

9 2
3

1
6

6 1
5

5

2
3

9 1
9

6 7
5

5

∫ − + + = − + + +

= − + + +

Law 8. (Quick Formula I)

 g x g x dx
r

g x C( ( )) ( )
1

1
( ( ))r r 1∫ ′ = + ++  for any rational number r ≠ -1

For verification, D
r

g x
r

D g x
r

r g x g x g x g x
1

1
( ( ))

1
1

[( ( )) ]
1

1
( 1)( ( )) ( ) ( ( )) ( )x

r
x

r r r1 1

+




 = + = + + ′ = ′+ +  by the Power 

Chain Rule.

EXAMPLE 22.5: x x dx x C( 7) ( 7)1
3

3 5 2 1
6

1
3

3 6∫ + = + + .

To see this, let g x x( ) ( 7)1
3

3= +  and r = 5 in Quick Formula I.

EXAMPLE 22.6: x x dx x x dx x C x C( 1)
1
2

( 1) 2
1
2

1
5/3

( 1)
3

10
( 1)2 2/3 2 2/3 2 5/3 2 5/3∫ ∫+ = + = 



 + + = + + . 

In this case, we had to insert a factor of 2 in the integrand in order to use Quick Formula I.

Law 9. Substitution Method

 f g x g x dx f u du( ( )) ( ) ( )∫ ∫′ =  

where u is replaced by g(x) after the right-hand side is evaluated. The “substitution” is carried out on the 
left-hand side by letting u = g(x) and du = g′(x) dx. (For justification, see Problem 21.)

EXAMPLE 22.7:

(a) Find x x dxsin( )2∫ .

Let u = x2. Then du = 2x dx. So, x dx du1
2= . By substitution,

 x x dx u du u C x Csin( ) sin  ( ) ( cos ) cos( )2 1
2

1
2

1
2

2∫ ∫= = − + = − +  

(b) Find x dxsin( /2)∫ .

Let u = x/2. Then du dx1
2= . So, dx = 2 du. By substitution,

 
x

dx u du u du u C
x

Csin
2

(sin )2 2 sin 2( cos ) 2cos
2∫ ∫ ∫



 = = = − + = − 



 +  
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195CHAPTER 22 Antiderivatives

Observe that Quick Formula I is just a special case of the Substitution Method, with u = g(x). The advantage  
of Quick Formula I is that we save the bother of carrying out the substitution.

The known formulas for derivatives of trigonometric and inverse trigonometric functions yield the  
following formulas for antiderivatives:

 

x dx x C

x dx x C

x dx x C

x x dx x C

x dx x C

x x dx x C

x
dx x C

x
dx x C

x x
dx x C

sin cos

cos sin

sec tan

tan sec sec

csc cot

cot csc csc

1

1
sin

1
1

tan

1

1
sec

2

2

2
1

2
1

2
1

∫

∫

∫

∫

∫

∫

∫

∫

∫

= − +

= +

= +

= +

= − +

= − +

−
= +

+ = +

−
= +

−

−

−
 

 
a x

dx
x
a

C
1

sin
2 2

1∫ −
= 



 +−  for a > 0

 
a x

dx
a

x
a

C
1 1

tan2 2
1∫ + = 



 +−  for a > 0

 
x x a

dx
a

x
a

C
1 1

sec
2 2

1∫ −
= 



 +−  for a > 0

SOLVED PROBLEMS

In Problems 1–8, evaluate the antiderivative.

 1. x dx x C6 1
7

7∫ = +   (Law 4)

 2. 
dx
x

x dx x C
x

C
1
5

1
56

6 5
5∫ ∫= = − + = − +− −   (Law 4)

 3. z dz z dz z C z C
1

4/3
( )3 1/3 4/3 3

4
3 4∫ ∫= = + = +   (Law 4)

 4. 
x

dx x dx x C x C
1 1

1/3
3

23
2/3 1/3 3∫ ∫= = + = +−   (Law 4)

 5. x x dx x dx x dx dx

x x x C x x x C

(2 5 3) 2 5 3

2( ) 5( ) 3 3

2 2

1
3

3 1
2

2 2
3

3 5
2

2

∫ ∫ ∫∫− + = − +

= − + + = − + +

  

(Laws 3–7)

22_Mendelson_ch22_p193-202.indd   195 27/07/21   11:05 AM



196 CHAPTER 22 Ant ider ivat ives

 6. x x dx x x dx x x dx

x dx x dx x x C

x x C x x C

(1 ) (1 ) ( )

1
3/2

1
5/2

2 ( )

1/2 1/2 3/2

1/2 3/2 3/2 5/2

2
3

3/2 2
5

5/2 3/2 1
3

1
5

∫ ∫ ∫

∫ ∫

− = − = −

= − = − +

= − + = − +  (Laws 4, 7)

 7. s ds s s ds

s s s C s s s C

(3 4) (9 24 16)

9( ) 24( ) 16 3 12 16

2 2

1
3

3 1
2

2 3 2

∫ ∫+ = + +

= + + + = + + +

  

(Laws 3–6)

Note that it would have been easier to use Quick Formula I:

 s ds s ds s C s C(3 4) (3 4) 3 ( (3 4) ) ( )(3 4)2 1
3

2 1
3

1
3

3 1
9

3∫ ∫+ = + = + + = + +  

 8. 
x x

x
dx x x dx x x x C

x x
x

C

5 4
( 5 4 ) 5 4

1
1

5
4

3 2

2
2 1

2
2 1

1
2

2

∫ ∫
+ − = + − = + − −





 +

= + + +

− −

  (Laws 3–7)

Use Quick Formula I in Problems 9–15.

 9. s s ds s C( 2) (3 ) ( 2)3 2 2 1
3

3 3∫ + = + +  

10. x x dx x x dx x C x C( 2) ( 2) 3
1

3/2
( 2) ( 2)3 1/2 2 1

3
3 1/2 2 1

3
3 3/2 2

9
3 3/2∫ ∫+ = + = +



 + = + +  

11. 
x

x
dx x x dx x C

x
C

8
( 2)

( 2) 3
1
2

( 2)
4
3

1
( 2)

2

3 3
8
3

3 3 2 8
3

3 2
3 2∫ ∫+ = + = − +



 + = − + +− −  

12. 
x dx

x
x x dx x C x C

2
( 2) 3

1
3/4

( 2) ( 2)
2

34
1
3

3 1/4 2 1
3

3 3/4 4
9

3 3/4∫ ∫+
= + = +



 + = + +−  

13. x x dx x x dx

x x dx x C

x C

3 1 2 4 1 2

4 (1 2 )
1

3/2
(1 2 )

(1 2 )

2 3
4

2

3
4

2 1/2 3
4

2 3/2

1
2

2 3/2

∫ ∫

∫

− = − − −

= − − − = − −



 +

= − − +

 

14. x x dx x x dx

x C x C

1 (1 ) ( 2 )

1
4/3

(1 ) (1 )

23 1
2

2 1/3

1
2

2 4/3 3
8

2 4/3

∫ ∫− = − − −

= − −



 + = − − +

 

15. x x dx x x dx x C x Csin cos (sin ) cos (sin ) sin2 2 1
3

3 1
3

3∫ ∫= = + = +  

In Problems 16–18, use the Substitution Method.

16. 
x

x
dx

cos
∫ .

Let u x x1/2= = . Then du x dx1
2

1/2= − . So, du
x

dx2
1= . Thus,

 
x

x
dx u du u C x C

cos
2 cos 2sin 2sin( )∫∫ = = + = +  
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17. x x dxsec (4 5)2 2∫ − .

Let u = 4x2 - 5. Then du = 8x dx, du x dx1
8 = . Thus,

 x x dx u du u C x Csec (4 5) sec tan tan(4 5)2 2 1
8

2 1
8

1
8

2∫ ∫− = = + = − +  

18. x x dx12∫ + .

Let u = x + 1. Then du = dx and x = u - 1. Thus,

 

x x dx u u du u u u du

u u u du u u u C

u u u C

x x x C

1 ( 1) ( 2 1)

( 2 ) 2( )

2 ( )

2( 1) [ ( 1) ( 1) ]

2 2 2 1/2

5/2 3/2 1/2 2
7

7/2 2
5

5/2 2
3

3/2

3/2 1
7

2 2
5

1
3

3/2 1
7

2 2
5

1
3

∫ ∫∫

∫

+ = − = − +

= − + = − + +

= − + +

= + + − + + +

 

19. A stone is thrown straight up from the ground with an initial velocity of 64 ft/sec. (a) When does it reach its 
maximum height? (b) What is its maximum height? (c) When does it hit the ground? (d) What is its velocity 
when it hits the ground?

In free-fall problems, a dt∫=v  and s dt∫= v  because a
d
dt

= v
 and 

ds
dt

=v . Since a = -32 ft/sec2,

 dt t C32 32 1∫= − = − +v  

Letting t = 0, we see that C1 = v0, the initial velocity at t = 0. Thus, v = -32t + v0. Hence,

 s t dt t t C( 32 ) 160
2

0 2∫= − + = − + +v v  

Letting t = 0, we see that C2 = s0, the initial position at t = 0. Hence

 s t t s16 2
0 0= − + +v  

In this problem, s0 = 0 and v0 = 64. So,

 t s t t32 64,  16 642= − + = − +v  

(a) At the maximum height, 
ds
dt

0= =v . So, -32t + 64 = 0 and, therefore, t = 2 seconds.

(b) When t = 2, s = -16(2)2 + 64(2) = 64 ft, the maximum height.
(c) When the stone hits the ground, 0 = s = -16t2 + 64t. Dividing by t, 0 = -16t + 64 and, therefore, t = 4.
(d) When t = 4, v = -32(4) + 64 = -64 ft/sec.

20. Find an equation of the curve passing through the point (3, 2) and having slope 5x2 - x + 1 at every point (x, y).

Since the slope is the derivative, dy/dx = 5x2 - x + 1. Hence,

 y x x dx x x x C(5 1)2 5
3

3 1
2

2∫= − + = − + +  

Since (3, 2) is on the curve, C C2 (3) (3) 3 45 35
3

3 1
2

2 9
2= − + + = − + + . So, C 83

2= − . Hence, an equation of the 
curve is

 y x x x5
3

3 1
2

2 83
2= − + −  

21. Justify the Substitution Method: f g x g x dx f u du( ( )) ( ) ( )∫ ∫′ = .

Here, u = g(x) and du/dx = g′(x). By the Chain Rule,

 D f u du D f u du
du
dx

f u
du
dx

f g x g x( ) ( ) ( ) ( ( )) ( )x u∫ ∫( ) ( )= ⋅ = ⋅ = ⋅ ′  
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198 CHAPTER 22 Ant ider ivat ives

SUPPLEMENTARY PROBLEMS

In Problems 22–44, evaluate the given antiderivative.

22. 
x

x
dx

(1 )2

∫
+

. Ans. x x C2 (1 )1/2 1
5

2+ +  

23. 
x x
x

dx
( 2 )
( 1)

2

2∫
+
+   Ans. 

x
x

C
1

2

+ +  

24. x dxcos3∫   Ans. x Csin31
3 +  

25. 
y dy

y
sin
cos2∫   Ans. sec y + C

26. 
dx

x1 cos∫ +  (Hint: Multiply numerator and denominator by 1 - cos x.)

Ans. - cot x + csc x + C

27. x x dx(tan 2 sec2 )2∫ +   Ans. tan 2x + sec 2x - x + C

28. 
dx

x4 2∫ −
  Ans. 

x
Csin

2
1 



 +−  

29. 
dx

x9 2∫ +  Ans. 
x

Ctan
3

1
3

1 



 +−  

30. 
dx

x25 16 2∫ −
 (Hint: Factor 16 out of the radical.)

Ans. 
x

Csin
4
5

1
4

1 



 +−  

31. 
dx

x4 92∫ +  (Hint: Either factor 4 out of the denominator or make the substitution u = 2x.)

Ans. x
Ctan

2
3

1
6

1 



 +−  

32. 
dx

x x4 92∫ −
 (Hint: Either factor 4 out of the radical or make the substitution u = 2x.) 

Ans. x
C

1
3

sec
2
3

1 



 +−  

33. 
x dx

x1

2

6∫ −
 (Hint. Substitute u = x3.) Ans. x Csin ( )1

3
1 3 +−  

34. 
x dx

x 34∫ +  (Hint: Substitute u = x2.) Ans. x
C

3
6

tan
3

3
1

2





+−  

35. 
dx

x x 14∫ −
  Ans. 

x
Ccos

11
2

1
2





 +−  
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36. 
x x x

x
dx

3 4 3
1

3 2

2∫
− +

+   Ans. 
x

x x C
3
2

4 4 tan
2

1− + +−  

37. 
x x dx

x
sec tan
9 4sec2∫ +

  Ans. x
Ctan

2sec
3

1
6

1 



 +−  

38. x dx

x

( 3)

1 2∫
+
−

  Ans. x x C1 3sin2 1− − + +−  

39. dx
x x10 302∫ + +

  Ans. 
x

C
5

5
tan

( 5) 5
5

1 +





+−  

40. 
dx

x x20 8 2∫ + −
  Ans. 

x
Csin

4
6

1 −



 +−  

41. 
dx

x x2 2 52∫ + +   Ans. x
Ctan

2 1
3

1
3

1 +



 +−  

42. 
dx

x x28 12 2∫ − −
  Ans. x

Csin
6

8
1 +



 +−  

43. 
x

x x
dx

3

5 4 2∫
+

− −
  Ans. x x

x
C5 4 sin

2
3

2 1− − − + +



 +−  

44. 
x

x x
dx

2

4 2∫
+
−

  Ans. x x
x

C4 4sin
2

2
2 1− − + −



 +−  

In Problems 45–52, use Quick Formula I. 

45. x dx( 2)3/2∫ −   Ans. x C( 2)2
5

5/2− +  

46. 
dx

x( 1)3∫ −   Ans. x
C

1
2( 1)2− − +  

47. 
dx

x 3∫ +
 Ans. x C2 3+ +  

48. x dx3 1∫ −   Ans. x C(3 1)2
9

3/2− +  

49. x dx2 3∫ −   Ans. x C(2 3 )2
9

3/2− − +  

50. x x dx(2 3)2 1/3∫ +   Ans. x C(2 3)3
16

2 4/3+ +  

51. y y dy1 4 3∫ +   Ans. y C(1 )1
6

4 3/2+ +  

52. 
x dx

x( 4)2 3∫ +   Ans. x
C

1
4( 4)2 2− + +  
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In Problems 53–64, use any method.

53. x x dx( 1)2∫ −   Ans. x x x C1
4

4 2
3

3 1
2

2− + +  

54. x x x dx( ) (2 1)2 4∫ − −   Ans. x x C( )1
5

2 5− +  

55. 
x dx

x x

( 1)

2 42∫
+
+ −

  Ans. x x C2 42 + − +  

56. 
x

x
dx

(1 )2

∫
+

  Ans. x C(1 )2
3

3+ +  

57. 
x x

x
dx

( 1)( 2)
∫

+ −
  Ans. x x x C x x x C4 2 ( 2)2

5
5/2 2

3
3/2 1/2 1/2 1

5
2 1

3− − + = − − +  

58. x x dxsec3 tan3∫   Ans. x Csec31
3 +  

59. x dxcsc (2 )2∫   Ans. x Ccot 21
2− +  

60. x x dxsec ( )2 2∫   Ans. x Ctan( )1
2

2 +  

61. x dxtan2∫   Ans. x x Ctan − +  

62. x x dxcos sin4∫   Ans. x Ccos1
5

5− +  

63. 
dx

x5 2∫ −
  Ans. 

x
Csin

5
5

1






+−  

64. 
x dx

x
sec

1 4 tan

2

2∫ −   Ans. x Csin (2 tan )1
2

1 +−  

65. A stone is thrown straight up from a building ledge that is 120 ft above the ground, with an initial velocity of 
96 ft/sec. (a) When will it reach its maximum height? (b) What will its maximum height be? (c) When will it hit 
the ground? (d) With what speed will it hit the ground?

Ans. (a) t = 3 sec; (b) 264 ft; (c) 6 66
2

~ 7.06sec
+ ; (d) ~129.98 ft/sec

66. An object moves on the x-axis with acceleration a = 3t - 2 ft/sec2. At time t = 0, it is at the origin and moving 
with a speed of 5 ft/sec in the negative direction. (a) Find a formula for its velocity v. (b) Find a formula for its 
position x. (c) When and where does it change direction? (d) At what times is it moving toward the right?

Ans. (a) t t2 53
2

2= − −v ; (b) x t t t51
2

3 2= − − ; (c) 2 34
3

± ; (d) t 2 34
3

> +  or t
2 34

3
< −  

67. A rocket shot straight up from the ground hits the ground 8 seconds later. (a) What was its initial velocity? 
(b) What was its maximum height?

Ans. (a) 128 ft/sec; (b) 256 ft
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201CHAPTER 22 Antiderivatives

68. A driver applies the brakes on a car going at 55 miles per hour on a straight road. The brakes cause a constant 
deceleration of 11 ft/sec2. (a) How soon will the car stop? (b) How far does the car move after the brakes were 
applied?

Ans. (a) 5 sec; (b) 137.5 ft

69. Find the equation of a curve going through the point (3, 7) and having slope 4x2 - 3 at (x, y).

Ans. y x x3 204
3

3= − −  
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CHAPTER 23

The Definite Integral. 
Area Under a Curve.

SIGMA NOTATION

The Greek capital letter Σ denotes repeated addition.

EXAMPLE 23.1:

(a) j 1 2 3 4 5 15
j 1

5

∑ = + + + + =
=

.

(b) i(2 1) 1 3 5 7
i 0

3

∑ + = + + +
=

.

(c) i 2 3 . . . (10)
i

2 2 2 2

2

10

∑ = + + +
=

 

(d) jcos cos cos2 cos3 cos4
j 1

4

∑ π π π π π= + + +
=

 

In general, if f is a function defined on the integers, and if n and k are integers such that n ≥ k, then:

 f j f k f k f n( ) ( ) ( 1) . . . ( )
j k

n

∑ = + + + +
=

 

AREA UNDER A CURVE

Assume that f is a function such that f (x) ≥ 0 for all x in a closed interval [a, b]. Its graph is a curve that lies on 
or above the x-axis. (See Fig. 23-1.) We have an intuitive idea of the area A of the region  under the graph, 
above the x-axis, and between the vertical lines x = a and x = b. We shall specify a method for evaluating A.

Choose points x1, x2, . . ., xn−1 between a and b. Let x0 = a and xn = b. Thus (see Fig. 23-2),

 a x x x x x b. . .
n n0 1 2 1= < < < < < =−

The interval [a, b] is divided into n subintervals [x0, x1], [x1, x2], . . ., [xn−1, xn]. Denote the lengths of these 
subintervals by ∆1x, ∆2x, . . ., ∆nx. Hence, if 1 ≤ k ≤ n,

 x x xk k k 1∆ = − −  
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204 CHAPTER 23 The Def in i te  Integra l . Area Under  a  Cur ve.

Fig. 23-1

Fig. 23-2

Draw vertical line segments x = xk from the x-axis up to the graph. This divides the region  into n strips. 
Letting ∆kA denote the area of the kth strip, we obtain

 A Ak
k

n

1
∑= ∆

=

 

We can approximate the area ∆k  A in the following manner. Select any point xk
* in the kth subinterval 

[xk−1, xk]. Draw the vertical line segment from the point xk
* on the x-axis up to the graph (see the dashed lines 

in Fig. 23-3); the length of this segment is f x( )k
* . The rectangle with base ∆k x and height f x( )k

*  has area 
f x( )k

*  ∆k x, which is approximately the area ∆k  A of the kth strip. Hence, the total area A under the curve is 
approximately the sum

 f x x f x x f x x f x x( ) ( ) ( ) ... ( )k
k

n

k n n
*

1
1
*

1 2
*

2
*∑ ∆ = ∆ + ∆ + + ∆

=
  (23.1)
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a b x

y

x1
* x2

* x3
* x4

* xn
*…

Fig. 23-3

The approximation becomes better and better as we divide the interval [a, b] into more and more subinter-
vals and as we make the lengths of these subintervals smaller and smaller. If successive approximations can 
be made as close as one wishes to a specific number, then that number will be denoted by

 f x dx( )
a

b

∫  

and will be called the definite integral of f from a to b. Such a number does not exist in all cases, but it does 

exist, for example, when the function f is continuous on [a, b]. When f x dx( )
a

b

∫  exists, its value is equal to 
the area A under the curve.†

In the notation f x dx( )
a

b

∫ , b is called the upper limit and a is called the lower limit of the definite integral.
For any (not necessarily nonnegative) function f on [a, b], sums of the form (23.1) can be defined, without 

using the notion of area. If there is a number to which these sums can be made as close as we wish, as n gets 

larger and larger and as the maximum of the lengths ∆k x approaches 0, then that number is denoted f x dx( )
a

b

∫  

and is called the definite integral of f on [a, b]. When f x dx( )
a

b

∫  exists, we say that f is integrable on [a, b].

We shall assume without proof that f x dx( )
a

b

∫  exists for every function f that is continuous on [a, b]. To 

evaluate f x dx( )
a

b

∫ , it suffices to find the limit of a sequence of sums (23.1) for which the number n of sub-

intervals approaches infinity and the maximum lengths of the subintervals approach 0.

EXAMPLE 23.2: Let us show that

 dx b a1
a

b

∫ = −   (23.2)

Let a = x0 < x1 < x2 < . . . <xn-1 < xn = b be a subdivision of [a, b]. Then a corresponding sum (23.1) is

 
f x x x

b a

( )k k
k

n

k
k

n
*

1 1
∑ ∑∆ = ∆

= −

= =  [because f (x) = 1 for all x]

Since every approximating sum is b − a, dx b a1
a

b

∫ = − .

† The definite integral is also called the Riemann integral of f on [a, b], and the sum (23.1) is called a Riemann sum for f on [a, b].
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An alternative argument would use the fact that the region under the graph of the constant function 1 and 
above the x-axis, between x = a and x = b, is a rectangle with base b − a and height 1 (see Fig. 23-4). So, 

dx1
a

b

∫ , being the area of that rectangle, is b − a.

Fig. 23-4

EXAMPLE 23.3: Let us calculate x dx
a

b

∫ .

Let a = x0 < x1 < x2 < . . . <xn−1 < xn = b be a subdivision of [a, b] into n equal subintervals. Thus, each ∆kx =  
(b − a)/n. Denote (b − a)/n by ∆x. Then x1 = a + ∆x, x2 = a + 2∆x, and, in general, xk = a + k ∆x. In the kth 
subinterval, [xk−1, xk], choose xk

* to be the right-hand endpoint xk. Then the approximating sum (23.1) has the form

 

f x x x x a k x x

a x k x a x k x

n a x x k n a
b a

n
b a

n
n n

a b a b a
n

n

( ) ( )

( ( ) ) ( )

( ) ( )
( 1)

2

( )
1
2

( )
1

k k
k

n

k k
k

n

k

n

k

n

k

n

k

n

k

n

*

1

*

1 1

2

1 1

2

1

2

1

2

2

∑ ∑ ∑

∑ ∑ ∑

∑

∆ = ∆ = + ∆ ∆

= ∆ + ∆ = ∆ + ∆

= ∆ + ∆ = −



 + −





+





= − + − +

= = =

= = =

=

 

Here we have used the fact that k
n n( 1)

2
k

n

1
∑ = +

=

. (See Problem 5.)

Now, as n → ∞, (n + 1)/n = 1 + l/n → 1 + 0 = 1. Hence, the limit of our approximating sums is

 a b a b a b a a
b a

b a
a b

b a( ) ( ) ( )
2

( )
2

( )1
2

2 1
2

2 2− + − = − + −



 = − +



 = −  

Thus, x dx b a( )
a

b
1
2

2 2∫ = − .

In the next chapter, we will find a method for calculating f x dx( )
a

b

∫  that will avoid the kind of tedious 
computation used in this example.

PROPERTIES OF THE DEFINITE INTEGRAL

 c f x dx c f x dx( ) ( )
a

b

a

b

∫ ∫=   (23.3)

This follows from the fact that an approximating sum cf x x( )k k
k

n
*

1
∑ ∆

=

 for cf x dx( )
a

b

∫  is equal to c times the 

approximating sum f x x( )k
k

n

k
*

1
∑ ∆

=

 for f x dx( )
a

b

∫ , and that the same relation holds for the corresponding limits.

 f x dx f x dx( ) ( )
a

b

a

b

∫∫ − = −   (23.4)
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This is the special case of (23.3) when c = −1.

 f x g x dx f x dx g x dx( ( ) ( )) ( ) ( )
a

b

a

b

a

b

∫ ∫ ∫+ = +   (23.5)

This follows from the fact that an approximating sum f x g x x( ( ) ( ))k k k
k

n

* *

1
∑ + ∆

=

 for f x g x dx( ( ) ( ))
a

b

∫ +  is equal 

to the sum f x x g x x( ) ( )k k
k

n

k

k

n

k
*

1

*

1
∑ ∑∆ + ∆

= =

 of approximating sums for f x dx( )
a

b

∫  and g x dx( )
a

b

∫ .

 f x g x dx f x dx g x dx( ( ) ( )) ( ) ( )
a

b

a

b

a

b

∫ ∫ ∫− = −   (23.6)

Since f (x) − g(x) = f (x) + (−g(x), this follows from (23.5) and (23.4).

If a < c < b, then f is integrable on [a, b] if and only if it is integrable on [a, c] and [c, b]. Moreover, if f 
is integrable on [a, b],

 f x dx f x dx f x dx( ) ( ) ( )
a

b

c

a

c

b

∫ ∫ ∫= +  (23.7)

This is obvious when f (x) ≥ 0 and we interpret the integrals as areas. The general result follows from looking 
at the corresponding approximating sums, although the case where one of the subintervals of [a, b] contains 
c requires some extra thought.

We have defined f x dx( )
a

b

∫ only when a < b. We can extend the definition to all possible cases as follows:

   (i) f x dx( ) 0
a

a

∫ =  

(ii) f x dx f x dx( ) ( )
a

b

b

a

∫∫ = −  when a < b

In particular, we always have:

 f x dx f x dx( ) ( )
d

c

c

d

∫∫ = −  for any c and d (23.8)

It can readily be verified that the laws (23.2)–(23.6), the equation in (23.7), and the result of Example 23.3 
all remain valid for arbitrary upper and lower limits in the integrals.

SOLVED PROBLEMS

 1. Assume f (x) ≤ 0 for all x in [a, b]. Let A be the area between the graph of f and the x-axis, from x = a to x = b. 

(See Fig. 23-5.) Show that f x dx A( )
c

b

∫ = − .

Fig. 23-5
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Let B be the area between the graph of −f and the x-axis, from x = a to x = b. By symmetry, B = A. But, 

f x dx f x dx( ) ( )
a

b

a

b

∫∫ = − −  by (23.4).

Since f x dx B( )
a

b

∫ − = , f x dx B A( )
a

b

∫ = − = −  

 2. Consider a function f that, between a and b, assumes both positive and negative values. For example, let its graph 

be as in Fig. 23-6. Then f x dx( )
a

b

∫  is the difference between the sum of the areas above the x-axis and below the 

graph and the sum of the areas below the x-axis and above the graph. In the case of the graph shown in Fig. 23-6,

 f x dx A A A A A( ) ( ) ( )
a

b

1 3 5 2 4∫ = + + − +  

Fig. 23-6

To see this, apply (23.7) and Problem 1:

 f x dx f x dx f x dx f x dx f x dx f x dx A A A A A( ) ( ) ( ) ( ) ( ) ( )
a

b

a

c

c

c

c

c

c

b

c

c

1 2 3 4 5

1

2

3

3

4

41

2∫ ∫ ∫ ∫ ∫∫= + + + + = − + − +  

 3. Assume that f and g are integrable on [a, b]. Prove:

(a) If f (x) ≥ 0 on [a, b], then f x dx( ) 0
a

b

∫ ≥ .

(b) If f (x) ≤ g(x) on [a, b], then f x dx g x dx( ) ( )
a

b

a

b

∫ ∫≤ .

(c) If m ≤ f (x) ≤ M for all x in [a, b], then m b a f x dx M b a( ) ( ) ( )
a

b

∫− ≤ ≤ − .

(a) Since every approximating sum f x x( ) 0k k
k

n
*

1
∑ ∆ ≥

=

, it follows that

 f x dx( ) 0
a

b

∫ ≥  

(b) g(x) − f (x) ≥ 0 on [a, b]. So, by (a), g x f x dx( ( ) ( )) 0
a

b

∫ − ≥ . By (23.6), g x dx f x dx( ) ( ) 0
a

b

a

b

∫ ∫− ≥ . Hence,

 f x dx g x dx( ) ( )
a

b

a

b

∫ ∫≤  

(c) By (b), m dx f x M dx( )
a

b

a

b

a

b

∫∫∫ ≤ ≤ . But, by (23.2) and (23.3), m dx m dx m b a1 ( )
a

b

a

b

∫ ∫= = −  and 

M dx M dx M b a1 ( )
a

b

a

b

∫∫ = = − . Hence,

 m b a f x dx M b a( ) ( ) ( )
a

b

∫− ≤ ≤ −  
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 4. Evaluate x dx2

0

1

∫ .

This is the area under the parabola y = x2 from x = 0 to x = 1. Divide [0, 1] into n equal subintervals. Thus, 

each ∆kx = 1/n. In the kth subinterval 
k

n
k
n

1
,

−



, let xk

*  be the right endpoint k/n. Thus, the approximating sum 

(23.1) is

 f x x
k
n n n

k( )
1 1

.k k
k

n

k

n

k

n
*

1

2

1
3

2

1
∑ ∑ ∑∆ = 









 =

= = =
 

Now, k
n n n( 1)(2 1)

6
k

n
2

1
∑ = + +

=
 (see Problem 12).

Hence,

 

f x x
n

n n n n
n

n
n

n n

( )
1 ( 1)(2 1)

6
1
6

1 2 1

1
6

1
1

2
1

k k
k

n
*

1
3∑ ∆ = + + = +





+





= +



 +





=
 

 So, the approximating sums approach (1 0)(2 0)1
6

1
3+ + =  as n → ∞. Therefore, x dx2

0

1
1
3∫ = . In the next chapter, 

we will derive a simpler method for obtaining the same result.

 5. Prove the formula k
n n( 1)

2
k

n

1
∑ = +

=
 used in Example 23.3.

Reversing the order of the summands in

 k n n n1 2 3 ( 2) ( 1)
k

n

1
∑ = + + + ⋅⋅⋅+ − + − +

=
 

we get

 k n n n( 1) ( 2) 3 2 1
k

n

1
∑ = + − + − + ⋅⋅⋅+ + +

=
. 

Adding the two equations yields

 k n n n n n n n n2 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
k

n

1
∑ = + + + + + + ⋅⋅⋅+ + + + + + = +

=
 

since the sum in each column is n + 1. Hence, dividing by 2, we get

 k
n n( 1)

2
.

k

n

1
∑ = +

=
 

SUPPLEMENTARY PROBLEMS

 6. Calculate: (a)  dx3
1

4

∫ ;  (b)  x dx
2

5

∫−
;  (c)  x dx3 2

0

1

∫ .

Ans. (a)  3(4 − 1) = 9;  (b)  (5 ( 2) )1
2

2 2 21
2− − = ;  (c)  3( ) 11

3 =  

 7. Find the area under the parabola y = x2 − 2x + 2, above the x-axis, and between x = 0 and x = 1.

Ans. 2[ (1 0 )] 2(1 0)1
3

1
2

2 2 4
3− − + − =  

 8. Evaluate x dx(3 4)
2

6

∫ + .

Ans. 3(( )(6 2 )) 4(6 2) 641
2

2 2− + − =  
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 9. For the function f graphed in Fig. 23-7, express f x dx( )
0

3

∫  in terms of the areas A1, A2, and A3.

Ans. A1 − A2 + A3

10. Show that x dx3 1923

1

4

∫≤ ≤ . [Hint: Problem 3(c).]

11. Evaluate x dx1 2

0

1

∫ − . (Hint: Find the corresponding area by geometric reasoning.)

Ans. π/4

A1

y

A2

A3

30
x

Fig. 23-7

12. Use mathematical induction to prove the formula k
n n n( 1)(2 1)

6
k

n
2

1
∑ = + +

=

 of Problem 4. (Verify it when n = 1, and 

then show that, if it holds for n, then it holds for n + 1.)

13. Evaluate (a)  
j

cos
6

j 0

2

∑ π
=

;  (b)  j(4 1)
j 0

2

∑ +
=

;  (c)  j4
j 1

100

∑
=

;  (d)  j2
j

2

1

18

∑
=

.

Ans. (a)  3 3
2

+ ;  (b)  15;  (c)  20200;  (d)  4218

14. Let the graph of f between x = 1 and x = 6 be as in Fig. 23-8. Evaluate f x dx( )
1

6

∫ .

Ans. 1 3 1
2

3
2− + = −  

Fig. 23-8

15. If f is continuous on [a, b], f (x) ≥ 0 on [a, b], and f (x0) > 0 for some x0 in [a, b], prove that f x dx( ) 0
a

b

∫ > .

 [Hint: By the continuity of f, f x f x( ) ( ) 01
2 0> >  for all x in some subinterval [c, d]. Use (23.7) and Problem 3(a, c).]
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CHAPTER 24

The Fundamental Theorem  
of Calculus

MEAN VALUE THEOREM FOR INTEGRALS

Let f be continuous on [a, b]. Then there exists c in [a, b] such that

 f x dx b a f c( ) ( ) ( )
b

a

∫ = −  (24.1)

 To see this, let m and M be the minimum and maximum values of f in [a, b], and apply Problem 3(c) of 
Chapter 23 to obtain

 m b a f x dx M b a( ) ( ) ( )
a

b

∫− ≤ ≤ −   and therefore,  m
b a

f x dx M
1

( )
a

b

∫≤ − ≤

So, by the intermediate value theorem, 
b a

f x dx f c
1

( ) ( )
a

b

∫− =  for some c in [a, b].

AVERAGE VALUE OF A FUNCTION ON A CLOSED INTERVAL

Let f be defined on [a, b]. Since f may assume infinitely many values on [a, b], we cannot talk about the 

average of all of the values of f. Instead, divide [a, b] into n equal subintervals, each of x
b a

n
.∆ = −
 Select 

an arbitrary point xk
* in the kth subinterval. Then the average of the n values f x f x f x( ), ( ), , ( )n1 2 …∗ ∗ ∗  is

 
f x f x f x

n n
f x

( ) ( ) ( ) 1
( )n

k
k

n
1 2

1
∑+ +…+

=
∗ ∗ ∗

∗

=

When n is large, this value is intuitively a good estimate of the “average value of f on [a, b].” However, since 

n b a
x

1 1
,= − ∆

 n
f x

b a
f x x

1
( )

1
( )k k

k

n

k

n

11
∑∑ = − ∆∗ ∗

==

As n → ∞, the sum on the right approaches f x dx( ) .
a

b

∫  This suggests the following definition.

Definition: The average value of f on [a, b] is 
b a

f x dx
1

( ) .
a

b

∫−

Let f be continuous on [a, b]. If x is in [a, b], then f t dt( )
a

x

∫  is a function of x, and:

 D f t dt f x( ) ( )x a

x

∫( ) =  (24.2)

For a proof, see Problem 4.
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FUNDAMENTAL THEOREM OF CALCULUS

Let f be continuous on [a, b], and let F x f x dx( ) ( ) ,∫=  that is, F is an antiderivative of f. Then

 f x dx F b F a( ) ( ) ( ) (24.3)
a

b

∫ = −  (24.3)

To see this, note that by (24.2), f t dt( )
a

x

∫  and F(x) have the same derivative, f                                             (x). Hence, by Problem 18 

of Chapter 13, there is a constant K such that f t dt F x K( ) ( ) .
a

x

∫ = +  When x = a, we get

 F a K f t dt K F a( ) ( ) 0 So, ( )
a

a

∫+ = = = −

Hence, f t dt F x F a( ) ( ) ( ).
a

x

∫ = −  When x = b, this yields

 f t dt F b F a( ) ( ) ( )
a

b

∫ = −

Equation (24.3) provides a simple way of computing f x dx( )
a

b

∫  when we can find an antiderivative F of f.  
The expression F(b) - F(a) on the right side of (24.3) is often abbreviated as F x( ) .

a

b]  Then the fundamental 
theorem of calculus can be written as follows:

 f x dx F x( ) ( )
a

b

a

b

∫∫ ]=

EXAMPLE 24.1:

(i)  The complicated evaluation of x dx
a

b

∫  in Example 23.3 of Chapter 23 can be replaced by the following simple 
one:

x dx x b a b a( )
a

b

a

b
1
2

2 1
2

2 1
2

2 1
2

2 2∫ =  = − = −

 (ii) The very tedious computation of x dx2

0

1

∫  in Problem 4 of Chapter 23 can be replaced by

 x dx x 1 02 1
3

3

0

1
1
3

3 1
3

3 1
3

0

1

∫ =  = − =

 (iii) In general, x dx
r

x
r

b a
1

1
1

1
( )r r

a

b

a

b

r r1 1 1∫ = +



= + −+ + +  for r ≠ -1

CHANGE OF VARIABLE IN A DEFINITE INTEGRAL

In the computation of a definite integral by the fundamental theorem, an antiderivative f x dx( )∫  is required. 

In Chapter 22, we saw that substitution of a new variable u is sometimes useful in finding f x dx( ) .∫  When 

the substitution also is made in the definite integral, the limits of integration must be replaced by the corre-
sponding values of u.
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EXAMPLE 24.2: Evaluate x dx5 4 .
1

9

∫ +

Let u = 5x + 4. Then du = 5 dx. When x = 1, u = 9, and when x = 9, u = 49. Hence,

 

x dx u du u du

u

5 4

(by the fundamental theorem)

(49 9 ) [( 49) ( 9) ]

(7 3 ) (316)

1
5

1
5

9

49

1

9
1/2

9

49

1
5

2
3

3/2

9

49

2
15

3/2 3/2 2
15

3 3

2
15

3 3 2
15

632
15

∫∫ ∫
( )

+ = =

= 
= − = −
= − = =

For justification of this method, see Problem 5.

SOLVED PROBLEMS

 1. Evaluate x x dxsin cos .2

0

/2

∫
π

x x dx xsin cos sin2 1
3

3∫ =  by Quick Formula I. Hence, by the fundamental theorem,

 x x dx xsin cos sin sin
2

(sin 0) (1 0 )2

0

/2
1
3

3

0

/2
1
3

3
3 1

3
3 3 1

3∫ π( )=  = −





= − =
π π

 2. Find the area under the graph of f x( ) ,
x

1
4 2= −  above the x-axis, and between 0 and 1.

The area is dx sin sin sin (0) 0 .
x

x1
4

1
2

0

1

0

1
1 1

2
1

6 62∫ ( ) ( )= 


= − = − =π π
−

− − −

 3. Find the average value of f (x) = 4 - x2 on [0, 2].
The average value is

 
b a

f x dx x dx x
x1

( ) (4 ) 4
3

[ 8 (0 0)]
a

b
1
2

2

0

2
1
2

3

0

2

1
2

8
3

8
3∫∫ ( )− = − = −







 = − − − =

 4. Prove formula (24.2): D f t dt f x( ) ( )x a

x

∫( ) =

Let h x f t dt( ) ( ) .
a

x

∫=  Then:

 

h x x h x f t dt f t dt

f t dt f t dt f t dt

f t dt

x f x x x x x

( ) ( ) ( ) ( )

( ) ( ) ( ) (by 23.7)

( )

( ) for some between and (by the mean value
theorem for integrals)

a

x x

a

x

a

x

x

x x

a

x

x

x x

∫ ∫

∫∫∫

∫

+ ∆ − = −

= + −

=

= ∆ ⋅ + ∆

+∆

+∆

+∆

∗ ∗

Thus, 
h x x h x

x
f x

( ) ( )
( )

+ ∆ −
∆ = ∗  and therefore,

 D f t dt D h x
h x x h x

x
f x( ) ( ( )) lim

( ) ( )
lim ( )x a

x

x x x0 0∫( ) = = + ∆ −
∆ =

∆ → ∆ →
∗

But, as ∆ x → 0, x + ∆ x → x and so, x* → x (since x* is between x and x + ∆ x). Since f is continuous, 

f x f xlim ( ) ( ).
x 0

=
∆ →

∗
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 5. Justify a change of variable in a definite integral in the following precise sense. Given f x dx( ) ,
a

b

∫  let x = g(u)  

where, as x varies from a to b, u increases or decreases from c to d. (See Fig. 24-1 for the case where u is 
increasing.) Show that

 f x dx f g u g u du( ) ( ( )) ( )
c

d

a

b

∫∫ = ′

[The right side is obtained by substituting g(u) for x, g′(u) du for dx, and changing the limits of integration from a 
and b to c and d.]

Fig. 24-1

Let F x f x dx( ) ( ) ,∫=  that is, F′(x) = f (x). By the Chain Rule,

 D F g u F g u g u f g u g u f g u g u du F g u( ( ( )) ( ( )) ( ) ( ( )) ( ) Thus, ( ( )) ( ) ( ( ))u ∫= ′ ⋅ ′ = ′ ′ =

So, by the fundamental theorem,

 
f g u g u du F g u F g d F g c

F b F a f x dx

( ( )) ( ) ( ( )) ( ( )) ( ( ))

( ) ( ) ( )

c

d

c

d

a

b

∫

∫

′ =  = −

= − =

 6. (a) If f is an even function, show that for a f x dx f x dx0, ( ) 2 ( )
a

a

a

0∫∫> =
−

.

(b) If f is an odd function, show that for a f x dx0, ( ) 0
a

a

∫> =
−

.
 Let u = -x. Then du = -dx, and

 f x dx f u du f u du f u du( ) ( )( 1) ( ) ( )
a

aaa 0

000

∫∫∫∫ = − − = − − = −
−

Rewriting u as x in the last integral, we have:

 f x dx f x dx( ) ( ) (*)
a

a 0

0

∫∫ = −
−

 (*)

Thus,

 

f x dx f x dx f x dx

f x dx f x dx

f x f x dx

( ) ( ) ( ) [by (23.7)]

( ) ( ) [by ( )]

( ) ( ) [by (23.5)]

a

aa

a

aa

a

0

0

00

0

∫∫∫
∫∫

∫

= +

= − +

= − +

−−

∗

(a) If f is even, f (-x) + f (x) = 2f (x), whence f x dx f x dx f x dx( ) 2 ( ) 2 ( )
aa

a

a

00 ∫∫∫ = =
−

.

(b) If f is odd, f (-x) + f (x) = 0, whence f x dx dx dx( ) 0 0 1 0
aa

a

a

00 ∫∫∫ = = =
−

.
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215CHAPTER 24 The Fundamental Theorem of Calculus 

 7. Trapezoidal Rule

(a) Let f (x) ≥ 0 on [a, b]. Divide [a, b] into n equal parts, each of length x
b a

n
,∆ = −
 by means of points x1, x2, ... , 

xn-1. [See Fig. 24-2(a).] Prove the following trapezoidal rule: f x dx
x

f a f x f b( )
2

( ) 2 ( ) ( )k
k

n

a

b

1

1

∑∫ ∼ ∆ + +




=

−

(b) Use the trapezoidal rule with n = 10 to approximate x dx.2

0

1

∫
(a) The area of the strip over [xk-1, xk] is approximately the area of trapezoid ABCD [in Fig. 24-2(b)]:

x f x f x( ( ) ( ))k k
1
2 1∆ +−

†  (Remember that x0 = a and xn = b.) So, the area under the curve is approximated by 
the sum of the trapezoidal areas,

x
f x f x f x f x f x f x

x
f a f x f b

2
[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]

2
[ ( ) 2 ( ) ( )]n n k

k

n

0 1 1 2 1
1

1

∑( )∆ + + + +…+ + = ∆ + +−
=

−

Fig. 24-2

(b) With n = 10, a = 0, b = 1, x 1
10∆ =  and xk = k /10, we get

 

x dx
k

k
1

20
0 2

100
1

1
20

2
100

1

1
20

2
100

(285) 1 (by Problem 12 of Chapter 23)

0.335

k k

2 2
2

1

9
2

0

1
2

1

9

~ ∑∫ ∑+ +






= +






= +





=

= =

The exact value is 1
3  [by Example 24.1 (ii)].

SUPPLEMENTARY PROBLEMS

In Problems 8–22, use the fundamental theorem of calculus to evaluate the definite integral.

 8. x x dx(2 )2 3

1

1

∫ −
−

 Ans. 4
3

 9. 
x x

dx
1 1

2 33

1

∫ −



−

−
 Ans. 10

9

10. dx

x1

4

∫  Ans. 2

† Recall that the area of a trapezoid of height h and bases b1 and b2 is h b b( ).1
2 1 2+
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11. x dxsin
/2

3 /4

∫π

π
 Ans. 

2
2

12. x dx(2 )
0

2

∫ +  Ans. 6

13. x dx(2 )2

0

2

∫ −  Ans. 8
3

14. x x dx(3 2 )2

0

3

∫ − +  Ans. 9

15. t t dt(1 )2

1

2

∫ −
−

 Ans. 9
4−

16. u u du(1 )
1

4

∫ −  Ans. 116
15−

17. x dx1 3
1

8

∫ +  Ans. 26

18. x x dx( 1)2 3

0

2

∫ +  Ans. 40
3

19. 
x

dx
1

10

3

∫ +
 Ans. 2

20. x x dx(1 )2

0

1

∫ −  Ans. 1
30

21. x

x
dx

1524

8

∫ −
 Ans. 6

22. 
t

dtsin
20

2

∫
π

 Ans. 4

In Problems 23–26, use Problem 6(a, b).

23. x dx( 4)2

2

2

∫ +
−

 Ans. 
4
π

24. x x dx( )3 5

2

2

∫ −
−

 Ans. 0

25. 
x

dxsin
53

3

∫−
 Ans. 0

26. x dxcos
/2

/2

∫ π

π

−
 Ans. 2

27. Prove: D f t dt f x( ) ( ).x x

b

∫( ) = −

28. Prove D f t dt f g x g x f h x h x( ) ( ( )) ( ) ( ( )) ( ).x h x

g x

( )

( )

∫( ) = ′ − ′

In Problems 29–32, use Problems 27–28 and (24.2) to find the given derivative.

29. D t dtsinx

x

1∫( )  Ans. sin x

30. D t dtx x

2
0

∫( )  Ans. -x2
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31. D t dtx

x
3

0

sin

∫( )  Ans. sin3 x cos x

32. D t dtcosx x

x4

2∫( )  Ans. 4 cos 4x - 2x cos x2

33. Compute the average value of the following functions on the indicated intervals.

(a) f x x( ) 5=  on [0, 1] Ans. 5
6

(b) f x x( ) sec on 0,
3

2 π= 





 Ans. 
3 3

π
(c) f x x( ) 3 12= −  on [-1, 4] Ans. 12

(d) f x x x( ) sin cos on [0, ]π= −  Ans. 
2
π

34. Use the change-of-variables method to find x x dx2 3 .
1/2

3

∫ +

Ans. 58
5

35. An object moves along the x-axis for a period of time T. If its initial position is x1 and its final position is x2, show 

that its average velocity was 
x x

T
.2 1−

36. Let f x
x x
x x

( )
cos for 0
1 for 0

.=
<

− ≥





 Evaluate f x dx( ) .

/2

1

∫ π−

Ans. 3
2

37. Evaluate 
h x

dxlim
1 5

7
.

h

h

0
33

3

∫ +→

+

Ans. 5
34

38. (Midpoint Rule) In an approximating sum (23.1) f x x( ) ,k k
k

n

1
∑ ∆∗

=

 if we select xk
∗ to be the midpoint of the kth 

subinterval, then the sum is said to be obtained by the midpoint rule. Apply the midpoint rule to approximate 

x dx,2

0

1

∫  using a division into five equal subintervals, and compare with the exact result of .1
3

Ans. 0.33

39. (Simpson’s Rule) If we divide [a, b] into n equal subintervals, where n is even, the following approximating 

sum for f x dx( ) ,
a

b

∫

 
b a

n
f x f x f x f x f x f x f x

3
[ ( ) 4 ( ) 2 ( ) 4 ( ) 2 ( ) . . . 4 ( ) ( )]n n0 1 2 3 4 1

− + + + + + + +−

 is said to be obtained by Simpson’s rule. Except for the first and last terms, the coefficients consist of alternating 
4s and 2s. (The basic idea is to use parabolas as approximating arcs instead of line segments as in the trapezoidal 
rule. Simpson’s rule is usually much more accurate than the midpoint or trapezoidal rule.)

Apply Simpson’s rule to approximate (a) x dx2

0

1

∫  and (b) x dxsin
0∫
π

 with n = 4, and compare the results with 
the answers obtained by the fundamental theorem.

Ans. (a) ,1
3  which is the exact answer; (b) 

6
(2 2 1) 2.0046~π +  as compared to 2
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40. Consider x dx.3

0

1

∫  (a) Show that the fundamental theorem yields the answer .1
4  (b) (GC) With n = 10,  

approximate (to four decimal places) the integral by the trapezoidal, midpoint, and Simpson’s rules.

Ans. Trapezoidal 0.2525; midpoint 0.2488; Simpson’s 0.2500

41. Evaluate:

(a) 
n n n

n
n

lim
1

cos cos
2 . . . cos

n

π π π+ + +



→+∞

(b) 
n n n

n
n

lim
6

sec
6

sec 2
6

. . . sec ( 1)
6n

2 2 2 4
3

π π π π



 + 



 + + −



 +



→+∞

Ans. x dx x dx(a)
1

cos 0; (b) sec
3

30

2

0

/6

∫ ∫π = =
π π

42. (a) Use a substitution to evaluate 
x

x
dx

11

2

∫ +
 (to eight decimal places).

(b) (GC) Use a graphing calculator to estimate the integral of (a).

Ans. (a) 2; (b) 0.390524292
3

43. (GC) Estimate x x dxsin (tan )3

0

/4

∫
π

 (to four decimal places).

Ans. 0.0710

44. (GC) Consider x x x dx2 1 .
1

2
5 23∫ + −  Estimate (to six decimal places) its value using the trapezoidal and 

Simpson’s rule (both with n = 4), and compare with the value given by a graphing calculator.

Ans. trapezoidal 3.599492; Simpson’s 3.571557; graphing calculator 3.571639
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CHAPTER 25

The Natural Logarithm

The traditional way of defining a logarithm, loga b, is to define it as that number u such that au = b. For 
example, log10 100 = 2 because 102 = 100. However, this definition has a theoretical gap. The flaw is that 
we have not yet defined au when u is an irrational number, for example, 2  or π. This gap can be filled in, 
but that would require an extensive and sophisticated detour.† Instead, we take a different approach that will 
eventually provide logically unassailable definitions of the logarithmic and exponential functions. A tempo-
rary disadvantage is that the motivation for our initial definition will not be obvious.

THE NATURAL LOGARITHM

We are already familiar with the formula

x dx
x
r

C r
1

( 1)r
r 1

∫ = + + ≠ −
+

The problem remains of finding out what happens when r = - 1, that is, of finding the antiderivative of x -1.
The graph of y = 1/t, for t > 0, is shown in Fig. 25-1. It is one branch of a hyperbola. For x > 1, the definite 

integral

t
dt

1x

1∫
is the value of the area under the curve y = 1/t and above the t-axis, between t = 1 and t = x.

DEFINITION

x
t

dtln
1x

1∫=  for x 0>

The function ln x is called the natural logarithm. The reasons for referring to it as a logarithm will be made 
clear later. By (24.2),

(25.1) D x
x

x(ln )
1

for 0x = >

Fig. 25-1

†  Some calculus textbooks just ignore the difficulty. They assume that au is defined when a > 0 and u is any real number and that 
the usual laws for exponents are valid.
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220 CHAPTER 25 The Natura l  Logar i thm

Hence, the natural logarithm is the antiderivative of x-1, but only on the interval (0, +∞). An antiderivative 
for all x ≠ 0 will be constructed below in (25.5).

PROPERTIES OF THE NATURAL LOGARITHM

(25.2) ln 1 = 0, since 
t

dtln 1
1

0
1

1

∫= = .

(25.3) If x > 1, then ln x > 0.

This is true by virtue of the fact that 
t

dt
1x

1∫  represents an area, or by Problem 15 of Chapter 23.

(25.4) If 0 < x < 1, then ln x < 0.

  x
t

dt
t

dtln
1 1

x

x 1

1 ∫∫= = −  by (23.8). Now for 0 < x < 1, if x ≤ t ≤ 1, then 1/t > 0 and therefore, by  

Problem 15 of Chapter 23, 
t

dt
1

0.
x

1

∫ >

(25.5) a D x
x

x( ) (ln| |)
1

for 0x = ≠

 b
x

dx x C x( )
1

ln | | for 0∫ = + ≠

The argument is simple. For x > 0, | x | = x, and so D x D x x(ln | |) (ln ) 1/x x= =  by (25.1). For x < 0, | x | = -x, 
and so

D x D x D u D u u x

u u x

(ln | |) (ln ( )) (ln ) ( ) (Chain Rule, with 0)

1
( 1)

1 1

x x u x= − = = − >

= 



 − = − =

EXAMPLE 25.1: D x
x

D x

x

(ln|3 2|)
1

3 2
(3 2) (Chain Rule)

3
3 2

x x+ = + +

= +

(25.6) ln uv = ln u + ln v

Note that

 
D ax

ax
D ax

ax
a

x
D x

(ln( ))
1

( ) [by the Chain Rule and (25.1)]

1
( )

1
(ln )

x x

x

=

= = =

Hence, ln (ax) = ln x + K for some constant K (by Problem 18 of Chapter 13). When x = 1, ln a =  
ln 1 + K = 0 + K = K. Thus, ln (ax) = ln x + ln a. Replacing a and x by u and v yields (25.6).

(25.7) u
uln ln ln



 = −v v

 In (25.6), replace u by 
u
v .

(25.8) ln
1

ln= −v v

 In (25.7), replace u by 1 and use (25.2).
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221CHAPTER 25 The Natural Logarithm

(25.9) ln (xr) = r ln x for any rational number r and x > 0.

By the Chain Rule, D x
x

rx
r
x

D r x(ln ( ))
1

( ) ( ln ).x
r

r
r

x
1= = =−  So, by Problem 18 of Chapter 13, ln (xr) =  

r ln x + K for some constant K. When x = 1, ln 1 = r ln 1 + K. Since ln 1 = 0, K = 0, yielding (25.9).

EXAMPLE 25.2: x x xln 2 5 ln (2 5) ln (2 5).3 1/3 1
3− = − = −

(25.10) ln x is an increasing function. 

   D x
x

(ln )
1

0x = >  since x > 0. Now use Theorem 13.7.

(25.11) ln u = ln v implies u = v. 
This is a direct consequence of (25.10). For, if u ≠ v, then either u < v or v < u and therefore, either  
ln u < ln v or ln v < ln u.

(25.12) 1
2 ln 2 1< <

Fig. 25-2

The area under the graph of y = 1/t, between t = 1 and t = 2, and above the t-axis, is greater than 
the area 1

2  of the rectangle with base [1, 2] and height .1
2  (See Fig. 25-2.) It is also less than the area 

1 of the rectangle with base [1, 2] and height 1. [A more rigorous argument would use Problems 
3(c) and 15 of Chapter 23.]

(25.13) xlim ln
x

= +∞
→+∞

 Let k be any positive integer. Then for x > 22k,
 x k k kln ln (2 ) 2 ln 2 2 ( )k2 1

2> = > =

 by (25.10) and (25.9). Thus, as x → + ∞, ln x eventually exceeds every positive integer.

(25.14) xlim ln
x 0

= −∞
→ +

 Let u = 1/x. As x → 0+,  u→+∞. Hence,

x
u

u

u

lim ln lim ln
1

lim ln [by (25.8)]

lim ln [by (25.13)]

x u u

u

0
= 



 = −

= − = −∞

→ →+∞ →+∞

→+∞

+

(25.15) Quick Formula II: 
g x
g x

dx g x C
( )
( )

ln | ( )|∫ ′ = +
 
 By the Chain Rule and (25.5) (a), D g x

g x
g x(ln| ( )|)

1
( )

( ).x = ′
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EXAMPLE 25.3: 

(a) x
x

dx x C x C
2

1
ln| 1| ln ( 1)2

2 2∫ + = + + = + +

The absolute value sign was dropped because x 2 + 1 ≥ 0. In the future, we shall do this without explicit mention.

(b) x
x

dx
x

x
dx x C

5
1
3

3
5

1
3

ln | 5|
2

3

2

3
3∫ ∫+ = + = + +

SOLVED PROBLEMS

 1. Evaluate: (a) x dxtan∫ ; (b) x dxcot∫ ; (c) x dxsec .∫
(a) x dx

x
x

dx
x

x
dx

x C

x
C x C x C

tan
sin
cos

sin
cos

ln | cos | by Quick Formula II.

ln
1

sec
( ln |sec |) ln |sec |

∫∫∫ = = − −

= − +

= − + = − − + = +

 (25.16) x dx x Ctan ln |sec |∫ = +

(b) x dx
x
x

dx x Ccot
cos
sin

ln |sin | by Quick Formula II.∫ ∫= = +

 (25.17) x dx x Ccot ln |sin |∫ = +

(c) x dx x
x x
x x

dx

x x x
x x

dx x x C

sec sec
sec tan
sec tan

sec sec tan
sec tan

ln |sec tan | by Quick Formula II.
2

∫∫
∫

= +
+

= +
+ = + +

 (25.18) x dx x x Csec ln |sec tan |∫ = + +

 2. (GC) Estimate the value of ln 2.
 A graphing calculator yields the value ln 2 ~ 0.6931471806. Later we shall find another method for 
calculating ln 2.

 3. (GC) Sketch the graph of y = ln x.
 A graphing calculator yields the graph shown in Fig. 25-3. Note by (25.10) that ln x is increasing. By 
(25.13), the graph increases without bound on the right, and by (25.14), the negative y-axis is a vertical 
asymptote. Since

D x D x x
x

(ln ) ( )
1

0x x
2 1 2

2= = − = − <− −

 the graph is concave downward. By (25.13) and (25.14), and the intermediate value theorem, the range of ln x is 
the set of all real numbers.

Fig. 25-3
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 4. Find: (a) Dx(ln (x4 + 7x)); (b) Dx (ln (cos 2x)); (c) Dx (cos (ln 2x)).

a D x x
x x

x
x

x x
( ) (ln ( 7 ))

1
7

(4 7)
4 7

7x
4

4
3

3

4+ = + + = +
+

b D x
x

x
x
x

x

( ) (ln (cos2 ))
1

cos2
( sin 2 )(2)

2sin 2
cos2

2 tan 2

x = − = −

= −

(c) D x x
x

x
x

(cos (ln 2 )) ( sin (ln 2 ))
1

2
(2)

sin (ln 2 )
x = − 



 = −

 5. Find the following antiderivatives. Use Quick Formula II when possible.

(a) x dx1
8 3∫ − ; (b) x

x
dx4

3 2
7

8∫ − ; (c) x
x

dx4
52∫ −

+ ; (d) x
x x

dx
4 52∫ − +

(a) x dx x dx x C1
8 3

1
8

8
8 3

1
8 ln |8 3|∫ ∫− = − = − +

(b) x
x

dx x
x

dx x C4
3 2

1
6

24
3 2

1
6

ln |3 2|
7

8

7

8
8∫ ∫− = − = − +

(c) x
x

dx x
x

dx
x

dx

x
x

dx x

x x C

4
5 5

4
5

1
2

2
5

4
1

5
tan

5

1
2

ln ( 5)
4 5

5
tan

5

2 2 2

2
1

2 1

∫ ∫ ∫

∫

−
+ = + − +

= + − 





= + − 





+

−

−

(d) Complete the square in the denominator: x
x x

dx x
x

dx
4 5 ( 2) 1

.2 2∫∫ − + = − +
 Let u = x - 2, du = dx.

  x
x

dx u
u

du u
u

du
u

du

u u C x x x C

( 2) 1
2
1 1

2
1

1
2

ln ( 1) 2 tan
1
2

ln ( 4 5) 2 tan ( 2)

2 2 2 2

2 1 2 1

∫∫ ∫ ∫− + = +
+ = + + +

= + + + = − + + − +− −

 6. Logarithmic Differentiation. Find the derivative of y
x x

x
(1 )

(1 )
.

2 2

2 1/2= −
+

 First take the natural logarithms of the absolute values of both sides:

 

y
x x

x
x x x

x x x

x x x

ln | | ln
(1 )

(1 )
ln | (1 ) | ln |(1 ) |

ln | | ln |(1 ) |
1
2

ln (1 )

ln | | 2 ln |1 |
1
2

ln (1 )

2 2

2 1/2
2 2 2 1/2

2 2 2

2 2

= −
+ = − − +

= + − − +

= + − − +

 Now take the derivatives of both sides:

 
y

y
x x

x
x

x
x

x
x

x
x

y y
x

x
x

x
x

x x
x x

x
x

x
x

1 1 2
1

( 2 )
1
2

1
1

(2 )
1 4

1 1

1 4
1 1

(1 )
(1 )

1 4
1 1

2 2 2 2

2 2

2 2

2 1/2 2 2

′ = + − − − + = − − − +

′ = − − − +




 = −

+ − − − +






 7. Show that x
x x1

1
ln 1− ≤ ≤ −  for x > 0. (When x ≠ 1, the strict inequalities hold.)

 When x > 1, 1/t is a decreasing function on [1, x] and so its minimum on [1, x] is 1/x and its maximum is 1. 
So, by Problems 3(c) and 15 of Chapter 23,

 
x

x x
t

dt x
x

x x
1

( 1) ln
1

1 and so 1
1

ln 1.
x

1∫− < = < − − < < −
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 For 0 < x < 1, 
t
1−  is increasing on [x, 1]. Then by Problems 3(c) and 15 of Chapter 23,

 
x

x x
t

dt
t

dt x
1

(1 ) ln
1 1

1(1 )
x

x1

1

∫ ∫− − < = = −



 < − −

 Hence, 
x

x x1
1

ln 1− < < − . When x = 1, the three terms are all equal to 0.

SUPPLEMENTARY PROBLEMS

 8. Find the derivatives of the following functions.

(a) y = ln (x + 3)2 = 2 ln (x + 3). 

Ans. y
x

2
3′ = +

(b) y = (ln (x + 3))2

Ans. y x
x

x
x

2 ln ( 3)
1

3
2 ln ( 3)

3′ = + + =
+

+

(c) y = ln [(x3 + 2)(x2 + 3)] = ln (x3 + 2) + ln (x2 + 3) 

Ans. y
x

x
x

x
x

x
x

x
1

2
(3 )

1
3

(2 )
3

2
2

33
2

2

2

3 2′ = + + + = + + +

(d) y
x

x
x x x xln

(3 4)
ln ln (3 4) 4 ln 2ln (3 4)

4

2
4 2= − = − − = − −

Ans. y
x x x x
4 2

3 4
(3)

4 6
3 4′ = − − = − −

(e) y = ln sin 5x

Ans. y
x

x x
1

sin5
cos(5 )(5) 5cot5′ = =

(f ) y x xln ( 1 )2= + +

Ans. y
x x

x x
x x x

x x x x

1 (1 ) (2 )
(1 )

1 (1 ) (1 )
(1 ) (1 )

1

1

1
2

2 1/2

2 1/2

2 1/2 2 1/2

2 1/2 2 1/2 2
′ = + +

+ + =
+ + +

+ + + =
+

− −

(g) y x x xln 3 ln (3 )
1
2

ln (3 )2 2 1/2 2= − = − = −

Ans. y
x

x
x
x

1
2

1
3

( 2 )
32 2′ = − − = − −

(h) y x x xln= −

Ans. y′ = ln x

(i)  y = ln (ln (tan x)) 

Ans. y
x x

x
tan cot

ln (tan )′ = +
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 9. Find the following antiderivatives. Use Quick Formula II when possible.

(a) 
x

dx
1

7∫

Ans. x C
1
7

ln | | +

(b) 
x

x
dx

1

8

9∫ −

Ans. x C
1
9

ln | 1|9 − +

(c) 
x
x

dx
ln 3

∫
+

Ans. Use Quick Formula I. x C
2
3

(ln 3)3/2+ +

(d) 
dx

x xln∫

Ans. x Cln | ln | +

(e) 
x

x
dx

sin3
1 cos3∫ −

Ans. x C
1
3

ln |1 cos3 |− +

(f ) 
x x

x
dx

2 4 2

3∫
−

Ans. x x Cln | |2 − +

(g) 
x

x
dx

ln
∫

Ans. x C
1
2

(ln )2 +

(h) dx

x x(1 )∫ −

Ans. x C2ln |1 |− − +

10. Use logarithmic differentiation to calculate y′.

(a) y x x24 2= −

Ans. y x x
x

x
x

x x
x

x
2

4
2

4 2
2

4 2
2

3 2
5

2
′ = − − −





 = − −

−

(b) y
x x

x

( 1) 2

7

5 4

2
= − +

+

Ans. y y
x x

x
x

5
1

1
4

1
2 72′ = − + + − +
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(c) y
x x

x
3 cos

(3 5)

2

3= +
−

Ans. y y
x

x
x

x3
tan

9
3 52′ = + − − −







(d) y
x
x

2 3
2 3

4= +
−

Ans. y
y

x
3

4 92′ = − −

11. Express in terms of ln 2 and ln 3: (a) ln(37); (b) ln 2
27 .

Ans. (a) 7 ln 3; (b) ln 2-3 ln 3

12. Express in terms of ln 2 and ln 5: (a) ln 50; (b) ln 1
4

; (c) ln 5 ; (d) ln 1
40 .

Ans. (a) ln 2 + 2 ln 5; (b) - 2 ln 2; (c) 1
2 ln 5; (d) - (3 ln 2 + ln 5)

13. Find the area under the curve y x
1=  and above the x-axis, between x = 2 and x = 4.

Ans. ln 2

14. Find the average value of 
x
1

 on [3, 5].

Ans. 1
2

 ln 5
3

15. Use implicit differentiation to find y′: (a) y3 = ln (x3 + y3); (b) 3y - 2x = 1 + ln xy.

Ans. (a) y x
y x y( 1)

;
2

2 3 3′ = + −
 (b) y

y x
x y

1
1

2

3′ = +
−

16. Evaluate 
h

hlim 1 ln 2
2 .

h 0

+
→

Ans. 1
2

17. Check the formula x dx x x Ccsc ln |csc cot | .∫ = − +

18. (GC) Approximate dtln 2 t
1

1

2

∫=  to six decimal places by (a) the Trapezoidal Rule; (b) the Midpoint Rule;  

(c) Simpson’s rule, in each case with n = 10.

Ans. (a) 0.693771; (b) 0.692835; (c) 0.693147

19. (GC) Use Newton’s method to approximate the root of x2 + ln x = 2 to four decimal places.

Ans. 1.3141
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CHAPTER 26

Exponential and Logarithmic 
Functions

From Chapter 25, we know that the natural logarithm ln x is an increasing differentiable function with domain the 
set of all positive real numbers and range the set of all real numbers. Since it is increasing, it is a one-to-one 
function and therefore, has an inverse function, which we shall denote by ex.

DEFINITION

ex is the inverse of ln x.

It follows that the domain of ex is the set of all real numbers and its range is the set of all positive real 
numbers. Since ex is the inverse of ln x, the graph of ex can be obtained from that of ln x by reflection in the 
line y = x. See Fig. 26-1.

Fig 26-1

Our notation may be confusing. It should not be assumed from the notation that ex is an ordinary power of 
base e with exponent x. Later in this chapter, we will find out that this is indeed true, but we do not know it yet.

PROPERTIES OF eX

(26.1) ex > 0 for all x
 The range of ex is the set of positive real numbers.
(26.2) ln (ex) = x
(26.3) eln x = x
 Properties (26.2) and (26.3) follow from the fact that ex and ln x are inverses of each other.
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228 CHAPTER 26 Exponent ia l  and Logar i thmic  Funct ions

(26.4) ex is an increasing function.
 Assume u < v. Since u = ln (eu) and v = ln (ev), ln (eu) < ln (ev). But, since ln x is increasing, eu < ev. 

[For, if ev ≤ eu, then ln (ev) ≤ ln (eu).] 

(26.5) Dx(e
x) = ex

 Let y = ex. Then ln y = x. By implicit differentiation, y
y

1
1′ =  and therefore, y′ = y = ex. For a more 

rigorous argument, let f(x) = ln x and f  −1(y) = ey. Note that f x
x

( )
1

.′ =  By Theorem 10.2(b),

 f y
f f y

D e
e

e( ) ( )
1

( ( ))
, that is, ( )

1
1/y

y
y

y1
1′ = ′ = =−

−  

EXAMPLE 26.1: D e D e D u u x

e x e x

( ( ) ( ) (Chain Rule, with sin )

(cos ) (cos )

x
x

u
u

x

u x

sin )

sin

= =

= =

(26.6) e dx e Cx x∫ = +

EXAMPLE 26.2: To find xe dx u x du x dx, let , 2 . Thenx 22∫ = =

xe dx e du e C e Cx u u x1
2

1
2

1
2

2 2∫ ∫= = + = +

(26.7) e dx e Cx x∫ = − +− −

 Let u x du dx e dx e du e C e C, . Then .x u u x∫∫= − = − = − = − + = − +− − .

(26.8) e0 = 1
 By (26.3), 1 = eln 1 = e0.

(26.9) eu+v = euev

 ln (e u+v) = u + v = ln (eu) + ln (ev) = ln (euev) by (25.6). Hence, e e eu u=+v v  because ln x is a one-to-one 
function.

(26.10) e
e
e

u
u

=−v
v

 By (26.9), eu−vev = e(u−v) +v = eu. Now divide by ev. 

(26.11) e
e
1=−v

v

 Replace u by 0 in (26.10) and use (26.8).

(26.12) x < e x for all x
 By Problem 7 of Chapter 25, ln x ≤ x − 1 < x. By (26.3) and (26.4), x = eln x < e x. 

(26.13) elim
x

x = +∞
→+∞

 This follows from (26.4) and (26.12).

(26.14) elim 0
x

x =
→−∞

 Let u = −x. As x → ∞, u → + ∞ and, by (26.13), eu → + ∞. Then by (26.11), e e
e
1

0.x u
u= = →−

The mystery of the letter e in the expression ex can now be cleared up. 

Definition

Let e be the number such that ln e = 1.
Since ln x is a one-to-one function from the set of positive real numbers onto the set of all real numbers, there 

must be exactly one number x such that ln x = 1. That number is designated e.

Since, by (25.12), ln 2 < 1 < 2 ln 2 = ln 4, we know that 2 < e < 4. 

(26.15) (GC) e ~ 2.718281828

This estimate can be obtained from a graphing calculator. Later we will find out how to approximate e to 
any degree of accuracy.
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229CHAPTER 26 Exponential and Logarithmic Functions

Now we can show that the notation ex is not misleading, that is, that ex actually is a power of e. First of 
all, this can be proved for positive integers x by mathematical induction. [In fact, by (26.3), e = eln e = e1. So, 
by (26.9), en+1 = ene1 = ene for any positive integer n and therefore, if we assume by inductive hypothesis that 
en represents the product of e by itself n times, then en+1 is the product of e by itself n + 1 times.] By (26.8) 
e0 = 1, which corresponds to the standard definition of e0. If n is a positive integer, e−n would ordinarily be 
defined by e1/ n and this is identical to the function value given by (26.11). If k and n are positive integers, 
then the power ek n/  is ordinarily defined as e .kn  Now, in fact, by (26.9), the product e e e. . . ,k n k n k n/ / / , where there 
are n factors, is equal to e e .k n k n k n k/ / / =+ + ⋅ ⋅ ⋅ +  Thus, the function value ek n/  is identical to the nth root of ek. For 
negative fractions, we again apply (26.11) to see that the function value is identical to the value specified 
by the usual definition. Hence, the function value ex is the usual power of e when x is any rational number. 
Since our function ex is continuous, the value of ex when x is irrational is the desired limit of er for rational 
numbers r approaching x.

The graph of y = ex is shown in Fig. 26-2. By (26.13), the graph rises without bound on the right and, by 
(26.14), the negative x-axis is a horizontal asymptote on the left. Since D e D e e( ) ( ) 0,x

x
x

x x2 = = >  the graph 
is concave upward everywhere. The graph of y = e−x is also shown in Fig. 26-2. It is obtained from the graph 
of y = ex by reflection in the y-axis.

(26.16) e lim 1x

n

x
n

n( )= +
→+∞

 For a proof, see Problem 5.

(26.17) e lim 1
n

n
n1( )= +

→+∞

 This is a special case of (26.16) when x = 1. We can use this formula to approximate e, although the 
convergence to e is rather slow. For example, when n = 100, we get 2.7169 and, when n = 10,000, 
we get 2.7181, which is correct only to three decimal places.

Fig. 26-2

THE GENERAL EXPONENTIAL FUNCTION

Let a > 0. Then we can define ax as follows:

Definition

ax = ex ln a

Note that this is consistent with the definition of ex since, when a = e, ln a = 1. 

(26.18) Dx (a
x) = (ln a)ax

 In fact,

D e D e D u u x a

e a e a a a

( ) ( ) (ChainRule with ln )

(ln ) (ln ) (ln )

x
x a

u
u

x

u x a x

ln

ln

= =

= = =

EXAMPLE 26.3: Dx(2
x) = (ln 2)2x. 
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(26.19) a dx
a

a C
1

ln
x x∫ = +

 This is a direct consequence of (26.18).

EXAMPLE 26.4: C10
1

ln 10
10x x∫ = +

We can derive the usual properties of powers.

(26.20) a0 = 1
 a0 = e0 ln a = e0 = 1
(26.21) au+v = auav

 au+v = e(u+v) ln a = eu ln a + v ln a = eu ln aev ln a = auav

(26.22) a
a
a

u
u

=−v
v

 By (26.21), au−vav = a(u−v) +v = au. Now divide by av. 

(26.23) a
a
1=−v

v

 Replace u by 0 in (26.22) and use (26.20).

(26.24) a a

a e e e a

( )

( )

u u

u a u a u a uln( ) ( (ln )) ( ) lnu

=
= = = =

v v

v v v v v

(26.25) ab a b

a b e e e e e ab

( )
( )

u u u

u u u a u b u a u b u a b u ab uln ln ln ln (ln ln ) ln( )

=
= = = = =+ +

Recall that we know that D
x
 (xr) = rxr−1 for rational numbers r. Now we are able to prove that formula 

for any real number r.

(26.26) D
x
 (xr) = rxr −1

 Since xr = er ln x, 

D x D e D e D u u r x

e r
x

r x
x

r
x
x

rx

( ) ( ) ( ) ( ) (Chain Rule with ln )

1
( )

1

x
r

x
r x

u
u

x

u r
r

r

ln

1
1

= = =

= 











= 



 = = −

GENERAL LOGARITHMIC FUNCTIONS

Let a > 0. We want to define a function log
a x that plays the role of the traditional logarithm to the base a. If 

y xlog ,a=  then ay = x and therefore, a x y a x y
x
a

ln ( ) ln , ln ln ,
ln
ln

.y = = =

Definition

x
x
a

log
ln
ln

.a =

= =

= ⇔ = ⇔ =

⇔ = ⇔ = ⇔

y x a x

y x y
x
a

y a x

a x a x

if and only if

26.27( ) log is equivalent to

log
ln
ln

ln ln

ln( ) ln (The symbol is the symbol for equivalence,

that is, .)

a
y

a

y y

Thus, the general logarithmic function with base a is the inverse of the general exponential function with 
base a.

(26.28) a xxloga =
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231CHAPTER 26 Exponential and Logarithmic Functions

(26.29) loga (a
x) = x

 These follow from (26.27). See Problem 6.

 The usual properties of logarithm can easily be derived. See Problem 7.

Notice that x
x
e

x
xlog

ln
ln

ln
1

ln .e = = =  Thus, the natural logarithm turns out to be a logarithm in the 
usual sense, with base e.

SOLVED PROBLEMS

 1. Evaluate: (a) ln (e3); (b) e7 ln 2; (c) e(ln 3)−2; (e) 1u. 

(a) ln (e3) = 3 by (26.2)

(b) e7 ln 2 = (eln 2)7 = 27 = 128 by (26.24) and (26.3)

(c) e
e
e e

3(ln3) 2
ln3

2 2= =−  by (26.10)

(d) 1u = eu ln 1 = eu(0) = e0 = 1 by (26.8)

 2. Find the derivatives of: (a) e3x+1; (b) 53x; (c) 3xπ; (d) x2ex. 

(a) Dx (e
3x+1) = e3x+1 (3) = 3e3x+1 by the Chain Rule

= =
=
=

D D D u u x(b) (5 ) (5 ) ( ) (Chain Rule with 3 )

(ln5)5 (3) by (26.18)

3(ln5)5

x
x

u
u

u

x

3

3

 

(c) D x x x(3 ) 3( ) 3 by (26.26)x
1 1π π= =π π π− −

(d) D x e x D e e D x

x e e x xe x

( ) ( ) ( ) by the Product Rule
(2 ) ( 2)

x
x

x
x x

x
x x x

2 2 2

2

= +
= + = +

 3. Find the following antiderivative: dx x e dx(a) 3(2 ) ; (b) .x x2 3∫∫
(a) dx dx C C3(2 ) 3 2 3

1
ln 2

2
3

ln 2
2x x x x∫∫ = = + = +

(b) Let u x du x dx x e dx e du e C e C, 3 . Then
1
3

1
3

1
3

x u u x3 2 2 3 3∫∫= = = = + = +

 4. Solve the following equations for x: x x e(a) ln 2; (b) ln (ln ) 0; (c) 3;x3 2 1= = =−  (d) ex − 3e−x = 2.
In general, ln A = B is equivalent to A = eB, and eC = D is equivalent to C = ln D.

(a) ln x3 = 3 ln x. Hence, ln x3 = 2 yields 3 ln x = 2, x x eln , .2
3

2/3= =
(b) ln (ln x) = 0 is equivalent to ln x = e0 = 1, which, in turn, is equivalent to x = e1 = e. 

(c) e2x−1 = 3 is equivalent to 2x − 1 = ln 3, and then to x
ln3 1

2
.= +

(d) Multiply both sides by ex: e2x − 3 = 2ex, e2x − 2ex − 3 = 0. Letting u = ex yields the quadratic equation  
u2 − 2u − 3 = 0; (u − 3)(u + 1) = 0, with solutions u = 3 and u = −1. Hence, ex = 3 or ex = −1. The latter is 
impossible since ex is always positive. Hence, ex = 3 and therefore, x = ln 3.

 5. Prove (26.16): e
u
n

lim 1 .u

n

n

= +



→+∞

Let a
u
n

1 . Thenn

n

= +





a n
u
n

u
u n
u n

ln ln 1
ln (1 / ) ln1

/n = +



 =

+ −





The expression 
u n
u n

ln (1 / ) ln1
/

+ −





 is a difference quotient for Dx(ln x) at x = 1, with x u n/ .∆ = . As n → + ∞, 

 u/n → 0. So, that difference quotient approaches D x x(ln ) (1/ ) 1.x x x1 1
= == =

 Hence, 

a u u a e elim ln (1) . So, lim lim .
n n n n n

a uln n= = = =
→+∞ →+∞ →+∞
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 6. Prove (26.28) a xxloga =  and (26.29) log
a
 (ax) = x. 

Substituting log
a
 x for y in (26.27), we get a x.xlog

a =
Substituting ay for x in (26.27), we get y alog ( ).a

y=

 7. Derive the following properties of log
a
 x: 

(a) 

a a

log 1 0.

log 1
ln1
ln

0
ln

0

a

a

=

= = =

(b) a

a
a
a

log 1.

log
ln
ln

1

a

a

=

= =

(c) 

v

u u

u
u
a

u
a

u
a a

u

log log log .

log
ln
ln

ln ln
ln

ln
ln

ln
ln

log log

a a a

a a a

= +

= = + = + = +

v v
v v v

v

(d) 
u

ulog log log .a a a= −v v

 Replace u in (c) by 
u

.v
(e) 

u

log
1

log .

Replace by1in(d).
a a= −v v

(f ) u r u

u
u
a

r u
a

r u

log ( ) log .

log ( )
ln( )

ln
ln

ln
log

a
r

a

a
r

r

a

=

= = =

(g) D x
a x

D x D
x
a a

D x
a x

(log )
1

ln
1

.

(log )
ln
ln

1
ln

(ln )
1

ln
1

x a

x a x x

=

= 



 = =

SUPPLEMENTARY PROBLEMS

 8. Calculate the derivatives of the following functions:

(a) y e Ans y e. 5x x5 5= ′ =
(b) y e Ans y x e. 3sec (3 )x xtan3 2 tan3= ′ =
(c) y e Ans y e.x x x x x x xcos ( cos )( sin cos )= ′ =− − −

(d) y Ans y x3 . 2 (ln3)3x x2 2= ′ = −− −

(e) y e Ans y
e

e
sin ( ) .

1
x

x

x

1
2

= ′ =
−

−

(f) y e Ans y e.e x ex x= ′ = +

(g) y x Ans y x x. (1 In )x x= ′ = +

(h) y x Ans y
x

x
log (3 5) .

1
ln10

6
3 510

2
2= − ′ = −

 9. Find the following antiderivatives:

(a) dx Ans C3 .
1

2ln3
3x x2 2∫ +

(b) 
e
x

dx Ans e C.
x

x
1/

2
1/∫ − +

(c) e e dx Ans
e

C( 1) .
( 1)

4
x x

x
3

4

∫ + + +

(d) 
dx

e
Ans x e C

1
. ln( 1)x

x∫ + − + +

(e) 
e
x

dx Ans e C.
x

x
1/

3
1
2

1/

2

2∫ − +

(f) e xdx Ans e C.
1
2

x
x

2
2

2
2∫ − +

− +
− +
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(g) e dx Ans e e x C( 1) . 2x x x2 1
2

2∫ + + + +

(h) e x dx Ans e
x
e

C( ) .
1

x e x
e 1

∫ − − + +
+

(i) 
e

e
dx Ans e C

3
. ln( 3)

x

x
x

2

2
1
2

2∫ + + +

(j) 
e dx

e
Ans e C

1
. sin ( )

x

x

x

2
1∫ −

+−

(k) x dx Ans C(5 ) .
1

4 ln5
5x x3 1 14 4∫ ++ +

(l) 
x

x
dx Ans x C x C

log
.

1
2ln10

(ln )
ln10

2
(log )10 2

10
2∫ + = +

10. (Hyperbolic Functions) Define

h x
e e

h x
e e

h
h x

h x
h x

x
h x

sin
2

, cos
cos 2

, tan
sin
cos

, sech
1

cos

x x x x

= − = + = =
− −

Derive the following results:

(a) Dx (sin h x) = cos h x and Dx (cos h x) = sin h x. 
(b) Dx(tan h x) = sec h2 x and Dx(sec h x) = −sec h x tan h x.
(c) cos h2 x − sin h2 x = 1.
(d) sin h (x + y) = sin h x cos h y + cos h x sin h y.
(e) cos h (x + y) = cos h x cos h y + sin h x sin h y.
(f ) sin h 2x = 2 sin h x cos h x.
(g) cos h 2x = cos h2 x + sin h2 x = 2 cos h2 x − 1 = 2 sin h2 x + 1.
(h) (GC) Sketch the graph of y = 2 cos h (x/2) (called a “catenary”), and find its minimum point.

Ans. (0, 2)

11. Solve the following equations for x.

(a) e Ans2 . ln 2x3 1
3=

(b) x Ans eln ( ) 1 .4 1/4= − −

(c) x Ans eln(ln ) 2 . e2=
(d) e e Ans4 3 . 2 ln 2x x− =−

(e) e e Ans12 7 . 2 ln 2 and ln3x x+ =−

(f) Ans5 7 .
ln 7
ln5

log 7x
5= =

(g) x Anslog ( 3) 5 . 292 + =
(h) x x Anslog log 4 . 162

2
2

3+ =
(i) Anslog (2 ) 20 . 5x

2
4 =

(j) e e Ans7 8 . 3ln 2x x2 − = −− −

(k) x x Ans. 1 and 3x 3=

12. Evaluate e
h

e
h

(a) lim
1

; (b) lim
1h h

h h0 0

2− −
→ →

.

Ans. (a) 1; (b) 0

13. Evaluate: 
e

e
dx

x
x

dx(a)
2

; (b)
2 lnx

x

e

10

ln 2

∫∫ +
+

Ans. (a) ln 4
3 ;  (b) 5

2

14. (GC) Use Newton’s method to approximate (to four decimal places) a solution of e
x
1

.x =

Ans. 0.5671
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15. (GC) Use Simpson’s rule with n = 4 to approximate e dxx /2
0

1 2∫ −  to four decimal places.

Ans.  0.8556

16. If interest is paid at r percent per year and is compounded n times per year, then P dollars become P
r

n
1

100

n

+



  

dollars after 1 year. If n → + ∞, then the interest is said to be compounded continuously.

(a) If compounded continuously at r percent per year, show that P dollars becomes Per/100 dollars after 1 year, 
and Pe  

rt/100 dollars after t years.
(b) At r percent compounded continuously, how many years does it take for a given amount of money to double?
(c) (GC) Estimate to two decimal places how many years it would take to double a given amount of money 

compounded continuously at 6% per year?
(d) (GC) Compare the result of compounding continuously at 5% with that obtained by compounding once a 

year. 

Ans
r r

. (b)
100(ln 2)

~
69.31

; (c) about 11.55 years;

(d)  After 1 year, $1 becomes $1.05 when compounded once a year, and about $1.0512 when compounded 
continuously.

17. Find (log10 e) · ln 10.

Ans.  1

18. Write as a single logarithm with base a: 3 loga 2 + loga 40 − loga 16

Ans. loga 20

19. (GC) Estimate log2 7 to eight decimal places.

Ans. 2.80735492 

20. Show that logb x = (loga x)(logb a).

21. (GC) Graph y e .x /22= − . Indicate absolute extrema, inflection points, asymptotes, and any symmetry.

Ans. Absolute maximum at (0, 1), inflection points at x 1,= ±  x-axis is a horizontal asymptote on the left and 
right, symmetric with respect to the y-axis.

22. Given e x y
dy
dx

1, findxy 2− + =  by implicit differentiation.

Ans
ye

y xe
.

1
2

xy

xy

−
+

23. ( GC) Graph y x
e e

sinh
2

x x

= = − −

.

24. Evaluate e e
e e

dx.
x x

x x∫
−
+

−

−

Ans. ln (ex + e-x) + C

25. Use logarithmic differentiation to find the derivative of y x .x3/=

Ans. 
y x

x
3 (1 ln )

2

−
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CHAPTER 27

L’Hôpital’s Rule
Limits of the form lim 

f x
g x

( )
( )

 can be evaluated by the following theorem in the indeterminate cases where 

f (x) and g(x) both approach 0 or both approach ±∞.

L’HÔPITAL’S RULE

If f (x) and g(x) either both approach 0 or both approach ±∞, then 

f x
g x

f x
g x

lim
( )
( )

lim
( )
( )

= ′
′

Here, “lim” stands for any of 

lim , lim , lim, lim, lim
x x x a x a x a→+∞ →−∞ → → →+ −

For a sketch of the proof, see Problems 1, 11, and 12. It is assumed, in the case of the last three types of 
limits, that g′(x) ≠ 0 for x sufficiently close to a, and in the case of the first two limits, that g′(x) ≠ 0 for 
sufficiently large or sufficiently small values of x. (The corresponding statements about g(x) ≠ 0 follow by 
Rolle’s Theorem.)

EXAMPLE 27.1: Since ln x approaches +∞ as x approaches +∞, L’Hôpital’s Rule implies that 

x
x

x
x

lim
ln

lim
1/
1

lim
1

0
x x x

= = =
→+∞ →+∞ →+∞

EXAMPLE 27.2: Since ex approaches +∞ as x approaches +∞, L’Hôpital’s Rule implies that 

x
e e

lim lim
1

0
x

x
x

x= =
→+∞ →+∞

EXAMPLE 27.3: We already know from Problem 13(a) of Chapter 7 that

x x
x x

lim
3 5 8
7 2 1

3
7x

2

2

+ −
− + =

→+∞

Since both 3x2 + 5x − 8 and 7x2 − 2x + 1 approach +∞ as x approaches +∞, L’Hôpital’s Rule tells us that 

x x
x x

x
x

lim
3 5 8
7 2 1

lim
6 5

14 2x x

2

2

+ −
− + = +

−→+∞ →+∞
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236 CHAPTER 27 L’Hôpi ta l ’s  Rule

and another application of the rule tells us that

x
x

lim
6 5

14 2
lim

x x

6
14

6
14

3
7

+
− = = =

→+∞ →+∞

EXAMPLE 27.4: Since tan x approaches 0 as x approaches 0, L’Hôpital’s Rule implies that

x
x

x
x

lim
tan

lim
sec

1
lim

1
cos

1
1

1
x x x0 0

2

0
2 2= = = =

→ → →

INDETERMINATE TYPE 0 · Ç

If f (x) approaches 0 and g(x) approaches ±∞, we do not know how to find lim f (x)g(x). Sometimes such a 
problem can be transformed into a problem to which L’Hôpital’s Rule is applicable.

EXAMPLE 27.5: As x approaches 0 from the right, ln x approaches −∞. So, we do not know how to find  
lim
x 0→ +

 x ln x. But as x approaches 0 from the right, 1/x approaches +∞. So, by L’Hôpital’s Rule,

x x
x
x

x
x

xlim ln lim
ln
1/

lim
1/
1/

lim 0
x x x x0 0 0

2
0

= = − = − =
→ → → →+ + + +

INDETERMINATE TYPE Ç − Ç

If f (x) and g(x) both approach ∞, we do not know what happens to lim(  f (x) − g(x)). Sometimes we can 
transform the problem into a L’Hôpital’s-type problem.

EXAMPLE 27.6: x
x

lim csc
1

x 0
−



→

 is a problem of this kind. But,

x
x x x

x x
x x

lim csc
1

lim
1

sin
1

lim
sin

sinx x x0 0 0
−



 = −



 = −

→ → →

Since x − sin x and x sin x both approach 0, L’Hôpital’s Rule applies and we get 
x

x x x
lim

1 cos
cos sinx 0

−
+→

. Here both 
numerator and denominator approach 0 and L’Hôpital’s Rule yields

x
x x x x

lim
sin

sin cos cos
0

0 1 1
0
2

0
x 0 − + + = + + = =
→

INDETERMINATE TYPES 00, Ç0, AND 1Ç

If lim y is of one of these types, then lim (ln y) will be of type 0 · ∞.

EXAMPLE 27.7: In x y xlim ,
x

x x

0

sin sin=
→ +

 is of type 00 and we do not know what happens in the limit. But ln y = 

x x
x
x

sin ln
ln
csc

=  and ln x and csc x approach ±∞. So, by L’Hôpital’s Rule, 

y
x

x x
x

x x
x

x
x
x

x
x

x

lim ln lim
1/

csc cot
lim

sin
cos

lim
sin sin

cos

lim
sin

lim tan (1)(0) 0

x x x x

x x

0 0 0

2

0

0 0

= − = − = −

= − = − =

→ → → →

→ →

+ + + +

+ +

Here, we used the fact that x xlim((sin )/ ) 1
x 0

=
→

 (Problem 1 of Chapter 17). Now, since ylim ln 0,
x 0

=
→ +

y e elim lim 1
x x

y

0 0

ln 0= = =
→ →+ +
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237CHAPTER 27 L’Hôpital’s Rule

EXAMPLE 27.8: x y xIn lim |ln | , |ln |
x

x x

0
=

→ +
 is of type ∞0, and it is not clear what happens in the limit. But 

y x x
x

x
ln ln|ln |

ln|ln |
1/

= =  and both xln |ln | and 1/x approach +∞. So L’Hôpital’s Rule yields

y
x x x

x
x

lim ln lim
1
ln

1
lim

ln
0,

x x x0 0
2

0
= 





−



 = − =

→ → →+ + +

since

x
lim

1
ln

0.
x 0

=
→ +

 Hence, y e elim lim 1
x x

y

0 0

ln 0= = =
→ →+ +

EXAMPLE 27.9: In x y xlim ,
x

x x

1

1/( 1) 1/( 1)=
→

− −  is of type 1∞ and we cannot see what happens in the limit. But y
x

x
ln

ln
1

= −  

and both the numerator and the denominator approach 0. So by L’Hôpital’s Rule, we get

y
x

lim ln lim
1/
1

1.
x x1 1

= =
→ →

 Hence, y e e elim lim
x x

y

1 1

ln 1= = =
→ →

SOLVED PROBLEMS

 1. Prove the following 
0
0

 form of L’Hôpital’s Rule. Assume f (x) and g(x) are differentiable and g x( ) 0′ ≠  in some 

open interval (a, b) and f x g xlim ( ) 0 lim ( ).
x a x a

= =
→ →+ +

 Then, if 
f x
g x

lim
( )
( )x a

′
′→ +

 exists,

f x
g x

f x
g x

lim
( )
( )

lim
( )
( )x a x a

= ′
′→ →+ +

Since f x g xlim ( ) 0 lim ( ),
x a x a

= =
→ →+ +

 we may assume that f (a) and g(a) are defined and that f (a) = g(a) = 0. 

Replacing b by x in the Extended Law of the Mean (Theorem 13.5), and using the fact that f (a) = g(a) = 0, we 

obtain

f x
g x

f x f a
g x g a

f x
g x

( )
( )

( ) ( )
( ) ( )

( )
( )

0

0

= −
− = ′

′

for some x0 with a x x.0< <  So, x a0 → +  as x a .→ +  Hence, 

f x
g x

f x
g x

lim
( )
( )

lim
( )
( )x a x a

= ′
′→ →+ +

We also can obtain the 
0
0  form of L’Hôpital’s Rule for lim

x a→ −
 (simply let u = −x), and then the results for lim

x a→ −
 

and lim
x a→ +

 yield the 
0
0  form of L’Hôpital’s Rule lim

x a→
.

 2. We already know by Examples 1 and 2 that 
x

x
lim

ln
0

x
=

→+∞
 and 

x
e

lim 0.
x

x =
→+∞

 Show further that 
x
x

lim
(ln )

0
x

n

=
→+∞

 and 
x
e

lim 0
x

n

x =
→+∞

 for all positive integers n.

Use mathematical induction. Assume these results for a given n 1.≥  By L’Hôpital’s Rule,

x
x

n x x
n

x
x

nlim
(ln )

lim
( 1)(ln ) (1/ )

1
( 1) lim

(ln )
( 1)(0) 0

x

n

x

n

x

n1

=
+

= + = + =
→+∞

+

→+∞ →+∞

Likewise,
x
e

n x
e

n
x
e

nlim lim
( 1)

( 1) lim ( 1)(0) 0
x

n

x
x

n

x
x

n

x

1

= + = + = + =
→+∞

+

→+∞ →+∞
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238 CHAPTER 27 L’Hôpi ta l ’s  Rule

 3. Use L’Hôpital’s Rule one or more times to evaluate the following limits. Always check that the appropriate 
assumptions hold.

(a) 
x x
x x

lim
sin 2
sin 2

.
x 0

+
−→

We get 
x
x

lim
1 2cos2
1 2cos2

1 2(1)
1 2(1)

3.
x 0

+
− = +

− = −
→

(b) 
e

x
lim

1
x

x

0
2

−
→ +

.

We get 
e
x

e
x

lim
2

lim by Example2.
x

x

x

x

0

1
2

0
= = +∞

→ →+ +

(c) 
e e x

x x
lim

2
sin

.
x

x x

0

2

2 2

+ − −
−→

−

We obtain 
e e x

x x x
e e x

x x
lim

2
2sin cos 2

lim
2

sin 2 2
.

x

x x

x

x x

0 0

− −
− = − −

−→

−

→

−

By repeated uses of L’Hôpital’s Rule, we get

e e
x

e e
x

e e
x

lim
2

2cos2 2
lim

4sin 2
lim

8cos2
1 1
8(1)

2
8

1
4x

x x

x

x x

x

x x

0 0 0

+ −
− = −

− = +
− = +

− = − = −
→

−

→

−

→

−

(d) 
x

x
lim

sin
x π−π→ +

.

We get 
x

x
x xlim

cos
1/[2( ) ]

lim 2( ) cos 0.
x x

1/2
1/2

π π− = − =
π π→ →+ +

(e) 
x
x

lim
ln sin
ln tan

.
x 0→ +

 
x x
x x

xOne obtains lim
(cos )/(sin )
(sec )/(tan )

lim cos 1
x x0

2
0

2= =
→ →+ +

(f ) 
x
x

lim
cot

cot 2
.

x 0→

The direct use of L’Hôpital’s Rule
x
x

x x
x x

lim
csc

2csc (2 )
lim

2csc (cot )
(csc (2 ))(cot 2 )x x0

2

2
1
4

0

2

2

−
− =

→ →

leads us to ever more complicated limits. Instead, if we change from cot to tan, we get

x
x

x
x

x
x

x
x

lim
cot

cot 2
lim

tan 2
tan

lim
2sec (2 )

sec
2 lim

cos
cos (2 )

2
1
1

2
x x x x0 0 0

2

2
0

2

2= = = = =
→ → → →

(g) x xlim ln .
x 0

2

→ +

This is of type 0 · ∞. Then L’Hôspiutal’s Rule can be brought in as follows:

x
x

x
x

xlim
ln
1/

lim
1/
2/

lim 0
x x x0

2
0

3
0

1
2

2= − = − =
→ → →+ + +

(h) x xlim (1 tan )sec2 .
x /4

−
π→

This is of type 0 · ∞. However, it is equal to

x
x

x
x

lim
1 tan
cos2

lim
sec

2sin 2
2
2

1
x x/4 /4

2− = −
− = −

− =
π π→ →

Here we used thevaluecos
4

1

2
.

π =





(i) x e
lim

1 1
1

.
x

x
0

− −




→

This is type ∞ − ∞. But it is equal to

e x
x e

e
xe e

e
xe e

lim
1

( 1)
lim

1
1

lim
2

1
0 2

1
2x

x

x
x

x

x x
x

x

x x
0 0 0

− −
− = −

+ − = + = + =
→ → →

( j) x xlim(csc cot ).
x 0

−
→

This is of type ∞ − ∞. But it is equal to

x
x
x

x
x

x
x

lim
1

sin
cos
sin

lim
1 cos

sin
lim

sin
cos

0
x x x0 0 0

−



 = − = =

→ → →

(k) xlim (tan ) .
x

x

( /2)

cos

π→ −

This if of type ∞0. Let y x(tan ) .xcos=  Then y x x
x

x
ln (cos )(ln tan )

ln tan
sec

.= =
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So

y
x

x
x x x x

x
x

lim ln lim
ln tan
sec

lim (sec / tan )/(sec tan ) lim
cos
sin

0
1

1
x x x x( /2) ( /2) ( /2)

2

( /2)
2= = = = =

π π π π→ − → − → − → −

(l) 
x

x
lim

2
.

x

2+
→+∞

We get 
x

x

x
x

lim
2

lim
2

x x2

2

+
= +

→+∞ →+∞
 and we are going around in a circle. So, L’Hôpital’s Rule is of no use. 

But,

x
x

x
x x

lim
2

lim
2

lim
2

1

0 1 1

x x x

2 2

2 2

+ = + == +

= + =

→+∞ →+∞ →+∞

 4. Criticize the following use of L’Hôpital’s Rule:

x x x
x x x

x x
x x

x
x

lim
2

3 3 2
lim

3 2 1
3 6 3

lim
6 2
6 6

lim
6
6

1
x x x x2

3 2

3 2
2

2

2
2 2

− − −
− + − = − −

− + = −
− = =

→ → → →

The second equation is an incorrect use of L’Hôpital’s Rule, since x xlim (3 2 1) 7
x 2

2 − − =
→

 and x xlim (3 6 3) 3.
x 2

2 − + =
→

 
So, the correct limit should be .7

3

 5. (GC) Sketch the graph of y xe
x
e

.x
x= =−

See Fig 27-1. By Example 2, ylim 0
x

=
→+∞

. So, the positive x-axis is a horizontal asyomptote. Since 

e y y e x y e xlim , lim . (1 ) and ( 2).
x

x

x

x x= +∞ = −∞ ′ = − ′′ = −
→−∞

−
→−∞

− −  Then x = 1 is a critical number. By the second 

derivative test, there is a relative maximum at (1, 1/e) since y 0′′ <  at x = 1. The graph is concave downward for 
x < 2 (where y′′ < 0) and concave upward for x > 2 (where y 0′′ > ). (2, 2/e2) is an inflection point. The graphing 
calculator gives us the estimates e1/ ~ 0.37 and e2/ ~ 0.27.2

Fig. 27-1

 6. (GC) Sketch the graph y x xln .=
See Fig. 27-2. The graph is defined only for x > 0. Clearly, ylim

x
= +∞

→+∞
. By Example 5, ylim 0.

x 0
=

→ +
 Since y x1 ln′ = +  

and y x1/ 0,′′ = >  the critical number at x = 1/e (where y 0′ = ) yields, by the second derivative test, a relative 
minimum at (1/e, −1/e). The graph is concave upward everywhere.

Fig. 27-2
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SUPPLEMENTARY PROBLEMS

 7. Show that x elim 0
x

n x =
→−∞

 for all positive integers n.

 8. Find x
x

lim sin .
x

π
→+∞

Ans. π

 9. Sketch the graphs of the following functions: (a) y = x − ln x; (b) y
x

x
y x e

ln
; (c) x2= = .

Ans. See Fig. 27-3.

Fig. 27-3

10. Evaluate the following limits:

(a) 
x

x
lim

256
4

256
x 4

4 −
− =

→
 (b) 

x
x

lim
256
16

32
x 4

4

2

−
− =

→
 (c) x x

x
lim

3
9

1
2x 3

2

2

−
− =

→

(d) 
e e
x

elim
2x

x

2

2
2−

− =
→

 (e) 
xe

e
lim

1
1

x

x

x
0 − = −

→
 (f) e

x
lim

1
tan 2

1
2x

x

0

− =
→

(g) 
x

x
lim

ln(2 )
1

1
x 1

+
+ =

→−
 (h) 

x
x

lim
cos 1

cos2 1
1
4x 0

−
− =

→
 (i) e e

x
lim

sin
4

x

x x

0

2 2− =
→

−

(j) 
x

lim
8 2

4
1
2

ln 2
x

x x

0

− =
→

 (k) 
x x

x x
lim

2 tan
2 sin

1
x 0

1

1

−
− =

→

−

−  (l) x
x

lim
lnsec2
lnsec

4
x 0

=
→

(m) 
x

x
lim

ln cos 1
2x 0

2 = −
→

 (n) 
x x

x
lim

cos2 cos
sin

3
2x 0

2

− = −
→

 (o) 
x

x
lim

ln
0

x
=

→+∞

(p) 
x
x

lim
csc6
csc2

1
3x 1

2

=
π→

 (q) 
x x
x x

lim
5 2 ln

3 ln
5

x

+
+ =

→+∞
 (r) x x

e
lim

1
0

x
x

4 2+
+ =

→+∞

(s) 
x

e
lim

ln cot
0

x x0 csc2 =
→ +

 (t) 
e x
e x

lim
3

4 2
1
4x

x

x
0

3

2

+
+ =

→ +
 (u) e xlim ( 1)cos 1

x

x

0
− =

→

(v) x elim 0
x

x2 =
→−∞

 (w) x xlim csc 1
x 0

=
→

 (x) x xlim csc ln 1/
x 1

π π= −
→
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(y) e xlim sec 0
x

xtan 2
1
2

=
π→

−
−

 (z) x x xlim ( sin )csc
1
6x 0

1 3− = −
→

−  (a′) 
x x

lim
4

4
1

2
1
4x 2

2 − − −




 = −

→

(b′) 
x x

lim
1 1

sin
0

x 0
−



 =

→
 (c′) x xlim (sec tan )

x

3 3
1
2

− = ∞
π→

 (d′) 
x

x
x

lim
1

ln 1
1
2x 1

− −




 = −

→

(e′) 
x x

lim
4 2

1 cos
1
3x 0

2 − −




 = −

→
 (f′) x

x x
lim

ln 1
0

x
−





=
→+∞

 (g′) xlim 1
x

x

0
=

→ +

(h′) xlim (cos ) 1
x

x

0

1/ =
→

 (i′) e x elim ( 3 )
x

x x

0

1/ 4+ =
→

 (j′) e elim (1 ) 1/
x

x ex− =
→+∞

−

(k′) x x elim sin cos 1/
x

xtan

1
2

( )− =
π→

 (l′) xlim tan 1
x

xcos

1
2

( ) =
π→ −

 (m′) x elim
x

x

1

tan 21
2 =π π

→

−

(n′) x elim 1 1/
x

x( )+ =
→+∞

 (o′) lim
2
3

0
x

x

x2 =
→+∞

 (p′) 
e
x

lim 0
x

x

0

3/

2 =
→+

−

+

(q′) x
x

lim
ln

0
x

5

2 =
→+∞

 (r′) 
x

lim
ln

0
x

1000

5 =
→+∞

(s′) e e
x x

e
x

e
x

lim
(1 )

(1 ) ln (1 )
lim

1
lim

1
(1 )

1
x

x x

x

x

x

x

0 0 0

−
+ − = +

−
− =

→ → →

11. Verify the sketch of the proof of the following 
0
0

 form of L’Hôpital’s Rule at +∞. Assume f (x) and g(x) are 

differentiable and g x( ) 0′ ≠  for all x ≥ c, and f x g xlim ( ) 0 lim ( ).
x x

= =
→+∞ →+∞

 Then,

if  
f x
g x

lim
( )
( )x

′
′→+∞

  exists,  
f x
g x

f x
g x

lim
( )
( )

lim
( )
( )x x

= ′
′→+∞ →+∞

Proof: Let F(u) = f (1/u) and G(u) = g(1/u). Then, by Problem 1 for a → 0+, and with F and G instead of f and g,

f x
g x

F u
G u

F u
G u

f u u
g u u

f u
g u

f x
g x

lim
( )
( )

lim
( )
( )

lim
( )
( )

lim
( (1/ ) ( 1/ ))
( (1/ ) ( 1/ ))

lim
(1/ )
(1/ )

lim
( )
( )

x u u

u u x

0 0

0

2

2
0

= = ′
′

= ′ ⋅ −
′ ⋅ − = ′

′ = ′
′

→+∞ → →

→ → →+∞

+ +

+ +

12. Fill in the gaps in the proof of the following ∞
∞

 form of L’Hôpital’s Rule in the lim
x a→ +

 case. (The other cases follow 

easy as in the 
0
0

 form.) Assume f (x) and g(x) are differentiable and g x( ) 0′ ≠  in some open interval (a, b) and 
f x g xlim ( ) lim ( ).

x a x a
= ±∞ =

→ →+ +
 Then, 

if  K
f x
g x

lim
( )
( )x a

= ′
′→ +

  exists,  
f x
g x

f x
g x

lim
( )
( )

lim
( )
( )x a x a

= ′
′→ →+ +

Proof:  Assume 0∈>  and choose c so that K f x g x| ( ( )/ ( ))| /2− ′ ′ < ∈  for a < x < c. Fix d in (a, c). Let a < y < d. By 
the Extended Mean Value Theorem, there exists x* such that

y x d*< <   and  
f d f y
g d g y

f x
g x

( ) ( )
( ) ( )

( )
( )

*

*

−
− = ′

′
Then

K
f d f y
g d g y

( ) ( )
( ) ( ) 2

− −
− < ∈

  and so  K
f y
g y

f d
g y

g d
g y

( )
( )

( )
( )

1
( )
( ) 2

− −



 −











< ∈

Now we let y a .→ +  Since g y( ) → ±∞ and f d( ) and g d( ) are constant, f d g y( )/ ( ) 0→  and g d g y1 ( )/ ( ) 1.− →  So, 
for y close to a,

K
f y
g y

( )
( )

.− < ∈   Hence,  
f y
g y

Klim
( )
( )y a

=
→ +
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242 CHAPTER 27 L’Hôpi ta l ’s  Rule

13. (GC) In the following cases, try to find the limit by analytic methods, and then check by estimating the limit on a 

graphing calculator: (a) xlim ;
x

x

0

1/

→ +
 (b) xlim ;

x

x1/

→+∞
 (c) xlim (1 cos ) ;

x

x

0
−

→
 (d) x x xlim 3

x

2( )+ −
→+∞

.

Ans. (a) 0; (b) 1; (c) 1; (d) 3
2

14. The current in a coil containing a resistance R, an inductance, L, and a constant electromotive force, E, at time t is 

given by i
E
R

e(1 ).Rt L/= − −  Obtain a formula for estimating i when R is very close to 0.

Ans. Et
L
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CHAPTER 28

Exponential Growth and Decay

Assume that a quantity y varies with time and that

 
dy
dx

ky=  (28.1)

for some nonzero constant k. Let F t y e( ) / .kt=  Then by the Quotient Rule,

dF
dt

e D y y D e
e

e ky ye k
e e

0
0

kt
t t

kt

kt

kt kt

kt kt2 2 2=
−

= − = =

Hence, F(t) must be a constant C. (Why?) Thus, y e C/ kt =  and therefore, y Ce .kt=  To evaluate C, let t = 0. 
Then y(0) = Ce0 = C(1) = C. If we designate y(0) by y0, then C = y0 and we have obtained the general form 
of the solution of equation (28.1):

 y y ekt
0=  (28.2)

If k > 0, we say that y grows exponentially and k is called the growth constant. If k < 0, we say that y decays 
exponentially, and k is called the decay constant. The constant y0 is called the initial value.

From Problem 2 of Chapter 27, we know that 
u
e

lim 0.
u

n

u =
→+∞

 So, when k > 0, 
t
e

lim 0.
t

n

kt =
→+∞

 Thus, a quantity  

that grows exponentially grows much more rapidly than any power of t. There are many natural processes, 
such as bacterial growth or radioactive decay, in which quantities increase or decrease at an exponential rate.

HALF-LIFE

Assume that a quantity y of a certain substance decays exponentially, with decay constant k. Let y0 be the 
quantity at time t = 0. At what time T will only half of the original quantity remain?

By (28.2), we get the equation y y e .kt
0=  Hence, at time T,

 

y y e

e

e kT

kT

ln ( ) ln ( )

ln 2

kT

kT

kT

1
2 0 0

1
2

1
2

=

=

= =

− =  (28.3)

 T
k

ln 2= −  (28.4)
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244 CHAPTER 28 Exponential Growth and Decay

Note that the same value T is obtained for any original amount y0. T is called the half-life of the substance. 
It is related to the decay constant k by the equation (28.3). So, if we know the value of either k or T, we can 
compute the value of the other. Also observe that in (28.4), k < 0, so that T > 0.

The value of k can be obtained by experiment. For a given initial value y0 and a specific positive time t ,0  
we observe the value of y, substitute in the equation (28.2), and solve for k.

SOLVED PROBLEMS

 1. Given that the half-life T of radium is 1,690 years, how much will remain of one gram of radium after 1,000 years?

From (28.3), k T
ln 2 ln 2

1690= − = −  and the quantity of radium is given by y y e .t
0

(ln 2) /1690= −  Noting that y 10 =  and 

substituting 1000 for t, we get the quantity

y e e e 0.6636 grams(ln 2)1000/1690 693.1/1690 0.4101= ∼ ∼ ∼− − −

Thus, about 663.6 milligrams are left after 1000 years.

 2. If 20% of a radioactive substance disappears in one year, find its half-life T. Assume exponential decay.
By (28.2), y y e y e0.8 .k k

0 0
(1)

0= =  So, e0.8 k=  whence, k = ln (0.8) = ln( )4
5  = ln 4 – ln 5. From (28.4), 

T k
ln 2 ln 2

ln5 ln 4 3.1063= − = − ∼  years.

 3. Assume that the number of bacteria in a culture grows exponentially with a growth constant of 0.02, time being 
measured in hours. (Although the number of bacteria must be a nonnegative integer, the assumption that the 
number is a continuous quantity always seems to lead to results that are experimentally verified.)

(a) How many bacteria will be present after 1 hour if there are initially 1,000?
(b) Given the same initial 1,000 bacteria, in how many hours will there be 100,000 bacteria?

(a) From (28.2), y e1000 1000(1.0202) 1020.2 10200.02= ∼ = ∼
(b) From (28.2),

 

e

e

t

t

t

100,000 1000

100

ln100 0.02

2 ln10 0.02 [since ln100 ln (10) 2 ln10]

100 ln 10 ~ 100(2.0326) 203.26 hours

t

t

0.02

0.02

2

=

=

=

= = =

= =  

Note: Sometimes, instead of giving the growth constant, say k = 0.02, one gives a corresponding rate of 
increase per unit time (in our case, 2% per hour.) This is not quite accurate. A rate of increase of r % per unit time 
is approximately the same as a value of k = 0.0r when r is relatively small (say, r ≤ 3). In fact, with an r % rate of 
growth, y = y0(1 + 0.0r) after one unit of time. Since y = y0e

k when t = 1, we get 1 + 0.0r = ek and therefore,  
k = ln (1 + 0.0r). This is close to 0.0r, since ln (1 + x) ~ x for small positive x. (For example, ln 1.02 ~ 0.0198  
and ln 1.03 ~ 0.02956.) For that reason, many textbooks often interpret a rate of increase of r % to mean that  
k = 0.0r.

 4. If a quantity y increases or decreases exponentially, find a formula for the average value of y over a time interval [0, b].

By definition, the average value y
b

y dt bk ky dt
1

0
1 bb

av 00 ∫∫= − =  (where k is the growth or decay constant). By 

(28.1), ky
dy
dt=  and therefore, y bk

dy
dt dt1 .

b

av 0∫=  By the Fundamental Theorem of Calculus,

dy
dt

dt y b y y b y y
bk

y b y( ) (0) ( ) . Thus,
1

( ( ) )
b

0 av0 0∫ = − = − = −
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245CHAPTER 28 Exponential Growth and Decay

 5. If the population of a country is 100 million people and the population is increasing exponentially with a growth 
constant k = ln 2, calculate precisely the population after 5 years.

By (28.2), the population y y e e e10 10 ( ) 10 (2 ) 32(10 ).kt
0

8 (ln 2)5 8 ln 2 5 8 5 8= = = = =  Thus, the population will reach 
3.2 billion people in 5 years.

 6. Carbon-Dating. A certain isotope 14C of carbon occurs in living organisms in a fixed proportion to ordinary 
carbon. When that organism dies, its 14C decays exponentially, and its half-life is 5,730 years. Assume that a piece 
of charcoal from a wood fire was found in a cave and contains only 9% of the 14C expected in a corresponding 
piece of wood in a live tree. (This figure is obtained by measuring the amount of ordinary carbon in the piece of 
charcoal.) How long ago was the wood burned to form that charcoal?

If y is the amount of 14C present in the piece of charcoal, we have y y e .kt
0=  The present quantity y y e0.09 ,k

0 0= τ  
where τ is the elapsed time. Thus, e0.09 k= τ , ln (0.09) = kt, t = (ln (0.09))/k. Since the half-life T = 5730 and  
k = -(ln 2)/T = -(ln 2)/5730, we obtain

5730 ln(0.09)
ln 2

5730 (ln100 ln9)
ln 2

19906 yearsτ = − =
−

∼

 7. Newton’s Law of Cooling: The rate of change of the temperature of an object is proportional to the difference 
between the object’s temperature and the temperature of the surrounding medium.

Assume that a refrigerator is maintained at a constant temperature of 45°F and that an object having a 
temperature of 80°F is placed inside the refrigerator. If the temperature of the object drops from 80°F to 70°F in 
15 minutes, how long will it take for the object’s temperature to decrease to 60°F?

Let u be the temperature of the object. Then by Newton’s Law of Cooling, du/dt = k(u - 45), for some 
(negative) constant k. Let y = u - 45. Then dy/dt = du/dt = ky. Thus, by (28.2), y y e .kt

0=  Since u is initially 80°F, 
y0 = 80 - 45 = 35. So, y e35 .kt=  When t = 15, u = 70 and y = 25. Hence, 25 = 35e15k, 5 = 7e15k and therefore, 

k15 ln( ) ln5 ln 7.5
7= = −  Thus, k (ln5 ln 7).1

15= −  When the object’s temperature is 60°F, y = 15. So, 15 = 35ekt,  
3 = 7ekt and therefore, kt ln( ) ln3 ln 7.3

7= = −  Thus,

t
k

ln3 ln 7
15

ln3 ln 7
ln5 ln 7

37.7727 minutes=
−

=
−
− ∼

Hence, it would take about 22.7727 minutes for the object’s temperature to drop from 70° to 60°.

 8. Compound Interest. Assume that a savings account earns interest at a rate of r% per year. So, after one year, 

an amount of P dollars would become P r1 100( )+  dollars and, after t years, it would become P r1 100

t( )+  dollars. 

However, if the interest is calculated n times a year instead of once a year, then in each period the interest 

rate would be (r/n)%; after t years, there would have been nt such periods and the final amount would be 

P r
n1 100 .

nt( )+  If we let n → +∞, then we say that the interest is compounded continuously. In such a case, the 

final amount would be

P
r

n
P

r
n

Pelim 1
100

lim 1
100

nt t

rt
n n

n

0.01+



 = +













 =

→+∞ →+∞
 by (26.16)

Let $100 be deposited in a savings account paying an interest rate of 4% per year. After 5 years, how much 
would be in the account if:

(a) The interest is calculated once a year?
(b) The interest is calculated quarterly (that is, four times per year)?
(c) The interest is compounded continuously?

(a) 100(1.04)5 ~ 121.6653 dollars.
(b) 100(1.01)20 ~ 122.0190 dollars.
(c) 100e0.04(5) = 100 e0.2 ~ 122.1403 dollars.
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246 CHAPTER 28 Exponential Growth and Decay

SUPPLEMENTARY PROBLEMS

 9. Assume that in a chemical reaction, a certain substance decomposes at a rate proportional to the amount present. 
Assume that an initial quantity of 10,000 grams is reduced to 1,000 grams in 5 hours. How much would be left of 
an initial quantity of 20,000 grams after 15 hours?

Ans. 20 grams

10. A container with a maximum capacity of 25,000 fruit flies initially contains 1,000 fruit flies. If the population 
grows exponentially with a growth constant of (ln 5)/10 fruit flies per day, in how many days will the container 
be full?

Ans. 20 days

11. The half-life of radium is 1,690 years. How much will be left of 32 grams of radium after 6,760 years?

Ans. 2 grams

12. If a population grows exponentially and increases at the rate of 2.5% per year, find the growth constant k.

Ans. ln 1.025 ~ 0.0247

13. A saltwater solution initially contains 5 lb of salt in 10 gal of fluid. If water flows in at the rate of gal/min1
2   

and the mixture flows out at the same rate, how much salt is present after 20 min?

Ans. 
dS
dt

S
t S e

1
2 10

. At 20, 5 1.8395 lb1= − 



 = = ∼− .

14. Fruit flies in an enclosure increase exponentially in such a way that their population doubles in 4 hours. How 
many times the initial number will there be after 12 hours?

Ans. 8

15. (GC) If the world population in 1990 was 4.5 billion and it is growing exponentially with growth constant  
k = (ln 3)/8, estimate the world population in the years (a) 2014; (b) 2020.

Ans. (a) 111.5 billion; (b) 277.0 billion

16. (GC) If a thermometer with a reading of 65°F is taken into the outside air where the temperature is a constant 
25°F, the thermometer reading decreases to 50°F in 2.0 minutes.

(a) Find the thermometer reading after one more minute.
(b) How much longer (after 3.0 minutes) will it take for the thermometer reading to reach 32°F?

Use Newton’s Law of Cooling.

Ans. (a) 45°F; (b) about 4.4 minutes more

17. (GC) Under continuous compounding at a rate of r% per year:

(a) How long does it take for a given amount of money P to double?
(b) If a given amount P doubles in 9 years, what is r?
(c) If r = 8, how much must be deposited now to yield $100,000 in 17 years?

Ans. (a) 
r r

100 ln 2 69.31∼ ; (b) about 7.7; (c) about $25,666
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247CHAPTER 28 Exponential Growth and Decay

18. An object cools from 120°F to 95°F in half an hour when surrounded by air whose temperature is 70°F. Use 
Newton’s Law of Cooling to find its temperature at the end of another half an hour.

Ans. 82.5°F

19. If an amount of money receiving interest of 8% per year is compounded continuously, what is the equivalent 
yearly rate of return?

Ans. about 8.33%

20. How long does it take for 90% of a given quantity of the radioactive element cobalt-60 to decay, given that its 
half-life is 5.3 years?

Ans. about 17.6 years

21. A radioactive substance decays exponentially. If we start with an initial quantity of y0, what is the average 
quantity present over the first half-life?

Ans. 
y

2ln 2
0
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CHAPTER 29

Applications of Integration I: 
Area and Arc Length

AREA BETWEEN A CURVE AND THE y-AXIS

We already know how to find the area of a region like that shown in Fig. 29-1, bounded below by the x-axis, 

above by a curve y = f (x), and lying between x = a and x = b. The area is the definite integral f x dx( )
a

b

∫ .

Fig. 29-1

Now consider a region like that shown in Fig. 29-2, bounded on the left by the y-axis, on the right by a 
curve x = g(y), and lying between y = c and y = d. Then by an argument similar to that for the case shown in 

Fig. 29-1, the area of the region is the definite integral g y dy( )
c

d

∫ .

Fig. 29-2
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250 CHAPTER 29 Applications of Integration I: Area and Arc Length

EXAMPLE 29.1: Consider the region bounded on the right by the parabola x = 4 − y2, on the left by the y-axis, and 

above and below by y = 2 and y = −1. See Fig. 29-3. Then the area of this region is y dy(4 ) .2

1

2

∫ −
−

 By the Fundamental 
Theorem of Calculus, this is

y y(4 )] (8 ) ( 4 ( )) 12 12 3 91
3

3 2
1

8
3

1
3

9
3− = − − − − − = − = − =

−

Fig. 29-3

AREAS BETWEEN CURVES

Assume that f and g are continuous functions such that g(x) ≤ f (x) for a ≤ x ≤ b. Then the curve y = f (x) lies 
above the curve y = g(x) between x = a and x = b. The area A of the region between the two curves and lying 
between x = a and x = b is given by the formula

 A f x g x dx( ( ) ( ))
a

b

∫= −  (29.1)

To see why this formula holds, first look at the special case where 0 ≤ g(x) ≤ f (x) for a ≤ x ≤ b. (See 
Fig. 29-4.) Clearly, the area is the difference between two areas, the area A

f
 of the region under the curve  

y = f (x) and above the x-axis, and the area A
g
 of the region under the curve y = g(x) and above the x-axis. 

Since A f x dx( )f a

b

∫=  and A g x dx( )g a

b

∫= , 

A A A f x dx g x dx( ) ( )f g a

b

a

b

∫∫= − = −

f x g x dx( ( ) ( )) by(23.6)
a

b

∫= −

Fig. 29-4
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251CHAPTER 29 Applications of Integration I: Area and Arc Length

Now look at the general case (see Fig. 29-5), when one or both of the curves y = f (x) and y = g(x) may lie 
below the x-axis. Let m < 0 be the absolute minimum of g on [a, b]. Raise both curves by |m| units. The new 
graphs, shown in Fig. 29-6, are on or above the x-axis and enclose the same area A as the original graphs. 
The upper curve is the graph of y = f (x) + |m| and the lower curve is the graph of y = g(x) + |m|. Hence, by 
the special case above,

A f x m g x m dx f x g x dx(( ( ) | | ( ( ) | |)) ( ( ) ( ))
a

b

a

b

∫∫= + − + = −

     

 Fig. 29-5 Fig. 29-6

EXAMPLE 29.2: Find the area A of the region  under the line y x 2,1
2= +  above the parabola y = x2, and between 

the y-axis and x = 1. (See the shaded region in Fig. 29-7.) By (29.1),

A x x dx x x x1
2 2 1

4 2 1
3

1
4 2 1

3 (0 0 0) 3
12

24
12

4
12

23
12

2

0

1
2 3

0

1

∫ ( ) ( ) ( )( )= + − = + − 


= + − − + − = + − =

Fig. 29-7

ARC LENGTH

Let f be differentiable on [a, b]. Consider the part of the graph of f from (a, f (a)) to (b, f (b)). Let us find a 
formula for the length L of this curve. Divide [a, b] into n equal subintervals, each of length ∆ x. To each 
point xk in this subdivision there corresponds a point Pk(xk, f (xk)) on the curve. (See Fig. 29-8.) For large n, 

the sum P P P P P P P P. . . n n k k
k

n

0 1 1 2 1 1
1

∑+ + + =− −
=

 of the lengths of the line segments Pk−1Pk is an approximation 

to the length of the curve.
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252 CHAPTER 29 Applications of Integration I: Area and Arc Length

Fig. 29-8

By the distance formula (2.1),

P P x x f x f x( ) ( ( ) ( ))k k k k k k1 1
2

1
2= − + −− − −

Now xk − xk−1 = ∆ x and, by the Law of the Mean (Theorem 13.4),

f x f x x x f x x f x( ) ( ) ( ) ( ) ( ) ( )k k k k k k1 1
* *− = − ′ = ∆ ′− −

for some xk
* in (xk−1, xk). Thus,

P P x x f x f x x

f x x f x x

( ) ( ) ( ( )) (1 ( ( )) )( )

1 ( ( )) ( ) 1 ( ( ))

k k k k

k k

1
2 2 * 2 * 2 2

* 2 2 * 2

= ∆ + ∆ ′ = + ′ ∆

= + ′ ∆ = + ′ ∆

−

So,   P P f x x1 ( ( ))k k
k

n

k
k

n

1
1

* 2

1
∑ ∑= + ′ ∆−

= =

The right-hand sum is an approximating sum for the definite integral f x dx1 ( ( )) .
a

b
2∫ + ′  Therefore, letting 

n → +∞, we get the arc length formula:

 L f x dx y dx1 ( ( )) 1 ( )
a

b

a

b
2 2∫∫= + ′ = + ′  (29.2)

EXAMPLE 29.3: Find the arc length L of the curve y = x3/2 from x = 0 to x = 5. 

By (29.2), since y x x ,3
2

1/2 3
2′ = =

L y dx x dx

x dx x

1 ( ) 1

(1 ) (1 ) (by Quick Formula Iand the Fundamental Theorem of Calculus)

(( ) 1 ) ( 1)

2 9
40

5

0

5

4
9 0

5
9
4

1/2 9
4

4
9

2
3

9
4

3/2

8
27

49
4

3/2 3/2 8
27

343
8

335
27

5

0

∫∫

∫ ( )

= + ′ = +

= + = + 


= − = − =
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SOLVED PROBLEMS

 1. Find the area bounded by the parabola x = 8 + 2y − y2, the y-axis, and the lines y = −1 and y = 3. 
Note that by completing the square, x = −(y2 − 2y − 8) = −((y − 1)2 − 9) = 9 − (y − 1)2 = (4 − y)(2 + y). Hence, 

the vertex of the parabola is (9, 1) and the parabola cuts the y-axis at y = 4 and y = −2. We want the area of the 
shaded region in Fig. 29-9, which is given by

y y dy y y y(8 2 ) (8 ) (24 9 9) ( 8 1 )2

1

3
2 1

3
3

1

3
1
3

92
3∫ + − = + − 

 = + − − − + − =
− −

y

(x y)

x

–1

–2

3

4

x

∆y

Fig. 29-9

 2. Find the area of the region between the curves y = sin x and y = cos x from x = 0 to x = p/4. 
The curves intersect at ( /4, 2 /2),π  and 0 ≤ sin x < cos x for 0 ≤ x < p  /4. (See Fig. 29-10.) Hence, the area is

x x dx x x(cos sin ) (sin cos )
2

2
2

2
(0 1) 2 1

0

/4

0

/4

∫ − = + 
 = +





 − + = −

π π

Fig. 29-10

 3. Find the area of the region bounded by the parabolas y = 6x − x2 and y = x2 − 2x. 
By solving 6x − x2 = x2 − 2x, we see that the parabolas intersect when x = 0 and x = 4, that is, at (0, 0) and (4, 8). 

(See Fig. 29-11.) By completing the square, the first parabola has the equation y = 9 − (x − 3)2; therefore, it has 
its vertex at (3, 9) and opens downward. Likewise, the second parabola has the equation y = (x −1)2 − 1; therefore, 
its vertex is at (1, −1) and it opens upward. Note that the first parabola lies above the second parabola in the given 
region. By (29.1), the required area is

x x x x dx x x dx x x((6 ) ( 2 )) (8 2 ) (4 ) (64 )2 2 2 2 2
3

3

0

4

0

4

0

4
128

3
64
3∫∫ − − − = − = −  = − =
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254 CHAPTER 29 Applications of Integration I: Area and Arc Length

Fig. 29-11

 4. Find the area of the region bounded by the parabola y2 = 4x and the line y = 2x − 4. 
Solving the equations simultaneously, we get (2x − 4)2 = 4x, x2 − 4x + 4 = x, x2 − 5x + 4 = 0, (x − 1)(x − 4) = 0. 

Hence, the curves intersect when x = 1 or x = 4, that is, at (1, −2) and (4, 4). (See Fig. 29-12.) Note that neither 
curve is above the other throughout the region. Hence, it is better to take y as the independent variable and rewrite 
the curves as x y x yand ( 4).1

4
2 1

2= = +  The line is always to the right of the parabola.
The area is obtained by integrating along the y-axis:

y y dy y y dy

y y y

( ( 4) ) (2 8 )

( 8 ) ((16 32 ) (4 16 )) 9

1
2

1
4

2 1
4

2

2

4

2

4

1
4

2 1
3

3
2

4 1
4

64
3

8
3

∫∫ + − = + −

= + −  = + − − − + =

−−

−

Fig. 29-12

 5. Find the area of the region between the curve y x x x6 83 2= − +  and the x-axis.
Since x x x x x x x x x6 8 ( 6 8) ( 2)( 4),3 2 2− + = − + = − −  the curve crosses the x-axis at x = 0, x = 2, and x = 4. 

The graph looks like the curve shown in Fig. 29-13. (By applying the quadratic formula to y′, we find that the 
maximum and minimum values occur at x 2 32

3= ± .) Since the part of the region with 2 ≤ x ≤ 4 lies below the  
x-axis, we must calculate two separate integrals, one with respect to y between x = 0 and x = 2, and the other with 
respect to −y between x = 2 and x = 4. Thus, the required area is

x x x dx x x x dx x x x x x x( 6 8 ) ( 6 8 ) ( 2 4 ) ( 2 4 4 4 83

0

2
2 3 2 1

4
4 3 2

2

4

0

2
1
4

4 3 2
2

4

∫ ∫ ]− + − − + = − + 
 − − + = + =
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Fig. 29-13

Note that if we had made the mistake of simply calculating the integral x x x dx( 6 8 ) ,3 2

0

4

∫ − +  we would have 
got the incorrect answer 0.

 6. Find the area enclosed by the curve y2 = x2 − x4. 
The curve is symmetric with respect to the coordinate axes. Hence the required area is four times the portion 

lying in the first quadrant. (See Fig. 29-14.) In the first quadrant, y x x x x12 2= − = −4  and the curve inter-
sects the x-axis at x = 0 and x = 1. So, the required area is

x x dx x x dx

x

4 1 2 (1 ) ( 2 )

2 (1 ) (by Quick Formula I)

(0 1 ) ( 1)

2

0

1
2 1/2

0

1

2
3

2 3/2

0

1

4
3

3/2 4
3

4
3

∫ ∫
( )

− = − − −

= − − 

= − − = − − =

Fig. 29-14

 7. Find the arc length of the curve x = 3y3/2 − 1 from y = 0 to y = 4.
We can reverse the roles of x and y in the arc length formula (29.2): L

dx
dy

dy1 .
c

d
2

∫= + 



  Since 

dx
dy

y
9
2

,1/2=

L y dy y dy y1 (1 ) ( ) ( )(1 ) ((82) 1 ) (82 82 1)81
4

0

4
4
81

81
4

1/2 81
4

4
81

2
3

81
4

3/2

0

4

0

4
8

243
3/2 3/2 8

243∫ ∫= + = + = + 
 = − = −

 8. Find the arc length of the curve 24xy = x4 + 48 from x = 2 to x = 4. 
y x x2 .1

24
3 1= + −  Hence, y x x2/1

8
2 2′ = − . Thus,

y x
x

y x
x

x
x

4

1 ( )
4 2

2 1
64

4 1
2 4

2 1
64

4 1
2 4

1
8

2
2

2

( )′ = − +

+ ′ = + + = +
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So, 
L y dx x

x
dx x x dx

x x

1 ( )
2

2

2 1

2 1
8

2
22

4
1
8

2 2

2

4

2

4

1
24

3 1

2

4
8
3

1
2

1
3

17
6

∫ ∫∫ ( )

( ) ( )( )

= + ′ = +



 = +

= −  = − − − =

−

−

 9. Find the arc length of the catenary y
a

e e
2

( )x a x a/ /= + −  from x = 0 to x = a.
y e e( )x a x a1

2
/ /′ = + −  and therefore,

y e e e e1 ( ) 1 ( 2 ) ( )x a x a x a x a2 1
4

2 / 2 / 1
4

/ / 2+ ′ = + − + = +− −

So, L e e dx
a

e e
a

e e( )
2

( )
2

( )x a x a x a x a
a

a
1
2

/ / / /

0
0

1∫= + = − 


= −− − −

SUPPLEMENTARY PROBLEMS

10. Find the area of the region lying above the x-axis and under the parabola y = 4x − x2. 

Ans. 32
3

11. Find the area of the region bounded by the parabola y = x2 − 7x + 6, the x-axis, and the lines x = 2 and x = 6. 

Ans. 56
3

12. Find the area of the region bounded by the given curves.

(a) y = x2, y = 0, x = 2, x = 5 Ans. 39 
(b) y = x3, y = 0, x = 1, x = 3 Ans. 20 
(c) y = 4x − x2, y = 0, x = 1, x = 3 Ans. 22

3

(d) x = 1 + y2, x = 10 Ans. 36 
(e) x = 3y2 − 9, x = 0, y = 0, y = 1 Ans. 8 
(f ) x = y2 + 4y, x = 0 Ans. 32

3

(g) y = 9 − x2, y = x + 3 Ans. 125
6

(h) y = 2 − x2y = −x Ans. 9
2

(i) y = x2 − 4, y = 8 − 2x2 Ans. 32
(j) y = x4 − 4x2, y = 4x2 Ans. 2512

15

(k) y = ex, y = e−x, x = 0, x = 2 Ans. 
e
e

1
2

2

2

+
−

(l) y = ex/a + e−x/a, y = 0, x = ±a Ans. a
e

e
2

1−





(m) xy = 12, y = 0, x = 1, x = e2 Ans. 24

(n) y = 
x

1
1 2+ , y = 0, x = ±1 Ans. 

2
π

(o) y = tan x, x = 0, x = 
4
π

 Ans. ln 21
2

(p) y = 25 − x2, 256x = 3y2, 16y = 9x2  Ans. 98
3

13. Find the length of the indicated arc of the given curve.

(a) y3 = 8x2 from x = 1 to x = 8 Ans. 104 13 125 /27( )−
(b) 6xy = x4 + 3 from x = 1 to x = 2 Ans. 17

12

(c) 27y2 = 4(x − 2)3 from (2, 0) to (11, 6 3) Ans. 14
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257CHAPTER 29 Applications of Integration I: Area and Arc Length

(d) y x xln1
2

2 1
4= −  from x = 1 to x = e Ans. e1

2
2 1

4−

(e) y = ln cos x from x
6
π=  to x

4
π=  Ans. ln

1 2
3

+





(f) x y 42/3 2/3+ =  from x = 1 to x = 8 Ans. 9

14. (GC) Estimate the arc length of y = sin x from x = 0 to x = p to an accuracy of four decimal places. (Use 
Simpson’s Rule with n = 10.) 

Ans. 3.8202
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CHAPTER 30

Applications of Integration II:  
Volume

A solid of revolution is obtained by revolving a region in a plane about a line that does not intersect the 
region. The line about which the rotation takes place is called the axis of revolution.

Let f be a continuous function such that f (x) ≥ 0 for a ≤ x ≤ b. Consider the region  under the graph of f, 
above the x-axis, and between x = a and x = b. (See Fig. 30-1.) If  is revolved about the x-axis, the result-
ing solid is a solid of revolution. The generating regions  for some familiar solids are shown in Fig. 30-2.

Fig. 30-1

DISK FORMULA

The volume V of the solid of revolution obtained by revolving the region  of Fig. 30-1 about the x-axis is 
given by

 ∫ ∫π π= =V f x dx y dx( ( ))
a

b

a

b
2 2  (disk formula)

Fig. 30-2
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260 CHAPTER 30 Applications of Integration II: Volume 

See Problem 9 for a sketch of the proof of this formula.
Similarly, when the axis of rotation is the y-axis and the region that is revolved lies between the y-axis 

and a curve x = g( y) and between y = c and y = d (see Fig. 30-3), then the volume V of the resulting solid of 
revolution is given by the formula

 ∫ ∫π π= =V g y dy x dy( ( ))
c

d

a

b
2 2  (disk formula)

Fig. 30-3

EXAMPLE 30.1: Consider the solid of revolution obtained by revolving about the x-axis the region in the first 
quadrant bounded by the parabola y2 = 8x and the line x = 2. (See Fig. 30-4.) By the disk formula, the volume is

 ∫ ∫π π π π π= = = 
 = − =V y dx x dx x8 (4 ) (16 0) 162

0

2
2

0

2

0

2

Fig. 30-4

EXAMPLE 30.2: Consider the solid of revolution obtained by revolving about the y-axis the region bounded by 
the parabola y = 4x2 and the lines x = 0 and y = 16. (See Fig. 30-5.) To find its volume, we use the version of the disk 
formula in which we integrate along the y-axis. Thus,

 ∫ ∫π π π π π= = = 
 = − =V x dy

y
dy y

4 8 8
(256 0) 322

0

16
2

0

16

0

16
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WASHER METHOD

Assume that 0 ≤ g(x) ≤ f (x) for a ≤ x ≤ b. Consider the region between x = a and x = b and lying between 
y = g(x) and y = f (x). (See Fig. 30-6.) Then the volume V of the solid of revolution obtained by revolving this 
region about the x-axis is given by the formula

 ∫π [ ]= −V f x g x dx( ( )) ( ( ))
a

b
2 2  (washer formula)† 

Fig. 30-6

The justification is clear. The desired volume is the difference of two volumes, the volumes ∫π f x dx( ( ))
a

b
2  

of the solid of revolution generated by revolving about the x-axis the region under y = f (x) and the volume 

∫π g x dx( ( ))
a

b
2  of the solid of revolution generated by revolving about the x-axis the region under y = g(x). 

A similar formula

 ∫π [ ]= −V f y g y dy( ( )) ( ( ))
c

d
2 2  (washer formula)

holds when the region lies between the two curves x = f ( y) and x = g( y) and between y = c and y = d, and it 
is revolved about the y-axis. (It is assumed that 0 ≤ g( y) ≤ f ( y) for c ≤ y ≤ d.)

† The word “washer” is used because each thin vertical strip of the region being revolved produces a solid that resembles a plumbing 
part called a washer (a small cylindrical disk with a hole in the middle).

Fig. 30-5
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CYLINDRICAL SHELL METHOD

Consider the solid of revolution obtained by revolving about the y-axis the region  in the first quadrant 
between the x-axis and the curve y = f (x), and lying between x = a and x = b. (See Fig. 30-7.) Then the volume 
of the solid is given by

 ∫ ∫π π= =V xf x dx xy dx2 ( ) 2
a

b

a

b
 (cylindrical shell formula)

See Problem 10 for the justification of this formula.
A similar formula holds when the roles of x and y are reversed, that is, the region  in the first quadrant 

between the y-axis and the curve x = f ( y), and lying between y = c and y = d, is revolved about the x-axis

 ∫ ∫π π= =V yf y dy yx dy2 ( ) 2
c

d

c

d

Fig. 30-7

EXAMPLE 30.3: Consider the solid of revolution obtained by revolving about the x-axis the region bounded by 
the curves y = 4x2, x = 0, and y = 16. (The same region as in Fig. 30-5.) Here the upper curve is y = 16 and the lower 
curve is y = 4x2. Hence, by the washer formula,

 ∫ ∫π π π π π( )[ ] [ ] ( )= − = − = −  = − =V x dx x dx x x16 (4 ) 256 16 256 512
512

5
2048

5
2 2 2

0

2
4

0

2
16
5

5

0

2

EXAMPLE 30.4: Revolve about the y-axis the region above the x-axis and below y = 2x2, and between x = 0 and  
x = 5. By the cylindrical shell formula, the resulting solid has volume

 ∫ ∫ ∫π π π π π]= = = =xy dx x x dx x dx x2 2 (2 ) 4 ( ) 625
0

5
2

0

5
3

0

5
4

0

5

Note that the volume could also have been computed by the washer formula, but the calculation would 
have been somewhat more complicated.

DIFFERENCE OF SHELLS FORMULA

Assume that 0 ≤ g(x) ≤ f (x) on an interval [a, b] with a ≥ 0. Let  be the region in the first quadrant between 
the curves y = f (x) and y = g(x) and between x = a and x = b. Then the volume of the solid of revolution 
obtained by revolving  about the y-axis is given by

 ∫π= −V x f x g x dx2 ( ( ) ( ))
a

b
 (difference of shells formula)
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CROSS-SECTION FORMULA (SLICING FORMULA)

Assume that a solid lies entirely between the plane perpendicular to the x-axis at x = a and the plane per-
pendicular to the x-axis at x = b. For each x such that a ≤ x ≤ b, assume that the plane perpendicular to the  
x-axis at that value of x intersects the solid in a region of area A(x). (See Fig. 30-8.) Then the volume V of 
the solid is given by

 ∫=V A x dx( )
a

b
 (cross-section formula)†

For justification, see Problem 11.

Fig. 30-8

This obviously follows from the cylindrical shells formula because the required volume is the difference of 
two volumes obtained by the cylindrical shells formula. Note that a similar formula holds when the roles of 
x and y are reversed.

EXAMPLE 30.5: Consider the region in the first quadrant bounded above by y = x2, below by y = x3, and lying 
between x = 0 and x = 1. When revolved about the y-axis, this region generates a solid of revolution whose volume, 
according to the difference of shells formula, is

 ∫ ∫π π π π π( ) ( )− = − = − 


= − =x x x dx x x dx x x2 ( ) 2 ( ) 2
1
4

1
5

2
1
4

1
5 10

2

0

1
3 3 4

0

1
4 5

0

1

EXAMPLE 30.6: Assume that half of a salami of length h is such that a cross section perpendicular to the axis  
of the salami at a distance x from the end O is a circle of radius x . (See Fig. 30-9.) Hence, the area A(x) of the  
cross section is π π=x x( ) .2  So, the cross-section formula yields

 ∫∫ π π π= = = 


=V A x dx x dx x
h

( )
2 2

hh
h

2

00
0

2

Fig. 30-9

† This formula is also called the slicing formula because each cross-sectional area A(x) is obtained by slicing through the solid.
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SOLVED PROBLEMS

 1. Find the volume of a cone that has height h and whose base has radius r.
The cone is generated by revolving about the x-axis the region between the line =y

r
h

x and the x-axis, 
between x = 0 and x = h. [See Fig. 30-2(a).] By the disk formula, the volume of the cone is

 ∫∫π π π π π( ) ( )= = 


= =y dx
r
h

x dx
r

h
x

r
h

h r h
hh

h

2
2

2
2

2

2
1
3

3

00
0

2

2
1
3

3 1
3

2

 2. Find the volume of the cylinder of height h and radius r.
The cylinder is generated by revolving about the x-axis the region between the line y = r and the x-axis, 

between x = 0 and x = h. [See Fig. 30-2(b).] By the disk formula, the volume of the cylinder is

 ∫ ∫π π π π= = = 


=V y dx r dx r x r h.
h h h

2

0

2

0

2

0

2

 3. Find the volume of a sphere of radius r.
The sphere is generated by revolving about the x-axis the region between the semicircle = −y r x2 2  and the  

x-axis, between x = -r and x = r. [See Fig. 30-2(c).] By the symmetry with respect to the y-axis, we can use 
the part of the given region between x = 0 and x = r and then double the result. Hence, by the disk formula, the 
volume of the sphere is

 V y dx r x dx r x x r
r

r r2 2 ( ) 2 2
3

2
r rr

2

0

2 2 2 1
3

3

00

3
3

2
3

3 4
3

3∫ ∫π π π π π π( ) ( )= = − = −  = −




 = =

 4. Let  be the region between the x-axis, the curve y = x3, and the line x = 2. (See Fig. 30-10.)

(a) Find the volume of the solid obtained by revolving  about the x-axis.
(b) Find the volume of the solid obtained by revolving  about the y-axis.

Fig. 30-10

(a) The disk formula yields the volume

 V y dx x dx x dx x( )
7

128
7

2 3 2

0

2

0

2
6

0

2
7

0

2

∫∫ ∫π π π π π= = = = 


=
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(b) (First solution) The cylindrical shells formula yields the volume

 ∫∫ ∫π π π π π( )= = = = 


=V xy dx x x dx x dx x2 2 ( ) 2 2
64

5
3

0

2

0

2
4

0

2
1
5

5

0

2

 (Second solution) Integrating along the y-axis and using the washer formula yields the volume

 
V y dy y dy y y2 4 4

3
5

32
3
5

32
64

5
2 3

2 2
3

0

8

0

8 5
3

0

8

∫∫π π π π π( ) ( )( )= −



 = −





= − 

 = −





 =

 5. Find the volume of the solid obtained by revolving about the y-axis the region in the first quadrant inside the 
circle x2 + y2 = r2, and between y = a and y = r (where 0 < a < r). See Fig. 30-11. (The solid is a “polar cap” of a 
sphere of radius r.)

Fig. 30-11

Integrating along the y-axis, the disk formula yields the volume

 ∫ ∫π π π π π( )( ) ( )= = − = −  = − − = − +V x dy r y dy r y y r r a a r r a a( )
3

(2 3 )
a

r

a

r

a

r
2 2 2 2 1

3
3 2

3
3 2 1

3
3 3 2 3

 6. Find the volume of the solid obtained by revolving about the y-axis the region in the first quadrant bounded above 
by the parabola y = 2 - x2 and below by the parabola y = x2. (See Fig. 30-12.)

Fig. 30-12
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The curves intersect at (1,1). By the difference of cylindrical shells formula, the volume is

 V x x x dx x x dx x x2 ((2 ) ) 4 ( ) 4 42 2

0

1
3

0

1
1
2

2 1
4

4

0

1
1
2

1
4∫ ∫π π π π π( ) ( )= − − = − = − 


= − =

 7. Consider the region  bounded by the parabola y = 4x2 and the lines x = 0 and y = 16. (See Fig. 30-5.) Find the 
volume of the solid obtained by revolving  about the line y = -2.

To solve this problem, we reduce it to the case of a revolution about the x-axis. Raise the region  vertically 
upward through a distance of 2 units. This changes  into a region * that is bounded below by the parabola 
y = 4x2 + 2, on the left by the y-axis, and above by the line y = 18. (See Fig. 30-13.) Then the original solid of 
revolution has the same volume as the solid of revolution obtained by revolving R* around the x-axis. The latter 
volume is obtained by the washer formula:

 

∫ ∫π π

π π π( ) ( )

= − + = − − −

= − −  = − − =

V x dx x x dx

x x x

(18 (4 2) ) (256 16 16 4)

252 504
5384

15

2 2 2

0

2
4 2

0

2

16
5

5 16
3

3

0

2
512

5
128

3

 8. As in Problem 7, consider the region  bounded by the parabola y = 4x2 and the lines x = 0 and y = 16.  
(See Fig. 30-5.) Find the volume of the solid obtained by revolving  about the line x = -1.

Fig. 30-13

To solve this problem, we reduce it to the case of a revolution about the y-axis. Move the region  to the right 
through a distance of 1 unit. This changes  into a region * that is bounded on the right by the parabola  
y = 4(x - 1)2, above by y = 16, and on the left by x = 1. (See Fig. 30-14.) The desired volume is the same as that 
obtained when we revolve * about the y-axis. The latter volume is got by the difference of cylindrical shells 
formula:

 

∫ ∫

∫

π π

π π

π

( )

( )

= − − = − + −

= − + − = − + − 

= − + − − − + −  =

V x x dx x x x dx

x x x x dx x x x x

2 (16 4( 1) ) 2 (16 4 8 4)

2 (16 4 8 4 ) 2 8 2

2 (72 81 72 18) 8 1 2

2

1

3
2

1

3

3

1

3
2 2 4 8

3
3 2

1

3

8
3

112
3
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Fig. 30-14

 9. Justify the disk formula: ∫π=V f x dx( ( )) .
a

b
2

Divide the interval [a, b] into n equal subintervals, each of length ∆ = −
x

b a
n

. (See Fig. 30-15.)  

Consider the volume Vi obtained by revolving the region i above the ith subinterval about the x-axis. 

If mi and Mi are the absolute minimum and absolute maximum of f on the ith subinterval, then Vi lies 
between the volume of a cylinder of radius mi and height ∆ x and the volume of a cylinder of radius Mi 

and height ∆ x. Thus, π π∆ ≤ ≤ ∆m x V M xi i i
2 2  and therefore, π≤ ∆ ≤m

V
x

M .i
i

i
2 2  (We have assumed that the 

volume of a cylinder of radius r and height h is pr2h.) Hence, by the Intermediate Value Theorem for the 

continuous function (f (x))2, there exists xi
* in the ith subinterval such that π ( )∆ =

V
x

f x( )i
i
* 2

 and therefore, 

π ( )= ∆V f x x( ) .i i
* 2

 Thus,

 ∑ ∑π ( )= = ∆
= =

V V f x x( )i
i

n

i
i

n

1

* 2

1

 Letting n → +∞, we obtain the disk formula.

 

Fig. 30-15
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10. Justify the cylindrical shells formula: ∫π=V xf x dx2 ( ) .
a

b

Divide [a, b] into n equal subintervals, each of length ∆ x. (See Fig. 30-16.) Let i be the region above the 

ith subinterval. Let xi
* be the midpoint 

+−x x
2

i i1  of the ith interval. The solid obtained by revolving the region 

t about the y-axis is approximately the solid obtained by revolving the rectangle with base ∆ x and height 
=y f x( ).i i

* *  The latter solid is a cylindrical shell, that is, it lies between the cylinders obtained by revolving the 
rectangles with the same height f x( )i

*  and with bases [0, xi-1] and [0, xi]. Hence, it has volume

 

x f x x f x f x x x

f x x x x x f x x x x f x x

( ) ( ) ( )( )

( )( )( ) ( )(2 )( ) 2 ( )( )

i i i i i i i

i i i i i i i i i

2 *
1

2 * * 2
1

2

*
1 1

* * * *

π π π

π π π

− = −

= − + = ∆ = ∆

− −

− −

Thus, the total V is approximated by ∑π ∆
=

x f x x2 ( )
i

n

1
*

1
*

1

 which approaches ∫π x f x dx2 ( )
a

b
 as n → + ∞.

11. Justify the cross-section formula: ∫=V A x dx( ) .
a

b

Divide [a, b] into n equal subintervals [xi-1, xi], and choose a point xi
* in [xi-1, xi]. If n is large, ∆ x is small 

and the piece of the solid between xi-1 and xi, will be close to a (noncircular) disk of thickness ∆ x and base area 

A x( ).i
*  (See Fig. 30-17.) This disk has volume ∆A x x( ) .i

*  So V is approximated by ∑ ∆
=

A x x( ) ,i
i

n
*

1

 which approaches 

∫ A x dx( )
a

b
 as n → + ∞.

Fig. 30-16

 

Fig. 30-17
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12. A solid has a circular base of radius 4 units. Find the volume of the solid if every plane section perpendicular to a 
particular fixed diameter is an equilateral triangle.

Take the circle as in Fig. 30-18, with the fixed diameter on the x-axis. The equation of the circle is x2 + y2 = 16. 
The cross section ABC of the solid is an equilateral triangle of side 2y and area A(x) = 3y2 = 3(16 - x2). Then 
by the cross-section formula,

 ∫ ( )= − = −  =
− −

V x dx x x3 (16 ) 3 16 32

4

4
1
3

3

4

4
256
3

13. A solid has a base in the form of an ellipse with major axis 10 and minor axis 8. Find its volume if every section 
perpendicular to the major axis is an isosceles triangle with altitude 6.

Take the ellipse as in Fig. 30-19, with equation + =x y
25 16

1.
2 2

 The section ABC is an isosceles triangle of base 

2y, altitude 6, and area ( )= = −A x y x( ) 6 6
4
5

25 2 . Hence,

 ∫ π= − =
−

V x dx25 6024
5

2

5

5

Fig. 30-18

(Note that ∫ −
−

x dx25 2

5

5
 is the area of the upper half of the circle x2 + y2 = 25 and therefore is equal to 25 p /2.)

Fig. 30-19

SUPPLEMENTARY PROBLEMS

14. Consider the region  bounded by the parabola y2 = 8x and the line x = 2. (See Fig. 30-4.)

(a) Find the volume of the solid generated by revolving  about the y-axis.
(b) Find the volume of the solid generated by revolving  about the line x = 2.

Ans. (a) 
π128

5
; (b) 

π256
15
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15. Find the volume of the solid generated by revolving the region between the x-axis and the parabola y = 4x - x2 
about the line y = 6.

Ans. 
π1408

15

16. Find the volume of the torus (doughnut) generated by revolving the circle (x - a)2 + y2 = b2 about the y-axis, 
where 0 < b < a.

Ans. 2p2ab2

17. Consider the region  bounded by y = -x2 - 3x + 6 and x + y = 3. Find the volume of the solid generated by 
revolving  about: 

(a) the x-axis; (b) the line x = 3.

Ans. (a) 
π1792

15
; (b) 

π256
3

In Problems 18–26, find the volume generated when the given region is revolved about the given line. Use the disk 
formula.

18. The region bounded by y = 2x2, y = 0, x = 0, x = 5, about the x-axis. 

Ans. 2500p

19. The region bounded by x2 - y2 = 16, y = 0, x = 8, about the x-axis.

Ans. 
π256

3

20. The region bounded by y = 4x2, x = 0, y = 16, about y = 16. (See Fig. 30-5.)

Ans. 
π4096

15

21. The region bounded by y2 = x3, y = 0, x = 2, about the x-axis. 

Ans. 4p

22. The region bounded by y = x3, y = 0, x = 2, about x = 2.

Ans. 
π16

5

23. The region within the curve y2 = x4(l - x2), about the x-axis.

Ans. 
π4

35

24. The region within the top half of the given ellipse 4x2 + 9y2 = 36, about the x-axis.

Ans. 16p

25. The region within the right half of the ellipse 4x2 + 9y2 = 36, about the y-axis.

Ans. 24p
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26. The region within the parabola x = 9 - y2 and between y = x - 7 and the y-axis, about the y-axis.

Ans. 
π963

5

In Problems 27–32, find the volume of the solid generated by revolving the given region about the given line. Use the 
washer formula.

27. The region bounded by y = 2x2, y = 0,  x = 0, x = 5, about the y-axis.

Ans. 625p

28. The region bounded by x2 - y2 = 16, y = 0, x = 8, about the y-axis.

Ans. π128 3

29. The region bounded by y = x3, x = 0, y = 8, about x = 2.

Ans. 
π144

5

30. The region bounded by y = x2, y = 4x - x2, about the x-axis.

Ans. 
π32

3

31. The region bounded by y = x2, y = 4x - x2, about y = 6.

Ans. 
π64

3

32. The region bounded by x = 9 - y2, y = x - 7, about x = 4.

Ans. 
π153

5

In Problems 33–37, find the volume of the solid generated by revolving the given region about the given line. Use the 
cylindrical shells formula.

33. The region bounded by y = 2x2, y = 0, x = 0, x = 5, about x = 6.

Ans. 375p 

34. The region bounded by y = x3, y = 0, x = 2, about y = 8.

Ans. 
π320

7

35. The region bounded by y = x2, y = 4x - x2, about x = 5.

Ans. 
π64

3

36. The region bounded by y = x2 - 5x + 6 and y = 0, about the y-axis.

Ans. 
π5
6
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37. The region bounded by x = 9 - y2, y = x - 7, x = 0, about y = 3.

Ans. 
π369

2

In Problems 38–42, find the volume generated by revolving the given region about the given line. Use any appropriate 
method.

38. The region bounded by = −y e x 2

, y = 0, x = 0, x = 1, about the y-axis. 

Ans. p (1 - e-1)

39. The region bounded by y = 2x2, y = 2x + 4, about x = 2.

Ans. 27p

40. The region bounded by y = 2x, y = 0, x = 0, x = 1, about the y-axis.

Ans. 
π4
3

41. The region bounded by y = x2, x = y2, about the x-axis.

Ans. 
π3

10

42. The region bounded by xy = 4, y = (x - 3)2, about the x-axis.

Ans. 
π27

5

43. Find the volume of the frustum of a cone whose lower base is of radius R, upper base is of radius r, and  
altitude is h.

Ans. π + +h r rR R
1
3

( )2 2  

44. A solid has a circular base of radius 4 units. Find the volume of the solid if every plane perpendicular to a fixed 
diameter (the x-axis of Fig. 30-18) is: (a) a semicircle; (b) a square; (c) an isosceles right triangle with the 
hypotenuse in the plane of the base.

Ans. (a) 
π128

3
;  (b) 

1024
3

;  (c) 
256

3

45. A solid has a base in the form of an ellipse with major axis 10 and minor axis 8. Find its volume if every section 
perpendicular to the major axis is an isosceles right triangle with one leg in the plane of the base.

Ans. 
640

3

46. The base of a solid is the first-quadrant region bounded by the line 4x + 5y = 20 and the coordinate axes. Find its 
volume if every plane section perpendicular to the x-axis is a semicircle.

Ans. 
π10

3

47. The base of a solid is the circle x2 + y2 = 16x, and every plane section perpendicular to the x-axis is a rectangle 
whose height is twice the distance of the plane of the section from the origin. Find its volume.

Ans. 1024p
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48. The section of a certain solid cut by any plane perpendicular to the x-axis is a circle with the ends of a diameter 
lying on the parabolas y2 = 4x and x2 = 4y. Find its volume.

Ans. 
π6561

280

49. The section of a certain solid cut by any plane perpendicular to the x-axis is a square with the ends of a diagonal 
lying on the parabolas y2 = 4x and x2 = 4y. Find its volume.

Ans. 
144
35

50. A hole of radius 1 unit is bored through a sphere of radius 3 units, the axis of the hole being a diameter of the 
sphere. Find the volume of the remaining part of the sphere.

Ans. 
π64 2
3
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CHAPTER 31

Techniques of Integration I:  
Integration by Parts

If u and v are functions, the product rule yields

 D uv uv vu( )x = ′ + ′  

which can be rewritten in terms of antiderivatives as follows:

 uv uv dx vu dx∫ ∫= ′ + ′  

Now uv dx∫ ′  can be written as u dv∫ , and vu dx∫ ′  can be written as v du∫ .† Thus, uv u dv v du∫ ∫= +  and 
therefore,

 u dv uv v du∫ ∫= −  (integration by parts)

The purpose of integration by parts is to replace a “difficult” integration u dv∫  by an “easy” integration v du∫ .

EXAMPLE 31.1: Find x x dxln∫ .

In order to use the integration by parts formula, we must divide the integrand x ln x dx into two “parts” u and dv 
so that we can easily find v by an integration and also easily find v du∫ . In this example, let u = ln x and dv = x dx. 

Then we can set v x1
2

2=  and note that du
x

dx
1= . So, the integration by parts formula yields:

 

x x dx u dv uv v du x x x
x

dx

x x x dx x x x C

x x C

ln (ln )( )
1

ln ln

(2ln 1)

1
2

2 1
2

2

1
2

2 1
2

1
2

2 1
4

2

1
4

2

∫ ∫ ∫∫

∫

= = − = − 





= − = − +

= − +

 

Integration by parts can be made easier to apply by setting up a rectangle such as the following one for 
Example 1.

 
u x dv x dx

du
x

dx v x

ln
1 1

2
2

= =

= =
 

†
uv dx u dv∫ ∫′ = , where, after the integration on the right, the variable v is replaced by the corresponding function of x. In fact, by 

the Chain Rule, D u dv D u dv D v u vx v x∫ ∫( ) ( )= ⋅ = ⋅ ′. Hence, u dv uv dx∫∫ = ′ . Similarly, v du vu dx∫ ∫= ′ .
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In the first row, we place u and dv. In the second row, we place the results of computing du and v. The 
desired result of the integration parts formula uv v du∫−  can be obtained by first multiplying the upper-left 
corner u by the lower-right corner v, and then subtracting the integral of the product v du of the two entries 
v and du in the second row.

EXAMPLE 31.2:  Find xe dxx∫ .

Let u = x and dv = ex dx. We can picture this in the box below.

 
u x dv e dx

du dx v e

x

x
= =
= =  

Then xe dx uv v du xe e dx xe e C

e x C( 1)

x x x x x

x

∫ ∫ ∫= − = − = − +

= − +

 

EXAMPLE 31.3: Find e x dxcosx∫ .

Let u = ex and dv = cos x dx. Then we get the box

 
u e dv x dx

du e dx v x
cos
sin

x

x

= =
= =  

So, e x dx uv v du e x e x dxcos sin sinx x x∫ ∫ ∫= − = −   (1)

Now we have the problem of finding e x dxsinx∫ , which seems to be just as hard as the original integral e x dxcosx∫ . 

However, let us try to find e x dxsinx∫  by another integration by parts. This time, let u = ex and dv = sin x dx.

 
u e dv x dx

du e dx v x
sin

cos

x

x

= =
= = −  

Then e x dx e x e x dx

e x e x dx

sin cos cos

cos cos

x x x

x x

∫ ∫

∫

= − − −

= − +

 

Substituting in formula (1) above, we get:

 
e x dx e x e x e x dx

e x e x e x dx

cos sin cos cos

sin cos cos

x x x x

x x x

∫ ∫

∫

( )= − − +

= + −
 

Adding e x dxcosx∫  to both sides yields e x dx e x e x2 cos sin cosx x x∫ = + . So,

 e x dx e x e xcos ( sin cos )x x x1
2∫ = +  

We must add an arbitrary constant:

 e x dx e x e x Ccos ( sin cos )x x x1
2∫ = + +  

Notice that this example required an iterated application of integration by parts.
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SOLVED PROBLEMS

 1. Find x e dxx3 2∫ .
Let u = x2 and dv xe dxx2= . Note that v can be evaluated by using the substitution w = x2. (We get 

v e dw e ew w x1
2

1
2

1
2

2∫= = = .)

 
u x dv xe dx

du x dx v e2

x

x

2

1
2

2

2

= =
= =  

Hence,

 

x e dx x e xe dx

x e e C

e x C( 1)

x x x

x x

x

3 1
2

2

1
2

2 1
2

1
2

2

2 2 2

2 2

2

∫ ∫= −

= − +

= − +

 

 2. Find x dxln( 2)2∫ + .
Let u = ln (x2 + 2) and dv = dx.

 

u x dv dx

du
x

x
dx v x

ln( 2)
2

2

2

2

= + =

= + =  

So,

 

x dx x x
x

x
dx

x x
x

dx

x x x
x

C

x x
x

C

ln( 2) ln( 2) 2
2

ln( 2) 2 1
2

2

ln( 2) 2
4

2
tan

2

(ln( 2) 2) 2 2 tan
2

2 2
2

2

2
2

2 1

2 1

∫ ∫

∫

+ = + − +

= + − − +






= + − + 





+

= + − + 





+

−

−

 

 3. Find x dxln∫ .
Let u = ln x and dv = dx.

 
u x dv dx

du
x

dx v x

ln
1

= =

= =  

So,
 

x dx x x dx x x x C

x x C

ln ln 1 ln

(ln 1)

∫ ∫= − = − +

= − +
 

 4. Find x x dxsin∫ .
We have three choices: (a) u = x sin x, dv = dx; (b) u = sin x, dv = x dx; (c) u = x, dv = sin x dx.

(a) Let u = x sin x, dv = dx. Then du = (sin x + x cos x) dx, v = x, and

 x x dx x x x x x x x dxsin sin (sin cos )∫ ∫= ⋅ − +  

 The resulting integral is not as simple as the original, and this choice is discarded.
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(b) Let u = sin x, dv = x dx. Then du = cos x dx, v x1
2

2= , and

 x x dx x x x x dxsin sin cos1
2

2 1
2

2∫ ∫= −  

The resulting integral is not as simple as the original, and this choice too is discarded.

(c) Let u = x, dv = sin x dx. Then du = dx, v = - cos x, and

 x x dx x x x dx x x x Csin cos cos cos sin∫ ∫= − − − = − + +  

 5. Find x x dxln2∫ .
Let u = ln x, dv = x2 dx. Then du

dx
x

= , v
x
3

3

= , and

 x x dx
x

x
x dx

x
x

x x dx
x

x x Cln
3

ln
3 3

ln
3

ln2
3 3 3

1
3

2
3

1
9

3∫ ∫∫= − = − = − +  

 6. Find x dxsin 1∫ − .
Let u = sin-1  x, dv = dx.

 

u x dv dx

du
x

dx v x

sin
1

1

1

2

= =

=
−

=

−

 

So,

 

x dx x x
x

x
dx

x x x x dx

sin sin
1

sin (1 ) ( 2 )

1 1
2

1 1
2

2 1/2

∫ ∫

∫

= −
−

= + − −

− −

− −  

  x x x Csin (2(1 ) )1 1
2

2 1/2= + − +−   (by Quick Formula I)

 x x x C x x x Csin (1 ) sin 11 2 1/2 1 2= + − + = + − +− −  

 7. Find x dxtan 1∫ − .
Let u = tan-1x, dv = dx.

 

u x dv dx

du
x

dx v x

tan
1

1

1

2

= =

= + =

−

 

So, x dx x x
x
x

dx x x
x
x

dxtan tan
1

tan
2

1
1 1

2
1 1

2 2∫ ∫ ∫= − + = − +
− − −  

  x x x Ctan ln(1 )1 1
2

2= − + +−   (by Quick Formula II)

 8. Find x dxsec3∫ .
Let u = sec x, dv = sec2x dx.

 
u x dv x dx

du x x dx v x
sec sec
sec tan tan

2= =
= =  
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Thus,

 

x dx x x x x dx

x x x x dx

x x x dx x dx

x x x dx x x

sec sec tan sec tan

sec tan sec (sec 1)

sec tan sec sec

sec tan sec ln |sec tan |

3 2

2

3

3

∫ ∫

∫

∫ ∫

∫

= −

= − −

= − +

= − + +

 

Then x dx x x x x2 sec sec tan ln |sec tan |3∫ = + +  

Hence, x dx x x x x Csec (sec tan ln |sec tan |)3 1
2∫ = + + +  

 9. Find x x dxsin2∫ .
Let u = x2, dv = sin x dx. Thus, du = 2x dx and v = - cos x. Then

 
x x dx x x x x dx

x x x x dx

sin cos 2 cos

cos 2 cos

2 2

2

∫ ∫

∫

= − − −

= − +
 

Now apply integration by parts to x x dxcos∫ , with u = x and dv = cos x dx, getting

 x x x x x dx x x xcos sin sin sin cos∫ ∫= − = +  

Hence, x x dx x x x x x Csin cos 2( sin cos )2 2∫ = − + + +  

10. Find x e dxx3 2∫ .
Let u = x3, dv = e2x dx. Then du = 3x2 dx, v e x1

2
2= , and

 x e dx x e x e dxx x x3 2 1
2

3 2 3
2

2 2∫ ∫= −  

For the resulting integral, let u = x2 and dv = e2x dx. Then du = 2x dx, v e x1
2

2= , and

 x e dx x e x e xe dx x e x e xe dxx x x x x x x3 2 1
2

3 2 3
2

1
2

2 2 2 1
2

2 2 3
4

2 2 3
2

2∫ ∫ ∫( )= − − = − +  

For the resulting integral, let u = x and dv = e2x dx. Then du = dx, v e x1
2

2= , and

 x e dx x e x e xe e dx x e x e xe e Cx x x x x x x x x3 2 1
2

3 2 3
4

2 2 3
2

1
2

2 1
2

2 1
2

3 2 3
4

2 2 3
4

2 3
8

2∫ ∫( )= − + − = − + − +  

11. Derive the following reduction formula for x dxsinm∫ .

 x dx
x x

m
m

m
x dxsin

sin cos 1
sinm

m
m

1
2∫ ∫= − + −−

−  

Let u = sinm-1 x and dv = sin x dx.

 
u x dv x dx

du m x dx v x
sin sin
( 1)sin cos

m

m

1

2

= =
= − = −

−

−  
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Then,

 

x dx x x m x x dx

x x m x x dx

x x m x dx m x dx

sin cos sin ( 1) sin cos

cos sin ( 1) sin (1 sin )

cos sin ( 1) sin ( 1) sin

m m m

m m

m m m

1 2 2

1 2 2

1 2

∫ ∫

∫

∫∫

= − + −

= − + − −

= − + − − −

− −

− −

− −

 

Hence, m x dx x x m x dxsin cos sin ( 1) sinm m m1 2∫ ∫= − + −− −  

and division by m yields the required formula.

12. Apply the reduction formula of Problem 11 to find x dxsin2∫ .
When m = 2, we get

 

x dx
x x

x dx

x x
dx

x x x
C

x x x
C

sin
sin cos

2
sin

sin cos
2

1

sin cos
2 2

sin cos
2

2 1
2

0

1
2

∫ ∫

∫

= − +

= − +

= − + + =
−

+

 

13. Apply the reduction formula of Problem 11 to find x dxsin3∫ .
When m = 3, we get

 

x dx
x x

x dx

x x
x C

x
x C

sin
sin cos

3
sin

sin cos
3

cos

cos
3

(2 sin )

3
2

2
3

2
2
3

2

∫ ∫= − +

= − − +

= − + +

 

SUPPLEMENTARY PROBLEMS

In Problems 14 –21, use integration by parts to verify the specified formulas.

14. x x dx x x x Ccos sin cos∫ = + +  

15. x x dx x x x Csec 3 tan3 ln |sec |2 1
3

1
9∫ = − +  

16. x dx x x x Ccos 2 cos 2 1 41 1 1
2

2∫ = − − +− −  

17. x x dx x x x Ctan ( 1) tan1 1
2

2 1 1
2∫ = + − +− −  

18. x e dx e x x C( )x x2 3 1
3

3 2 2
3

2
9∫ = − + + +− −  

19. x x dx x x x x x x x Csin cos 3 sin 6 cos 6sin3 3 2∫ = − + + − +  
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20. x x dx x x x Csin ( ) sin ( ) 11 2 1
2

2 1 2 1
2

4∫ = + − +− −  

21. 
x

x
dx

x
x

C
ln ln 1

2∫ = − + +  

22. Show that x nx dx
n

sin
2

0

2

∫
π= −

π
 for any positive integer n.

23. Prove the following reduction formula: x dx
x x
n

n
n

x dxsec
tan sec

1
2
1

secn
n

n
2

2∫ ∫= − + −
−

−
− .

24. Apply Problem 23 to find x dxsec4∫ .

Ans. x x Ctan (sec 2)1
3

2 + +  

25. Prove the reduction formula:

 
x

a x
dx

n
x

a x
dx

a x( )
1

2 2 ( ) ( )n n n

2

2 2 2 2 1 2 2 1∫ ∫+ = − − + + +




− −  

26. Apply Problem 25 to find 
x

a x
dx

( )

2

2 2 2∫ + .

Ans. x
a x a

x
a

C
1
2

1
tan2 2

1− + +



 +−  

27. Prove x x dx
x

n
n x C nln

( 1)
[( 1) ln 1)] for 1n

n 1

2∫ = + + − + ≠ −
+

.

28. Prove the reduction formula: x e dx
a

x e
n
a

x e dx
1n ax n ax n ax1∫ ∫= − − .

29. Use Problem 28 and Example 2 to show that: x e dx e x x C( 2 2)x x2 2∫ = − + + .
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283

CHAPTER 32

Techniques of Integration II: 
Trigonometric Integrands and 

Trigonometric Substitutions

EXAMPLE 32.1: x x dxsin cos3 2∫ .

Let u = cos x. Then du = -sin x dx. Hence,

 

x x dx x x x dx

x x x dx

u u du u u du

u u C x x C

sin cos sin cos sin

(1 cos )cos sin

(1 ) ( )

cos cos

3 2 2 2

2 2

2 2 4 2

1
5

5 1
3

3 1
5

5 1
3

3

∫ ∫

∫

∫∫

=

= −

= − − = −

= − + = − +

EXAMPLE 32.2: x x dxsin cos4 7∫ .

Let u = sin x. Then du = cos x dx, and

 

∫ ∫

∫ ∫

∫

=

= − = − + −

= − + −

= − + − +

= − + − +

x x dx x x x dx

u u du u u u u du

u u u u du

u u u u C

x x x x C

sin cos sin cos cos

(1 ) (1 3 3 )

( 3 3 )

sin sin sin sin

4 7 4 6

4 2 3 4 2 4 6

4 6 8 10

1
5

5 3
7

7 1
3

9 1
11

11

1
5

5 3
7

7 1
3

9 1
11

11

EXAMPLE 32.3: x dxsin5∫ .

Let u = cos x. Then du = -sin x dx and

TRIGONOMETRIC INTEGRANDS

1. Let us consider integrals of the form x x dxsin cosk n∫ , where k and n are nonnegative integers.

 Type 1. At least one of sin x and cos x occurs to an odd power: Then a substitution for the other function 
works.
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x dx x x dx x x dx

u du u u du

u u u C

x x x C

sin sin sin (1 cos ) sin

(1 ) (1 2 )

( )

cos cos cos

5 4 2 2

2 2 2 4

2
3

3 1
5

5

1
5

5 2
3

3

∫ ∫ ∫

∫∫

= = −

= − − = − − +

= − − + +

= − + − +

Type 2. Both powers of sin x and cos x are even: this always involves a more tedious computation, using 
the identities

 x
x

cos
1 cos2

2
2 = +

    and    x
x

sin
1 cos2

2
2 = −

EXAMPLE 32.4:

 

x x dx x x dx

x x
dx

x x x
dx

x x x x x dx

x x x x x dx

x x x dx

dx x dx x dx x dx

x
x x

dx x x dx

x
x

x
x

x dx u du u x

x
x x x x x

C

x x x
C

x x x
C

cos sin (cos )(sin )

1 cos 2
2

1 cos 2
2

1 cos 2
2

1 2cos 2 cos 2
4

1
8

(1(1 2cos 2 cos 2 ) (cos 2 )(1 2cos 2 cos 2 ))

1
8

(1 2cos 2 cos 2 cos 2 2cos 2 cos 2 )

1
8

(1 cos 2 cos 2 cos 2 )

1
8

1 cos 2 cos 2 cos 2

1
8

sin 2
2

1 cos 4
2

(cos 2 )(1 sin 2 )

1
8

sin 2
2

1
2

sin 4
4

cos 2
1
2

[letting sin 2 ]

1
8

sin 2
2 2

sin 4
8

sin 2
2

1
2

sin 2
3

1
8 2

sin 4
8

sin 2
6

16
sin 4

64
sin 2

48

2 4 2 2 2

2

2

2 2

2 2 3

2 3

2 3

2

2

3

3

3

∫ ∫

∫

∫

∫

∫

∫

∫ ∫ ∫ ∫

∫ ∫

∫ ∫

( )

=

= +





−





= +





− +





= − + + − +

= − + + − +

= − − +

= − − +

= − − + + −





= − − +



 + −





=

= − − − + −





+

= − −





+

= − − +

2. Let us consider integrals of the form x x dxtan seck n∫ , where k and n are nonnegative integers. Recall 
that sec2 x = 1 + tan2 x.

 Type 1. n is even: substitute u = tan x.

EXAMPLE 32.5: x x dxtan sec2 4∫  

Let u = tan x, du = sec2 x dx. So,

 
x x dx x x x dx u u du

u u du u u C x x C

tan sec tan (1 tan )sec (1 )

( ) tan tan

2 4 2 2 2 2 2

4 2 1
5

5 1
3

3 1
5

5 1
3

3

∫ ∫ ∫

∫

= + = +

= + = + + = + +
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Type 2. n is odd and k is odd: substitute u = sec x.

EXAMPLE 32.6: x x dxtan sec3∫  

Let u = sec x, du = sec x tan x dx. So,

 
x x dx x x x dx x x x dx

u du u u C x x C

tan sec tan sec tan (sec 1)sec tan

( 1) sec sec

3 2 2

2 1
3

3 1
3

3

∫ ∫ ∫

∫

= = −

= − = − + = − +
 

Type 3. n is odd and k is even:  This case usually requires a tedious calculation.

EXAMPLE 32.7:

 

x x dx x x dx x x dx

x x x x x x C

x x x x C

tan sec (sec 1)sec (sec sec )

1
2

(sec tan ln |sec tan |) ln |sec tan | (by Problem 8 of Chapter 31)

(sec tan ln |sec tan |)

2 2 3

1
2

∫ ∫ ∫= − = −

= + + − + +

= − + +

 

3. Let us consider integrals of the form Ax Bx dxsin cos∫ , Ax Bx dxsin sin∫ , and Ax Bx dxcos cos∫ .  
We shall need the identities

 

Ax Bx A B x A B x

Ax Bx A B x A B x

Ax Bx A B x A B x

sin cos (sin( ) sin( ) )

sin sin (cos( ) cos( ) )

cos cos (cos( ) cos( ) )

1
2

1
2

1
2

= + + −

= − − +

= − + +

 

EXAMPLE 32.8:

 
x x dx x x dx x x dx

x x C x x C

sin 7 cos3 (sin(7 3) sin(7 3) ) (sin10 sin 4 )

( cos10 cos4 ) (2cos10 5cos4 )

1
2

1
2

1
2

1
10

1
4

1
40

∫ ∫ ∫= + + − = +

= − − + = − + +
 

EXAMPLE 32.9:

 
x x dx x x dx x x dx

x x C x x C

sin 7 sin3 (cos(7 3) cos(7 3) ) (cos4 cos10 )

( sin 4 sin10 ) (5sin 4 2sin10 )

1
2

1
2

1
2

1
4

1
10

1
40

∫ ∫ ∫= − − + = −

= − + = − +
 

EXAMPLE 32.10:

 
x x dx x x dx x x dx

x x C x x C

cos7 cos3 (cos(7 3) cos(7 3) ) (cos4 cos10 )

( sin 4 sin10 ) (5sin 4 2sin10 )

1
2

1
2

1
2

1
4

1
10

1
40

∫ ∫ ∫= − + + = +

= + + = + +
 

TRIGONOMETRIC SUBSTITUTIONS

There are three principal kinds of trigonometric substitutions. We shall introduce each one by means of a 
typical example.

EXAMPLE 32.11: Find dx

x x42 2∫ +
.

Let x = 2 tan q, that is, q = tan-1 (x/2). Then

 dx d2sec2 θ θ=   and  x4 4 4 tan 2 1 tan 2 sec 2 |sec |2 2 2 2θ θ θ θ+ = + = + = =  
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By definition of the inverse tangent, -π/2 < q < π/2. So, cos q > 0 and therefore, sec q > 0. Thus, 

xsec |sec | 4 /22θ θ= = + . Hence,

 

dx

z x

d

d d
d

C C

4

2sec
4 tan (2sec )

1
4

sec
tan

1
4

cos
sin

1
4

(sin ) cos

( (sin ) )
1

4sin

2 2

2

2

2 2
2

1
4

1

∫∫

∫ ∫ ∫

θ θ
θ θ

θ θ
θ

θ θ
θ θ θ θ

θ θ

+
=

= = =

= − + = − +

−

−

 

Now we must evaluate sin q.

Analytic method:  
x

x

x

x
sin

tan
sec

/2

4 /2 42 2
θ θ

θ= =
+

=
+

.

Geometric method:  Draw the right triangle shown in Fig. 32-1. From this triangle we see that x xsin / 4 2θ = + . 
(Note that it follows also for q < 0.)

Hence,   
dx

x x

x
x

C
4

4
42 2

2

∫ +
= − + +

Fig. 32-1

This example illustrates the following general rule:

Strategy I. If  a x2 2+  occurs in an integrand, try the substitution x = a tan q.

EXAMPLE 32.12: Find dx

x x92 2∫ −
.

Let x = 3 sin q, that is, q = sin-1 (x/3). Then dx = 3 cos q dq and

 x9 9 9sin 3 sin 3 cos 3|cos |2 2 2 2θ θ θ θ− = − = = =  

By definition of the inverse sine, -π/2 < q < π/2 and therefore, cos q > 0. Thus, xcos |cos | 9 /32θ θ= = − . Now

 

dx

x x

d
d

C C
x

x
C

x
x

C

9

3cos
9sin (3cos )

1
9

csc

1
9

cot
1
9

cos
sin

1
9

9 /3
/3

1
9

9

2 2 2
2

2 2

∫ ∫ ∫
θ θ

θ θ θ θ

θ θ
θ

−
= =

= − + = − + = − − + = − − +

This example illustrates the following general method:

Strategy II. If a x2 2−  occurs in an integrand, try the substitution x = a sin q.
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EXAMPLE 32.13: Find 
x

x
dx

4

2

2∫ −
. 

Let x = 2 sec q, that is, q = sec-1 (x/2). Then dx = 2 sec q dq and

 x 4 4sec 4 2 sec 1 2 tan 2|tan |2 2 2 2θ θ θ θ− = − = − = =  

By definition of the inverse secant, q is in the first or third quadrant and therefore, tan q > 0. So, 
xtan |tan | 4 /22θ θ= = − . Now

 

x

x
dx d

d C

x x x x
C

x x x x
C

x x
x x K K C

4

4sec (2sec tan )
2 tan

4 sec 2(sec tan ln sec tan ) (by Problem 8 of Chapter 31)

2
2

4
2

ln
2

4
2

4
2

2 ln
4

2

4
2

2 ln 4 where 2 ln 2

2

2

2

3

2 2

2 2

2
2

∫ ∫

∫

θ θ θ
θ θ

θ θ θ θ θ θ

−
=

= = + | + | +

= − + + −







 +

= − + + − +

= − + + − + = −

 

This example illustrates the following general method:

Strategy III. If x a2 2−  occurs in an integrand, try the substitution x = a sec q.

SOLVED PROBLEMS

In Problems 1–23, verify the given solutions. Recall the identities

 u u u u x x xsin (1 cos2 ) cos (1 cos2 ) sin 2 2sin cos2 1
2

2 1
2= − + =  

 1. x dx x dx x x C x x x Csin (1 cos 2 ) ( sin 2 ) ( sin cos )2 1
2

1
2

1
2

1
2∫ ∫= − = − + = − + .

 2. x dx x dx x x Ccos (3 ) (1 cos 6 ) ( sin 6 )2 1
2

1
2

1
6∫∫ = + = + + .

 3. x dx x x dx x x dx

x dx x x dx

x x C

sin sin sin (1 cos )sin

sin cos ( sin )

cos cos (by Quick Formula I)

3 2 2

2

1
3

3

∫ ∫ ∫

∫ ∫

= = −

= + −

= − + +

 

 4. x x dx x x x dx

x x x dx

x x dx x x dx

x x C

sin cos sin cos cos

sin (1 sin )cos

sin cos sin cos

sin sin (by Quick Formula I)

2 3 2 2

2 2

2 4

1
3

3 1
5

5

∫ ∫

∫

∫ ∫

=

= −

= −

= − +
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 5. x x dx x x x dx

x x dx x x dx

x x dx x x dx

x x C

x x C

sin (3 )cos (3 ) (1 cos (3 )) cos (3 )sin (3 )

cos (3 )sin (3 ) cos (3 )sin3

1
3

cos (3 )( 3sin (3 ))
1
3

cos (3 )( 3sin (3 ))

cos (3 ) cos (3 ) (by Quick Formula I)

(3cos (3 ) 4 cos (3 ))

3 5 2 5

5 7

5 7

1
3

1
6

6 1
3

1
8

8

1
72

8 6

∫ ∫

∫ ∫

∫ ∫

= −

= −

= − − + −

= − + +

= − +

 

 6. x
dx

x x
dx

x x
dx

x
dx

x x
dx

x x x
dx

x x
C

x x
C

cos
3

1 sin
3

cos
3

1 sin
3

cos
3

cos
3

sin
3

cos
3

3sin
3

3 sin
3

1
3

cos
3

3sin
3

3 sin
3

(by Quick Formula I)

3sin
3

sin
3

3 2

2 2

2

1
3

3

3

∫ ∫

∫ ∫ ∫

∫





 = − 











= − 











= − 





= − 











= − 



 +

= − 



 +

 

 7. x dx x dx x dx

dx x dx x dx

x x x dx

x x x x C

x x x C

sin (sin )
1
4

(1 cos(2 ))

1
4

1
1
2

cos(2 )
1
4

cos (2 )

1
4

1
4

sin (2 )
1
8

(1 cos 4 ))

sin (2 ) ( sin (4 ))

sin (2 ) sin (4 )

4 2 2 2

2

1
4

1
4

1
8

1
4

3
8

1
4

1
32

∫ ∫ ∫

∫ ∫ ∫

∫

= = −

= − +

= − + +

= − + + +

= − + +

 

 8. x x dx x dx x dx

x x C x x C

sin cos
1
4

sin (2 )
1
8

(1 cos(4 ))

( sin (4 )) sin (4 )

2 2 2

1
8

1
4

1
8

1
32

∫ ∫ ∫= = −

= − + = − +

 

 9. x x dx x x x dx

x x dx

x dx x x dx

x dx x x dx

x x x C

x x x C

sin (3 )cos (3 ) (sin (3 )cos (3 ))sin (3 )

1
8

sin (6 )(1 cos(6 ))

1
8

sin (6 )
1
8

sin (6 )cos(6 )

1
16

(1 cos(12 ))
1
48

sin (6 )(6cos(6 ))

( sin (12 )) sin (6 ) (by Quick Formula I)

sin (12 )) sin (6 )

4 2 2 2 2

2

2 2

2

1
16

1
12

1
144

3

1
16

1
192

1
144

3

∫ ∫

∫

∫ ∫

∫ ∫

=

= −

= −

= − −

= − − +

= − − +

 

10. x x dx x x x x dx

x x dx x x C

x x C

sin3 sin 2 (cos(3 2 ) cos(3 2 ))

(cos cos5 )) (sin sin5 )

sin sin5

1
2

1
2

1
2

1
5

1
2

1
10

∫ ∫

∫

= − − +

= − = − +

= − +
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11. x x dx x x x x dx

x x dx x x dx

x x C x x C

sin3 cos5 (sin (3 5 ) sin (3 5 ))

1
2

(sin ( 2 ) sin (8 ))
1
2

( sin (2 ) sin (8 ))

( cos(2 ) cos(8 )) cos(2 ) cos(8 )

1
2

1
2

1
2

1
8

1
4

1
16

∫ ∫

∫ ∫

= − + +

= − + = − +

= − + = − +

 

12. x x dx x x dx

x x C x x C

cos4 cos2
1
2

(cos(2 ) cos(6 ))

( sin(2 ) sin(6 )) sin(2 ) sin(6 )1
2

1
2

1
6

1
4

1
12

∫ ∫= +

= + + = + +

 

13. x dx
x

dx
x x

x
C

x
C

1 cos 2 sin
2

by sin
2

1 cos
2

2 2cos
2

2 2 cos
2

2∫ ∫− = 









 = −





= − 











+ = − 



 +

 

14. x dx
x

dx
x x

x x
dx

x
dx

x x
dx

x x x
dx

x x
C

x x
C

(1 cos3 ) 2 2 cos
3
2

since cos
3
2

1 cos(3 )
2

2 2 1 sin
3
2

cos
3
2

2 2 cos
3
2

sin
3
2

cos
3
2

2 2
2
3

sin
3
2

2
3

sin
3
2

3
2

cos
3
2

2 2
2
3

sin
3
2

2
3

1
3

sin
3
2

4 2
9

3sin
3
2

sin
3
2

3/2 3 2

2

2

2

3

3

∫ ∫

∫

∫∫

∫

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )

+ = =
+

= −





= −





= − 











= −





+

= −





+

15. dx

x

dx

x

dx

x
x

x

x dx x x C

1 sin 2
1 cos

2
2

2
2

sin
4

since sin
4

1 cos
2

2

2

2
2

csc
4

2
2

ln csc
4

cot
4

2

∫ ∫

∫

∫

π

π π
π

π π π

−
=

− −





=
−





−



 =

− −

















= −



 = − −



 − −



 +

 

16. x dx x x dx x x dx

x x dx x dx

x x dx

x x x C

x x x C

tan tan tan tan (sec 1)

tan sec tan

tan (sec 1) (by Quick Formula I)

tan (tan )

tan tan

4 2 2 2 2

2 2 2

1
3

3 2

1
3

3

1
3

3

∫ ∫ ∫

∫ ∫

∫

= = −

= −

= − −

= − − +

= − + +
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17. x dx x x dx x x dx

x x dx dx

x x x dx

x x x dx x dx

x x x C

tan tan tan tan (sec 1)

tan sec tan

tan tan (sec 1) (by Quick Formula I)

tan tan sec tan

tan tan ln |sec | (by Quick Formula I)

5 3 2 3 2

3 2 3

1
4

4 2

1
4

4 2

1
4

4 1
2

2

∫ ∫∫

∫∫

∫

∫ ∫

= = −

= −

= − −

= − +

= − + +

 

18. x dx x x dx

x x dx

x dx x x dx

x x x dx

x x C

x x C

sec (2 ) sec (2 )sec (2 )

sec (2 )(1 tan (2 ))

sec (2 ) sec (2 ) tan (2 ))

tan(2 ) tan (2 )(2sec (2 ))

tan(2 ) tan (2 ) (by Quick Formula I)

tan(2 ) tan (2 )

4 2 2

2 2

2 2 2

1
2

1
2

2 2

1
2

1
2

1
3

3

1
2

1
6

3

∫ ∫

∫

∫ ∫

∫

=

= +

= +

= +

= + +

= + +

 

19. x x dx x x x dx

x x dx x x dx

x x C

x x C

tan (3 )sec (3 ) tan (3 )(1 tan (3 ))sec (3 )

tan (3 )sec (3 ) tan (3 )sec (3 )

tan (3 ) tan (3 )

tan (3 ) tan (3 )

3 4 3 2 2

3 2 5 2

11
34

4 11
36

6

1
12

4 1
18

6

∫ ∫

∫ ∫

= +

= +

= + +

= + +

 

20. x dx x x dx

x x C

cot (2 ) cot(2 )(csc (2 ) 1)

cot (2 ) ln |csc(2 )|

3 2

1
4

2 1
2

∫ ∫= −

= − + +

 

21. x dx x x dx

x x dx x dx

x x dx

x x x C

cot (3 ) cot (3 )(csc (3 ) 1)

cot (3 )csc (3 ) cot (3 )

cot (3 ) (csc (3 ) 1)

cot (3 ) cot(3 )

4 3 2

2 2 2

1
9

3 2

1
9

3 1
3

∫ ∫
∫ ∫

∫

= −

= −

= − − −

= − + + +

 

22. x dx x x dx

x dx x x dx x x dx

x x x C

csc csc (1 cot )

csc 2 cot csc cot csc

cot cot cot

6 2 2 2

2 2 2 4 2

2
3

3 1
5

5

∫ ∫
∫ ∫ ∫

= +

= + +

= − − − +

 

23. x x dx x x x dx

x x x x dx

x x x dx x x x dx

x x C

cot csc cot csc csc cot

(csc 1)csc csc cot

csc csc cot csc csc cot

csc csc

3 5 2 4

2 4

6 4

1
7

7 1
5

5

∫ ∫
∫

∫ ∫

=

= −

= −

= − + +
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24. Find x
x

dx
9 4 2

∫
− .

x x9 4 22 9
4

2− = − . So, let x sin3
2 θ= . Then

 dx dcos3
2 θ θ=   and  x9 4 9 9sin 3 cos 3|cos | 3cos2 2 2θ θ θ θ− = − = = =  

Hence,

 

x
x

dx
d

d d

d C

9 4 3cos ( cos )
sin

3
cos
sin

3
1 sin

sin

3 (csc sin ) 3 ln|csc cot | 3cos

2 3
2

3
2

2 2

∫ ∫ ∫∫

∫

θ θ θ
θ

θ
θ θ θ

θ θ

θ θ θ θ θ θ

− = = = −

= − = − + +

 

But

 
x

csc
1

sin
3

2
θ θ= =   and  

x
x

x
x

cot
cos
sin

9 4 /3
2 /3

9 4
2

2 2

θ θ
θ= = − = −

 

So,

 
x

x
dx

x
x

x K
9 4

3ln
3 9 4

9 4
2 2

2∫
− = − − + − +   where  K C 3ln 2= −  

25. Find  
dx

x x9 4 2∫ −
.

 Let x tan3
2 θ= . (See Fig. 32-2.) Then dx sec3

2
2 θ=  and x9 4 3sec2 θ− = . Hence,

dx

x x

d

d C

x
x

K

9 4

sec
( tan )(3sec )

1
3

csc ln |csc cot |

ln
9 4 3

2

3
2

2

3
2

1
3

1
3

2

∫ ∫

∫

θ θ
θ θ

θ θ θ θ

+
=

= = − +

= + − +

 

Fig. 32-2

26. Find 
x

x
dx

(16 9 )2 3/2

6∫
−

.

Let x sin4
3 θ= . (See Fig. 32-3.) Then dx dcos4

3 θ θ=  and x16 9 4 cos2 θ− = . Hence,

x
x

dx
d

d C

x
x

C
x

x
C

(16 9 ) (64 cos )( cos )
4096
729

sin

243
16

cot csc
243
80

cot

243
80

(16 9 )
243

1
80

(16 9 )

2 3/2

6

3 4
3

6

4 2 5

2 5/2

5

2 5/2

5

∫ ∫

∫

θ θ θ

θ

θ θ θ θ

− =

= = − +

= − − + = − − +
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Fig. 32-3

27. Find 
x dx

x x

x dx

x2 1 ( 1)

2

2

2

2∫ ∫−
=

− −
.

 Let x -1 = sin q. (See Fig. 32-4.) Then dx = cos q dq and x x2 cos2 θ− = . Hence,

x dx

x x
d

d d

C

x x x x x x C

x x x x C

2

(1 sin )
cos

cos

(1 sin ) ( 2sin cos2 )

2cos sin 2

sin ( 1) 2 2 ( 1) 2

sin ( 1) ( 3) 2

2

2

2

2 3
2

1
2

3
2

1
4

3
2

1 2 1
2

2

3
2

1 1
2

2

∫ ∫

∫ ∫

θ
θ θ θ

θ θ θ θ θ

θ θ θ

−
= +

= + = + −

= − − +

= − − − − − − +

= − − + − +

−

−

 

Fig. 32-4

28. Find 
dx

x x
dx

x(4 24 27) (4( 3) 9)2 3/2 2 3/2∫ ∫− + = − − .

 Let x 3 sec3
2 θ− = . (See Fig. 32-5.) Then dx dsec tan3

2 θ θ θ=  and x x4 24 27 3tan2 θ− + = . So,

dx
x x

d
d

C
x

x x
C

(4 24 27)
sec tan

27 tan
1

18
csc cot

1
18

csc
1
9

3

4 24 27
(from Fig. 32-5)

2 3/2

3
2

3

2

∫ ∫ ∫
θ θ θ

θ θ θ θ

θ

− + = =

= − + = − −
− +

+
 

Fig. 32-5

SUPPLEMENTARY PROBLEMS

29. x dx x x Ccos sin 22 1
2

1
4∫ = + +  

30. x dx x x Csin 2 cos 2 cos 23 1
6

3 1
2∫ = − +  
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31. x dx x x x Csin 2 sin 4 sin 84 3
8

1
8

1
64∫ = − + +  

32. x dx x x x Ccos sin sin 24 1
2

3
8

1
2

1
16∫ = + + +  

33. x dx x x x x Csin cos cos cos cos7 1
7

7 3
5

5 3∫ = − + − +  

34. x dx x x x x Ccos sin sin 2 sin6 1
2

5
16

1
2

3
32

1
24

3∫ = + + − +  

35. x x dx x x x Csin cos sin sin sin2 5 1
3

3 2
5

5 1
7

7∫ = − + +  

36. x x dx x x Csin cos cos cos3 2 1
5

5 1
3

3∫ = − +  

37. x x dx x x Csin cos cos 2 cos 23 3 1
48

3 1
16∫ = − +  

38. x x dx x x x Csin cos (3 sin 4 sin 8 )4 4 1
128

1
8∫ = − + +  

39. x x dx x x Csin 2 cos 4 cos 2 cos 61
4

1
12∫ = − +  

40. x x dx x x Ccos 3 cos 2 sin sin 51
2

1
10∫ = + +  

41. x x dx x x Csin 5 sin sin 4 sin 61
8

1
12∫ = − +  

42. 
x dx

x
x x C

cos
1 sin

sin sin
3

1
2

2∫ − = + +  

43. 
x
x

dx x C
cos
sin

cot
2/3

8/3
3
5

5/3∫ = − +  

44. 
x
x

dx x x C
cos
sin

csc csc
3

4
1
3

3∫ = − +  

45. x x x dx x x x C(cos sin ) (sin cos )(4 sin 2 )3 2 3 2 1
12

2 2 2∫ − = + + +  

46. x dx x x Ctan tan ln|cos |3 1
2

2∫ = + +  

47. x x dx x x Ctan 3 sec 3 sec 3 sec 33 1
9

3 1
3∫ = − +  

48. x x dx x x Ctan sec tan tan3/2 4 2
5

5/2 2
9

9/2∫ = + +  

49. x x dx x x Ctan sec tan tan4 4 1
7

7 1
5

5∫ = + +  
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50. x dx x x Ccot cot ln|sin |3 1
2

2∫ = − − +  

51. x x dx x x Ccot csc cot cot3 4 1
4

4 1
6

6∫ = − − +  

52. x x dx x x Ccot csc csc csc3 3 1
5

5 1
3

3∫ = − + +  

53. x dx x x Ccsc 2 cot 2 cot 24 1
2

1
6

3∫ = − − +  

54. 
x
x

dx
x x

C
sec
tan

1
3 tan

1
tan

4

3∫ 



 = − − +  

55. 
x
x

dx x x C
cot
csc

sin csc
3

∫ = − − +  

56. x x dx x Ctan sec 2 sec∫ = +  

57. 
dx
x

x

x
C

(4 ) 4 4
2 3/2 2∫ − =

−
+  

58. 
x

x
dx

x
x

x C
25

5ln
5 25

25
2 2

2∫
− = − − + − +  

59. 
dx

x a x

a x
a x

C
2 2 2

2 2

2∫ −
= − − +  

60. x dx x x x x C4 4 2ln( 4 )2 1
2

2 2∫ + = + + + + +  

61. 
x dx

a x
x

a x

x
a

C
( )

sin
2

2 2 3/2 2 2
1∫ − =

−
− 



 +−  

62. x dx x x x x C4 4 2ln 42 1
2

2 2∫ − = − − + − +  

63. 
x a

x
dx x a

a a x a

a x a
C

2
ln

2 2
2 2

2 2

2 2∫
+ = + + + −

+ +
+  

64. 
x dx

x
x

x
C

(4 ) 12(4 )

2

2 5/2

3

2 3/2∫ − = − +  

65. 
dx

a x
x

a a x
C

( )2 2 3/2 2 2 2∫ + =
+

+  

66. 
dx

x x

x
x

C
9

9
92 2

2

∫ −
= − − +  

67. 
x dx

x
x x x x C

16

1
2

16 8ln 16
2

2
2 2∫ −

= − + + − +  

32_Mendelson_ch32_p283-296.indd   294 27/07/21   11:42 AM



295CHAPTER 32 Techniques of Integration II

68. x a x dx a x
a

a x C( )
3

( )3 2 2 1
5

2 2 5/2
2

2 2 3/2∫ − = − − − +  

69. 
dx

x x
x x x C

4 13
ln( 2 4 13)

2
2∫ − +

= − + − + +  

70. 
dx

x x
x

x x
C

(4 )
2

4 4
2 3/2 2∫ − = −

−
+  

71. 
dx

x
x x

x
C

(9 )
tan

3 18(9 )2 2
1

54
1

2∫ + = 



 + + +−  

In Problems 72 and 73, first apply integration by parts.

72. x x dx x x x x Csin (2 1)sin 11 1
4

2 1 1
4

2∫ = − + − +− −  

73. x x dx x x x x Ccos (2 1)cos 11 1
4

2 1 1
4

2∫ = − − − +− −
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CHAPTER 33

Techniques of Integration III: 
Integration by Partial Fractions

We shall give a general method for finding antiderivatives of the form 
N x
D x

dx
( )
( )

,∫  where N(x) and D(x) are 

polynomials. A function of the form 
N x
D x

( )
( )

 is called a rational function. [N(x) is the numerator and D(x) is 

the denominator.] As examples, consider

x
x

dx
1
83∫

−
+  and 

x x
x

dx
2

3

∫
−
+  

Two restrictions will be assumed, neither of which limits the applicability of our method: (i) the leading 
coefficient (the coefficient of the highest power of x) in D(x) is +1; (ii) N(x) is of lower degree than D(x). 
A quotient N(x)/D(x) that satisfies (ii) is called a proper rational function. Let us see that the restrictions (i) 
and (ii) are not essential.

EXAMPLE 33.1: Consider the case where 
N x
D x

( )
( )

 is 
x

x x
2

5 3 4

3

8 + − . Here, our first restriction is not satisfied. However, 
note that

 x
x x

dx
x

x x
dx

2
5 3 4

1
5

23

8

3

8 3
5

4
5

∫ ∫+ − = + −
 

The integral on the right side satisfies restrictions (i) and (ii).

EXAMPLE 33.2: Consider the case where 
N x
D x

( )
( )

 is 
x
x

2 7
3

5

2

+
+ . Here, our second restriction is not satisfied. But we 

can divide N(x) by D(x):

x
x

x x
x

x
2 7

3
2 6

18 7
3

5

2
3

2

+
+ = − + +

+

Hence,  
x
x

dx x x
x

x
dx

2 7
3

1
2

3
18 7

3

5

2
4 2

2∫ ∫
+
+ = − + +

+

and the problem is reduced to evaluating 
x

x
dx

18 7
3

,2∫
+
+  which satisfies our restrictions.

A polynomial is said to be irreducible if it is not the product of two polynomials of lower degree.
Any linear polynomial f (x) = ax + b is automatically irreducible, since polynomials of lower degree than 

f (x) are constants and f (x) is not the product of two constants.
Now consider any quadratic polynomial g(x) = ax2 + bx + c. Then

g(x) is irreducible if and only if b2 - 4ac < 0
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To see why this is so, assume that g(x) is reducible. Then g(x) = (Ax + B)(Cx + D). Hence, x = -B/A and  
x = -D/C are roots of g(x). The quadratic formula

 x
b b ac

a
4

2

2

= − ± −
 

should yield these roots. Therefore, b2 - 4ac cannot be negative. Conversely, assume b2 - 4ac ≥ 0. Then the 
quadratic formula yields two roots of g(x). But, if r is a root of g(x), then g(x) is divisible by x - r.† Hence, 
g(x) is reducible.

† In general, if a polynomial h(x) has r as a root, then h(x) must be divisible by x - r.

EXAMPLE 33.3:
(a) x2 + 4 is irreducible, since b2 - 4ac = 0 - 4(1)(4) = -16 < 0.
(b) x2 + x - 4 is reducible, since b2 - 4ac = 1 - 4(l)(-4) = 17 ≥ 0.

EXAMPLE 33.4:
(a) x3 - 4x = x(x2 - 4) = x(x - 2)(x + 2)
(b) x3 + 4x = x(x2 + 4)   (x2 + 4 is irreducible.)
(c) x4 - 9 = (x2 - 3)(x2 + 3) = (x - 3 )(x + 3)(x2 + 3)   (x2 + 3 is irreducible.)
(d) x3 - 3x2 - x + 3 = (x + l)(x - 2)2

EXAMPLE 33.5: Find 
dx

x 42∫ −
.

In this case, D(x) = x2 - 4 = (x - 2)(x + 2). Write

 
x x

A
x

B
x

1
( 2)( 2) 2 2− + = − + +  

It is assumed that A and B are certain constants, that we must now evaluate. Clear the denominators by multiplying 
both sides by (x - 2)(x + 2):

 1 = A(x + 2) + B(x - 2) (1)

First, substitute -2 for x in (1): 1 = A(0) + B(-4) = -4B. Thus, B 1
4= − .

Second, substitute 2 for x in (1): 1 = A(4) + B(0) = 4A. Thus, A 1
4= . Hence,

 
x x x x

1
( 2)( 2)

1
4

1
2

1
4

1
2− + = − − +  

We will assume without proof the following fairly deep property of polynomials with real coefficients.

Theorem 33.1: Any polynomial D(x) with leading coefficient 1 can be expressed as a product of linear factors of the 
form x - a and of irreducible quadratic factors of the form x2 + bx + c. (Repetition of factors is permitted.)

METHOD OF PARTIAL FRACTIONS

Assume that we wish to evaluate 
N x
D x

dx
( )
( )∫ , where 

N x
D x

( )
( )

 is a proper rational function and D(x) has leading 

coefficient 1. First, write D(x) as a product of linear and irreducible quadratic factors.
Our method will depend on this factorization. We will consider various cases and, in each case, we will 

first explain the method by means of an example and then state the general procedure.

Case I
D(x) is a product of distinct linear factors.
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General Rule for Case I

Represent the integrand as a sum of terms of the form
A

x a− for each linear factor x - a of the denominator, 
where A is an unknown constant. Solve for the constants. Integrating yields a sum of terms of the form 
A ln |x - a|.

Remark:  We assume without proof that the integrand always has a representation of the required kind. For 
every particular problem, this can be verified at the end of the calculation.

Case II
D(x) is a product of linear factors, some of which occur more than once.

† In trying to find linear factors of a denominator that is a polynomial with integral coefficients, test each of the divisors r of the constant 
term to see whether it is a root of the polynomial. If it is, then x - r is a factor of the polynomial. In the given example, the constant 
term is 1. Both of its divisors, 1 and -1, turn out to be roots.

So, 
dx

x x x
dx x x C

4
1
4

1
2

1
4

1
2

ln | 2| ln | 2|2
1
4

1
4∫∫ − = − − +





 = − − + +  

 x x C(ln | 2| ln | 2|)1
4= − − + +  

 
x
x

Cln
2
2

1
4= −

+ +  

EXAMPLE 33.7: Find 
x dx

x x x
3 5

13 2∫ ( )+
− − + .

First factor the denominator:†

 x3 - x2 - x + l = (x + l)(x - l)2

Then represent the integrand 
x

x x x
3 5

13 2

+
− − +  as a sum of the following form:

 x
x x x

A
x

B
x

C
x

3 5
1 1 1 ( 1)3 2 2

+
− − + = + + − + −

 

EXAMPLE 33.6: Find 
x dx

x x x
( 1)

6
.3 2∫

+
+ −

Factoring the denominator yields x(x2 + x - 6) = x(x - 2)(x + 3). The integrand is 
x

x x x
1

( 2)( 3)
.

+
− +

Represent it in the following form:

 x
x x x

A
x

B
x

C
x

1
( 2)( 3) 2 3

+
− + = + − + +

 

Clear the denominators by multiplying by x(x - 2)(x + 3):

 x + 1 = A(x - 2)(x + 3) + Bx(x + 3) + Cx(x - 2) (2)

Let x be 0 in (2): 1 = A(-2)(3) +B(0)(3) + C(0)(-2) = - 6A. So, A 1
6= − .

Let x be 2 in (2): 3 = A(0)(5) + B(2)(5) + C(2)(0) = 10B. So, B 3
10= .

Let x be -3 in (2): -2 = A(-5)(0) + B(-3)(0) + C(-3)(-5) = 15C. So, C 2
15= − .

Hence, 
x dx

x x x x x x
dx

( 1)
6

1
6

1 3
10

1
2

2
15

1
33 2 ∫∫

+
+ − = − + + − +





  

 x x x Cln | | ln | 2| ln | 3|1
6

3
10

2
15= − + + − + +  
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Note that for the factor (x - 1) that occurs twice, there are terms with both (x - 1) and (x - 1)2 in the denominator. 
Now clear the denominators by multiplying both sides by (x + l)(x - 1)2:

 3x + 5 = A(x - l)2 + B(x + l)(x - 1) + C(x + 1)  (1)

Let x = 1. Then 8 = (0)A + (2)(0)B + (2)C = 2C. Thus, C = 4.
Let x = -1. Then 2 = (4)A + (0)(-2)B + (0)C = 4A. Thus, A 1

2= .

To find B, compare the coefficients of x2 on both sides of (1). On the left it is 0, and on the right it is A + B. 

Hence, A + B = 0. Since A 1
2= , B 1

2= − . Thus,

 
x

x x x x x x
3 5

1
1
2

1
1

1
2

1
1

4
1

( 2)3 2 2

+
− − + = + − − + −  

Therefore,

 x dx
x x x

x x
dx

x
(3 5)

1
ln | 1| ln | 1| 4

( 1)3 2
1
2

1
2 2∫ ∫

+
− − + = + − − + −

 

By Quick Formula I,

 dx
x

x dx x C
x C( 1)

( 1) ( 1)
1
12

2 1∫∫ − = − = − − + = − − +
− −  

So,

 

x dx
x x x

x x
x

C
(3 5)

1
ln | 1| ln | 1| 4

1
13 2

1
2

1
2∫

+
− − + = + − − − − +

 

 

x
x x

Cln
| 1|
| 1|

4
1

1
2= +

− − − +
 

EXAMPLE 33.8: Find 
x dx

x x
( 1)

( 2)
.3 2∫

+
−  

Represent the integrand 
x

x x
( 1)
( 2)3 2

+
−  in the following form:

 
x

x x
A
x

B
x

C
x

D
x

E
x

( 1)
( 2) 2 ( 2)3 2 2 3 2

+
− = + + + − + −  

Clear denominators by multiplying by x3(x - 2)2:

 x + 1 = Ax2(x - 2)2 + Bx(x - 2)2 + C(x - 2)2 + Dx3(x - 2) + Ex3

Let x = 0. Then 1 = 4C. So, C .1
4=

Let x = 2. Then 3 = 8E. So, E .3
8=

Compare coefficients of x. Then 1 = 4B - 4C. Since C B, .1
4

1
2= =

Compare coefficients of x2. Then 0 = 4A - 4B + C. Since B 1
2=  and C A, .1

4
7

16= =
Compare coefficients of x4. Then 0 = A + D. So, D .7

16= −  

Hence, 
x

x x x x x x x
( 1)
( 2)

7
16

1 1
2

1 1
4

1 7
16

1
2

3
8

1
( 2)

.3 2 2 3 2

+
− = + + − − + −  

Thus,  
x

x x
dx x

x x
x

x
C

( 1)
( 2)

7
16

ln | |
1
2

1 1
8

1 7
16

ln | 2|
3
8

1
23 2 2∫

+
− = − − − − − − +  

 
x

x
x
x x

C
7

16
ln

2
4 1
8

3
8

1
22= − − + − − +  
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General Rule for Case II

For each repeated linear factor (x - r) that occurs k times in the denominator, use 
A

x r
A

x r
A

x r( )
. . .

( )
k

k
1 2

2− + − + + −  

as part of the representation of the integrand. Every linear factor that occurs only once is handled as in 
Case I.

Case III
D(x) is a product of one or more distinct irreducible quadratic factors and possibly also some linear factors 
(that may occur more than once).

General Rule for Case III

Linear factors are handled as in Cases I and II. For each irreducible quadratic factor x2 + bx + c, place a term 
Ax B

x bx c2

+
+ +  in the representation of the integrand.

EXAMPLE 33.9: Find 
x dx

x x x
( 1)

( 1)( 2)
.2 2∫

−
+ +

Represent the integrand as follows:

 
x

x x x
A
x

Bx C
x

Dx E
x

1
( 1)( 2) 1 22 2 2 2

( )−
+ + = + +

+ + +
+  

Clear the denominators by multiplying by x(x2 + l)(x2 + 2).

 x - 1 = A(x2 + l)(x2 + 2) + (Bx + C )x(x2 + 2) + (Dx + E )x(x2 + 1)

Multiply out on the right:

 x - 1 = (A + B + D)x4 + (B+ E )x3 + (3A + C + D)x2 + (2C + E )x + 2A

Comparing coefficients, we get:

2A = -1,   2C + E = 1,   3A + 2B + D = 0,   C + E = 0,   A + B + D = 0

So, A 1
2= − . From 2C + E = 1 and C + E = 0, it follows that C = 1 and E = -1.

From 3A + 2B + D = 0 and A + B + D = 0, we get 2A + B = 0. Since A = - 1
2 , B = 1.

From A + B + D = 0, – 1
2 + 1 + D = 0. So, D = – 12 .

Thus, x
x x x x

x
x

x
x

( 1)
( 1)( 2)

1
2

1 1
1

1
2

.2 2 2

1
2

2

−
+ + = − + +

+ − +
+

 

Then the antiderivative of the left side is equal to

 x
x dx
x

dx
x

x dx
x

dx
x

1
2

ln | |
1 1

1
2 2 22 2 2 2∫ ∫∫∫− + + + + − + − +

 

 x x x x x C
1
2

ln | |
1
2

ln( 1) tan
1
4

ln( 2)
1
2

2 tan ( / 2)2 1 2 1 *= − + + + − + − +− −  

C* is equivalent to a constant.
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Case IV
D(x) is a product of zero or more linear factors and one or more irreducible quadratic factors.

General Rule for Case IV

Linear factors are handled as in Cases I and II. For each irreducible quadratic factor x2 + bx + c that occurs 
to the k th power, insert as part of the representation of the integrand.

 A x B
x bx c

A x B
x bx c

A x B
x bx c( )

. . .
( )

k k
k

1 1
2

2 2
2 2 2

+
+ + + +

+ + + +
+

+ +
 

EXAMPLE 33.10: Find 
x

x
dx

2 3
( 1)

.
2

2 2∫
+

+

Let 
x

x
Ax B
x

Cx D
x

2 3
( 1) 1 ( 1)

2

2 2 2 2 2

+
+ = +

+ + +
+ . Then

 2x2 + 3 = (Ax + B)(x2 + 1) + Cx + D = Ax3 + Bx2 + (A + C )x + (B + D)

Compare coefficients: A = 0, B = 2, A + C = 0, B + D = 3. Hence, C = 0, D = 1. Thus,

 x
x

dx
x

dx
x

dx
2 3
( 1)

2
1

1
( 1)

2

2 2 2 2 2∫ ∫∫
+

+ = + + +
 

 x
x

dx2 tan
1

( 1)
1

2 2∫= + +
−  

In the second integral, let x = tan q. Then

 
x

dx
d

d C
1

( 1)
sec

sec
cos ( sin cos )2 2

2

4
2 1

2∫∫ ∫
θ θ

θ θ θ θ θ θ+ = = = + +  

 C x
x

x
C

1
2

tan
tan 1

1
2

tan
12

1
2θ θ

θ= + +




 + = + +





 +−

 

Thus,  
x

x
dx x

x
x

C
2 3
( 1)

tan
1
2 1

2

2 2
5
2

1
2∫

+
+ = + + +−  

SOLVED PROBLEMS

 1. Find 
x x x

x x
dx

1
.

4 3

3 2∫
− − −

−  

The integrand is an improper fraction. By division,

 x x x
x x

x
x

x x
x

x
x x

1 1 1
( 1)

4 3

3 2 3 2 2

− − −
− = − +

− = − +
−

 

We write 
x

x x
A
x

B
x

C
x

1
( 1) 12 2

+
− = + + −  and obtain

 x + 1 = Ax(x - 1) + B(x - 1) + Cx2
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For x = 0, 1 = -B and B = -1. For x = 1, 2 = C. For x = 2, 3 = 2A + B + 4C and A = -2. Thus,

 

x x x
x x

dx x dx
dx
x

dx
x

dx
x

x x
x

x C x
x

x
x

C

1
2 2

1

2 ln | |
1

2 ln | 1|
1

2 ln
1

4 3

3 2 2

1
2

2 1
2

2

∫ ∫ ∫∫∫
− − −

− = + + − −

= + − − − + = − + − +
 

 2. Find 
x dx

x x( 2)( 3)
.∫ + +  

Let 
x

x x
A

x
B

x2 3 2 3
.( )( )+ + = + + +  Clear the denominators:

 x = A(x + 3) + B(x + 2)

Let x = -2. Then -2 = A. Let x = -3. Then -3 = -B. So, B = 3.

 x dx
x x x

dx
x

dx

x x C x x C

x
x

C

( 2)( 3)
2

1
2

3
1

3

2 ln | 2| 3ln | 3| ln(( 2) ) ln(| 3|)

ln
( 3)
( 2)

2 3

3

2

∫ ∫∫ + + = − + + +

= − + + + + = − + + + +

= +
+ +

 

 3. Find 
x

x x x
dx

2
( 2)( 1)

.
2

∫
+

+ −  

Let 
x

x x x
A
x

B
x

C
x

2
( 2)( 1) 2 1

2 +
+ − = + + + − . Clear the denominators:

x2 + 2 = A(x + 2)(x - 1) + Bx (x - 1) + Cx (x + 2)

Let x = 0. Then 2 = -2A. So, A = -1. Let x = -2. Then 6 = 6B. So, B = 1. Let x = 1. Then 3 = 3C.
So, C = 1. Hence,

 

x
x x x

dx
x

dx
x

dx
x

dx

x x x C
x x

x
C

2
( 2)( 1)

1 1
2

1
1

ln | | ln | 2| ln | 1| ln
( 2)( 1)

2

∫ ∫ ∫∫
+

+ − = − + + + −

= − + + + − + = + − +

 

 4. Find 
x

x x
dx

1
( 2)( 1)

.
3

3∫
+

+ −  

Let 
x

x x
A

x
B

x
C

x
D

x
1

( 2)( 1) 2 1 ( 1) ( 1)

3

3 2 3

+
+ − = + + − + − + − . Clear the denominators:

 x3 + l = A(x - 1)3 + B(x + 2)(x - l)2 + C(x + 2)(x - 1) + D(x + 2)

Let x = -2. Then -7 = -27A. So, A .7
27=  Let x = 1. Then 2 = 3D. So, D .2

3=  Compare coefficients of x3. Then 1 = A + B. 

Since A ,7
27=  B .20

27=  Compare coefficients of x2. 0 = -3A + C. Since A ,7
27=  C .7

9=

Thus, 
x

x x
dx

x
dx

x
dx

x
dx

x
dx

x x
x x

C

1
( 2)( 1)

7
27

1
2

20
27

1
1

7
9

1
( 1)

2
3

1
( 1)

7
27

ln | 2|
20
27

ln | 1|
7
9

1
1

1
3

1
( 1)

3

3 2 3

2

∫ ∫∫ ∫∫
+

+ − = + + − + − + −

= + + − − − − − +
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 5. Find 
x x x
x x

dx
2

3 2
.

3 2

4 2∫
+ + +

+ +

x4 + 3x2 + 2 = (x2 + l)(x2 + 2). We write 
x x x
x x

Ax B
x

Cx D
x

2
3 2 1 2

3 2

4 2 2 2

+ + +
+ + = +

+ + +
+  and obtain

x3 + x2 + x + 2 = (Ax + B)(x2 + 2) + (Cx + D)(x2 + 1)

        = (A + C )x3 + (B + D)x2 + (2A + C )x + (2B + D)

Hence A + C = 1, B + D = 1, 2A + C = 1, and 2B + D = 2. Solving simultaneously yields A = 0, B = 1, C = l, D = 0. 
Thus,

 

x x x
x x

dx
x

dx
x

x
dx

x x C

2
3 2

1
1 2

tan ln ( 2)

3 2

4 2 2 2

1 1
2

2

∫ ∫∫
+ + +

+ + = + + +

= + + +−

 

 6. Find 
x x x x x

x
dx

4 4 8 4
( 2)

.
5 4 3 2

2 3∫
− + − + −

+

We write 
x x x x x

x
Ax B
x

Cx D
x

Ex F
x

4 4 8 4
( 2) 2 ( 2) ( 2)

.
5 4 3 2

2 3 2 2 2 2 3

− + − + −
+ = +

+ + +
+ + +

+  Then

x5 - x4 + 4x3 - 4x2 + 8x - 4 = (Ax + B)(x2 + 2)2 + (Cx + D)(x2 + 2) + Ex + F

 = Ax5 + Bx4 + (4A + C)x3 + (4B + D)x2 + (4A + 2C + E)x 

 + (4B + 2D + F) 

from which A = 1, B = -1, C = 0, D = 0, E = 4, F = 0. Thus the given integral is equal to

 x dx
x

x dx
x

x dx
x

dx
x

x dx
x

( 1)
2

4
( 2) 2 2

4
( 2)2 2 3 2 2 2 3∫ ∫ ∫∫∫

−
+ + + = + − + + +

 

By Quick Formula II,

 
x dx

x
x dx

x
x C

2
1
2

2
2

ln ( 2)2 2
1
2

2∫ ∫+ = + = + +  

and by Quick Formula I,

 x dx
x

x x dx x
x C( 2)

1
2

( 2) (2 ) ( )( 2)
1
4

1
( 2)2 3

2 3 1
2

1
2

2 2
2 2∫∫ + = + = − + = − + +

− −  

So,   
x x x x x

x
dx x

x
x

C
4 4 8 4
( 2)

ln ( 2)
2

2
tan

2
1

( 2)

5 4 3 2

2 3
1
2

2 1
2 2∫

− + − + −
+ = + − 





− + +−  

SUPPLEMENTARY PROBLEMS

In Problems 7–25, evaluate the given integrals.

 7. 
dx

x
x
x

C
9

1
6

ln
3
32∫ − = −

+ +  

 8. 
x dx

x x
x x C

3 4
ln ( 1)( 4)2

1
5

4∫ − − = + − +  

 9. 
x x

x x x
dx

x x
x

C
3 1

2
ln

( 2)
1

2

3 2

1 2 3 2

∫
− −

+ − = +
− +  
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10. 
dx

x x
x
x

C
7 6

1
5

ln
1
62∫ + + = +

+ +  

11. 
x x
x x

dx x x x C
3 4
2 8

ln ( 2)( 4)
2

2
4∫

+ −
− − = + + − +  

12. 
x dx

x
x

x
C

2
ln | 2|

2
22∫ ( )−

= − − − +  

13. 
x

x
dx x x x

x x
C

(1 )
3 ln (1 )

4
1

1
2(1 )

4

3
1
2

2 6
2∫ − = − − − − − − + − +  

14. 
dx

x x
x

x
Cln

1
3 2∫ + =

+
+  

15. 
x x x
x x

dx x x C
3

( 1)( 3)
ln 3 tan

3 2

2 2
2 1∫

+ + +
+ + = + + +−  

16. 
x x x x

x x x
dx x

x

x x
C

2 3 3
2 3

ln
2 3

4 3 2

3 2
1
2

2
2∫

− + − +
− + = +

− +
+  

17. 
x dx

x
x

x
C

2
( 1)

ln ( 1)
1

1

3

2 2
2

2∫ + = + + + +  

18. 
x x
x

dx x
x

x
C

2 4
( 4)

ln ( 4) tan
2

4
4

3 2

2 2
2 1

2
1

2∫
+ +
+ = + + 



 + + +−  

19. 
x x

x
dx x x

x
x

C
1

( 1)
ln 1 tan

1
2 1

3

2 2
2 1

2
1

2∫
+ −

+ = + − − + +−  

20. 
x x x x

x x
dx

x x x x
x

x
C

8 2 1
( 3)( 1)

1
168

[ 126 ln 1 51 ln( 3) 96 ln( 1) 422 3 tan
3

96 3 tan
2 1

3
]

4 3 2

2 3

2 2 1

1

∫
+ − + +

+ + =

− + + + + − + + 





− −





+

−

−

21. 
x x x

x x x
dx x x

x x
C

5 15
( 5)( 2 3)

ln 2 3
5
2

tan
1

2
5 tan

5

3 2

2 2
2 1 1∫

+ − +
+ + + = + + + +





− 





+− −  

22. 
x x x x x

x x x
dx

x x x
x

x x
C

7 15 23 25 3
( 2) ( 1)

1
2

3
1

ln
1

2

6 5 4 2

2 2 2 2 2 2

2

2∫
+ + + + −

+ + + = + + − + + +
+ + +  

23. 
dx

e e e
e

e
C

3
1

3
1
9

ln
3

x x x

x

x2∫ − = + − +   (Hint: Let ex = u.)

24. 
x dx

x x
x

x
C

sin
cos (1 cos )

ln
1 cos

cos2

2

∫ + = + +   (Hint: Let cos x = u.)

25. d C
(2 tan )sec

1 tan
ln |1 tan |

2
3

tan
2 tan 1

3

2 2

3
1∫

θ θ
θ θ θ θ+

+ = + + −





+−  
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CHAPTER 34

Techniques of Integration IV: 
Miscellaneous Substitutions

  I. Assume that in a rational function, a variable is replaced by one of the following radicals.

 1.  ax bn + . Then the substitution ax + b = zn will produce a rational function. (See Problems 1–3.)

 2.  q px x2+ + . Then the substitution q + px + x2 = (z - x)2 will yield a rational function. (See  
Problem 4.)

 3.  q px x x x( )( )2 α β+ − = + − . Then the substitution q + px - x2 = (a + x)2z2 will produce a  
rational function. (See Problem 5.)

II.  Assume that in a rational function, some variables are replaced by sin x and/or cos x. Then the  
substitution x = 2 tan-1 z will produce an integral of a rational function of z.

The reason that this will happen is that

 x
z
z

x
z
z

dx
dz
z

sin
2

1
,      cos

1
1

,      
2

12

2

2 2= + = −
+ = +   (34.1)

(See Problem 6 for a derivation of the first two equations.)
In the final result, replace z by tan (x/2). (See Problems 7–10.)

SOLVED PROBLEMS

 1. Find 
dx

x x1∫ − .

Let 1 - x = z2. Then x = 1 - z2, dx = -2z dz, and

 
dx

x x

z dz
z z

dz
z1

2
(1 )

2
12 2∫ ∫ ∫−

=
−

− = − −  

By integration by partial fractions, one obtains

 
dz

z
z
z

C2
1

ln
1
1

.2∫− − = − +
− +  Hence, 

dx

x x

x

x
C

1
ln

1 1

1 1∫ −
= − −

+ −
+  

 2. Find 
dx

x x( 2) 2∫ − +
.

Let x + 2 = z2. Then x = z2 - 2, dx = 2z dz, and

 dx

x x

z dz
z z

dz
z( 2) 2

2
( 4)

2
42 2∫ ∫ ∫− +

= − = −
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By integration by partial fractions, we get

 
dz

z
z
z

C
x

x
C2

4
1
2

ln
2
2

1
2

ln
2 2

2 22∫ − = −
+ + = + −

+ +
+  

 3. Find 
dx

x x1/2 1/4∫ − .

Let x = z4. Then dx = 4z3 dz and

 

dx
x x

z dz
z z

z dz
z

z
z

dz
z z

z
dz z

z
dz

z z z C x x x C

4
4

1

4
( 1) 1

1
4

( 1)( 1) 1
1

4 1
1

1

4( ln | 1|) 2 4 4 ln( 1)

1/2 1/4

3

2

2

2

1
2

2 4 4

∫ ∫ ∫

∫ ∫ ∫

− = − = −

= − +
− = − + +

− = + + −






= + + − + = + + − +

 

 4. Find 
dx

x x x 22∫ + +
.

Let x2 + x + 2 = (z - x)2. Then

 x
z

z
dx

z z dz
z

x x
z z

z
2

1 2
,    

2( 2)
(1 2 )

,     2
2

1 2

2 2

2
2

2

= −
+ = + +

+ + + = + +
+  

 and 
dx

x x x

z z
z

z
z

z z
z

dz
dz

z
z

z
C

x x x

x x x
C

2

2( 2)
(1 2 )
2

1 2
2

 1 2

2
2

1

2
ln

2

2

1

2
ln

2 2

2 2

2

2

2

2 2 2

2

2

∫ ∫+ +
=

+ +
+

−
+

+ +
+

⌠

⌡





= − = −
+

+

= + + + −
+ + + +

+

 

The equation 
dz

z
z

z
C2

2
1

2
ln

2

22∫ − = −
+

+  was obtained by integration by partial fractions.

 5. Find 
x dx
x x(5 4 )2 3/2∫ − − .

Let 5 - 4x - x2 = (5 + x)(1 - x) = (1 - x)2z2. Then

 x
z

z
dx

z dz
z

x x x z
z
z

5
1

,    
12

(1 )
,     5 4 (1 )

6
1

2

2 2 2
2

2= −
+ = + − − = − = +  

and  
x dx
x x

z
z

z
z

z
z

dz
z

dz

z
z

C
x

x x
C

(5 4 )

5
1

 
12

(1 )
216

(1 )

1
18

1
5

1
18

5 5 2

9 5 4

2 3/2

2

2 2 2

3

2 3

2

2

∫ ∫− − =

−
+ +

+

⌠

⌡





= −





= +



 + = −

− −
+

 

 6. Given z
x

tan
2

= 



 , that is, x = 2 tan-1 z, show that

 x
z
z

sin
2

1 2= +  and x
z
z

cos
1
1

2

2= −
+  

Since 
x x

x x z
1 cos

2
cos

2
1

sec ( /2)
1

1 tan ( /2)
1

1
2

2 2 2

+ = 



 = = + = +  
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solving for cos x yields x
z

z
z

cos
2

1
1

1
12

2

2= + − = −
+ .  Also,

 x
x

x
x
x

x
x

z
z

sin 2sin
2

cos( /2) 2
tan( /2)

sec ( /2)
2

tan( /2)
1 tan ( /2)

2
12 2 2= 



 = = + = +  

 7. Find 
dx
x x1 sin cos∫ + − .

Let x = 2 tan-1 z. Using equation (34.1), we get

 

dx
x x

z
z
z

z
z

dz

dz
z z z z

dz z z C
z

z
C

x
x

C

1 sin cos

2
1

1
2

1
1
1

(1 )
1 1

1
ln | | ln |1 | ln

1

ln
tan( /2)

1 tan( /2)

2

2

2

2

∫

∫ ∫

+ − = +

+ + − −
+

⌠

⌡





= + = − +




 = − + + = + +

= + +

 

 8. Find 
dx

x3 2cos∫ − .

Let x = 2 tan-1 z. Using equation (34.1), we get

 
z

z
z

dz
dz

z
z C

x
C

2
1

3 2
1
1

2
1 5

2

5
tan ( 5)

2 5
5

tan 5 tan
2

2

2

2

2
1

1

∫+

− −
+

⌠

⌡





= + = +

= 











+

−

−

 

 9. Find 
dx

x2 cos∫ + .

Let x = 2 tan-1 z. Using equation (34.1), we obtain

 
dx

x
z

z
z

dz
dz
z

z
C

x
C

2 cos

2
1

2
1
1

2
3

2

3
tan

3

2 3
3

tan
3

3
tan

2
2

2

2

2
1 1∫ ∫+ = +

+ −
+

⌠

⌡





= + = 





+ = 











+− −
 

10. Find 
dx

x5 4sin∫ + .

Let x = 2 tan-1 z. Using equation (34.1), we obtain

 
dx

x
z

z
z

dz
dz

z z

dz
z

z
C

x
C

5 4sin

2
1

5 4
2

1

2
5 8 5

2
5 ( )

tan
( )

tan
5tan( /2) 4

3

2

2

2

2

4
5

2 9
25

2
3

1
4
5

3
5

2
3

1

∫ ∫ ∫

∫

+ = +

+ +

= + +

= + + = +





+ = +



 +− −

 

11. Use the substitution 1 - x3 = z2 to find x x dx15 3∫ − .

The substitution yields x3 = 1 - z2, 3x2 dx = -2z dz, and

 x x dx x x x dx z z z dz z z dz

z z
C x x C

1 1 ( ) (1 ) ( )
2
3

(1 )

2
3 3 5

2
45

(1 ) (2 3 )

5 3 3 3 2 2 2
3

2 2

3 5
3 3/2 3

∫ ∫ ∫∫ − = − = − − = − −

= − −





+ = − − + +
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12. Use x
z
1=  to find 

x x
x

dx
2

4∫
−

.

The substitution yields dx = -dz/z2, x x z z1 /2− = − , and

 

x x
x

dx

z
z

dz
z

z
z z dz

1

1/
1

2

4

2

4∫ ∫
− =

− −



⌠

⌡



= − −
 

Let z - 1 = s2. Then

 
z z dz s s s ds

s s
C

z z
C

x
x

x
x

C

1 ( 1)( )(2 ) 2
5 3

2
( 1)

5
( 1)

3
2

(1 )
5

(1 )
3

2
5 3

5/2 3/2 5/2

5/2

3/2

3/2

∫ ∫− − = − + = − +





+

= − − + −





+ = − − + −





+

 

13. Find dx
x x1/2 1/3∫ +

.

Let u = x1/6 so that x = u6, dx = 6u5 du, x1/2 = u3, and x1/3 = u2. Then we obtain

 

u du
u u

u
u

du u u
u

du u u u u C

x x x x C

6
6

1
6 1

1
1

6
1
3

1
2

ln | 1|

                2 3 ln | 1|

5

3 2

3
2 3 2

1/2 1/3 1/6 1/6

∫∫ ∫+ = + = − + − +




 = − + − +



 +

= − + − + +

 

SUPPLEMENTARY PROBLEMS

In Problems 14–39, evaluate the given integral.

14. 
x
x

dx x x C
1

2 2 tan 1∫ + = − +−  

15. 
dx

x x
x C

(1 )
2ln(1 )∫ +

= + +  

16. 
dx

x
x x C

3 2
2 2 6ln(3 2)∫ + +

= + − + + +  

17. 
x

x
dx x x x C

1 3 2

1 3 2

4
3

[ 3 2 ln(1 3 2)]∫
− +
+ +

= − + + − + + +  

18.  
dx

x x
x x x C

1
ln 2 1 2 1

2
2∫ − +

= − + + − +  

19. dx

x x x
x x x C

1
2 tan ( 1 )

2
1 2∫ + −

= + − + +−  

20. 
dx

x x

x
C

6
sin

2 1
52

1∫ + −
= −



 +−  

21. 
x x
x

dx
x x

x
C

4 (4 )
6

2

3

3/2

3∫
− = − − +  

22. 
dx

x x
x x x C

( 1) ( 1 )
2( 1) 4( 1) 4 ln(1 ( 1) )1/2 1/4

1/2 1/4 1/4∫ + + + = + − + + + + +  
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23. 
dx

x
x

C
2 sin

2

3
tan

2 tan( /2) 1

3
1∫ + = + +−  

24. 
dx

x
x

x
C

1 2sin
3

3
ln

tan 2 3

tan 2 3

1
2

1
2

∫ − = − −
− +

+  

25. 
dx

x
x

x
C

3 5sin
1
4

ln
3tan 1
tan 3

1
2

1
2

∫ + = +
+ +  

26. 
dx

x x
x C

sin cos 1
ln tan 11

2∫ − − =  − +  

27. 
dx

x
x

C
5 3sin

1
2

tan
5tan( /2) 3

4
1∫ + = + +−  

28. 
x dx

x
x

x
C

sin
1 sin

2
4

ln
tan 3 2 2

tan 3 2 22

2 1
2

2 1
2

∫ + = + −
+ +

+  

29. 
dx
x x

x C
1 sin cos

ln 1 tan 1
2∫ + + = + +  

30. 
dx

x
x

C
2 cos

2

3
tan 3 tan

2
1∫ − = 











+−  

31. x dx x x x Csin 2 cos 2sin∫ = − + +  

32. 
dx

x x x

x
x

C
3 2 1

sin
1
22

1∫ + −
= − −



 +− .  (Hint: Let x = 1/z.)

33. 
e e

e
dx e e C

( 2)
1

3ln( 1)
x x

x
x x∫

−
+ = − + + .  (Hint: Let ex + 1 = z.)

34. 
x x

x
dx x x C

sin cos
1 cos

cos ln(1 cos )∫ − = + − + .  (Hint: Let cos x = z.)

35. 
dx

x x

x
x

C
4

4
42 2

2

∫ −
= − − + .  (Hint: Let x = 2/z.)

36. 
dx

x x x x
C

(4 )
1

4
1
8

tan
2

2 2
1∫ + = − + 



 +−  

37. x dx x x C1 (1 ) (1 )4
5

5/2 4
3

3/2∫ + = + − + +  

38. 
dx

x x x

x

x x
C

3(1 ) (5 4 ) 1

2 1

3 1 12 2∫ − − + −
= +

+ − −
+  

39. 
x

x
dx x x x x x x x x C

1
10[ tan ( ))]

1/2

1/5
1

13
13/10 1

11
11/10 1

9
9/10 1

7
7/10 1

5
1/2 1

3
3/10 1/10 1 1/10∫ + = − + − + − + − +−  

(Hint: Let u = x1/10.)

40. (GC) Use a graphing calculator to approximate (to eight decimal places) 
x dx

x
sin

3 2cos0

/3

∫ −
π

 and compare your result 
with the value obtained by the methods of this chapter.

41. (GC) Use a graphing calculator to approximate (to eight decimal places) 
dx

x x 12

4

∫ −  and compare your result 
with the value obtained by the methods of this chapter.
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CHAPTER 35

Improper Integrals

For a definite integral f x dx( )
c

b

∫  to be defined, it suffices that a and b are real numbers and that f (x) is con-

tinuous on [a, b]. We shall now study two different kinds of integrals that we shall call improper integrals.

INFINITE LIMITS OF INTEGRATION

(a) f x dx f x dx( ) lim ( )
a c a

c

∫ ∫=
+∞

→+∞
 

  See Problems 1–3, 5, and 6.

(b) f x dx f x dx( ) lim ( )
b

c c

b

∫ ∫=
−∞ →−∞

 

 See Problem 4.

(c) f x dx f x dx f x dx( ) ( ) ( )
a

a

∫ ∫ ∫= +
−∞

+∞ +∞

−∞
 

 provided that both limits on the right exist. See Problem 7.

DISCONTINUITIES OF THE INTEGRAND

(a) If f is continuous on [a, b] except that it is not continuous from the right at a, then

  f x dx f x dx( ) lim ( )
a

b

u a u

b

∫ ∫=
→ +

 

 See Problem 16.
(b) If f is continuous on [a, b] except that it is not continuous from the left at b, then

  f x dx f x dx( ) lim ( )
a

b

u b a

u

∫ ∫=
→ −

 

 See Problems 9, 10, 12, 14, and 15.
(c) If f is continuous on [a, b] except at a point c in (a, b), then

  f x dx f x dx f x dx( ) lim ( ) lim ( )
a

b

u c a

u

u c u

b

∫ ∫ ∫= +
→ →− +

 

 provided that both integrals on the right exist. See Problems 11 and 13.

 When the limit defining an improper integral exists, we say that the integral is convergent. In the  
opposite case, we say that the integral is divergent. If the integral is divergent, we say that it is equal to +∞ 
(respectively -∞) if the limit defining the improper integral approaches +∞ (respectively -∞).
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SOLVED PROBLEMS

 1. Evaluate 
x

dx
1

21∫
+∞

.

 
x

dx
x

dx
x

c

1
lim

1
lim

1

lim
1

1 (0 1) 1

c

c

c

c

c

21 21
1

∫ ∫= = − 


= − −



 = − − =

+∞

→+∞ →+∞

→+∞

 

Note: The integral 
x

dx
1

21∫
+∞

 can be interpreted as the area of the region under the curve y = 1/x2 and above the  

x-axis, for x > 1. Thus, a region that is infinite (in the sense of being unbounded) can have a finite area.

 2. Evaluate 
x

dx
1

1∫
+∞

.

 
x

dx
x

dx x

c

1
lim

1
lim ln

lim (ln 0)

c

c

c

c

c

1 1
1

∫ ∫= = 


= − − = +∞

+∞

→+∞ →+∞

→+∞

 

Thus, the integral diverges to + ∞.

 3. Show that 
x

dx
1

p1∫
+∞

 converges for p > 1 and diverges to + ∞ for p ≤ 1.

 
x

dx
x

dx
p x

1
lim

1
lim

1
1

1
p

c
p

c

c
p

c

1 1 1
1

∫ ∫= = −



+∞

→+∞ →+∞ −  

Assume p > 1. Then we have 
p c p p

lim
1

1
1

1
1

1
(0 1)

1
1c

p 1− −



 = − − = −→+∞ − .

By Problem 2, we already know that 
x

dx
1

1∫
+∞

 diverges to + ∞. So, assume p < 1. Then we have

 p c p
clim

1
1

1
1 lim

1
1

( 1)
c

p
c

p
1

1

− −



 = − − = +∞

→+∞ − →+∞
−  since p1 0− >  

 4. Evaluate e dxrx
0

∫−∞
 for r > 0.

 

e dx e dx
r

e

r
e

r r

lim lim
1

1
lim (1 )

1
(1 0)

1

rx

c

rx

c c

rx

c

c

rc

0 0
0

∫ ∫= = 


= − = − =

−∞ →+∞ →−∞

→−∞

 

 5. Evaluate 
x

dx
1

420∫ +
+∞

.

 

x
dx

x
dx

x

c

1
4

lim
1

4
lim

1
2

tan
2

lim
1
2

tan
2

0
1
2 2 4

c

c

c

c

c

20 20

1

0

1

∫ ∫

π π

+ = + = 







= 



 −





= 



 =

+∞

→+∞ →+∞
−

→+∞
−

 

 6. Evaluate e x dxsinx

0∫ −
+∞

.

 

e x dx e x dx

e x x

e c c

sin lim sin

lim ( (sin cos )) (by integration by parts)

lim [( (sin cos )) ]

x

c

x
c

c

x
c

c

c

0 0

1
2

0

1
2

1
2

∫ ∫=

= − + 


= − + +

−
+∞

→+∞
−

→+∞
−

→+∞
−
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As c → + ∞, e-c → 0, while sin c and cos c oscillate between -1 and 1. Hence, e c clim (sin cos ) 0
c

c + =
→+∞

−  and 
therefore,

 e x dxsinx

0

1
2∫ =−

+∞
 

 7. Evaluate 
dx

e e
e dx

e 1x x

x

x2∫ ∫+ = +−−∞

+∞

−∞

+∞
.

 

e dx
e

e dx
e

du
u

u e

u e

e

1
lim

1

lim
1

(by thesubstitution )

lim tan lim (tan ( ) tan (1))

lim tan ( )
4 2 4 4

x

x
c

x

x

c

c

e
x

c

e

c

c

c

c

20 20

21

1

1

1 1

1

c

c

∫ ∫

∫

π π π π

+ = +

= + =

= 
 = −

= −



 = − =

+∞

→+∞

→+∞

→+∞
−

→+∞
− −

→+∞
−

 

Similarly,

 

e dx
e

e dx
e

du
u

u

e e

1
lim

1

lim
1

lim tan

lim
4

tan ( )
4

lim tan ( )
4

0
4

x

x
c

x

xc

c e c
e

c

c

c

c

2

0

2

0

2

1
1

1

1 1

c
c

∫ ∫

∫
π π π π

+ = +

= + = 


= −



 = − = − =

−∞ →−∞

→−∞ →−∞
−

→+∞
−

→−∞
−

 

Thus, 

dx
e e

e dx
e

e dx
e1 1

4 4 2

x x

x

x

x

x20 2

0

∫ ∫ ∫
π π π

+ = + + +

= + =

−−∞

+∞ +∞

−∞
 

 8. Find the area of the region lying to the right of x = 3 and between the curve y
x

1
12= −  and the x-axis.

The area

 

∫ ∫− = −

= −
+




= −
+ −



 = −

+ −





= + =

+∞

→+∞

→+∞

→+∞ →+∞

dx
x

dx
x

x
x

c
c

c
c

1
lim

1

1
2

lim ln
1
1

(by integration by partial fractions)

1
2

lim ln
1
1

ln
1
2

lim ln
1 (1/ )
1 (1/ )

ln

(ln1 ln 2)
ln 2
2

c

c

c

c

c c

23 23

3

1
2

1
2

1
2

 

 9. Evaluate 
dx

x9 20

3

∫ −
.

The integrand is discontinuous at x = 3. So,

 

dx

x

dx

x

x

u u

9
lim

9
lim sin

3

lim sin
3

sin 0 lim sin
3

0

sin 1
2

u

u

u

u

u u

20

3

3 20 3

1

0

3

1 1

3

1

1

∫ ∫

π

−
=

−
= 








= 



 −





= 



 −





= =

→ →
−

→
− −

→
−

−

− −

− −  
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10. Evaluate 
dx

x20

2

∫ − .

The integrand is discontinuous at x = 2.

 

dx
x

dx
x

x

u

2
lim

2
lim ln(2 )

lim (ln(2 ) ln 2))

u

u

u

u

u

0

2

2 0 2
0

2

∫ ∫− = − = − − 


= − − − = +∞

→ →

→

− −

−

 

Hence, the integral diverges to +∞.

11. Evaluate 
dx

x( 1)20

4

∫ − .

The integrand is discontinuous at x = 1, which is inside (0, 4). (See Fig. 35-1.)

 

dx
x x

u u

lim
( 1)

lim
1

1

lim
1

1
( 1)    lim

1
1

1

u

u

u

u

u u

1
20 1

0

1 1

∫ − = − −



= − − − −



 = − − +



 = +∞

→ →

→ →

− −

− −

 

Hence, 
dx

x( 1)20

4

∫ −  is divergent. (We do not have to consider 
dx

x
lim

( 1)u 1
20

4

∫ −→ +
 at all. For 

dx
x( 1)20

4

∫ −  to be convergent, 

both 
dx

x
lim

( 1)u

u

1
20∫ −→ −
 and 

dx
x

lim
( 1)u u1

2

4

∫ −→ +
  must exist.)

 
x

y

1O 2 3 4  

 Fig. 35-1 Fig. 35-2

12. Find the area of the region between the curve y
x

x1 2
=

−
, the x-axis, and x = 0 and x = 1. (See Fig. 35-2.)

The area is

 

x

x
dx

x

x
dx

x x dx

x

u

1
lim

1

lim
1
2

(1 ) ( 2 )

lim (1 ) (by Quick Formula I)

lim [ 1 1] 1

u

u

u

u

u

u

u

20

1

1 20

1

2 1/2

0

1

2 1/2

0

1

2

∫ ∫

∫

−
=

−

= − − −

= − − 


= − − − =

→

→

→

→

−

−

−

−
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13. Evaluate 
dx

x 130

4

∫ − .

The integrand is discontinuous at x = 1, which lies inside (0, 4).

 

dx

x
x dx

x u

lim
1

lim ( 1)

lim ( 1) lim [( 1) 1]

u

u

u

u

u

u

u

1 30 1

1/3

0

1

3
2

2/3

0 1

3
2

2/3 3
2

∫ ∫−
= −

= − 
 = − − = −

→ →

→ →

− −

− −

 

On the other hand,

 

dx

x
x dx

x u

lim
1

lim ( 1)

lim ( 1) lim [ 9 ( 1) 1] 9

u u

u u

1 30

4

1

1/3

0

4

1

3
2

2/3

0

4

1

3
2

3 2/3 3
2

3

∫ ∫−
= −

= − 
 = − − − =

→ + →

→ →

+

+ +

 

Hence,

 

dx

x

dx

x

dx

x1
lim

1
lim

1
9

( 9 1)

u

u

u u30

4

1 30 1 3

4
3
2

3
2

3

3
2

3

∫ ∫ ∫−
=

−
+

−
= − +

= −

→ →− +

 

14. Evaluate x dxsec
0

/2

∫
π

.

The integrand is discontinuous at x
2
π= .

 

x dx x dx

x x

u u

u u

sec lim sec

lim ln(sec tan )

lim [ln(sec tan ) ln(1 0)]

lim ln(sec tan )

u

u

u

u

u

u

0

/2

/2 0

/2 0

/2

/2

∫ ∫=

= + 


= + − +

= + = +∞

π

π

π

π

π

→

→

→

→

−

−

−

−

 

since ulim sec
u /2

= +∞
π→ −

 and ulim tan
u /2

= +∞
π→ −

 

Thus, x dxsec
0

/2

∫
π

 diverges to +∞.

15. Evaluate 
x

x
dx

cos

1 sin0

/2

∫ −
π

.

The integrand is discontinuous at x
2
π= .

 

x

x
dx

x

x
dx

x x dx

x u

cos

1 sin
lim

cos

1 sin

lim (1 sin ) ( cos )

lim 2(1 sin ) lim 2[(1 sin ) 1] 2

u

u

u

u

u

u

u

0

/2

/2 0

/2

1/2

0

/2

1/2

0 /2

1/2

∫ ∫

∫

−
=

−

= − − −

= − − 
 = − − − =

π

π

π

π π

→

→
−

→ →

−

−

− −
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16. Evaluate 
x

dx
1

20

1

∫ .

The integrand is discontinuous at x = 0.

 
x

dx
x

dx
x

u

1
lim

1
lim

1

lim 1
1

u u u
u

u

20

1

0
2

1

0

1

0

∫ ∫= = − 


= − −



 = +∞

→ →

→

+ +

+

 

SUPPLEMENTARY PROBLEMS

17. Evaluate the given integrals:

(a) 
dx

x
2

0

1

∫ =   (b) 
x

dx
1

40

4

∫ − = +∞   (c) 
x

dx
1

4
4

0

4

∫ −
=  

(d) x
dx

1
(4 )3/20

4

∫ − = +∞   (e) 
x

dx
1

42

2

∫ π
−

=
−

  (f ) 
x

dx
1 9

231

8

∫ =
−

 

(g) 
dx

x( 2)
6 22/30

4
3∫ − =   (h) 

dx
x41

1

∫ = +∞
−

  (i) x dxln 1
0

1

∫ = −  

( j) x x dxln
0

1
1
4∫ = −  

18. Find the area of the region between the given curve and its asymptotes:

(a) y
x

x4
2

4

2= − ; (b) y
x

x
42 = −

; (c) y
x x

1
(1 )

2 = −  

Ans. (a) 4π; (b) 4π; (c) 2π

19. Evaluate the given integrals:

(a) 
dx
x

121

+

∫ =
∞

  (b) 
dx

x(4 )
1
42

0

∫ − =
−∞

  (c) e dx 1x

0∫ =−
+∞

 

(d) 
dx

x(4 )2

6

∫ − = +∞
−∞

  (e) 
dx

x xln
1

ln 222∫ =
+∞

  (f ) 
e

x
dx

e
2x

1∫ =
−+∞

 

(g) xe dx 0x2∫ =−
−∞

+∞
  (h) 

dx
x1 4 22∫

π
+ =

−∞

+∞
  (i) xe dx 1x

0

∫ = −
−∞

 

( j) x e dx 6x3

0∫ =−
+∞

 

20. Find the area of the region between the given curve and its asymptote:

(a) y
x

8
42= + ; (b) y

x
x(4 )2 2= + ; (c) y xe x /22= −  

Ans. (a) 4π; (b) 1
4 ; (c) 2

21. Find the area of the following regions:

(a) Above the x-axis, under y
x

1
42= − , and to the right of x = 3.

(b) Above the x-axis, under y
x x

1
( 1)2= − , and to the right of x = 2.

Ans. (a) ln51
4 ; (b) 1 - ln 2
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22. Show that the areas of the following regions are infinite:

(a) Above the x-axis, under y
x

1
4 2= − , and from x = -2 to x = 2.

(b) Above the x-axis, under xy = 9, and to the right of x = 1.

23. Show that the area of the region in the first quadrant under y = e-2x is 1
2 , and that the volume generated by 

revolving that region about the x-axis is 
4
π

.

24. Find the length of the indicated arc: (a) 9y2 = x(3 - x)2, a loop; (b) x2/3 + y2/3 = a2/3, entire length;  
(c) 9y2 = x2(2x + 3), a loop

Ans. (a) 4 3  units; (b) 6a units; (c) 2 3  units

25. Show that 
dx

x b( )pa

b

∫ −  converges for p < 1 and diverges to + ∞ for p ≥ 1.

26. Let 0 ≤ f(x) ≤ g(x) for a ≤ x < b. Assume that f xlim ( )
x b

= +∞
→ −

 and g xlim ( )
x b

= +∞
→ −

. (See Fig. 35-3.) It is not hard to 

show that, if g x dx( )
a

b

∫  converges, then so does f x dx( )
a

b

∫  and, equivalently, if f x dx( )
a

b

∫  does not converge, then 

neither does g x dx( )
a

b

∫ . A similar result also holds for a < x ≤ b, with lim
x a→ +

 replacing lim
x b→ −

.

Fig. 35-3

As an example, consider 
dx

x1 40

1

∫ − . For 0 ≤ x < 1,

 x x x x x1 (1 )(1 )(1 ) 4(1 )4 2− = − + + < −  and 
x x

1
4

1
1

1
1 4− < −  

Since 
dx

x
1
4 10

1

∫ −  does not converge, neither does 
dx

x1 40

1

∫ − .

Now consider 
dx

x x20

1

∫ +
. For 0 < x ≤ 1, 

x x x

1 1
2 +

< . Since 
x

dx
1

0

1

∫  converges, so does 
dx

x x20

1

∫ +
.

Determine whether each of the following converges:

(a) 
e dx
x

x

1/30

1

∫ ; (b) 
x

x
dx

cos
0

/4

∫
π

; (c) 
x

x
dx

cos
0

/4

∫
π

 

Ans. (a) and (c) converge

27. Assume that 0 ≤ f (x) ≤ g(x) for x ≥ a. Assume also that f x g xlim ( ) lim ( ) 0
x x

= =
→+∞ →+∞

. (See Fig. 35-4.) It is not hard to 

show that, if g x dx( )
a∫
+∞

 converges, so does f x dx( )
a∫
+∞

 (and, equivalently, that, if f x dx( )
a∫
+∞

 does not converge, 

then neither does g x dx( )
a∫
+∞

).
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Fig. 35-4

As an example, consider 
dx

x x2 641∫ + +
+∞

. For x ≥ 1, 
x x x

1

2 6

1
4 2+ +

< . Since 
dx
x21∫

+∞
 converges, so does 

dx

x x2 641∫ + +
+∞

.

Determine whether or not each of the following converges:

(a) 
dx

x x232∫ +
+∞

; (b) e dxx

1

2∫ −
+∞

; (c) 
dx

x x40∫ +
+∞

 

Ans. all converge

28. Define the gamma function t x e dx( ) t x1

0∫Γ = − −
+∞

 for t > 0. It can be proved that Γ(t) is convergent. (This is left as a 
project for the student.)

(a) Show that Γ(1) = 1.
(b) Show that Γ(2) = 1. (Hint: Use integration by parts.)
(c) Prove that Γ(t + 1) = tΓ(t) for all t > 0. (Hint: Use integration by parts.)
(d) Use part (c) to show that Γ(n + 1) = n! for all positive integers n. (Recall that n n! 1 2 3 4= ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅ .)
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CHAPTER 36

Applications of Integration III:  
Area of a Surface of Revolution

If an arc of a curve is revolved about a line that does not intersect the arc, then the resulting surface is called 
a surface of revolution. By the surface area of that surface, we mean the area of its outer surface.

Let f be a continuous function on [a, b] that is differentiable in (a, b) and such that f (x) ≥ 0 for a ≤ x ≤ b. 
Then the surface area S of the surface of revolution generated by revolving the graph of f on [a, b] about the 
x-axis is given by the formula

 S y
dy
dx

dx f x f x dx2 1 2 ( ) 1 ( ( ))
a

b

a

b
2

2∫ ∫π π= + 



 = + ′   (36.1)

For a justification of this formula, see Problem 11.
There is another formula like (36.1) that is obtained when we exchange the roles of x and y. Let g be a 

continuous function on [c, d  ] that is differentiable on (c, d  ) and such that g(  y) ≥ 0 for c ≤ y ≤ d. Then the 
surface area S of the surface of revolution generated by revolving the graph of g on [c,d  ] about the y-axis is 
given by the formula

 S x
dx
dy

dy g y g y dy2 1 2 ( ) 1 ( ( ))
c

d

c

d
2

2∫ ∫π π= + 



 = + ′   (36.2)

Similarly, if a curve is given by parametric equations x = f (u), y = g(u) (see Chapter 37), and if the arc 
from u = u1 to u = u2 is revolved about the x-axis, then the surface area of the resulting surface of revolution 
is given by the formula

 S y
dx
du

dy
du

du2
u

u
2 2

1

2∫π= 



 + 



   (36.3)

Here, we have assumed that f and g are continuous on [u1, u2] and differentiable on (u1, u2), and that y = g(u) ≥ 0 
on [u1, u2]. Another such formula holds in the case of a revolution around the y-axis.

SOLVED PROBLEMS

 1. Find the area S of the surface of revolution generated by revolving about the x-axis the arc of the parabola y2 = 12x 
from x = 0 to x = 3.

By implicit differentiation,

 
dy
dx y

6=    and   
dy
dx

y
y

1
362 2

2+ 



 = +
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By (36.1),

 

S y
y

y
dx x dx

x

2
36

2 12 36

2 (8(12 36) )] 24(2 2 1)

2

0

3

0

3

0
33

2

∫ ∫π π

π π

=
+

= +

= + = −  

 2. Find the area S of the surface of revolution generated by revolving about the y-axis the arc of x = y3 from y = 0 to 
y = 1.

 
dx
dy

y3 2=  and 
dx
dy

y1 1 9
2

4+ 



 = + . So, by (36.2),

 

∫ ∫

∫

π π

π

π

= + = +

= +

= +

S x y dy y y dy

y y dy

y

2 1 9 2 1 9

18
(1 9 ) (36 )

18
2
3

(1 9 ) ]

0

1
4 3 4

0

1

4

0

1
3

4
0
1

1
2

3
2

 
27

(10 10 1)
π= −

 3. Find the area of the surface of revolution generated by revolving about the y-axis the arc of y2 + 4x = 2 ln y from 
y = 1 to y = 3.

 S y
dx
dy

dy y
y
y

dy y dy2 1 2
1

2
(1 )

32
3e

d
2 2

1

3
2

1

3

∫ ∫ ∫π π π π= + 



 = + = + =

 4. Find the area of the surface of revolution generated by revolving the top half of the loop of the curve 8a2y2 = a2x2 - x4  
about the x-axis. (See Fig. 36-1.)

Fig. 36-1

Here 
dy
dx

a x x
a y

2
8

2 3

2= −
   and  dy

dx
a x
a a x

a x
a a x

1 1
( 2 )

8 ( )
(3 2 )
8 ( )

2 2 2 2

2 2 2

2 2 2

2 2 2+ 



 = + −

− = −
−

 

Hence S y
dy
dx

dx
x a x

a

a x

a a x
dx

a
a x x dx a

2 1 2
2 2

3 2

2 2

4
(3 2 )

1
4

a a

a

2

0

2 2

0

2 2

2 2

2
2 2

0

2

∫ ∫

∫

π π

π π

= + 



 = − −

−

= − =

 

5. Find the area of the surface of revolution generated by revolving about the x-axis the bottom half of the ellipse 
x y
16 4

1
2 2

+ = .

 

S y
y x

y
dx x dx

x
x

x

2
16

4 2
64 3

2 3

3
2

64 3 32sin
3

8
8 1

4 3
9

2 2

4

4
2

4

4

2 1

4

4

∫ ∫π π

π π π

=
+

= −

= − +





















= +






− −

−

−
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6. Find the area of the surface of revolution generated by revolving about the x-axis the hypocycloid x = a cos3 q,  
y = a sin3 q.

The required surface is generated by revolving the arc from q = 0 to q = p. We have 
dx
d

a
dy
d

a3 cos sin , 3 sin cos ,2 2

θ θ θ θ θ θ= − =  and 
dx
d

dy
d

a9 cos sin
2 2

2 2 2

θ θ θ θ



 + 



 = . Then

 

S y
dx
d

dy
d

d a a d

a

2(2 ) 2(2 ) ( sin )3 cos sin

12
5

(square units)

2 2

0

3

0

2

2 2

∫ ∫π θ θ θ π θ θ θ θ

π

= 



 + 



 =

=

π π

 

 7. Find the area of the surface of revolution generated by revolving about the x-axis the cardioid  
x = 2 cos q - cos 2q, y = 2 sin q - sin 2q.

The required surface is generated by revolving the arc from q = 0 to q = p. (See Fig. 36-2.) We have

 
dx
d

2sin 2sin 2θ θ θ= − + ,   
dy
d

2cos 2cos2θ θ θ= − ,

Fig. 36-2

and 

 
dx
d

dy
d

8 1 sin sin 2 cos cos2 8 1 cos
2 2

θ θ θ θ θ θ θ( ) ( )



 + 



 = − − = −  

Then

 

S d

d

2 (2sin sin 2 )(2 2 1 cos )

8 2 sin (1 cos )
16 2

5
(1 cos )

128
5

(square units)

0

0
0

3
2

5
2

∫

∫

π θ θ θ θ

π θ θ θ π θ

π

= − −

= − = −











=

π

π
π

 

 8. Show that the surface area of a cylinder of radius r and height h is 2prh.
The surface is generated by revolving about the x-axis the curve y = r from x = 0 to x = h. Since 

dy
dx

0= , 

dy
dx

1 1
2

+ 



 = . Then by (36.1),

 S r dx rx rh2 2 2
h h

0 0∫π π π]( )= = =  

 9. Show that the surface area of a sphere of radius r is 4pr2.
The surface area is generated by revolving about the x-axis the semicircle y r x2 2= −  from x = - r to x = r. 

By symmetry, this is double the surface area from x = 0 to x = r.  Since y2 = r2 - x2,

 y
dy
dx

x2 2= −    and, therefore,   
dy
dx

x
y

= −    and   
dy
dx

x
y

x y
y

r
y

1 1
2 2

2

2 2

2

2

2+ 



 = + = + =  
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Hence, by (36.1),

 S y
r
y

dx r dx r x r2 2 4 1 4 4
r r r2

20 0 0

2∫ ∫π π π π= ⋅ = = 


=  

10. (a) Show that the surface area of a cone with base of radius r and with slant height s (see Fig. 36-3) is prs.

(b) Show that the surface area of a frustum of a cone having bases of radius r1 and r2 and slant height u (see 
Fig. 36-4) is p(r1 + r2)u. (Note that the frustum is obtained by revolving the right-hand segment of the slant 
height around the base of the triangle.)

  

 Fig. 36-3 Fig. 36-4

(a) Cut open the cone along a slant height and open it up as part of a circle of radius s (as shown in Fig. 36-5). 
Note that the portion of the circumference cut off by this region is 2p r (the circumference of the base of the 
cone). Now the desired area S is the difference between p s2 (the area of the circle in Fig. 36-5) and the area 

A1 of the circular sector with central angle q. This area A1 is s s
2

1
2

2 2θ
π π θ( ) = . Since the arc cut off by q is 

2p s - 2p r, we get 
s r

s
2 2θ π π= −

. Thus, A1 = p (s - r)s. Hence, S = p s2 - p (s - r)s = p rs square units.

Fig. 36-5

(b) From the similar triangles in Fig. 36-4, we get 
u
r

u u
r

1

1

1

2

=
+

. Then r2 u1 = r1 ul + r1u. So, u
r u

r r1
1

2 1

= − . Now by 

part (a), the surface area of the frustum is p r2(u1 + u) -  p rl ul = p (r2 -  rl)ul + p r2 u = p r1 u + p r2 u = p  (r1 + r2)u 

square units.
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11.  Sketch a derivation of formula (36.1).
Assume that [a, b] is divided into n equal subintervals, [xk-1, xk], each of length x

b a
n

∆ = −
. The total surface 

area S is the sum of the surface areas Sk generated by the arcs between the points (xk-1,  f (xk-1)) and (xk, f (xk)), each 
of which is approximated by the surface area generated by the line segment between (xk-1, f (xk-1)) and (xk, f (xk)). 
The latter is the area of a frustum of a cone. In the notation of Fig. 36-6, this is, by virtue of Problem 10(b):

 f x f x x y
f x f x

x y2
2k k

k k
1

2 2 1 2 2π π( )( ) ( ) ( ) ( )( ) ( )( ) ( )+ ∆ + ∆ =
+







 ∆ + ∆−

−  

Now 
f x f x

2
k k1( ) ( )+− , being the average of f (xk-1) and f (xk), is between those two values and, by the 

Intermediate Value Theorem, is equal to f xk
*( ) for some xk

*  in (xk-1, xk). Also, x y
y
x

x12 2
2

( )( )∆ + ∆ = + ∆
∆





 ∆ . By 

the Mean Value Theorem 
y
x

f xk
#( )∆

∆ = ′  for some xk
# in (xk-1, xk). Thus, S is approximated by the sum

 f x f x x2 1k k
k

n
* #

2

1
∑ π ( )( ) ( )+ ′ ∆

=

and it can be shown that this sum can be made arbitrarily close to f x f x dx2 1
a

b 2∫π ( )( ) ( )+ ′ .†  Hence, the latter is 
equal to S.

Fig. 36-6

SUPPLEMENTARY PROBLEMS

In Problems 12–20, find the area of the surface of revolution generated by revolving the given arc about the given axis:

12. y = mx from x = 0 to x = 2; x-axis Ans. m m4 1 2π +  

13. y x
1
3

3=  from x = 0 to x = 3; x-axis Ans. p (82√82 - 1)/9

†In general, the following result can be proved:

Bliss’s Theorem:  Assume f and g are continuous on [a, b]. Divide [a, b] into subintervals [xk-1, xk] with a = x0 < x1 < · · · < xn < b,  

and let Dk x = xk - xk-l. In each [xk-1, xk], choose xk
*  and xk

# . Then the approximating sum f x g x xk k k
k

n
* #

1
∑ ( ) ( )∆

=

 can be made arbitrarily 

close to f x g x dx( ) ( )
a

b

∫  by letting n → + ∞ and making the maximum lengths of the subintervals approach 0.
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14. y x1
3

3=  from x = 0 to x = 3; y-axis Ans. 
1
2

9 82 ln 9 82π ( )+ +



  

15. One loop of 8y2 = x2(l - x2); x-axis Ans. 
1
4

π  

16. y = x3/6 + l/2x from x = 1 to x = 2; y-axis Ans. 
15
4

ln 2 π+





 

17. y = ln x from x = 1 to x = 7; y-axis  Ans. 34 2 ln 3 2 2 π( )+ +



  

18. One loop of 9y2 = x(3 - x)2; y-axis Ans. 28p √3/5

19. An arch of x = a(q - sin q ), y = a(1 - cos q ); x-axis Ans. 64p  a2/3

20. x = e t cos t, y = et sin t from t = 0 to t
1
2

π= ; x-axis Ans. 2p   √2(2ep + l)/5

21. Find the surface area of a zone cut from a sphere of radius r by two parallel planes, each at a distance a
1
2  from 

the center.

Ans. 2par

22. Find the surface area of a torus (doughnut) generated by revolving the circle x2 + (y -b)2 = a2 about the x-axis. 
Assume 0 < a < b.

Ans. 4p2ab
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CHAPTER 37

Parametric Representation  
of Curves

PARAMETRIC EQUATIONS

If the coordinates (x, y) of a point P on a curve are given as functions x = f (u), y = g(u) of a third variable or 
parameter, u, the equations x = f (u) and y = g(u) are called parametric equations of the curve.

EXAMPLE 37.1:

(a)  x = cos q, y = 4 sin2 q  are parametric equations, with parameter q, of the parabola 4x2 + y = 4, since  
4x2 + y = 4 cos2 q + 4 sin2 q = 4.

(b) x t1
2= , y = 4 − t2 is another parametric representation, with parameter t, of the same curve.

It should be noted that the first set of parametric equations represents only a portion of the parabola [Fig. 37-1(a)],  
whereas the second represents the entire curve [Fig. 37-1(b)].

O

(a)

x

y

q = 0
q = p

q = 3
4p q = 1

4p

q = 1
2p

   
Fig. 37-1

EXAMPLE 37.2:

(a)  The equations x = r cos q, y = r sin q represent the circle of radius r with center at the origin, since  
x 2 + y 2 = r 2 cos2 q + r 2 sin2 q = r 2(cos2 q + sin2 q) = r 2. The parameter q can be thought of as the angle from the 
positive x-axis to the segment from the origin to the point P on the circle (Fig. 37-2).

(b)  The equations x = a + r cos q, y = b + r sin q represents the circle of radius r with center at (a, b), since  
(x − a)2 + (y − b)2 = r 2 cos2 q + r 2 sin2 q = r 2 (cos2 q + sin2 q) = r 2.
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Fig. 37-2

Assume that a curve is specified by means of a pair of parametric equations x = f (u) and y = g(u). Then 

the first and second derivatives 
dy
dx

 and 
d y
dx

2

2  are given by the following formulas.

(37.1) FIRST DERIVATIVE

 
dy
dx

dy
du

dx
du

= 











This follows from the Chain Rule formula 
dy
du

dy
dx

dx
du

= ⋅ .

(37.2) SECOND DERIVATIVE

 
d y
dx

d
du

dy
dx

dx
du

2

2 = 











 

This follows from the Chain Rule formula 
d
du

dy
dx

d y
dx

dx
du

2

2




 = ⋅ .

ARC LENGTH FOR A PARAMETRIC CURVE

If a curve is given by parametric equations x = f (t), y = g(t), then the length of the arc of the curve between 
the points corresponding to parameter values t1 and t2 is

 L
dx
dt

dy
dt

dt
t

t
2 2

1

2∫= 



 + 





This formula can be derived by an argument similar to that for the arc length formula (29.2).

SOLVED PROBLEMS

 1. Find 
dy
dx

 and 
d y
dx

2

2  if x = t − sin t, y = 1 − cos t.

dx
dt

t1 cos= −  and 
dy
dt

tsin= .   By (37.1), 
dy
dx

t
t

sin
1 cos

= − . Then

 

d
dt

dy
dx

t t t t
t

t t t
t

t
t t

(1 cos ) (cos ) (sin ) (sin )
(1 cos )

cos (cos sin )
(1 cos )

cos 1
(1 cos )

1
cos 1

2

2 2

2 2





 =

− −
−

=
− +

− =
−

− = −
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Hence, by (37.2),

 
d y
dx t

t
t

1
cos 1

(1 cos )
1

(1 cos )

2

2 2= − − = − −

 2. Find 
dy
dx

 and 
d y
dx

2

2  if x = et cos t, y = et sin t.

dx
dt

e t t(cos sin )t= −       and    
dy
dt

e t t(cos sin )t= + . By (37.1), 
dy
dx

t t
t t

cos sin
cos sin

.=
+
−  Then

 

d
dt

dy
dx

t t t t t t
t t

t t t t
t t

t t
t t

t t

(cos sin ) (cos sin )( sin cos )
(cos sin )

(cos sin ) (cos sin )
(cos sin )

2(cos sin )
(cos sin )

2
(cos sin )

2

2

2 2

2

2 2

2

2





 =

− − + − −
−

=
− + +

− = +
−

= −

So, by (37.2),

 
d y
dx t t

e t t
e t t

2
(cos sin )

(cos sin )
2

(cos sin )
t

t

2

2 2= − − = −  

 3. Find an equation of the tangent line to the curve x t= , y t
t

1= −  at the point where t = 4.

dx
dt t

1
2

=      and    
dy
dt t

1
1

2 3/2= + . By (37.1), 
dy
dx

t
t

2
1= + . So, the slope of the tangent line when t = 4 is 

2 4 1
4

17
4+ = . When t = 4, x = 2 and y 7

2= .  An equation of the tangent line is y x( 2)7
2

17
4− = − .

 4. The position of a particle that is moving along a curve is given at time t by the parametric equations x = 
2 − 3 cos t, y = 3 + 2 sin t, where x and y are measured in feet and t in seconds. (See Fig. 37-3.) Note that 

x y( 2) ( 3) 11
9

2 1
4

2− + − = , so that the curve is an ellipse. Find: (a) the time rate of change of x when t = π/3;  
(b) the time rate of change of y when t = 5π/3; (c) the time rate of change of the angle of inclination q of the 
tangent line when t = 2π/3.

dy
dt

t3sin=     and    
dy
dt

t2cos= . Then 
dy
dx

ttan cot2
3θ = = .

(a) When t
3
π= , 

dx
dt

3 3
2

ft/sec=  

(b) When t
5
3
π= , 

dy
dt

2( ) 1 ft/sec1
2= =  

(c) ttan ( cot )1 2
3θ = − . So, 

d
dt

t
t t

t
t

csc
1 cot

6 csc
9 4 cot

.
2
3

2

4
9

2

2

2

θ =
−
+ =

−
+

•(2, 3)t = 0

t =

y

O
x

q

p1
3 t = p2

3

t = p5
3

Fig. 37-3
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When t
2
3
π= , 

d
dt

6(2/ 3)

9 4( 1/ 3)

24
31

2

2

θ = −
+ −

= − . Thus, the angle of inclination of the tangent line is decreasing at the 

rate of 24
31  radians per second.

 5. Find the arc length of the curve x = t2, y = t3 from t = 0 to t = 4.

dx
dt

t2= , 
dy
dt

t3 2=  and 
dx
dt

dy
dt

t t t t4 9 4 (1 )
2 2

2 4 2 9
4

2



 + 



 = + = + . Then 

 

L t t dt t t dt

t

2 1 (1 ) ( )

(1 ) (37 37 1)

9
4

2

0

4
4
9

9
4

2 1/2 9
2

0

4

4
9

2
3

9
4

2 3/2
0

4 8
27

∫ ∫
]

= + = +

= + = −

 6. Find the length of an arch of the cycloid x = q − sin q, y = 1 − cos q between q = 0 and q = 2π.

dx
d

1 cosθ θ= − ,    
dy
d

sinθ θ=     and    
dx
d

dy
d

(1 cos ) sin 2(1 cos ) 4sin
2

2 2

2 2 2

θ θ θ θ θ θ



 + 



 = − + = − = 



 . Then

 L d2 sin
2

4 cos
2

4(cos cos0) 8
0

4

0

2

∫
θ θ θ π= 



 = − 







= − − =
π

SUPPLEMENTARY PROBLEMS

In Problems 7–11, find: (a) 
dy
dx

; (b) 
d y
dx

2

2 .

 7. x = 2 + t, y = 1 + t2 Ans. (a) 2t; (b) 2

 8. x = t + 1/t, y = t + 1 Ans. (a) t2/(t2 − 1); (b) − 2t3/(t 2 − 1)3

 9. x = 2 sin t, y = cos 2t Ans. (a) −2 sin t; (b) −1

10. x = cos3 q, y = sin3 q Ans. (a) −tan q ; (b) 1/(3 cos4 q sin q)

11. x a(cos sin )φ φ φ= + , y a(sin cos )φ φ φ= −  Ans. (a) tan φ ; (b) a1/( cos )3φ φ  

12. Find the slope of the curve x = e–t cos 2t, y = e–2t sin 2t at the point t = 0.

Ans.  −2

13. Find the rectangular coordinates of the highest point of the curve x = 96t, y = 96t − 16t2. (Hint: Find t for 
maximum y.)

Ans. (288, 144)

14. Find equations of the tangent line and normal line to the following curves at the points determined by the given 
value of the parameter:

(a) x = 3et, y = 5e–t at t = 0
(b) x = a cos4 q, y = a sin4 q at 4

θ π=

Ans. (a) 3y + 5x = 30, 5y − 3x = 16; (b) 2x + 2y = a, y = x
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331CHAPTER 37 Parametric Representation of Curves 

15. Find an equation of the tangent line at any point P(x, y) of the curve x = a cos3 t, y = a sin3 t. Show that the length 
of the segment of the tangent line intercepted by the coordinate axes is a.

Ans. x t y t
a

tsin cos
2

sin 2+ =  

16. For the curve x = t2 − 1, y = t3 − t, locate the points where the tangent line is (a) horizontal, and (b) vertical. Show 
that, at the point where the curve crosses itself, the two tangent lines are mutually perpendicular.

Ans. (a) t 3
3

= ± ; (b) t = 0

In Problems 17–20, find the length of the specified arc of the given curve.

17. The circle x = a cos q, y = a sin q from q = 0 to q = 2π.

Ans. 2πa

18. x = et cos t, y = et sin t from t = 0 to t = 4.

Ans. e2( 1)4 −  

19. x tln 1 2= + , y = tan–1 t from t = 0 to t = 1.

Ans. ln(1 2)+  

20. x = 2 cos q + cos 2q + 1, y = 2 sin q + sin 2q.

Ans. 16

21. The position of a point at time t is given as x t1
2

2= , y t(6 9)1
9

3/2= + . Find the distance the point travels from  
t = 0 to t = 4.

Ans. 20

22. Identify the curves given by the following parametric equations and write equations for the curves in terms of x and y:

(a) x = 3t + 5, y = 4t − 1 Ans. Straight line: 4x − 3y = 23
(b) x = t + 2, y = t2 Ans. Parabola: y = (x − 2)2

(c) x = t − 2, y
t

t 2
= −  Ans. Hyperbola: y x

2
1= +  

(d) x = 5 cos t, y = 5 sin t Ans. Circle: x2 + y2 = 25

23. (GC) Use a graphing calculator to find the graphs of the following parametric curves:

(a) x = q + sin q, y = 1 − cos q  (cycloid)
(b) x = 3 cos3 q, y = 3 sin3 q  (hypocycloid)
(c) x = 2 cot q, y = 2 sin2 q  (witch of Agnesi)

(d) x
3

(1 )3

θ
θ= + , y

3
(1 )

2

3

θ
θ= +   (folium of Descartes)
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CHAPTER 38

Curvature

DERIVATIVE OF ARC LENGTH

Let y = f (x) have a continuous first derivative. Let A(x0, y0) be a fixed point on its graph (see Fig. 38-1) and denote 
by s the arc length measured from A to any other point P(x, y) on the curve. We know that, by formula (29.2),

s
dy
dx

dx1
x

x
2

0
∫= + 



  

if s is chosen so as to increase with x. Let Q(x + ∆x, y + ∆y) be a point on the curve near P. Let ∆ s denote 
the arc length from P to Q. Then

ds
dx

s
x

dy
dx

lim 1
x 0

2

=
∆
∆ = ± + 



∆ →

 

and, similarly,

ds
dy

s
y

dx
dy

lim 1
y 0

2

=
∆
∆ = ± + 



∆ →

 

The plus or minus sign is to be taken in the first formula according as s increases or decreases as x increases, 
and in the second formula according as s increases or decreases as y increases.

Fig. 38-1

 When a curve is given by parametric equations x = f (u), y = g(u),

ds
du

s
u

dx
du

dy
du

lim
u 0

2 2

= ∆
∆ = ± 



 + 



∆ →

 

Here the plus or minus sign is to be taken according as s increases or decreases as u increases.
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334 CHAPTER 38 Cur vature

To avoid the repetition of ambiguous signs, we shall assume hereafter that the direction on each arc has 
been established so that the derivative of arc length will be positive.

CURVATURE

The curvature K of a curve y = f (x) at any point P on it is defined to be the rate of change of the direction of 
the curve at P, that is, of the angle of inclination t of the tangent line at P, with respect to the arc length s. 
(See Fig. 38-2.) Intuitively, the curvature tells us how fast the tangent line is turning. Thus, the curvature is 
large when the curve bends sharply.

Fig. 38-2

As formulas for the curvature, we get:

 K
d
ds s

d y
dx

dy
dx

lim

1
s 0

2

2

2 3/2

τ τ= = ∆
∆ =

+ 











∆ →
  (38.1)

or, in terms of y,

 K

d x
dy

dx
dy

1

2

2

2 3/2=
−

+ 











  (38.2)

For a derivation, see Problem 13.
K is sometimes defined so as to be positive. If this is assumed, then the sign of K should be ignored in 

what follows.

THE RADIUS OF CURVATURE

The radius of curvature R at a point P on a curve is defined by R
K
1= , provided that K ≠ 0.

THE CIRCLE OF CURVATURE

The circle of curvature, or osculating circle of a curve at a point P on it, is the circle of radius R lying on the 
concave side of the curve and tangent to it at P. (See Fig. 38-3.)

Fig. 38-3
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335CHAPTER 38 Curvature

To construct the circle of curvature on the concave side of the curve, construct the normal line at P and on 
it lay off a segment PC of length R. The point C is the center of the required circle.

THE CENTER OF CURVATURE

The center of curvature for a point P(x, y) of a curve is the center C of the circle of curvature at P. The 
coordinates (a, b ) of the center of curvature are given by

x

dy
dx

dy
dx

d y dx
y

dy
dx

d y dx

1

/

1

/

2

2 2

2

2 2α β= −
+ 















= +
+ 





 

or by

x

dx
dy

d x dy
y

dx
dy

dx
dy

d x dy

1

/

1

/

2

2 2

2

2 2α β= +
+ 





= −
+ 















 

See Problem 9 for details.

THE EVOLUTE

The evolute of a curve is the locus of the centers of curvature of the given curve. (See Problems 11–12.)

SOLVED PROBLEMS

 1. Find 
ds
dx

 at P(x, y) on the parabola y = 3x2.

ds
dx

dy
dx

x x1 1 (6 ) 1 36
2

2 2= + 



 = + = +  

 2. Find 
ds
dx

 and 
ds
dy

 at P(x, y) on the ellipse x2 + 4y2 = 8.

Since x y
dy
dx

2 8 0+ = , 
dy
dx

x
y4

= −  and 
dx
dy

y
x

4= − . Then

dy
dx

x
y

x y
y

x
x

1 1
16

16
16

32 3
32 4

2 2

2

2 2

2

2

2+ 



 = + = + = −

−  and 
ds
dx

x
x

32 3
32 4

2

2= −
−  

dx
dy

y
x

x y
x

y
y

1 1
16 16 2 3

2

2 2

2

2 2

2

2

2+ 



 = + = + = +

−  and 
ds
dy

y
y

2 3
2

2

2= +
−  

 3. Find 
ds
dθ  at P(q ) on the curve x = sec q, y = tan q.

ds
d

dx
d

dy
d

sec tan sec |sec | tan sec
2 2

2 2 4 2 2

θ θ θ θ θ θ θ θ θ= 



 + 



 = + = +  
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336 CHAPTER 38 Cur vature

 4. The coordinates (x, y) in feet of a moving particle P are given by x = cos t – 1, y = 2 sin t + 1, where t is the time 
in seconds. At what rate is P moving along the curve when (a) t = 5π/6, (b) t = 5π/3, and (c) P is moving at its 
fastest and slowest?

ds
dt

dx
dt

dy
dt

t t tsin 4 cos 1 3cos
2 2

2 2 2= 



 + 



 = + = +   

(a) When t = 5π/6, ds dt/ 1 3( ) 13/2 ft/sec.3
4= + =  

(b) When t = 5π/3, ds dt/ 1 3( ) 7/2 ft/sec.1
4= + =  

(c) Let S
ds
dt

t1 3cos2= = + . Then 
dS
dt

t t
S

3cos sin= −
. Solving dS/dt = 0 gives the critical numbers t = 0,  

π/2, π, 3π/2.

 When t = 0 and π, the rate dsdt/ 1 3(1) 2 ft/sec= + =  is fastest. When t = π/2 and 3π/2, the rate 
ds dt/ 1 3(0) 1 ft/sec= + =  is slowest. The curve is shown in Fig. 38-4.

Fig. 38-4

 5. Find the curvature of the parabola y2 = 12x at the points: (a) (3, 6); (b) ( 3
4, –3); (c) (0, 0).

dy
dx y

6
;=  so 

dy
dx y

1 1
362

2+ 



 = +  and 

d y
dx y

dy
dx y

6 362

2 2 3= − = −  

(a) At (3, 6): 
dy
dx

1 2
2

+ 



 =  and 

d y
dx

1
6

2

2 = − , so K
1/6
2

2
24

.3/2= − = −  

(b) At ( , 3)3
4 − : 

dy
dx

1 5
2

+ 



 =  and 

d y
dx

4
3

2

2 = , so K
4/3
5

4 5
75

.3/2= =  

(c) At (0, 0), 
dy
dx

 is undefined. But 
dx
dy

y
6

0= = , 
dx
dy

1 1
2

+ 



 = , 

d x
dy

1
6

2

2 = , and K
1
6

.= −  

 6. Find the curvature of the cycloid x = q – sin q, y = 1 – cos q at the highest point of an arch. (See Fig. 38-5.)

Fig. 38-5
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337CHAPTER 38 Curvature

To find the highest point on the interval 0 < x < 2π; dy/dq = sin q, so that the critical number on the interval is 
x = π. Since d2y/dq 2 = cos q < 0 when q = π, the point q = π is a relative maximum point and is the highest point 
of the curve on the interval.

To find the curvature,

dx
d

dy
d

dy
dx

d y
dx

d
d

d
dx

1 cos , sin ,
sin

1 cos
,

sin
1 cos

1
(1 cos )

2

2 2θ θ θ θ θ
θ θ

θ
θ

θ
θ= − = = − = −





 = − −  

At q = π, dy/dx = 0, d y dx/2 2 1
4= − , and K 1

4= − .

 7. Find the curvature of the cissoid y2(2 – x) = x3 at the point (1, 1). (See Fig. 38-6.)

Fig. 38-6

Differentiating the given equation implicitly with respect to x, we obtain

 y x yy x(2 )2 32 2− + − ′ =  (1)

and

 yy x yy x y yy x2 (2 )2 (2 )2( ) 2 62− ′ + − ′′ + − ′ − ′ =   (2)

From (1), for x = y = 1, –1 + 2y′ = 3 and y′ = 2. Similarly, from (2), for x = y = 1 and y′ = 2, we find y′′ = 3. Then 

K 3/(1 4) 3 5/253/2= + = .

 8. Find the point of greatest curvature on the curve y = ln x.

dy
dx x

1=  and 
d y
dx x

1
.

2

2 2= −  So, K
x

x(1 )2 3/2= −
+  and 

dK
dx

x
x

2 1
(1 )

2

2 5/2= −
+  

The critical number is, therefore, x
1

2
= . The required point is 

1

2
,

ln 2
2

−





.

 9. Find the coordinates of the center of curvature C of the curve y = f (x) at a point P(x, y) at which y′ ≠ 0. (See Fig. 38-3.)

The center of curvature C(a, b ) lies: (1) on the normal line at P and (2) at a distance R from P measured  
toward the concave side of the curve. These conditions give, respectively,

y
y

x
1

( )β α− = − ′ −  and x y R
y

y
( ) ( )

[1 ( ) ]
( )

2 2 2
2 3

2α β− + − = = + ′
′′  

From the first, a – x = – y′(b – y). Substitution in the second yields

y y
y

y
( ) [1 ( ) ]

[1 ( ) ]
( )

2 2
2 3

2β − + ′ = + ′
′′  and therefore, y

y
y

1 ( )2

β − = ± + ′
′′  
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To determine the correct sign, note that when the curve is concave upward, y′′ > 0 and, since C then lies above P, 
b – y > 0. Thus, the proper sign in this case is +. (You should show that the sign is also + when y′′ < 0.) Thus,

y
y

y
1 ( )2

β = + + ′
′′  and x

y y
y

[1 ( ) ]2

α = − ′ + ′
′′  

10. Find the equation of the circle of curvature of 2xy + x + y = 4 at the point (1, 1).

Differentiating yields 2y + 2xy′ + 1 + y′ = 0. At (1, 1), y′ = –1 and 1 + (y′)2 = 2. Differentiating again yields 
4y′ + 2xy′′ + y′′ = 0. At (1, 1), y 4

3′′ = . Then

K R
4/3

2 2
,

3 2
2

, 1
1(2)
4/3

5
2

, 1
2

4/3
5
2

α β= = = − − = = + =  

The required equation is (x – a)2 + (y – b )2 = R2 or x y( ) ( )5
2

2 5
2

2 9
2− + − = .

11. Find the equation of the evolute of the parabola y2 = 12x.

At P(x, y):

dy
dx y x

dy
dx y x

d y
dx y x

6 3
, 1 1

36
1

3
,

36 3
2

2

2

2

2 3 3/2= = + 



 = + = + = − = −

 

Then

x
x x

x
x

x
x

3/ (1 3/ )

3/2

2 3( 3)

3
3 6

3/2
α = −

+
−

= + + = +  

and

y
y

y
y

y y y1 36/
36/

36
36 36

2

3

3 3

β = +
+
− = − + = −  

The equations a = 3x + 6, b = – y3/36 may be regarded as parametric equations of the evolute with x and y, con-
nected by the equation of the parabola, as parameters. However, it is relatively simple in this problem to elimi-
nate the parameters. Thus, x = (a – 6)/3, y 363 β= − , and substituting in the equation of the parabola, we have

(36 ) 4( 6)2/3β α= −  or 81 4( 6)2 3β α= −  

The parabola and its evolute are shown in Fig. 38-7.

Fig. 38-7
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12. Find the equation of the evolute of the curve x = cos q + q sin q, y = sin q – q cos q.

At P(x, y):

dx
d

dy
d

dy
dx

d y
dx

cos , sin , tan ,
sec

cos
sec2

2

2 3

θ θ θ θ θ θ θ θ
θ θ

θ
θ= = = = =  

Then

x x
tan sec
(sec )/

sin cos
2

3α θ θ
θ θ θ θ θ= − = − =  

and

y y
sec

(sec )/
cos sin

2

3β θ
θ θ θ θ θ= + = + =  

and a = cos q, b = sin q are parametric equations of the evolute (see Fig. 38-8).

Fig. 38-8

 13. Derive formula (38.1).

tan t is the slope of the tangent line and therefore,

dy
dx

tan .τ=  So, 
d
ds

dy
dx

d
d

dy
dx

d
dsτ
τ



 = 



 ⋅  

Hence,

d
dx

dy
dx

dx
ds

d
ds

sec2 τ τ



 ⋅ = ⋅  

This yields

d y
dx dy

dx

dy
dx

d
ds

1

1

1
2

2 2

2 τ⋅

+ 





= + 











⋅  

from which

d
ds

d y
dx

dy
dx

1

2

2

2 3/2

τ =

+ 
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SUPPLEMENTARY PROBLEMS

In Problems 14–16, find 
ds
dx

 and 
ds
dy

.

14. x2 + y2 = 25 Ans. 
ds
dx x

5

25 2
=

−
, 

ds
dy y

5

25 2
=

−
 

15. y2 = x3 Ans. 
ds
dx

x4 91
2= + , 

ds
dy

y
y

4 9
3

2/3

1/3=
+

 

16. x2/3 + y2/3 = a2/3 Ans. 
ds
dx

a x( / )1/3= , 
ds
dy

a
y

1/3

= 



  

In Problems 17 and 18, find 
ds
dx

.

17. 6xy = x4 + 3 Ans. 
ds
dx

x
x

1
2

4

2= +
 

18. 27ay2 = 4(x – a)3 Ans. 
ds
dx

x a a( 2 )/3= +  

In Problems 19–22, find 
ds
dt

.

19. x = t2, y = t3 Ans. t t4 9 2+  

20. x = 2 cos t, y = 3 sin t Ans. t4 5cos2+  

21. x = cos t, y = sin t Ans. 1

22. x = cos3 t, y = sin3 t Ans. tsin 23
2  

23. Find the curvature of each curve at the given points:

(a) y = x3/3 at x = 0, x = 1, x = –2 (b) x2 = 4ay at x = 0, x = 2a
(c) y = sin x at x = 0, x 1

2 π=  (d) y e x2= −  at x = 0

Ans. (a) 0, 2/2, 4 17/289− ; (b) 1/2a, a2/8 ; (c) 0, −1; (d) −2

24. Show (a) the curvature of a straight line is 0; (b) the curvature of a circle is numerically the reciprocal  
of its radius.

25. Find the points of maximum curvature of (a) y = ex; (b) y x1
3

3= .

Ans. (a) x ln 21
2= − ; (b) x 1

51/4=  

26. Find the radius of curvature of

(a) x3 + xy2 − 6y2 = 0 at (3, 3).
(b) x = 2a tan q, y = a tan2 q at (x, y).
(c) x = a cos4 q, y = a sin4 q at (x, y).

Ans. (a) 5 5 ; (b) a2 | sec |3 θ ; (c) 2a(sin4 q + cos4 q )3/2
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27. Find the center of curvature of (a) Problem 26(a); (b) y = sin x at a maximum point.

Ans. (a) C(−7, 8); (b) C 2
, 0

π



  

28. Find the equation of the circle of curvature of the parabola y2 = 12x at the points (0, 0) and (3, 6).

Ans. (x − 6)2 + y2 = 36; (x − 15)2 + ( y + 6)2 = 288

29. Find the equation of the evolute of (a) b2x2 + a2y2 = a2b2; (b) x2/3 + y2/3 + a2/3; (c) x = 2 cos t + cos 2t,  
y = 2 sin t + sin 2t.

Ans. (a) (aa)2/3 + (bb)2/3 = (a2 − b2)2/3; (b) (a + b)2/3 + (a − b)2/3 = 2a2/3; (c) t t(2cos cos2 )1
3α = − , 

t t(2sin sin 2 )1
3β = −
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CHAPTER 39

Plane Vectors

SCALARS AND VECTORS

Quantities such as time, temperature, and speed, which have magnitude only, are called scalars. Quantities 
such as force, velocity, and acceleration, which have both magnitude and direction, are called vectors. Vectors 
are represented geometrically by directed line segments (arrows). The direction of the arrow (the angle that 
it makes with some fixed directed line of the plane) is the direction of the vector, and the length of the arrow 
represents the magnitude of the vector.

Scalars will be denoted by letters a, b, c, . . . in ordinary type; vectors will be denoted in bold type by 
letters a, b, c, . . ., or by an expression of the form OP (where it is assumed that the vector goes from O to P. 
[See Fig. 39-1(a).] The magnitude (length) of a vector a or OP will be denoted |a| or |OP|.

Fig. 39-1

Two vectors a and b are said to be equal (and we write a = b) if they have the same direction and magni-
tude. A vector whose magnitude is that of a, but whose direction is opposite that of a, is called the negative 
of a and is denoted −a. [See Fig. 39-1(a).]

If a is a vector and k is a positive scalar, then ka is defined to be a vector whose direction is that of a and 
whose magnitude is k times that of a. If k is a negative scalar, then ka has direction opposite that of a and 
has magnitude |k| times that of a.

We also assume a zero vector 0 with magnitude 0 and no direction. We define −0 = 0, 0a = 0, and k0 = 0.
Unless indicated otherwise, a given vector has no fixed position in the plane and so may be moved under 

parallel displacement at will. In particular, if a and b are two vectors [Fig. 39-1(b)], they may be placed so 
as to have a common initial or beginning point P [Fig. 39-1(c)] or so that the initial point of b coincides with 
the terminal or endpoint of a [Fig. 39-1 (d)].

SUM AND DIFFERENCE OF TWO VECTORS

If a and b are the vectors of Fig. 39-1(b), their sum a + b is to be found in either of two equivalent ways:

1.  By placing the vectors as in Fig. 39-1(c) and completing the parallelogram PAQB of Fig. 39-2(a). The 
vector PQ is the required sum.

2.  By placing the vectors as in Fig. 39-1(d) and completing the triangle PAB of Fig. 39-2(b). Here, the 
vector PB is the required sum.

It follows from Fig. 39-2(b) that three vectors may be displaced to form a triangle, provided that one of 
them is either the sum or the negative of the sum of the other two.
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Fig. 39-2

If a and b are the vectors of Fig. 39-1(b), their difference a − b is to be found in either of two equivalent 
ways:

1. From the relation a − b = a + (− b) as in Fig. 39-2(c).
2. By placing the vectors as in Fig. 39-1(c) and completing the triangle. In Fig. 39-2(d), the vector

  BA = a − b.

If a, b, and c are vectors, the following laws are valid.

PROPERTY (39.1) (Commutative Law) a + b = b + a
PROPERTY (39.2) (Associative Law) a + (b + c) = (a + b) + c
PROPERTY (39.3) (Distributive Law) k(a + b) = ka + kb

See Problems 1–4.

COMPONENTS OF A VECTOR

In Fig. 39-3(a), let a = PQ be a given vector, and let PM and PN be any two other directed lines through P. 
Construct the parallelogram PAQB. Then

a = PA + PB

and a is said to be resolved in the directions PM and PN. We shall call PA and PB the vector components of 
a in the pair of directions PM and PN.

Consider next the vector a in a rectangular coordinate system [Fig. 39-3(b)], having equal units of mea-
sure on the two axes. Denote by i the vector from (0, 0) to (1, 0), and by j the vector from (0, 0) to (0, 1).  
The direction of i is that of the positive x-axis, the direction of j is that of the positive y-axis, and both are 
unit vectors, that is, vectors of magnitude 1.

From the initial point P and the terminal point Q of a, drop perpendiculars to the x-axis, meeting it at M 
and N, respectively, and to the y-axis, meeting it at S and T, respectively. Now MN = a1i, with a1 positive, 
and ST = a2  j, with a2 negative. Then: MN = RQ = a1i, ST = PR = a2  j, and

 = +a aa i j1 2   (39.1)

Fig. 39-3
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Let us call a1i and a2  j the vector components of a.† The scalars a1 and a2 will be called the scalar compo-
nents (or the x-component and y-component, or simply the components) of a. Note that 0 = 0i + 0j.

Let the direction of a be given by the angle q, with 0 ≤ q < 2π, measured counterclockwise from the 
positive x-axis to the vector. Then

 = +a aa| | 1
2

2
2   (39.2)

and

 θ =
a
a

tan 2

1

  (39.3)

with the quadrant of q being determined by

 θ θ= =a aa a| | cos , | | sin1 2  

If a = a1i + a2  j and b = b1  j + b2  j, then the following hold.

PROPERTY (39.4) a = b if and only if a1 = b1 and a2 = b2

PROPERTY (39.5) ka = ka1i + ka2  j
PROPERTY (39.6) a + b = (a1 + b1)i + (a2 + b2)j
PROPERTY (39.7) a − b = (a1 − b1)i + (a2 − b2)j

SCALAR PRODUCT (OR DOT PRODUCT)

The scalar product (or dot product) of vectors a and b is defined by

 θ=a b a b| || | cos.   (39.4)

where q is the smaller angle between the two vectors when they are drawn with a common initial point (see 
Fig. 39-4). We also define: a · 0 = 0 · a = 0.

Fig. 39-4

From the definitions, we can derive the following properties of the scalar product.

PROPERTY (39.8) (Commutative Law) =a b b a. .  
PROPERTY (39.9) = =a a a a a a. | | and | | .2  
PROPERTY (39.10) a · b = 0 if and only if (a = 0 or b = 0 or a is perpendicular to b)
PROPERTY (39.11) i · i = j · j = 1 and i · j = 0
PROPERTY (39.12) == + + = +a a b b a b a ba b i j i j. ( ) . ( )1 2 1 2 1 1 2 2 
PROPERTY (39.13) (Distributive Law) ==+ +a b c a b a c. ( ) . .  
PROPERTY (39.14) ==+ + + + +a b c d a c a d b c b d( ) . ( ) . . . .  

†A pair of directions (such as OM and OT ) need not be mentioned, since they are determined by the coordinate system.
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SCALAR AND VECTOR PROJECTIONS

In equation (39.1), the scalar a1 is called the scalar projection of a on any vector whose direction is that of 
the positive x-axis, while the vector a1i is called the vector projection of a on any vector whose direction is 

that of the positive x-axis. In general, for any nonzero vector b and any vector a, we define a
b

|b|
.  to be the 

scalar projection of a on b, and 






a
b

|b|
b

|b|
.  to be the vector projection of a on b. (See Problem 7.) Note that 

when b has the direction of the positive x-axis, =b
|b|

i.

PROPERTY (39.15) a · b is the product of the length of a and the scalar projection of b on a. Likewise, a · b 
is the product of the length of b and the scalar projection of a on b. (See Fig. 39-5.)

Fig. 39-5

DIFFERENTIATION OF VECTOR FUNCTIONS

Let the curve of Fig. 39-6 be given by the parametric equations x = f (u) and y = g(u). The vector

= + = +x y f u g ur i j i j( ) ( )  

joining the origin to the point P(x, y) of the curve is called the position vector or the radius vector of P. It is a 
function of u. [From now on, the letter r will be used exclusively to denote position vectors. Thus, a = 3i + 4j  
is meant to be a “free” vector, whereas r = 3i + 4j is meant to be the vector joining the origin to P(3, 4).]

The derivative 
d
du

r
 of the function r with respect to u is defined to be 

+ ∆ −
∆∆ →

u u u
u

r r
lim

( ) ( )
u 0

.

Straightforward computation yields:

 = +d
du

dx
du

dy
du

r
i j   (39.5)

Let s denote the arc length measured from a fixed point P0 of the curve so that s increases with u. If t is 
the angle that dr/du makes with the positive x-axis, then

τ = 









 = =dy

du
dx
du

dy
dx

Ptan the slope of the curve at  

Fig. 39-6
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Moreover, 
d
du

r
 is a vector of magnitude

 = 



 + 



 =d

du
dx
du

dy
du

ds
du

r 2 2

  (39.6)

whose direction is that of the tangent line to the curve at P. It is customary to show this vector with P as its 
initial point.

If now the scalar variable u is taken to be the arc length s, then equation (39.5) becomes

 = = +d
ds

dx
ds

dy
ds

t
r

i j   (39.7)

The direction of t is t, while its magnitude is 



 + 





dx
ds

dy
ds

2 2

, which is equal to 1. Thus, t = dr/ds is the 
unit tangent vector to the curve at P.

Since t is a unit vector, t and dt /ds are perpendicular. (See Problem 10.) Denote by n a unit vector at P 
having the direction of dt /ds. As P moves along the curve shown in Fig. 39-7, the magnitude of t remains 
constant; hence dt /ds measures the rate of change of the direction of t. Thus, the magnitude of dt /ds at P is 
the absolute value of the curvature at P, that is, |dt/ds| = |K|, and

 =d
ds

K
t

n| |  (39.8)

Fig. 39-7

SOLVED PROBLEMS

 1. Prove a + b = b + a.

 From Fig. 39-8, a + b = PQ = b + a.

Fig. 39-8

 2. Prove (a + b) + c = a + (b + c).

 From Fig. 39-9, PC = PB + BC = (a + b) + c. Also, PC = PA + AC = a + (b + c).
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Fig. 39-9

 3. Let a, b, and c be three vectors issuing from P such that their endpoints A, B, and C lie on a line, as shown in 
Fig. 39-10. If C divides BA in the ratio x : y, where x + y = 1, show that c = xa + yb.

 Just note that

= + = + − = + − = +x x x x yc PB BC b a b a b a b( ) (1 )  

 As an example, if C bisects BA, then = +c a b( )1
2  and = −BC a b( )1

2 .

Fig. 39-10

 4. Prove: The diagonals of a parallelogram bisect each other.

Let the diagonals intersect at Q, as in Fig. 39-11. Since PB = PQ + QB = PQ − BQ, there are positive 
numbers x and y such that b = x(a + b) − y(a − b) = (x − y)a + (x + y)b. Then x + y = 1 and x − y = 0. Hence, 

= =x y 1
2 , and Q is the midpoint of each diagonal.

Fig. 39-11

 5. For the vectors a = 3i + 4j and b = 2i − j, find the magnitude and direction of (a) a and b; (b) a + b; (c) b − a.

(a) For a = 3i + 4j: = + = + =a aa| | 3 4 51
2

2
2 2 2 ; θ = a atan / =2 1

4
3  and θ = =a acos /| |1

3
5 ; then q is a first quadrant 

angle and is 53°8′.

  For b = 2i − j: = + =b| | 4 1 5; θ = −tan 1
2  and θ =cos 2/ 5 ; q = 360° − 26°34′ = 333°26′.
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(b) a + b = (3i + 4j) + (2i − j) = 5i + 3j. Then + = + =a b| | 5 3 342 2 . Since θ =tan 3
5 and θ =cos 5/ 34 , 

q = 30°58′.
(c) b − a = (2i − j) − (3i + 4j) = −i − 5j. Then − =b a| | 26 . Since tan q = 5 and θ = −cos 1/ 26 , q = 258°41′.

 6. Prove: The median to the base of an isosceles triangle is perpendicular to the base. (See Fig. 39-12, where |a| = |b|.)

Fig. 39-12

From Problem 3, since m bisects the base, = +m a b( )1
2 . Then

⋅ − = + ⋅ −

= ⋅ − ⋅ + ⋅ − ⋅ = ⋅ − ⋅ =

m (b a) a b b a

a b a a b b b a b b a a

( ) ( )

( ) ( ) 0

1
2

1
2

1
2

 

 Thus, the median is perpendicular to the base.

 7. If b is a nonzero vector, resolve a vector a into components a1 and a2, respectively parallel and perpendicular to b.

In Fig. 39-13, we have a = a1 + a2, a1 = cb, and a2 · b = 0. Hence, a2 = a − a1 = a − cb. Moreover, a2 · b = 

(a − cb) · b = a · b − c|b|2 = 0, whence 
⋅=c

a b
b| |2

. Thus,

⋅= =ca b
a b
b

b
| |1 2   and  = − = − ⋅

ca a b a
a b
b

b
| |2 2

The scalar ⋅a
b
b| |

 is the scalar projection of a on b. The vector ⋅





a
b
b

b
b| | | |

 is the vector projection of a on b.

Fig. 39-13

 8. Resolve a = 4i + 3j into components a1 and a2, parallel and perpendicular, respectively, to b = 3i + j.

From Problem 7, = ⋅ = + =c
a b
b| |

12 3
10

3
22 . Then

= = +ca b i j1
9
2

3
2  and ++= − = −a a a i j3

22 1
1
2  

39_Mendelson_ch39_p343-354.indd   349 28/07/21   8:44 AM



350 CHAPTER 39 Plane Vector s

 9. If a = f1(u)i + f2(u)j and b = g1(u)i + g2(u)j, show that ⋅ = ⋅ + ⋅d
du

d
du

d
du

a b
a

b a
b

( ) .

By Property 39.12, a · b = (f1(u)i + f2(u)j) · (g1(u)i + g2(u)j) = f1g1 +  f2g2. Then

⋅ = + + +

= +



 + +





= +



 ⋅ + + + ⋅ +





= ⋅ + ⋅

d
du

df
du

g f
dg
du

df
du

g f
dg
du

df
du

g
df
du

g f
dg
du

f
dg
du

df
du

df
du

g g f u f u
dg
du

dg
du

d
du

d
du

a b

i j i j i j i j

a
b a

b

( )

( ) ( ( ) ( ) )

1
1 1

1 2
2 2

2

1
1

2
2 1

1
2

2

1 2
1 2 1 2

1 2

 

10. If a = f1(u)i + f2(u)j is of constant nonzero magnitude, show that ⋅ =d
du

a
a

0 and therefore, when d
du

a  is not zero,  

a and 
d
du

a
 are perpendicular.

Let |a| = c. Thus, a · a = c2. By Problem 9,

++⋅ = ⋅ ⋅ = ⋅ =d
du

d
du

d
du

d
du

a a
a

a a
a

a
a

( ) 2 0  

 Then ⋅ =d
du

a
a

0.

11. Given r = (cos2 q)i + (sin2 q)j, for 0 ≤ q ≤ p/2, find t.

Since θ θ θ θ θ= − = −d
d

cos 2cos sin sin 22  and θ θ θ θ θ= =d
d

sin 2sin cos sin 22 , equation (39.5) yields

θ θ θ= − +d
d

r
i j(sin 2 ) (sin 2 )  

 Therefore, by equation (39.6),

θ θ θ θ θ= = =ds
d

d
d

d
d

d
d

r r r. 2 sin 2  

 by Property 39.12. So,

θ
θ= = = − +d

ds
d
d

d
ds

t
r r

i j
1
2

1
2

 

12. Given x = a cos3 q, y = a sin3 q, with 0 ≤ q ≤ π/2, find t and n when q = p/4.

We have r = a(cos3 q )i + a(sin3 q )j. Then

θ θ θ θ θ= − +d
d

a a
r

i j3 (cos )(sin ) 3 (sin )(cos )2 2   and  θ θ θ θ= =ds
d

d
d

a
r

3 sin cos  

 Hence,

θ
θ θ θ= = = − +d

ds
d
d

d
ds

t
r r

i j(cos ) (sin )   and  θ θ θ= +d
ds

d
ds

t
i j((sin ) (cos ) )  

θ θ= +
a a

i j
1

3 cos
1

3 sin
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 At q = π/4,

= − + = + = =d
ds a a

K
d
ds a

t i j
t

i j
t1

2
1
2

,
2

3
2

3
, | |

2
3

 and = = +
K

d
ds

n
t

i j
1

| |
1
2

1
2

 

13. Show that the vector a = ai + bj is perpendicular to the line ax + by + c = 0.

Let P1(x1, y1) and P2(x2, y2) be two distinct points on the line. Then ax1 + by1 + c = 0 and ax2 + by2 + c = 0. 
Subtracting the first from the second yields

 − + − =a x x b y y( ) ( ) 02 1 2 1   (1)

 Now

− + − = + ⋅ − + −

= ⋅

a x x b y y a b x x y yi j i j

a P P

( ) ( ) ( ) [( ) ( ) ]2 1 2 1 2 1 2 1

1 2

 

 By (1), the left side is zero. Thus, a is perpendicular (normal) to the line.

14. Use vector methods to find:

(a) The equation of the line through P1(2, 3) and perpendicular to the line x + 2y + 5 = 0.
(b) The equation of the line through, P1(2, 3) and P2(5, −1).

 Take P(x, y) to be any other point on the required line.

(a) By Problem 13, the vector a = i + 2j is normal to the line x + 2y + 5 = 0. Then P1P = (x − 2)i + (y − 3)j is 
parallel to a if (x − 2)i + (y − 3)j = k(i + 2j) for some scalar k. Equating components, we get x − 2 = k and 
y − 3 = 2k. Eliminating k, we obtain the required equation y − 3 = 2(x − 2), or, equivalently, 2x − y − 1 = 0.

(b) We have P1P = (x − 2)i + (y − 3)j and P1P2 = 3i − 4j. Now a = 4i + 3j is perpendicular to P1P2 and, hence, to 
P1P. Thus, 0 = a · P1P = (4i + 3j) · [(x − 2)i + (y − 3)j] and, equivalently, 4x + 3y − 17 = 0.

15. Use vector methods to find the distance of the point P1(2, 3) from the line 3x + 4y − 12 = 0.

At any convenient point on the line, say A(4, 0), construct the vector a = 3i + 4j perpendicular to the line. 
The required distance is d = |AP1| cos q in Fig. 39-14. Now a · AP1 = |a| |AP1| cos q = |a| d. Hence,

= ⋅ = + ⋅ − + = − + =d
a AP

a
i j i j

| |
(3 4 ) ( 2 3 )

5
6 12

5
6
5

1
 

Fig. 39-14

16. The work done by a force expressed as a vector b in moving an object along a vector a is defined as the product 
of the magnitude of b in the direction of a and the distance moved. Find the work done in moving an object along 
the vector a = 3i + 4j if the force applied is b = 2i + j.

The work done is

 (magnitude of b in the direction of a) · (distance moved) = θ = ⋅ = + ⋅ + =b a b a i j i j(| | cos ) | | (2 ) (3 4 ) 10 
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SUPPLEMENTARY PROBLEMS

17. Given the vectors a, b, c in Fig. 39-15, construct (a) 2a; (b) −3b; (c) a + 2b; (d) a + b − c; (e) a − 2b + 3c.

18. Prove: The line joining the midpoints of two sides of a triangle is parallel to and one-half the length of the third 
side. (See Fig. 39-16.)

19. If a, b, c, d are consecutive sides of a quadrilateral (see Fig. 39-17), show that a + b + c + d = 0. (Hint: Let P and 
Q be two nonconsecutive vertices.) Express PQ in two ways.

 

 Fig. 39-15 Fig. 39-16

Fig. 39-17

20. Prove: If the midpoints of the consecutive sides of any quadrilateral are joined, the resulting quadrilateral is a 
parellelogram. (See Fig. 39-18.)

Fig. 39-18

21. Using Fig. 39-19, in which |a| = |b| is the radius of a circle, prove that the angle inscribed in a semicircle is a right 
angle.

Fig. 39-19

22. Find the length of each of the following vectors and the angle it makes with the positive x-axis: (a) i + j; (b) −i + j; 
(c) +i j3 ; (d) −i j3 .

Ans. (a) 2 , θ π= 1
4 ; (b) 2 , θ π= 3 /4; (c) 2, q = π/3; (d) 2, q = 5π/3

23. Prove: If u is obtained by rotating the unit vector i counterclockwise about the origin through the angle q, then 
u = i cos q + j sin q.
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24. Use the law of cosines for triangles to obtain θ⋅ = = + −a b a b a b c| || | cos (| | | | | | )1
2

2 2 2 .

25. Write each of the following vectors in the form ai + bj.

(a) The vector joining the origin to P(2, −3); (b) The vector joining P1(2, 3) to P2(4, 2);
(c) The vector joining P2(4, 2) to P1 (2, 3); (d) The unit vector in the direction of 3i + 4j;
(e) The vector having magnitude 6 and direction 120°

Ans. (a) 2i − 3j; (b) 2i − j; (c) −2i + j; (d) +i j3
5

4
5 ; (e) − +i j3 3 3  

26. Using vector methods, derive the formula for the distance between P1(x1, y1) and P2(x2, y2).

27. Given O(0, 0), A(3, 1), and B(1, 5) as vertices of the parallelogram OAPB, find the coordinates of P.

Ans. (4, 6)

28. (a) Find k so that a = 3i + 2j and b = i + kj are perpendicular. (b) Write a vector perpendicular to a = 2i + 5j.

29. Prove Properties (39.8) to (39.15).

30. Find the vector projection and scalar projection of b on a, given: (a) a = i − 2j and b = −3i + j; (b) a = 2i + 3j and 
b = 10i + 2j.

Ans. (a) −i + 2j, − 5; (b) 4i + 6j, 2 13  

31. Prove: Three vectors a, b, c will, after parallel displacement, form a triangle provided (a) one of them is the sum 
of the other two or (b) a + b + c = 0.

32. Show that a = 3i − 6j, b = 4i + 2j, and c = −7i + 4j are the sides of a right triangle. Verify that the midpoint of the 
hypotenuse is equidistant from the vertices.

33. Find the unit tangent vector t = dr/ds, given: (a) r = 4i cos q + 4j sin q ; (b) r = eq 
    i + e−qj; (c) r = q i + q 2j.

Ans. (a) −i sin q + j cos q ; (b) −
+

θ θ

θ θ

−

−

e e

e e

i j
2 2

; (c) θ
θ

+
+

i j2

1 4 2
 

34. (a) Find n for the curve of Problem 33(a); (b) Find n for the curve of Problem 33(c); (c) Find t and n given x = 
cos q + q sin q, y = sin q − q cos q.

Ans. (a) i cos q − j sin q ; (b) θ
θ θ

−
+

+
+

i j
2

1 4

1

1 42 2
; (c) t = i cos q + j sin q, n = −i sin q + j cos q
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355

CHAPTER 40

Curvilinear Motion

VELOCITY IN CURVILINEAR MOTION

Consider a point P(x, y) moving along a curve with the equations x = f (t), y = g(t), where t is time. By 
differentiating the position vector

 x yr i j= +  (40.1)

with respect to t, we obtain the velocity vector

 
d
dt

dx
dt

dy
dt x yv r i j i j= = + = +v v   (40.2)

where 
dx
dtx =v  and 

dy
dty =v .

The magnitude of v is called the speed and is given by

 
ds
dt

| | x y
2 2v v v⋅⋅= = + =v v

The direction of v at P is along the tangent line to the curve at P, as shown in Fig. 40-1. If t denotes the 
direction of v (the angle between v and the positive x-axis), then tan t = vy /vx, with the quadrant being deter-
mined by vx = |v| cos t and vy = |v| sin t.

Fig. 40-1

ACCELERATION IN CURVILINEAR MOTION

Differentiating (40.2) with respect to t, we obtain the acceleration vector

 
d
dt

d
dt

d x
dt

d y
dt

a ax y

2

2

2

2

2

2a v r i j i j= = = + = +   (40.3)
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where a
d x
dtx

2

2=  and a
d y
dty

2

2= . The magnitude of a is given by

 a a| | x y
2 2a a a⋅⋅= = +  

The direction φ  of a is given by tan a a/y xφ = , with the quadrant being determined by a | | cosx a φ=  and 
a | | siny a φ= . (See Fig. 40-2.)

Fig. 40-2

TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION

By equation (39.7),

 
d
dt

d
ds

ds
dt

ds
dt

v r r t= = =   (40.4)

Then 
d
dt

d s
dt

d
dt

ds
dt

d s
dt

d
ds

ds
dt

2

2

2

2

2

a v t t t t= = + = + 



  

 
d s
dt

K
ds
dt

| |
2

2

2

t n= + 



   (40.5)

by (39.8).
Equation (40.5) resolves the acceleration vector at P along the tangent and normal vectors there. Denoting 

the components by at and an, respectively, we have, for their magnitudes,

 a
d s
dt

| |t

2

2=   and  a
R

ds
dt R

| |
1 | |

n

2 2v
= 



 =  

where R is the radius of curvature of the curve at P. (See Fig. 40-3.)
Since a a a a| | x y t n

2 2 2 2 2a = + = + , we obtain

 a a| |n t
2 2 2a= −  

as a second way of determining |an|.
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Fig. 40-3

 SOLVED PROBLEMS

 1. Discuss the motion given by the equations x = cos 2p t, y = 3 sin 2p t. Find the magnitude and direction of the 
velocity and acceleration vectors when: (a) t 1

6= ; (b) t 2
3= .

The motion is along the ellipse 9x2 + y2 = 9. Beginning (at t = 0) at (1, 0), the moving point traverses the curve 
counterclockwise.

 

x y t t

d
dt

t t

d
dt

a a t t

(cos2 ) (3sin 2 )

(2 sin 2 ) (6 cos2 )

(4 cos2 ) (12 sin 2 )

x y

x y
2 2

r i j i j

v r i j i j

a v i j i j

π π

π π π π

π π π π

= + = +

= = + = − +

= = + = − −

v v  

(a) At t 1
6= : 3 3v i jπ π= − +    and   2 6 32 2a i jπ π= − −  

 

| | ( 3 ) (3 ) 2 3

tan 3, cos
| |

1
2

y

x

x

2 2v v v π π π

τ τ

⋅⋅= = − + =

= = − = = −
v
v

v
v

 

So, t = 120°.

 a
a

a

| | ( 2 ) ( 6 3 ) 4 7

tan 3 3, cos
| |

1
2 7

y

x

x

2 2 2 2 2a a a

a

π π π

φ φ

⋅⋅= = − + − =

= = = = −
 

So,  259 6 .φ = ° ′

(b) At t 2
3= :   3 3v i jπ π= −    and   2 6 32 2a i jπ π= +  

        | | 2 3 , tan 3 cos 1
2v π τ τ= = − =  

So, 
5
3

τ π= .

 | | 4 7 , tan 3 3, cos
1

2 7
2a π φ φ= = =  
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So, 79 6φ = ° ′.

Fig. 40-4

 2. A point travels counterclockwise about the circle x2 + y2 = 625 at a rate |v| = 15. Find t, |a|, and φ  at (a) the point 
(20, 15) and (b) the point (5, 10 6)− . Refer to Fig. 40-4.

Using the parametric equations x = 25 cos q, y = 25 sin q, we have at P(x, y):

 

d
dt

d
dt

d
dt

d
dt

(25 cos ) (25 sin )

[( 25 sin ) (25 cos ) ]

( 15 sin ) 15 cos )

[( 15 cos ) (15 sin ) ]

( 9 cos ) (9 sin )

r i j

v r i j

i j

a v i j

i j

θ θ

θ θ θ

θ θ

θ θ θ

θ θ

= +

= = − +

= − +

= = − −

= − −

since |v| = 15 is equivalent to a constant angular speed of 
d
dt

3
5

θ = .

(a) At the point (20, 15), sin 3
5θ =  and cos 4

5θ = . Thus,

 
9 12 , tan , cos . So 126 52

, | | 9, tan , cos . So 216 52

4
3

3
5

36
5

27
3

3
4

4
5

v i j

a i j a

τ τ τ

φ φ φ

= − + = − = − = ° ′

= − − = = = − = ° ′

(b) At the point (5, 10 6)− , sin 62
5θ = −  and cos 1

5θ = . Thus,

 
6 6 3 , tan 6/12, cos 6. So 11 32

6 , | | 9, tan 2 6, cos . So 101 32

2
5

9
5

18
5

1
5

v i j

a i j a

τ τ τ

φ φ φ

= + = = = ° ′

= − + = = − = − = ° ′

 3. A particle moves on the first-quadrant arc of x2 = 8y so that vy = 2. Find |v|, t, |a|, and φ  at the point (4, 2).
Using the parametric equations x = 4q, y = 2q  2, we have

 
d
dt

d
dt

4 2 and 4 42r i j v i jθ θ θ θ θ= + = +

40_Mendelson_ch40_p355-362.indd   358 28/07/21   10:11 AM



359CHAPTER 40 Curvilinear Motion

Since, 
d
dt

4 2y θ θ= =v  and 
d
dt

1
2

θ
θ= , we have

 
2

2 and
1

3v i j a iθ θ= + = −

At the point (4, 2), q = 1. Then

 
2 2 , | | 2 2, tan 1, cos 2. So

, | | 1, tan 0, cos 1. So

1
2

1
4v i j v

a i a

τ τ τ π

φ φ φ π

= + = = = =

= − = = = − =

 4. Find the magnitudes of the tangential and normal components of acceleration for the motion x = et cos t,  
y = et sin t at any time t.

We have:

 

x y e t e t

e t t e t t

e t e t

( cos ) ( sin )

(cos sin ) (sin cos )

2 (sin ) 2 (cos )

t t

t t

t t

r i j i j

v i j

a i j

= + = +

= − + +

= − +

Then |a| = 2et. Also, 
ds
dt

e| | 2 tv= =  and a
d s
dt

e| | 2t
t

2

2= = . Finally,

 a a e| | | | 2n t
t2 2a= − =  

 5. A particle moves from left to right along the parabola y = x2 with constant speed 5. Find the magnitude of the 
tangential and normal components of the acceleration at (1, 1).

Since the speed is constant, a
d s
dt

| | 0t

2

2= = . At (1, 1), y¢ = 2x = 2 and y≤ = 2. The radius of curvature at (1, 1) is 

then R
y
y

(1 ( ) )
| |

5 5
2

2 3/2

= + ′
′′ = . Hence, a

R
| |

| |
2 5n

2v= = .

 6. The centrifugal force F (in pounds) exerted by a moving particle of weight W (in pounds) at a point in its path is 

given by the equation F
W
g

a| |n= . Find the centrifugal force exerted by a particle, weighing 5 pounds, at the ends 

of the major and minor axes as it traverses the elliptical path x = 20 cos t, y = 15 sin t, the measurements being in 
feet and seconds. Use g = 32 ft/sec2.

We have:

 

t t

t t

t t

(20 cos ) (15sin )

( 20sin ) (15cos )

20(cos ) 15(sin )

r i j

v i j

a i j

= +

= − +

= − −

 

Then

 
ds
dt

t t| | 400sin 225cos2 2v= = +       and      
d s
dt

t t

t t

175sin cos

400sin 225cos

2

2 2 2
=

+
 

At the ends of the major axis (t = 0 or t = p):

 a
d s
dt

a| | 20, | | 0, | | 20 0 20t n

2

2
2 2a = = = = − =       and      F (20) pounds5

32
25
8= =  
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At the ends of the minor axis t t
2

or
3
2

π π= =



 :

 a a| | 15, | | 0, | | 15t na = = =       and      F (15) pounds5
32

75
32= =  

7. Assuming the equations of motion of a projectile to be x = v0t cos y, y t gtsin0
1
2

2ψ= −v , where v0 is the initial 
velocity, y is the angle of projection, g = 32 ft/sec2, and x and y are measured in feet and t in seconds, find: (a) the 
equation of motion in rectangular coordinates; (b) the range; (c) the angle of projection for maximum range; and 
(d) the speed and direction of the projectile after 5 sec of flight if v0 = 500 ft/sec and y = 45°. (See Fig. 40-5.)

Fig. 40-5

(a) We solve the first of the equations for t
x

cos0 ψ= v  and substitute in the second:

 y
x

g
x

x
gx

cos
sin

cos
tan

2 cos0
0

1
2

0

2 2

0
2 2ψ ψ ψ ψ ψ= − 





= −v v v v  

(b) Solving y t gtsin 00
1
2

2ψ= − =v  for t, we get t = 0 and t = (2v0 sin y)/g. For the latter, we have

 x
g g

Range cos
2 sin sin 2

0
0 0

2

ψ ψ ψ
= = =v

v v

(c) For x a maximum, 
dx
d g

2 cos2
00

2

ψ
ψ

= =
v

; hence cos 2y = 0 and 1
4ψ π= .

(d) For v0 = 500 and 1
4ψ π= , x t250 2=  and y t t250 2 16 2= − . Then

 t250 2 and 250 2 32x y= = −v v  

When t = 5, 250 2x =v  and 250 2 160y = −v . Then

 tan 0.5475. So 28 42 , and | | 403 ft/secy

x
x y
2 2vτ τ= = = ° ′ = + =

v
v v v

 8. A point P moves on a circle x = r cos b, y = r sin b with constant speed v. Show that, if the radius vector to P 
moves with angular velocity w and angular acceleration a, (a) v = rw and (b) a r 4 2ω α= + .

(a) r
d
dt

rsin sinx β β ω β= − = −v       and      r
d
dt

rcos cosy β β ω β= =v  

Then r r r( sin cos )x y
2 2 2 2 2 2 2β β ω ω= + = + =v v v

(b) a
d
dt

r
d
dt

r
d
dt

r r

a
d
dt

r
d
dt

r
d
dt

r r

cos sin cos sin

sin cos sin cos

x
x

y
y

2

2

ω β β β ω ω β α β

ω β β β ω ω β α β

= = − − = − −

= = − + = − +

v

v

 

Then a a a r a r( )x y
2 2 2 4 2 4 2ω ω α= + = + = +  
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 SUPPLEMENTARY PROBLEMS

 9. Find the magnitude and direction of velocity and acceleration at time t, given

(a) x = e′, y = e2t − 4et + 3; at t = 0 Ans. (a) | | 5v = , t = 296°34′; |a| = 1, 0φ =  

(b) x = 2 − t, y = 2t3 − t; at t = 1 Ans. (b) | | 26v = , t = 101°19′; |a| = 12, 1
2φ π=  

(c) x = cos3t, y = sin t; at t 1
4 π=   Ans. (c) | | 5v = , t = 161°34′; | | 41a = , 353 40φ = ° ′ 

(d) x = e′ cos t, y = e′ sin t; at t = 0 Ans. (d) =| | 2v , 1
4τ π= ; |a| = 2, 1

2φ π=  

10. A particle moves on the first-quadrant arc of the parabola y2 = 12x with vx = 15. Find vy, |v|, and t ; and ax, ay, |a|, 
and φ at (3, 6).

Ans. vy = 15, =| | 15 2v , 1
4τ π= ; ax = 0, ay = −75/2, |a| = 75/2, 3 /2φ π=  

11. A particle moves along the curve y = x3/3 with vx = 2 at all times. Find the magnitude and direction of the velocity 
and acceleration when x = 3.

Ans. =| | 2 82v , t = 83°40′; |a| = 24, 1
2φ π=  

12. A particle moves around a circle of radius 6 ft at the constant speed of 4 ft/sec. Determine the magnitude of its 
acceleration at any position.

Ans. |at | = 0, |a| = |an| = 8/3 ft/sec2

13. Find the magnitude and direction of the velocity and acceleration, and the magnitudes of the tangential and 
normal components of acceleration at time t, for the motion:

(a) x = 3t, y = 9t − 3t2; at t = 2
(b) x = cos t + t sin t, y = sin t − t cos t; at t = 1

Ans. (a) =| | 3 2v , t = 7p /4; |a| = 6, 3 / 2φ π= ; a a| | | | 3 2t n= =  
 (b) |v| = 1, t = 1; =| | 2a , 102 18φ = ° ′; |at| = |an| = 1

14. A particle moves along the curve y x1
2

2 1
4= −  ln x so that x t1

2
2= , for t > 0. Find vx, vy, |v|, and t; ax, ay, |a|, and φ ; 

|at| and |an| when t = 1.

Ans. vx = 1, vy = 0, |v| = 1, t = 0; ax = 1, ay = 2, =| | 5a , 63 26φ = ° ′; |at| = 1, |an| = 2

15. A particle moves along the path y = 2x − x2 with vx = 4 at all times. Find the magnitudes of the tangential and 
normal components of acceleration at the position (a) (1, 1) and (b) (2, 0).

Ans. (a) |at| = 0, |an| = 32; (b) a| | 64 / 5t = , a| | 32 5n =  

16. If a particle moves on a circle according to the equations x = r cos w t, y = r sin w t, show that its speed is w r.

17. Prove that if a particle moves with constant speed, then its velocity and acceleration vectors are perpendicular; 
and, conversely, prove that if its velocity and acceleration vectors are perpendicular, then its speed is constant.
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363

CHAPTER 41

Polar Coordinates

The position of a point R in a plane may be described by its coordinates (x, y) with respect to a given rectangular 
coordinate system. Its position may also be described by choosing a fixed point O and specifying the directed 
distance r = OR and the angle q that OR makes with a fixed half-line OX. (See Fig. 41-1.) This is the polar 
coordinate system. The point O is called the pole, and OX is called the polar axis.

Fig. 41-1

To each number pair (r, q) there corresponds one and only one point. The converse is not true. For  
example, (1, 0) and (1, 2p) describe the same point on the polar axis and at a distance 1 from the pole. That 
same point also corresponds to (-1, p). [When r is negative, the point corresponding to (r, q) is obtained as 
follows: Rotate the polar axis OX through q radians (counterclockwise if q is positive and clockwise if q is 
negative) to a new position OX′ and then move | r| units on the half-line opposite to OX′.]

In general, a point R with polar coordinates (r, q ) also can be described by (r, q  ± 2np) and (-r, q  ± (2n + 1)p),  
where n is any nonnegative integer. In addition, the pole itself corresponds to (0, q ), with arbitrary q.

EXAMPLE 41.1: In Fig. 41-2, several points and their polar coordinates are shown. Note that point C has polar 

coordinates 1,
3
2
π



 .

A polar equation of the form r = f (q ) or F(r, q ) = 0 determines a curve, consisting of those points cor-
responding to pairs (r, q ) that satisfy the equation. For example, the equation r = 2 determines the circle 
with center at the pole and radius 2. The equation r = -2 determines the same set of points. In general, an 
equation r = c, where c is a constant, determines the circle with center at the pole and radius |c|. An equation 
q = c determines the line through the pole obtained by rotating the polar axis through c radians. For example, 
q = p /2 is the line through the pole and perpendicular to the polar axis.

(2,    )p
2

(1,    )

(1, 0)

p
4

(1,     )3p
2

(1,     )3p
4

C

x

Fig. 41-2

41_Mendelson_ch41_p363-376.indd   363 27/07/21   11:18 AM
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POLAR AND RECTANGULAR COORDINATES

Given a pole and polar axis, set up a rectangular coordinate system by letting the polar axis be the positive 
x-axis and letting the y-axis be perpendicular to the x-axis at the pole. (See Fig. 41-3.) Then the pole is the ori-
gin of the rectangular system. If a point R  has rectangular coordinates (x, y) and polar coordinates (r, q ), then

 x cosρ θ=   and  y sinρ θ=   (41.1)

These equations entail

 x y2 2 2ρ = +   and  
y
x

tanθ =   (41.2)

Fig. 41-3

EXAMPLE 41.2: Consider the polar curve r = cos q.
Multiplying by r, we get r2 = r cos q. Hence, x2 + y2 = x holds for the rectangular coordinates of points on the 

curve. That is equivalent to x2 - x + y2 = 0 and completion of the square with respect to x yields x y( )1
2

2 2 1
4− + = .  

Hence, the curve is the circle with center at ( , 0)1
2  and radius 1

2 . Note that, as q varies from 0 to p /2, the upper 

semicircle is traced out from (1, 0) to (0, 0), and then as q varies from 
2
π

 to p, the lower semicircle is traced out from 

(0, 0) back to (1, 0). This whole path is retraced once more as q varies from p to 2p. Since cos q has a period of 2p, 

we have completely described the curve.

EXAMPLE 41.3: Consider the parabola y = x2. In polar coordinates, we get r sin q = r2 cos2 q, and therefore,  
r = tan q sec q, which is a polar equation of the parabola.

SOME TYPICAL POLAR CURVES

(a) Cardioid: r = 1 + sin q. See Fig. 41-4(a).
(b) Limaçon: r = 1 + 2 cos q. See Fig. 41-4(b).
(c) Rose with three petals: r = cos 3q. See Fig. 41-4(c).
(d) Lemniscate: r2 = cos 2q. See Fig. 41-4(d).

At a point R on a polar curve, the angle y from the radius vector OR to the tangent R T to the curve (see 
Fig. 41-5) is given by

 
d
d

tanψ ρ θ
ρ

ρ
ρ= = ′ ,  where  

d
d

ρ ρ
θ′ =   (41.3)

For a proof of this equation, see Problem 1. Tan y plays a role in polar coordinates similar to that of the 
slope of the tangent line in rectangular coordinates.
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Fig. 41-4

ANGLE OF INCLINATION

The angle of inclination τ of the tangent line to a curve at a point R (r, q) on it (see Fig. 41-5) is given by

 tan
cos sin
sin cos

τ ρ θ ρ θ
ρ θ ρ θ= + ′

− + ′   (41.4)

For a proof of this equation, see Problem 4.

POINTS OF INTERSECTION

Some or all of the points of intersection of two polar curves r = f1(q ) and r = f2(q) (or equivalent equations) 
may be found by solving

 f f( ) ( )1 2θ θ=   (41.5)
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Fig. 41-5

EXAMPLE 41.4: Find the points of intersection of r = 1 + sin q and r = 5 - 3 sin q.
Setting 1 + sin q = 5 - 3 sin q, we obtain sin q = 1. Then r = 2 and q = p /2. The only point of intersection is  

(2, p /2). Note that we need not indicate the infinite number of other pairs that designate the same point.

Since a point may be represented by more than one pair of polar coordinates, the intersection of two curves 
may contain points that no single pair of polar coordinates satisfies (41.5).

EXAMPLE 41.5: Find the points of intersection of r = 2 sin 2q and r = 1.
Solution of the equation 2 sin 2q = 1 yields sin 2 1

2θ = , and therefore, within [0, 2p), q = p /12, 5p /12, 13p /12, 
17p /12. We have found four points of intersection: (1, p /12), (1, 5p /12), (1, 13p /12), and (1, 17p /12). But the  
circle r = 1 also can be represented as r = -1. Now solving 2 sin 2q = -1, we get sin 2 1

2θ = −  and therefore,  
q = 7p /12, 11p /12, 19p /12, and 23p /12. Hence we get four more points of intersection (-1, 7p /12), (-1, 11p /12), 
(-1, 19p /12), and (-1, 23p /12).

When the pole is a point of intersection, it may not appear among the solutions of (41.5). The pole is a 
point of intersection when there exist q1 and q2 such that f1(q1) = 0 = f2(q2).

EXAMPLE 41.6: Find the points of intersection of r = sin q and r = cos q.
From the equation sin q = cos q, we obtain the points of intersection ( 2 /2, p /4) and ( 2 /2− , 5p /4). However, 

both curves contain the pole. On r = sin q, the pole has coordinates (0, 0), whereas, on r = cos q, the pole has  
coordinates (0, p /2).

EXAMPLE 41.7: Find the points of intersection of r = cos 2q and r = cos q.
Setting cos 2q  = cos q and noting that cos 2q = 2 cos2 q - 1, we get 2 cos2 q - cos q - 1 = 0 and therefore,  

(cos q - 1)(2 cos q + 1) = 0. So, cos q = 1 or cos 1
2θ = − . Then q = 0, 2p /3, 4p /3, yielding points of intersection (1, 0), 

 ( 1
2− , 2p /3), and ( 1

2− , 4p /3). But the pole is also an intersection point, appearing as (0, p /4) on r = cos 2q and as (0, p /2) 
on r = cos q.

ANGLE OF INTERSECTION

The angle of intersection, φ , of two curves at a common point R (r, q), not the pole, is given by

 tan
tan tan

1 tan tan
1 2

1 2

φ ψ ψ
ψ ψ= −

+   (41.6)

where y1 and y2 are the angles from the radius vector OR to the respective tangent lines to the curves at R. 
(See Fig. 41-6.) This formula follows from the trigonometric identity for tan(y1 - y2), since 1 2φ ψ ψ= − .

Fig. 41-6
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EXAMPLE 41.8: Find the (acute) angles of intersection of r = cos 2q and r = cos q.
The points of intersection were found in Example 7. We also need tan y1 and tan y2. For r = cos q, formula (41.3)  

yields tan y1 = - cot q. For r = cos 2q, formula (41.3) yields tan cot 22
1
2ψ θ= − .

At the point (1, 0), tan y1 = - cot 0 = ∞ and, likewise, tan y2 = ∞. Then y1 = y2 = p /2 and therefore, 0φ = .

At the point 
1
2

,
2
3
π−



 , tan 3 /31ψ =  and tan 3 /62ψ = − . So, by (41.6),

 tan
( 3 /3) ( 3 /6)

1 (1/6)
3 3

5
φ = +

− =  

and therefore, the acute angle of intersection 46 6φ ≈ ° ′ . By symmetry, this is also the acute angle of intersection at 
the point ( 1

2− , 4p /3).
At the pole, on r = cos q, the pole is given by q = p /2. On r = cos 2q, the pole is given by q = p /4 and q = 3p /4. 

Thus, at the pole there are two intersections, the acute angle being p /4 for each.

THE DERIVATIVE OF THE ARC LENGTH

The derivative of the arc length is given by

 
ds
d

( )2 2

θ ρ ρ= + ′   (41.7)

where 
d
d

ρ ρ
θ′ =  and it is understood that s increases with q.

For a proof, see Problem 20.

CURVATURE

The curvature of a polar curve is given by

 K
2( )

[ ( ) ]

2 2

2 2 3/2

ρ ρ ρρ
ρ ρ= + ′ − ′′

+ ′   (41.8)

For a proof, see Problem 17.

SOLVED PROBLEMS

 1. Derive formula (41.3): 
d
d

tanψ ρ θ
ρ

ρ
ρ= = ′ , where 

d
d

ρ ρ
θ′ .

In Fig. 41-7, Q(r + ∆r, q + ∆q) is a point on the curve near P. From the right triangle PSQ,

 
SP
SQ

SP
OQ OS

tan
sin

cos
sin

(1 cos )

sin

1 cosλ ρ θ
ρ ρ ρ θ

ρ θ
ρ θ ρ

ρ θ
θ

ρ θ
θ

ρ
θ

= = − = ∆
+ ∆ − ∆ = ∆

− ∆ + ∆ =
∆

∆
− ∆

∆ + ∆
∆

 

Now as Q → P along the curve, ∆q → 0, OQ → OP, PQ → PT, and λ ψ∠ → ∠ .

Fig. 41-7
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As ∆q → 0, 
sin

1
θ

θ
∆

∆ →  and 
1 cos

0
θ

θ
− ∆

∆ → . Thus,

 
dp d

d
d

tan lim tan
/0

ψ λ ρ
θ ρ θ

ρ= = =
θ∆ →

In Problems 2 and 3, use formula (41.3) to find tan y for the given curve at the given point.

 2. 2 cosρ θ= +  at 
3

θ π= . (See Fig. 41-8.)

At 
3

θ π= , 2 1
2

5
2ρ = + = , sin

3
2

ρ θ′ = − = − , and tan
5

3
ψ ρ

ρ= ′ = − .

Fig. 41-8

 3. r = 2 sin 3q at 
4

θ π= . (See Fig. 41-9.)

At 
4

θ π= , 2
1

2
2ρ = = , 6 cos3 6

1

2
3 2ρ θ′ = = −





= −  and tan 1
3ψ ρ

ρ= ′ = − .

Fig. 41-9

 4. Derive formula (41.4): tan
cos sin
sin cos

τ ρ θ ρ θ
ρ θ ρ θ= + ′

− + .

From Fig. 41-7, t = y + q and

 

d
d

d
d

d
d

d
d

tan tan( )
tan tan

1 tan tan

sin
cos

1
sin
cos

cos sin

cos sin

cos sin
sin cos

τ ψ θ ψ θ
ψ θ

ρ θ
ρ

θ
θ

ρ θ
ρ

θ
θ

ρ θ ρ
θ θ

ρ
θ θ ρ θ

ρ θ ρ θ
ρ θ ρ θ

= + = +
− =

+

−

=
+

−
= + ′

− + ′

 

 5. Show that if r = f (q) passes through the pole and q1 is such that f (q1) = 0, then the direction of the tangent line to 
the curve at the pole (0, q1) is q1. (See Fig. 41-10.)

Fig. 41-10
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369CHAPTER 41 Polar Coordinates

At (0, q1), r = 0, and r′ = f ′(q1). If r′ ≠ 0

 
f
f

tan
cos sin
sin cos

0 ( )sin
0 ( )cos

tan1 1

1 1
1τ ρ θ ρ θ

ρ θ ρ θ
θ θ
θ θ θ= + ′

− + ′ =
+ ′
+ ′ =  

If r′ = 0,

 
f
f

tan lim
( )sin
( )cos

tan 1
1

τ θ θ
θ θ θ= ′

′ =
θ θ→

 

In Problems 6–8, find the slope of the given curve at the given point.

 6. r = 1 - cos q at 
2

θ π= .   (See Fig. 41-11.)

Fig. 41-11

At 
2

θ π= ,

 sin 1, cos 0, 1, sin 1θ θ ρ ρ θ= = = ′ = =  

and  tan
cos sin
sin cos

1 0 1 1
1 1 1 0

1τ ρ θ ρ θ
ρ θ ρ θ= + ′

− + ′ = ⋅ + ⋅
− ⋅ + ⋅ = −  

 7. r = cos 3q at the pole. (See Fig. 41-12.)
When r = 0, cos 3q = 0. Then 3q = p /2, 3p /2, 5p /2, and q = p /6, p /2, 5p /6. By Problem 5, tan 1/ 3τ = , ∞,  

and 1 3− .

Fig. 41-12

 8. rq = a at 3
θ π= .

At q = p /3: sin 3 /2θ = , cos 1
2θ = , r = 3a/p, and r′ = -a/q 2 = -9a/p 2. Then

 tan
cos sin
sin cos

3 3

3 3
τ ρ θ ρ θ

ρ θ ρ θ
π

π
= + ′

− + ′ = − −
+
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370 CHAPTER 41 Polar  Coord inates

 9. Investigate r = 1 + sin q for horizontal and vertical tangents. (See Fig. 41-13.)

Fig. 41-13

At P(r, q):

 tan
(1 sin )cos cos sin

(1 sin )sin cos
cos (1 2sin )

(sin 1)(2sin 1)2τ θ θ θ θ
θ θ θ

θ θ
θ θ= + +

− + + = −
+

+ −

We set cos q (1 + 2 sin q) = 0 and solve, obtaining q = p /2, 3p /2, 7p /6, and 11p /6. We also set  
(sin q + 1)(2 sin q - 1) = 0 and solve, obtaining q = 3p  /2, p /6, and 5p /6.

For q = p /2: there is a horizontal tangent at (2, p /2).
For q = 7p /6 and 11p /6: there are horizontal tangents at ( 1

2 , 7p /6) and ( 1
2 , 11p /6).

For q = p /6 and 5p /6: there are vertical tangents at ( 3
2 , p /6) and ( 3

2 , 5p /6).
For q = 3p /2: by Problem 5, there is a vertical tangent at the pole.

10. Show that the angle that the radius vector to any point of the cardioid r = a(1 - cos q) makes with the curve is 
one-half that which the radius vector makes with the polar axis.

At any point P( r, q ) on the cardioid,

 asinρ θ′ =   and  tan
1 cos

sin
tan

2
.ψ ρ

ρ
θ

θ
θ= ′ = − =  

So 1
2ψ θ= .

In Problems 11–13, find the angles of intersection of the given pair of curves.

11. r = 3 cos q, r = 1 + cos q. (See Fig. 41-14.)

Fig. 41-14

Solve 3 cos q = 1 + cos q for the points of intersection, obtaining (3/2, p /3) and (3/2, 5p /3). The curves also 
intersect at the pole.

For r = 3 cos q : 3 sinρ θ′ = −  and tan cot1ψ θ= −  

For r = 1 + cos q : sinρ θ′ = −  and tan
1 cos

sin2ψ θ
θ= − +

 

41_Mendelson_ch41_p363-376.indd   370 27/07/21   11:18 AM



371CHAPTER 41 Polar Coordinates

At q = p /3, tan 1 31ψ = − , tan 32ψ = − , and tan 1/ 3φ = . The acute angle of intersection at ( 3
2 , p /3) and, by 

symmetry, at ( 3
2 , 5p /3) is p /6.

At the pole, either a diagram or the result of Problem 5 shows that the curves are orthogonal.

12. sec2 1
2ρ θ= , 3csc2 1

2ρ θ= .

Solve sec 3csc2 1
2

2 1
2θ θ=  for the points of intersection, obtaining (4, 2p /3) and (4, 4p /3).

For sec2 1
2ρ θ= : sec tan2 1

2
1
2ρ θ θ′ =  and tan cot1

1
2ψ θ=  

For 3 csc2 1
2ρ θ= : 3 csc cot2 1

2
1
2ρ θ θ′ = −  and tan tan2

1
2ψ θ= −

At q = 2p /3, tan 1/ 31ψ = , and tan 32π = − , and 1
2φ π= ; the curves are orthogonal. Likewise, the curves are 

orthogonal at q = 4p /3.

13. r = sin 2q, r = cos q. (See Fig. 41-15.)
The curves intersect at the points ( 3 /2 , p /6) and ( 3/2− , 5p /6) and the pole.

For r = sin 2q  : 2cos2ρ θ′ =  and tan tan 21
1
2ψ θ=

For r = cos q  : sinρ θ′ = −  and tan cot2ψ θ= −

At q = p /6, tan 3 /21ψ = , tan 32ψ = − , and tan 3 31φ = − . The acute angle of intersection at the point  

( 3 /2, p /6) is tan 3 3 79 61φ = = ° ′− . Similarly, at q = 5p /6, tan 3 /21ψ = − , tan 32ψ = , and the angle of 

intersection is tan 3 31− .
At the pole, the angles of intersection are 0 and p /2.

Fig. 41-15

In Problems 14–16, find 
ds
dθ  at the point P(r, q ).

14. r = cos 2q.

 2sin 2ρ θ′ = −  and ds
d

( ) cos 2 4sin 2 1 3sin 22 2 2 2 2

θ ρ ρ θ θ θ= + ′ = + = +

15. r(1 + cos q ) = 4.
Differentiation yields -r sin q + r′(1 + cos q ) = 0. Then

 sin
1 cos

4sin
(1 cos )2ρ ρ θ

θ
θ
θ′ = + = +

  and  ds
d

( )
4 2

(1 cos )
2 2

3/2θ ρ ρ θ= + ′ = +
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16. 
ds
d

sin
3

. (Also evaluate at
2

.)3ρ θ
θ θ π= 



 =

 sin cos2 1
3

1
3ρ θ θ′ =   and  

ds
d

sin sin cos sin6 1
3

4 1
3

2 1
3

2 1
3θ θ θ θ θ= + =

At 1
2θ π= , ds d/ sin2 1

6
1
4θ π= = .

17. Derive formula (41.8): K
2( )

[ ( ) ]

2 2

2 2 3/2

ρ ρ ρρ
ρ ρ= + ′ − ′′

+ ′ .

By definition, K
d
ds
τ= . Now τ = q + y and therefore,

 
d
ds

d
ds

d
ds

d
ds

d
d

d
ds

d
ds

d
d

1
τ θ ψ θ ψ

θ
θ θ ψ

θ= + = + = +





where tan 1ψ ρ
ρ= ′







− . Also,

 
d
d

[( ) ]/( )
1 ( / )

( )
( )

;
2 2

2

2

2 2

ψ
θ

ρ ρρ ρ
ρ ρ

ρ ρρ
ρ ρ= ′ − ′′ ′

+ ′ = ′ − ′′
+ ′  so 

d
1+ 1

( )
( )

2( )
( )

2

2 2

2 2

2 2

dψ
θ

ρ ρρ
ρ ρ

ρ ρ ρρ
ρ ρ= + ′ − ′′

+ ′ = + ′ − ′′
+ ′

Thus, K
d
ds

d
d

d d
ds d

d d
1

1 /
/

1 /

( )

2( )
[ ( ) ]2 2

2 2

2 2 3/2

θ ψ
θ

ψ θ
θ

ψ θ
ρ ρ

ρ ρ ρρ
ρ ρ= +



 = + = +

+ ′
= + ′ − ′′

+ ′

18. Let r = 2 + sin q. Find the curvature at the point P(r, q)

 K
2( )

[ ( ) ]
(2 sin ) 2cos (sin )(2 sin )

[(2 sin ) cos ]
6(1 sin )

(5 4sin )

2 2

2 2 3/2

2 2

2 2 3/2 3/2

ρ ρ ρρ
ρ ρ

θ θ θ θ
θ θ

θ
θ= + ′ − ′′

+ ′ = + + + +
+ + = +

+

19. Let r(1 - cos q) = 1. Find the curvature at 
2

θ π=  and 
4
3

θ π= .

 
sin

(1 cos )2ρ θ
θ′ = −

−  and 
cos

(1 cos )
2sin

(1 cos )
;2

2

3ρ θ
θ

θ
θ′′ = −

− + −  so K sin
2

3 θ=

At q = p /2, K (1/ 2) 2 /43= = ; at q = 4p /3, K ( 3 /2) 3 3 /83= = .

20. Derive formula (41.7): 
ds
d

( )2 2

θ ρ ρ= + ′ .

Consider r as a function of q. From x = r cos q and y = r sin q, we get dx/dq = -r sin q + (cos q )r′ and dy/dq = 
r cos q + (sin q)r′. Hence,

   
dx
d

[ sin ( ) cos 2 sin cos ]
2

2 2 2 2

θ ρ θ ρ θ ρρ θ θ



 = + ′ − ′

 and 
dy
d

[ cos ( ) sin 2 sin cos ]
2

2 2 2 2

θ ρ θ ρ θ ρρ θ θ



 = + ′ + ′

 Thus,  
ds
d

dx
d

dy
d

( )
2 2 2

2 2

θ θ θ ρ ρ



 = 



 + 



 = + ′

Since s increases with q, 
ds
d

0θ >  and we obtain formula (41.7).

21. For r = cos 2q, find 
ds
dθ  at 

4
θ π= . (Assume as usual that s increases with q.)

d
d

2 sin 2ρ ρ
θ θ′ = = − . By Formula (41.7),

 

ds
d

cos (2 ) 4sin (2 ) 1 3sin (2 )

1 3sin ( /2) 2

2 2 2

2

θ θ θ θ

π

= + = +

= + =
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SUPPLEMENTARY PROBLEMS

In Problems 22–25, find tan y for the given curve at the given points.

22. r = 3 - sin q at q = 0, q = 3p /4 Ans. -3; 3 2 1−  

23. r = a(1 - cos q) at q = p /4, q = 3p /2 Ans. 2 1− ; -1

24. r(1 - cos q ) = a at q = p /3, q = 5p /4 Ans. 3 /3− ; 1 2+  

25. r2 = 4 sin 2q at q = 5p /12, q = 2p /3 Ans. 1 3− ; 3  

In Problems 26–29, find tan τ for the given curve at the given point.

26. r = 2 + sin q at q = p /6 Ans. 3 3−  

27. r2 = 9 cos 2q ; at q = p /6 Ans. 0

28. r = sin3 (q/3) at q = p /2 Ans. 3−  

29. 2r(1 - sin q) = 3 at q = p /4 Ans. 1 2+  

30. Investigate r = sin 2q for horizontal and vertical tangents.

Ans. horizontal tangents at q = 0, p, 54°44′, 125°16′, 234°44′, 305°16′; vertical tangents at q = p /2, 3p /2, 
35°16′, 144°44′, 215°16′, 324°44′

In Problems 31–33, find the acute angles of intersection of each pair of curves.

31. r = sin q, r = sin 2q Ans. 79 6φ = ° ′  at q = p /3 and 5p /3; 0φ =  at the pole

32. 2 sinρ θ= ,  r2 = cos 2q Ans. /3φ π=  at q = p /6, 5p /6; /4φ π=  at the pole

33. r2 = 16 sin 2q, r2 = 4 csc 2q Ans. /3φ π=  at each intersection

34. Show that each pair of curves intersects at right angles at all points of intersection.

(a) r = 4 cos q, p = 4 sin q (b) r = eq, r = e-q

(c) r2 cos 2q = 4, r2 sin 2q = 9 (d) r = 1 + cos q, r = 1 - cos q

35. Find the angle of intersection of the tangents to r = 2 - 4 sin q at the pole.

Ans. 2p /3
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36. Find the curvature of each of these curves at P(r, q): (a) r = eq; (b) r = sin q ; (c) r2 = 4 cos 2q; (d) r = 3 sin q + 
4 cos q.

Ans. (a) e1/( 2 )θ ; (b) 2; (c) cos23
2 θ ; (d) 2

5  

37. Find 
ds
dθ  for the curve r = a cos q.

Ans. a

38. Find 
ds
dθ  for the curve r = a(1 + cos q).

Ans. a 2 2cosθ+  

39. Suppose a particle moves along a curve r = f (q) with its position at any time t given by r = g(t), q = h(t).

(a) Multiply the equation 
ds
d

( )
2

2 2

θ ρ ρ



 = + ′  obtained in Problem 20 by 

d
dt

2θ



 to obtain 

ds
dt

d
dt

d
dt

2

2

2

2 2

ρ θ ρ= 



 = 



 + 



v .

(b) From 
d
d

d dt
d dt

tan
/
/

ψ ρ θ
ρ ρ θ

ρ= = , obtain 
d
dt

sinψ ρ θ= v  and 
d
dt

cos
1ψ ρ= v .

In Problems 40–43, find all points of intersection of the given equations.

40. r = 3 cos q, r = 3 sin q Ans. (0, 0), (3 2 /2, p /4)

41. r = cos q, r = 1 - cos q Ans. (0, 0), ( 1
2 , p /3), ( 1

2 , -p /3)

42. r = q, r = p Ans. (p, p), (-p, -p)

43. r = sin 2q, r = cos 2q Ans. (0, 0), 
n2

2
,
(2 1)

6
π+



  for n = 0, 1, 2, 3, 4, 5

44. (GC) Sketch the curves in Problems 40–43, find their graphs on a graphing calculator, and check your answers to 
Problems 40–43.

45. (GC) Sketch the graphs of the following equations and then check your answers on a graphing calculator:

(a) r = 2 cos 4q (b) r = 2 sin 5q (c) r2 = 4 sin 2q

(d) r = 2(1 - cos q) (e) 
2

1 cos
ρ θ= +  (f ) 

12ρ θ=  

(g) r = 2 - sec q (h) 
2ρ θ=  

[In parts (g) and (h), look for asymptotes.]

46. Change the following rectangular equations to polar equations and sketch the graphs:

(a) x2 - 4x + y2 = 0 (b) 4x = y2 (c) xy = 1
(d) x = a (e) y = b (f ) y = mx + b

Ans. (a) r = 4 cos q ; (b) r = 4 cot q csc q ; (c) r2 = sec q csc q ; (d) r = a sec q ; (e) r = b csc q ; 
(f ) 

b
msin cos

ρ θ θ= −  
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47. (GC) Change the following polar equations to rectangular coordinates and then sketch the graph. (Verify on a 
graphing calculator.) (a) r = 2c sin q ; (b) r = q ; (c) r = 7 sec q

Ans. (a) x2 + ( y - c)2 = c2; (b) y x x ytan( )2 2= + ; (c) x = 7

48. (a) Show that the distance between two points with polar coordinates (r1, q1) and (r2, q2) is

 2 cos( )1
2

2
2

1 2 1 2ρ ρ ρ ρ θ θ+ − −  

(b) When q1 = q2, what does the distance simplify to? Explain why this is so. 

Ans. |r1 - r2|

(c) When 21 2θ θ π− = , what does the formula yield? Explain the signficance of the result.

Ans. 1
2

2
2ρ ρ+  

(d) Find the distance between the points with the polar coordinates (1, 0) and 1,
4
π



 .

Ans. 2 2−  

49. (a)   Let f be a continuous function such that f (q) ≥ 0 for a < q < b. Let A be the area of the region bounded by 

the lines q = a and q = b, and the polar curve r = f (q). Derive the formula A f d d
1
2

( ( ))
1
2

2 2∫ ∫θ θ ρ θ= =
α

β

α

β
.  

(Hint: Divide [a, b] into n equal parts, each equal to ∆q. Each resulting subregion has area approximately 
equal to f( ( ))i

1
2

* 2θ θ∆ , where i
*θ is in the ith subinterval.)

(b) Find the area inside the cardioid r = 1 + sin q.
(c) Find the area of one petal of the rose with three petals, r = cos 3q. ( : Integrate from

6
to

6
.)Hint π π−
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CHAPTER 42

Infinite Sequences

INFINITE SEQUENCES

An infinite sequence sn〈 〉 is a function whose domain is the set of positive integers; sn is the value of this 
function for a given positive integer n. Sometimes we indicate sn〈 〉 just by writing the first few terms of the 
sequence s1, s2, s3, . . . , sn, . . . . We shall consider only sequences where the values sn are real numbers.

EXAMPLE 42.1:

(a) 
n
1

 is the sequence 
n

1,
1
2

,
1
3

, . . . ,
1

, . . . .

(b) 





1
2

n

 is the sequence 
1
2 , 1

4 , 1
8 ,  . . . , 1

2 ,  . . . n  .

(c) n2〈 〉 is the sequence of squares 1, 4, 9, 16, . . . , n2, . . . .

(d) n2〈 〉 is the sequence of positive even integers 2, 4, 6, 8, . . . , 2n, . . . .

(e) 〈 − 〉n2 1  is the sequence of positive odd integers 1, 3, 5, 7, . . . .

LIMIT OF A SEQUENCE

If sn〈 〉 is an infinite sequence and L is a number, then we say that s Llim
n n =

→+∞
 if sn gets arbitrarily close to L 

as n increases without bound.
From a more precise standpoint, s Llim

n n =
→+∞

 means that for any positive real number  > 0, there exists a 
positive integer n0 such that whenever n ≥ n0, we have � − <s L| |n . To illustrate what this means, place the 
points L, L − , and L +  on a coordinate line (see Fig. 42-1), where  is some positive real number. Now 
if we place the points s1, s2, s3, . . . on the coordinate line, there will eventually be an index n0 such that 
s s s s, , , , . . .n n n n1 2 30 0 0 0+ + +  and all subsequent terms of the sequence will lie inside the interval L L( , ) − + .

s1 s2 sm

LL – � L + �

sm + 1

Fig. 42-1

If s Llim
n n =

→+∞
, then we say that the sequence sn〈 〉 converges to L. If there is a number L such that sn〈 〉 con-

verges to L, then we say that sn〈 〉 is convergent. When sn〈 〉 is not convergent, then we say that sn〈 〉 is divergent.

EXAMPLE 42.2: n
1  is convergent, since 

n
lim

1
0

n
=

→+∞
. To see this, observe that 1/n can be made arbitrarily close 

to 0 by making n large enough. To get an idea of why this is so, note that 1/10 = 0.1, 1/100 = 0.01, 1/1000 = 0.001, 
and so on. To check that the precise definition is satisfied, let  be any positive number. Take n0 to be the smallest 
positive integer greater than 1/. So, 1/ < n0. Hence, if n ≥ n0, then n > 1/  and therefore, 1/n < . Thus, if n ≥ n0, 

|1/n - 0 | < . This proves 
n

lim
1

0
n

=
→+∞

.

EXAMPLE 42.3: n2〈 〉 is a divergent sequence, since n Llim 2
n

≠
→+∞

 for each real number L. In fact, 2n gets arbitrarily 
large as n increases.
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We write slim
n n = +∞

→+∞
 if sn gets arbitrarily large as n increases. In such a case, we say that sn〈 〉 diverges to 

+∞. More precisely, slim
n n = +∞

→+∞
 if and only if for any number c, no matter how large, there exists a positive 

integer n0 such that whenever n ≥ n0, we have sn > c.
Likewise, we write slim

n n = −∞
→+∞

 if sn gets arbitrarily small as n increases. In such a case, we say that sn〈 〉 
diverges to -∞. More precisely, slim

n n = −∞
→+∞

 if and only if for any number c, no matter how small, there 

exists a positive integer n0 such that whenever n ≥ n0, we have sn < c.
We shall write slim

n n = ∞
→+∞

 if slim | |
n n = +∞

→+∞
, that is, the magnitude of sn gets arbitrarily large as n increases.

EXAMPLE 42.4: (a) nlim 2
n

= +∞
→+∞

; (b) nlim (1 )
n

3− = −∞
→+∞

; (c) nlim ( 1) ( )
n

n 2− = ∞
→+∞

. Note that in case (c), the  

sequence converges neither to +∞ nor to -∞.

EXAMPLE 42.5: The sequence ( 1)n〈 − 〉 is divergent, but it diverges neither to +∞, nor to -∞, nor to ∞. Its values 
oscillate between 1 and -1.

A sequence sn〈 〉 is said to be bounded above if there is a number c such that sn ≤ c for all n, and sn〈 〉 is said 
to be bounded below if there is a number b such that b ≤ sn for all n. A sequence sn〈 〉 is said to be bounded if  
it is bounded both above and below. It is clear that a sequence sn〈 〉 is bounded if and only if there is a number d 
such that s d| |n ≤  for all n.

EXAMPLE 42.6: (a) The sequence n2〈 〉 is bounded below (for example, by 0) but is not bounded above. (b) The 
sequence ( 1)n〈 − 〉 is bounded. Note that ( 1)n〈 − 〉 is -1, 1, -1, . . . . So, − ≤|( 1) | 1n  for all n.

Theorem 42.1: Every convergent sequence is bounded.

For a proof, see Problem 5.
The converse of Theorem 42.1 is false. For example, the sequence ( 1)n〈 − 〉 is bounded but not convergent.
Standard arithmetic operations on convergent sequences yield convergent sequences, as the following 

intuitively obvious results show.

Theorem 42.2: Assume s clim
n n =

→+∞
 and t dlim

n n =
→+∞

. Then:

(a) k klim
n

=
→+∞

, where k is a constant.

(b) ks kclim
n n =

→+∞
, where k is a constant.

(c) s t c dlim ( )
n n n+ = +

→+∞
.

(d) s t c dlim ( )
n n n− = −

→+∞
.

(e) s t cdlim ( )
n n n =

→+∞
.

(f ) s t c dlim ( / ) /
n n n =

→+∞
 provided that d ≠ 0 and tn ≠ 0 for all n.

For proofs of parts (c) and (e), see Problem 10.
The following facts about sequences are intuitively clear.

Theorem 42.3: If slim
n n = ∞

→+∞
 and sn ≠ 0 for all n, then 

s
lim

1
0

n n

=
→+∞

.

For a proof, see Problem 7.

Theorem 42.4:

(a) If >a| | 1, then alim
n

n = ∞
→+∞

.

In particular, if a > 1, then alim
n

n = +∞
→+∞

.

(b) If <r| | 1, then rlim 0
n

n =
→+∞

.

For proofs, see Problem 8.

Theorem 42.5 (Squeeze Theorem): If s L ulim lim
n n n n= =

→+∞ →+∞
, and there is an integer m such that sn ≤ tn ≤ un for all n ≥ m,  

then t Llim
n n =

→+∞
.

For a proof, see Problem 11.
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Corollary 42.6: If ulim 0
n n =

→+∞
 and there is an integer m such that ≤t u| | | |n n  for all n ≥ m, then tlim 0

n n =
→+∞

.

This is a consequence of Theorem 42.5 and the fact that alim 0
n n =

→+∞
 is equivalent to =

→+∞
alim | | 0

n n .

EXAMPLE 42.7: 
n

lim ( 1)
1

0
n

n
2− =

→+∞
. To see this, use Corollary 42.6, noting that 

n n
( 1)

1 1n
2− ≤  and 

n
lim

1
0

n
=

→+∞
.

Theorem 42.7: Assume that f is a function that is continuous at c, and assume that s clim
n n =

→+∞
, where all the terms sn 

are in the domain of f. Then f s f clim ( ) ( )
n n =

→+∞
.

See Problem 33.
It is clear that whether or not a sequence converges would not be affected by deleting, adding, or altering a 

finite number of terms at the beginning of the sequence. Convergence depends on what happens “in the long run.”
We shall extend the notion of infinite sequence to the case where the domain of a sequence is allowed to 

be the set of nonnegative integers or any set consisting of all integers greater than or equal to a fixed integer. 
For example, if we take the domain to be the set of nonnegative integers, then n2 1〈 + 〉 would denote the 
sequence of positive odd integers, and 1/2n〈 〉 would denote the sequence 1, , , , . . .1

2
1
4

1
8  .

MONOTONIC SEQUENCES

(a) A sequence sn〈 〉 is said to be nondecreasing if sn ≤ sn+1 for all n.
(b) A sequence sn〈 〉 is said to be increasing if sn < sn+1 for all n.
(c) A sequence sn〈 〉 is said to be nonincreasing if sn ≥ sn+1 for all n.
(d) A sequence sn〈 〉 is said to be decreasing if sn > sn+1 for all n.
(e) A sequence is said to be monotonic if it is either nondecreasing or nonincreasing.

Clearly, every increasing sequence is nondecreasing (but not conversely), and every decreasing sequence 
is nonincreasing (but not conversely).

EXAMPLE 42.8: (a) The sequence 1, 1, 2, 2, 3, 3, 4, 4, . . . is nondecreasing, but not increasing. (b) -1, -1, -2, 
-2, -3, -3, - 4, - 4, . . . is nonincreasing, but not decreasing.

An important basic property of the real number system is given by the following result. Its proof is beyond 
the scope of this book.

Theorem 42.8: Every bounded monotonic sequence is convergent.

There are several methods for showing that a given sequence sn〈 〉 is nondecreasing, increasing, non-
increasing, or decreasing. Let us concentrate on the property that sn〈 〉 is increasing.

Method 1: Show that sn+1 - sn > 0.

EXAMPLE 42.9:  Consider s
n

n
3

4 1n = + . Then s
n

n
n
n

3( 1)
4( 1) 1

3 3
4 5n 1 = +

+ + = +
++ . So,

  
s s

n
n

n
n

n n n n
n n

n n

3 3
4 5

3
4 1

(12 15 3) (12 15 )
(4 5)(4 1)

3
(4 5)(4 1)

0

n n1

2 2

− = +
+ − + = + + − +

+ +

= + + >

+

 

since 4n + 5 > 0 and 4n + 1 > 0

Method 2: When all sn > 0, show that 
s
s
n

n

1+  > 1.

EXAMPLE 42.10: Using the same example s
n

n
3

4 1n = +  as above,

s
s

n
n

n
n

n
n

n
n

n n
n n

3 3
4 5

3
4 1

3 3
3

4 1
4 5

12 15 3
12 15

1,n

n

1
2

2= +
+





 +





 = + +

+ = + +
+ >+  

since 12n2 + 15n + 3 > 12n2 + 15n > 0.
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Method 3: Find a differentiable function f (x) such that f (n) = sn for all n, and show that f ′(x) > 0 for all x ≥ 1 
(and, hence, that f is an increasing function for x ≥ 1).

EXAMPLE 42.11: Consider s
n

n
3

4 1n = +  again. Let f x
x

x
( )

3
4 1

= + . Then f x
x

( )
3

(4 1)
02′ = + >  for all x.

SOLVED PROBLEMS

 1. For each of the following sequences, write a formula for the nth term and determine the limit (if it exists). It is 
assumed that n = 1, 2, 3, . . ..

(a) 
1
2

,
1
4

,
1
6

,
1
8

, . . .    (b) 
1
2

,
2
3

,
3
4

,
4
5

, . . .  

(c) 1,
1
2

,
1
3

,
1
4

,
1
5

,
1
6

, . . .− − −    (d) 0.9, 0.99, 0.999, 0.9999, . . .

(e) sin
2
π

, sin p, sin
3
2
π

, sin 2p, sin
5
2
π

, . . .  (f ) 2
1

,
3
2

,
4
3

,
5
4

, . . .
2 3 4



















 

(a) =s
n

1
2n ; 

n
lim

1
2

0
n

=
→+∞

.

(b) s
n

n 1n = + ; 
n

n n n
lim

1
lim 1

1
1

1 lim
1

1
1 0 1

n n n+ = − +




 = − + = − =

→+∞ →+∞ →+∞
.

(c) s
n

( 1)
n

n 1

= − +

; 
n

lim
( 1)

0
n

n 1− =
→+∞

+

. This is intuitively clear, but one can also apply Theorem 42.3 to the sequence 

n( 1)n 1〈 − 〉+ , since nlim ( 1)
n

n 1− = ∞
→+∞

+ .

(d) s 1
1

10n n= − ; lim 1
1

10
1 lim

1
10

1 0 1
n

n
n

n−



 = − = − =

→+∞ →+∞
.

Note that lim
1

10
0

n
n =

→+∞
 by virtue of Theorem 42.4(b).

(e) s
n

sin
2n

π= . Note that the sequence consists of repetitions of the cycle 1, 0, -1, 0 and has no limit.

(f ) s
n

n
1

n

n

= +



 ; 

n
n n

elim
1

lim 1
1

n

n

n

n+



 = +



 =

→+∞ →+∞
 by (26.17).

 2. Evaluate slim
n n→+∞

 in the following cases:

(a) s
n n
n n

5 4 13
3 95 7n

2

2= − +
− −

  (b) s
n
n

8 3
2 5n

2

= −
+

  (c) n
n n

3 7
2 93

+
− −

 

(a) Recall that 
x x
x x

lim
5 4 13
3 95 7

5
3x

2

2

− +
− − =

→+∞
 by Chapter 7, Problem 13. Therefore, 

n n
n n

lim
5 4 13
3 95 7

5
3n

2

2

− +
− − =

→+∞
.  A similar 

result holds whenever sn is a quotient of polynomials of the same degree.

(b) Recall that 
x
x

lim
8 3
2 5x

2 −
+ = +∞

→+∞
 by Chapter 7, Problem 13. Therefore, 

n
n

lim
8 3
2 5n

2 −
+ = +∞

→+∞
. A similar result 

holds whenever sn is a rational function whose numerator has greater degree than the denominator (and 

whose leading coefficients have the same sign).

(c) Recall that 
x

x x
lim

3 7
2 9

0
x

3

+
− − =

→+∞
 by Chapter 7, Problem 13. Therefore, 

n
n n

lim
3 7

2 9
0

n
3

+
− − =

→+∞
. The same result 

holds whenever sn is a rational function whose denominator has greater degree than the numerator.

 3. For each of the following sequencies, determine whether it is nondecreasing, increasing, nonincreasing, 
decreasing, or none of these. Then determine its limit, if it exists.

(a) s
n
n

5 2
7 3n = −

+   (b) s
n
2n n=   (c) 

1
3n  

(a) Let f x
x
x

( )
5 2
7 3

= −
+ . Then f x

x x
x x

( )
(7 3)(5) (5 2)(7)

(7 3)
29

(7 3)
02 2′ = + − −

+ = + > .

   Hence, f(x) is an increasing function and therefore, sn〈 〉  is an increasing sequence.

(b) Let f x
x

( )
2x= . Then f x

x x x
( )

2 (ln )2
2

1 (ln 2)
2

x x

x x2′ = − = −
.
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Since ln 2 1
2>  [by (25.12)], x(ln2) > x/2 ≥ 1 when x ≥ 2. Thus, 1 - x(ln2) < 0 when x ≥ 2 and therefore,  

f ′(x) < 0 when x ≥ 2. So, f(x) is decreasing for x ≥ 2 and this implies that sn is decreasing for n ≥ 2. Note that 
s s1

1
2 2= = . Hence, sn〈 〉 is nonincreasing. Now let us find the limit. By L’Hôpital’s Rule,

x
lim

2
lim

1
(ln 2)2

0
x

x
x

x= =
→+∞ →+∞

 and therefore, 
n

lim
2

0
n

n =
→+∞

(c) 
s
s

1
3

1
3

1
3

1n

n
n n

1
1= 









 = <+

+ . Hence, sn〈 〉 is decreasing.

Theorem 42.4(b) tells us that lim
1
3

lim
1
3

0
n

n
n

n

= 



 =

→+∞ →+∞
.

 4. Show that the sequence s
n

n
1 3 5 7 . . . (2 1)

2 4 6 8 . . . (2 )n = ⋅ ⋅ ⋅ −
⋅ ⋅ ⋅  is convergent.

Let us use Theorem 42.8. sn〈 〉 is bounded, since 0 < sn < 1. Let us show that sn〈 〉 is decreasing. Note that

s
n
n

s
n
n

s
1 3 5 7 (2 1)
2 4 6 8 (2 2)

2 1
2 2n n n1 = ⋅ ⋅ ⋅ ⋅⋅ ⋅ +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + = +
+ <+

 5. Prove Theorem 42.1: every convergent sequence sn〈 〉 is bounded.
Let s Llim

n n =
→+∞

. Take 1 = . Then there exists a positive integer n0 such that whenever n ≥ n0, we have 

− <s L| | 1n . Hence, for n ≥ n0, using the triangle inequality, we get

= − + ≤ − + < +s s L L s L L L| | |( ) | | | | | 1 | |n n n

So, if we take M to be the maximum of + L1 | | and s s s s| |, | |, | |, . . . , | |n1 2 3 0
, then ≤s M| |n  for all n. Thus, sn〈 〉 is 

bounded.

 6. Show that the sequence 
n!
2n  is divergent.

Since 
n n n n!
2

1 2 3 . . .

2 2 2 . . . 2
1
2

3
2

4
2

. . .
2 2n = ⋅ ⋅

⋅ ⋅ = >  for n > 4, the sequence is not bounded. So, by Theorem 42.1, 

the sequence cannot be convergent.

 7. Prove Theorem 42.3: If slim
n n = ∞

→+∞
 and sn ≠ 0 for all n, then 

s
lim

1
0

n
n =

→+∞
.

Consider any 0 > . Since slim
n n = ∞

→+∞
, there exists some positive integer m such that whenever n ≥ m,

 s| |
1

n 
>   and therefore,  

s s
1

0
1

.
n n

− = <    So,    
s

lim
1

0
n n

=
→+∞

.

 8. Prove Theorem 42.4: (a) if >a| | 1, then alim
n

n = ∞
→+∞

; (b) If <r| | 1, then rlim 0
n

n =
→+∞

.

(a) Let M > 0, and let = +a b| | 1 . So, b > 0. Now = + = + + > + >a b nb nb M| | (1 ) 1 . . . 1n n  when n
M
b

≥ .

(b) Let a = 1/r. Since <r| | 1, a| | 1> . By part (a), alim
n

n = ∞
→+∞

. Hence, rlim (1/ )
n

n = ∞
→+∞

. So, by Theorem 42.3, 
rlim 0

n

n =
→+∞

.

 9. Prove: lim
1
2

0
n

n =
→+∞

.

lim 2
n

n = ∞
→+∞

 by Theorem 42.4(a). Hence, lim
1
2

0
n

n =
→+∞

 by Theorem 42.3.

10. Prove Theorem 42.2(c) and (e).

 Assume s clim
n n =

→+∞
 and t dlim

n n =
→+∞

.
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(c) s t c dlim ( )
n n n+ = +

→+∞
. Let 0 > . Then there exist integers m1 and m2 such that s c| | /2n − <  for n ≥ m1 and 

t d| | /2n − <  for n ≥ m2. Let m be the maximum of m1 and m2. So, for n ≥ m, s c| | /2n − <  and t d| | /2n − < . 
Hence, for n ≥ m,

 
+ − + = − + − ≤ − + − < + =s t c d s c t d s c t d|( ) ( )| |( ) ( )| | | | |

2 2n n n n n n  

(e) s t cdlim ( )
n n n =

→+∞
. Since sn〈 〉 is convergent, it is bounded, by Theorem 42.1 and therefore, there is a positive 

number M such that ≤s M| |n  for all n. Let 0 > . If d ≠ 0, there exists an integer m1 such that − <s c d| | /2 | |n  
for n ≥ m1 and therefore, − <d s c| || | /2n  for n ≥ m1. If d = 0, then we can choose m1 = 1 and we would 
still have − <d s c| || | /2n  for n ≥ m1. There also exists m2 such that − <t d M| | /2n  for n ≥ m2. Let m be the 
maximum of m1 and m2. If n ≥ m,

 


− = − + − ≤ − + −

= − + − ≤ 



 + =

s t cd s t d d s c s t d d s c

s t d d s c M
M

| | | ( ) ( )| | ( )| | ( )|

| || | | || |
2 2

n n n n n n n n

n n n

11. Prove the Squeeze Theorem: if s L ulim lim
n n n n= =

→+∞ →+∞
, and there is an integer m such that sn ≤ tn ≤ un for all n ≥ m, 

then t Llim
n n =

→+∞
.

Let 0 > . There is an integer m1 ≥ m such that − <s L| | /4n  and − <u L| | /4n  for n ≥ m1. Now assume  
n ≥ m1. Since sn ≤ tn ≤ un, − ≤ −t s u s| | | |n n n n . But

  − = − + − ≤ − + − < + =u s u L L s u L L s| | |( ) ( )| | | | |
4 4 2n n n n n n  

Thus, − <t s| | /2n n . Hence,

 
− = − + − ≤ − + − < + <t L t s s L t s s L| | | | ( )| | | | |

2 4n n n n n n n

SUPPLEMENTARY PROBLEMS

In each of Problems 12–29, determine for each given sequence sn〈 〉 whether it is bounded and whether it is non-
decreasing, increasing, nonincreasing, or decreasing. Also determine whether it is convergent and, if possible, find its 
limit. (Note: If the sequence has a finite limit, it must be bounded. If it has an infinite limit, it must be unbounded.)

12. n
n
2+   Ans. nondecreasing; increasing for n ≥ 2; limit +∞

13. 
n

sin
4
π

 Ans. bounded; no limit

14. n23〈 〉 Ans. increasing; limit +∞

15. 
n!

10n  Ans. increasing for n ≥ 10; limit +∞

16. 
n

n
ln

 Ans. decreasing for n ≥ 3; limit 0

17. (1 ( 1) )n1
2

1〈 + − 〉+  Ans. bounded; no limit

18. 
n

n
ln

1+
 Ans. decreasing; limit 0
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19. n
2

!

n

 Ans. nonincreasing; decreasing for n ≥ 2; limit 0

20. nn〈 〉 Ans. decreasing for n ≥ 3; limit 1

21. 
n

n
3

2+  Ans. increasing; limit 3

22. 
n

cos
π

 Ans. increasing, limit 1

23. 
n

n n
4 5

2 33

+
− +  Ans. decreasing; limit 0

24. 
n

n
sin

 Ans. limit 0

25. n n1〈 + − 〉  Ans. decreasing; limit 0

26. 
2

3 4

n

n −  Ans. decreasing; limit 0

27. n
n

sin
π

 Ans. increasing, limit π

28. 
n n

1

12 + −
 Ans. increasing; limit +∞

29. 
n
n!

n

 Ans. increasing; limit +∞

In each of Problems 30–32, find a plausible formula for a sequence whose first few terms are given. Find the limit  
(if it exists) of your sequence.

30. 1,
3
2

,
9
4

,
27
6

,
81
8

, . . .  Ans. s
n
3

2( 1)n

n 1

= −
−

; limit is +∞

31. -1, 1, -1, 1, -1, 1, . . . Ans. sn = (-1)n; no limit

32. 
3
1

,
7
4

,
11
7

,
3
2

,
19
11

, . . .  Ans. s
n
n

4 1
3 2n = −

− ; decreasing, limit is 4
3

 

33. Prove Theorem 42.7. (Hint: Let 0 > . Choose δ > 0 such that, for x in the domain of f for which x c| | δ− < , we 
have f x f c| ( ) ( )| − < . Choose m so that n ≥ m implies s c| |n δ− < .)

34. Show that nlim 1/ 1
n

pn =
→+∞

 for p > 0. (Hint: np/n = e(p ln n)/n.)
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35. (GC) Use a graphing calculator to investigate s
n

n n

5

4n

2

4
= +

+
 for n = 1 to n = 5. Then determine analytically the 

behavior of the sequence.

Ans. decreasing; limit is 1
2  

36. (GC) Use a graphing calculator to investigate s
n
2n n

5

=  for n = 1 to n = 10. Then determine analytically the 
behavior of the sequence.

Ans. decreasing for n ≥ 7; limit is 0

37. Prove that alim 0
n n =

→+∞
 is equivalent to alim | | 0

n n =
→+∞

.

38. If sn > 0 for all n and s clim
n n

2 =
→+∞

, prove that s clim
n n =

→+∞
.

39. (GC) Define sn by recursion as follows: s1 = 2 and s s
s

1
2

2
n n

n
1 = +



+  for n ≥ 1.

(a) Use a graphing calculator to estimate sn for n = 2, . . . , 5.

(b) Show that, if slim
n n→+∞

 exists, then slim 2
n n =

→+∞
.

(c) Prove that slim
n n→+∞

 exists.

40. Define sn by recursion as follows: s1 = 3, and s s( 6)n n1
1
2= ++  for n ≥ 1.

(a) Prove sn < 6 for all n.
(b) Show that < sn > is increasing.
(c) Prove that slim

n n→+∞
 exists.

(d) Evaluate slim
n n→+∞

.

Ans. (d) 6

41. Prove Theorem 42.2, parts (a), (b), (d ), (f ).
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CHAPTER 43

385

Infinite Series

Let 〈sn〉 be an infinite sequence. We can form the infinite sequence of partial sums 〈Sn 〉 as follows:

S s

S s s

S s s s

S s s sn n

1 1

2 1 2

3 1 2 3

1 2

�

�

=
= +
= + +

= + + ⋅⋅ ⋅ +

We usually will designate the sequence 〈Sn 〉 by the notation

s s s sn n1 2∑ = + + ⋅⋅⋅ + + ⋅⋅ ⋅

The numbers s1, s2, . . ., sn, . . . will be called the terms of the series.

If S is a number such that S Slim
n n =

→+∞
, then the series sn∑  is said to converge and S is called the sum of 

the series. We usually designate S by sn
n 1
∑

=

+∞

.

If there is no number S such that S Slim
n n =

→+∞
, then the series sn∑  is said to diverge. If Slim

n n = +∞
→+∞

, then 

the series is said to diverge to +∞ and we write sn
n 1
∑ = +∞

=

+∞

. Similarly, if Slim
n n = −∞

→+∞
, then the series is said 

to diverge to −∞ and we write sn
n 1
∑ = −∞

=

+∞

.

EXAMPLE 43.1: Consider the sequence 〈(–1)n
 

+1〉. The terms are s1 = 1, s2 = −1, s3 = 1, s4 = −1, and so on. Hence, 
the partial sums begin with S1 = 1, S2 = 1 + (−1) = 0, S3 = 1 + (−1) + 1 = 1, S4 = 1 + (−1) + (1) + (−1) = 0, and continue 
with alternating 1s and 0s. So, Slim

n n→+∞
 does not exist and the series diverges (but not to +∞ or −∞).

GEOMETRIC SERIES

Consider the sequence 〈ar n−1〉, which consists of the terms a, ar, ar2, ar3, . . . .

The series arn 1∑ −  is called a geometric series with ratio r and first term a. Its nth partial sum Sn is given by

= + + + ⋅⋅⋅+

= + + ⋅⋅⋅+ +

− = −

− = −

= −
−

−

−

S a ar ar ar

r rS ar ar ar ar

S rS a ar

r S a r

S
a r

r

Multiply by :

Subtract:

Hence, (1 ) (1 )

(1 )
1

n
n

n
n n

n n
n

n
n

n

n

2 1

2 1
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Everything now depends on the ratio r. If |r| < 1, then rlim 0
n

n =
→+∞

 [by Theorem 42.4(b)] and therefore, 

S a rlim /(1 )
n n = −

→+∞
. If |r| > 1, then rlim

n

n = ∞
→+∞

 [by Theorem 42.4(a)] and therefore, Slim
n n = ∞

→+∞
. (A trivial  

exception occurs when a = 0. In that case, all terms are 0, the series converges, and its sum is 0.) These results 
are summarized as follows:

Theorem 43.1: Given a geometric series arn 1∑ − :

(a) If |r| < 1, the series converges and has sum 
a

r1− .
(b) If |r| > 1 and a ≠ 0, the series diverges to ∞.

EXAMPLE 43.2: Take the geometric series ( )n1
2

1∑ −  with ratio r 1
2=  and first term a = 1:

1 1
2

1
4

1
8+ + + + ⋅⋅⋅

By Theorem 43.1(a), the series converges and has sum 
1

1 ( )
1

21
2

1
2− = = . Thus, ( ) 2n

n

1
2

1

1
∑ =−

=

+∞

.

We can multiply a series sn∑  by a constant c to obtain a new series csn∑ , and we can add two series sn∑  

and tn∑  to obtain a new series s t( )n n∑ + .

Theorem 43.2: If c ≠ 0, then csn∑  converges if and only if sn∑  converges. Moreover, in the case of convergence,

cs c sn
n

n
n1 1

∑ ∑=
=

+∞

=

+∞

To obtain this result, denote by T cs cs csn n1 2= + + ⋅⋅ ⋅ +  the nth partial sum of the series csn∑ . Then  

Tn = cSn, where Sn is the nth partial sum of sn∑ . So, Tlim
n n→+∞

 exists if and only if Slim
n n→+∞

 exists, and when the 

limits exist, T c Slim lim
n n n n=

→+∞ →+∞
. This yields Theorem 43.2.

Theorem 43.3: Assume that two series sn∑  and tn∑  both converge. Then their sum s t( )n n∑ +  also converges and

s t s t( )n n
n

n
n

n
n1 1 1

∑ ∑ ∑+ = +
=

+∞

=

+∞

=

+∞

To see this, let Sn and Tn be the nth partial sums of sn∑  and tn∑ , respectively. Then the nth partial sum 

Un of s t( )n n∑ +  is easily seen to be Sn + Tn. So, U S Tlim lim lim
n n n n n n= +

→+∞ →+∞ →+∞
. This yields Theorem 43.3.

Corollary 43.4: Assume that two series sn∑  and tn∑  both converge. Then their difference s t( )n n∑ −  also  
converges and

s t s t( )n n n n
nnn 111
∑∑∑ − = −

=

+∞

=

+∞

=

+∞

This follows directly from Theorems 43.2 and 43.3. Just note that s t( )n n∑ −  is the sum of sn∑  and the 

series t( 1) n∑ − .
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Theorem 43.5: If sn∑  converges, then slim 0
n n =

→+∞
.

To see this, assume that s Sn
n 1
∑ =

=

+∞

. This means that S Slim
n n =

→+∞
, where, as usual, Sn is the nth partial sum 

of the series. We also have S Slim
n n 1 =

→+∞ − . But, sn = Sn − Sn−1. So, s S S S Slim lim lim 0
n n n n n n 1= − = − =

→+∞ →+∞ →+∞ − .

Corollary 43.6 (The Divergence Theorem): If slim
n n→+∞

 does not exist or slim 0
n n ≠

→+∞
, then sn∑  diverges.

This is an immediate logical consequence of Theorem 43.5.

EXAMPLE 43.3: The series 1
3

2
5

3
7

4
9+ + + + ⋅⋅⋅  diverges.

Here, s
n

n2 1n = + . Since 
n

n
lim

2 1
1
2

0
n + = ≠

→+∞
, the Divergence Theorem implies that the series diverges.

The converse of Theorem 43.5 is not valid: slim 0
n n =

→+∞
 does not imply that sn∑  converges. This is shown 

by the following example.

EXAMPLE 43.4: Consider the so-called harmonic series 
n
1

1
1
2

1
3

1
4

1
5∑ = + + + + + ⋅⋅⋅. Let us look at the following 

partial sums of this series:

S

S

S S S S S

S S

S S

1
1
2

1
1
2

1
3

1
4

1
1
2

1
4

1
4

1
1
2

1
2

1
2
2

1
5

1
6

1
7

1
8

1
8

1
8

1
8

1
8

4
8

1
2

1
3
2

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
2

1
4
2

2

4

8 4 4 4 4

16 8

8 8

= +

= + + + > + + + = + + = +

= + + + + > + + + + = + = +

> +

= + + + + + + + +

> + + + + + + + + = +

> +

Continuing in this manner, we would obtain S 132
5
2> + , S 164

6
2> + , and, in general, S k1 /22k > +  when k > 1. This 

implies that Slim
n n = +∞

→+∞
 and therefore, the harmonic series diverges. But notice that s nlim lim 1/ 0

n n n
= =

→+∞ →+∞
.

Remark:  Convergence or divergence is not affected by the addition or deletion of a finite number of 
terms at the beginning of a series. For example, if we delete the first k terms of a series and the sum of the 
deleted terms is c, then each new partial sum Tn has the form Sn+k − c. (For example, T1 is Sk+1 − c.) But 

S clim ( )
n n k −

→+∞ +  exists if and only if Slim
n n k→+∞ +  exists, and Slim

n n k→+∞ +  exists if and only if Slim
n n→+∞

 exists.

Notation:  It will often be useful to deal with series in which the terms of 〈sn 〉 are indexed by the non-
negative integers: s0, s1, s2, s3, . . .. Then the partial sums Sn would also begin with S0 = s0, and the sum of a 

convergent series would be written as sn
n 0
∑

=

+∞

.

SOLVED PROBLEMS

 1. Examine the series 
1
5

1
5

1
52 3+ + + ⋅⋅⋅ for convergence.

This is a geometric series with ratio r 1
5=  and the first term a 1

5= . Since r| | 11
5= < , Theorem 43.1 (a) tells us 

that the series converges and that its sum is 
a

r1
1/5

1 (1/5)
1/5
4/5

1
4− = − = = .
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 2. Examine the series 
1

1 2
1

2 3
1

3 4
1

4 5⋅ + ⋅ + ⋅ + ⋅ + ⋅⋅⋅ for convergence.

The nth term is 
n n

1
( 1)⋅ + . This is equal to 

n n
1 1

1
− + . Hence, the nth partial sum

S
n n

n n

n

1
1 2

1
2 3

1
3 4

1
4 5

1
( 1)

1
1

1
2

1
2

1
3

1
3

1
4

1
4

1
5

1 1
1

1
1

1

n = ⋅ + ⋅ + ⋅ + ⋅ + ⋅+ ⋅ +

= −



 + −



 + −



 + −



 + ⋅⋅⋅+ − +







= − +

 Thus, S
n

lim lim 1
1

1
1 0 1

n n n
= − +





 = − =

→+∞ →+∞
. Hence, the series converges and its sum is 1.

 3. We know that the geometric series 1 1
2

1
4

1
8

1
16+ + + + + ⋅⋅⋅ converges to S = 2. Examine the series that results 

when: (a) its first four terms are dropped; (b) the terms 3, 2, and 5 are added to the beginning of the series.

(a) The resulting series is a geometric series 1
16

1
32+ + ⋅⋅⋅ with ratio 1

2 . It converges to 
1/16

1 (1/2)
1/16
1/2

1
8− = = . Note 

that this is the same as S (1 ) 2 ( )1
2

1
4

1
8

15
8

1
8− + + + = − = .

(b) The new series is 3 2 5 1 1
2

1
4

1
8

1
16+ + + + + + + + ⋅⋅⋅. The new partial sums are the old ones plus (3 + 2 + 5). 

Since the old partial sums converge to 2, the new ones converge to 2 + 10 = 12. Thus, the new series is 
convergent and its sum is 12.

 4. Show that the series 1
2

3
4

7
8

15
16+ + + + ⋅⋅⋅ diverges.

Here, s
2 1

2
1

1
2n

n

n n= − = − . Since lim
1
2

0
n

n =
→+∞

, it follows that slim 1 0 1 0
n n = − = ≠

→+∞
. So, by the Divergence 

Theorem, the series diverges.

 5. Examine the series 9 12 16 64
3

256
9− + − + − ⋅⋅⋅ for convergence.

This is a geometric series with ratio r 4
3= − . Since r| | 14

3= > , Theorem 43.1(b) tells us that the series diverges.

 6. Evaluate 
( 1)

2
1

1
2

1
4

1
8

1
16

n

n
n 0
∑ − = − + − − − ⋅⋅⋅

=

+∞

.

This is a geometric series with ratio r 1
2= −  and first term a = 1. Since r| | 11

2= < , the series converges and its 

sum is 
a

r1
1

1 ( 1/2)
1

3/2
2
3− = − − = = .

 7. Show that the infinite decimal 0.999 . . . is equal to 1.

0.999
9

10
9

100
9

1000
⋅ ⋅⋅ = + + + ⋅⋅⋅. This is a geometric series with first term a 9

10=  and ratio r 1
10= . 

Hence, it converges to the sum 
a

r1
9/10

1 (1/10)
9/10
9/10

1− = − = = .

 8. Examine the series 
1

1 3
1

3 5
1

5 7
1

7 9⋅ + ⋅ + ⋅ + ⋅ + ⋅⋅⋅.

Here, s
n n

1
(2 1)(2 1)n = − + . Note that n n n n

1
(2 1)(2 1)

1
2

1
2 1

1
2 1− + = − − +





 . Hence, the nth partial sum Sn is

n n n
1
2

1
1

1
3

1
2

1
3

1
5

1
2

1
5

1
7

1
2

1
2 1

1
2 1

1
2

1
1

2 1
−



 + −



 + −



 + ⋅⋅⋅+ − − +





 = − +





  

 So, Slim
n n

1
2=

→+∞
. Thus, the series converges to 1

2 .
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 9. Examine the series 3 3 3 33 4+ + + + ⋅⋅⋅.

 s e3 3n
n n n1/ (ln3) /= = = . Then s elim 1 0

n n
0= = ≠

→+∞
. By the Divergence Theorem, the series diverges.

10. Examine the series 1
10

1
11

1
12

1
13+ + + + ⋅⋅⋅.

This series is obtained from the harmonics series by deleting the first nine terms. Since the harmonic series 
diverges, so does this series.

11. (Zeno’s Paradox) Achilles (A) and a tortoise (T ) have a race. T gets a 1000 ft head start, but A runs at 10 ft/sec, 
whereas T only does 0.01 ft/sec. When A reaches T ’s starting point, T has moved a short distance ahead. When A 
reaches that point, T again has moved a short distance ahead, etc. Zeno claimed that A would never catch T. Show 
that this is not so.

When A reaches T ’s starting point, 100 seconds have passed and T has moved 0.01 (100) = 1 ft. A covers that 
additional 1 ft in 0.1 seconds, but T has moved 0.01(0.1) = 0.001 ft further.  A needs 0.0001 seconds to cover that 
distance, but T meanwhile has moved 0.01(0.0001) = 0.000001 ft, etc. The limit of the distance between A and T 
approaches 0. The time involved is 100 0.1 0.0001 0.0000001+ + + + ⋅⋅⋅, which is a geometric series with first term 
a = 100 and ratio r = 1/1000. Its sum is

a
r1

100
1 (1/1000)

100
999/1000

100000
999− = − = =

 which is a little more than 100 seconds. The seeming paradox arises from the artificial division of the event into 
infinitely many shorter and shorter steps.

SUPPLEMENTARY PROBLEMS

12. Examine each of the following geometric series. If the series converges, find its sum.

(a) 4 1 1
4

1
16− + − + ⋅⋅⋅   Ans. S 16

5=  

(b) 1 3
2

9
4

27
8+ + + + ⋅⋅⋅   Ans. Diverges

(c) 1 1
3

1
9

1
27− + − + ⋅⋅⋅   Ans. S 3

4=  

(d) e e e1 1 2 3+ + + + ⋅⋅⋅− − −   Ans. S
e

e 1
= −  

13. A rubber ball is dropped from a height of 10 ft. Whenever it hits the ground, it bounces straight up three-fourths 
of the previous height. What is the total distance traveled by the ball before it stops?

Ans. 70 ft

14. Examine the series ∑ + = ⋅ + ⋅ + ⋅ + ⋅⋅⋅
=

∞

n n
1

( 4)
1

1 5
1

2 6
1

3 7
n 1

.

Ans. S 25
48=  

15. Examine the series ∑ + + = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅⋅⋅
=

∞

n n n
1

( 1)( 2)
1

1 2 3
1

2 3 4
1

3 4 5
n 1

 

Ans. S 1
4=  

16. Evaluate sn
n 1
∑

=

+∞

 when sn is the following:

(a) 3−n  (b) 
n n

1
( 2)+   (c) 

n n
1

( 3)+   (d) 
n

n( 1)!+  

Ans. (a) 1
2; (b) 3

4 ; (c) 11
18 ; (d) 1
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17. Show that each of the following series diverges:

(a) 3 5
2

7
3

9
4+ + + + ⋅⋅⋅  (b) 2 2 2 23 4+ + + + ⋅⋅⋅  (c) 

1
2

1
2

1
2

1
23 4

+ + + + ⋅⋅⋅  

(d) e e e e
8 27 64

2 3 4+ + + + ⋅⋅⋅  (e) ∑ + −=

∞

n n

1

1n 2

 

18. Evaluate the following

(a) 
1
2

1
7n n

n 0
∑ +



=

+∞

  (b) n
1

4
n 1
∑

=

+∞

  (c) 
n

n n
2 1
( 1)

n
2 2

1
∑ +

+
=

+∞

 

(d) 
2 3

5

n n

n
n 0
∑ +

=

+∞

  (e) 
2
3

n

n
n

1

1
∑

−

=

+∞

  (f ) 
5
3

n

n
n 1
∑

=

+∞

 

(g) 
n

n n
3

2
n

2

2
1

∑ −
+ +

=

+∞

  (h) 
( 1)
5

n

n
n

2
1

∑ −
=

+∞

  (i) 
2
3

n

n
n

3

2
1

∑
=

+∞

 

( j) 1
n 1
∑

=

+∞

 

Ans. (a) 19
6 ; (b) +∞; (c) 1; (d) 25

6 ; (e) 1; (f ) +∞; (g) +∞; (h) 1
26− ; (i) 8; ( j) +∞

19. (GC) In Problems 1 and 6, use a calculator to compute the first 10 partial sums and determine to how many 
decimal places the 10th partial sum is a correct estimate of the sum of the series.

20. (GC) (a) If |x| < 1, what function is represented by x x x x1n

n

2 3

0
∑ = + + + + ⋅⋅⋅

=

+∞

?

(b) Use a graphing calculator to graph x x x x1 2 3 9+ + + + ⋅⋅⋅+  on the interval (−1, 1) and compare the graph with 
that of the function in (a).

Ans. (a) 
x

1
1−  

21. In each of the following, find those values of x for which the given series converges, and then find the function 
represented by the sum of the series for those values of x.

(a) x(3 )n

n 0
∑

=

+∞

  (b) x( 2)n

n 0
∑ −

=

+∞

 (c) 
x
2

n

n

0
∑



=

+∞

  (d) 
x 1

2

n

n 0
∑ −



=

+∞

 

Ans. (a) x| |
1
3

< , 
x

1
1 3− ; (b) 1 < x < 3, 

x
1

3 − ; (c) x| | 2< , 
x

2
2 − ; (d) −1 < x < 3, 

x
2

3 −
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CHAPTER 44

391

Series with Positive Terms. The 
Integral Test. Comparison Tests.

SERIES OF POSITIVE TERMS

If all the terms of a series ∑sn are positive, then the series is called a positive series.

For a positive series ∑sn, the sequence of partial sums 〈 〉Sn  is an increasing sequence, since
= + >+ +S S s S .n n n n1 1  This yields the following useful result.

Theorem 44.1: A positive series sn∑  converges if and only if the sequence of partial sums sn〈 〉  is bounded.
To see this, note first that if ∑sn converges, then by definition, 〈 〉Sn  converges and therefore, by Theorem 42.1,

〈 〉Sn  is bounded. Conversely, if 〈 〉Sn  is bounded, then since 〈 〉Sn  is increasing, Theorem 42.8 implies that 〈 〉Sn  
converges, that is, ∑sn converges.

Theorem 44.2 (Integral Test): Let sn∑  be a positive series and let f (x) be a continuous, positive decreasing function 
on [1, )+ ∞  such that f n s( ) n=  for all positive integers n. Then:

sn∑  converges if and only if f x dx( )
1∫
+∞

 converges

From Fig. 44-1 we see that ∫ < + + ⋅⋅ ⋅ + =− −f x dx s s s S( ) .
n

n n1 1 2 1 1  If ∑sn  converges, then 〈 〉Sn  is bounded; 

so, ∫ f x dx( )
u

1
 will be bounded for all u ≥ 1 and therefore, ∫

+∞
f x dx( )

1
 converges. Conversely, from Fig. 44-1 

Fig. 44-1
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we have ∫+ + ⋅⋅ ⋅ + <s s s f x dx( )n

n

2 3 1
 and therefore, ∫< +S f x dx s( ) .n

n

11
 Thus, if ∫

+∞
f x dx( )

1
 converges, then 

∫< +
+∞

S f x dx s( )n 11
, and so 〈 〉Sn  will be bounded. Hence, by Theorem 44.1, ∑sn converges. This proves 

Theorem 44.2.

EXAMPLE 44.1: ∑ n
n

ln
 diverges.

Let =f x
x

x
( )

ln
. Now

∫∫ = = 


= − = +∞
→+∞ →+∞

+∞

→+∞

x
x

dx
x

x
dx x u

ln
lim

ln
lim (ln ) lim ((ln ) 0)

u u

u
u

u1

1
2

2

1
1

1
2

2  

Hence, by the integral test, ∑ n
n

ln
 diverges.

EXAMPLE 44.2: ∑ n
1

2  converges.

Let =f x
x

( )
1

2 . Now

∫∫ = = − 


= − −



 =

→+∞ →+∞

+∞

→+∞x
dx

x
dx

x u
1

lim
1

lim
1

lim
1

1 1
u u

u
u

u
2 211

1

Hence, by the integral test, ∑ n
1

2  converges.

Remark:  The integral test can be easily be extended to the case where the lower limit of the integral is 
changed from 1 to any positive integer.

Theorem 44.3 (Comparison Test): Let ∑an and ∑bn be two positive series such that there is a positive integer m 
for which ≤a bk k for all integers ≥k m. Then:

(1) If ∑bn converges, so does ∑a ;n  

(2) If ∑an diverges, so does ∑b .n  

We may assume in the derivation of Theorem 44.3 that m = 1, since convergence is not affected by 
deletion of a finite number of terms at the beginning of a series. Note also that (2) is a logical consequence 
of (1). To prove (1), assume that ∑bn converges. Let = + + ⋅⋅ ⋅ +B b b bn n1 2  be the nth partial sum for ∑bn 
and let = + + ⋅⋅ ⋅ +A a a an n1 2  be the nth partial sum ∑an. Then ≤A B ,n n  since ak ≤ bk for all k. From the fact

that ∑bn converges, it follows, by Theorem 44.1, that the sequence 〈 〉Bn  is bounded. Since ≤A Bn n for all

n, it follows that the sequence 〈 〉An  is bounded. So, by Theorem 44.1, ∑an converges. This proves Theorem 44.3.

EXAMPLE 44.3: ∑ +n
1

52  converges.

 Let = +a
n

1
5n 2  and =b

n
1

.n 2  Then <a bn n for all n. By Example 2, ∑ n
1

2  converges. So, by the comparison test, 

∑ +n
1

52  converges.

EXAMPLE 44.4: ∑ +n
1

3 5
 diverges.

 Let =a
n

1
4n  and = +b

n
1

3 5
.n
 Now an ≤ bn for n ≥ 5. (To see this, observe that ≤ +n n

1
4

1
3 5

 is equivalent to  

3n + 5 ≤ 4n, which is equivalent to 5 ≤ n.) Recall that the harmonic series ∑ n
1

 diverges (by Chapter 43,  

Example 4). Hence, ∑ n
1

4
 diverges by Theorem 43.2. The comparison test implies that ∑ +n

1
3 5

 diverges.

Sometimes, as in Example 4, complicated maneuvers are needed in order to apply the comparison test. 
The following result offers a much more flexible tool.
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Theorem 44.4 (Limit Comparison Test): Let ∑an and ∑bn be two positive series such that =
→+∞

L
a
b

lim
n

n

n

 exists 

and < < +∞L0 . Then ∑an converges if and only if ∑bn converges.

Assume that ∑bn converges. Let c be a positive number such that <L c. Then there exists a positive 
integer m such that an /bn < c for all n ≥ m. Hence, an < cbn for all n ≥ m. But since ∑bn converges, so 

does ∑cb .n  Therefore, by the comparison test, ∑an converges. Conversely, if ∑an converges, then ∑bn 

converges. (In fact, = >
→+∞

b
a L

lim
1

0
n

n

n

 and we can use the same kind of argument that was just given.)

EXAMPLE 44.5: ∑ − +
+

n n
n

3 5 4
7 2

2

3
 diverges.

 When dealing with quotients of polynomials, a good rule of thumb is to ignore everything except the leading 

terms. In this case, we have =n
n n

3
7

3
7

1
.

2

3  Let us try a limit comparison with 
n
1

. Now

− +
+















 = − +

+ =
→+∞ →+∞

n n
n n

n n n
n

lim
3 5 4

7 2
1

lim
3 5 4

7 2
3
7

.
n n

2

3

3 2

3
 

 Since ∑ n
1

 diverges, the limit comparison test tells us that ∑ − +
+

n n
n

3 5 4
7 2

2

3  diverges.

EXAMPLE 44.6: ∑ −
− +
n

n n

5 2

4 76 2
 converges.

 Using the rule of thumb given in Example 5, we should look at = =n

n

n
n n

5 5 5
.

6 3 2  So, let us try a limit comparison 

with n
1

2 : 

−
− +















 = −

− +→+∞ →+∞

n

n n n
n n

n n
lim

5 2

4 7

1
lim

5 2

4 7n n6 2 2

3 2

6 2
 

 Let us divide the numerator and denominator by n3. Note that in the denominator, we would get

− + = − + = − +
n

n n
n

n n
n n

1
4 7

1
4 7 1

4 6
3

6 2
6

6 2
4 6

 

 So, the result would be

−

− +
= =

→+∞

n

n x

lim
5

2

1
4 7

5
1

5
n

4 6

 

 Hence, since we know, by Example 2, that ∑ n
1

2
 converges, the limit comparison test implies that ∑ −

− +
n

n n

5 2

4 76 2
 

converges.

SOLVED PROBLEMS

 1. Consider the series ∑ n
1 ,p  where p is constant. This is called a p-series. Then:

(a) If >p 1, the series ∑ n
1

p
 converges.

(b) If ≤p 1, the series ∑ n
1

p  diverges.
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394 CHAPTER 44 Series with Positive Terms

 We may assume that p ≠ 1, since we already know that the harmonic series ∑ n
1

 diverges. We may also assume 

that >p 0; if ≤p 0, ≠
→+∞ nlim 1 0
n p  and the Divergence Theorem implies that the series diverges. Let us apply the 

integral test with =f x x( ) 1/ .p  (f (x) is positive and decreasing in +∞[1, ).) Now

x
dx

x
dx

x
p

u
p p

1
lim

1
lim

1

lim
1

1
1

.

p
u

p

u

u

p u

u

p

1 1

1

1

1

∫ ∫= = −



= − − −






→+∞

+∞

→+∞

−

→+∞

−

(a) >p 1. Then − >p 1 0 and = =
→+∞

−
→+∞ −u

u
lim lim

1
0.

u

p

u
p

1
1   So, − − −







= −→+∞

−u
p p p

lim
1

1
1

1
1

.
u

p1

 By the integral test, 

∑ n
1

p  converges.

(b) <p 1. Then − >p1 0 and = +∞
→+∞

−ulim
u

p1 .  So, − − −






= +∞
→+∞

−u
p p

lim
1

1
1u

p1

 and, by the integral test, ∑ n
1

p  
diverges.

 In Problems 2–7, examine the given series for convergence.

 2. + + + + ⋅⋅⋅1
1
3

1
5

1
7

. 

 =
−

s
n

1
2 1n

. Let =
−

f x
x

( )
1

2 1
. On +∞ >f x[1, ), ( ) 0 and f is decreasing.

∫ ∫∫ −
=

−
= −

= − 
 = − − = +∞

→+∞ →+∞
−

+∞

→+∞ →+∞

x
dx

dx

x
x dx

x u

1
2 1

lim
2 1

lim
1
2

(2 1) (2)

lim (2)(2 1) lim ((2 1) 1)

u u

u u

u

u

u

1

1/2

11

1
2

1/2

1

1/2

 

 Hence, the series diverges by the integral test.

 3. + + + ⋅⋅⋅+ + + ⋅⋅⋅
n

1
3

1
10

1
29

1
2

.3  

 + <
n n

1
2

1
3 3 . ∑ n

1
3  is convergent, since it is a p-series with p = 3 > 1. Thus, by the comparison test, ∑ +n

1
23  is 

convergent.

 4. + + + + ⋅⋅⋅1
1
2!

1
3!

1
4!

. 

 =s
n
1
!n . Note that = − ⋅⋅⋅⋅⋅ ⋅ ≤ −n n n

1
!

1
( 1) 3 2

1
2n 1  for ≥n 2. Since ∑ −

1
2n 1  is a convergent geometric series (with 

ratio 1
2), ∑ n

1
!
 is convergent by the comparison test.

 5. + + + + ⋅⋅⋅2
3
2

4
3

5
4

.3 3 3  

 = +
s

n
n

1
.n 3  Use limit comparison with =n

n n
1

.3 2

+ = + =
→+∞ →+∞

n
n n

n n
n

lim
1 1

lim 1
n n

3 2

3 2

3  

 We know that ∑ n
1

2  converges. So, by the limit comparison test, ∑ +n
n

1
3  converges.
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 6. + + + + ⋅⋅⋅1
1
2

1
3

1
42 3 4  

 =s
n
1

.n n  Now = ⋅ ⋅⋅⋅⋅ ⋅ ≤ −n n n n
1 1 1

2n n 1  and ∑ −
1

2n 1  is a convergent geometric series =r( ).1
2   So, by the 

comparison test, ∑ n
1

n  converges.

 7. + +
+ + +

+ + +
+ + ⋅⋅⋅1

2 1
2 1

3 1
3 1

4 1
4 1

.
2

3

2

3

2

3  

 = +
+s

n
n

1
1

.n

2

3  Use limit comparison with =n
n n

1
:

2

3  

 
+
+















 = +

+ =
→+∞ →+∞

n
n n

n n
n

lim
1
1

1
lim

1
1

n n

2

3

3

3  

 We know that the harmonic series ∑ n
1

 diverges. So, by the limit comparison test, ∑ +
+

n
n

1
1

2

3  diverges.

 8. + + + ⋅⋅⋅1
2 ln 2

1
3ln3

1
4 ln 4

. 

 =s
n n

1
lnn  is defined for n ≥ 2.

 ∫ ∫= = 


= − = +∞
→+∞

+∞

→+∞ →+∞

dx
x x

dx
x x

u u
ln

lim
ln

lim ln(ln ) lim (ln (ln ) ln (ln 2))
u u

u
u

u2 2
2

. 

 Hence, the series diverges by the integral test.

 9. How many terms of ∑ n
1

2  suffice to obtain two-decimal place accuracy (that is, an error < 5/103)?

 If we use k terms, then we require that the error

n n n x
dx

x
dx

x u k

k

1 1 1 1
lim

1
lim

1
lim

1 1

1 5
10

1
200

n n

k

k u
n k

uk

u

k

u

u
2

1
2

1
2 2

1
2

3

∑ ∑ ∫∑ ∫− = ≤ = = −



 = − −





= < =

=

+∞

=

+∞

→+∞
= +

+∞

→+∞ →+∞

 

 Hence, 200 < k. Thus, it suffices to use 201 terms of the series. (The graphing calculator can be used to find 

∑ ≈
=

n
1

1.64.
n

2
1

201

)

10. Assume ∑ sn converges by virtue of the integral test applied to f (x) and, for each n, the error (or remainder) Rk 
after k terms is defined to be

 ∑∑ −
==

+∞

s s .n n
n

k

n 11

 Then ∫∑= <
+∞

= +

+∞

R s f x dx( ) .k n k
n k 1

 

 Find a bound on the error when ∑
=

+∞

n
1

n
2

1

 is approximated by the first five terms: + + + + = ≈1
1
4

1
9

1
16

1
25

5269
3600

1.4636. 

 The error ∫< = =
+∞

R
x

dx
1

0.2.5 2
1
55
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11. Assume ∑ sn and ∑cn are positive series, ∑cn converges, and ≤s cn n for all n. Then the error Rk after k terms is

∑ ∑∑∑ − = ≤
= = +

+∞

= +

+∞

=

+∞

s s s c .n n
n

k

n n
n kn kn 1 111

 

 At least how many terms will suffice to estimate ∑ +
=

+∞

n
1

1
n

5
1

 with an error < 0.00001?

   In this case, = +s
n

1
1n 5  and =c

n
1

.n 5  It suffices to have ∑ <
= +

+∞

n
1

0.00001.
n k

5
1

 Now ∫∑ < =
+∞

= +

+∞

n x
dx

k
1 1 1

4k
n k

5 5
1

4 . 

So, we need < =
k
1

4
0.00001

1
100,000

.4  Equivalently, 100,000 < 4k4, 25,000 < k4, k ≥ 13.

SUPPLEMENTARY PROBLEMS

 For Problems 12–43, determine whether the series converges.

12. ∑ +n n
3

( 1)
  Ans. converges; comparison with ∑ n

3
2  

13. ∑ + +
n

n n( 1)( 2)
  Ans. diverges; limit comparison with ∑ n

1
 

14. ∑ +
n

n 12   Ans. diverges; limit comparison with ∑ n
1

 

15. ∑ n
en   Ans. converges; integral test

16. ∑ + + +
n

n n n
2

( 1)( 2)( 3)
  Ans. converges; limit comparison with ∑ n

1
2  

17. ∑ +n
1

(2 1)2   Ans. converges; limit comparison with ∑ n
1

2
 

18. ∑ −n
1

13   Ans. converges; limit comparison with ∑ n
1

3  

19. ∑ −n
n

2
3   Ans. converges; limit comparison with ∑ n

1
2  

20. ∑ +
n

n
ln

22   Ans. converges; limit comparison with ∑ n
1
3/2  

21. ∑ 



n

n
sin

1
  Ans. diverges; Divergence Theorem

22. ∑ n
1

3
  Ans. diverges; p-series, = <p 11

3  

23. ∑ −n
1
n 1

  Ans. converges; comparison with ∑ ≥− n
1

2
, 2n 1  
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24. ∑ n
n

ln
  Ans. diverges; comparison with ∑ n

n
ln

 

25. ∑ + n
1

1 ln
  Ans. diverges; comparison with ∑ n

1
 

26. ∑ +
−

n

n n

1
3 2

  Ans. diverges; limit comparison with ∑ n
1

 

27. ∑ ≥
n n n

n
1

ln ln (ln )
(for 3)   Ans. diverges; integral test

28. ∑ ≥
n n n

n
1

ln (ln (ln ))
(for 3)2   Ans. converges, integral test

29. + + + + ⋅⋅⋅1
4

1
7

1
10

1
13

.2 2 2 2  

Ans. = +s
n

1
(3 1)

;n 2  converges; limit comparison with ∑ n
1

2  

30. + + + + ⋅⋅⋅3
3

2
3

3
3

4
.1/3 1/3 1/3  

Ans. =s
n
3

;n 1/3  diverges; p-series, = <p 11
3  

31. + + + + ⋅⋅⋅1
1
5

1
9

1
13

.  

Ans. = −s
n
1

4 3
;n  diverges; limit comparison with ∑ n

1  

32. + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅⋅⋅1
2

1
3 4

1
4 5 6

1
5 6 7 8

.  

Ans. = + + ⋅⋅⋅s
n n n

1
( 1)( 2) (2 )

;n  converges; limit comparison with ∑ n
1

2  

33. + ⋅ + ⋅ + ⋅ + ⋅⋅⋅2
3

3
2 3

4
3 3

5
4 3

.2 3 4  

Ans. = +
⋅s

n
n

1
3

;n n  converges; limit comparison with ∑ 1
3n  

34. + ⋅ + ⋅ + ⋅ + ⋅⋅⋅1
2

1
2 2

1
3 2

1
4 2

.2 3 4  

Ans. =s
n
1
2

;n n  converges; comparison with ∑ 1
2n  

35. ⋅ + ⋅ + ⋅ + ⋅ + ⋅⋅⋅2
1 3

3
2 4

4
3 5

5
4 6

.  

Ans. = +
+s

n
n n

1
( 2)

;n  diverges; limit comparison with ∑ n
1  

36. + + + + ⋅⋅⋅1
2

2
3

3
4

4
5

.2 3 4  

Ans. = +s
n

n( 1)
;n n  converges; comparison with ∑ −

1
2n 1  
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37. + + + + ⋅⋅⋅1
1
2

1
3

1
4

.2 5/2 3  

Ans. = +s
n

1
;n n( 2) /2  converges; comparison with ∑ n

1
2  

38. + + + + ⋅⋅⋅1
3
5

4
10

5
17

.  

Ans. = +
+s

n
n

1
1

;n 2  diverges; limit comparison with ∑ n
1  

39. + ⋅
⋅ + ⋅ ⋅

⋅ ⋅ + ⋅ ⋅ ⋅
⋅ ⋅ ⋅ + ⋅⋅⋅2

5
2 4
5 8

2 4 6
5 8 11

2 4 6 8
5 8 11 14

.  

Ans. = ⋅ ⋅⋅⋅⋅ ⋅
⋅ ⋅ ⋅ ⋅ +s

n
n

2 4 (2 )
5 8 (2 3 )

;n  converges; comparison with 2
3

n

∑





 

40. + + + + ⋅⋅⋅3
2

5
10

7
30

9
68

.  

Ans. = +
+s

n
n n
2 1

;n 3  converges, limit comparison with ∑ n
1

2  

41. + + + + ⋅⋅⋅3
2

10
24

29
108

66
320

.  

Ans. = +
+s

n
n n

2
;n

3

4 3  diverges; limit comparison with ∑ n
1  

42. − + − + − + − + ⋅⋅⋅.1
2 1

2
3 2

3
4 3

4
5 42 2 2 2  

Ans. = + −s
n

n n( 1)
;n 2  diverges; limit comparison with ∑ n

1  

43. − + − + − + − + ⋅⋅⋅1
2 1

1
3 2

1
4 3

1
5 4

.3 2 3 2 3 2 3 2  

Ans. = + −s
n n

1
( 1)

;n 3 2  converges; limit comparison with ∑ n
1

3  

44. (GC) Estimate the error when:

(a) ∑ +
=

+∞ 1
3 1n

n 1

 is approximated by the sum of its first six terms.

(b) ∑ +
=

+∞ 1
4 3n

n 1

 is approximated by the sum of its first six terms. 

Ans. (a) 0.0007; (b) 0.00009

45. (GC) (a) Estimate the error when the geometric series ∑ 3
2n  is approximated by the sum of its first six terms.

 (b) How many terms suffice to compute the sum if the allowable error is 0.00005?

Ans. (a) 0.047; (b) 16

46. (GC) (a) How many terms suffice to approximate ∑
=

+∞

n
1

n
4

1

 with an error < 0.001?

(b) Find a bound on the error if we approximate ∑
=

+∞

n
1

n
4

1

 by the sixth partial sum.

(c) What is your approximation to ∑
=

+∞

n
1

n
4

1

 by the sixth partial sum, correct to four decimal places?

Ans. (a) 7; (b) 0.0015; (c) 1.0811
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47. (GC) Let Sn be the nth partial sum + + ⋅⋅⋅+
n

1
1
2

1
 of the divergent harmonic series.

(a) Prove + ≤ ≤ +n S nln ( 1) 1 ln .n  
(b) Let = −E S nlnn n . Prove that 〈 〉En  is bounded and decreasing.
(c) Prove that 〈 〉En  converges. Its limit is denoted g and is called Euler’s constant.
(d) Use a graphing calculator to approximate E999 to eight decimal places.

Ans. (d) 0.57771608 (in fact, g ~ 0.57721566.)

48. (Extension of the limit comparison test.) Assume ∑ sn and ∑ tn are positive series. Prove:

(a) If =
→+∞

s
t

lim 0
n

n

n

 and ∑ tn converge, so does ∑ s .n  

(b) If = +∞
→+∞

s
t

lim
n

n

n

 and ∑ tn diverges, so does ∑ s .n  

49. Use the extension of the limit comparison test to determine whether ∑ n
n

(ln )4

3  converges.

Ans. converges; use ∑ n
1

2  and Problem 48(a)

50. Assume ∑ sn is a positive series and 
→+∞

nslim
n n exists and is positive. Prove that ∑ sn diverges. [Hint: Limit 

comparison with ∑ n(1/ ).]

51. Assume ∑ sn and ∑ tn are convergent positive series. Prove that ∑ s tn n converges.
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401

CHAPTER 45

Alternating Series. Absolute 
and Conditional Convergence. 

The Ratio Test.

ALTERNATING SERIES

A series whose terms are alternately positive and negative is said to be an alternating series. It can be written 
in the form

∑ − = − + − + − ⋅ ⋅ ⋅+ a a a a a a( 1)n
n

1
1 2 3 4 5  

where an are all positive.

Theorem 45.1 (Alternating Series Theorem): Let ∑ − + a( 1)n
n

1  be an alternating series. Assume that: (1) the  
sequence 〈 〉an  is decreasing; (2) =

→+ ∞
alim 0

n n . Then:

 (I) ∑ − + a( 1)n
n

1  converges to a sum A, and

(II) If An is the nth partial sum and = −R A An n is the corresponding error, then R a| |n n 1< +  (that is, the error is less 
in magnitude than the first term omitted).

 (I) Since 〈 〉an  is decreasing, >+ +a an n2 1 2 2 and therefore, − >+ +a a 0n n2 1 2 2 .  Hence,

= − + − + ⋅ ⋅ ⋅+ − + −

= + − > >

+ − + +

+ +

A a a a a a a a a

A a a A

( ) ( ) ( ) ( )

( ) 0

n n n n n

n n n n

2 2 1 2 3 4 2 1 2 2 1 2 2

2 2 1 2 2 2

 

 So, the sequence 〈 〉A n2  is increasing.  Also,

= − − − − − ⋅ ⋅ ⋅− − − <− −A a a a a a a a a a( ) ( ) ( )n n n n2 1 2 3 4 5 2 2 2 1 2 1  

  Hence, 〈 〉A n2  is bounded. Therefore, by Theorem 42.8, 〈 〉A n2  converges to a limit L. Now = ++ +A A an n n2 1 2 2 1. 
Hence,

= + = + =
→+∞ + →+∞ →+∞ +A A a L Llim lim lim 0

n n n n n n2 1 2 2 1  

 Thus, =
→+∞

A Llim
n n  and therefore, ∑ − + a( 1)n

n
1  converges.

(II) = − + − + ⋅ ⋅ ⋅ >+ + + +R a a a a( ) ( ) 0n n n n n2 2 1 2 2 2 3 2 4 , and = − − − − − ⋅ ⋅ ⋅ <+ + + + + +R a a a a a a( ) ( )n n n n n n n2 2 1 2 2 2 3 2 4 2 5 2 1 . 

Hence, R a| |n n2 2 1< + . For odd indices, = − − − − − ⋅ ⋅ ⋅ <+ + + + +R a a a a( ) ( ) 0n n n n n2 1 2 2 2 3 2 4 2 5  and = − ++ +R an n2 1 2 2

− + − + ⋅ ⋅ ⋅ > −+ + + + +a a a a a( ) ( )n n n n n2 3 2 4 2 5 2 6 2 2 . Hence, R a| |n n2 1 2 2<+ + . Thus, for all k, R a| |k k 1< + .
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402 CHAPTER 45 Alternating Series

EXAMPLE 45.1: The alternating harmonic series

− + − + − + ⋅ ⋅ ⋅1
1
2

1
3

1
4

1
5

1
6

 

converges by virtue of the Alternating Series Theorem. By part (II) of that theorem, the magnitude |Rn| of the error 

after n terms is less than 
+n
1

1
. If we want an error less than 0.1, then it suffices to take 

+ ≤ =
n

1
1

0.1
1

10
, which is 

equivalent to ≤ +n10 1. So, ≥n 9. Thus, we must use

= − + − + − + − + =A 1
1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1879
2520

~ 0.74569
 

DEFINITION
Consider an arbitrary series ∑sn.

∑sn is said to be absolutely convergent if s| |n∑  is convergent.

∑sn is said to be conditionally convergent if it is convergent but not absolutely convergent.

EXAMPLE 45.2: The alternating harmonic series ∑ − +
n( 1)
1n 1  is conditionally convergent.

EXAMPLE 45.3: The series ∑ − +
n

( 1)
1n 1

2  is absolutely convergent.

 We shall state without proof two significant results about absolute and conditional convergence. In what follows, 
by a rearrangement of a series we mean a series obtained from the given series by rearranging its terms (that is, by 
changing the order in which the terms occur).

(1) If ∑sn is absolutely convergent, then every rearrangement of ∑sn is convergent and has the same sum as ∑sn.

(2) If ∑sn is conditionally convergent, then if c is any real number or +∞ or −∞, there is a rearrangement of  

∑sn with sum c.

Theorem 45.2: If a series is absolutely convergent, then it is convergent.
For a proof, see Problem 1.

Note that a positive series is absolutely convergent if and only if it is convergent.
The following test is probably the most useful of all convergence tests.

Theorem 45.3 (The Ratio Test): Let ∑sn be any series.

(1) If 
s
s

rlim 1
n

n

n

1 = <
→+∞

+ , then ∑sn is absolutely convergent.

(2) If 
s
s

rlim
n

n

n

1 =
→+∞

+  and ( >r 1 or = +∞r ), then ∑sn diverges.

(3) If 
s
s

lim 1
n

n

n

1 =
→+∞

+ , then we can draw no conclusion about the convergence or divergence of ∑sn . For a proof, 

see Problem 14.

Theorem 45.4 (The Root Test): Let ∑sn be any series.

(1) If s rlim | | 1
n n

n = <
→+∞

, then ∑sn is absolutely convergent.

(2) If s rlim | |
n n

n =
→+∞

 and (r > 1 or = +∞r ), then ∑sn diverges.
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(3) If slim | | 1
n n

n =
→+∞

, then we can draw no conclusion about the convergence or divergence of ∑sn .

For a proof, see Problem 15.

EXAMPLE 45.4: Consider the series ∑ n
2 n

n

2

. Then = =
→+∞ →+∞

s
n

lim | | lim
4

0
n n

n
n

. So, by the root test, the series 
converges absolutely.

SOLVED PROBLEMS

 1. Show that if ∑ sn is absolutely convergent, then it is convergent.

0 ≤ sn + |sn| ≤ 2|sn|. Since ∑ |sn| converges, so does ∑ 2|sn|. Then by the comparison test, ∑(sn + |sn|) converges.

Hence, ∑ sn = ∑ ((sn + |sn|) - |sn|) converges by Corollary 43.4.

In Problems 2–13, determine whether the given series converges absolutely, conditionally, or not at all.

 2. − + − + ⋅ ⋅ ⋅1
2

1
5

1
10

1
17 .

= − +
+s

n
( 1)

1
1n

n 1
2 . ∑ +n

1
12  converges by comparison with the convergent p-series ∑ n

1
2 . So, ∑ − +

+
n

( 1)
1

1
n 1

2  

is absolutely convergent.

 3. − + − + ⋅ ⋅ ⋅
e e e e
1 2 3 4

2 3 4 .

= − +s
n
e

( 1)n
n

n
1 . The series ∑ n

en  converges by the integral test =



f x

x
e

using ( ) x . Hence, ∑ − + n
e

( 1)n
n

1  is 

absolutely convergent.

 4. − + − + − ⋅ ⋅ ⋅1
1

2

1

3

1

4

1

5
.

= − +s
n

( 1)
1

n
n 1 . Since 

n

1
 is a decreasing sequence, the series converges by virtue of the alternating series 

test. But ∑ n

1
 is divergent, since it is a p-series with = <p 11

2 .

 5. − + − + ⋅ ⋅ ⋅1
1
2

1
4

1
8 .

The series + + − + ⋅ ⋅ ⋅1 1
2

1
4

1
8  is a geometric series with ratio =r 1

2 . Since | r | < 1, it converges and therefore, the 
given series is absolutely convergent.

 6. − + − + ⋅ ⋅ ⋅1
2
3

3
3

4
32 3 .

= − +
−s

n
( 1)

3n
n

n
1

1 . Let us apply the ratio test:

s
s

n n n
n

s
s

lim
1

3 3
1 1

3
. So,

1
3

1
n

n

n
n n

n

n

1
1

1= + = + = <
→+∞

+
−

+  

Hence, the given series is absolutely convergent.

 7. − + − + ⋅ ⋅ ⋅1
2

2
3

1
2

3
4

1
3

4
5

1
43 3 3 .

= − +
+s

n
n n

( 1)
1

1
n

n 1
3 . Look at s| |n∑ . s

n
n n n

| |
1

1 1
n 3 3= + < . So, ∑ |sn| converges by comparison with the 

convergent p-series ∑ n
1

3
. Hence, the given series is absolutely convergent.
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 8. − + − + ⋅ ⋅ ⋅2
3

3
4

1
2

4
5

1
3

5
6

1
4

.

= − +
+

+s
n
n n

( 1)
1
2

1
n

n 1 . Note that +
+

n
n n

1
2

1  is a decreasing sequence 
+

+






 <D x

x x[since 1
( 2) 0]x . Hence, the given 

series is convergent by the Alternating Series Theorem. However, s
n

| |
1
2

1
n > . So, ∑ |sn| diverges by comparison 

with ∑ n
1. Thus, the given series is conditionally convergent.

 9. − + − + ⋅ ⋅ ⋅2
2
3!

2
5!

2
7!

3 5 7

.

= − −
+

−

s
n

( 1)
2

(2 1)!n
n

n
1

2 1

. Apply the ratio test:

s
s n n n n

2
(2 1)!

2
(2 1)!

4
(2 1)(2 )

n

n

n n
1

2 1 2 1

= + − = +
+

+ −

 

Hence, 
s
s

lim 0
n

n

n

1 =
→+∞

+  and therefore, the series is absolutely convergent.

10. − + + + − + + ⋅ ⋅ ⋅1
2

4
2 1

9
3 1

16
4 13 3 3 .

= − +
+s

n
n

( 1)
1n

n 1
2

3
. Since +

n
n 1

2

3  is a decreasing sequence for n ≥ 2, the given series converges by the 

Alternating Series Theorem. The series∑ |sn| is divergent by limit comparison with ∑ n
1

. Hence, the given series 
is conditionally convergent.

11. − + + + − + + ⋅ ⋅ ⋅1
2

2
2 1

3
3 1

4
4 13 3 3 .

= − +
+s

n
n

( 1)
1n

n 1
3

. ∑ |sn| is convergent by limit comparison with ∑ n
1

2 . Hence, the given series is absolutely 
convergent.

12. ⋅ − ⋅ + ⋅ − ⋅ + ⋅ ⋅ ⋅1
1 2

1
2 2

1
3 2

1
4 22 3 4 .

= − +s
n

( 1)
1
2n

n
n

1 . Apply the ratio test:

s
s n n

n
n

1
( 1)2

1
2 1

1
2

n

n
n n

1
1= + = +

+
+  

Thus, 
s
s

lim
1
2

1
n

n

n

1 = <
→+∞

+ . So the given series is absolutely convergent.

13. ∑ − +
+ n

n
( 1)

( 1)!
n 1

3

.

Apply the ratio test:

s
s

n
n

n
n

n
n n

( 1)
( 2)! ( 1)!

1 1
2

n

n

1
3 3 3

= +
+ + = +



 +







+  

So, 
s
s

lim 0
n

n

n

1 =
→+∞

+ . Hence, the given series is absolutely convergent.
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14. Justify the ratio test (Theorem 45.3).

(a) Assume 
s
s

rlim 1
n

n

n

1 = <
→+∞

+ . Choose t such that r < t < 1. Then there exists a positive integer m such that, if  

n ≥ m, 
s
s

tn

n

1 ≤+ . Hence,

s t s s t s t s s t s| | | |, | | | | | |, , | | | |m m m m m m k
k

m1 2 1
2≤ ≤ ≤ ⋅⋅⋅ ≤+ + + +

But, ∑ tk|sm| is a convergent geometric series (with ratio t < 1). So, by the comparison test, ∑ |sn| converges. 

Hence, ∑ sn is absolutely convergent.

(b) Assume 
s
s

rlim
n

n

n

1 =
→+∞

+  and (r > 1 or r = +∞). Choose t so that 1 < t < r. There exists a positive integer m such 

that if n ≥ m, 
s
s

tn

n

1 ≥+ . Hence,

s t s s t s t s s t s| | | |, | | | | | |, , | | | |m m m m m m k
k

m1 2 1
2≥ ≥ ≥ ⋅⋅⋅ ≥+ + + +

 Therefore, = ∞
→+∞

slim
n n  and, by the Divergence Theorem, ∑ sn diverges.

(c) Consider  ∑ n
1 . 

s
s n n

n
n

lim lim
1

1
1

lim
1

1
n

n

n n n

1 = +












= + =
→+∞

+

→+∞ →+∞
. In this case, the series diverges. Now consider 

∑ n
1

2
:

s
s n n

n
n

lim lim
1

( 1)
1

lim
1

1
n

n

n n n

1
2 2

2

= +




 = +





 =

→+∞

+

→+∞ →+∞
 

  In this case, the series converges.

15. Justify the root test (Theorem 45.4).

(a) Assume s rlim | | 1
n n

n = <
→+∞

. Choose t so that r < t < 1. Then there exists a positive integer m such that 

s t| |n
n ≤  for n ≥ m. Hence, |sn| ≤ tn for n ≥ m. Therefore, ∑ |sn| converges by comparison with the convergent 

geometric series ∑ tn. So, ∑ sn is absolutely convergent.

(b) Assume s rlim | |
n n

n =
→+∞

 and (r > 1 or r = +∞). Choose t so that 1 < t < r. For some positive integer m, s t| |n
n ≥  

for n ≥ m. Then |sn| ≥ tn for n ≥ m. Since = +∞
→+∞

tlim
n

n , = ∞
→+∞

slim
n n . So, by the Divergence Theorem, ∑ sn diverges.

(c) Consider ∑ n
1

 and ∑ n
1

2 . In both cases, =
→+∞

slim | | 1
n n

n . (Note that = =
→+∞

−
→+∞

−n elim lim 1
n

n

n

n n(ln )/ .)

In Problems 16-22, use the ratio test to test the series for convergence.

16. + + + + ⋅ ⋅ ⋅1
3

2
3

3
3

4
32 3 4 .

s
s

n n n
n

s
s

1
3 3

1
3

1
. So, lim

1
3

1n

n
n n

n

n

n

1
1

1= + = + = <+
+ →+∞

+
 

So, the series converges by the ratio test.

17. + + + + ⋅ ⋅ ⋅1
3

2!
3

3!
3

4!
32 3 4 .

= = + = ++
+s

n s
s

n n n!
3

. So,
( 1)!

3
!

3
1

3n n
n

n
n n

1
1  

Hence, 
s
s

lim
n

n

n

1 = +∞
→+∞

+  and the series diverges by the ratio test.
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18. + ⋅
⋅ + ⋅ ⋅

⋅ ⋅ + ⋅ ⋅ ⋅
⋅ ⋅ ⋅ + ⋅ ⋅ ⋅1

1 2
1 3

1 2 3
1 3 5

1 2 3 4
1 3 5 7 .

 = ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ − = +
⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ − = +

+
+s

n
n

s
s

n
n

n
n

n
n

!
1 3 5 (2 1)

. Then
( 1)!

1 3 5 (2 1)
!

1 3 5 (2 1)
1

2 1
.n

n

n

1
 

So, 
s
s

lim
1
2

1
n

n

n

1 = <
→+∞

+ . Hence, the series converges by the ratio test.

19. + + + + ⋅ ⋅ ⋅2
3
2

1
4

4
3

1
4

5
4

1
42 3 .

= + = +
+







+



 = +

+−
+

−s
n

n
s
s

n
n

n
n

n n
n

1 1
4

. Then
2
1

1
4

1 1
4

1
4

( 2)
( 1)

.n n
n

n
n n1

1
1 2  

So, 
s
s

lim
1
4

1
n

n

n

1 = <
→+∞

+ . Hence, the series converges by the ratio test.

20. + +
+ + +

+ + +
+ + ⋅ ⋅ ⋅1

2 1
2 1

3 1
3 1

4 1
4 1

2

3

2

3

2

3 .

= +
+ = + +

+ +
+
+ = + + +

+ + +
+s

n
n

s
s

n
n

n
n

n n
n n

1
1

. Then
( 1) 1
( 1) 1

1
1

(( 1) 1)( 1)
(( 1) 1)( 1)

.n
n

n

2

3
1

2

3

2

3

2 3

3 2  

Then 
s
s

lim 1
n

n

n

1 =
→+∞

+ . So the ratio test yields no conclusion. However, limit comparison with ∑ n
1  shows that the 

series diverges.

21. ∑ +
n

n
3

( 1)!

n

.

s
s

n
n

n
n

n
n n

s
s

( 1)3
( 2)!

3
( 1)!

1 3
2

. So, lim 0n

n

n n

n

n

n

1
1

1= +
+ + = +

+ =+
+

→+∞

+  

Hence, the series converges by the ratio test.

22. ∑ n
n!

n

.

 
s
s

n
n

n
n

n
n n

s
s

e
( 1)
( 1)! !

1
1

1
. So, lim 1n

n

n n n n

n

n

n

1
1

1= +
+ = +



 = +



 = >+

+

→+∞

+  

Hence, the series diverges by the ratio test.

SUPPLEMENTARY PROBLEMS

In Problems 23–40, determine whether the given alternating series is absolutely convergent, conditionally convergent, 
or divergent.

23. ∑ − +
n

( 1)
1
!

n 1   Ans. absolutely convergent

24. ∑ − +
n

( 1)
1

ln
n 1   Ans. conditionally convergent

25. ∑ − +
+ n

n
( 1)

1
n 1   Ans. divergent

26. ∑ − +
+ n

n
( 1)

ln
3 1

n 1   Ans. conditionally convergent
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27. ∑ − −
+

n
( 1)

1
2 1

n 1   Ans. conditionally convergent

28. ∑ − +( 1)
1

3
n

n
1   Ans. divergent

29. ∑ − −
+

n
( 1)

1
(2 1)

n 1
2   Ans. absolutely convergent

30. ∑ −
+

+

n n
( 1)

1

( 1)
n 1   Ans. conditionally convergent

31. ∑ − +
+

n
( 1)

1
( 1)

n 1
2   Ans. absolutely convergent

32. ∑ − +
+

n
( 1)

1
2

n 1
2   Ans. absolutely convergent

33. ∑ − +
n

( 1)
1

( !)
n 1

2   Ans. absolutely convergent

34. ∑ − +
+ n

n
( 1)

1
n 1

2   Ans. conditionally convergent

35. ∑ − +
+ n

n
( 1)

2
n 1

2

4   Ans. absolutely convergent

36. ∑ − 





+ n( 1)
3
4

n 1

4

  Ans. absolutely convergent

37. ∑ − −
+ +

+ n
n n

( 1)
3

2
n 1

2

2   Ans. divergent

38. ∑ − ++ n
( 1)

1
2

n
n

1   Ans. absolutely convergent

39. ∑ − +
+

n
( 1)

2
n

n
1

3

2   Ans. absolutely convergent

40. ∑ πn
n

cos
2   Ans. absolutely convergent

41. (GC) How many terms of ∑ − +
n

( 1)
1
!

n 1  will suffice to get an approximation within 0.0005 of the actual sum?  

Find that approximation.

Ans. =n 6;
91

144
~ 0.632  

42. (GC) How many terms of ∑ − −
+

n
( 1)

1
(2 1)!

n 1  will suffice to get an approximation of the actual sum with an error 

< 0.001? Find that approximation.

Ans. n = 3; 0.842.
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43. (GC) How many terms of ∑ − +
n( 1)
1n 1  will suffice to get an approximation of the actual sum with an error  

< 0.001? Find that approximation.

Ans. n = 1000; 0.693

In Problems 44-49, determine whether the series converges.

44. ∑ n
n

( !)
(2 )!

2

  Ans. convergent

45. ∑ n
n

(2 )!
4   Ans. divergent

46. ∑ n
(ln 2)n

3

  Ans. divergent

47. ∑ n
3

!

n

  Ans. convergent

48. ∑ +n
4

( 2)

n

n   Ans. convergent

49. ∑ +






n
n 1

n

  Ans. divergent

50. Determine whether ∑ − + −+ n n( 1) ( 1 )n 1  is absolutely convergent, conditionally convergent, or divergent.

Ans. conditionally convergent

In Problems 51 and 52, find the number of terms that suffice to approximate the sum of the given series to  
four-decimal-place accuracy (that is, with an error < 5/105) and compute the approximation.

51. (GC) ∑ − +

=

+∞

n
( 1)

1n

n

1

1
5   Ans. n = 6; 0.9721

52. (GC) ∑ − −
+

=

+∞

n
( 1)

1
(2 1)!

n

n

1

1

  Ans. n = 4; 0.8415

53. Let | r | < 1.

(a) Prove that ∑ = + + + + ⋅⋅⋅nr r r r r2 3 4n 2 3 4  converges.

(b) Show that ∑ = −=

+∞

nr
r
r(1 )

n

n
2

1

. (Hint: Let = + + + + ⋅⋅⋅S r r r r2 3 42 2 4 , multiply this equation by r, and subtract 

the result from the original equation.)

(c) Show that ∑ =
=

+∞ n
2

2n
n 1

.
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Power Series

POWER SERIES

An infinite series

 ∑ − = + − + − + ⋅⋅⋅
=

+∞

a x c a a x c a x c( ) ( ) ( )n
n

n
0 1 2

2

0

  (46.1)

is called a power series in x about c with coefficients 〈 〉an . An important special case

 ∑ = + + + ⋅⋅⋅
=

+∞

a x a a x a xn
n

n
0 1 2

2

0

  (46.2)

is a power series about 0.
For a given value of x, the series (46.1) either converges or diverges. Hence, (46.1) determines a function 

f  whose domain is the set of all x for which (46.1) converges and whose corresponding value f (x) is the sum 
of the series.

Note that (46.1) converges when x = c.

EXAMPLE 46.1: The power series about 0

∑ = + + + ⋅⋅⋅
=

+∞

x x x1n

n

2

0

 

is a geometric series with ratio x. Thus, it converges for |x| < 1, and its sum is − x
1

1
. So, the domain of the  

corresponding function is an interval around 0.

Theorem 46.1: Assume that the power series a x c( )n
n

n 0

∑ −
=

+∞

 converges for x0 ≠ c. Then it converges absolutely for all 

x such that |x - c| < |x0 - c| (that is, for all x that are closer to c than x0).

For a proof, see Problem 4.

Theorem 46.2: For a power series ∑ −
=

+∞

a x c( )n
n

n 0

, one of the following three cases holds:

(a) it converges for all x; or
(b)  it converges for all x in an open interval (c - R1, c + R1) around c, but not outside the closed interval  

[c - R1, c + R1]; or
(c) it converges only for x = c.

By the interval of convergence we mean all values of x for which the series converges of ∑ −
=

+∞

a x c( )n
n

n 0

:

In case (a): (- ∞, +∞)
In case (b): [c - R1, c + R1] or [c - R1, c + R1) or (c - R1, c + R1) or (c - R1, c + R1]
In case (c): {c}
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By the radius of convergence of ∑ −
=

+∞

a x c( )n
n

n 0

 we mean:

In case (a): ∞
In case (b): R1

In case (c): 0

Note: in case (b), whether the power series converges at neither endpoint of its interval of convergence or 
at one or both of those endpoints depends upon the given series.

For a sketch of a proof of Theorem 46.2, see Problem 5.

EXAMPLE 46.2: The power series

∑ − = − + − + − + ⋅⋅⋅
=

+∞ x
n

x
x x( 2)

( 2)
( 2)

2
( 2)

3

n

n 1

2 3

 

is a power series about 2. Let us use the ratio test to find the interval of convergence.

s
s

x
n

x
n

n
n

x
| 2|

1
| 2|

1
| 2|.n

n

n n
1

1

=
−

+
−

= + −+
+

    Thus,    
s
s

xlim | 2|
n

n

n

1 = −
→+∞

+ . 

So, by the ratio test, the series converges absolutely for |x - 2| < 1. The latter inequality is equivalent to  
-1 < x - 2 < 1, which, in turn, is equivalent to 1 < x < 3. Hence, the interval of convergence is (1, 3) and the radius 

of convergence is 1. At the endpoint x = 1, the series becomes ∑ −
=

+∞

n
( 1)n

n 1

, which converges by the Alternating Series 

Theorem. At the endpoint x = 3, the series becomes ∑
=

+∞

n
1

n 1

, the divergent harmonic series. Thus, the power series  
converges for 1 ≤ x < 3.

EXAMPLE 46.3: The power series

∑ = + + + + ⋅⋅⋅
=

+∞ x
n

x
x x

!
1

2! 3!

n

n 0

2 3

 

is a power series about 0. (Recall that 0! = 1.) Let us use the ratio test:

s
s

x
n

x
n

x
n

| |
( 1)!

| |
!

| |
1

.n

n

n n
1

1

= + = +
+

+

    So,    
s
s

lim 0
n

n

n

1 =
→+∞

+ . 

Hence, by the ratio test, the series converges (absolutely) for all x. Its interval of convergence is (- ∞, +∞) and its  
radius of convergence is ∞.

EXAMPLE 46.4: The power series

∑ = + + + + ⋅⋅⋅
=

+∞

n x x x x! 1 2! 3!n

n

2 3

0

 

is a power series about 0. Let us use the ratio test again:

s
s

n x
n x

n x
( 1)! | |

! | |
( 1) | | .n

n

n

n
1

1

= + = ++
+

    So,    
s
s

lim
n

n

n

1 = +∞
→+∞

+

except when x = 0. Thus, the series converges only for x = 0. Its (degenerate) “interval” of convergence is {0} and 
its radius of convergence is 0.
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UNIFORM CONVERGENCE

Let 〈 〉fn  be a sequence of functions, all defined on a set A. Let f be a function defined on A. Then 〈 〉fn  is said 
to converge uniformly to f on A if for every  > 0, there exists a positive integer m such that for each x in A 
and every n ≥ m, |fn(x) - f(x)| < .

Theorem 46.3: If a power series ∑ −
=

+∞

a x c( )n
n

n 0

 converges for x0 ≠ c and d < |x0 - c|, then the sequence of partial sums 

〈 〉S x( )k , where ∑= −
=

S x a x c( ) ( )k n
n

n

k

0

, converges uniformly to ∑ −
=

+∞

a x c( )n
n

n 0

 on the interval consisting of all x such that  

|x - c| < d. Hence, the convergence is uniform on any interval strictly inside the interval of convergence.

The reader is referred to more advanced books on analysis for a proof of this result.

Theorem 46.4: If 〈 〉fn  converges uniformly to f on a set A and each fn is continuous on A, then f is continuous on A.

For a proof, see Problem 6.

Corollary 46.5: The function defined by a power series ∑ −
=

+∞

a x c( )n
n

n 0

 is continuous at all points within its interval of 
convergence.

This follows from Theorems 46.3 and 46.4.

Theorem 46.6 (Integration of Power Series): Let f be the function defined by a power series ∑ −
=

+∞

a x c( )n
n

n 0

 on its 
interval of convergence (with radius of convergence R1). Then:

(a) f x dx a
x c
n

K x c R( )
( )

1
for | |n

n

n

0

1

1∫ ∑= −
+ + − <

=

+∞ +

  (46.3)

where the interval of convergence of the power series on the right side of formula (46.3) is the same as that of 
the original series. K is an arbitrary constant of integration. Note that the antiderivative of f is obtained by term-
by-term integration of the given power series.

(b) If a and b are in the interval of convergence, then

 ∫ ∑= −
+











+

=

+∞

f x dx a
x c

n
( )

( )
1a

b

n

n

n a

b
1

0

  (46.4)

Thus, ∫ f x dx( )
a

b
 is obtained by term-by-term integration.

For a proof of Theorem 46.6, the reader should consult a more advanced book on analysis.

Theorem 46.7 (Differentiation of Power Series): Let f be the function defined by a power series ∑ −
=

+∞

a x c( )n
n

n 0

 on 

its interval of convergence (with radius of convergence R1). Then f is differentiable in that interval and

 ∑′ = − −

=

+∞

f x na x c( ) ( )n
n

n

1

0

    for    − <x c R| | 1   (46.5)

Thus, the derivative f ′ is obtained by term-by-term differentiation of the power series. The interval of convergence 
of the power series on the right side of formula (46.5) will be the same as for the original power series.

For a proof, the reader is referred to more advanced texts in analysis.
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EXAMPLE 46.5: We already know by Example 1 that for |x| < 1,

 ∑− = = + + + + ⋅⋅⋅+ + ⋅⋅⋅
=

+∞

x
x x x x x

1
1

1n

n

n

0

2 3  (46.6)

Now −




 = −D

x x
1

1
1

(1 )x 2 . So, by Theorem 46.7,

x
x x nx x

nx n x

1
(1 )

1 2 3 for | | 1

( 1)

n

n n

nn

2
2 1

1

01
∑∑

− = + + + ⋅⋅⋅+ + ⋅⋅⋅ <

= = +

−

−

=

+∞

=

+∞
 

EXAMPLE 46.6: We know already that

x
x x x x x x

1
1

1 for | | 1n n

n

2 3

0
∑− = = + + + + ⋅⋅⋅+ + ⋅⋅⋅ <

=

+∞

 

Replace x by -x. (This is permissible, since |-x| = |x| < 1.) The result is

 ∑∑+ = − = − = − + − + ⋅⋅⋅
=

+∞

=

+∞

x
x x x x x

1
1

( ) ( 1) 1n n

n

n

n 0

2 3

0

  (46.7)

 By Theorem 46.6(a), we can integrate term by term:

dx
x

x
n

K
x
n

K x

x
x
n

K x

1
( 1)

1
( 1) for | | 1

ln |1 | ( 1) for | | 1

n

n

n
n

n

n

n
n

n

0

1
1

1

1

1

∑∫ ∑

∑

+ = − + + = − + <

+ = − + <

=

+∞ +
−

=

+∞

−

=

+∞

Letting x = 0 and noting that ln 1 = 0, we find that K = 0.
 Note also that for |x| < 1, we have -1 < x < 1, 0 < 1 + x < 2, and therefore, |1 + x| = 1 + x. Hence,

x
x
n

xln (1 ) ( 1) for | | 1n
n

n

1

1
∑+ = − <−

=

+∞

 

 = − + − + ⋅⋅⋅x x x x
1
2

1
3

1
4

2 3 4   (46.8)

The ratio test shows that this series converges.
 If we replace x by x - 1, we obtain:

 x
x

n
xln ( 1)

( 1)
for | 1| 1n

n

n
1

1
∑= − − − <−

=

+∞

  (46.9)

 Note that |x - 1| < 1 is equivalent to 0 < x < 2.
Thus, ln x is definable by a power series within (0, 2).

Theorem 46.8 (Abel’s Theorem): Assume that the power series ∑ −
=

+∞

a x c( )n
n

n 0

 has a finite interval of convergence 

|x - c| < R1 and let f  be a function whose values in that interval are given by that power series. If the power series also 
converges at the right-hand endpoint b = c + R1 of the interval of convergence, then 

→ −
f xlim ( )

x b
 exists and is equal to the 

sum of the series at b. The analogous result holds at the left-hand endpoint a = c - R1.

The reader is referred to advanced books on analysis for a proof.
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EXAMPLE 46.7: This is a continuation of Example 6. By formula (46.8),

∑+ = − <−

=

+∞

x
x
n

xln (1 ) ( 1) for | | 1n
n

n

1

1

 

 At the right-hand endpoint x = 1 of the interval of convergence, the power series becomes the convergent  
alternating harmonic series

∑ − = − + + + ⋅⋅⋅−

=

+∞

n
( 1)

1
1n

n

1

1

1
2

1
3

1
4  

By Abel’s Theorem, this series is equal to + =
→ −

xlim ln(1 ) ln 2
x 1

. So,

 = − + − + ⋅⋅⋅ln 2 1 1
2

1
3

1
4   (46.10)

EXAMPLE 46.8: Start again with

x
x x x x x x

1
1

1 for | | 1n n

n

2 3

0
∑− = = + + + + ⋅⋅⋅+ + <

=

+∞

 

Replace x by -x2, obtaining

 ∑+ = − = − + − + ⋅⋅⋅
=

+∞

x
x x x x

1
1

( 1) 1n n

n
2

2 2 4 6

0

  (46.11)

 Since |-x2| < 1 is equivalent to |x| < 1, (46.11) holds for |x| < 1.

 Now by Theorem 46.6(a), the antiderivative tan-1 x of 
x

1
1 2+  can be obtained by term-by-term integration:

∑= − + + <

= + − + − + ⋅⋅⋅

−

=

+∞ +

x
x
n

K x

K x x x x

tan ( 1)
2 1

for | | 1n

n

n
1

0

2 1

1
3

3 1
5

5 1
7

7

 

Here K is the constant of integration. If we let x = 0 and note that tan-1 0 = 0, it follows that K = 0. Hence,

 ∑= − + = − + − + ⋅⋅⋅−

=

+∞ +

x
x
n

x x x xtan ( 1)
2 1

n

n

n
1

0

2 1
1
3

3 1
5

5 1
7

7   (46.12)

 At the right-hand endpoint x = 1 of the interval of convergence, the series in (46.12) becomes

∑ − + = − + − + ⋅⋅⋅
=

+∞

n
( 1)

1
2 1

1n

n

1
3

1
5

1
7

0

 

which converges by virtue of the Alternating Series Theorem. So, by Abel’s Theorem,

 π− + − + ⋅⋅⋅ = = =
→

− −
−

x1 lim tan ( ) tan 1
4x

1
3

1
5

1
7

1

1 1   (46.13)
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EXAMPLE 46.9: We know already, by Example 3, that ∑
=

+∞ x
n!

n

n 0

 converges for all x. Let ∑=
=

+∞

f x
x
n

( )
!

n

n 0

 for all x.  
By term-by-term differentiation (Theorem 46.7),

∑∑′ = − = =
−

=

+∞

=

+∞

f x
x

n
x
n

f x( )
( 1)! !

( )
n n

nn

1

01

 

Note that f (0) = 1. Therefore, by formula (28.2), f (x) = ex. Thus,

 ∑=
=

+∞

e
x
n

x
!

for allx
n

n 0

  (46.14)

SOLVED PROBLEMS

 1. Find the interval of convergence of the power series

∑ − = − + − + − + ⋅⋅⋅
=

+∞ x
n

x
x x( 2)

( 2)
( 2)

2
( 2)

3

n

n

2 3

1

 

and identify the function represented by this power series.
Use the ratio test:

s
s

x
n

x
n

n
n

x
| 2|

1
| 2|

1
| 2|.n

n

n n
1

1

=
−

+
−

= + −+
+

    So,    
s
s

xlim | 2 |
n

n

n

1 = −
→+∞

+  

Hence, the interval of convergence is |x - 2| < 1. (This is equivalent to -1 < x - 2 < 1. which, in turn, is 
equivalent to 1 < x < 3.) At the right endpoint x = 3, the series is the divergent harmonic series, and at the left 
endpoint x = 1, the series is the negative of the convergent alternating harmonic series. So, the series converges 
for 1 ≤ x < 3.

Let ∑= −
=

+∞

h x
x

n
( )

( 2)n

n 1

. By Theorem 46.7, ∑′ = − −

=

+∞

h x x( ) ( 2)n

n

1

1

. This series is a geometric series with first term 1 

and ratio (x - 2); so its sum is − − = −x x
1

1 ( 2)
1

3
. Thus, ′ = −h x

x
( )

1
3

. Hence, h x
dx

x
x C( )

3
ln |3 |∫= − = − − + . Now

∑= − =
=

+∞

h
n

(2)
(2 2)

0
n

n 1

    and    Cln |3 2| 0.− − + =     So,    C = 0

Moreover, since x < 3 in the interval of convergence, 3 - x > 0 and therefore, |3 - x| = 3 - x.  Thus, h(x) = 
-ln (3 - x).

In Problems 2 and 3, find the interval of convergence of the given series and the behavior at the endpoints (if any).

 2. 
x
n

x
x x
4 9

n

n
2

1

2 3

∑ = + + + ⋅ ⋅ ⋅
=

+∞

.

Use the ratio test:

s
s

x
n

x
n

n
n

x
| |

( 1)
| |

1
| |.n

n

n n
1

1

2 2

2

= + = +






+
+

    Hence,    
s
s

xlim | |
n

n

n

1 =
→+∞

+ . 

Hence, the interval of convergence is | x | < 1. The radius of convergence is 1. At x = 1, we obtain the convergent 
p-series with p = 2. At x = -1, the series converges by the alternating series test. Thus, the series converges for  
-1 ≤ x ≤ 1.
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 3. ∑ + = + + + + + + ⋅⋅⋅
=

+∞ x

n
x

x x( 1)
( 1)

( 1)

2

( 1)

3

n

n 1

2 3

.

Use the ratio test:

s
s

x

n

x

n

n
n

x
| 1|

1

| 1|
1

| 1|.n

n

n n
1

1

=
+

+
+

= + ++
+

    Hence,    
s
s

xlim | 1|
n

n

n

1 = +
→+∞

+ . 

Hence, the interval of convergence is |x + 1| < 1. This is equivalent to -1 < x + l < 1, which, in turn, is equivalent 

to -2 < x < 0. The radius of convergence is 1. At the right endpoint x = 0, we get the divergent p-series ∑
=

+∞

n

1

n 1

 

(with =p 1
2 ). At the left endpoint x = -2, we get the alternating series ∑ −

=

+∞

n

( 1)n

n 1

, which converges by the 

Alternating Series Theorem. Thus, the series converges for -2 ≤ x < 0.

 4. Prove Theorem 46.1.
Since ∑ −a x c( )n

n
0  converges, − =

→+∞
a x clim ( ) 0

n n
n

0  by Theorem 43.5. Hence, there is a positive number M such 

that |an| |x0 - c|n < M for all n, by Theorem 42.1. Assume |x - c| < |x0 - c|. Let

r
x c
x c
| |
| |

1.
0

=
−
− <     Then    a x c a x c r Mr| || | | || |n

n
n

n n n
0− = − < . 

Therefore, a x c| ( ) |n
n∑ −  is convergent by comparison with the convergent geometric series ∑Mrn. Thus, 

∑ −a x c( )n
n is absolutely convergent.

 5. Prove Theorem 46.2.
Only a very intuitive argument is possible here. Assume that neither case (a) nor case (c) holds. Since case 

(a) does not hold, the power series does not converge for some x ≠ c. Since case (c) does not hold, the series does 
converge for some x ≠ c. Theorem 46.1 implies that there is an interval (c - K, c + K) around c in which the series 
converges. The interval of convergence is the maximal such interval. [Using Theorem 46.1, one takes the “least upper 
bound” R1 of all K such that the series converges in (c - K, c + K). Then (c - R1, c + R1) is the desired interval.]

 6. Prove Theorem 46.4.
Assume x is in A and  > 0. Since 〈 〉fn  converges uniformly to f on A, there is a positive integer m such that if 

n ≥ m, then − <f y f y| ( ) ( ) | /3n   for all y in A. Since fm is continuous at x, there exists d > 0 such that for any x* in 
A, if |x* - x| < d, then | fm(x*) - fm(x)| < /3. Hence if |x* - x| < d,

− = − + − + −

≤ − + − + −

< + + =

f x f x f x f x f x f x f x f x

f x f x f x f x f x f x

| ( ) ( )| |( ( ) ( )) ( ( ) ( )) ( ( ) ( ))|

| ( ) ( )| | ( ) ( )| | ( ) ( )|

3 3 3

m m m m

m m m m

* * * *

* * *

  


This proves the continuity of f at x.

 7. If 〈 〉fn  converges uniformly to f on [a, b] and each fn is continuous on [a, b], then ∫∫ =
→+∞

f x dx f x dx( ) lim ( )
n na

b

a

b
.

Assume  > 0. There is a positive integer m such that if n ≥ m, then − < −f x f x
b a

| ( ) ( )|n


 for all x in [a, b]. 

Therefore, ∫ − <f x f x dx| ( ) ( )|a
b

n . Then

 ∫∫ ∫ ∫− = − ≤ − < ≥f x dx f x dx f x f x dx f x f x dx n m( ) ( ) ( ( ) ( )) | ( ) ( )| forna

b

a

b

na

b

na

b
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 8. Prove that the function f defined by a power series is continuous within its interval of convergence (Corollary 46.5).
=

→+∞
f x S x( ) lim ( )

n n  and the convergence is uniform by Theorem 46.3. Each Sn(x), being a polynomial, is 

continuous. Hence, f is continuous by Theorem 46.4.

 9. Find a power series about 0 that represents the function +
x
x1 2 . In what interval is the representation valid?

By formula (46.11), ∑+ = −
=

+∞

x
x

1
1

( 1)n n

n
2

2

0

 for |x| < 1. Hence

x
x

x x
1

( 1) for | | 1n n

n
2

2 1

0
∑+ = − <+

=

+∞

 

The series diverges at both endpoints x = 1 and x = -1.

In Problems 10 and 11, use the ratio test to find the interval of convergence and indicate what happens at the 
endpoints (if any).

10. ∑ n
x

10n
n.

s
s

n x n x n
n

x( 1) | |
10

| |
10

1 | |
10

.n

n

n

n

n

n
1

1

1= + = +





+
+

+     Hence,    
s
s

x
lim

| |
10n

n

n

1 =
→+∞

+ . 

We get convergence when |x|/10 < 1, that is, when |x| < 10. That is the interval of convergence. The series diverges 
at both endpoints ± 10.

11. ∑ π−n
x

3
( )n

n .

s
s

n x n x n
n

x( 1) | |
3

| |
3

1 | |
3

n

n

n

n

n

n
1

1

1

π π π= + − − = + −+
+

+     Hence,    
s
s

x
lim

| |
3n

n

n

1 π= −
→+∞

+ . 

So, the interval of convergence is |x - p | < 3. The series diverges at both endpoints.

12. Find the interval of convergence of ∑ n
n

x
( !)
(2 )!

n
2

.
Apply the ratio test:

s
s

n x
n

n x
n

n
n n

x
s
s

x(( 1)!) | |
(2 2)!

( !) | |
(2 )!

( 1)
(2 2)(2 1)

| | Hence, lim
| |
4

n

n

n n

n

n

n

1
2 1 2 2

1= +
+ = +

+ + =+
+

→+∞

+ .

So, the interval of convergence is |x| < 4.

13. Find a power series about 0 that represents −
x
x1 3 .

Start with ∑− =
=

+∞

x
x

1
1

n

n 0

 for |x| < 1. Replace x by x3:

x
x x

1
1

for | | 1n

n
3

3

0
∑− = <

=

+∞

 

(since |x3| < 1 is equivalent to |x| < 1). Multiply by x:

x
x

x x
1

for | | 1n

n
3

3 1

0
∑− = <+

=

+∞
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In Problems 14–16, find simple formulas for the function f (x) represented by the given power series.

14. + + + ⋅⋅⋅x x x
2! 3! 4!

2 3

.

Let ∑= +
=

+∞

f x
x

n
( )

( 1)!

n

n 1

.

∑ ∑= + = − − = − −
+

=

+∞

=

+∞

xf x
x

n
x e x( )

( 1)!
1 1

n

n

x
n

n

x
1

1
!

0

n

 

Hence, = − −
f x

e x
x

( )
1x

.

15. + + + ⋅⋅⋅x x x1
3

3 1
6

6 1
9

9 .

Let ∑=
=

+∞

f x
x

n
( )

3

n

n

3

1

.    Then    ∑′ = = + + + ⋅⋅⋅−

=

+∞

f x x x x x( ) .n

n

3 1

1

2 5 8  

This is a geometric series with ratio x3. So, it converges for |x3| < 1, which is equivalent to |x| < 1. Hence, 

′ = −f x
x

x
( )

1

2

3  for |x| < 1. Therefore, ∫= − = − − +f x
x

x
dx x C( )

1
ln |1 |

2

3
1
3

3 . But f (0) = 0. Hence, C = 0. Also,  

1 - x3 > 0 for |x| < 1. Therefore,

= − − <f x x x( ) ln (1 ) for | | 11
3

3 . 

16. + + + + ⋅⋅⋅x x x x2 3 43 5 7 .
The ratio test shows that the series converges for |x| < 1. Let

∑= + + + + ⋅⋅⋅ = −

=

+∞

g x x x x x nx( ) 2 3 4 n

n

3 5 7 2 1

1

 

Then ∑= −

=

+∞

g x nx2 ( ) 2 n

n

2 1

1

 Hence, taking antiderivatives,

 ∑∫ ∑= + = + −=

+∞

=

+∞

g x dx K x K
x

x
x x2 ( )

1
(since is a geometric series with ratio )n

n

n

n

2
2

2
1

2

1

2  

Now differentiate:

g x D
x

x
x
x

g x
x
x

x2 ( )
1

2
(1 )

, ( )
(1 )

for | | 1x

2

2 2 2 2 2= −






= − = − <  

17. (GC) Approximate ∫
+ x

x
dx

ln (1 )
0

1/2
 to two-decimal-place accuracy (that is, with an error < 5/103).

By formula (46.8), + = − + − + ⋅⋅⋅x x x x xln (1 ) 1
2

2 1
3

3 1
4

4  for |x| < 1, So

∑+
= − + − + ⋅⋅⋅ = −

+
=

+∞x
x

x x x
x

n
ln (1 )

1
( 1)

1

n n

n

1
2

1
3

2 1
4

3

0

 

By Theorem 46.6(b),

∑∫ ∑+
= −

+ +



 = −

+=

+∞ +

+
=

+∞x
x

dx
n

x
n n

ln (1 ) ( 1)
1 1

( 1)
( 1)

1
2

n

n

n n

n
n0

0

1/2 1

0

1/2

2 1
0

 

which is a convergent alternating series.
In order to get an approximation with an error less than 5/103, we must find n such that the first omitted term 

+ +n
1

( 1)
1

2n2 1  is ≤ =5
10

1
2003 . So, we must have 200 ≤ (n + 1)2 2n+1. Trial and error shows that n ≥ 3. Hence, we 

can use the terms corresponding to n = 0, 1, 2:

− + =1
2

1
16

1
72

65
144

~ 0.45  

This answer can be confirmed by a graphing calculator (which yields 0.44841421 as an approximation).
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18. Find the function defined by ∑
=

+∞

x2n n

n 0

.

This is a geometric series with ratio 2x and first term 1. Hence, it converges for |2x| < 1, that is, for x| | 1
2< , and 

its sum is − x
1

1 2
.

19. Find the interval of convergence of ∑ +
=

+∞ x
nln ( 1)

n

n 1

.
Apply the ratio test:

s
s

x
n

x
n

n
n

x
| |

ln ( 2)
| |

ln ( 1)
ln ( 1)
ln ( 2)

| |n

n

n n
1

1

= + + =
+
+

+
+

 

By L’Hôpital’s rule, 
s
s

xlim | |
n

n

n

1 =
→+∞

+ . Hence, the interval of convergence is given by |x| < 1. (For x = 1, we get 

∑ +
=

+∞

n
1

ln ( 1)
n 1

, which we know is divergent. For x = -1, we get the convergent alternating series ∑ −
+

=

+∞

n
( 1)

ln ( 1)

n

n 1

.)

20. Approximate 
e
1

 with an error less than 0.0001.

By formula (46.14),

∑=
=

+∞

e
x
n!

x
n

n 0

    for all x.    Hence,    ∑= = −−

=

+∞

e
e

n
1 ( 1)

!

n

n

1

0

 

By the Alternating Series Theorem, we seek the least n such that 1/n! ≤ 0.0001 = 1/10,000, that is, 10,000 ≤ n!. 
Trial and error shows that n ≥ 8. So, we must use the terms corresponding to n = 0, 1, . . . ,7:

− + − + − + − =1 1
1
2

1
6

1
24

1
120

1
720

1
5040

103
280

~ 0.3679  

(A graphing calculator yields the answer 0.367 8794412, correct to 10 decimal places.)

21. Approximate ∫ −e dxx

0

1
2  to two-decimal-place accuracy, that is, with an error less than 5/103 = 0.005.

By formula (46.14),

∑ ∑= = −
=

+∞
−

=

+∞

e
x
n

x e
n

x x
!

for all . Hence,
( 1)

!
for allx

n

n

x
n

n

n0

2

0

2  

By Theorem 46.6(b),

∑∫ ∑= −
+




 = −

+
−

=

+∞ +

=

+∞

e dx
n

x
n n n

( 1)
! 2 1

( 1)
!

1
2 1

x
n

n

n n

n0
0

1 2 1

0

1

0

2  

We can apply the Alternating Series Theorem. The magnitude of the first term omitted +n n
1

(2 1) !
 should be  

≤ 0.005 = 1/200. So, 200 ≤ (2n + 1)n! Trial and error shows that n ≥ 4. Hence, we should use the first four terms, 
that is, those corresponding to n = 0, 1, 2, 3:

− + − =1
1
3

1
10

1
42

26
35

~ 0.743  

(A graphing calculator yields the approximation 0.74682413, correct to eight decimal places.)

22. Find a power series expansion for +x
1

3
 about 0.

+ = +x x
1

3
1
3

1
( /3) 1

. By formula (46.7), ∑+ = − = − + − + ⋅⋅⋅
=

+∞

x
x x x x

1
1

( 1) 1n n

n

2 3

0

    for |x| < 1.
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Hence,

x
x x x1

( /3) 1
( 1)

3
( 1)

3
for

3
1n

n

n

n

n

n

n
0 0

∑ ∑+ = − 



 = − <

=

+∞

=

+∞

 

Thus, x
x

x
1

3
( 1)

3
for | | 3n

n

n

n
0

1∑+ = − <
=

+∞

+  

The series diverges at x = ± 3.

23. Find a power series expansion for 
x
1

 about 1.

= + −x x
1 1

1 ( 1)
. By formula (46.7), ∑+ = −

=

+∞

x
x

1
1

( 1)n n

n 0

 for |x| < 1. Hence,

x x
x x

1 1
1 ( 1)

( 1) ( 1) for | 1| 1n n

n 0
∑= + − = − − − <

=

+∞

 

SUPPLEMENTARY PROBLEMS

In Problems 24–31, find the interval of convergence of the given power series.

24. ∑nxn   Ans. -1 < x < 1

25. ∑ +
x

n n( 1)

n

  Ans. -1 ≤ x ≤ 1

26. ∑ x
n5

n

n   Ans. -5 ≤ x < 5

27. ∑ + +
x

n n n( 1)( 2)

n2

  Ans. -1 ≤ x ≤ 1

28. ∑ +
+x

n(ln ( 1))

n 1

2   Ans. -1 ≤ x < 1

29. ∑ +
x

n1

n

3   Ans. -1 ≤ x ≤ 1

30. ∑ −x
n

( 4)n

2   Ans. 3 ≤ x ≤ 5

31. ∑ −x(3 2)
5

n

n   Ans. − < <x1 7
3  

32. Express e-2x as a power series about 0.

Ans. ∑ −
=

+∞

n
x

( 1) 2
!

n n

n

n

0

 

33. Represent e x / 2 as a power series about 2.

Ans. ∑ −
=

+∞ e
n

x
2 ( !)

( 2)n
n

n

0
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34. Represent ln x as a power series about 2.

Ans. ∑+ − −
+

=

+∞

n
xln 2

( 1)
2

( 2)
n

n
n

n
1

1

 

35. (GC) Find ln (0.97) with seven-decimal-place accuracy. [Hint: Use the power series for ln (1 - x) about 0.]

Ans. -0.0304592

36. How many terms in the power series for ln (1 + x) about 0 must be used to find ln 1.02 with an error  
≤ 0.00000005?

Ans. Three

37. (GC) Use a power series to compute e-2 to four-decimal-place accuracy.

Ans. 0.1353

38. (GC) Evaluate ∫ +
dx

x1 40

1/2
 to four-decimal-place accuracy.

Ans. 0.4940

In Problems 39 and 40, find the interval of convergence of the given series.

39. ∑
=

+∞ x
n

n

n
n 1

  Ans. (- ∞, + ∞)

40. ∑
=

+∞ n
x

!
10n

n

n

0

  Ans. x = 0

41. Represent = + −

x
e e

cosh
2

x x

 as a power series about 0.

Ans. ∑
=

+∞ x
n(2 )!

n

n

2

0

 

42. Find a power series about 0 for the normal distribution function ∫ −e dtt
x

/2

0

2 .

Ans. ∑ −
+

=

+∞ +

n
x
n

( 1)
!(2 ) 2 1

n

n
n

n

0

2 1

 

43. Find a power series expansion about 0 for 
+
−

x
x

ln
1
1

. 

Ans. ∑ +
+

=

+∞ x
n

2
2 1

n

n

2 1

0

 

44. (GC) Approximate −tan 1 1
2  to two-decimal-place accuracy.

Ans. 0.46

46_Mendelson_ch46_p409-422.indd   420 27/07/21   11:22 AM



421CHAPTER 46 Power Series

45. Show that the converse of Abel’s Theorem is not valid, that is, if ∑=
=

+∞

f x a x( ) n
n

n 0

 for |x| < r, where r is the radius 

 of convergence of the power series, and 
→ −

f xlim ( )
x r

 exists, then ∑
=

+∞

a rn
n

n 0

 need not converge. (Hint: Look at 

= +f x
x

( )
1

1
.)

46. Find a simple formula for the function f (x) represented by ∑
=

+∞

n xn

n

2

1

.

Ans. 
+

−
x x

x
( 1)

(1 )3  

47. Find a simple formula for the function f (x) represented by ∑ −
=

+∞ x
n n( 1)

n

n 2

.

Ans. x + (1 - x) ln (1 - x)

48. (a)  Show that ∑− =
=

+∞x
x

nx
(1 )

n

n
2

1

 for |x| < 1. (Hint: Use Example 5.)

(b) Show that ∑− = −
=

+∞x
x

n n x
2

(1 )
( 1) n

n

2

3
2

 for |x| < 1. [Hint: First divide the series by x, integrate, factor out x, use 

 part (a), and differentiate.]

(c) Show that ∑+
− =

=

+∞x x
x

n x
( 1)

(1 )
n

n
3

2

1

 for |x| < 1.

(d) Evaluate ∑
=

+∞ n
2n

n 1

 and ∑
=

+∞ n
2n

n

2

1

.

Ans. (d) 2 and 6
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CHAPTER 47

Taylor and Maclaurin Series.  
Taylor’s Formula with Remainder.

TAYLOR AND MACLAURIN SERIES

Let f be a function that is infinitely differentiable at x = c, that is, the derivatives f  (n)(c) exist for all positive 
integers n.

The Taylor series for f about c is the power series

a x c a a x c a x c( ) ( ) ( )n
n

n
0 1 2

2

0
∑ − = + − + − + ⋅⋅⋅

=

+∞

 

where a
f c

n
( )
!n

n( )

=  for all n. Note that f  (0) is taken to mean the function f itself, so that a0 = f (c).

The Maclaurin series for f is the Taylor series for f about 0, that is, the power series

a x a a x a xn
n

n
0 1 2

2

0
∑ = + + + ⋅⋅⋅

=

+∞

 

where a
f

n
(0)
!n

n( )

=  for all n.

EXAMPLE 47.1: The Maclaurin series for sin x
Let f (x) = sin x. Then

f x x

f x x

f x x

( ) cos ,

( ) sin ,

( ) cos ,

′ =

′′ = −

′′′ = −

 

Since f (4)(x) = sin x, further derivatives repeat this cycle of four functions. Since sin 0 = 0 and cos 0 = 1, f  (2k)(0) = 0 

and f  (2k+1)(0) = (-1)k. Hence, a2k = 0 and a
k

( 1)
(2 1)!k

k

2 1 = −
++ . So, the Maclaurin series for sin x is

k
x x

x x x( 1)
(2 1)! 3! 5! 7!

k
k

k

2 1
3 5 7

0
∑ −

+ = − + − + ⋅⋅⋅+

=

+∞

 

An application of the ratio test shows that this series converges for all x. We do not know that sin x is equal 
to its Maclaurin series. This will be proved later.

EXAMPLE 47.2: Let us find the Maclaurin series for f x
x

( )
1

1
= − .

f x
x

f x
x

f x
x

f x
x

f x
x

( )
1

(1 )
, ( )

2
(1 )

, ( )
3 2

(1 )
,

( )
4 3 2
(1 )

, ( )
5 4 3 2
(1 )

2 3 4

4
5

5
6

′ = − ′′ = − ′′′ = ⋅
−

= ⋅ ⋅
− = ⋅ ⋅ ⋅

−
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424 CHAPTER 47 Taylor and Maclaurin Series

We can see the pattern: f x
n
x

( )
!

(1 )
n

n
( )

1= − + . Hence, a
f

n
(0)
!

1n

n( )

= =  for all n, and the Maclaurin series for 
x

1
1−  

is xn

n 0
∑

=

+∞

. In this case, we already know that 
x

1
1−  is equal to its Maclaurin series for |x| < 1.

Theorem 47.1: If f x b x c( ) ( )n
n

n 0
∑= −

=

+∞

 for some x ≠ c, then this series is the Taylor series for f, that is, b
f c

n
( )
!n

n( )

=  for 

all n. In particular, if f x b x( ) n
n

n 0
∑=

=

+∞

 for some x ≠ 0, then this series is the Maclaurin series for f.

Assume f x b x c( ) ( )n
n

n 0
∑= −

=

+∞

 for some x ≠ c. Then f (c) = b0. By term-by-term differentiation (Theorem 46.7), 

f x nb x c( ) ( )n
n

n

1

0
∑′ = − −

=

+∞

 in the interval of convergence of b x c( )n
n

n 0
∑ −

=

+∞

. Hence f ′(c) = b1. Differentiating again, 

we get f x n n b x c( ) ( 1) ( )n
n

n

2

0
∑′′ = − − −

=

+∞

. So, f ′′(c) = 2b2 and therefore, b
f c( )

2!2 = ′′
.

Differentiating again, we get f x n n n b x c( ) ( 1)( 2) ( )n
n

n

3

0
∑′′′ = − − − −

=

+∞

. So, f c b( ) 3! 3′′′ =  and therefore, b
f c( )

3!3 = ′′′
. 

Iterating this procedure, we obtain

b
f c

n
n

( )
!

for all 0n

n( )

= ≥  

Thus, the series is the Taylor series for f.

EXAMPLE 47.3: We already know by formula (46.8) that

x
x
n

xln(1 ) ( 1) for | | 1n
n

n

1

1
∑+ = − <−

=

+∞

 

Hence, by Theorem 47.1, the series 
x
n

( 1)n
n

n

1

1
∑ − −

=

+∞

 must be the Maclaurin series for ln (1 + x). It is not necessary to 

go through the laborious process of computing the Maclaurin series for ln (1 + x) directly from the definition of 
Maclaurin series.

EXAMPLE 47.4: If f x
x

( )
1

1
= − , find f  (47) (0).

 We know that 
x

x
1

1
n

n 0
∑− =

=

+∞

 for | x | < 1. Hence, by Theorem 47.1, the coefficient of xn, namely 1, is equal to 

f
n

(0)
!

n( )

. So, for n = 47, 
f

1
(0)

(47)!

(47)

=  and therefore,  f  (47)(0) = (47)!

Theorem 47.2 (Taylor’s Formula with Remainder): Let f by a function such that its (n + 1)st derivative f  (n+1) exists 
in (a, b ). Assume also that c and x are in (a, b). Then there is some x* between c and x such that

 

f x f c f c x c
f c

x c
f c

n
x c

f x
n

x c

f c
k

x c R x

( ) ( ) ( )( )
( )

2!
( )

( )
!

( )
( )

( 1)!
( )

( )
!

( ) ( )

n
n

n
n

k

k

n
k

n

2
( ) ( 1) *

1

( )

0
∑

= + ′ − + ′′ − + ⋅ ⋅ ⋅+ − + + −

= − +

+
+

=

  (47.1)

Here, R x
f x

n
x c( )

( )
( 1)!

( )n

n
n

( 1) *
1= + −

+
+  is called the remainder term or the error.

Theorem 47.2 can be derived from Theorem 13.6 (the Higher-Order Law of the Mean).
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425CHAPTER 47 Taylor and Maclaurin Series

APPLICATIONS OF TAYLOR’S FORMULA WITH REMAINDER

(I) Showing that certain functions are represented by their Taylor series by proving that 
=

→+∞
lim 0( )R x
n n

  

From Taylor’s formula (47.1),

R x f x
f c

k
x c( ) ( )

( )
!

( )n

k
k

k

n ( )

0
∑= − −

=

 

If R xlim ( ) 0
n n =
→+∞

 then

f x
f c

k
x c

f c
k

x c( ) lim
( )
!

( )
( )
!

( )
n

k
k

k

k

k

k

n ( ) ( )

00
∑∑= − = −

→+ ∞
=

+ ∞

=

 

that is, f (x) is equal to its Taylor series.

Remark: 
d
n

lim
!

0
n

n

=
→+∞

 for any d. To see this, recall that 
x
n!

n

n 0
∑

=

+ ∞

 converges for all x. Hence, by Theorem 

43.5, 
x
n

lim
!

0
n

n

=
→+∞

 for any x.

EXAMPLE 47.5: sin x is equal to its Maclaurin series.

When f (x) = sin x, then every derivative f  (n)(x) is either sin x, cos x, −sin x, or −cos x, and therefore, | f (n)(x)| ≤ 1. 
So,

R x
f x

n
x c

x c
n

| ( )|
( )

( 1)!
( )

|( ) |
( 1)!n

n
n

n( 1) *
1

1

= + − ≤ −
+

+
+

+

 

By the Remark above, x c
n

lim
| ( ) |

( 1)!
0

n

n 1−
+ =

→+ ∞

+
. Hence, R xlim ( ) 0

n n =
→+∞

. Therefore, sin x is equal to its Maclaurin 
series:

 x
k

x x
x x x

sin
( 1)

(2 1)! 3! 5! 7!

k
k

k

2 1
3 5

0

7

∑= −
+ = − + − + ⋅ ⋅ ⋅+

=

+∞

  (47.2)

(II) Approximating values of functions or integrals
Use a bound on Rn(x) to get a bound on the error when we approximate the sum of an infinite series by 

a partial sum.

EXAMPLE 47.6 Let us approximate e to four decimal places, that is, with an error less than 0.00005.

Preliminary result: e < 3. To see this, note that since e
x
n!

x
n

n 0
∑=

=

+ ∞

,

e e
n
1
!

1 1
1
2!

1
3!

1
4!

1
5!

1 1
1
2

1
2

1
2

1
2

1
1
2

1
1

1 (1/2)
1 2 3

n

n
n

1

0

2 3 4

0

∑

∑

= = = + + + + + + ⋅ ⋅ ⋅

< + + + + + + ⋅ ⋅ ⋅

= + = + − = + =

=

+ ∞

=

+ ∞
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Now for the function f (x) = ex, we wish to make the magnitude of the error Rn(1) < 0.00005. By Taylor’s  
formula with remainder, with x = 1,

R
f x

n
x| (1)|

( )
( 1)!

, where 0 1n

n( 1) *
*= + < <

+

 

Since D e e( )x
x x= , f x e( )n x( 1) =+  for all x. So, f x e( )n x( 1) * *=+ . Since ex is an increasing function, e e e 3x* 1< = < . 

Thus, R
n

| (1)|
3

( 1)!n < + . Since we wish to make the error < 0.00005, it suffices to have

n n
n

3
( 1)!

0.00005, that is,
3

( 1)!
1

20,000
, 60,000 ( 1)!.+ ≤ + ≤ ≤ +  

Trial and error shows that this holds for n ≥ 8. So, we can use the partial sum n
1
!

~ 1.7183
n 0

8

∑
=

.

Theorem 47.3 (The Binomial Series): Assume r ≠ 0. Then

 

x
r r r r n

n
x x

rx
r r

x
r r r

x

(1 ) 1
( 1)( 2) ( 1)

!
for | | 1

1
( 1)

2!
( 1)( 2)

3!

r

n

n

1

2 3

∑+ = +
− − ⋅ ⋅ ⋅ − +

<

= + + − + − − + ⋅ ⋅ ⋅

=

+ ∞

 (47.3)

Apply the ratio test to the given series:

s
s

r r r r n x
n

r r r r n x
n

( 1)( 2) ( )
( 1)!

( 1)( 2) ( 1)
!

n

n

n n
1

1

=
− − ⋅ ⋅ ⋅ −

+
− − ⋅ ⋅ ⋅ − ++

+

 

So,
s
s

r n x
n

xlim lim
( )

1
| |

n

n

n n

1 = −
+ =

→+∞

+

→+∞
 

Hence, the series converges for |x| < 1. For a sketch of the proof that this series is equal to (1 + x)r, see 
Problem 31.

Note that if r is a positive integer k, then the coefficients of xn for n > k are 0 and we get the binomial 
formula

x
k

n k n
x(1 )

!
!( )!

k

n

k
n

0
∑+ = −

=
 

EXAMPLE 47.7: Let us expand x1+  as a power series about 0. This is the binomial series for r 1
2= .

 

x x x x

x

x x x x

1 1
1/2
1!

(1/2)( 1/2)
2!

(1/2)( 1/2)( 3/2)
3!

(1/2)( 1/2)( 3/2)( 5/2)
4!

1 1
2

1
8

1
16

5
128

2 3

4

2 3 4

+ = + + − + − −

+ − − − + ⋅ ⋅ ⋅

= + − + − + ⋅ ⋅ ⋅   (47.4)

EXAMPLE 47.8: Let us find a power series expansion about 0 for 
x

1

1−
 

Take the binomial series for r 1
2= − , and then replace x by - x:

 

x
x x x

n
n

x

n
n

x

1

1
1

1/2
1!

( )
( 1/2)( 3/2)

2!
( )

( 1/2)( 3/2)( 5/2)
3!

( )

1 3 5 (2 1)
!2

1
1 3 5 (2 1)

2 4 6 (2 )

n
n

n

n

2 3

1
∑

−
= + − − + − − − + − − − − + ⋅ ⋅ ⋅

+
⋅ ⋅ ⋅ ⋅ ⋅ −

+ ⋅ ⋅ ⋅

= +
⋅ ⋅ ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅ ⋅ ⋅
=

+∞

  (47.5)
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Theorem 47.4: If f x a x( ) n
n

n 0
∑=

=

+∞

 for |x| < R1 and g x b x( ) n
n

n 0
∑=

=

+∞

 for |x| < R2, then f x g x c x( ) ( ) n
n

n 0
∑=

=

+∞

 for  

|x| < minimum (R1, R2), where c a bn k n k
k

n

0
∑= −

=
.

The reader is referred to more advanced treatments of analysis for a proof. Theorem 47.4 guarantees that 
if f and g have power series expansions, then so does their product.

SOLVED PROBLEMS

 1. Find a power series expansion about 0 for cos x.
We know by Example 5 that

x
k

x x
x x x

xsin
( 1)

(2 1)! 3! 5! 7!
for all

k
k

k

2 1
3

0

5 7

∑= −
+ = − + − + ⋅ ⋅ ⋅+

=

+∞

 

Then by Theorem 46.7, we can differentiate term by term:

x
k

x
x x x

xcos
( 1)
(2 )!

1
2! 4! 6!

for all
k

k

k

0

2
2 4 6

∑= − = − + − + ⋅ ⋅ ⋅
=

+∞

 

 2. Find a power series about 
2
π  for sin x.

Use the identity x xsin cos
2
π= −



 . Then by Problem 1,

x
k

x x xsin
( 1)
(2 )! 2

1
1
2! 2

1
4! 2

k k

k

2 2 4

0
∑ π π π= − −



 = − −



 + −



 − ⋅ ⋅ ⋅

=

+∞

 

 3. If f (x) = tan-1 x, evaluate f  (38)(0).
We know by formula (46.12) that

x
x
n

x x x x xtan ( 1)
2 1

for | | 1n

n

n
1

0

2 1
1
3

3 1
5

5 1
7

7∑= − + = − + − + ⋅ ⋅ ⋅ <−

=

+∞ +

 

Hence, by Theorem 47.1, the coefficient of x38 in this power series is equal to 
f (0)
(38)!

(38)

. But the coefficient of x38 is 0. 
So,  f  (38)(0) = 0.

 4. Find power series expansions about 0 for the following functions:

(a) cos (x2) (b) xe-2x (c) x1/ 13 +  

(a) x
k

xcos
( 1)
(2 )!

k

k

k

0

2∑= −
=

+∞

 by Problem 1. Therefore, x
k

xcos( )
( 1)
(2 )!

k

k

k2

0

4∑= −
=

+∞

.

(b) We know that e
x
k!

x
k

k 0
∑=

=

+∞

. So, e
k

x
( 1) 2

!
x

k k

k

k2

0
∑= −−

=

+∞

. Hence,

xe
k

x
n

x
( 1) 2

!
( 1) 2

( 1)!
x

k k

k

k
n n

n

n2

0

1
1 1

1
∑ ∑= − = −

−
−

=

+∞
+

− −

=

+∞

 

(c) This is the binomial series for r 1
3= − .

x x x x

x

n
n

x

1/ 1 1
1
3

( 1/3)( 4/3)
2!

( 1/3)( 4/3)( 7/3)
3!

( 1/3)( 4/3)( 7/3)( 10/3)
4!

1
( 1) (1 4 7 (3 2))

3 !

n

n
n

n

3 2 3

4

1
∑

+ = − + − − + − − −

+ − − − − + ⋅ ⋅ ⋅

= +
− ⋅ ⋅ ⋅ ⋅ ⋅ −

=

+∞
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 5. Find the first five terms of the Maclaurin series for ex(sin x).
Method 1: Let f (x) = ex(sin x). Then

 
f x e x x f x e x f x e x x

f x e x f x e x x

( ) (sin cos ), ( ) 2 (cos ), ( ) 2 (cos sin )

( ) 4 (sin ), and ( ) 4 (sin cos )

x x x

x x(4) (5)

′ = + ′′ = ′′′ = −

= − = − +
 

Hence, since a
f

n
(0)
!n

n( )

= , we get a0 = 0, a1 = 1, a2 = 1, a3
1
3= , a 04 = , and a5

1
30= − . Thus

 e x x x
x x

(sin )
3 30

x 2
3 5

= + + − + ⋅ ⋅ ⋅  

 Method 2: e x x
x x

x
x x

(sin ) 1
2! 3! 3! 5!

x
2 3 3 5

= + + + + ⋅ ⋅ ⋅





− + − ⋅ ⋅ ⋅



 . If we multiply out according to the rule in 

Theorem 47.4, we get the same result as above. For example, c5
1
24

1
12

1
120

1
30= − + = − .

 6. We know that x x
x x

sin
3! 5!

3 5

= − + − ⋅ ⋅ ⋅. For what values of x will approximating sin x by x produce an error < 0.005?

R x
f x

x
x

| ( )|
( )

3!
| |
62

(3) *
3

3

= ≤ . [Here, f x| ( )| 1(3) ≤  since f  (3) is -cos x.] So, we require | x |3/6 < 0.005, which is 

equivalent to | x |3 < 0.03. So, we want x| | 0.03 ~ 0.313< .

 7. If we approximate sin x by x
x
3!

3

−  for | x | < 0.5, what is a bound on the error?
Since sin x is equal to an alternating series for any x, the error will be less than the magnitude of the first term 

omitted, in this case | x |5/5! When | x | < 0.5, the error will be less than 
1

120
(0.5) ~ 0.000265 .

 8. Approximate 
x

x
dx

sin
0

1

∫  with an error less than 0.005.

 x
k

x x
x x x

sin
( 1)

(2 1)! 3! 5! 7!

k
k

k

2 1

0

3 5 7

∑= −
+ = − + − + ⋅ ⋅ ⋅+

=

+∞

 

Hence, 
x

x k
x

x x xsin ( 1)
(2 1)!

1
3! 5! 7!

k
k

k

2
2 4 6

0
∑= −

+ = − + − + ⋅ ⋅ ⋅
=

+∞

 

Therefore, 

x
x

dx
k

x dx
k

x
k

k k

sin ( 1)
(2 1)!

( 1)
(2 1)! 2 1

( 1)
(2 1)!

1
2 1

k
k

k k

kk

k

k

2
2 1

0
0

1

0
0

1

0

1

0

∑∫∑∫

∑

= −
+ = −

+ +





= −
+ +

+

=

+∞

=

+∞

=

+∞
 

 This is an alternating series. We must find k so that 
k k

1
(2 1)!

1
2 1

0.005+ + ≤ , or, equivalently, 200 ≤ (2k + 1)!(2k + 1). 

It is true for k ≥ 2. So, we need 1 ~ 0.9441
18

17
18− = .

 9. Find a power series about 0 for sin-1 x.
By formula (47.5),

 
x

n
n

x x
1

1
1

1 3 5 (2 1)
2 4 6 (2 )

for | | 1
n

n

1
∑−

= +
⋅ ⋅ ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅ ⋅ ⋅ <
=

+∞

 

Replace x by t2.

 
t

n
n

t t
1

1
1

1 3 5 (2 1)
2 4 6 (2 )

for | | 1n

n
2

2

1
∑−

= +
⋅ ⋅ ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅ ⋅ ⋅ <
=

+∞
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So, for |x| < 1,

 x
t

dt x
n

n
x
n

sin
1

1

1 3 5 (2 1)
2 4 6 (2 ) 2 1

n

n

x
1

2

2 1

1
0

∑∫=
−

= +
⋅ ⋅ ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅ ⋅ ⋅ +
−

+

=

+∞

 

10. Find Maclaurin series for the following functions: (a) sin(x3); (b) sin2 x.
Recall that if a function has a power series expansion in an interval about 0, then that power series is the 

Maclaurin series of the function.

(a) x
k

xsin
( 1)

(2 1)!

k
k

k

2 1

0
∑= −

+
+

=

+ ∞

 for all x. Hence, x
k

xsin( )
( 1)

(2 1)!

k
k

k

3 6 3

0
∑= −

+
+

=

+ ∞

 and this series is the Maclaurin series for 

sin (x3).

(b) x
x

k
x

k
xsin

1 cos(2 )
2

1
2

1
( 1) 2

(2 )!
( 1) 2

(2 )!

k k
k

k

k k
k

k

2
2

2

0

1 2 1
2

1
∑ ∑= − = − −





= −
=

+∞ + −

=

+∞

 by Problem 1. So, the Maclaurin series for 

sin2 x is 
k

x
( 1) 2

(2 )!

k k
k

k

1 2 1
2

1
∑ − + −

=

+∞

.

11. Find the first four nonzero terms of the Maclaurin series for f (x) = sec x.
It would be very tedious to compute the successive derivatives. Instead, since sec x cos x = 1, we can proceed 

differently. We assume sec x a xn
n

n 0
∑=

=

+∞

. Then

 

a x
k

x

a a x a x a x
x x x

( 1)
(2 )!

1

( ) 1
2 24 720

1

n
n

n

k
k

k0

2

0

0 1 2
2

3
3

2 4 6

∑ ∑





−





=

+ + + + ⋅ ⋅ ⋅ − + − + ⋅ ⋅ ⋅





=

=

+∞

=

+∞

 

We then “multiply out,” compare coefficients on the two sides of the equation, and solve for the an.

a a a a a a a1, 0, ; 0; ; 0;0 1 2
1
2 3 4

5
24 5 6

61
720= = = = = = =  

Thus,

x x x xsec 1
1
2

5
24

61
270

2 4 6= + + + + ⋅ ⋅ ⋅  

An alternative method would be to carry out a “long division” of 1 by 
x x x

1
2 24 720

2 4 6

− + − + ⋅ ⋅ ⋅

SUPPLEMENTARY PROBLEMS

12. Find the Maclaurin series for the following functions:

(a) sin (x5); (b) 
x

1
1 5+ ; (c) cos2 x.

Ans. (a) 
k

x
( 1)

(2 1)!

k

k

k

0

10 5∑ −
+

=

+∞
+ ;  (b) x( 1)n n

k

5

0
∑ −

=

+∞

; (c) 
k

x1
( 1) 2

(2 )!

k k
k

k

2 1
2

1
∑+ − −

=

+∞

 

13. Find the Taylor series for ln x about 2.

Ans. 
x
n

ln 2 ( 1)
( 2)

2
n

n

n

n
1

1
∑+ − −−

=

+∞

 

14. Find the first three nonzero terms of the Maclaurin series for (a) 
x

e
sin

x ; (b) ex cos x.

Ans. (a) x x x2 1
3

3− + + ⋅ ⋅ ⋅; (b) x x1 1
3

3+ − + ⋅ ⋅ ⋅ 

15. Compute the first three nonzero terms of the Maclaurin series for tan x.

Ans. x x x1
3

3 2
15

5+ + + ⋅ ⋅ ⋅  
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16. Compute the first three nonzero terms of the Maclaurin series for sin-1 x.

Ans. x x x1
6

3 3
40

5+ + + ⋅ ⋅ ⋅  

17. Find the Taylor series for cos x about 
3
π

. 
π π+ −











Hint x[ : Use an identity for cos
3 3

.]  

Ans. k
x

k
x

1
2

( 1)
(2 )! 3

3
2

( 1)
(2 1)! 3

k k k k

kk

2 2 1

00
∑∑ π π− −



 − −

+ −





+

=

+∞

=

+∞

 

18. (GC) Use power series to approximate 
x

x
dx

tan 1

0

1/2

∫
−

.

Ans. 0.4872

19. (GC) Use power series to approximate 
x

x
dx

ln(1 )
0

1/2

∫
+

 correctly to four decimal places.

Ans. 0.4484

20. (GC) Use power series to approximate x dx1 23

0

1

∫ +  correctly to four decimal places.

Ans. 1.0948

21. (GC) What is a bound on the error if we approximate ex by x x1 1
2

2+ +  for |x| ≤ 0.05? (You may use e0.05 < 1.06.)

Ans. 0.0000221

22. (GC) What is a bound on the error if we approximate ln (1 + x) by x for |x| ≤ 0.05?

Ans. 0.00125

23. (GC) Use the Taylor series for sin x about 
3
π

 to approximate sin 62° correctly to five decimal places.

Ans. 0.88295

24. (GC) In what interval can you choose the angle if the values of cos x are to be computed using three terms of its 

Taylor series about 
3
π

 and the error must not exceed 0.00005?

Ans. x
3

0.0669
π− ≤  

25. (GC) Use power series to compute to four-decimal-place accuracy: (a) e-2; (b) sin 32°; (c) cos 36°.

Ans. (a) 0.1353; (b) 0.5299; (c) 0.8090

26. (GC) For what range of x can:

(a) e x be replaced by x x1 1
2

2+ +  if the allowable error is 0.0005?
(b) sin x be replaced by x x x1

6
3 1

120
5− +  if the allowable error is 0.00005?

Ans. (a) |x| < 0.1; (b) |x| < 47°

27. Use power series to evaluate: (a) 
e e

x
lim
x

x

0

sin

3

−
→

; (b)  
e e

x
lim
x

x

0

cos

2

−
→

.

Ans. (a) 
1
6

; (b) 
e
2
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28. (GC) Use power series to evaluate:

(a) x dx(1 sin )1
2

2 1/2

0

/2

∫ −
π

−  (to three-decimal-place accuracy).

(b) x dxcos
0

1

∫  (to five-decimal-place accuracy).

(c) 
dx

x1 40

1/2

∫ +  (to four-decimal-place accuracy).

Ans. (a) 1.854; (b) 0.76355; (c) 0.4940

29. (GC) Use power series to approximate the length of the curve y x1
3

3=  from x = 0 to x = .5, with four-decimal-
place accuracy.

Ans. 0.5031

30. (GC) Use power series to approximate the area between the curve y = sin (x2) and the x axis from x = 0 to x = 1, 
with four-decimal-place accuracy.

Ans. 0.3103

31. Prove that the binomial series expansion in Theorem 47.3 is correct.

 Hint: Let y
r r r r n

n
x1

( 1)( 2) ( 1)
!

n

n 1
∑= + − − ⋅⋅⋅ − +

=

+∞

. Use term-by-term differentiation to find the series for 
dy
dx

 and 

show that 
dy
dx

ry
x1

= + . Then derive y = (1 + x)r. (Use “separation of variables”; 
dy
y

r dx
x1∫∫ = + .)

32. Expand the polynomial f (x) = x4 - 11x3 + 43x2 - 60x + 14 as a power series about 3, and find f x dx( )
3

3.2

∫ .

Ans. 1.185
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433

CHAPTER 48

Partial Derivatives

FUNCTIONS OF SEVERAL VARIABLES

If a real number z is assigned to each point (x, y) of a part of the xy-plane, then z is said to be given as a 
function, z = f (x, y), of the independent variables x and y. The set of all points (x, y, z) satisfying z = f (x, y) 
is a surface in three-dimensional space. In a similar manner, functions w = f (x, y, z, . . .) of three or more 
independent variables may be defined, but no geometric picture is available.

There are a number of differences between the calculus of one and two variables. However, the calculus 
of functions of three or more variables differs only slightly from that of functions of two variables. The study 
here will be limited largely to functions of two variables.

LIMITS

By an open disk with center (a, b) we mean the set of points (x, y) within some fixed distance d from (a, b), that is, 
such that δ− + − <x a y b( ) ( ) .2 2  By a deleted disk around (a, b) we mean an open disk without its center (a, b).

Let f  be a function of two variables and assume that there are points in the domain of f arbitrarily close to 
(a, b). To say that f (x, y) has the limit L as (x, y) approaches (a, b) means intuitively that f (x, y) can be made 
arbitrarily close to L when (x, y) is sufficiently close to (a, b). More precisely,

=
→

f x y Llim ( , )
x y a b( , ) ( , )

 

if for any  > 0, there exists d > 0 such that for any (x, y) in the domain of f and in the deleted disk of radius 
d around (a, b), | f (x, y) - L| < . This is equivalent to saying that for any  > 0, there exists d > 0 such that 

δ< − + − <x a y b0 ( ) ( )2 2  implies | f (x, y) - L| <  for any (x, y) in the domain of f. Note that it is not assumed 
that f (a, b) is defined.

Laws for limits analogous to those for functions of one variable (Theorems 7.1–7.6) also hold here and 
with similar proofs.

EXAMPLE 48.1: Using these standard laws for limits, we see that

xy
y

xylim
3
7

1
2

3(3)(1)
7 1

(3)(1)
x y( , ) (3,1)

2
1
2

9
8

3
2

21
8+ +





= + + = + =
→

 

EXAMPLE 48.2: In some cases, these standard laws do not suffice.

Let us show that 
xy

x y
lim

3
0.

x y( , ) (0,0)

2

2 2+ =
→

 Our usual limit rules would yield 
0
0

, which is indeterminate. So, we need a 

more involved argument. Assume  > 0. Now


xy

x y
xy

x y
x

y
x y

x x y
3

0
3

3 | | 3 | | 3 3
2

2 2

2

2 2

2

2 2
2 2 δ+ − = + = + ≤ ≤ + < =  

if we choose d =  /3 and we assume that x y0 2 2 δ< + < .
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EXAMPLE 48.3: Let us show that 
x y
x y

lim
x y( , ) (0,0)

2 2

2 2

−
+→

 does not exist.

Let x y( , ) (0, 0)→  along the x-axis, where y = 0. Then 
x y
x y

x
x

1.
2 2

2 2

2

2

−
+ = =  So, the limit along the x-axis is 1.  

Now let x y( , ) (0, 0)→  along the y-axis, where x = 0. Then 
x y
x y

y
y

1.
2 2

2 2

2

2

−
+ = − = −  So, the limit along the y-axis is -1. 

Hence, there can be no common limit as one approaches (0, 0), and the limit does not exist.

EXAMPLE 48.4: Let us show that 
x y
x y

lim
x y( , ) (0, 0)

2 2

2 2

2−
+





→

 does not exist.

Here, we cannot use the same argument as in Example 3, since 
x y
x y

2 2

2 2

2−
+







 approaches 1 as (x, y) approaches 

(0, 0) along both the x-axis and the y-axis. However, we can let (x, y) approach (0, 0) along the line y = x. Then 

x y
x y

x x
x x

0.
2 2

2 2

2 2 2

2 2

2−
+







= −
+







=  So, 
x y
x y

0
2 2

2 2

2−
+







→  along y = x. Since this is different from the limit 1 approached 

along the x-axis, there is no limit as x y( , ) (0, 0)→ .

CONTINUITY

Let f be a function of two variables and assume that there are points in the domain of f arbitrarily close 
to (a, b). Then f is continuous at (a, b) if and only if f is defined at (a, b), 

→
f x ylim ( , )

x y a b( , ) ( , )
 exists, and 

=
→

f x y f a blim ( , ) ( , ).
x y a b( , ) ( , )

We say that f  is continuous on a set A if f is continuous at each point of A.
This is a generalization to two variables of the definition of continuity for functions of one variable. The 

basic properties of continuous functions of one variable (Theorem 8.1) carry over easily to two variables. In 
addition, every polynomial in two variables, such as − − + +x xy y xy7 3 2 5,5 3 4 2  is continuous at all points. 
Every continuous function of one variable is also continuous as a function of two variables.

The notions of limit and continuity have obvious generalizations to functions of three or more variables.

PARTIAL DERIVATIVES

Let z = f (x, y) be a function of two variables. If x varies while y is held fixed, z becomes a function of x. Then 
its derivative with respect to x

+ ∆ −
∆∆ →

f x x y f x y
x

lim
( , ) ( , )

x 0
 

is called the (first) partial derivative of f with respect to x and is denoted fx (x, y) or 
∂
∂

z
x  or 

∂
∂

f
x .

Similarly, if y varies while x is held fixed, the (first) partial derivative of f with respect to y is

= ∂
∂ = ∂

∂ =
+ ∆ −

∆∆ →
f x y

z
y

f
y

f x y y f x y
y

( , ) lim
( , ) ( , )

y y 0
 

EXAMPLE 48.5: Let f (x, y) = x2 sin y. Then fx(x, y) = 2x sin y and fy(x, y) = x2 cos y.
Note that when fx is computed, y is temporarily treated like a constant, and, when fy is computed, x is temporar-

ily treated like a constant.
The partial derivatives have simple geometric interpretations. Consider the surface z = f (x, y) in Fig. 48-1. 

Through the point P(x, y, z), there is a curve APB that is the intersection with the surface of the plane through P 
parallel to the xz-plane (the plane determined by the x-axis and the z-axis). Similarly, CPD is the curve through P 
that is the intersection with the surface z = f (x, y) of the plane through P that is parallel to the yz-plane. As x varies 

while y is held fixed, P moves along the curve APB, and the value of 
z
x

∂
∂  at (x, y) is the slope of the tangent line to 

the curve APB at P. Similarly, as y varies while x is held fixed, P moves along the curve CPD, and the value of 
z
y

∂
∂  

at (x, y) is the slope of the tangent line to the curve CPD at P.
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Fig. 48-1

PARTIAL DERIVATIVES OF HIGHER ORDER

We can take the partial derivatives with respect to x and y of 
∂
∂

z
x , yielding

∂
∂ = = ∂

∂
∂
∂







z
x

f x y
x

z
x

( , )xx

2

2  and 
∂

∂ ∂ = = ∂
∂

∂
∂







z
y x

f x y
y

z
x

( , )yx

2

 

Similarly, from 
∂
∂

z
y  we obtain

∂
∂ = = ∂

∂
∂
∂







z
y

f x y
y

z
y

( , )yy

2

2  and 
∂

∂ ∂ = = ∂
∂

∂
∂







z
x y

f x y
x

z
y

( , )xy

2

Theorem 48.1: Assume that  fxy and  fyx exist and are continuous in an open disk. Then fxy = fyx at every point of the disk.

For a proof, see Problem 30.

EXAMPLE 48.6: Let us verify Theorem 48.1 for f (x, y) = x2(sin yx).

= + = +

= +

= − + +

= − +

= − + = − +

f x y x yx y x yx x xy yx yx

f x y x yx x x yx

f x y x x y yx x yx yx x

x xy yx yx

f x y x yx y x yx x xy yx yx

( , ) (cos )( ) 2 (sin ) [ (cos ) 2sin ]

( , ) (cos ) (cos )

( , ) [ ( ( sin )( ) cos ) 2(cos )( )]

[ sin 3cos ]

( , ) ( sin )( ) 3 cos [ sin 3cos ]

x

y

yx

xy

2

2 3

2

3 2 2

 

Partial derivatives also can be defined for functions of three or more variables. An analogue of Theorem 48.1 
holds for any two orderings of given subscripts.

Note that partial derivatives may fail to exist when the required limits do not exist.

SOLVED PROBLEMS

 1. Evaluate: (a) xy x ylim (2 7 )
x y( , ) (3,2)

4 2 2−
→

; (b) x
x y

lim cos
4x y( , ) ( ,0)

−



π→
.

Since the standard limit laws apply, the limits are:

(a) 2(3)(2)4 - 7(3)2(2)2 = 96 - 252 = -156; (b) cos
4

2
2

π π π=  
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 2. Evaluate 
x

x y
lim

x y( , ) (0,0)

2

2 2+→
.

As x y( , ) (0, 0)→  along the y-axis, x = 0 and 
x

x y
0 0

2

2 2+ = → .

As x y( , ) (0, 0)→  along the x-axis, y = 0 and 
x

x y
x
x

1 1
2

2 2

2

2+ = = → .
Hence, the limit does not exist.

 3. Evaluate 
xy

x y
lim

x y( , ) (0,0) 2 2+→
.

Since x x x y| | 2 2 2= ≤ + , 
xy

x y
y| | 0

2 2+
≤ →  as x y( , ) (0, 0)→ . So,

xy

x y
lim 0.

x y( , ) (0, 0) 2 2+
=

→
 

 4. The function f x y
x y

x y
( , )

sin( )= +
+  is continuous everywhere except at (0, 0) and on the line y = -x, where it is not 

defined. Can f (0, 0) be defined so that the new function is continuous?

As x y( , ) (0, 0)→ , x y 0+ →  and therefore, 
x y

x y
sin( )

1
+

+ → , since 
u

u
lim

sin
1.

u 0
=

→
 So, if we let f (0, 0) = 1, the new 

function will be continuous at (0, 0). Thus, the original discontinuity was removable.

In Problems 5–9, find the first partial derivatives.

 5. z = 2x2 - 3xy + 4y2.
Treating y as a constant and differentiating with respect to x yields 

z
x

x y4 3
∂
∂ = − .

Treating x as a constant and differentiating with respect to y yields 
z
y

x y3 8
∂
∂ = − + .

 6. z
x
y

y
x

2 2

= + .

Treating y as a constant and differentiating with respect to x yields 
z
x

x
y

y
x

2 2

2

∂
∂ = − .

Treating x as a constant and differentiating with respect to y yields 
z
y

x
y

y
x

22

2

∂
∂ = − + .

 7. z = sin (2x + 3y).
z
x

x y2cos(2 3 )
∂
∂ = +   and  

z
y

x y3cos(2 3 )
∂
∂ = +  

 8. z x y xytan ( ) tan ( )1 2 1 2= +− − .

z
x

xy
x y

y
x y

2
1 14 2

2

2 4

∂
∂ = + + +   and  

z
y

x
x y

xy
x y1

2
1

2

4 2 2 4

∂
∂ = + + +  

 9. z ex xy2= +

z
x

e x y(2 )x xy2∂
∂ = ++   and  

z
y

xex xy2∂
∂ = +  

10. The area of a triangle is given by K ab Csin1
2= . When a = 20, b = 30, and C = 30°, find:

(a) The rate of change of K with respect to a, when b and C are constant.
(b) The rate of change of K with respect to C, when a and b are constant.
(c) The rate of change of b with respect to a, when K and C are constant.
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(a) 
K
a

b Csin (30)(sin30 )1
2

1
2

15
2

∂
∂ = = ° =  

(b) 
K
C

ab Ccos (20)(30)(cos30 ) 150 31
2

1
2

∂
∂ = = ° =  

(c) b
K

a C
2
sin

=  and 
b
a

K
a C

ab C
a C

b
a

2
sin

2( sin )
sin

3
22

1
2

2

∂
∂ = − = − = − = −  

In Problems 11–13, find the first partial derivatives of z with respect to the independent variables x and y.

11. x2 + y2 + z2 = 25. [This is the equation of a sphere of radius 5 and center (0, 0, 0).]
Differentiate implicitly with respect to x, treating y as a constant, to obtain:

x z
z
x

2 2 0.+ ∂
∂ =   Hence,  

z
x

x
z

∂
∂ = −  

Differentiate implicitly with respect to y, treating x as a constant:

y z
z
y

2 2 0.+ ∂
∂ =   Hence,  

z
y

y
z

∂
∂ = −  

12. x2(2y + 3z) + y2(3x - 4z) + z2(x - 2y) = xyz.
Differentiate implicitly with respect to x:

x y z x
z
x

y y
z
x

z x y
z
x

z yz xy
z
x

2 (2 3 ) 3 3 4 2 ( 2 )2 2 2 2+ + ∂
∂ + − ∂

∂ + − ∂
∂ + = + ∂

∂  

Solving for 
z
x

∂
∂  yields: 

z
x

xy xz y z yz
x y xz yz xy
4 6 3

3 4 2 4

2 2

2 2

∂
∂ = − + + + −

− + − − .

Differentiate implicitly with respect to y:

 x x
z
y

y x z y
z
y

z x y
z
y

z xz xy
z
y

2 3 2 (3 4 ) 4 2 ( 2 ) 22 2 2 2+ ∂
∂ + − − ∂

∂ + − ∂
∂ − = + ∂

∂  

Solving for 
z
y

∂
∂  yields: 

z
y

x xy yz z xz
x y xz yz xy

2 6 8 2
3 4 2 4

2 2

2 2

∂
∂ = − + − − −

− + − − .

13. xy + yz + zx = 1.
Differentiating with respect to x yields y y

z
x

x
z
x

z 0+ ∂
∂ + ∂

∂ + = , whence 
z
x

y z
x y

∂
∂ = − +

+ .

Differentiating with respect to y yields x y
z
y

z x
z
y

0+ ∂
∂ + + ∂

∂ = , whence 
z
y

x z
x y

∂
∂ = − +

+ .

14. Considering x and y as independent variables, find 
r
x

r
y x y

, , ,
θ θ∂

∂
∂
∂

∂
∂

∂
∂  when x = e2r cos q, y = e3r sin q.

First differentiate the given relations with respect to x:

e
r
x

e
x

1 2 cos sinr r2 2θ θ θ= ∂
∂ − ∂

∂   and  e
r
x

e
x

0 3 sin cosr r3 3θ θ θ= ∂
∂ + ∂

∂  

Then solve simultaneously to obtain 
r
x e

cos
(2 sin )r2 2

θ
θ

∂
∂ = +  and x e

3sin
(2 sin )r2 2

θ θ
θ

∂
∂ = − + .

Now differentiate the given relations with respect to y:

e
r
y

e
y

0 2 cos sinr r2 2θ θ θ= ∂
∂ − ∂

∂   and  e
r
y

e
y

1 3 sin cosr r3 3θ θ θ= ∂
∂ + ∂

∂  

Then solve simultaneously to obtain 
r
y e

sin
(2 sin )r3 2

θ
θ

∂
∂ = +  and 

y e
2cos

(2 sin )r3 2

θ θ
θ

∂
∂ = + .
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15. Find the slopes of the tangent lines to the curves cut from the surface z = 3x2 + 4y2 - 6 by planes through the 
point (1, 1, 1) and parallel to the xz- and yz-planes.

The plane x = 1, parallel to the yz-plane, intersects the surface in the curve z = 4y2 - 3, x = 1. Then 
z
y

y8 8(1) 8
∂
∂ = = =  is the required slope.

The plane y = 1, parallel to the xz-plane, intersects the surface in the curve z = 3x2 + 2, y = 1. Then 
z
x

x6 6
∂
∂ = =  is the required slope.

In Problems 16 and 17, find all second partial derivatives of z and verify Theorem 48.1.

16. z = x2 + 3xy + y2.
z
x

x y
z

x x
z
x

z
y x y

z
x

z
y

x y
z

y y
z
y

z
x y x

z
y

2 3 , 2, 3

3 2 , 2, 3

2

2

2

2

2

2

∂
∂ = + ∂

∂ = ∂
∂

∂
∂







= ∂
∂ ∂ = ∂

∂
∂
∂







=

∂
∂ = + ∂

∂ = ∂
∂

∂
∂







= ∂
∂ ∂ = ∂

∂
∂
∂







=
 

Note that 
z

y x
z

x y

2 2∂
∂ ∂ = ∂

∂ ∂ .

17. z = x cos y - y cos x.

z
x

y y x
z

x x
z
x

y xcos sin , cos
2

2

∂
∂ = + ∂

∂ = ∂
∂

∂
∂







=  

z
y x y

z
x

y xsin sin
2∂

∂ ∂ = ∂
∂

∂
∂







= − +  

z
y

x y x
z

y y
z
y

x ysin cos , cos
2

2

∂
∂ = − − ∂

∂ = ∂
∂

∂
∂







= −  

z
x y x

z
y

y xsin sin
2∂

∂ ∂ = ∂
∂

∂
∂







= − +  

Note that 
z

y x
z

x y

2 2∂
∂ ∂ = ∂

∂ ∂ .

18. Let f (x, y, z) = x cos (y z). Find all partial derivatives of the first, second, and third order.

 fx = cos (yz),  fxx = 0,  fyx = -z sin (yz),  fzx = -y sin (yz)

 fy = -xz sin (yz),  fyy = -xz2 cos (yz),  fxy = -z sin (yz)

 fzy = -x(zy cos (yz) + sin( yz))

 fz = -xy sin (yz),  fzz = -xy2 cos (yz),  fxz = -y sin (yz)

 fyz = -x(zy cos (yz) + sin (yz))

Note that fxy = fyx and fxz = fzx and fyz = fzy.

 fxxx = 0,  fxxy = fxyx = 0,  fxxz = fxzx = 0
 fxyy = -z2 cos (yz),  fxyz = fxzy = -(zy cos (yz) + sin (yz))

 fxzz = -y2 cos (yz)

 fyyy = xz3 sin (yz),  fyxx = 0,  fyxy = fyyx = -z2 cos (yz)

 fyxz = fyzx = -(yz cos (yz) + sin (yz))

 fyyz = fyzy = -x(-z2y sin (yz) + z cos (yz) + z cos (yz))

 = xz(zy sin (yz) - 2 cos (yz))

 fyzz = -x(-y2z sin (yz) + 2y cos (yz))

 = xy(z sin (yz) - 2 cos (yz))

 fzzz = xy3 sin (yz),  fzxx = 0,  fzxy = fzyx = -(zy cos (yz) + sin (yz))
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 fzxz = fzzx = -y2 cos (yz)

 fzyy = -x(-z2y sin (yz) + 2z cos (yz)) = xz(zy sin (yz) - 2 cos (yz))

 fzyz = fzzy = -x(-zy2 sin (yz) + y cos (yz) + y cos (yz))

 = xy(zy sin (yz) - 2 cos (yz))

Note that in the third order, any two rearrangements of subscripts will be equal. For example, fxyz = fxzy = fyxz = 
fyzx = fzxy = fzyx = -(zy cos (yz) + sin (yz)).

19. Determine whether the following functions are solutions of Laplace’s equation 
z

x
z

y
0

2

2

2

2

∂
∂ + ∂

∂ = :

(a) z = ex cos y (b) z e( )x y1
2= +   (c) z = x2 - y2

(a) 
z
x

e y
z

x
e y

z
y

e y
z

y
e y

cos , cos

sin , cos

x x

x x

2

2

2

2

∂
∂ = ∂

∂ =

∂
∂ = − ∂

∂ = −

 

Then 
z

x
z

y
0.

2

2

2

2

∂
∂ + ∂

∂ =  

(b) 
z
x

e
z

x
e

z
y

e
z

y
e

1
2

( ),
1
2

( )

( ),
1
2

( )

x y x y

x y x y

2

2

1
2

2

2

∂
∂ = ∂

∂ =

∂
∂ = ∂

∂ =

+ +

+ +

 

So, 
z

x
z

y
e 0x y

2

2

2

2

∂
∂ + ∂

∂ = ≠+ .

(c) 
z
x

x
z

x

z
y

y
z

y

2 , 2

2 , 2

2

2

2

2

∂
∂ = ∂

∂ =

∂
∂ = − ∂

∂ = −

 

So, 
z

x
z

y
0

2

2

2

2

∂
∂ + ∂

∂ = .

SUPPLEMENTARY PROBLEMS

In Problems 20–24, evaluate the given limit.

20. 
x y
x y

lim
2

x y( , ) ( 1, 2)
2

−
+→ −

  Ans. 5
3−  

21. 
x y

x y
lim

x y( , ) (0, 0)
2 2

−
+→

  Ans. no limit

22. 
xy

x y
lim

3
2x y( , ) (0, 0)

2 2+→
  Ans. no limit

23. 
xy

x y
lim

x y( , ) (0, 0)

2

2 4+→
  Ans. no limit

24. 
x y

x y
lim

4 2x y( , ) (0, 0)

2 2

2 2

+
+ + −→

  Ans. 4

48_Mendelson_ch48_p433-442.indd   439 27/07/21   11:23 AM



440 CHAPTER 48 Partial Derivatives

25. Determine whether each of the following functions can be defined at (0, 0) so as to be continuous:

(a) 
y

x y

2

2 2+   (b) 
x y
x y

−
+   (c) 

x y
x y

3 3

2 2

+
+   (d) 

x y
x y2 2

+
+  

Ans. (a) no; (b) no; (c) yes; (d) no

26. For each of the following functions z, find 
z
x

∂
∂  and 

z
y

∂
∂ .

(a) z = x2 + 3xy + y2 Ans. 
z
x

x y2 3
∂
∂ = + ; 

z
y

x y3 2
∂
∂ = +  

(b) z
x
y

y
x2 2= −   Ans. 

z
x y

y
x

z
y

x
y x

1 2
;

2 1
2 3 3 2

∂
∂ = + ∂

∂ = − −  

(c) z = sin 3x cos 4y Ans. 
z
x

x y3cos3 cos4
∂
∂ = ; 

z
y

x y4sin3 sin 4
∂
∂ = −  

(d) z
y
x

tan 1= 





−   Ans. 
z
x

y
x y2 2

∂
∂ = −

+ ; 
z
y

x
x y2 2

∂
∂ = +  

(e) x2 - 4y2 + 9z2 = 36 Ans. 
z
x

x
z9

∂
∂ = − ; 

z
y

y
z

4
9

∂
∂ =  

(f ) z3 - 3x2y + 6xyz = 0 Ans. 
z
x

y x z
z xy
2 ( )

22

∂
∂ = −

+ ; 
z
y

x x z
z xy
( 2 )

22

∂
∂ = −

+  

(g) yz + xz + xy = 0 Ans. 
z
x

y z
x y

∂
∂ = − +

+ ; 
z
y

x z
x y

∂
∂ = − +

+ .

27. For each of the following functions z, find 
z

x

2

2

∂
∂ , 

z
y x

2∂
∂ ∂ , 

z
x y

2∂
∂ ∂ , and 

z
y

2

2

∂
∂ .

(a) z = 2x2 - 5xy + y2 Ans. 
z

x
4

2

2

∂
∂ = ; 

z
x y

z
y x

5
2 2∂

∂ ∂ = ∂
∂ ∂ = − ; 

z
y

2
2

2

∂
∂ =  

(b) z
x
y

y
x2 2= −   Ans. 

z
x

y
x
62

2 4

∂
∂ = − ; 

z
x y

z
y x x y

2
1 12 2

3 3

∂
∂ ∂ = ∂

∂ ∂ = −



 ; 

z
y

x
y
62

2 4

∂
∂ =  

(c) z = sin 3x cos 4y Ans. 
z

x
z9

2

2

∂
∂ = − ; 

z
x y

z
y x

x y12cos3 sin 4
2 2∂

∂ ∂ = ∂
∂ ∂ = − ; 

z
y

z16
2

2

∂
∂ = −  

(d) z
y
x

tan 1= 





−   Ans. 
z

x
z

y
xy

x y
2

( )

2

2

2

2 2 2 2

∂
∂ = − ∂

∂ = + ; 
z

x y
z

y x
y x
x y( )

2 2 2 2

2 2 2

∂
∂ ∂ = ∂

∂ ∂ = −
+  

28. (a)  If z
xy

x y
= − , show that x

z
x

xy
z

x y
y

z
y

2 02
2

2

2
2

2

2

∂
∂ + ∂

∂ ∂ + ∂
∂ = .

(b) If z e ycosx β= α  and β α= ± , show that 
z

x
z

y
0

2

2

2

2

∂
∂ + ∂

∂ = .

(c) If z = e-t(sin x + cos y), show that 
z

x
z

y
z
t

2

2

2

2

∂
∂ + ∂

∂ = ∂
∂ .

(d) If z ax by kt a bsin sin sin 2 2= + , show that 
z

t
k

z
x

z
y

2

2
2

2

2

2

2

∂
∂ = ∂

∂ + ∂
∂






.
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29. For the gas formula p
a

b ct( )2+



 − =v v , where a, b, and c are constants, show that

p a b p a
b t

c
p a a b

t
p

b
c

p
t

t
p

2 ( ) ( / )
( )

,
( / ) 2 ( )

, 1

2 3

3

3

2 3

∂
∂ = − − +

−
∂
∂ = + − −

∂
∂ = − ∂

∂
∂
∂

∂
∂ = −

v
v v v

v v
v v

v v v

v
v

v
 

30. Fill in the following sketch of a proof of Theorem 48.1. Assume that fxy and fyx exist and are continuous in an open 
disk. We must prove that fxy(a, b) = fyx(a, b) at every point (a, b) of the disk. Let Dh = ( f (a + h, b + h) - f (a + h, b)) -  
( f (a, b + h) - f (a, b)) for h sufficiently small and ≠ 0. Let F(x) = f (x, b + h) - f (x, b). Then F a h F a( ) ( )h∆ = + − .  
Apply the Mean Value Theorem to get a* between a and a + h so that F(a + h) - F(a) = F′(a*)h = [fx(a*, b + h) -  
fx(a*, b)]h, and apply the Mean Value Theorem to get b* between b and b + h so that fx(a*, b + h) - fx(a*, b) = 
fxy(a*, b*)h. Then

h f a b( , )h xy
2 * *∆ =  and 

h
f a b f a blim lim ( , ) ( , )

h

h

a b a b xy xy0
2

( , ) ( , )

* *
* *

∆
= =

→ →
 

By a similar argument using Dh = (  f (a + h, b + h) - f (a, b + h)) - (  f (a + h, b) - f (a, b)) and the Mean Value 
Theorem, we get

h
f a blim ( , )

h

h
yx0

2

∆
=

→
 

31. Show that Theorem 48.1 no longer holds if the continuity assumption for  fxy and  fyx is dropped. Use the following 
function:

f x y
xy x y

x y
x y

x y
( , )

( )
if ( , ) (0, 0)

0 if ( , ) (0, 0)

2 2

2 2=
−

+ ≠

=






 

[Find formulas for  fx(x, y) and fy(x, y) for (x, y) ≠ (0, 0); evaluate fx(0, 0) and fy(0, 0), and then fxy(0, 0) and fyx(0, 0).]
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443

CHAPTER 49

Total Differential. 
Differentiability. 

Chain Rules.

TOTAL DIFFERENTIAL

Let z = f (x, y). Let D x and Dy be any numbers. D x and Dy are called increments of x and y, respectively. For 
these increments of x and y, the corresponding change in z, denoted D z, is defined by

 ∆ = + ∆ + ∆ −z f x x y y f x y( , ) ( , )   (49.1)

The total differential dz is defined by:

 = ∂
∂ ∆ + ∂

∂ ∆ = ∆ + ∆dz
z
x

x
z
y

y f x y x f x y y( , ) ( , )x y   (49.2)

Note that, if z = f (x, y) = x, then 
∂
∂ =z

x
1 and 

∂
∂ =z

y
0, and therefore, dz = D x. So, dx = D x. Similarly, dy = Dy. 

Hence, equation (49.2) becomes

 = ∂
∂ + ∂

∂ = +dz
z
x

dx
z
y

dy f x y dx f x y dy( , ) ( , )x y   (49.3)

Notation: dz is also denoted df.

These definitions can be extended to functions of three or more variables. For example, if u = f (x, y, z), 
then we get:

= ∂
∂ + ∂

∂ + ∂
∂

= + +

du
u
x

dx
u
y

dy
u
z

dz

f x y z dx f x y z dy f x y z dz( , , ) ( , , ) ( , , )x y z

 

EXAMPLE 49.1: Let z = x cos y - 2x2 + 3. Then 
z
x

y xcos 4
∂
∂ = −  and 

z
y

x ysin
∂
∂ = − . Then the total differential for z 

is dz = (cos y - 4x) dx - (x sin y) dy.
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444 CHAPTER 49 Total Differential

In the case of a function of one variable y = f (x), we used the approximation principle Dy ~ f ′(x) D x = dy 
to estimate values of f. However, in the case of a function z = f (x, y) of two variables, the function f has to 
satisfy a special condition in order to make good approximations possible.

DIFFERENTIABILITY

A function z = f (x, y) is said to be differentiable at (a, b) if functions 1 and 2 exist such that

  ∆ = ∆ + ∆ + ∆ + ∆z f a b x f a b y x y( , ) ( , )x y 1 2   (49.4)

and  = =
∆ ∆ → ∆ ∆ →

lim lim 0
x y x y( , ) (0,0) 1 ( , ) (0,0) 2  

Note that formula (49.4) can be written as

  ∆ = + ∆ + ∆z dz x y1 2   (49.5)

We say that z = f (x, y) is differentiable on a set A if it is differentiable at each point of A.
As in the case of one variable, differentiability implies continuity. (See Problem 23.)

EXAMPLE 49.2: Let us see that z = f (x, y) = x + 2y2 is differentiable at every point (a, b). Note that fx(x, y) = 1 and 
 fy(x, y) = 4y. Then

∆ = + ∆ + ∆ − = + ∆ + + ∆ − −

= ∆ + ∆ + ∆ = ∆ + ∆ + ∆ ∆

z f a x b y f a b a x b y a b

x b y y f a b x f a b y y y

( , ) ( , ) 2( ) 2

4 2( ) ( , ) ( , ) (2 )x y

2 2

2
 

Let 1 = 0 and 2 = 2 Dy.

Definition: By an open set in a plane, we mean a set A of points in the plane such that every point of A belongs to an 
open disk that is included in A.

Examples of open sets are an open disk and the interior of a rectangle.

Theorem 49.1: Assume that f (x, y) is such that fx and  fy are continuous in an open set A. Then  f  is differentiable in A.

For the proof, see Problem 43.

EXAMPLE 49.3: Let = = − −z f x y x y( , ) 9 .2 2  Then = −
− −

f
x

x y9x 2 2
 and = −

− −
f

y

x y9
.y 2 2
 So, by Theorem 

49.1, f  is differentiable in the open disk of radius 3 and center at the origin (0, 0) (where the denominators of fx and 

fy exist and are continuous). In that disk, x2 + y2 < 9. Take the point (a, b) = (1, 2) and let us evaluate the change D z 
as we move from (1, 2) to (1.03, 2.01). So, D x = 0.03 and Dy = 0.01. Let us approximate D z by

= ∆ + ∆ = − + − = −dz f x f y(1, 2) (1, 2)
1

2
(0.03)

2
2

(0.01) 0.025x y
 

The actual difference D z is − − − − − − = −9 (1.03) (2.01) 9 1 4 ~ 1.9746 2 0.0254.2 2  

CHAIN RULES

CHAIN RULE (2 ã 1)
Let z = f (x, y), where f is differentiable, and let x = g(t) and y = h(t), where g and h are differentiable functions 
of one variable. Then z = f (g(t), h(t)) is a differentiable function of one variable, and

 = ∂
∂ + ∂

∂
dz
dt

z
x

dx
dt

z
y

dy
dt

  (49.6)
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445CHAPTER 49 Total Differential

Warning:     Note the double meaning of z, x, and y in (49.6). In 
dz
dt

, z means f (g(t), h(t)), whereas, in 
∂
∂

z
x

 and 
∂
∂

z
y
, z means f (x, y). In 

∂
∂

z
x , x is an independent variable, whereas, in 

dx
dt , x means g(t). Likewise, y has two 

different meanings.
To prove (49.6), note first that by (49.4),

 ∆ = ∂
∂ ∆ + ∂

∂ ∆ + ∆ + ∆z
z
x

x
z
y

y x y1 2  

Then     
∆
∆ = ∂

∂
∆
∆ + ∂

∂
∆
∆ +

∆
∆ + ∆

∆
z
t

z
x

x
t

z
y

y
t

x
t

y
t

.1 2  

Letting Dt → 0, we obtain

= ∂
∂ + ∂

∂ + ∆ + ∆ = ∂
∂ + ∂

∂
dz
dt

z
x

dx
dt

z
y

dy
dt

x y
z
x

dx
dt

z
y

dy
dt

0( ) 0( )  

(Note that since g and h are differentiable, they are continuous. Hence, as Dt → 0, D x → 0 and Dy → 0 and 
therefore, 1 → 0 and 2 → 0.)

EXAMPLE 49.4: Let z = xy + sin x, and let x = t2 and y = cos t. Note that 
∂
∂ = +z

x
y xcos  and 

∂
∂ =z

y
x. Moreover, 

=dx
dt

t2  and = −dy
dt

tsin . Now as a function of t, z = t2 cos t + sin (t2).

 By formula (49.6),

= + + − = + −dz
dt

y x t x t t t t t t( cos )2 ( sin ) (cos cos( ))2 sin2 2  

In this particular example, the reader can check the result by computing Dt(t2 cos t + sin(t2)).

CHAIN RULE (2 ã 2)
Let z = f (x, y), where f is differentiable, and let x = g(t, s) and y = h(t, s), where g and h are differentiable 
functions. Then z = f (g(t, s), h(t, s)) is a differentiable function, and

 
∂
∂ = ∂

∂
∂
∂ + ∂

∂
∂
∂

z
t

z
x

x
t

z
y

y
t

 and 
∂
∂ = ∂

∂
∂
∂ + ∂

∂
∂
∂

z
s

z
x

x
s

z
y

y
s

  (49.7)

Here again, as in the previous Chain Rule, the symbols z, x, and y have obvious double meanings.
This Chain Rule can be considered a special case of the Chain Rule (2 → 1). For example, the partial 

derivative 
∂
∂
z
t
 can be thought of as an ordinary derivative 

dz
dt , because s is treated as a constant. Then the 

formula for 
∂
∂
z
t
 in (49.7) is the same as the formula for 

dz
dt  in (49.6).

EXAMPLE 49.5: Let z = e x sin y and x = ts2 and y = t + 2s. Now 
∂
∂ =z

x
e ysinx , 

∂
∂ =x
t

s2, 
∂
∂ =z

y
e ycosx , and 

∂
∂ =y
t

1. Hence, 

by (49.7),
∂
∂ = + = + = + + +z
t

e y s e y e s y y e s t s t s( sin ) ( cos ) ( sin cos ) ( sin ( 2 ) cos ( 2 ))x x x ts2 2 22  

Similarly,
∂
∂ = + = + = + + +z

s
e y ts e y e ts y y e ts t s t s2( sin ) 2( cos ) 2 ( sin cos ) 2 ( sin ( 2 ) cos ( 2 ))x x x ts2  

Generalizations of the Chain Rule (49.47) hold for cases (m → n), where z = f (x, y, . . .) is a function of 
m variables and each of those variables is a function of a given set of n variables.
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446 CHAPTER 49 Total Differential

IMPLICIT DIFFERENTIATION

Assume that the equation F(x, y, z) = 0 defines z implicitly as a function of x and y. Then by the Chain Rule 
(3 → 2), if we differentiate both sides of the equation with respect to x, we get

∂
∂

∂
∂ + ∂

∂
∂
∂ + ∂

∂
∂
∂ =F

x
x
x

F
y

y
x

F
z

z
x

0  

Since    
∂
∂ = ∂

∂ = ∂
∂ + ∂

∂
∂
∂ =x

x
y
x

F
x

F
z

z
x

1 and 0, 0  

Similarly, 
∂
∂ + ∂

∂
∂
∂ =F

y
F
z

z
y

0. So, if 
∂
∂ ≠F

z
0, 

 
∂
∂ = − ∂ ∂

∂ ∂
z
x

F x
F z

/
/

 and 
∂
∂ = − ∂ ∂

∂ ∂
z
y

F y
F z

/
/

  (49.8)

This also can be written as 
∂
∂ = −z

x
F
F

x

z

 and 
∂
∂ = −z

y
F
F

y

z

.

EXAMPLE 49.6: The equation + + =xy yz xz 03  determines z as a function of x and y. Let F x y z xy yz xz( , , ) .3= + +  

Since Fz = x + 3yz2, Fx = y + z, and Fy = x + z3, (49.8) implies

∂
∂ = − +

+
z
x

y z
x yz3 2    and   

∂
∂ = − +

+
z
y

x z
x yz3

3

2  

SOLVED PROBLEMS

In Problems 1 and 2, find the total differential.

 1. z = x3y + x2y2 + xy3

We have     
∂
∂ = + +z

x
x y xy y3 22 2 3   and   

∂
∂ = + +z

y
x x y xy2 33 2 2  

Then = ∂
∂ + ∂

∂ = + + + + +dz
z
x

dx
z
y

dy x y xy y dx x x y xy dy(3 2 ) ( 2 3 )2 2 3 3 2 2  

 2. z = x sin y - y sin x

We have      
∂
∂ = − ∂

∂ = −z
x

y y x
z
y

x y xsin cos and cos sin  

Then = ∂
∂ + ∂

∂ = − + −dz
z
x

dx
z
y

dy y y x dx x y x dy(sin cos ) ( cos sin )  

 3. Compare dz and D z, given z = x2 + 2xy - 3y2.

 
∂
∂ = +z

x
x y2 2    and   

∂
∂ = − = + + −z

y
x y dz x y dx x y dy2 6 . So 2( ) 2( 3 )  

Also, [ ]∆ = + + + + − + − + −

= + + − + + −

z x dx x dx y dy y dy x xy y

x y dx x y dy dx dx dy dy

( ) 2( )( ) 3( ) ( 2 3 )

2( ) 2( 3 ) ( ) 2 3( )

2 2 2 2

2 2

 

Thus dz and D z differ by (dx)2 + 2 dx dy - 3(dy)2.
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447CHAPTER 49 Total Differential

 4. Approximate the area of a rectangle of dimensions 35.02 by 24.97 units.

For dimensions x by y, the area is A = xy so that = ∂
∂ + ∂

∂ = +dA
A
x

dx
A
y

dy ydx x dy. With x = 35, dx = 0.02, 

y = 25, and dy = - 0.03, we have A = 35(25) = 875 and dA = 25(0.02) + 35(- 0.03) = - 0.55. The area is 
approximately A + dA = 874.45 square units. The actual area is 874.4494.

 5. Approximate the change in the hypotenuse of a right triangle of legs 6 and 8 inches when the shorter leg is 
lengthened by 1

4  inch and the longer leg is shortened by 1
8  inch.

Let x, y, and z be the shorter leg, the longer leg, and the hypotenuse of the triangle. Then

= + ∂
∂ =

+
∂
∂ =

+
= ∂

∂ + ∂
∂ =

+
+

z x y
z
x

x

x y

z
y

y

x y
dz

z
x

dx
z
y

dy
x dx ydy

x y
, , ,2 2

2 2 2 2 2 2
 

When x = 6, y = 8, =dx 1
4 , and = −dy 1

8 , then = + −
+

=dz
6( ) 8( )

6 8

1
20

1
4

1
8

2 2
 inch. Thus the hypotenuse is lengthened by 

approximately 1
20  inch.

 6. The power consumed in an electrical resistor is given by P = E 2/R (in watts). If E = 200 volts and R = 8 ohms, by 
how much does the power change if E is decreased by 5 volts and R is decreased by 0.2 ohm?

We have

∂
∂ = ∂

∂ = − = −P
E

E
R

P
R

E
R

dP
E
R

dE
E
R

dR
2

, ,
22

2

2

2  

When E = 200, R = 8, dE = -5, and dR = - 0.2, then

= − − 



 − = − + = −dP

2(200)
8

( 5)
200
8

( 0.2) 250 125 125
2

 

The power is reduced by approximately 125 watts.

 7. The dimensions of a rectangular block of wood were found to be 10, 12, and 20 inches, with a possible error of 
0.05 in each of the measurements. Find (approximately) the greatest error in the surface area of the block and the 
percentage error in the area caused by the errors in the individual measurements.

The surface area is S = 2(xy + yz + zx); then

= ∂
∂ + ∂

∂ + ∂
∂ = + + + + +dS

S
x

dx
S
y

dy
S
z

dz y z dx x z dy y x dz2( ) 2( ) 2( )  

The greatest error in S occurs when the errors in the lengths are of the same sign, say positive. Then

= + + + + + =dS 2(12 20)(0.05) 2(10 20)(0.05) 2(12 10)(0.05) 8.4 in2  

The percentage error is (error/area)(100) = (8.4/1120)(100) = 0.75%.

 8. For the formula R = E/C, find the maximum error and the percentage error if C = 20 with a possible error of 0.1 
and E = 120 with a possible error of 0.05.

Here

= ∂
∂ + ∂

∂ = −dR
R
E

dE
R
C

dC
C

dE
E

C
dC

1
2

 

The maximum error will occur when dE = 0.05 and dC = - 0.1; then = − − =dR
0.05
20

120
400

( 0.1) 0.0325 is the 

approximate maximum error. The percentage error is = = =dR
R

(100)
0.0325

8
(100) 0.40625 0.41% . 
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448 CHAPTER 49 Total Differential

 9. Two sides of a triangle were measured as 150 and 200 ft, and the included angle is 60°. If the possible errors are 
0.2 ft in measuring the sides and 1° in the angle, what is the greatest possible error in the computed area?

Here

θ θ θ θ θ= ∂
∂ = ∂

∂ = ∂
∂ =A xy

A
x

y
A
y

x
A

xy
1
2

sin ,
1
2

sin ,
1
2

sin ,
1
2

cos  

and
θ θ θ θ= + +dA y dx x dy xy dsin sin cos1

2
1
2

1
2  

When x = 150, y = 200, q = 60°, dx = 0.2, dy = 0.2, and dq = 1° = π/180, then

dA (200)(sin60 )(0.2) (150)(sin60 )(0.2) (250)(200)(cos60 )( /180) 161.21,ft1
2

1
2

1
2

2π= ° + ° + ° =
 

10. Find dz /dt, given z = x2 + 3xy + 5y2; x = sin t, y = cos t.
Since

∂
∂ = + ∂

∂ = + = = −z
x

x y
z
y

x y
dx
dt

t
dy
dt

t2 3 , 3 10 , cos , sin  

we have = ∂
∂ + ∂

∂ = + − +dz
dt

z
x

dx
dt

z
y

dy
dt

x y t x y t(2 3 )cos (3 10 ) sin  

11. Find dz /dt, given z = ln (x2 + y2); x = e-t, y = et.
Since

∂
∂ = +

∂
∂ = + = − =−z

x
x

x y
z
y

y
x y

dx
dt

e
dy
dt

e
2

,
2

, ,t t
2 2 2 2  

we have = ∂
∂ + ∂

∂ = + − + − = −
+

−
−dz

dt
z
x

dx
dt

z
y

dy
dt

x
x y

e
y

x y
e

ye xe
x y

2
( )

2
2t t

t t

2 2 2 2 2 2  

12. Find 
dz
dx

, given z = f (x, y) = x2 + 2xy + 4y2, y = eax.

= + = + + + = + + +dz
dx

f f
dy
dx

x y x ae x y a x y e(2 2 ) (2 8) 2( ) 2 ( 4 )x y
ax ax  

13. Find (a) 
dz
dx

 and (b) 
dz
dy

, given z = f (x, y) = xy2 + yx2, y = ln x.

(a) Here x is the independent variable:

= ∂
∂ + ∂

∂ = + + + = + + +dz
dx

f
x

f
y

dy
dx

y xy xy x
x

y xy y x( 2 ) (2 )
1

2 22 2 2  

(b) Here y is the independent variable:

= ∂
∂ + ∂

∂ = + + + = + + +dz
dy

f
x

dx
dy

f
y

y xy x xy x xy x y xy x( 2 ) (2 ) 2 22 2 2 2 2  

14. The altitude of a right circular cone is 15 inches and is increasing at 0.2 in/min. The radius of the base is  
10 inches and is decreasing at 0.3 in/min. How fast is the volume changing?

Let x be the radius, and y the altitude of the cone (Fig. 49-1). From V x y,1
3

2π=  considering x and y as 
functions of time t, we have

π π π= ∂
∂ + ∂

∂ = +



 = − + = −dV

dt
V
x

dx
dt

V
y

dy
dt

xy
dx
dt

x
dy
dt3

2
3

[2(10)(15)( 0.3) 10 (0.2)]
70

3
in /min2 2 3  

Fig. 49-1

49_Mendelson_ch49_p443-454.indd   448 27/07/21   11:24 AM
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15. A point P is moving along the curve that is the intersection of the surfaces − =x y
z

16 9

2 2

 and x2 + y2 = 5, with x, y, 

and z expressed in inches. If x is increasing at the rate of 0.2 inches per minute, how fast is z changing when x = 2?

From = −z
x y
16 9

2 2

, we obtain = ∂
∂ + ∂

∂ = −dz
dt

z
x

dx
dt

z
y

dy
dt

x dx
dt

y dy
dt8

2
9

.. Since x2 + y2 = 5, y = ±1 when x = 2; also, 

differentiation yields x
dx
dt

y
dy
dt

0.+ =  

When y = 1, = − = − = −dy
dt

x
y

dx
dt

2
1

(0.2) 0.4    and   = − − =dz
dt

2
8

(0.2)
2
9

( 0.4)
5

36
in/min.  

When y = -1, = − =dy
dt

x
y

dx
dt

0.4   and   = − − =dz
dt

2
8

(0.2)
2
9

( 1)(0.4)
5

36
in/min.  

16. Find ∂
∂

z
r

 and ∂
∂

z
s

,  given z = x2 + xy + y2; x = 2r + s, y = r - 2s.

Here

∂
∂ = + ∂

∂ = + ∂
∂ = ∂

∂ = ∂
∂ = ∂

∂ = −z
x

x y
z
y

x y
x
r

x
s

y
r

y
s

2 , 2 , 2, 1, 1, 2  

Then 
∂
∂ = ∂

∂
∂
∂ + ∂

∂
∂
∂ = + + + = +z

r
z
x

x
r

z
y

y
r

x y x y x y(2 )(2) ( 2 )(1) 5 4  

and 
∂
∂ = ∂

∂
∂
∂ + ∂

∂
∂
∂ = + + + − = −z

s
z
x

x
s

z
y

y
s

x y x y y(2 )(1) ( 2 )( 2) 3  

17. Find 
ρ

∂
∂

u
, β

∂
∂

u
, and 

θ
∂
∂

u
,  given u = x2 + 2y2 + 2z2; x = r sin b cos q, y = r sin b sin q, z = r cos b.

ρ ρ ρ ρ β θ β β∂
∂ = ∂

∂
∂
∂ + ∂

∂
∂
∂ + ∂

∂
∂
∂ = + +u u

x
x u

y
y u

z
z

x y z2 sin cos 4 sin sin 4 cos  

β β β β ρ β θ ρ β θ ρ β∂
∂ = ∂

∂
∂
∂ + ∂

∂
∂
∂ + ∂

∂
∂
∂ = + −u u

x
x u

y
y u

z
z

x y z2 cos cos 4 cos sin 4 sin  

θ θ θ θ ρ β θ ρ β θ∂
∂ = ∂

∂
∂
∂ + ∂

∂
∂
∂ + ∂

∂
∂
∂ = − +u u

x
x u

y
y u

z
z

x y2 sin sin 4 sin cos  

18. Find du
dx

,  given u = f (x, y, z) = xy + yz + zx; =y
x
1

,  z = x2.

= ∂
∂ + ∂

∂ + ∂
∂ = + + + −



 + + = + + + − +du

dx
f
x

f
y

dy
dx

f
z

dz
dx

y z x z
x

y x x y z x x y
x z
x

( ) ( )
1

( )2 2 ( )2 2
 

19. Use implicit differentiation [formula (49.8)] to find ∂
∂

z
x

 and ∂
∂

z
y

, given F(x, y, z) = x2 + 3xy - 2y2 + 3xz + z2 = 0.

∂
∂ = − = − + +

+
z
x

F
F

x y z
x z

2 3 3
3 2

x

z

   and   
∂
∂ = − = − −

+
z
x

F
F

x y
x z

3 4
3 2

y

z

 

20. Use implicit differentiation [formula (49.8)] to find ∂
∂

z
x

 and ∂
∂

z
y

, given sin xy + sin yz + sin zx = 1.

Set F(x, y, z) = sin xy + sin yz + sin zx - 1; then

∂
∂ = + ∂

∂ = + ∂
∂ = +F

x
y xy z zx

F
y

x xy z yz
F
z

y yz x zxcos cos , cos cos , cos cos  

and                  
∂
∂ = − ∂ ∂

∂ ∂ = − +
+

∂
∂ = − ∂ ∂

∂ ∂ = − +
+

z
x

F x
F z

y xy z zx
y yz x zx

z
y

F y
F z

x xy z yz
y yz x zx

/
/

cos cos
cos cos

,
/
/

cos cos
cos cos
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21. If u and v are defined as functions of x and y by the equations f (x, y, u, v) = x + y2 + 2uv = 0 and g(x, y, u, v) = 

x2 - xy + y2 + u2 + v 2 = 0, find (a) 
∂
∂

u
x

 and 
v∂

∂x
; (b) 

∂
∂
u
y

 and 
v∂

∂y
. 

(a) Differentiating f and g partially with respect to x, we obtain

v
v+ ∂

∂ + ∂
∂ =u

x
u

x
1 2 2 0   and   v

v− + ∂
∂ + ∂

∂ =x y u
u
x x

2 2 2 0  

 Solving these relations simultaneously for ∂ ∂u x/  and v∂ ∂x/ , we find

v
v

∂
∂ = + −

−
u
x

u y x
u
( 2 )

2( )2 2    and   
v v

v
∂
∂ = − −

−x
x y u
u

(2 )
2( )2 2  

(b) Differentiating f and g partially with respect to y, we obtain

v
v+ ∂

∂ + ∂
∂ =y

u
y

u
y

2 2 2 0   and   v
v− + + ∂

∂ + ∂
∂ =x y u

u
y y

2 2 2 0  

 Then                              
v

v
∂
∂ =

− +
−

u
y

u x y y
u

( 2 ) 2
2( )2 2    and   

v v
v

∂
∂ = − −

−y
y x uy
u

(2 ) 2
2( )2 2  

22. Given u2 - v 2 + 2x + 3y = 0 and uv + x - y = 0, find (a) 
∂
∂

u
x

, 
v∂

∂x
, 

∂
∂
u
y

, 
v∂

∂y  and (b) 
∂
∂

x
u

, 
∂
∂

y
u

, v
∂
∂

x
, v

∂
∂

y
.

(a) Here x and y are to be considered as independent variables. Differentiate the given equations partially with 
respect to x, obtaining

v
v∂

∂ − ∂
∂ + =u

u
x x

2 2 2 0 and v
v∂

∂ + ∂
∂ + =u

x
u

x
1 0  

 Solve these relations simultaneously to obtain 
v
v

∂
∂ = − +

+
u
x

u
u2 2  and 

v v
v

∂
∂ = −

+x
u

u2 2 .

 Differentiate the given equations partially with respect to y, obtaining

v
v∂

∂ − ∂
∂ + =u

u
y y

2 2 3 0   and   v
v∂

∂ + ∂
∂ − =u

y
u

y
1 0  

 Solve simultaneously to obtain 
v

v
∂
∂ = −

+
u
y

u
u

2 3
2( )2 2  and 

v v
v

∂
∂ = +

+y
u
u

2 3
2( )2 2 .

(b) Here u and v are to be considered as independent variables. Differentiate the given equations partially with 
respect to u, obtaining

+ ∂
∂ + ∂

∂ =u
x
u

y
u

2 2 3 0    and   v + ∂
∂ − ∂

∂ =x
u

y
u

0  

 Then                                     
v∂

∂ = − +x
u

u2 3
5

   and   
v∂

∂ = −y
u

u2( )
5

. 

 Differentiate the given equations with respect to v, obtaining

v v v− + ∂
∂ + ∂

∂ =x y
2 2 3 0 and v v+ ∂

∂ − ∂
∂ =u

x y
0  

 Then                                      v
v∂

∂ = −x u2 3
5

   and   v
v∂

∂ = +y u u2 ( )
5

.  

23. Show that differentiability of z = f (x, y) at (a, b) implies that f is continuous at (a, b).

From (49.4), D z = (  fx(a, b) + 1) D x + (  fy(a, b) + 2) Dy, where  = =
∆ ∆ → ∆ ∆ →

lim lim 0
x y x y( , ) (0,0) 1 ( , ) (0,0) 2 . Hence, D z → 0 

as (D x, Dy) → (0, 0), which implies that f is continuous at (a, b).
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SUPPLEMENTARY PROBLEMS

24. Find the total differential of the following functions:

(a) z = xy3 + 2xy3 Ans.    dz = (3x2 + 2y2) dx + (x2 + 6y2) dy

(b) θ = 





− y
x

tan 1   Ans. θ =
−
+d

x dy ydx
x y2 2

 

(c) = −z ex y2 2   Ans.    dz = 2z(x dx - y dy)

(d) z = x(x2 + y2)-1/2 Ans.    =
−

+dz
y ydx x dy

x y
( )
( )2 2 3/2

 

25. Use differentials to approximate (a) the volume of a box with square base of side 8.005 and height 9.996 ft;  
(b) the diagonal of a rectangular box of dimensions 3.03 by 5.98 by 6.01 ft.

Ans. (a) 640.544 ft3; (b) 9.003 ft

26. Approximate the maximum possible error and the percentage of error when z is computed by the given formula.

(a) z = pr2h; r = 5 ± 0.05, h = 12 ± 0.1 Ans. 8.5p; 2.8%

(b) 1/z = 1/f + 1/g; f = 4 ± 0.01, g = 8 ± 0.02 Ans. 0.0067; 0.25%

(c) z = y/x; x = 1.8 ± 0.1, y = 2.4 ± 0.1 Ans. 0.13; 10%

27. Find the approximate maximum percentage of error in:

(a) ω = g b/3  if there is a possible 1% error in measuring g and a possible %1
2  error in measuring b.

[Hint: ω = −g bln (ln ln )1
3 ; 

ω
ω = −





d dg
g

db
b

1
3

; =dg
g

0.01; =db
b

0.005]

Ans. 0.005

(b) g = 2s/t2 if there is a possible 1% error in measuring s and %1
4  error in measuring t.

Ans. 0.015

28. Find du/dt, given:

(a) u = x2y3; x = 2t3, y = 3t2

Ans. 6xy2t(2yt + 3x)

(b) u = x cos y + y sin x; x = sin 2t, y = cos 2t

Ans. 2(cos y + y cos x) cos 2t - 2(-x sin y + sin x) sin 2t

(c) u = xy + yz + zx; x = e′, y = e-t, z = et + e-t

Ans. (x + 2y + z)et - (2x + y + z)e-t

29. At a certain instant, the radius of a right circular cylinder is 6 inches and is increasing at the rate 0.2 in/sec, while 
the altitude is 8 inches and is decreasing at the rate 0.4 in/sec. Find the time rate of change (a) of the volume and 
(b) of the surface at that instant.

Ans. (a) 4.8p in3/sec; (b) 3.2p in2/sec
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30. A particle moves in a plane so that at any time t its abscissa and ordinate are given by x = 2 + 3t, y = t2 + 4 with x 
and y in feet and t in minutes. How is the distance of the particle from the origin changing when t = 1?

Ans. 5 2 ft/min  

31. A point is moving along the curve of intersection of x2 + 3xy + 3y2 = z2 and the plane x - 2y + 4 = 0. When x = 2 
and is increasing at 3 units/sec, find (a) how y is changing, (b) how z is changing, and (c) the speed of the point.

Ans. (a) increasing 3/2 units/sec; (b) increasing 75/14 units/sec at (2, 3, 7) and decreasing 75/14 units/sec at 
(2, 3, -7); (c) 6.3 units/sec

32. Find ∂ ∂z s/  and ∂ ∂z t/ , given:

(a) z = x2 - 2y2; x = 3s + 2t, y = 3s - 2t Ans. 6(x - 2y); 4(x + 2y)

(b) z = x2 + 3xy + y2; x = sin s + cos t, y = sin s - cos t Ans. 5(x + y) cos s; (x - y) sin t

(c) z = x2 + 2y2; x = es - et, y = es + et Ans. 2(x + 2y)es; 2(2y - x)et

(d) z = sin (4x + 5y); x = s + t, y = s - t Ans. 9 cos (4x + 5y); - cos (4x + 5y)

(e) z = exy; x = s2 + 2st, y = 2st + t2 Ans. 2e x y[tx + (s + t)y]; 2e x y[(s + t)x + sy] 

33. (a)   If u = f (x, y) and x = r cos q, y = r sin q, show that

θ
∂
∂







+ ∂
∂







= ∂
∂







+ ∂
∂







u
x

u
y

u
r r

u1
2 2 2

2

2

 

(b) If u = f (x, y) and x = r cosh s, y = r sinh s, show that

∂
∂







− ∂
∂







= ∂
∂







− ∂
∂







u
x

u
y

u
r s

u
s

1
2 2 2

2

2

 

34. (a)   If z = f (x + ay) + g(x - ay), show that 
α

∂
∂ = ∂

∂
z

x
z

y
12

2 2

2

2
. [Hint: Write z = f (u) + g(v), u = x + ay, v = x - ay.]

(b) If z = x nf (y/x), show that x z x y z y nz/ /∂ ∂ + ∂ ∂ = .

(c) If z = f (x, y) and x = g(t), y = h(t), show that, subject to continuity conditions,

= ′ + ′ ′ + ′ + ′′ + ′′
d z
dt

f g f g h f h f g f h( ) 2 ( )xx xy yy x y

2

2
2 2  

(d) If z = f (x, y) and x = g(r, s), y = h(r, s), show that, subject to continuity conditions,

∂
∂ = + + + +

∂
∂ ∂ = + + + + +

∂
∂ = + + + +

z
r

f g f g h f h f g f h

z
r s

f g g f g h g h f h h f g f h

z
s

f g f g h f h f g f h

( ) 2 ( )

( )

( ) 2 ( )

xx r xy r r yy r x rr y rr

xx r s xy r s s r yy r s x rs y rs

xx s xy s s yy s x ss y ss

2

2
2 2

2

2

2
2 2

 

35. A function f (x, y) is called homogeneous of order n if f (tx, ty) = t nf (x, y). [For example, f (x, y) = x2 + 2xy + 3y2 is 
homogeneous of order 2; f (x, y) = x sin (y/x) + y cos (y/x) is homogeneous of order 1.] Differentiate f (tx, ty) = 
tnf (x, y) with respect to t and replace t by 1 to show that xfx + yfy = nf. Verify this formula using the two given 
examples. See also Problem 34(b).
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36. If vφ=z u( , ), where u = f (x, y) and v = g(x, y), and if 
v∂

∂ = ∂
∂

u
x y

 and 
v∂

∂ = − ∂
∂

u
y x

, show that

(a) 
v v∂

∂ + ∂
∂ = ∂

∂ + ∂
∂ =u

x
u

y x y
0

2

2

2

2

2

2

2

2    (b) 
v

v
φ φ φ φ∂

∂ + ∂
∂ = ∂

∂






+ ∂
∂



















∂
∂ + ∂

∂




x y

u
x x u

2

2

2

2

2 2 2

2

2

2  

37. Find 
∂
∂

z
x

 and 
∂
∂

z
y

, given

(a) 3x2 + 4y2 - 5z2 = 60 Ans. 
∂
∂ =z

x
x
z

3
5

; 
∂
∂ =z

y
y
z

4
5

 

(b) x2 + y2 + z2 + 2xy + 4yz + 8zx = 20 Ans. 
∂
∂ = + +

+ +
z
x

x y z
x y z

4
4 2

; 
∂
∂ = − + +

+ +
z
y

x y z
x y z

2
4 2

 

(c) x + 3y + 2z = ln z Ans. 
∂
∂ = −

z
x

z
z1 2
; 

∂
∂ = −

z
y

z
z

3
1 2

(d) z = ex cos (y + z) Ans. 
∂
∂ = + +

z
x

z
e y z1 sin ( )x ; 

∂
∂ =

− +
+ +

z
y

e y z
e y z

sin ( )
1 sin ( )

x

x  

(e) sin (x + y) + sin (y + z) + sin (z + x) = 1

Ans. 
∂
∂ = −

+ + +
+ + +

z
x

x y z x
y z z x

cos ( ) cos ( )
cos ( ) cos ( ) ; 

∂
∂ = −

+ + +
+ + +

z
y

x y y z
y z z x

cos ( ) cos ( )
cos ( ) cos ( )  

38. Find all the first and second partial derivatives of z, given x2 + 2yz + 2zx = 1.

Ans. ∂
∂ = − +

+
z
x

x z
x y

; ∂
∂ = − +

z
y

z
x y

; ∂
∂ = − +

+
z

x
x y z

x y
2

( )

2

2 2 ; 
∂

∂ ∂ = +
+

z
x y

x z
x y

2
( )

2

2 ; ∂
∂ = +

z
y

z
x y

2
( )

2

2 2  

39. If F(x, y, z) = 0, show that 
∂
∂

∂
∂

∂
∂ = −x

y
y
z

z
x

1.  

40. If f (x, y) = 0 and g(z, x) = 0, show that 
∂
∂

∂
∂

∂
∂ = ∂

∂
∂
∂

f
y

g
x

y
z

f
x

g
z

.

41. Find the first partial derivatives of u and v with respect to x and y and the first partial derivatives of x and y with 
respect to u and v, given 2u - v + x2 + xy = 0, u + 2v + xy - y2 = 0.

Ans. ∂
∂ = − +u

x
x y

1
5

(4 3 ); 
x

x y
1
5

(2 )
∂
∂ = −v ; ∂

∂ = −u
y

y x
1
5

(2 3 ); 
y

y x4
5

∂
∂ = −v ; ∂∂ = −

− −
x
u

y x
x xy y

4
2( 2 )2 2 ; 

∂
∂ = −

− −
y
u

y x
x xy y

2
2( 2 )2 2 ; x x y

x xy y
3 2

2( 2 )2 2

∂
∂ = −

− −v ; y x y
x xy y

4 3
2( 2 )2 2

∂
∂ = − −

− −v  

42. If u = x + y + z, v = x2 + y2 + z2, and w = x3 + y3 + z3, show that

x
u

yz
x y x z

y x z
x y y z

z
w x z y z( )( )

,
2( )( )

,
1

3( )( )
∂
∂ = − −

∂
∂ = +

− −
∂
∂ = − −v  

43. Fill in the gaps in the following sketch of a proof of Theorem 49.1. Assume that f (x, y) is such that fx and fy are 
continuous in an open set A. We must prove that f is differentiable in A.

There exists x* between a and a + D x such that

+ ∆ − = ∆f a x b f a b f x b x( , ) ( , ) ( , )x
*  

and there exists y* between b and b + Dy such that

+ ∆ + ∆ − + ∆ = + ∆ ∆f a x b y f a x b f a x y y( , ) ( , ) ( , *) .y  

Then ∆ = + ∆ + ∆ −

= + ∆ − + + ∆ + ∆ − + ∆

= ∆ + + ∆ ∆

z f a x b y f a b

f a x b f a b f a x b y f a x b

f x b x f a x y y

( , ) ( , )

[ ( , ) ( , )] [ ( , ) ( , )]

( , ) ( , )x y
* *
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454 CHAPTER 49 Total Differential

Let  = −f x y f a b( , ) ( , )x x1
*  and  = + ∆ −f a x y f a b( , ) ( , )y y2

* . Then

 ∆ = ∆ + ∆ + ∆ + ∆z f a b x f a b y x y( , ) ( , )x y 1 2  

To show that 1 → 0 and 2 → 0, use the continuity of fx and fy.

44. Show that continuity of f (x, y) does not imply differentiability, even when fx and fy both exist. Use the function

= + ≠

=






f x y

xy
x y

x y

x y
( , )

if ( , ) (0, 0)

0 if ( , ) (0, 0)

2 2
 

[Hint: Show that f is not continuous at (0, 0) and therefore, not differentiable. Show the existence of fx(0, 0) and 
fy(0, 0) by a direct computation.]

45. Find a function f (x, y) such that fx(0, 0) = fy(0, 0) = 0, and f is not continuous at (0, 0). This shows that existence of the 

first partial derivatives does not imply continuity. [Hint: Define = +f x y
xy

x y
( , ) 2 2  for (x, y) ≠ (0, 0) and f (0, 0) = 0.]
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CHAPTER 50

Space Vectors

VECTORS IN SPACE

As in the plane (see Chapter 39), a vector in space is a quantity that has both magnitude and direction. Three 
vectors a, b, and c, not in the same plane and no two parallel, issuing from a common point are said to form 
a right-handed system or triad if c has the direction in which the right-threaded screw would move when 
rotated through the smaller angle in the direction from a to b, as in Fig. 50-1. Note that as seen from a point 
on c, the rotation through the smaller angle from a to b is counterclockwise.

  
Fig. 50-1 Fig. 50-2

We choose a right-handed rectangular coordinate system in space and let i, j, and k be unit vectors along 
the positive x-, y-, and z-axes, respectively, as in Fig. 50-2. The coordinate axes divide space into eight parts, 
called octants. The first octant, for example, consists of all points (x, y, z) for which x > 0, y > 0, z > 0.

As in Chapter 39, any vector a may be written as

 a = a1i + a2 j + a3k

If P (x, y, z) is a point in space (Fig. 50-2), the vector r from the origin O to P is called the position vector 
of P and may be written as

 x y zr OP OB BP OA AB BP i j k= = + = + + = + +   (50.1)
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456 CHAPTER 50 Space Vector s

The algebra of vectors developed in Chapter 39 holds here with only such changes as the difference in 
dimensions requires. For example, if a a aa i j k1 2 3= + +  and b i j kb b b= + +1 2 3 , then

 

 

k ka ka ka k

a b a b a b

a b a b a b

a a a

a i j k

a b

a b i j k

a b a b a b

i i j j k k i j j k k i

a a a

a b a 0 b 0 a b

= + + for any scalar

= if and only if , ,and

= ( ) ( ) + ( )

= | | | | cos ,where is the smaller angle between and

= = = 1 and = = = 0

| | =

0 if and only if = , or = , or and are perpendicular

1 2 3

1 1 2 2 3 3

1 1 2 2 3 3

1
2

2
2

3
2

⋅

⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅

θ θ

= = =

+ + + + +

= + +

=

From (50.1), we have

 x y zr r r| | = . 2 2 2= + +   (50.2)

at the distance of the point P (x, y, z) from the origin. Also, if P x y z( , , )1 1 1 1  and P x y z( , , )2 2 2 2  are any two points 
(see Fig. 50-3), then

 P P P B BP P A AB BP i j kx x y y z z+ + + ( ) + ( ) ( )1 2 1 2 1 2 2 1 2 1 2 1= = = − − + −  

and P P x x y y z z| | ( ) ( ) ( )1 2 2 1
2

2 1
2

2 1
2= − + − + −   (50.3)

is the familiar formula for the distance between two points. (See Problems 1–3.)

 
Fig. 50-3 Fig. 50-4

DIRECTION COSINES OF A VECTOR

Let a a aa i j k= + +1 2 3  make angles a, b, and g, respectively, with the positive x-, y-, and z-axes, as in 
Fig. 50-4. From

 i a i a a j a a k a a= | || | cos | |cos , = | | cos , = | | cos⋅ ⋅ ⋅α α β γ=
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we have

 
a a ai a

a a
j a
a a

k a
a a

cos
.
| | | |

, cos
.

| | | |
, cos

.
| | | |

1 2 3α β γ= = = = = =  

These are the direction cosines of a. Since

 
a

a a a
cos cos cos

| |
12 2 2 1

2
2
2

3
2

2α β γ+ + = + + =  

the vector u i j k= cos + cos + cosα β γ  is a unit vector parallel to a.

DETERMINANTS

We shall assume familiarity with 2 × 2 and 3 × 3 determinants. In particular,

a b
c d

ad bc= −    and   
a b c
d e f
g h i

a e f
h i

b
d f
g i

c d e
g h= − +

That expansion of the 3 × 3 determinant is said to be “along the first row.” It is equal to suitable expansions 
along the other rows and down the columns.

VECTOR PERPENDICULAR TO TWO VECTORS 

Let

 a i j ka a a= + +1 2 3  and b i j kb b b= + +1 2 3

be two nonparallel vectors with common initial point P. By an easy computation, it can be shown that

 c i j k
i j k

a a
b b

a a
b b

a a
b b

a a a
b b b

+ + =2 3

2 3

3 1

3 1

1 2

1 2
1 2 3

1 2 3

=   (50.4)

is perpendicular to (normal to) both a and b and, hence, to the plane of these vectors.
In Problems 5 and 6, we show that

 c a b| | = | || | sin =θ  area of a parallelogram with nonparallel sides a and b (50.5)

If a and b are parallel, then b = ka, and (50.4) shows that c = 0; that is, c is the zero vector. The zero vector 
by definition has magnitude 0 but no specified direction.

VECTOR PRODUCT OF TWO VECTORS 

Take

 a a aa i j k1 2 3= + +  and b b bb i j k1 2 3= + +  

with initial point P and denote by n the unit vector normal to the plane of a and b, so directed that a, b, and 
n (in that order) form a right-handed triad at P, as in Fig. 50-5. The vector product or cross product of a and 
b is defined as

 a b a b n= | || | sinθ×  (50.6)

where q is again the smaller angle between a and b. Thus, a × b is a vector perpendicular to both a and b.
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We show in Problem 6 that |a × b| = |a| |b| sinq is the area of the parallelogram having a and b as 
nonparallel sides.

If a and b are parallel, then q = 0 or π and a × b = 0. Thus,

 i i j j k k 0× = × = × =   (50.7)

Fig. 50-5

In (50.6), if the order of a and b is reversed, then n must be replaced by −n; hence,

 b a a b–( )× = ×   (50.8)

Since the coordinate axes were chosen as a right-handed system, it follows that

 
i j k j k i k i j

j i k k j i i k j

, ,

– , – , –

× = × = × =

× = × = × =
  (50.9)

In Problem 8, we prove for any vectors a, b, and c, the distributive law

 a b c a c b c( ) = ( ) + ( )+ × × ×  (50.10)

Multiplying (50.10) by −1 and using (50.8), we have the companion distributive law

 c a b c a c b( ) = ( ) ( )× + × + ×  (50.11)

Then also,

 a b c d a c a d b c b d( ) ( )+ × + = × + × + × + ×  (50.12)

and a b
i j k

a a a
b b b

1 2 3

1 2 3

× =   (50.13)

(See Problems 9 and 10.)
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TRIPLE SCALAR PRODUCT

In Fig. 50-6, let q be the smaller angle between b and c and let φ  be the smaller angle between a and b c.×  Let h 
denote the height and A the area of the base of the parallelepiped. Then the triple scalar product is by definition

 
a b c a b c n a b c a b c hA( ) = | | | | sin = | || || | sin cos = (| | cos )(| || | sin ) =

= volume of parallelepiped

θ θ φ φ θ⋅ × ⋅

It may be shown (see Problem 11) that

 a b c a b c
a a a
b b b
c c c

( ) = = ( )
1 2 3

1 2 3

1 2 3

⋅ × × ⋅  (50.14)

Fig. 50-6

Also, c a b a b c
c c c
a a a
b b b

a a a
b b b
c c c

( ) = = ( )
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

⋅ × = ⋅ ×

whereas b a c a b c
b b b
a a a
c c c

a a a
b b b
c c c

( ) ( )
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

⋅ × = = − = − ⋅ ×

Similarly, we have

 a b c c a b b c a( ) ( ) ( )⋅ × = ⋅ × = ⋅ ×  (50.15)

and

 a b c b a c c b a a c b( ) ( ) ( ) = ( )⋅ × = − ⋅ × = − ⋅ × − ⋅ ×  (50.16)

From the definition of a · (b × c) as a volume, it follows that if a, b, and c are coplanar, then a · (b × c) = 0, 
and conversely.

The parentheses in a · (b × c) and (a × b) · c are not necessary. For example, a · b × c can be interpreted 
only as a ⋅ (b × c) or (a · b) × c. But a b⋅  is a scalar, so (a · b) × c is without meaning. (See Problem 12.)
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Triple Vector Product
In Problem 13, we show that

 a × (b × c) = (a · c)b − (a · b)c (50.17)

Similarly, (a × b) × c = (a · c)b − (b · c)a (50.18)

Thus, except when b is perpendicular to both a and c, a × (b × c) ≠ (a × b) × c and the use of parentheses 
is necessary. 

THE STRAIGHT LINE

A line in space through a given point P0(x0, y0, z0) may be defined as the locus of all points P(x, y, z) such 
that P0P is parallel to a given direction a i j ka a a= + +1 2 3 . Let r0 and r be the position vectors of P0 and P 
(Fig. 50-7). Then

 r − r0 = ka where k is a scalar variable  (50.19)

is the vector equation of line PP0  . Writing (50.19) as

 (x − x0)i + (y − y0)j + (z − z0)k = k(a1i + a2j + a3k)

then separating components to obtain

 x − x0 = ka1, y − y0 = ka2,  z − z0 = ka3

Fig. 50-7

and eliminating k, we have

 
x x

a
y y

a
z z

a
0

1

0

2

0

3

−
=

−
=

−
  (50.20)

as the equations of the line in rectangular coordinates. Here, [a1, a2, a3] is a set of direction numbers for the 

line and 
a a a
a a a
| |

,
| |

,
| |

1 2 3




 is a set of direction cosines of the line.
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If any one of the numbers a1, a2, or a3 is zero, the corresponding numerator in (50.20) must be zero. For 
example, if a1 = 0 but a2, a3 ≠ 0, the equations of the line are

 x − x0 = 0  and 
y y

a
z z

a
0

2

0

3

−
=

−
 

THE PLANE

A plane in space through a given point P0(x0, y0, z0) can be defined as the locus of all lines through P0 and 
perpendicular (normal) to a given line (direction) a = Ai + Bj + Ck (Fig. 50-8). Let P(x, y, z) be any other 
point in the plane. Then r − r0 = P0P is perpendicular to a, and the equation of the plane is

 (r − r0) · a = 0 (50.21)

Fig. 50-8

In rectangular coordinates, this becomes

i j k i j kx x y y z z A B C
A x x B y y C z z

Ax By Cz D

[( ) ( ) ( ) ] · ( ) 0
( ) ( ) ( ) 0

0

0 0 0

0 0 0

− + − + − + + =
− + − + − =

+ + + =
or 

i j k i j kx x y y z z A B C
A x x B y y C z z

Ax By Cz D

[( ) ( ) ( ) ] · ( ) 0
( ) ( ) ( ) 0

0

0 0 0

0 0 0

− + − + − + + =
− + − + − =

+ + + =or  (50.22)

where D = −(Ax0 + By0 + Cz0).
Conversely, let P0(x0, y0, z0) be a point on the surface Ax + By + Cz + D = 0. Then also  

Ax0 + By0 + Cz0 + D = 0. Subtracting the second of these equations from the first yields  
A(x − x0) + B(y − y0) + C(z − z0) = (Ai + Bj + Ck)· [(x − x0)i + (y − y0)j + (z − z0)k] = 0 and the constant vector 
Ai +Bj + Ck is normal to the surface at each of its points. Thus, the surface is a plane.

SOLVED PROBLEMS

 1. Find the distance of the point P1(1, 2, 3) from (a) the origin, (b) the x-axis, (c) the z-axis, (d) the xy-plane, and  
(e) the point P2(3, −1, 5).

In Fig. 50-9,

(a) r = OP1 = i + 2j + 3k; hence, |r| = 1 2 3 14.2 2 2+ + =  

(b) AP1 = AB + BP1 = 2j + 3k; hence, |AP1| = 4 9 13.+ =  

(c) DP1 = DE + EP1 = 2j + i; hence, |DP1| = 5 .

(d) BP1 = 3k, so |BP1| = 3.

(e) P1P2 = (3 − 1)i + (−1 −2)j + (5 − 3)k = 2i − 3j + 2k; hence, |P1P2| = 4 9 4 17+ + = .
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Fig. 50-9

 2. Find the angle q between the vectors joining O to P1(1, 2, 3) and P2(2, −3, −1).
Let r1 = OP1 = i + 2j + 3k and r2 = OP2 = 2i − 3j − k. Then

 
r r
r r1 2

cos
| || |

1(2) 2( 3) 3( 1)

14 14

1
2

and = 1201 2θ θ= ⋅ = + − + − = − °.

 3. Find the angle α = –BAC of the triangle ABC (Fig. 50-10) whose vertices are A(1, 0, 1), B(2, −1, 1), C(−2, 1, 0).

Fig. 50-10

Let a = AC = −3i + j − k and b = AB = i − j. Then

 
a b
a b

cos
| || |

3 1

22
α = ⋅ = − −

 ~ −0.85280 and α ~ 148º31′.

 4. Find the direction cosines of a = 3i + 12j + 4k.

The direction cosines are cos 
i a
a

j a
a

k a
a| |

3
13

, cos
| |

12
13

, cos
| |

4
13

.α β γ= ⋅ = = ⋅ = = ⋅ =

 5. If a = a1i + a2j + a3k and b = b1i + b2j + b3k are two vectors issuing from a point P and if

 c i j k
a a
b b

a a
b b

a a
b b

= +2 3

2 3

1 3

1 3

1 2

1 2

+ , 

show that |c| = |a|b| sin q, where q is the smaller angle between a and b.

We have cos q = a b
a b| || |

⋅
 and

 
a b
a b a b

c
a b

a a a b b b a b a b a b
sin 1

| || |
( )( ) ( )

| || |
| |

| || |

2
1
2

2
2

3
2

1
2

2
2

3
2

1 1 2 2 3 3
2

θ = − ⋅





 =

+ + + + − + +
=  

Hence, |c| = |a| |b| sin q as required.
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 6. Find the area of the parallelogram whose nonparallel sides are a and b.
From Fig. 50-11, h = |b| sin q and the area is h|a| = |a| |b|sin q.

 7. Let a1 and a2, respectively, be the components of a parallel and perpendicular to b, as in Fig. 50-12. Show that  
a2 × b = a × b and a1 × b = 0.

If q is the angle between a and b, then |a1| = |a| cosq and |a2| = |a| sinq. Since a, a2, and b are coplanar,

 a2 × b = |a2| |b| sin f n = |a| sin q |b| n = |a| |b| sin q n = a × b

Since a1 and b are parallel, a1 × b = 0.

 8. Prove: (a + b) × c = (a × c) + (b × c).
In Fig. 50-13, the initial point P of the vectors a, b, and c is in the plane of the paper, while their endpoints are 

above this plane. The vectors a1 and b1 are, respectively, the components of a and b perpendicular to c. Then a1, 
b1, a1 + b1, a1 × c, b1 × c, and (a1 + b1) × c all lie in the plane of the paper.

 

a

b
n

a × b

hq

 
Fig. 50-11 Fig. 50-12

R
M

Q

A

B

C

c

P N

S

b
1  × c

a 1 ×
 c

(a 1 
+ 

b 1
) ×

 c

a1 + b1

b

b1

b1

a1

a

Fig. 50-13

In triangles PRS and PMQ,

 
b c
a c

b
a

b
a

1

1

1

1

RS
PR

MQ
PM

| |
| |

| | |c|
| | |c|

| |
| |

1

1

= ×
× = = =  
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Thus, PRS and PMQ are similar. Now PR is perpendicular to PM, and RS is perpendicular to MQ; hence PS is 
perpendicular to PQ and PS = PQ × c. Then since PS = PQ × c = PR + RS, we have

 (a1 + b1) × c = (a1 × c) + (b1 × c)

By Problem 7, a1 and b1 may be replaced by a and b, respectively, to yield the required result.

 9. When a = a1i + a2  j + a3k and b = b1i + b2  j + b3k, show that a × b = 
i j k

a a a
b b b

1 2 3

1 2 3

.
We have, by the distributive law,

a × b = (a1i + a2  j + a3k) × (b1i + b2  j + b3k)
 = a1i × (b1i + b2  j +b3k) + a2  j × (b1i + b2  j + b3k) + a3k × (b1i + b2  j + b3k)
 = (a1b2k − a1b3  j) + (−a2b1k + a2b3i) + (a3b1 j − a3b2i)
 = (a2b3 − a3b2)i − (a1b3 − a3b1) j + (a1b2 − a2b1)k

 = 

i j k
a a a
b b b

1 2 3

1 2 3

10. Derive the law of sines of plane trigonometry.
Consider the triangle ABC, whose sides a, b, c are of magnitudes a, b, c, respectively, and whose interior 

angles are a, b, g . We have

 a + b + c = 0
Then a × (a + b + c) = a × b + a × c = 0 or a × b = c × a
and b × (a + b + c) = b × a + b × c = 0 or b × c = a × b
Thus, a × b = b × c = c × a
so that |a| |b sin g = |b| |c| sin α = |c| |a| sin b
or ab sin g = bc sin α = ca sin b

and 
c a b

sin sin sinγ α β= =  

11. If a = a1i + a2  j +a3k, b = b1i + b2  j + b3k, and c = c1i + c2  j + c3k, show that

 a · (b × c) = 
a a a
b b b
c c c

1 2 3

1 2 3

1 2 3

 

By (50.13),

a · (b × c) = (a1i + a2  j + a3k) · 
i j k

b b b
c c c

1 2 3

1 2 3

 

 = (a1i + a2  j + a3k) · [(b2c3 − b3c2)i + (b3c1 − b1c3)j + (b1c2 − b2c1)k]

 = a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1) = 
a a a
b b b
c c c

1 2 3

1 2 3

1 2 3

 

12. Show that a · (a × c) = 0.
By (50.14), a · (a × c) = (a × a) · c = 0.
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13. For the vectors a, b, and c of Problem 11, show that a × (b × c) = (a · c)b − (a · b)c.
Here

     a × (b × c) = (a1i + a2  j + a3k) × 
i j k

b b b
c c c

1 2 3

1 2 3

 

 = (a1i + a2  j + a3k) × [(b2c3 − b3c2)i + (b3c1 − b1c3)j + (b1c2 − b2c1)k]

 = 

i j k
a a a

b c b c b c b c b c b c
1 2 3

2 3 3 2 3 1 1 3 1 2 2 1− − −
 

 = i(a2b1c2 − a2b2c1 − a3b3c1 + a3b1c3) + j(a3b2c3 − a3b3c2 − a1b1c2 + a1b2c1)  
   + k(a1b3c1 − a1b1c3 − a2b2c3 + a2b3c2)

 = ib1(a1c1 + a2c2 + a3c3) + jb2(a1c1 + a2c2 + a3c3) + kb3(a1c1 + a2c2 + a3c3)  
   − [ic1(a1b1 + a2b2 + a3b3) + jc2(a1b1 + a2b2 + a3b3) + kc3(a1b1 + a2b2 + a3b3)]

 = (b1i + b2  j + b3k)(a ⋅ c) − (c1i + c2  j + c3k)(a ⋅ b)

 = b(a ⋅ c) − c(a ⋅ b) = (a ⋅ c)b − (a ⋅ b)c

14. If l1 and l2 are two nonintersecting lines in space, show that the shortest distance d between them is the distance 
from any point on l1 to the plane through l2 and parallel to l1; that is, show that if P1 is a point on l1 and P2 is a 
point on l2 then apart from sign, d is the scalar projection of P1P2 on a common perpendicular to l1 and l2.

Let l1 pass through P1(x1, y1, z1) in the direction a = a1i + a2j + a3k, and let l2 pass through P2(x2, y2, z2) in the 
direction b = b1i + b2  j + b3k.

Then P1P2 = (x2 − x1)i + (y2 − y1)j + (z2 − z1)k, and the vector a × b is perpendicular to both l1 and l2. Thus,

 
P P a b

a b
r r a b

a b
d

( )
| |

( ) ( )
| |

1 2 2= ⋅ ×
× = − ⋅ ×

×

15. Write the equation of the line passing through P0(1, 2, 3) and parallel to a = 2i − j − 4k. Which of the points  

A(3, 1, −1), B(
1
2

,
9
4

, 4), C(2, 0, 1) are on this line?

From (50.19), the vector equation is

 (xi + yj + zk) − (i + 2j + 3k) = k(2i − j − 4k)

or (x − 1)i + (y − 2)j + (z − 3)k = k(2i − j − 4k)  
  (1)

The rectangular equations are

 
x y z1

2
2

1
3

4
− = −

− = −
−   (2)

Using (2), it is readily found that A and B are on the line while C is not.
In the vector equation (1), a point P(x, y, z) on the line is found by giving k a value and comparing 

components. The point A is on the line because

 (3 − 1)i + (1 − 2)j + (−1 − 3)k = k(2i − j − 4k)
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when k = 1. Similarly, B is on the line because

 i j k i j kk 2 41
2

1
4 ( )− + + = − −

when k = − 1
4 . The point C is not on the line because

 i − 2j − 2k = k(2i − j − 4k)

for no value of k.

16. Write the equation of the plane:
(a) Passing through P0(1, 2, 3) and parallel to 3x − 2y + 4z − 5 = 0.
(b) Passing through P0(1, 2, 3) and P1(3, −2, 1), and perpendicular to the plane 3x − 2y + 4z − 5 = 0.
(c) Through P0(1, 2, 3), P1(3, −2, 1) and P2(5, 0, −4).

Let P(x, y, z) be a general point in the required plane.

(a) Here a = 3i − 2j + 4k is normal to the given plane and to the required plane. The vector equation of the latter 
is (r − r0)⋅ a = 0 and the rectangular equation is

 3(x − 1) − 2(y − 2) + 4(z − 3) = 0
     or 3x − 2y + 4z − 11 = 0
(b) Here r1 − r0 = 2i − 4j − 2k and a = 3i − 2j + 4k are parallel to the required plane; thus, (r1 − r0) × a is 

normal to this plane. Its vector equation is (r − r0) ⋅ [(r1 − r0) × a] = 0. The rectangular equation is

 (r − r0) ⋅ 
i j k
2 4 2
3 2 4

− −
−

 = [(x − 1)i + (y − 2)j + (z − 3)k] ⋅ [−20i − 14j + 8k]

 = −20(x −1) − 14(y −2) + 8(z − 3) = 0

or 20x + 14y − 8z − 24 = 0.
(c) Here r1 − r0 = 2i − 4j − 2k and r2 − r0 = 4i = 2j − 7k are parallel to the required plane, so that  

(r1 − r0) × (r2 − r0) is normal to it. The vector equation is (r − r0) ⋅ [(r1 − r0) × (r2 − r0)] = 0 and the 
rectangular equation is

 (r − r0) ⋅ 
i j k
2 4 2
4 2 7

− −
− −

 = [(x − 1)i + (y − 2)j + (z − 3)k] ⋅ [−24i + 6j + 12k]

 = 24(x − 1) + 6(y − 2) + 12(z − 3) = 0

or 4x + y + 2z − 12 = 0.

17. Find the shortest distance d between the point P0(1, 2, 3) and the plane ∏ given by the equation  
3x − 2y + 5z − 10 = 0.

A normal to the plane is a = 3i − 2j + 5k. Take P1(2, 3, 2) as a convenient point in ∏. Then apart from sign,  
d is the scalar projection of P0P1 on a. Hence,

 
r r a

a
i j k i j k

d
+( )

| |
( ) (3 2 5 )

38

2
19

381 0= − ⋅ = − ⋅ − + =  
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SUPPLEMENTARY PROBLEMS

18. Find the length of (a) the vector a = 2i + 3j + k; (b) the vector b = 3i − 5j + 9k; and (c) the vector c, joining  
P1(3, 4, 5) to P2(1, −2, 3).

Ans. (a) 14 ; (b) 115; (c) 2 11 

19. For the vectors of Problem 18:

(a) Show that a and b are perpendicular.
(b) Find the smaller angle between a and c, and that between b and c.
(c) Find the angles that b makes with the coordinate axes.

Ans. (b) 165°14′, 85°10′; (c) 73°45′, 117°47′, 32°56′

20. Prove: i · i = j · j = k · k = 1   and   i · j = j · k = k · i = 0.

21. Write a unit vector in the direction of a and a unit vector in the direction of b for the vectors of Problem 18.

Ans. i j k i j k(a)
14
7

3 14
14

14
14

; (b)
3

115

5

115

9

115
+ + − +

22. Find the interior angles b and g of the triangle of Problem 3.

Ans. b = 22°12′; g = 9°16′

23. For the unit cube in Fig. 50-14, find (a) the angle between its diagonal and an edge, and (b) the angle between its 
diagonal and a diagonal of a face.

Ans. (a) 54°44′; (b) 35°16′

Fig. 50-14

24. Show that the scalar projection of b onto a is given by 
a b

a| |
⋅

.

25. Show that the vector c of (50.4) is perpendicular to both a and b.
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26. Given a = i + j, b = i − 2k, and c = 2i + 3j + 4k, confirm the following equations:

(a) a × b = −2i + 2j − k  (b) b × c = 6i − 8j + 3k
(c) c × a = −4i + 4j − k  (d) (a + b) × (a − b) = 4i − 4j + 2k
(e) a · (a × b) = 0  (f) a · (b × c) = −2
(g) a × (b × c) = 3i − 3j − 14k  (h) c × (a × b) = −11i − 6j + 10k

27. Find the area of the triangle whose vertices are A(1, 2, 3), B(2, −1, 1), and C(−2, 1, −1). (Hint: |AB × AC| = twice 
the area.)

Ans. 5 3

28. Find the volume of the parallelepiped whose edges are OA, OB, and OC, for A(1, 2, 3), B(1, 1, 2), and C(2, 1, 1).

Ans. 2

29. If u = a × b, v = b × c, w = c × a, show that:

(a) u · c = v · a = w · b
(b) a · u = b · u = 0, b · v = c · v = 0, c · w = a · w = 0
(c) u · (v × w) = [a · (b × c)]2

30. Show that (a + b) · [(b + c) × (c + a)] = 2a · (b × c).

31. Find the smaller angle of intersection of the planes 5x − 14y + 2z − 8 = 0 and 10x − 11y + 2z + 15 = 0. (Hint: Find 
the angle between their normals.)

Ans. 22°25′

32. Write the vector equation of the line of intersection of the planes x + y − z − 5 = 0 and 4x − y − z + 2 = 0.

Ans. (x − 1)i + (y − 5)j + (z − 1)k = k(−2i − 3j − 5k), where P0(1, 5, 1) is a point on the line.

33. Find the shortest distance between the line through A(2, −1, −1) and B(6, −8, 0) and the line through C(2, 1, 2) 
and D(0, 2, −1).

Ans. 6 /6  

34. Define a line through P0(x0, y0, z0) as the locus of all points P(x, y, z) such that P0P and OP0 are perpendicular. 
Show that its vector equation is (r − r0) ⋅ r0 = 0.

35. Find the rectangular equations of the line through P0(2, −3, 5) and

(a) Perpendicular to 7x − 4y + 2z − 8 = 0.
(b) Parallel to the line x − y + 2z + 4 = 0, 2x + 3y + 6z − 12 = 0.
(c) Through P1(3, 6, −2).

Ans. x y z
(a)

2
7

3
4

5
2

;
− = +

− = −  (b) x y z2
12

3
2

5
5

;
− = + = −

−  (c) x y z2
1

3
9

5
7

− = + = −
−  
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36. Find the equation of the plane:

(a) Through P0(1, 2, 3) and parallel to a = 2i + j − k and b = 3i + 6j − 2k.
(b) Through P0(2, −3, 2) and the line 6x + 4y + 3z + 5 = 0, 2x +y + z − 2 = 0.
(c) Through P0(2, −1, −1) and P1 (1, 2, 3) and perpendicular to 2x + 3y − 5z − 6 = 0.

Ans. (a) 4x + y + 9z − 33 = 0; (b) 16x + 7y + 8z − 27 = 0; (c) 9x − y + 3z − 16 = 0

37. If r0 = i + j + k, r1 = 2i + 3j + 4k, and r2 = 3i + 5j + 7k are three position vectors, show that r0 × r1 + r1 × r2 + r2 × r0 = 0.  
What can be said of the terminal points of these vectors?

Ans. They are collinear.

38. If P0 , P1, and P2 are three noncollinear points and r0, r1, and r2 are their position vectors, what is the position of  
r0 × r1 + r1 × r2 + r2 × r0 with respect to the plane P0P1P2?

Ans. normal

39. Prove: (a) a × (b × c) + b × (c × a) + c × (a × b) = 0; (b) (a × b) · (c × d) = (a ⋅ c)(b ⋅ d) − (a ⋅ d)(b ⋅ c).

40. Prove: (a) The perpendiculars erected at the midpoints of the sides of a triangle meet in a point; (b) the 
perpendiculars dropped from the vertices to the opposite sides (produced if necessary) of a triangle meet in  
a point.

41. Let A(1, 2, 3), B(2, −1, 5), and C(4, 1, 3) be three vertices of the parallelogram ABCD. Find (a) the coordinates of D; 
(b) the area of ABCD; and (c) the area of the orthogonal projection of ABCD on each of the coordinate planes.

Ans. (a) D(3, 4, 1); (b) 2 26 ; (c) 8, 6, 2

42. Prove that the area of a parallelogram in space is the square root of the sum of the squares of the areas of 
projections of the parallelogram on the coordinate planes.
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471

CHAPTER 51

Surfaces and Curves in Space

PLANES

We already know [formula (50.22)] that the equation of a plane has the form Ax + By + Cz + D = 0, where 
Ai + Bj + Ck is a nonzero vector perpendicular to the plane. The plane passes through the origin (0, 0, 0) 
when and only when D = 0.

SPHERES

From the distance formula (50.3), we see that an equation of the sphere with radius r and center (a, b, c) is

 (x - a)2 + (y - b)2 + (z - c)2 = r 2

So a sphere with center at the origin (0, 0, 0) and radius r has the equation

 x2 + y2 + z2 = r 2

CYLINDRICAL SURFACES

An equation F (x, y) = 0 ordinarily defines a curve  in the xy plane. Now if a point (x, y) satisfies this 
equation, then for any z, the point (x, y, z) in space also satisfies the equation. So, the equation F (x, y) = 0 
determines the cylindrical surface obtained by moving the curve  parallel to the z-axis. For example, the 
equation x2 + y2 = 4 determines a circle in the xy-plane with radius 2 and center at the origin. If we move this 
circle parallel to the z-axis, we obtain a right circular cylinder. Thus, what we ordinarily call a cylinder is a 
special case of a cylindrical surface.

Similarly, an equation F (y, z) = 0 determines the cylindrical surface obtained by moving the curve in the 
yz-plane defined by F (y, z) = 0 parallel to the x-axis. An equation F (x, z) = 0 determines the cylindrical sur-
face obtained by moving the curve in the xz-plane defined by F (x, z) = 0 parallel to the y-axis.

More precisely, the cylindrical surfaces defined above are called right cylindrical surfaces. Other cylin-
drical surfaces can be obtained by moving the given curve parallel to a line that is not perpendicular to the 
plane of the curve.

EXAMPLE 51.1: The equation z = x2 determines a cylindrical surface generated by moving the parabola z = x2 
lying in the xz-plane parallel to the y-axis.

Now we shall look at examples of surfaces determined by equations of the second degree in x, y, and z. 
Such surfaces are called quadric surfaces. Imagining what they look like is often helped by describing their 
intersections with planes parallel to the coordinate planes. Such intersections are called traces.
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ELLIPSOID

 x
y z
9 4

12
2 2

+ + =  

The nontrivial traces are ellipses. See Fig. 51-1. In general, the equation of an ellipsoid has the form

 
x
a

y
b

z
c

1
2

2

2

2

2

2+ + =   (a > 0, b > 0, c > 0)

When a = b = c, we obtain a sphere.

Fig. 51-1

ELLIPTIC PARABOLOID

 z = x2 + y2

The surface lies on or above the xy-plane. The traces parallel to the xy-plane (for a fixed positive z) are 
circles. The traces parallel to the xz- or yz-plane are parabolas. See Fig. 51-2. In general, the equation of an 
elliptic paraboloid has the form

 
z
c

x
a

y
b

2

2

2

2= +  (a > 0, b > 0, c > 0)

Fig. 51-2

and the traces parallel to the xy-plane are ellipses. When a = b, we obtain a circular paraboloid, as in the 
given example.
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ELLIPTIC CONE

 z2 = x2 + y2

See Fig. 51-3. This is a pair of ordinary cones, meeting at the origin. The traces parallel to the xy-plane 
are circles. The traces parallel to the xz- or yz-plane are hyperbolas. In general, the equation of an elliptic 
cone has the form

 
z
c

x
a

y
b

2

2

2

2

2

2= +   (a > 0, b > 0, c > 0)

and the traces parallel to the xy-plane are ellipses. When a = b, we obtain a right circular cone, as in the 
given example.

Fig. 51-3

HYPERBOLIC PARABOLOID

 z = 2y2 - x2

See Fig. 51-4. The surface resembles a saddle. The traces parallel to the xy-plane are hyperbolas. The other 
traces are parabolas. In general, the equation of a hyperbolic paraboloid has the form

 
z
c

y
b

x
a

2

2

2

2= +   (a > 0, b > 0, c ≠ 0)

In the given example, c = 1, a = 1, and b = 1/ 2.

HYPERBOLOID OF ONE SHEET

 x y
z
9

12 2
2

+ − =  
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See Fig. 51-5. The traces parallel to the xy-plane are circles and the other traces are hyperbolas. In general, 
a hyperboloid of one sheet has an equation of the form

 
x
a

y
b

z
c

1
2

2

2

2

2

2+ − =  

and the traces parallel to the xy-plane are ellipses.

Fig. 51-4

Fig. 51-5

HYPERBOLOID OF TWO SHEETS

 
z x y
4 9 9

1
2 2 2

− − =  

See Fig. 51-6. The traces parallel to the xy-plane are circles, and the other traces are hyperbolas. In general, 
a hyperboloid of two sheets has an equation of the form

 
z
c

x
a

y
b

1
2

2

2

2

2

2− − =  (a > 0, b > 0, c > 0)

and the traces parallel to the xy-plane are ellipses.
In general equations given above for various quadric surfaces, permutation of the variables x, y, z is 

understood to produce quadric surfaces of the same type. For example, 
y
c

z
a

x
b

1
2

2

2

2

2

2− − =  also determines a 
hyperboloid of two sheets.
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TANGENT LINE AND NORMAL PLANE TO A SPACE CURVE

A space curve may be defined parametrically by the equations

 x = f (t), y = g (t), z = h (t) (51.1)

Fig. 51-6

At the point P0(x0 , y0 , z0) of the curve (determined by t = t0), the equations of the tangent line are 

 
x x
dx dt

y y
dy dt

z z
dz dt/ / /

0 0 0−
=

−
=

−
  (51.2)

and the equations of the normal plane (the plane through P0 perpendicular to the tangent line there) are

 
dx
dt

x x
dy
dt

y y
dz
dt

z z( ) ( ) ( ) 00 0 0− + − + − =   (51.3)

See Fig. 51-7. In both (51.2) and (51.3), it is understood that the derivative has been evaluated at the point 
P0 . (See Problems 1 and 2.)

Fig. 51-7

TANGENT PLANE AND NORMAL LINE TO A SURFACE

The equation of the tangent plane to the surface F (x, y, z) = 0 at one of its points P0(x0 , y0 , z0) is

 
F
x

x x
F
y

y y
F
z

z z( ) ( ) ( ) 00 0 0

∂
∂ − + ∂

∂ − + ∂
∂ − =   (51.4)
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and the equations of the normal line at P0 are

 
−

∂ ∂ =
−

∂ ∂ =
−

∂ ∂
x x
F x

y y
F y

z z
F z/ / /

0 0 0   (51.5)

with the understanding that the partial derivatives have been evaluated at the point P0 . See Fig. 51-8. 
(See Problems 3–9.)

Normal line

Tangent plane

P0(x0, y0, z0)

Fig. 51-8

A space curve may also be defined by a pair of equations

 F (x, y, z) = 0, G(x, y, z) = 0 (51.6)

At the point P0(x0 , y0 , z0) of the curve, the equations of the tangent line are

 

x x

F
y

F
z

G
y

G
z

y y

F
z

F
x

G
z

G
x

z z

F
x

F
y

G
x

G
y

0 0 0−
∂
∂

∂
∂

∂
∂

∂
∂

=
−

∂
∂

∂
∂

∂
∂

∂
∂

=
−

∂
∂

∂
∂

∂
∂

∂
∂

  (51.7)

and the equation of the normal plane is

 

F
y

F
z

G
y

G
z

x x

F
z

F
x

G
z

G
x

y y

F
x

F
y

G
x

G
y

z z( ) ( ) ( ) 00 0 0

∂
∂

∂
∂

∂
∂

∂
∂

− +

∂
∂

∂
∂

∂
∂

∂
∂

− +

∂
∂

∂
∂

∂
∂

∂
∂

− =   (51.8)

In (51.7) and (51.8), it is understood that all partial derivatives have been evaluated at the point P0. (See 
Problems 10 and 11.)

SURFACE OF REVOLUTION

Let the graph of y =  f (x) in the xy-plane be revolved about the x-axis. As a point (x0 , y0) on the graph revolves, 
a resulting point (x0 , y , z) has the distance y0 from the point (x0 , 0 , 0). So, squaring that distance, we get

 (x0 - x0)2 + y2 + z2 = (y0)2 = ( f (x0))2    and therefore,   y2 + z2 = (  f (x0))2

Then the equation of the surface of revolution is

 y2 + z2 = (  f (x))2 (51.9)
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SOLVED PROBLEMS

 1. Derive (51.2) and (51.3) for the tangent line and normal plane to the space curve x = f (t), y = g(t), z = h(t) at the 
point P0(x0 , y 0, z0) determined by the value t = t0 . Refer to Fig. 51-7.

Let P′0 (x0 + ∆ x, y0 + ∆y, z0 + ∆ z), determined by t = t0 + ∆ t, be another point on the curve. As P0 → P0 along 
the curve, the chord P0 P′0 approaches the tangent line to the curve at P0 as the limiting position.

A simple set of direction numbers for the chord P0 P′0 is [∆ x, ∆y, ∆ z], but we shall use 
x
t

y
t

z
t

, ,
∆
∆

∆
∆

∆
∆






. Then as 

P0 → P0 , ∆t → 0 and x
t

y
t

z
t

dx
dt

dy
dt

dz
dt

, , , ,
∆
∆

∆
∆

∆
∆







→ 




, a set of direction numbers of the tangent line at P0 . Now if 

P(x, y, z) is an arbitrary point on this tangent line, then [x - x 0 , y - y0 , z - z 0] is a set of direction numbers of P0 P. 
Thus, since the sets of direction numbers are proportional, the equations of the tangent line at P0 are

 
x x
dx dt

y y
dy dt

z z
dz dt/ / /

0 0 0−
=

−
=

−
 

If R(x, y, z) is an arbitrary point in the normal plane at P0 , then since P0 R and P0 P are perpendicular, the 
equation of the normal plane at P0 is

 x x
dx
dt

y y
dy
dt

z z
dz
dt

( ) ( ) ( ) 00 0 0− + − + − =  

 2. Find the equations of the tangent line and normal plane to:

(a) The curve x = t, y = t2, z = t3 at the point t = 1.
(b) The curve x = t - 2, y = 3t2 + 1, z = 2t3 at the point where it pierces the yz-plane.

(a) At the point t = 1 or (1, 1, 1), dx/dt = 1, dy/dt = 2t = 2, and dz/dt = 3t2 = 3. Using (51.2) yields for the 

equations of the tangent line, 
x y z1

1
1

2
1

3
− = − = −

; using (51.3) gives the equation of the normal plane as 

(x - 1) + 2(y - 1) + 3(z - 1) = x + 2y + 3z - 6 = 0.
(b) The given curve pierces the yz-plane at the point where x = t - 2 = 0, that is, at the point t = 2 or (0, 13, 16). 

At this point, dx/dt = 1, dy/dt = 6t = 12, and dz/dt = 6t2 = 24. The equations of the tangent line are  

x y z
1

13
12

16
24

= − = −
, and the equation of the normal plane is x + 12(y - 13) + 24(z - 16) = x + 12y + 24z - 540 = 0.

 3. Derive (51.4) and (51.5) for the tangent plane to the surface F (x, y, z) = 0 at the point P0(x0 , y0 , z0). Refer to 
Fig. 51-8.

Let x = f (t), y = g(t), z = h(t) be the parametric equations of any curve on the surface F (x, y, z) = 0 and passing 
through the point P0 . Then at P0 ,

 
F
x

dx
dt

F
y

dy
dt

F
z

dz
dt

0
∂
∂ + ∂

∂ + ∂
∂ =  

with the understanding that all derivatives have been evaluated at P0 .

This relation expresses the fact that the line through P0 with direction numbers 
dx
dt

dy
dt

dz
dt

, ,




 is perpendicular 

to the line through P0 having direction numbers 
F
x

F
y

F
z

, ,
∂
∂

∂
∂

∂
∂






. The first set of direction numbers belongs to the 

tangent to the curve that lies in the tangent plane of the surface. The second set defines the normal line to the 
surface at P0 . The equations of this normal are

 
−

∂ ∂ =
−

∂ ∂ =
−

∂ ∂
x x
F x

y y
F y

z z
F z/ / /

0 0 0  

51_Mendelson_ch51_p471-482.indd   477 27/07/21   11:25 AM



478 CHAPTER 51 Surfaces  and Cur ves  in  Space

and the equation of the tangent plane at P0 is

 
F
x

x x
F
y

y y
F
z

z z( ) ( ) ( ) 00 0 0

∂
∂ − + ∂

∂ − + ∂
∂ − =  

In Problems 4 and 5, find the equations of the tangent plane and normal line to the given surface at the given point.

 4. z = 3x2 + 2y2 - 11; (2, 1, 3).

Put F (x, y, z) = 3x2 + 2y2 - z - 11 = 0. At (2, 1, 3), 
F
x

x
F
y

y
F
z

6 12, 4 4, and 1
∂
∂ = = ∂

∂ = = ∂
∂ = − . The equation of 

the tangent plane is 12(x - 2) + 4(y - 1) - (z - 3) = 0 or 12x + 4y - z = 25.

The equations of the normal line are 
x y z2
12

1
4

3
1

− = − = −
− .

 5. F (x, y, z) = x2 + 3y2 - 4z2 + 3xy - 10yz + 4x - 5z - 22 = 0; (1, -2, 1).

At (1, -2, 1), 
F
x

∂
∂  = 2x + 3y + 4 = 0, 

F
y

∂
∂  = 6y + 3x - 10z = -19, and 

F
z

∂
∂  = -8z - 10y - 5 = 7. The equation of 

the tangent plane is 0(x - 1) - 19(y + 2) + 7(z - 1) = 0 or 19y - 7z + 45 = 0.

The equations of the normal line are x - 1 = 0 and 
y z2

19
1

7
+

− = −
 or x = 1, 7y + 19z - 5 = 0.

 6. Show that the equation of the tangent plane to the surface 
x
a

y
b

z
c

1
2

2

2

2

2

2− − =  at the point P0(x0, y0, z0) is 
xx
a

yy
b

zz
c

10
2

0
2

0
2− − = .

At P0, 
F
x

x
a

F
y

y
b

F
z

z
c

2
,

2
, and

20
2

0
2

0
2

∂
∂ = ∂

∂ = − ∂
∂ = − . The equation of the tangent plane is 

x
a

x x
y

b
y y

z
c

z z
2

( )
2

( )
2

( ) 00
2 0

0
2 0

0
2 0− − − − − = .

This becomes 
xx
a

yy
b

zz
c

x
a

y
b

z
c

10
2

0
2

0
2

0
2

2
0
2

2
0
2

2− − = − − = , since P0 is on the surface.

 7. Show that the surfaces F(x, y, z) = x2 + 4y2 - 4z2 - 4 = 0 and G(x, y, z) = x2 + y2 + z2 - 6x - 6y + 2z + 10 = 0 are 
tangent at the point (2, 1, 1).

It is to be shown that the two surfaces have the same tangent plane at the given point. At (2, 1, 1),

 
F
x

∂
∂  = 2x - 4, 

F
y

∂
∂  = 8y = 8, 

F
z

∂
∂  = -8z = -8

and 
G
x

∂
∂  = 2x - 6 = -2,  

G
y

∂
∂  = 2y - 6 = - 4,  

G
z

∂
∂  = 2z + 2 = 4

Since the sets of direction numbers [4, 8, -8] and [-2, - 4, 4] of the normal lines of the two surfaces are 
proportional, the surfaces have the common tangent plane

 1(x - 2) + 2(y - 1) - 2(z - 1) = 0   or   x + 2y - 2z = 2

 8. Show that the surfaces F(x, y, z) = xy + yz - 4zx = 0 and G(x, y, z) = 3z2 - 5x + y = 0 intersect at right angles at the 
point (1, 2, 1).

It is to be shown that the tangent planes to the surfaces at the point are perpendicular or, what is the same, that 
the normal lines at the point are perpendicular. At (1, 2, 1),

 
F
x

∂
∂  = y - 4z = -2, 

F
y

∂
∂  = x + z = 2, 

F
z

∂
∂  = y - 4x = -2
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A set of direction numbers for the normal line to F (x, y, z) = 0 is [l1, m1, n1] = [1, -1, 1]. At the same point,

 
G
x

G
y

G
z

z5, 1, 6 6
∂
∂ = − ∂

∂ = ∂
∂ = =  

A set of direction numbers for the normal line to G(x, y, z) = 0 is [l2, m2, n2] = [-5, 1, 6].
Since l1l2 + m1m2 + n1n2 = 1(-5) + (-1)1 + 1(6) = 0, these directions are perpendicular.

 9. Show that the surfaces F (x, y, z) = 3x2 + 4y2 + 8z2 - 36 = 0 and G(x, y, z) = x2 + 2y2 - 4z2 - 6 = 0 intersect at right 
angles.

At any point P0(x0, y0, z0) on the two surfaces, 
F
x

x
F
y

y
F
z

z6 , 8 ,and 16 ;0 0 0

∂
∂ = ∂

∂ = ∂
∂ =  hence [3x0, 4y0, 8z0] is  

a set of direction numbers for the normal to the surface F (x, y, z) = 0 at P0. Similarly, [x0, 2y0, -4z0] is a set of  
direction numbers for the normal line to G(x, y, z) = 0 at P0. Now since

 x y z x y z6( 2 4 ) (3 4 8 ) 6(6) 36 0,0
2

0
2

0
2

0
2

0
2

0
2+ − − + + = − =  

these directions are perpendicular.

10. Derive (51.7) and (51.8) for the tangent line and normal plane to the space curve C: F (x, y, z) = 0, G(x, y, z) = 0 
at one of its points P0(x0, y0, z0).

At P0, the directions 
F
x

F
y

F
z

, ,
∂
∂

∂
∂

∂
∂






 and 

G
x

G
y

G
z

, ,
∂
∂

∂
∂

∂
∂






 are normal, respectively, to the tangent planes of the 

surfaces F (x, y, z) = 0 and G(x, y, z) = 0. Now the direction

 
F y F z
G y G z

F z F x
G z G x

F x F y
G x G y

/ /
/ /

, / /
/ /

,
/ /
/ /

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂













 

being perpendicular to each of these directions, is that of the tangent line to C at P0. Hence, the equations of the 
tangent line are

 

x x

F y F z
G y G z

y y

F z F x
G z G x

z z

F x F y
G x G y

/ /
/ /

/ /
/ /

/ /
/ /

0 0 0−
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

=
−

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

=
−

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 

and the equation of the normal plane is

 
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ − + ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ − + ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ − =F y F z

G y G z
x x F z F x

G z G x
y y

F x F y
G x G y

z z
/ /
/ /

( ) / /
/ /

( )
/ /
/ /

( ) 0.0 0 0  

11. Find the equations of the tangent line and the normal plane to the curve x2 + y2 + z2 = 14, x + y + z = 6 at the point 
(1, 2, 3).

Set F x y z x y z, , 14 02 2 2( ) = + + − =  and ( )( ) = + + − =G x t z x y z, , 6 0. At 1,2,3 , 

 

F y F z
G y G z

y z

F z F x
G z G x

F x F y
G x G y

/ /
/ /

2 2
1 1

4 6
1 1

2

/ /
/ /

6 2
1 1

4,
/ /
/ /

2 4
1 1

2

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ = = = −

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ = = ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ = = −
 

With [1, -2, 1] as a set of direction numbers of the tangent, its equations are 
x y z1

1
2

2
3

1
.

− = −
− = −

 The equation 
of the normal plane is (x - 1) - 2(y - 2) + (z - 3) = x - 2y + z = 0.
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12. Find equations of the surfaces of revolution generated by revolving the given curve about the given axis: (a) y = 
x2 about the x-axis; (b) y = 

x
1

 about the y-axis; (c) z = 4y about the y-axis.
In each case, we use an appropriate form of (51.9): (a) y2 + z2 = x4; (b) x2 + z2 = 

y
1

2 ; (c) x2 + z2 = 16y2.

13. Identify the locus of all points (x, y, z) that are equidistant from the point (0, -1, 0) and the plane y = 1.
Squaring the distances, we get x2 + (y + 12) + z2 = (y - 1)2, whence x2 + z2 = - 4y, a circular paraboloid.

14. Identify the surface 4x2 - y2 + z2 - 8x + 2y + 2z + 3 = 0 by completing the squares.
We have

 4(x2 - 2x) - (y2 - 2y) + (z2 + 2z) + 3 = 0

 4(x - 1)2 - (y - 1)2 + (z + 1)2 + 3 = 4

 4(x - 1)2 - (y - 1)2 + (z + 1)2 = 1

This is a hyperboloid of one sheet, centered at (1, 1, -1).

SUPPLEMENTARY PROBLEMS

15. Find the equations of the tangent line and the normal plane to the given curve at the given point:

(a) x = 2t, y = t2, z = t3; t = 1 Ans. 
x y z2

2
1

2
1

3
− = − = −

; 2x + 2y + 3z - 9 = 0

(b) x = tet, y = et, z = t; t = 0 Ans. 
x y z
1

1
1 1

;= − =  x + y + z - 1 = 0

(c) x = t cos t, y = t sin t, z = t; t = 0 Ans. x = z, y = 0; x + z = 0

16. Show that the curves (a) x = 2 - t, y = -1/t, z = 2t2 and (b) x = 1 + q, y = sin q - 1, z = 2 cos q intersect at right 
angles at P(1, -1, 2). Obtain the equations of the tangent line and normal plane of each curve at P.

Ans. (a) x y z
x y z

1
1

1
1

2
4

; 4 6 0;
−

− = + = − − − + =  (b) x - y = 2, z = 2; x + y = 0

17. Show that the tangent lines to the helix x = a cos t, y = a sin t, z = bt meet the xy-plane at the same angle.

18. Show that the length of the curve (51.1) from the point t = t0 to the point t = t1 is given by

 
dx
dt

dy
dt

dz
dt

dt
t

t
2 2 2

0

1∫ 



 + 



 + 



  

Find the length of the helix of Problem 17 from t = 0 to t = t1.

Ans. a b t2 2
1+  

19. Find the equations of the tangent line and the normal plane to the given curve at the given point:

(a) x2 + 2y2 + 2z2 = 5, 3x - 2y - z = 0; (1, 1, 1).
(b) 9x2 + 4y2 - 36z = 0, 3x + y + z - z2 - 1 = 0; (2, -3, 2).
(c) 4z2 = xy, x2 + y2 = 8z; (2, 2, 1).
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Ans.  (a) x y z1
2

1
7

1
8

− = − = −
− ; 2x + 7y - 8z - 1 = 0; (c) 

x y2
1

2
1

− = −
, y + 3 = 0; x + z - 4 = 0; 

(c) 
x y2

1
2

1
− = −

− , z - 1 = 0; x -y = 0

20. Find the equations of the tangent plane and normal line to the given surface at the given point:

(a) x2 + y2 + z2 = 14; (1, -2, 3) Ans. x - 2y + 3z = 14; 
x y z1

1
2

2
3

3
− = +

− = −
 

(b) x2 + y2 + z2 = r2; (x1, y1, z1) Ans. x1x + y1y + z1z = r2; 
x x

x
y y

y
z z

z
1

1

1

1

1

1

−
=

+
=

−
 

(c) x2 + 2z3 + 3y2; (2, -2, -2) Ans. x + 3y - 2z = 0; 
x y z2

1
2

3
2

2
− = + = +

−  

(d) 2x2 + 2xy + y2 + z + 1 = 0; (1, -2, -3) Ans. z - 2y = 1; x - 1 = 0, 
y z2

2
3

1
+ = +

−  

(e) z = xy; (3, - 4, -12) Ans. 4x - 3y + z =12; 
x y z3

4
4

3
12

1
− = +

− = +
 

21. (a) Show that the sum of the intercepts of the plane tangent to the surface x1/2 + y1/2 + z1/2 = a1/2 at any of its points is a.

(b) Show that the square root of the sum of the squares of the intercepts of the plane tangent to the surface  
x2/3 + y2/3 + z2/3 = a2/3 at any of its points is a.

22. Show that each pair of surfaces are tangent at the given point:

(a) x2 + y2 + z2 = 18, xy = 9; (3, 3, 0).
(b) x2 + y2 + z2 - 8x - 8y - 6z + 24 = 0, x2 + 3y2+2z2 = 9; (2, 1, 1).

23. Show that each pair of surfaces are perpendicular at the given point:

(a) x2 + 2y2 - 4z2 = 8, 4 x2 - y2+2z2 = 14; (2, 2, 1).
(b) x2 + y2 + z2 = 50, x2 + y2 - 10z + 25 =0; (3, 4, 5).

24. Show that each of the surfaces (a) 14x2 + 11y2 + 8z2 = 66, (b) 3z2 - 5x + y = 0, and (c) xy + yz - 4zx = 0 is 
perpendicular to the other two at the point (1, 2, 1).

25. Identify the following surfaces.

(a) 36y2 - x2 + 36z2 = 9.
(b) 5y = -z2 + x2.
(c) x2 + 4y2 - 4z2 - 6x - 16y - 16z + 5 = 0.

Ans. (a) hyperboloid of one sheet (around the x-axis); (b) hyperbolic paraboloid; (c) hyperboloid of one sheet, 
centered at (3, 2, –2)

26. Find an equation of a curve that, when revolved about a suitable axis, yields the paraboloid y2 + z2 - 2x = 0.

Ans. y = x2  or z = x2 , about the x-axis

27. Find an equation of the surface obtained by revolving the given curve about the given axis. Identify the type of 
surface: (a) x = y2 about the x-axis; (b) x = 2y about the x-axis.

Ans. (a) x = y2 + z2 (circular paraboloid); (b) y2 + z2 = x
4

2

 (right circular cone)
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483

CHAPTER 52

Directional Derivatives. Maximum 
and Minimum Values.

DIRECTIONAL DERIVATIVES

Let P(x, y, z) be a point on a surface z = f (x, y). Through P, pass planes parallel to the xz- and yz-planes,  
cutting the surface in the arcs PR and PS, and cutting the xy-plane in the lines P*M and P*N, as shown in  
Fig. 52-1. Note that P* is the foot of the perpendicular from P to the xy-plane. The partial derivatives ∂z / ∂x 
and ∂z /∂y, evaluated at P*(x, y), give, respectively, the rates of change of z = P*P when y is held fixed and 
when x is held fixed. In other words, they give the rates of change of z in directions parallel to the x- and 
y-axes. These rates of change are the slopes of the tangent lines of the curves PR and PS at P.

Fig. 52-1

Consider next a plane through P perpendicular to the xy-plane and making an angle q with the x-axis. Let 
it cut the surface in the curve PQ and the xy-plane in the line P*L. The directional derivative of f (x, y) at P* 
in the direction q is given by

 
dz
ds

z
x

z
y

cos sinθ θ= ∂
∂ + ∂

∂   (52.1)

The direction q is the direction of the vector (cos q)i + (sin q)j.
The directional derivative gives the rate of change of z = P*P in the direction of P*L; it is equal to the 

slope of the tangent line of the curve PQ at P. (See Problem 1.)
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484 CHAPTER 52 Directional Derivatives

The directional derivative at a point P* is a function of q. We shall see that there is a direction, determined 
by a vector called the gradient of f at P* (see Chapter 53), for which the directional derivative at P* has 
a maximum value. That maximum value is the slope of the steepest tangent line that can be drawn to the 
surface at P.

For a function w = F(x, y, z), the directional derivative at P(x, y, z) in the direction determined by the angles 
a, b, g is given by

 
dF
ds

F
x

F
y

F
z

cos cos cosα β γ= ∂
∂ + ∂

∂ + ∂
∂  

By the direction determined by a, b, and g, we mean the direction of the vector (cos a)i + (cos b )j + (cos g )k.

RELATIVE MAXIMUM AND MINIMUM VALUES

Assume that z = f (x, y) has a relative maximum (or minimum) value at P0(x0, y0, z0). Any plane through P0 
perpendicular to the xy-plane will cut the surface in a curve having a relative maximum (or minimum) point 

at P0 . Thus, the directional derivative 
f
x

f
y

cos sinθ θ∂
∂ + ∂

∂  of z = f (x, y) must equal zero at P0 . In particular, 

when q = 0, sin q = 0 and cos q = 1, so that 
f
x

∂
∂  = 0. When q = 

2
π

, sin q = 1 and cos q = 0, so that 
f
y

∂
∂  = 0. 

Hence, we obtain the following theorem.

THEOREM 52.1: If z = f (x, y) has a relative extremum at P0(x0, y0, z0) and f
x

∂
∂

 and f
y

∂
∂

 exist at (x0, y0), then f
x

∂
∂

 = 0 

and f
y

∂
∂

 = 0 at (x0, y0).

We shall cite without proof the following sufficient conditions for the existence of a relative maximum 
or minimum.

THEOREM 52.2: Let z = f (x, y) have first and second partial derivatives in an open set including a point (x0, y0) at 

which 
f
x

∂
∂  = 0 and f

y
∂
∂

 = 0. Define ∆ = f
x y

f
x

f
y

2 2 2

2

2

2

∂
∂ ∂







− ∂
∂







∂
∂






. Assume ∆ < 0 at (x0, y0). Then

 z = f (x, y) has 
x y

f
x

f
y

x y
f

x
f

y

min

max

a relative imum at ( ,  ) if 0

a relative imum at ( ,  ) if 0

0 0

2

2

2

2

0 0

2

2

2

2

∂
∂ + ∂

∂ >

∂
∂ + ∂

∂ <










 

If ∆ > 0, there is neither a relative maximum nor a relative minimum at (x0, y0).
If ∆ = 0, we have no information.

ABSOLUTE MAXIMUM AND MINIMUM VALUES

Let A be a set of points in the xy-plane. We say that A is bounded if A is included in some disk. By the com-
plement of A in the xy-plane, we mean the set of all points in the xy-plane that are not in A. A is said to be 
closed if the complement of A is an open set.

EXAMPLE 1: The following are instances of closed and bounded sets.

(a)  Any closed disk D, that is, the set of all points whose distance from a fixed point is less than or equal to some 
fixed positive number r. (Note that the complement of D is open because any point not in D can be surrounded 
by an open disk having no points in D.)

(b)  The inside and boundary of any rectangle. More generally, the inside and boundary of any “simple closed 
curve,” that is, a curve that does not interset itself except at its initial and terminal point.
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485CHAPTER 52 Directional Derivatives

THEOREM 52.3: Let f (x, y) be a function that is continuous on a closed, bounded set A. Then f has an absolute 
maximum and an absolute minimum value in A.

The reader is referred to more advanced texts for a proof of Theorem 52.3. For three or more variables, 
an analogous result can be derived.

SOLVED PROBLEMS

 1. Derive formula (52.1).
In Fig. 52-1, let P**(x + ∆x, y + ∆y) be a second point on P*L and denote by ∆s the distance P*P**. 

Assuming that z = f (x, y) possesses continuous first partial derivatives, we have, by Theorem 49.1,

 ∆ z = z
x

∂
∂  ∆ x + 

z
y

∂
∂  ∆ y + 1 ∆ x + 2 ∆ y

where 1 and 2 → 0 as ∆ x and ∆ y → 0. The average rate of change between points P* and P** is

 

 

 

z
s

z
x

x
s

z
y

y
s

x
s

y
s

z
x

z
y

= cos sin cos sin

1 2

1 2θ θ θ θ

∆
∆ = ∂

∂
∆
∆ + ∂

∂
∆
∆ + ∆

∆ + ∆
∆

∂
∂ + ∂

∂ + +
 

where q is the angle that the line P*P** makes with the x-axis. Now let P** → P* along P*L. The directional 
derivative at P*, that is, the instantaneous rate of change of z, is then

 
dz
ds

z
x

z
y

cos sinθ θ= ∂
∂ + ∂

∂

 2. Find the directional derivative of z = x2 - 6y2 at P*(7, 2) in the direction: (a) q = 45°; (b) q  = 135°.
The directional derivative at any point P*(x, y) in the direction q is 

 
dz
ds

z
x

z
y

x ycos sin 2 cos 12 sinθ θ θ θ= ∂
∂ + ∂

∂ = −  

(a) At P*(7, 2) in the direction q = 45°,

 
dz
ds

2(7)( 2) 12(2)( 2) 5 21
2

1
2= − = −  

(b) At P*(7, 2) in the direction q =135°,

 
dz
ds

2(7)( 2) 12(2)( 2) 19 21
2

1
2= − − = −  

 3. Find the directional derivative of z = yex at P*(0, 3) in the direction (a) q = 30°; (b) q = 120°.
Here, dz /ds = yex cos q + ex sin q.

(a) At (0, 3) in the direction q = 30°, dz/ds = 3(1) ( 3) (3 3 1)1
2

1
2

1
2+ = + .

(b) At (0, 3) in the direction q = 120°, dz/ds = 3(1) ( ) 3 ( 3 3)1
2

1
2

1
2− + = − + .

 4. The temperature T of a heated circular plate at any of its points (x, y) is given by T = 
x y

64
2

,2 2+ +  the origin being 

at the center of the plate. At the point (1, 2), find the rate of change of T in the direction q = p /3.
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We have

 
dT
ds

x
x y

y
x y

64(2 )
( 2)

cos
64(2 )

( 2)
sin2 2 2 2 2 2θ θ= − + + − + +  

At (1, 2) in the direction q = dT
ds3

, 
128
49

 
1
2

   
256
49

 
3

2
64
49

(1 2 3).
π = − − = − +  

 5. The electrical potential V at any point (x, y) is given by V = ln x y2 2+ . Find the rate of change of V at the point 
(3, 4) in the direction toward the point (2, 6).

Here,

 
dV
ds

x
x y

y
x y

cos sin2 2 2 2θ θ= + + +  

Since q is a second-quadrant angle and tan q = (6 - 4)/(2 - 3) = -2, cos q = -1/ 5 and sin q = 2/ 5.

Hence, at (3, 4) in the indicated direction, 
dV
ds

3
25

1

5

4
25

2

5

5
25

= −





+ = . 

 6. Find the maximum directional derivative for the surface and point of Problem 2.
At P*(7, 2) in the direction q, dz/ds = 14 cos q - 24 sin q.

To find the value of q for which 
dz
ds

 is a maximum, set 
d

d
dz
dsθ





  = -14 sin q - 24 cos q = 0. Then tan q = 24

14−  = -12
7  

and q is either a second- or fourth-quadrant angle. For the second-quadrant angle, sin q = 12/ 193 and cos = -7/ 193. 

For the fourth-quadrant angle, sin q = -12/ 193  and cos q = 7/ 193.

Since 
d

d
dz
ds

d
d

2

2θ θ




 =  (-14 sin q - 24 cos q ) = -14 cos q + 24 sin q is negative for the fourth-quadrant angle, 

the maximum directional derivative is 
dz
dz

14
7

193
24

12

193
2 193,= 





− −





=  and the direction is q = 300°15′.

 7. Find the maximum directional derivative for the function and point of Problem 3.
At P*(0, 3) in the direction q, dz /ds = 3 cos q + sin q.

To find the value of q for which 
dz
ds

 is a maximum, set 
d

d
dz
dsθ





  = -3 sin q + cos q = 0. Then tan 1

3θ =  and q is 
either a first- or third-quadrant angle.

Since 
d

d
dz
ds

d
d

2

2θ θ




 =  (-3 sin q + cos q) = -3 cos q - sin q is negative for the first-quadrant angle, the 

maximum directional derivative is 
dz
ds

3
3

10

1

10
10= + = , and the direction is q = 18°26′.

 8. In Problem 5, show that V changes most rapidly along the set of radial lines through the origin.

At any point (x1, y1) in the direction q, 
dV
ds

x
x y

y
x y

cos sin1

1
2

1
2

1

1
2

1
2θ θ= + + + . Now V changes most rapidly 

when 
d

d
dV
ds

x
x y

y
x y

sin cos 01

1
2

1
2

1

1
2

1
2θ θ θ



 = − + + + = , and then tan q = 

y x y
x x y

y
x

/ ( )
/ ( )

1 1
2

1
2

1 1
2

1
2

1

1

+
+ = . Thus, q is the angle of 

inclination of the line joining the origin and the point (x1, y1).

 9. Find the directional derivative of F(x, y, z) = xy + 2xz - y2 + z2 at the point (1, -2, 1) along the curve x = t, 
y = t - 3, z = t2 in the direction of increasing z.

A set of direction numbers of the tangent to the curve at (1, -2, 1) is [1, 1, 2]; the direction cosines are  
[1/ 6, 1/ 6, 2/ 6 ]. The directional derivative is

 
F
x

F
y

F
z

cos cos cos 0
1

6
5

1

6
4

2

6

13 6
6

α β γ∂
∂ + ∂

∂ + ∂
∂ = + + = .
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10. Examine f (x, y) = x2 + y2 - 4x + 6y + 25 for maximum and minimum values.

The conditions 
f
x

∂
∂  = 2x - 4 = 0 and 

f
y

∂
∂  = 2y + 6 = 0 are satisfied when x = 2, y = -3. Since 

 f (x, y) = (x2 - 4x + 4) + (y2 + 6y + 9) + 25 - 4 - 9 = (x - 2)2 + (y + 3)2 + 12

it is evident that f (2, -3) = 12 is the absolute minimum value of the function. Geometrically, (2, -3, 12) is the 
lowest point on the surface z = x2 + y2 - 4x + 6y + 25. Clearly, f (x, y) has no absolute maximum value.

11. Examine f (x,y) = x3 + y3 + 3xy for maximum and minimum values.

We shall use Theorem 52.2. The conditions 
f
x

∂
∂  = 3(x2 + y) = 0 and 

f
y

∂
∂  = 3(y2 + x) = 0 are satisfied when x = 0, 

y = 0 and when x = -1, y = -1.

At (0, 0), 
f

x

2

2

∂
∂  = 6x = 0, 

f
x y 

2∂
∂ ∂  = 3, and 

f
y

2

2

∂
∂  = 6y = 0. Then 

 
f

x y
f

x
f

y
9 0

2 2 2

2

2

2

∂
∂ ∂







− ∂
∂







∂
∂







= >  

and (0, 0) yields neither a relative maximum nor minimum.

At (-1, -1), 
f

x

2

2

∂
∂  = - 6, 

f
x y

2∂
∂ ∂  = 3, and 

f
y

2

2

∂
∂  = - 6. Then 

 
f

x y
f

x
f

y
27 0

2 2 2

2

2

2

∂
∂ ∂







− ∂
∂







∂
∂







= − <  and 
f

x
f

y
0

2

2

2

2

∂
∂ + ∂

∂ < .

Hence, f (-1, -1) = 1 is a relative maximum value of the function.
Clearly, there are no absolute maximum or minimum values. [When y = 0, f (x, y) = x3 can be made arbitrarily 

large or small.]

12. Divide 120 into three nonnegative parts such that the sum of their products taken two at a time is a maximum.
Let x, y, and 120 - (x + y) be the three parts. The function to be maximized is S = xy + (x + y)(120 - x - y). 

Since 0 ≤ x + y ≤ 120, the domain of the function consists of the solid triangle shown in Fig. 52-2. Theorem 52.3 
guarantees an absolute maximum.

Fig. 52-2
Now

 
S
x

∂
∂  = y + (120 - x - y) - (x + y) = 120 - 2x - y 

and

 
S
y

∂
∂  = x + (120 - x - y) - (x + y) = 120 - x - 2y.

Setting S yS 0x∂ ∂ = ∂ ∂ =  yields 2x + y = 120 and x + 2y = 120.
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Simultaneous solution gives x = 40, y = 40, and 120 - (x + 4) = 40 as the three parts, and S = 3(402) = 4800. 
So, if the absolute maximum occurs in the interior of the triangle, Theorem 52.1 tells us we have found it. It is 
still necessary to check the boundary of the triangle. When y = 0, S = x(120 - x). Then dS/dx = 120 - 2x, and the 
critical number is x = 60. The corresponding maximum value of S is 60(60) = 3600, which is < 4800. A similar 
result holds when x = 0. Finally, on the hypotenuse, where y = 120 - x, S = x(120 - x) and we again obtain a 
maximum of 3600. Thus, the absolute maximum is 4800, and x = y = z = 40.

13. Find the point in the plane 2x - y + 2z = 16 nearest the origin.
Let (x, y, z) be the required point; then the square of its distance from the origin is D = x2 + y2 + z2. Since also 

2x - y + 2z = 16, we have y = 2x + 2z - 16 and D = x2 + (2x + 2z - 16)2 + z2.
Then the conditions ∂D/ ∂x = 2x + 4(2x + 2z - 16) = 0 and ∂D/ ∂z = 4(2x + 2z - 16) + 2z = 0 are equivalent 

to 5x + 4z = 32 and 4x + 5z = 32, and x = z = 32
9 . Since it is known that a point for which D is a minimum exists, 

( , , )32
9

16
9

32
9−  is that point.

14. Show that a rectangular parallelepiped of maximum volume V with constant surface area S is a cube.
Let the dimensions be x, y, and z. Then V = xyz and S = 2(xy + yz + zx).
The second relation may be solved for z and substituted in the first, to express V as a function of x and y. We 

prefer to avoid this step by simply treating z as a function of x and y. Then

 

V
x

yz xy
z
x

V
y

xz xy
z
y

S
x

y z x
z
y

y
z
x

S
y

x z x
z
y

y
z
y

,

0 2 , 0 2

∂
∂ = + ∂

∂
∂
∂ = + ∂

∂

∂
∂ = = + + ∂

∂ + ∂
∂







∂
∂ = = + + ∂

∂ + ∂
∂







 

From the latter two equations, 
z
x

y z
x y

∂
∂ = − +

+  and 
z
y

x z
x y

∂
∂ = − +

+ . Substituting in the first two yields the conditions 

V
x

yz
xy y z

x y
( )

0
∂
∂ = − +

+ =  and 
V
y

xz
xy x z

x y
( )

0
∂
∂ = − +

+ = , which reduce to y2(z - x) = 0 and x2(z - y) = 0. Thus x = y = z, 
as required.

15. Find the volume V of the largest rectangular parallelepiped that can be inscribed in the ellipsoid 
x
a

y
b

z
c

1
2

2

2

2

2

2+ + = .
Let P(x, y, z) be the vertex in the first octant. Then V = 8xyz. Consider z to be defined as a function of the 

independent variables x and y by the equation of the ellipsoid. The necessary conditions for a maximum are 

 
V
x

yz xy
z
x

8 0
∂
∂ = + ∂

∂






=  and 
V
y

xz xy
z
y

8 0
∂
∂ = + ∂

∂






=   (1)

From the equation of the ellipsoid, obtain 
x

a
z

c
z
x

2 2
02 2+ ∂

∂ =  and 
y

b
z

c
z
y

2 2
02 2+ ∂

∂ = . Eliminate z x∂ ∂  and z y∂ ∂  
between these relations and (1) to obtain 

 
V
x

yz
c x y
a z

8 0
2 2

2

∂
∂ = −





=  and 
V
y

xz
c xy
b z

8 0
2 2

2

∂
∂ = −





=  

and, finally,

 
x
a

z
c

y
b

2

2

2

2

2

2= =   (2)

Combine (2) with the equation of the ellipsoid to get x = a 3 /3, y = b 3 /3, and z = c 3 /3.  
Then V = 8xyz = (8 3 /9)abc cubic units.
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SUPPLEMENTARY PROBLEMS

16. Find the directional derivatives of the given function at the given point in the indicated direction.

(a) z = x2 + xy + y2, (3, 1), q = 
3
π

.

(b) z = x3 - 3xy + y3, (2, 1), q = tan ( )1 2
3

− .

(c) z = y + x cos xy, (0, 0), q = 
3
π

.

(d) z = 2x2 + 3xy - y2, (1, -1), toward (2, 1).

Ans. (a) (7 5 3);1
2 +  (b) 21 13 /13; (c) (1 3);1

2 +  (d) 11 5 /5 

17. Find the maximum directional derivative for each of the functions of Problem 16 at the given point.

Ans. (a) 74; (b) 3 10; (c) 2; (d) 26  

18. Show that the maximal directional derivative of V = ln x y2 2+  of Problem 8 is constant along any circle x2 + y2 = r2.

19. On a hill represented by z = 8 - 4x2 - 2y2, find (a) the direction of the steepest grade at (1, 1, 2) and (b) the 
direction of the contour line (the direction for which z = constant). Note that the directions are mutually 
perpendicular.

Ans. (a) tan ( )1 1
2

− , third quadrant; (b) tan -1(-2)

20. Show that the sum of the squares of the directional derivatives of z = f (x, y) at any of its points is constant for any 
two mutually perpendicular directions and is equal to the square of the maximum directional derivative.

21. Given z = f (x, y) and w = g(x, y) such that z x w y∂ ∂ = ∂ ∂  and z y w x .∂ ∂ = − ∂ ∂  If q1 and q2 are two mutually 
perpendicular directions, show that at any point P(x, y), z s w s1 2∂ ∂ = ∂ ∂  and z s w s .2 1∂ ∂ = − ∂ ∂  

22. Find the directional derivative of the given function at the given point in the indicated direction:

(a) xy2z, (2, 1, 3), [1, -2, 2].
(b) x2 + y2 + z2, (1, 1, 1), toward (2, 3, 4).
(c) x2 + y2 - 2xz, (1, 3, 2), along x2 + y2 - 2xz = 6, 3x2 - y2 + 3z = 0 in the direction of increasing z.

Ans. (a) ;17
3−  (b) 6 14 /7; (c) 0  

23. Examine each of the following functions for relative maximum and minimum values.

(a) z = 2x + 4y - x2 - y2 - 3  Ans. maximum = 2 when x = 1, y = 2
(b) z = x3 +y3 - 3xy Ans. minimum = -1 when x = 1, y = 1
(c) z = x2 + 2xy + 2y2  Ans. minimum = 0 when x = 0, y = 0
(d) z = (x - y)(1 - xy) Ans. neither maximum nor minimum
(e) z = 2x2 +y2 + 6xy + 10x - 6y + 5 Ans. neither maximum nor minimum
(f) z = 3x - 3y - 2x3 - xy2 + 2x2y + y3 Ans.  minimum = - x y6 when 6 /6,  6 /3;= − =   

x ymaximum 6 when 6 /6,  6 /3= = −  
(g) z = xy(2x + 4y + 1) Ans. maximum x ywhen , 1

216
1
6

1
12= − = −  

24. Find positive numbers x, y, z such that

(a) x + y + z = 18 and xyz is a maximum (b) xyz = 27 and x + y + z is a minimum
(c) x + y + z = 20 and xyz2 is a maximum (d) x + y + z = 12 and xy2z3 is a maximum

Ans. (a) x = y = z = 6; (b) x = y = z = 3; (c) x = y = 5, z = 10; (d) x = 2, y = 4, z = 6
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25. Find the minimum value of the square of the distance from the origin to the plane Ax + By + Cz + D = 0.

Ans D2/(A2+ B2 + C2)

26. (a) The surface area of a rectangular box without a top is to be 108 ft2. Find the greatest possible volume.
(b) The volume of a rectangular box without a top is to be 500 ft3. Find the minimum surface area.

Ans. (a) 108 ft3; (b) 300 ft2

27. Find the point on z = xy - 1 nearest the origin.

Ans. (0, 0, -1)

28. Find the equation of the plane through (1, 1, 2) that cuts off the least volume in the first octant.

Ans. 2x + 2y + z = 6

29. Determine the values of p and q so that the sum S of the squares of the vertical distances of the points (0, 2), (1, 3), 
and (2, 5) from the line y = px + q is a minimum. [Hint: S = (q - 2)2 + (p + q - 3)2 + (2p + q - 5)2.]

Ans. p = q; 3
2

11
6=
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CHAPTER 53

Vector Differentiation and Integration

VECTOR DIFFERENTIATION

Let

 r = i f1(t) + j f2(t) + k f3(t) = i f1 + j f2 + k f3

  s = ig1(t) + jg2(t) + kg3(t) = ig1 + jg2 + kg3

  u = ih1(t) + jh2(t) + kh3(t) = ih1 + jh2 + kh3

be vectors whose components are functions of a single scalar variable t having continuous first and second 
derivatives.

We can show, as in Chapter 39 for plane vectors, that

 
d
dt

d
dt

s
d
dt

( )r�.�s r �.� r�.� s= +  (53.1)

Also, from the properties of determinants whose entries are functions of a single variable, we have

 
d
dt

d
dt

f f f
g g g

f f f
g g g

f f f
g g g

( ) 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

r s
i j k i j k i j k

× = = ′ ′ ′ +
′ ′ ′

 
d
dt

d
dt

r s r s= × + ×   (53.2) 

and  
d
dt

d
dt

d
dt

d
dt

[ ( )] ( ) +r.� s u r .� s u r�.� s u r�.� s u× = × ×



 + ×



   (53.3)

These formulas may also be established by expanding the products before differentiating.
From (53.2) follows

 
d
dt

d
dt

d
dt

[ ( )] ( ) + ( )r s u r s u r s u× × = × × × ×  

  
d
dt

d
dt

d
dt

( ) +   +   
r s u r s u r s u= × × × ×



 × ×



   (53.4)
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492 CHAPTER 53 Vector Differentiation and Integration

SPACE CURVES

Consider the space curve

 x = f (t),  y = g(t),  z = h(t) (53.5)

where f (t), g(t), and h(t) have continuous first and second derivatives. Let the position vector of a general 
variable point P(x, y, z) of the curve be given by

 r = xi + yj + zk

As in Chapter 39, t = dr/ds is the unit tangent vector to the curve. If R is the position vector of a point  
(X, Y, Z) on the tangent line at P, the vector equation of this line is (see Chapter 50)

 R - r = k t for k a scalar variable  (53.6)

and the equations in rectangular coordinates are

 
X x
dx ds

Y y
dy ds

Z z
dz ds/ / /

− = − = −
 

where 
dx
ds

dy
ds

dz
ds

,  , 




 is a set of direction cosines of the line. In the corresponding equation (51.2), a set of 

direction numbers 
dx
dt

dy
dt

dz
dt

,  , 




 was used.

The vector equation of the normal plane to the curve at P is given by

 (R - r) · t = 0  (53.7)

where R is the position vector of a general point of the plane.
Again, as in Chapter 39, d t /ds is a vector perpendicular to t. If n is a unit vector having the direction of 

d t /ds, then

 d
ds

K n = | |
t  

where |K| is the magnitude of the curvature at P. The unit vector

 d
ds

n
1

| |K
t=  (53.8)

is called the principal normal to the curve at P.
The unit vector b at P, defined by

 b = t × n (53.9)

is called the binormal at P. The three vectors t, n, b form at P a right-handed triad of mutually orthogonal 
vectors. (See Problems 1 and 2.)

At a general point P of a space curve (Fig. 53-1), the vectors t, n, b determine three mutually perpendicular 
planes:

1. The osculating plane, containing t and n, having the equation (R - r) · b = 0.

2. The normal plane, containing n and b, having the equation (R - r) · t = 0.

3. The rectifying plane, containing t and b, having the equation (R - r) · n = 0.
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Fig. 53-1

In each equation, R is the position vector of a general point in the particular plane.

SURFACES

Let F(x, y, z) = 0 be the equation of a surface. (See Chapter 51.) A parametric representation results when x, 
y, and z are written as functions of two independent variables or parameters u and v—for example, as

 x = fl(u, v),  y = f2(u, v),  z = f3(u, v)    (53.10)

When u is replaced with u0, a constant, (53.10) becomes

 x = fl(u0, v),  y = f2(u0, v),  z = f3(u0, v)    (53.11)

the equation of a space curve (u curve) lying on the surface. Similarly, when v is replaced with v0, a constant, 
(53.10) becomes

 x = fl(u, v0),  y = f2(u, v0),  z = f3(u, v0)  (53.12)

the equation of another space curve (v curve) on the surface. The two curves intersect in a point of the surface 
obtained by setting u = u0 and v = v0 simultaneously in (53.10).

The position vector of a general point P on the surface is given by

 r = xi + yj + zk = i fl(u, v) + j f2(u, v) + kf3(u, v)  (53.13)

Suppose (53.11) and (53.12) are the u and v curves through P. Then at P,

 f u f u f u
r

i j k( ,  ) ( ,  ) ( ,  )1 0 2 0 3 0

∂
∂ = ∂

∂ + ∂
∂ + ∂

∂v v v v v v v  

is a vector tangent to the u curve, and

 
u u

f u
u

f u
u

f u
r

i j k( ,  ) ( ,  ) ( ,  )1 0 2 0 3 0

∂
∂ = ∂

∂ + ∂
∂ + ∂

∂v v v  
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494 CHAPTER 53 Vector Differentiation and Integration

is a vector tangent to the v curve. The two tangents determine a plane that is the tangent plane to the surface 

at P (Fig. 53-2). Clearly, a normal to this plane is given by 
u
r r∂

∂ × ∂
∂v

. The unit normal to the surface at P is 
defined by 

 
u

u

n

r r

r r
=

∂
∂ × ∂

∂
∂
∂ × ∂

∂

v

v

 (53.14)

υ = υ0

u = u0

Fig. 53-2

If R is the position vector of a general point on the normal to the surface at P, its vector equation is

 k
u

R r( )
r r− = ∂

∂ × ∂
∂





v  (53.15)

If R is the position vector of a general point on the tangent plane to the surface at P, its vector equation is

 
u

R r
r r

( ) 0�.�− ∂
∂ × ∂

∂






=v  (53.16)

(See Problem 3.)

THE OPERATION Æ

In Chapter 52, the directional derivative of z = f (x, y) at an arbitrary point (x, y) and in a direction making an 
angle q with the positive x-axis is given as

 
dz
ds

f
x

f
y

cos sinθ θ= ∂
∂ + ∂

∂  

Let us write

 
f
x

f
y

f
x

f
y

i j i jcos sin ( cos sin )�.�θ θ θ θ∂
∂ + ∂

∂ = ∂
∂ + ∂

∂






+   (53.17)
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495CHAPTER 53 Vector Differentiation and Integration

Now a = i cos q + j sin q is a unit vector whose direction makes the angle q with the positive x-axis. The other 

factor on the right of (53.17), when written as 
x y

fi j ,∂
∂ + ∂

∂






 suggests the definition of a vector differential 
operator ∇ (del), defined by

 ∇ = 
x y

i j
∂

∂ + ∂
∂  (53.18)

In vector analysis, ∇f = 
f
x

f
y

i j
∂
∂ + ∂

∂  is called the gradient of f or grad f. From (53.17), we see that the com-

ponent of ∇f in the direction of a unit vector a is the directional derivative of f in the direction of a.
Let r = xi + yj be the position vector to P(x, y). Since

 

df
ds

f
x

dx
ds

f
y

dy
ds

f
x

f
y

dx
ds

y
s

f
d
ds

i j �.� i j

�.� r

= ∂
∂ + ∂

∂ = ∂
∂ + ∂

∂






+ ∂
∂







= ∇
 

and     
df
ds

 = |∇f | cos ø

where ø is the angle between the vectors ∇f and dr/ds, we see that df /ds is maximal when cos ø = 1, that 
is, when ∇f and dr/ds have the same direction. Thus, the maximum value of the directional derivative at 
P is |∇f |, and its direction is that of ∇f. (Compare the discussion of maximum directional derivatives in 
Chapter 52.) (See Problem 4.)

For w = F(x, y, z), we define

 ∇F = F
x

F
y

F
z

i j k
∂
∂ + ∂

∂ + ∂
∂  

and the directional derivative of F(x, y, z) at an arbitrary point P(x, y, z) in the direction a = a1i + a2j + a2 k is

 
dF
ds

 = ∇F · a (53.19)

As in the case of functions of two variables, |∇F| is the maximum value of the directional derivative of  
F(x, y, z) at P(x, y, z), and its direction is that of ∇F. (See Problem 5.)

Consider now the surface F(x, y, z) = 0. The equation of the tangent plane to the surface at one of its points 
P0(x0, y0, z0) is given by

x x
F
x

y y
F
y

z z
F
z

( ) ( ) ( )0 0 0− ∂
∂ + − ∂

∂ + − ∂
∂  

 x x y y z z
F
x

F
y

F
z

[( ) + ( ) ( ) ]  00 0 0i j k .� i j k= − − + − ∂
∂ + ∂

∂ + ∂
∂







=   (53.20)

with the understanding that the partial derivatives are evaluated at P0. The first factor is an arbitrary vector 
through P0 in the tangent plane; hence the second factor ∇F, evaluated at P0, is normal to the tangent plane, 
that is, is normal to the surface at P0. (See Problems 6 and 7.)

DIVERGENCE AND CURL

The divergence of a vector function F = i f1(x, y, z) + j f2(x, y, z) + k f3(x, y, z), sometimes called del dot F, is 
defined by

 div F = ∇ · F = 
x

f
y

f
z

f1 2 3

∂
∂ + ∂

∂ + ∂
∂   (53.21)
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The curl of the vector function F, or del cross F, is defined by

curl F = ∇ × F = x y z
f f f

i j k

1 2 3

∂
∂

∂
∂

∂
∂  

 
y

f
z

f
z

f
x

f
x

f
y

fi j k3 2 1 3 2 1= ∂
∂ − ∂

∂






+ ∂
∂ − ∂

∂






+ ∂
∂ − ∂

∂






 (53.22)

(See Problem 8.)

INTEGRATION

Our discussion of integration here will be limited to ordinary integration of vectors and to so-called “line 
integrals.” As an example of the former, let

F(u) = i cos u + j sin u + auk

be a vector depending upon the scalar variable u. Then

  F′(u) = -i sin u + j cos u + ak

and   u du u u a duF i j k( ) ( sin cos )∫ ∫′ = − + +  

            u du u du a dui j ksin    cos  ∫∫ ∫= − + +  

       
u u au

u

i j k

F c

cos sin c

( )

= + + +

= +
 

where c is an arbitrary constant vector independent of u. Moreover,

 u du u c b aF F F F( ) [ ( ) ] ( ) ( )
u a

u b

u a
u b∫ ′ = + = −

=

=

=
=  

(See Problems 9 and 10.)

LINE INTEGRALS

Consider two points P0 and P1 in space, joined by an arc C. The arc may be a segment of a straight line or 
a portion of a space curve x = g1(t), y = g2(t), z = g3(t), or it may consist of several subarcs of curves. In any 
case, C is assumed to be continuous at each of its points and not to intersect itself. Consider further a vector 
function

 F = F(x, y, z) = if1(x, y, z) + j f2(x, y, z) + kf3(x, y, z)

which at every point in a region about C and, in particular, at every point of C, defines a vector of known 
magnitude and direction. Denote by

 r = xi + yj + zk (53.23)
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the position vector of P(x, y, z) on C. The integral

 ∫ ∫



 =�.� �.�d

ds
ds dF

r
F r

P

P

C
P

P

C
0

1

0

1

 (53.24)

is called a line integral, that is, an integral along a given path C.
As an example, let F denote a force. The work done by it in moving a particle over dr is given by (see 

Problem 16 of Chapter 39)

 |F||dr|cos θ = F · dr

and the work done in moving the particle from P0 to Pl along the arc C is given by

 dF
C

P

P

0

1 �.� r∫  

From (53.23),

 dr = i dx + j dy + k dz

and (53.24) becomes

 d f dx f dy f dzr  ( )
C

P

P

C
P

P

1 2 3
0

1

0

1F�.∫ ∫= + +   (53.25)

(See Problem 11.)

SOLVED PROBLEMS

 1. A particle moves along the curve x = 4 cos t, y = 4 sin t, z = 6t. Find the magnitude of its velocity and acceleration 

at times t = 0 and t = 1
2

π .

Let P(x, y, z) be a point on the curve, and

 r = xi + yj + zk = 4i cos t + 4j sin t + 6kt

be its position vector. Then

 
d
dt

v
r=  = -4i sin t + 4j cos t + 6k  and  a = d

dt
r2

2  = -4i cos t - 4j sin t

At t = 0: v = 4j + 6k |v| = 16 36 2 13+ =  

 a = -4i |a| = 4

At t
1
2

:π=   v = -4i + 6k |v| = 16 36 2 13+ =  

 a = -4j |a| = 4
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 2. At the point (1, 1, 1) or t = 1 of the space curve x = t, y = t2, z = t3, find:

(a) The equations of the tangent line and normal plane.
(b) The unit tangent, principal normal, and binormal.
(c) The equations of the principal normal and binormal.

 We have

 r = ti + t2j + t3k

 d
dt
r  = i + 2tj + 3t2k

 
ds
dt

d
dt

t t
r

1 4 92 4= = + +  

 
d
ds

d
dt

dt
ds

t t

t t
t

r r i j k2 +3

1 4 9

2

2 4
= = = +

+ +
 

 At t = 1, r = i + j + k and t = 
1

14
 (i + 2j + 3k).

(a) If R is the position vector of a general point (X, Y, Z) on the tangent line, its vector equation is R - r = kt or

 (X - 1)i + (Y - 1)j + (Z - 1)k = k

14
 (i + 2j + 3k)

 and its rectangular equations are

 
X Y Z1

1
1

2
1

3
− = − = −

.

If R is the position vector of a general point (X, Y, Z) on the normal plane, its vector equation is  
(R - r) · t = 0 or

 [(X - 1)i + (Y - 1)j + (Z - 1)k] · 
1

14
 (i + 2j + 3k) = 0

and its rectangular equation is

 (X - 1) + 2(Y - 1) + 3(Z - 1)= X + 2Y + 3Z - 6 = 0

[See Problem 2(a) of Chapter 51.]

(b) 
d
ds

d
dt

dt
ds

t t t t t
t t

i j k( 4 18 ) (2 18 ) + (6  + 12 )
(1 4 9 )

3 4 3

2 4 2

t t= = − − + −
+ +  

At t = 1, 
d
ds

i j k11 8 9
98

t = − − +
 and 

d
ds

K
1
7

19
14

| |
t = = .

 Then        n = 
K

d
ds

i j k1
| |

 
11 8 9

266

t = − − +
 

 and   b = t × n = 
i j k

i j k
1

14 266

     
   1   2 3
11 8 9

1

19
(3 3 )

− −
= − + .

(c) If R is the position vector of a general point (X, Y, Z ) on the principal normal, its vector equation is  
R - r = kn or

 (X - 1)i + (Y - 1)j + (Z - 1)k = k 11 8 9

266

i j k− − +
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 and the equations in rectangular coordinates are

 
X Y Z1

11
1

8
1

9
−

− = −
− = −

.

If R is the position vector of a general point (X, Y, Z) on the binormal, its vector equation is R - r = kb or

 (X - 1)i + (Y - 1)j + (Z - 1)k = k i j k3 3

19

− +
 

and the equations in rectangular coordinates are

 
X Y Z1

3
1

3
1

1
− = −

− = −
.

 3. Find the equations of the tangent plane and normal line to the surface x = 2(u + v), y = 3(u - v), z = uv at the point 
P(u = 2, v = 1).
Here

 r = 2(u + v)i + 3(u - v)j + uv k,  
u
r∂

∂  = 2i + 3j + v k,  
r∂

∂v  = 2i - 3j + uk

and at the point P,

 r = 6i + 3j + 2k,  
u
r∂

∂  = 2i + 3j + k,  
r∂

∂v  = 2i - 3j + 2k

and   
u
r r∂

∂ × ∂
∂v  = 9i - 2j - 12k.

The vector and rectangular equations of the normal line are

 k
u

R r r r− = ∂
∂ × ∂

∂v  

 or (X - 6)i + (Y - 3)j + (Z - 2)k = k(9i - 2j - 12k)

and   
X Y Z6

9
3

2
2

12
− + −

− = −
− .

The vector and rectangular equations of the tangent plane are

 u
R( ) 0r �.� r r− ∂

∂ × ∂
∂







=v  

or  [(X - 6)i + (Y - 3)j + (Z - 2)k] · [9i - 2j - 12k] = 0

and   9X - 2Y - 12Z - 24 = 0

 4. (a) Find the directional derivative of f (x, y) = x2 - 6y2 at the point (7, 2) in the direction θ = 1
4 π .

(b) Find the maximum value of the directional derivative at (7, 2).

(a) ∇f = 
x y

x y
x

x y
y

x y x yi j i j i j( 6 ) ( 6 ) ( 6 ) 2 122 2 2 2 2 2∂
∂ + ∂

∂






− = ∂
∂ − + ∂

∂ − = −  

 and

 a = i cos q + j sin q = i j
1

2

1

2
+  
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 At (7, 2), ∇f = 14i - 24j, and

 ∇f · a = (14i - 24j) · 
1

2

1

2
7 2 12 2 5 2i j+





= − = −  

 is the directional derivative.
(b) At (7, 2), with ∇f = 14i - 24j, |∇f | = 14 24 2 1932 2+ =  is the maximum directional derivative. Since

 
f

f

7

193

12

193
cos sini j i jθ θ∇

∇
= − = +  

 the direction is θ = 300°15′. (See Problems 2 and 6 of Chapter 52.)

 5. (a) Find the directional derivative of F(x, y, z) = x2 - 2y2 + 4z2 at P(1, 1, -1) in the direction a = 2i + j - k.
(b) Find the maximum value of the directional derivative at P.

 Here

 F
x y z

x y z x y z( 2 4 ) 2 4 82 2 2i j k i j k∇ = ∂
∂ + ∂

∂ + ∂
∂







− + = − +  

 and at (1, 1, -1), ∇F = 2i - 4j - 8k.

(a) ∇F · a = (2i - 4j - 8k) · (2i + j - k) = 8
(b) At P, |∇F| = 84 2 21= . The direction is a = 2i - 4j - 8k.

 6. Given the surface F(x, y, z) = x3 + 3xyz + 2y3 - z3 - 5 = 0 and one of its points P0 (1, 1, 1), find (a) a unit normal 
to the surface at P0; (b) the equations of the normal line at P0; and (c) the equation of the tangent plane at P0 .

 Here

 ∇F = (3x2 + 3yz)i + (3xz + 6y2)j + (3xy - 3z2)k

and at P0(1, 1, 1), ∇F = 6i + 9j.

(a) 
F

F

2

13

3

13
i∇

∇
= +  j is a unit normal at P0; the other is 

2

13

3

13
i− −  j.

(b) The equations of the normal line are 
X Y

Z
1

2
1

3
,  1

− = − = .

(c) The equation of the tangent plane is 2(X - 1) + 3(Y - 1) = 2X + 3Y - 5 = 0.

 7. Find the angle of intersection of the surfaces

 F1 = x2 + y2 + z2 - 9 = 0  and  F2 = x2 + 2y2 - z - 8 = 0

at the point (2, 1, -2).
We have

 ∇F1 = ∇(x2 + y2 + z2 - 9) = 2xi + 2yj + 2zk

and  ∇F2 = ∇(x2 + 2y2 - z - 8) = 2xi + 4yj - k
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At (2, 1, -2), ∇F1 = 4i + 2j - 4k and ∇F2 = 4i + 4j - k.
Now ∇F1 · ∇F2 = |∇F1||∇F2| cos q, where q is the required angle. Thus,

(4i + 2j - 4k) · (4i + 4j - k) = |4i + 2j - 4k||4i + 4j - k| cos q

from which cos q = 3314
99  = 0.81236, and q = 35°40′.

 8. When B = xy2i + 2x2yz j - 3yz2k, find (a) div B and (b) curl B.

(a)   div B = ∇ · B = 
x y z
i j k∂

∂ + ∂
∂ + ∂

∂






 · (xy2i + 2x2yz j - 3yz2k)

  
x

xy
y

x yz
z

yz( ) (2 ) ( 3 )2 2 2= ∂
∂ + ∂

∂ + ∂
∂ −  

  = y2 + 2x2z - 6yz

(b)  curl B = ∇ × B = 
x y z

xy x yz yz2 32 2 2

i j k
∂

∂
∂

∂
∂
∂

−

 

 
y

yz
z

x yz
z

xy
x

yz( 3 ) (2 ) ( ) ( 3 )2 2 2 2i j= ∂
∂ − − ∂

∂






+ ∂
∂ − ∂

∂ −





  
x

x yz
y

xy(2 ) ( )2 2 k+ ∂
∂ − ∂

∂






 

 = -(3z2 + 2x2y)i + (4xyz - 2xy)k

 9. Given F(u) = ui + (u2 - 2u)j + (3u2 + u3)k, find (a) u duF( )∫  and u duF( ) ( )
0

1
b ∫ .

(a)  u du u u u u duF( ) [ ( 2 ) (3 ) ]2 2 3i j u k∫∫ = + − + +  

  u du u u du u u du  + ( 2 ) (3 )2 2 3i j k∫ ∫∫= − + +  

  
u u

u u
u

2 3 4

2 3
2 3

4

i j k c= + −





+ +





+  

where c = c1i + c2 j + c3k with c1, c2, c3 arbitrary scalars.

(b)  u du
u u

u u
u

( )
2 3 4

1
2

2
3

 
5
40

1 2 3
2 3

4

0

1

F i j k i j� k∫ = + −





+ +













 = − +  

10. The acceleration of a particle at any time t ≥ 0 is given by a = dv/dt = eti + e2tj + k. If at t = 0, the displacement is 
r = 0 and the velocity is v = i + j, find r and v at any time t.

Here

      dt e dt e dt dtv t t2a i j k∫ ∫∫∫= = + +  

 e e t ct t1
2

2
1i j k= + + +  

At t = 0, we have v = i + 1
2 j + c1 = i + j, from which c1 = 1

2 j. Then

 e e t( +1)t t1
2

2v i j k= + +  

and  dt e e t t+ +t t1
4

2 1
2

1
2

2
2r v i j k c∫ ( )= = + +  
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At t = 0, r = i + 1
4  j + c2 = 0, from which c2 = - i - 1

4 j. Thus,

 e e t( 1) tt t1
4

2 1
2

1
4

1
2

2r i j k( )= − + + − +  

11. Find the work done by a force F = (x + yz)i + (y + xz)j + (z + xy)k in moving a particle from the origin O to 
C(1, 1, 1): (a) along the straight line OC; (b) along the curve x = t, y = t2, z = t3; and (c) along the straight lines 
from O to A(1, 0, 0), A to B(1, 1, 0), and B to C.

 F · dr = [(x + yz)i + (y + xy)j + (z + xy)k] · [i dx + j dy + k dz]

 = (x + yz) dx + (y + xz) dy + (z + xy) dz

(a) Along the line OC, x = y = z and dx = dy = dz. The integral to be evaluated becomes

 ∫∫ ( )= = + = +  =W d x x dx x xF .  r 3 ( )2 3
2

2 3

0

1

0

1

(0,0,0)

(1,1,1)
5
2

C

 

(b) Along the given curve, x = t and dx = dt; y = t2 and dy = 2t dt; z = t3 and dz = 3t2 dt. At O, t = 0; at C, t =1. 
Then

 W t t dt t t t dt t t t dt( ) ( )2 ( )35 2 4 3 3 2

0

1

∫= + + + + +  

  t t t dt t t t( 2 9 ) 3 5 1
2

2 1
2

3
2

6

0

1

0

1
5
2∫ [ ]= + + = + + =4  

(c) From O to A: y = z = 0 and dy = dz = 0, and x varies from 0 to 1.

 From A to B: x = 1, z = 0, dx = dz = 0, and y varies from 0 to 1.

 From B to C: x = y = 1 and dx = dy = 0, and z varies from 0 to 1.

Now for the distance from O to A, W1 = x dx ;1
2

0

1

∫= =  for the distance from A to B, W2 ydy ;1
2

0

1

∫= =  and for the 

distance from B to C, W3 z dz( 1) .3
2

0

1

∫= + =  Thus, W = W1 + W2 + W3 = 5
2 .

In general, the value of a line integral depends upon the path of integration. Here is an example of one that 

does not, that is, one that is independent of the path. It can be shown that a line integral f dx f dy f dz( )
c

1 2 3∫ + +   

is independent of the path if there exists a function f(x, y, z) such that df = f1dx +f2 dy + f3 dz. In this problem, the 
integrand is

 (x + yz) dx + (y + xz) dy + (z + xy) dz = d [ 1
2  (x2 + y2 + z2) + xyz]

SUPPLEMENTARY PROBLEMS

12. Find ds /dt and d 2s /dt 2, given (a) s = (t + 1)i + (t2 + t + 1)j + (t3 + t2 + t +1)k and (b) s = iet cos 2t + jet sin 2t + t2k.

Ans. (a) i + (2t+ 1)j + (3t2 + 2t+ 1)k, 2j + (6t + 2)k;
 (b) et(cos 2t -2 sin 2t)i + et(sin 2t + 2 cos 2t) j + 2tk, 

et(-4 sin 2t - 3 cos 2t)i + et(-3 sin2t + 4 cos 2t)j + 2k
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503CHAPTER 53 Vector Differentiation and Integration

13. Given a = ui + u2j + u3k, b = i cos u + j sin u, and c = 3u2i - 4uk. First compute a · b, a × b, a · (b × c), and  
a × (b × c), and find the derivative of each. Then find the derivatives using the formulas.

14. A particle moves along the curve x = 3t2, y = t2 - 2t, z = t3, where t is time. Find (a) the magnitudes of its velocity 
and acceleration at time t = 1; (b) the components of velocity and acceleration at time t = 1 in the direction  
a = 4i - 2j + 4k.

Ans. (a) |v| = 3 5, |a| = 2 19; (b) 6, 22
3  

15. Using vector methods, find the equations of the tangent line and normal plane to the curves of Problem 15 of 
Chapter 51.

16. Solve Problem 16 of Chapter 51 using vector methods.

17. Show that the surfaces x = u, y = 5u - 3v 2, z = v and x = u, y = v, z = 
u
u4 −

v
v  are perpendicular at P(1, 2, 1).

18. Using vector methods, find the equations of the tangent plane and normal line to the surface:

(a) x = u, y = v, z = uv at the point (u, v) = (3, - 4).
(b) x = u, y = v, z = u2 - v 2 at the point (u, v) = (2, 1).

Ans. (a) 4X - 3Y + Z - 12 = 0, 
X Y Z3

4
4

3
12
1

−
− = + = +

−

 (b) 4X - 2Y - Z - 3 = 0, 
X Y Z2

4
1

2
3

1
−

− = − = −
 

19. (a) Find the equations of the osculating and rectifying planes to the curve of Problem 2 at the given point.
(b) Find the equations of the osculating, normal, and rectifying planes to x = 2t - t2, y = t2, z = 2t + t2 at t = 1.

Ans. (a) 3X - 3Y + Z - 1 = 0, 11X + 8Y - 9Z - 10 = 0

 (b) X + 2Y - Z = 0, Y + 2Z - 7 = 0, 5X - 2Y + Z - 6 = 0

20. Show that the equation of the osculating plane to a space curve at P is given by

 − ×





=d
dt

d
dt

R r  . 
r r

( ) 0
2

2  

21. Solve Problems 16 and 17 of Chapter 52 using vector methods.

22. Find ∫ u duF( )
a

b
, given

(a) F(u) = u3i + (3u2 - 2u)j + 3k; a = 0, b = 2; (b) F(u) = eui + e-2uj + uk; a = 0, b = 1

Ans. (a) 4i + 4j + 6k; (b) (e - 1)i + − +−e j k
1
2

(1 )
1
2

2  

23. The acceleration of a particle at any time t is given by a = dv/dt = (t +1)i + t2j + (t2 - 2)k. If at t = 0, the 
displacement is r = 0 and the velocity is v = i - k, find v and r at any time t.

Ans. v = ( 1
2 t2 + t + 1)i + 1

3t3j + (1
3t3 - 2t - l)k; r = ( 1

6 t3 + 1
2 t2 + t)i + 1

12 t 4j + ( 1
12 t 4 - t2 - t)k
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24. In each of the following, find the work done by the given force F in moving a particle from O(0, 0, 0) to C(1, 1, 1) 
along (1) the straight line x = y = z, (2) the curve x = t, y = t2, z = t3, and (3) the straight lines from O to A(1, 0, 0), 
A to B(1, 1,0), and B to C.

(a) F = xi + 2yj + 3xk.
(b) F = (y + z)i + (x + z)j + (x + y)k.
(c) F = (x + xyz)i +(y + x2z)j + (z + x2y)k.

Ans. (a) 3; (b) 3; (c) , ,9
4

33
14

5
2  

25. If r = xi + yj + zk, show that (a) div r = 3 and (b) curl r = 0.

26. If f = f (x, y, z) has partial derivatives of order at least two, show that (a) ∇ × ∇f = 0; (b) ∇ · (∇ × f ) = 0;  

(c) ∇ · ∇f = 
x y z

f
2

2

2

2

2

2

∂
∂ + ∂

∂ + ∂
∂







.
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CHAPTER 54

Double and Iterated Integrals

THE DOUBLE INTEGRAL

Consider a function z = f (x, y) that is continuous on a bounded region R of the xy-plane. Define a parti-
tion � of R by drawing a grid of horizontal and vertical lines. This divides the region into n subregions  
R1, R2, . . . , Rn of areas ∆1A, ∆2A, . . . , ∆ n A, respectively. (See Fig. 54-1.) In each subregion, Rk, choose a 
point Pk(xk, yk) and form the sum

 f x y A f x y A f x y A( , ) ( , ) ( , )k k k
k

n

n n n
1

1 1 1∑ ∆ = ∆ +…+ ∆
=

  (54.1)

Define the diameter of a subregion to be the greatest distance between any two points within or on its bound-
ary, and denote by d� the maximum diameter of the subregions. Suppose that we select partitions so that 
d 0� →  and n → +∞. (In other words, we choose more and more subregions and we make their diameters 
smaller and smaller.) Then the double integral of f (x, y) over R is defined as

 f x y dA f x y A( ,  ) lim ( ,  )
R

n k k k
k

n

1
∫∫ ∑= ∆

→+∞
=

  (54.2)

Fig. 54-1

This is not a genuine limit statement. What (54.2) really says is that f x y dA( , )
R
∫∫  is a number such that for 

any 0�� > , there exists a positive integer   n0 such that for any n ≥ n0 and any partition with d n1/ 0� < , and any 

corresponding approximating sum f x y A( , )k k
k

n

k
1

∑ ∆
=

, we have

 ∑ ∫∫∆ −
=

f x y A f x y dA( , ) ( , )  < k k
k

n

k

R1

��  

When z = f (x, y) is nonnegative on the region R, as in Fig. 54-2, the double integral (54.2) may be inter-
preted as a volume. Any term f (xk, yk) ∆k A of (54.1) gives the volume of a vertical column whose base is of 
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506 CHAPTER 54 Double and Iterated Integrals

area ∆kA and whose altitude is the distance zk = f (xk, yk) measured along the vertical from the selected point 
Pk(xk, yk) to the surface z = f (x, y). This, in turn, may be taken as an approximation of the volume of the 
vertical column whose lower base is the subregion Rk and whose upper base is the projection of Rk on the 
surface. Thus, (54.1) is an approximation of the volume “under the surface” (that is, the volume with lower 
base R and upper base the surface cut off by moving a line parallel to the z-axis along the boundary of R). It 
is intuitively clear that (54.2) is the measure of this volume.

The evaluation of even the simplest double integral by direct summation is usually very difficult.

Fig. 54-2

THE ITERATED INTEGRAL

Consider a volume defined as above, and assume that the boundary of R is such that no line parallel to the 
x-axis or to the y-axis cuts it in more than two points. Draw the tangent lines x = a and x = b to the boundary 
with points of tangency K and L, and the tangent lines y = c and y = d with points of tangency M and N. (See 
Fig. 54-3.) Let the equation of the plane arc LMK be y = g1(x), and that of the plane arc LNK be y = g2(x).

Divide the interval a ≤ x ≤ b into m subintervals h1, h2, . . . , hm of respective lengths ∆1x, ∆2x, . . . ∆mx by the 
insertion of points x1, x2, . . . , xm-1 so that a b. . . m m0 1 2 1ξ ξ ξ ξ ξ= < < < < < =− . Similarly, divide the interval 
c ≤ y ≤ d into n subintervals k1, k2, . . . , kn of respective lengths ∆1y, ∆2y, . . . , ∆ny by the insertion points h1, 
h2, . . . , hn-1 so that c d. . .  n n0 1 2 1η η η η η= < < < < < =− . Let lm be the greatest ∆ix and let mn be the greatest 
∆ j y. Draw the parallel lines x = x1, x = x2, . . . , x = xm-1 and the parallel lines y = h1, y = h2, . . . , y = hn-1, thus 
dividing the region R into a set of rectangles Rij of areas ∆i x ∆j y, plus a set of nonrectangles along the bound-
ary (whose areas will be small enough to be safely ignored). In each subinterval hi select a point x = xi and, 
in each subinterval kj select a point y = yj, thereby determining in each subregion Rij a point Pij(xi, yj). With 
each subregion Rij associate, by means of the equation of the surface, a number zij = f (xi, yj), and form the sum

 f x y x yi j i j
i m
j n

( , )
, , ,
, , ,

∆ ∆
=
=

∑
1 2
1 2

…
…

  (54.3)

 Now (54.3) is merely a special case of (54.1). So, if the number of rectangles is indefinitely increased in 
such a manner that both lm → 0 and m n → 0, the limit of (54.3) should be equal to the double integral (54.2).

In effecting this limit, let us first choose one of the subintervals, say hi, and form the sum

 f x y y x i( , ) ( fixed)i j j
j

n

i
1

∑ ∆








 ∆

=
 

of the contributions of all rectangles having hi as one dimension, that is, the contributions of all rectangles 
lying on the ith column. When n → + ∞, mn → 0,

 f x y y x f x y dy x x xlim ( ,  ) ( ,  ) ( )
n i j j

j

n

i ig x

g x

i i i
1

( )

( )

i

i

1

2∑ ∫ φ∆








 ∆ = 





∆ = ∆
→+∞

=
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Fig. 54-3

Now summing over the m columns and letting m → + ∞, we have

 x x x dx f x y dy dxlim ( ) ( ) ( , )
m i i

i

m

a

b

g x

g x

a

b

1
( )

( )

i

i

1

2∑ ∫ ∫∫φ φ∆ = = 



→+∞

=

 

  f x y dydx( , )
g x

g x

a

b

( )

( )

i

i

1

2∫∫=   (54.4)

Although we shall not use the brackets hereafter, it must be clearly understood that (54.4) calls for the 
evaluation of two simple definite integrals in a prescribed order: first, the integral of f (x, y) with respect to 
y (considering x as a constant) from y = g1(x), the lower boundary of R, to y = g2(x), the upper boundary of 
R, and then the integral of this result with respect to x from the abscissa x = a of the leftmost point of R to 
the abscissa x = b of the rightmost point of R. The integral (54.4) is called an iterated or repeated integral.

It will be left as an exercise to sum first for the contributions of the rectangles lying in each row and then 
over all the rows to obtain the equivalent iterated integral

 f x y dx dy( , )
h y

h y

c

d

( )

( )

1

2∫∫   (54.5)

where x = h1(y) and x = h2(y) are the equations of the plane arcs MKN and MLN, respectively.
In Problem 1, it is shown by a different procedure that the iterated integral (54.4) measures the volume 

under discussion. For the evaluation of iterated integrals, see Problems 2–6.
The principal difficulty in setting up the iterated integrals of the next several chapters will be that of  

inserting the limits of integration to cover the region R. The discussion here assumed the simplest of regions; 
more complex regions are considered in Problems 7–9.

SOLVED PROBLEMS

 1. Let z = f (x, y) be nonnegative and continuous over the region R of the xy-plane whose boundary consists of the 
arcs of two curves y = g1(x) and y = g2(x) intersecting at the points K and L, as in Fig. 54-4. Find a formula for the 
volume V under the surface z = f (x, y).
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Fig. 54-4

Let the section of this volume cut by a plane x = xi, where a < xi < b, meet the boundary of R at the points  
S(xi, g1(xi)) and T(xi, g2(xi)), and let it meet the surface z = f (x, y) in the arc UV along which z = f (xi, y). The area  
of this section STUV is given by

 A x f x y dy( ) ( , )i ig x

g x

( )

( )

i

i

1

2∫= .

 Thus, the areas of cross sections of the volume cut by planes parallel to the yz-plane are known functions 

A x f x y dy( ) ( , )
g x

g x

( )

( )

i

i

1

2∫=  of x, where x is the distance of the sectioning plane from the origin. By the cross-section 

formula of Chapter 30, the required volume is given by

 V A x dx f x y dy dx( ) ( , )
a

b

g x

g x

a

b

( )

( )

i

i

1

2∫ ∫∫= = 





.

This is the iterated integral of (54.4).

In Problems 2–6, evaluate the integral on the left.

 2. dydx y dx x x dx
x x

[ ] ( )
2 3

1
6x

x

x
x

0

1

0

1
2

2 3

0

1

2
2∫∫ ∫ ∫= = − = −





=  

 3. x y dx dy x xy dy y dy y( ) [ ] 6 [2 ] 14
y

y

y
y

3

1

2
1
2

2 3

1

2
2

1

2
3

1
2∫∫ ∫ ∫+ = + = = =  

 4. x dydx xy dx x x x x dx[ ] ( 2 2 )
x

x x

x
x x

2 21

2

2 21

2
3 2 3

1

2
9
42

2

2

2∫∫ ∫ ∫= = + − + =
−

+

− −
+

− −
 

 5. d d d dsin [ sin ]
1
2

cos sin [ cos ]
0

cos

0

1
2

2
0
cos

0

2

0

1
6

3
0

1
3∫∫ ∫ ∫ρ θ ρ θ ρ θ θ θ θ θ θ= = = − =

θπ
θ

π π
π  

 6. d d d d
1
4

(64 cos 4)

64
3
8

sin
4

sin 4
32

40 10

3

2

4 cos

0

/2
4

2

4 cos

0

/2
4

0

/2

0

/2

∫∫ ∫ ∫ρ ρ θ ρ θ θ θ

θ θ θ π

= 





= −

= + +



 −





=

θπ
θ

π π

π

 

 7. Evaluate dA
R
∫∫ , where R is the region in the first quadrant bounded by the semicubical parabola y2 = x3 and the 

line y = x.
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The line and parabola intersect in the points (0, 0) and (1, 1), which establish the extreme values of x and y on 
the region R.

Solution 1 (Fig. 54-5): Integrating first over a horizontal strip, that is, with respect to x from x = y (the line) 
to x = y2/3 (the parabola), and then with respect to y from y = 0 to y = 1, we get

 dA dx dy y y dy y y( ) [ ]
R

y

y

0

1
2/3

0

1
3
5

5/3 1
2

2
0
1 1

10

2/3

∫∫ ∫∫ ∫= = − = − =  

Fig. 54-5

Solution 2 (Fig. 54-6): Integrating first over a vertical strip, that is, with respect to y from y = x3/2 (the 
parabola) to y = x (the line), and then with respect to x from x = 0 to x = 1, we obtain

 dA dydx x x dx x x( ) [ ]
R

x

x

0

1
3/2

0

1
1
2

2 2
5

5/2
0
1 1

103/2∫∫ ∫∫ ∫= = − = − =  

Fig. 54-6

 8. Evaluate dA
R
∫∫  where R is the region between y = 2x and y = x2 lying to the left of x = 1.

Integrating first over the vertical strip (see Fig. 54-7), we have

 dA dydx x x dx(2 )
R

x

x2

0

1
2

0

1
2
32∫∫ ∫∫ ∫= = − =  

Fig. 54-7
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When horizontal strips are used (see Fig. 54-8), two iterated integrals are necessary. Let R1 denote the part of 
R lying below AB, and R2 the part above AB. Then

 dA dA dA dx dy dx dy
R R R

y

y

y/2 /2

1
5

12
1
4

2
3

1

2

0

1

1 2

∫∫ ∫∫ ∫∫ ∫ ∫∫∫= + = + = + =  

Fig. 54-8

 9. Evaluate x dA
R

2∫∫  where R is the region in the first quadrant bounded by the hyperbola xy = 16 and the lines  

y = x, y = 0, and x = 8. (See Fig. 54-9.)

Fig. 54-9

 It is evident from Fig. 54-9 that R must be separated into two regions, and an iterated integral evaluated for 
each. Let R1 denote the part of R lying above the line y = 2, and R2 the part below that line. Then

 

∫∫ ∫∫ ∫∫ ∫∫ ∫∫

∫ ∫ ( )

= + = +

= −





+ − =

x dA x dA x dA x dx dy x dx dy

y
y dy y dy

1
3

16 1
3

8 448.

R R R
y

y

y

2 2 2 2
16/

2

4
2

8

0

2

3

3
3

2

4
3 3

0

2

1 2

 

As an exercise, you might separate R with the line x = 4 and obtain

 x dA x dydx x dydx
R

x x
2 2

00

4
2

0

16/

4

8

∫∫ ∫∫ ∫∫= + .

10. Evaluate e dx dyx

y3

3

0

1
2∫∫  by first reversing the order of integration.

The given integral cannot be evaluated directly, since e dxx2∫  is not an elementary function. The region R of 
integration (see Fig. 54-10) is bounded by the lines x = 3y, x = 3, and y = 0. To reverse the order of integration, 
first integrate with respect to y from y = 0 to y = x/3, and then with respect to x from x = 0 to x = 3. Thus,

 

e dx dy e dydx e y dx

e x dx e e

[ ]

1
3

[ ] ( 1)

x

y

x
x

x x

x x

3

3

0

1

0

/3

0

3

0
/3

0

3

0

3
1
6 0

3 1
6

9

2 2 2

2 2

∫∫ ∫∫ ∫

∫

= =

= = = −
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511CHAPTER 54 Double and Iterated Integrals

Fig. 54-10

SUPPLEMENTARY PROBLEMS

11. Evaluate the iterated integral at the left:

(a) dx dy 1
1

2

0

1

∫∫ =   (b) x y dx dy( ) 9
0

3

0

2

∫∫ + =  

(c) x y dydx( )2 2

1

2

2

4
70
3∫∫ + =   (d) xy dydx

x

x
2

0

1
1
402∫∫ =  

(e) x y dx dy/
y

2

01

2
3
4

3/2

∫∫ =   (f ) x y dydx( )
x

x
3

0

1
7

60∫∫ + =  

(g) xe dydx e 1y
x

00

1
1
2

2

∫∫ = −   (h) ydx dy
y

y8

2

4
32
3∫∫ =

−
 

(i) d d 3
0

2sec

0

tan (3/2)1

∫∫ ρ ρ θ =
θ−

  ( j) d dcos2

0

2

0

/2
8
3∫∫ ρ θ ρ θ =

π
 

(k) d dcos3 2

0

tan sec

0

/4
1
20∫∫ ρ θ ρ θ =

θ θπ
  (l) d dcos3 2

0

1 cos

0

2
49
32∫∫ ρ θ ρ θ π=

θπ −
 

12. Using an iterated integral, evaluate each of the following double integrals. When feasible, evaluate the iterated 
integrals in both orders.

(a) x over the region bounded by y = x2 and y = x3 Ans. 1
20  

(b) y over the region of part (a)   Ans. 1
35  

(c) x2 over the region bounded by y = x, y = 2x, and x = 2 Ans. 4
(d) 1 over each first-quadrant region bounded by 2y = x2, y = 3x, and x + y = 4 Ans. 8

3 ; 46
3  

(e) y over the region above y = 0 bounded by y2 = 4x and y2 = 5 - x Ans. 5

(f ) 
y y

1

2 2−
 over the region in the first quadrant bounded by x2 = 4 - 2y Ans. 4

13. In Problem 11(a–h), reverse the order of integration and evaluate the resulting iterated integral.
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513

CHAPTER 55

Centroids and Moments of  
Inertia of Plane Areas

PLANE AREA BY DOUBLE INTEGRATION

If f (x, y) = 1, the double integral of Chapter 54 becomes dA
R
∫∫ . In cubic units, this measures the volume of a 

cylinder of unit height; in square units, it measures the area A of the region R.
In polar coordinates

 A dA d d
R

( )

( )

2

2∫∫ ∫∫ ρ ρ θ= =
ρ θ

ρ θ

α

β
 

where q = a, q = b, r = r1(q), and r = r2(q) are chosen as boundaries of the region R.

CENTROIDS

The centroid x y( , ) of a plane region R is intuitively thought of in the following way. If R is supposed to  
have a uniform unit density, and if R is supported from below at the point x y( , ), then R will balance (that is, 
R will not rotate at all).

To locate x y( , ), first consider the vertical line x x= . If we divide R into subregions R1, . . . , Rn of areas 
∆1A, . . . , ∆n A as in Chapter 54, and if we select points (xk, yk) in each Rk, then the moment (rotational force) 
of Rk about the line x x=  is approximately x x A( )k k− ∆ . So, the moment of R about x x=  is approximately 

x x A( )k
k

n

k
1

∑ − ∆
=

. Making the partition of R finer and finer, we get x x dA( )
R
∫∫ −  as the moment of R about  

x x= . In order to have no rotation about x x= , we must have x x dA( ) 0
R
∫∫ − = . But

 x x dA x dA x dA x dA x dA( )
R R R R R
∫∫ ∫∫ ∫∫ ∫∫ ∫∫− = − = −  

Hence, we must have x dA x dA
R R
∫∫ ∫∫= . Similarly, we get ydA y dA

R R
∫∫ ∫∫= . So, the centroid is determined by 

the equations

 x dA x dA ydA y dAand
R R R R
∫∫ ∫∫ ∫∫ ∫∫= =

Note that dA
R
∫∫  is equal to the area A of the region R.
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MOMENTS OF INERTIA

The moments of inertia of a plane region R with respect to the coordinate axes are given by

 I y dA I x dAandx

R

y

R

2 2∫∫ ∫∫= =

The polar moment of inertia (the moment of inertia with respect to a line through the origin and perpendicular 
to the plane of the area) of a plane region R is given by

 I I I x y dA( )x y

R

0
2 2∫∫= + = +

SOLVED PROBLEMS

 1. Find the area bounded by the parabola y = x2 and the line y = 2x + 3.
 Using vertical strips (see Fig. 55-1), we have

 A dydx x x dx(2 3 ) 32/3 square units
x

x2 3

1

3
2

1

3

2∫∫ ∫= = + − =
+

− −
 

Fig. 55-1

 2. Find the area bounded by the parabolas y2 = 4 - x and y2 = 4 - 4x.
 Using horizontal strips (Fig. 55-2) and taking advantage of symmetry, we have

 

A dx dy y y dy

y dy

2 2 [(4 ) (1 )]

6 (1 ) 8 sqare units

y

y

1 /4

4

0

2
2

0

2
1
4

2

1
4

2

0

2

2

2

∫∫ ∫

∫

= = − − −

= − =

−

−

 

Fig. 55-2
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 3. Find the area outside the circle r = 2 and inside the cardiod r = 2(1 + cos q).
Owing to symmetry (see Fig. 55-3), the required area is twice that swept over as q varies from q = 0 to 

1
2θ π= . Thus,

 
A d d d d2 2 [ ] 4 (2cos cos )

4[sin sin 2 ] ( 8) sqare units

2

2(1 cos )

0

/2
1
2

2
2
2(1 cos )

0

/2
2

0

/2

1
2

1
4 0

/2

∫∫ ∫ ∫ρ ρ θ ρ θ θ θ θ

θ θ θ π

= = = +

= + + = +

θπ
θ

π π

π

+
+

 

Fig. 55-3

 4. Find the area inside the circle r = 4 sin q and outside the lemniscate r2 = 8 cos 2q.
The required area is twice that in the first quadrant bounded by the two curves and the line 1

2θ π= . Note in  
Fig. 55-4 that the arc AO of the lemniscate is described as q  varies from q = p/6 to q = p/4, while the arc AB of 
the circle is described as q varies from q = p/6 to q = p/2. This area must then be considered as two regions, one 
below and one above the line q = p/4. Thus,

 

A d d d d

d d

2 2

(16sin 8cos2 ) 16sin

( 4 3 4) square units

0

4sin

/4

/2

2 2cos2

4sin

/6

/4

2

/6

/4
2

/4

/2

8
3

∫∫∫∫

∫ ∫

ρ ρ θ ρ ρ θ

θ θ θ θ θ

π

= +

= − +

= + −

θ

π

π

θ

θ

π

π

π

π

π

π  

Fig. 55-4

 5. Evaluate N e dxx

0

2∫=
+∞

− . (See Fig. 55-5.)

Since e dx e dyx y

0 0

2 2∫ ∫=−
+∞

−
+∞

, we have

 N e dx e dy e dx dy e dAx y x y x y

R

2

0 0 0

( )

0

( )2 2 2 2 2 2∫ ∫ ∫ ∫ ∫∫= = =−
+∞

−
+∞ +∞

− +
+∞

− +  

Changing to polar coordinates, (x2 + y2) = r 2, dA = r dr dr yields

 N e d d e d dlim
1
2

1
2 4a

a

2

00

/2

0

/2

0
0

/2
2 2∫∫ ∫ ∫ρ ρ θ θ θ π= = −





= =ρ
π

ρ
π π

−
+∞

→ +∞
−  

and N /2π= .
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Fig. 55-5

 6. Find the centroid of the plane area bounded by the parabola y = 6x - x2 and the line y = x. (See Fig. 55-6.)

 

A dA dydx x x dx

M x dA x dydx x x dx

M ydA ydydx x x x dx

(5 )
125

6

(5 )
625
12

1
2

[(6 ) ]
625
6

R
x

x x

y

R
x

x x

x

R
x

x x

6
2

0

5

0

5

2 3

0

56

0

5

6

0

5
2 2 2

0

5

2

2

2

∫∫ ∫ ∫∫

∫∫ ∫∫∫

∫∫ ∫∫ ∫

= = = − =

= = = − =

= = = − − =

−

−

−

 

Hence, x M A/y
5
2= = , y M A/ 5x= = , and the coordinates of the centroid are ( ,5)5

2 .

Fig. 55-6

 7. Find the centroid of the plane area bounded by the parabolas y = 2x - x2 and y = 3x2 - 6x. (See Fig. 55-7.)

 

A dA dydx x x dx

M x dA x dydx x x dx

M ydA ydydx x x x x dx

(8 4 )
16
3

(8 4 )
16
3

1
2

[(2 ) (3 6 ) ]
64
15

R
x x

x x

y

R
x x

x x

x

R
x x

x x

3 6

2
2

0

2

0

2

2 3

0

2

3 6

2

0

2

3 6

2

0

2
2 2 2 2

0

2

2

2

2

2

2

2

∫∫ ∫ ∫∫

∫∫ ∫∫∫

∫∫ ∫∫ ∫

= = = − =

= = = − =

= = = − − − = −

−

−

−

−

−

−

 

 Hence, x M A/ 1y= = , y M A/x
4
5= = − , and the centroid is (1, )4

5− .

 8. Find the centroid of the plane area outside the circle r = 1 and inside the cardiod r = 1 + cos q.

Fig. 55-7
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From Fig. 55-8 it is evident that y 0=  and that x is the same whether computed for the given area or for the 
half lying above the polar axis. For the latter area,

 

A dA d d d

M x dA d d d

1
2

[(1 cos ) 1 ]
8

8

( cos )
1
3

(3cos 3cos cos )

1
3

3
2

3
4

sin 2 3sin sin
3
8

1
4

sin 2
1

32
sin 4

15 32
48

R
x

y

R

1 cos
2 2

0

/2

0

/2

2 3 4

0

/2

1

1 cos

0

/2

3

0

/2

∫∫ ∫ ∫∫

∫∫ ∫∫∫

ρ ρ θ θ θ π

ρ θ ρ ρ θ θ θ θ θ

θ θ θ θ θ θ θ π

= = = + − = +

= = = + +

= + + − + + +





= +

θ ππ

πθπ

π

+

+

The coordinates of the centroid are 
15 32
6( 8)

,0
π
π

+
+





 .

Fig. 55-8

 9. Find the centroid of the area inside r = sin q and outside r = 1 - cos q. (See Fig. 55-9.)

 

A dA d d d

M x dA d d

d

M y dA d d

d

1
2

(2cos 1 cos 2 )
4

4

( cos )

1
3

(sin 1 3cos 3cos cos )cos
15 44

48

( sin )

1
3

(sin 1 3cos 3cos cos )sin
3 4

48

R

y

R

x

R

1 cos

sin

0

/2

0

/2

1 cos

sin

0

/2

3

0

/2
2 3

1 cos

sin

0

/2

3

0

/2
2 3

∫∫ ∫ ∫∫

∫∫ ∫∫

∫

∫∫ ∫∫

∫

ρ ρ θ θ θ θ π

ρ θ ρ ρ θ

θ θ θ θ θ θ π

ρ θ ρ ρ θ

θ θ θ θ θ θ π

= = = − − = −

= =

= − + − + = −

= =

= − + − + = −

θ

θ ππ

θ

θπ

π

θ

θπ

π

−

−

−

Fig. 55-9

The coordinates of the centroid are 
15 44
12(4 )

,
3 4

12(4 )
π

π
π

π
−
−

−
−





 .
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10. Find Ix, Iy, and I0 for the area enclosed by the loop of y2 = x2(2 - x). (See Fig. 55-10.)

 
A dA dy dx x x dx

z z dz z z

2 2 2

4 (2 ) 4
2
3

1
5

32 2
15

R

x x

0

2

0

2

0

2

2 4 3 5

2

0

2

0

∫∫ ∫∫ ∫

∫

= = = −

= − − = − −





=

−

 

Fig. 55-10

where we have used the transformation 2 - x = z2. Then
 

I y dA y dydx x x dx

z z dz z z z z A

I x dA x dydx x x dx

z z dz z z z z A

I I I A

2
2
3

(2 )

4
3

(2 )
4
3

8
5

12
7

2
3

1
11

2048 2
3465

64
231

2 2 2

4 (2 ) 4
8
3

12
5

6
7

1
9

1024 2
315

32
21

13,312 2
3465

416
231

x

R

x x

y

R

x x

x y

2 2

0

2

0

2
3 3/2

0

2

2 3 4 5 7 9 11

2

0

2

0

2 2 3

0

2

0

2

0

2

2 3 2 3 5 7 9

2

0

2

0

0

∫∫ ∫∫ ∫

∫

∫∫ ∫∫∫

∫

= = = −

= − − = − − + −





= =

= = = −

= − − = − − + −





= =

= + = =

−

−

 

11. Find Ix, Iy, and I0 for the first-quadrant area outside the circle r = 2a and inside the circle r = 4a cos q. (See  
Fig. 55-11.)

 

A dA d d a a d a

I y dA d d a a d

a d a a A

I x dA d d a a A

I I I a a A

1
2

[(4 cos ) (2 ) ]
2 3 3

3

( sin )
1
4

[(4 cos ) (2 ) ]sin

4 (16cos 1)sin
4 9 3

6
4 9 3

2(2 3 3)

( cos )
12 11 3

2
3(12 11 3)
2(2 3 3)

20 21 3
3

20 21 3
2 3 3

R

a

x

R
a

a

y

R
a

a

x y

2

4 cos

0

/3
2 2

0

/3
2

2 2

2

4 cos

0

/3

0

/3
4 4 2

4 4 2

0

/3
4 2

2 2

2

4 cos

0

/3
4 2

0
4 2

∫∫ ∫∫ ∫

∫∫ ∫∫ ∫

∫

∫∫ ∫∫

ρ ρ θ θ θ π

ρ θ ρ ρ θ θ θ θ

θ θ θ π π
π

ρ θ ρ ρ θ π π
π

π π
π

= = = − = +

= = = −

= − = + = +
+

= = = + = +
+

= + = + = +
+

θπ π

θπ π

π

θπ

Fig. 55-11
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12. Find Ix, Iy, and I0 for the area of the circle r = 2(sin q + cos q). (See Fig. 55-12.)

Since x2 + y2 = r 2,

 
I x y dA d d d

A

( ) 4 (sin cos )

4[ cos2 sin 4 ] 6 3

R

0
2 2 2

0

2(sin cos )

/4

3 /4
4

/4

3 /4

3
2

1
8 1/4

3/4

∫∫∫∫ ∫ρ ρ ρ θ θ θ θ

θ θ θ π

= + = = +

= − − = =

θ θ

π

π

π

π

π
π

+

− −

−

 

It is evident from Fig. 55-12 that Ix = Iy. Hence, I I I Ax y
1
2 0

3
2= = = .

Fig. 55-12

 SUPPLEMENTARY PROBLEMS

13. Use double integration to find the area.

(a) Bounded by 3x + 4y = 24, x = 0, y = 0 Ans. 24 square units
(b) Bounded by x + y = 2, 2y = x + 4, y = 0 Ans. 6 square units
(c) Bounded by x2 = 4y, 8y = x2 + 16  Ans. 32

3  square units
(d) Within r = 2(1 - cos q)   Ans. 6p square units
(e) Bounded by r = tan q sec q and q = p/3 Ans. 31

2  square units
(f) Outside r = 4 and inside q = 8 cos q  Ans. 8( 3)2

3 π +  square units

14. Locate the centroid of each of the following areas.

(a) The area of Problem 13(a)   Ans. ( ,2)8
3

(b) The first-quadrant area of Problem 13(c) Ans. ( , )3
2

8
5  

(c) The first-quadrant area bounded by y2 = 6x, y = 0, x = 6 Ans. ( , )18
5

9
4  

(d) The area bounded by y2 = 4x, x2 = 5 - 2y, x = 0 Ans. ( , )13
40

26
15  

(e) The first-quadrant area bounded by x2 - 8y + 4 = 0, x2 = 4y, x = 0 Ans. ( , )3
4

2
5  

(f) The area of Problem 13(e)   Ans. ( 3, )1
2

6
5  

(g) The first-quadrant area of Problem 13(f  ) Ans. 
16 6 3
2 3 3

,
22

2 3 3
π
π π

+
+ +







 

15. Verify that g g d d d dA
1
2

[ ( ) ( )] ; then infer that
g

g

R

2
2

1
2

( )

( )

1

2∫∫ ∫∫∫ θ θ θ ρ ρ θ− = =
θ

θ

α

β

α

β

 f x y dA f d d( , ) ( cos , sin )
R R
∫∫ ∫∫ ρ θ ρ θ ρ ρ θ=  

16. Find Ix and Iy for each of the following areas:

(a) The area of Problem 13(a)   Ans. I A I A6 ;x y
32
3= =  

(b) The area cut from y2 = 8x by its latus rectum Ans. I A I A;x y
16
5

12
7= =

(c) The area bounded by y = x2 and y = x  Ans. I A I A;x y
3

14
3

10= =  

(d) The area bounded by y = 4x - x2 and y = x Ans. I A I A;x y
459
70

27
10= =  
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17. Find Ix and Iy for one loop of r2 = cos 2 q.

Ans. I A I A
16

1
6

;
16

1
6x y

π π= −



 = +





18. Find I0 for (a) the loop of q = sin 2 q and (b) the area enclosed by q = 1 + cos q.

Ans. (a) A3
8 ; (b) A35

24

19. (a)     Let the region R shown in Fig. 55-13 have area A and centroid x y( , ). If R is revolved about the x-axis, show 
that the volume V of the resulting solid of revolution is equal to xA2π . (Hint: Use the method of cylindrical 
shells.)

(b) Prove the Theorem of Pappus: if d is the distance traveled by the centroid during the revolution [of part (a)], 
show that V = Ad.

(c) Prove that the volume of the torus generated by revolving the disk shown in Fig. 55-14 about the x-axis is 
2 p2a2b. (It is assumed that 0 < a < b.)

  

   Fig. 55-13  Fig. 55-14
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CHAPTER 56

Double Integration Applied to 
Volume Under a Surface and the 

Area of a Curved Surface

Let z = f (x, y) or z = f (r, q) define a surface.
The volume V under the surface, that is, the volume of a vertical column whose upper base is in the surface 

and whose lower base is in the xy-plane, is given by the double integral

 V z dA
R
∫∫=   (56.1)

where R is the region forming the lower base.
The area S of the portion R* of the surface lying above the region R is given by the double integral

 S
z
x

z
y

dA1
R

2 2

∫∫= + ∂
∂







+ ∂
∂







  (56.2)

If the surface is given by x = f (y, z) and the region R lies in the yz-plane, then

 S
x
y

x
z

dA1
R

2 2

∫∫= + ∂
∂







+ ∂
∂







  (56.3)

If the surface is given by y = f (x, z) and the region R lies in the xz-plane, then

 S
y
x

y
z

dA1
R

2 2

∫∫= + ∂
∂







+ ∂
∂







  (56.4)

SOLVED PROBLEMS

 1. Find the volume in the first octant between the planes z = 0 and z = x + y + 2, and inside the cylinder x2 + y2 = 16.
From Fig. 56-1, it is evident that z = x + y + 2 is to be integrated over a quadrant of the circle x2 + y2 = 16 in 

the xy-plane. Hence,

V z dA x y dy dx x x x x dx

x x
x

x x x

( 2) 16 8
1
2

2 16

1
3

(16 ) 8
6

16 16sin
1
4

128
3

8 cubic units

R

x

0

16
2 2 2

0

4

0

4

2 3/2
3

2 1

0

4

2

∫∫ ∫ ∫∫

π

= = + + = − + − + −





= − − + − + − +





= +





−

−
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x

O
y

(4, 0, 0)

z

Fig. 56-1

 2. Find the volume bounded by the cylinder x2 + y2 = 4 and the planes y + z = 4 and z = 0.
From Fig. 56-2, it is evident that z = 4 - y is to be integrated over the circle x2 + y2 = 4 in the xy-plane. Hence,

V y dx dy y dx dy(4 ) 2 (4 ) 16 cubic units
y

y y

4

4

2

2

0

4

2

2

2

2 2

∫∫ ∫∫ π= − = − =
− −

−

−

−

−
 

 3. Find the volume bounded above by the paraboloid x2 + 4y2 = z, below by the plane z = 0, and laterally by the 
cylinders y2 = x and x2 = y. (See Fig. 56-3.)

The required volume is obtained by integrating z = x2 + 4y2 over the region R common to the parabolas y2 = x 
and x2 = y in the xy-plane. Hence,

V x y dy dx x y y dx( 4 )
4
3

cubic units
x

x

x

x

2 2 2 3

0

1
3
7

0

1

2
2

∫ ∫∫= + = +





=  

  x

O

z

y

 

O

x

y

z

(1, 1, 0)

    Fig. 56-2   Fig. 56-3

 4. Find the volume of one of the wedges cut from the cylinder 4x2 + y2 = a2 by the planes z = 0 and z = my. (See 
Fig. 56-4.)

The volume is obtained by integrating z = my over half the ellipse 4x2 + y2 = a2. Hence,

V my dy dx m y dx
ma

2 [ ]
3

cubic units
a xa

a x
a

0

4

0

/2
2

0
4

0

/2 32 2
2 2∫∫ ∫= = =

−
−  

56_Mendelson_ch56_p521-530.indd   522 27/07/21   11:28 AM



523CHAPTER 56 Double Integration Applied to Volume

yO

( 1 a, 0, 0)

z

x

2

Fig. 56-4

 5. Find the volume bounded by the paraboloid x2 + y2 = 4z, the cylinder x2 + y2 = 8y, and the plane z = 0. (See 
Fig. 56-5.)

The required volume is obtained by integrating z x y( )1
4

2 2= +  over the circle x2 + y2 = 8y. Using cylindrical 
coordinates (see Chapter 57), the volume is obtained by integrating z 1

4
2ρ=  over the circle r = 8 sin q. Then

V z dA z d d d d

d d

1
4

1
16

[ ] 256 sin 96 cubic units

R
0

8sin

0

3

0

8sin

0

4
0
8sin

0

4

0

∫∫ ∫∫ ∫∫

∫ ∫

ρ ρ θ ρ ρ θ

ρ θ θ θ π

= = =

= = =

θπ θπ

θ
π π

 

 6. Find the volume removed when a hole of radius a is bored through a sphere of radius 2a, the axis of the hole 
being a diameter of the sphere. (See Fig. 56-6.)

   

    Fig. 56-5   Fig. 56-6

From the figure, it is obvious that the required volume is eight times the volume in the first octant bounded 
by the cylinder r 2 = a2, the sphere r 2 + z2 = 4a2, and the plane z = 0. The latter volume is obtained by integrating 

z a4 2 2ρ= −  over a quadrant of the circle r = a. Hence,

V a d d a a d a8 4
8
3

(8 3 3 ) (8 3 3) cubic units
a

2 2

00

/2
3 3

0

/2
4
3

3∫∫ ∫ρ ρ ρ θ θ π= − = − = −
π π

 

 7. Derive formula (56.2).
Consider a region R* of area S on the surface z = f (x, y). Through the boundary of R* pass a vertical cylinder 

(see Fig. 56-7), cutting the xy-plane in the region R. Now divide R into n subregions R1, . . . , Rn of areas ∆ A1, . . . , 
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524 CHAPTER 56 Double Integration Applied to Volume

∆  A
n
, and denote by ∆ S

i
 the area of the projection of ∆  A

i
 on R*. In that ith subregion of R*, choose a point P

i
 and 

draw there the tangent plane to the surface. Let the area of the projection of R
i
 on this tangent plane be denoted 

by ∆ T
i
. We shall use ∆ T

i
 as an approximation of the corresponding surface area ∆ S

i
.

Pi

Ri

R*

O
y

x

z

Fig. 56-7

Now the angle between the xy-plane and the tangent plane at Pi is the angle  i between the z-axis with 

direction numbers [0, 0, 1] and the normal, 
f
x

f
y

z
x

z
y

, ,1 , ,1 ,− ∂
∂ − ∂

∂






= − ∂
∂ − ∂

∂






 to the surface at Pi. Thus,

z
x

z
y

cos
1

1

i 2 2
γ =

∂
∂







+ ∂
∂







+
 

Then (see Fig. 56-8)

T Acosi i iγ∆ = ∆    and   T Aseci i iγ∆ = ∆  

γi

γi

∆Ai

∆Ti

Pi

Fig. 56-8

Hence, an approximation of S is T Aseci
i

n

i i
i

n

1 1
∑ ∑ γ∆ = ∆

= =

, and

S A dA
z
x

z
y

dAlim sec sec 1
n i i

i

n

R R1

2 2

∑ ∫∫ ∫∫γ γ= ∆ = = ∂
∂







+
∂
∂







+
→+∞

=
 

 8. Find the area of the portion of the cone x2 + y2 = 3z2 lying above the xy-plane and inside the cylinder x2 + y2 = 4y.
Solution 1: Refer to Fig. 56-9. The projection of the required area on the xy-plane is the region R enclosed by 

the circle x2 + y2 = 4y. For the cone,

z
x

x
z

1
3

∂
∂ =  and 

z
y

y
z

1
3

.
∂
∂ =   So  

z
x

z
y

z x y
z

z
z

1
9

9
12
9

4
3

2 2 2 2 2

2

2

2+ ∂
∂







+ ∂
∂







= + + = =  
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O

x

y

z

(0, 4,        )3
3

4

Fig. 56-9

Then S
z
x

z
y

dA dx dy dx dy

y y dy

1
2

3
2

2

3

4

3
4

8 3
3

square units

R
y y

y y y y
2 2

4

4

0

4

0

4

0

4

2

0

4

2

2 2

∫∫ ∫∫ ∫∫

∫ π

= + ∂
∂







+ ∂
∂







= =

= − =

− −

− −

 

Solution 2: Refer to Fig. 56-10. The projection of one-half the required area on the yz-plane is the region R 
bounded by the line y z3=  and the parabola y z3

4
2= , the latter having been obtained by eliminating x from the 

equations of the two surfaces. For the cone,

x
y

y
x

∂
∂ = −    and   

x
z

z
x

3
.

∂
∂ =    So    

x
y

x
z

x y z
x

z
x

z
z y

1
9 12 12

3
.

2 2 2 2 2

2

2

2

2

2 2+ ∂
∂







+ ∂
∂







= + + = = −  

Then S
z

z y
dz dy z y dy y y dy2

2 3

3

4 3
3

[ 3 ]
4 3

3
4 .

y

y

y

y

2 2/ 3

2 / 3

0

4
2 2

/ 3

2 / 3

0

4
2

0

4

∫∫ ∫ ∫=
−

= − = −

 

Fig. 56-10

Solution 3: Using polar coordinates in solution 1, we must integrate 
z
x

z
y

1
2

3

2 2

+ ∂
∂







+ ∂
∂







=  over the region 
R enclosed by the circle r = 4 sin q. Then

S dA d d d

d

2

3

2

3

1

3
[ ]

16

3
sin

8 3
3

square units

R
0

4sin
2

0
4sin

00

2

0

∫ ∫∫∫∫

∫

ρ ρ θ ρ θ

θ θ π

= = =

= =

θ
θ

ππ

π
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 9. Find the area of the portion of the cylinder x2 + z2 = 16 lying inside the cylinder x2 + y2 = 16.
Fig. 56-11 shows one-eighth of the required area, its projection on the xy-plane being a quadrant of the circle 

x2 + y2 = 16. For the cylinder x2 + z2 = 16,

z
x

x
z

z
y

z
x

z
y

x z
z x

and 0. So 1
16

16
.

2 2 2 2

2 2

∂
∂ = − ∂

∂ = + ∂
∂







+ ∂
∂







= + = −  

Then S
x

dy dx dx8
4

16
32 128 square units

x

2 0

4

0

16

0

4 2

∫∫∫=
−

= =
−

 

10. Find the area of the portion of the sphere x2 + y2 + z2 = 16 outside the paraboloid x2 + y2 + z = 16.
Fig. 56-12 shows one-fourth of the required area, its projection on the yz-plane being the region R bounded by 

the circle y2 + z2 = 16, the y- and z-axes, and the line z = 1. For the sphere,

x
y

y
x

x
z

z
x

x
y

x
z

x y z
x y z

and . So 1
16

16
.

2 2 2 2 2

2 2 2

∂
∂ = − ∂

∂ = − + ∂
∂







+ ∂
∂







= + + = − −

 

O y

z

x

(4, 0, 0)

 

O

x

y

z

(0, √15, 1)

    Fig. 56-11   Fig. 56-12

Then S
x
y

x
z

dA
y z

dy dz

y

z
dz dz

4 1 4
4

16

16 sin
16

16
2

8 square units

z

R

z

2 2

2 20

16

0

1

1
2

0

16

0

1

0

1

2

2

∫∫∫∫

∫ ∫
π π

= + ∂
∂







+ ∂
∂







=
− −

=
−



















= =

−

−

−  

11. Find the area of the portion of the cylinder x2 + y2 = 6y lying inside the sphere x2 + y2 + z2 = 36.
Fig. 56-13 shows one-fourth of the required area. Its projection on the yz-plane is the region R bounded by the 

z- and y-axes and the parabola z2 + 6y = 36, the latter having been obtained by eliminating x from the equations of 
the two surfaces. For the cylinder,

x
y

y
x

3∂
∂ = −

   and   
x
z

0.
∂
∂ =    So   

x
y

x
z

x y y
x y y

1
9 6 9

6

2 2 2 2

2 2+ ∂
∂







+ ∂
∂







= + − + = −  

Then

S
y y

dz dy
y

dy4
3

6
12

6
144 square units

y

20

36 6

0

6

0

6

∫∫ ∫=
−

= =
−
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x

O

z

y

z2 + 6y = 36,
x = 0

(0, 0, 6)

Fig. 56-13

SUPPLEMENTARY PROBLEMS

12. Find the volume cut from 9x2 + 4y2 + 36z = 36 by the plane z = 0.

Ans. 3π cubic units

13. Find the volume under z = 3x and above the first-quadrant area bounded by x = 0, y = 0, x = 4, and x2 + y2 = 25.

Ans. 98 cubic units

14. Find the volume in the first octant bounded by x2 + z = 9, 3x + 4y = 24, x = 0, y = 0, and z = 0.

Ans. 1485/16 cubic units

15. Find the volume in the first octant bounded by xy = 4z, y = x, and x = 4.

Ans. 8 cubic units

16. Find the volume in the first octant bounded by x2 + y2 = 25 and z = y.

Ans. 125/3 cubic units

17. Find the volume common to the cylinders x2 + y2 = 16 and x2 + z2 = 16.

Ans. 1024/3 cubic units

18. Find the volume in the first octant inside y2 + z2 = 9 and outside y2 = 3x.

Ans. 27π/16 cubic units

19. Find the volume in the first octant bounded by x2 + z2 = 16 and x - y = 0.

Ans. 64/3 cubic units
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20. Find the volume in front of x = 0 and common to y2 + z2 = 4 and y2 + z2 + 2x = 16.

Ans. 28π cubic units

21. Find the volume inside r = 2 and outside the cone z2 = r 2.

Ans. 32π/3 cubic units

22. Find the volume inside y2 + z2 = 2 and outside x2 - y2 - z2 = 2.

Ans. 8 (4 2) /3π −  cubic units

23. Find the volume common to r 2 + z2 = a2 and r = a sin q.

Ans. 2(3π - 4)a2/9 cubic units

24. Find the volume inside x2 + y2 = 9, bounded below by x2 + y2 + 4z = 16 and above by z = 4.

Ans. 81π/8 cubic units

25. Find the volume cut from the paraboloid 4x2 + y2 = 4z by the plane z - y = 2.

Ans. 9π cubic units

26. Find the volume generated by revolving the cardiod r = 2(1 - cos q) about the polar axis.

Ans. V y d d2 64 /3 cubic units∫∫π ρ ρ θ π= =  

27. Find the volume generated by revolving a petal of r = sin 2q about either axis.

Ans. 32π/105 cubic units

28. Find the area of the portion of the cone x2 + y2 = z2 inside the vertical prism whose base is the triangle bounded by 
the lines y = x, x = 0, and y = 1 in the xy-plane.

Ans. 2 square units1
2  

29. Find the area of the portion of the plane x + y + z = 6 inside the cylinder x2 + y2 = 4.

Ans. 4 3 square unitsπ  

30. Find the area of the portion of the sphere x2 + y2 + z2 = 36 inside the cylinder x2 + y2 = 6y.

Ans. 72(π - 2) square units

31. Find the area of the portion of the sphere x2 + y2 + z2 = 4z inside the paraboloid x2 + y2 = z.

Ans. 4π square units
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32. Find the area of the portion of the sphere x2 + y2 + z2 = 25 between the planes z = 2 and z = 4.

Ans. 20π square units

33. Find the area of the portion of the surface z = xy inside the cylinder x2 + y2 = 1.

Ans. 2 (2 2 1) /3 square unitsπ −  

34. Find the area of the surface of the cone x2 + y2 - 9z2 = 0 above the plane z = 0 and inside the cylinder x2 + y2 = 6y.

Ans. 3 10 square unitsπ  

35. Find the area of that part of the sphere x2 + y2 + z2 = 25 that is within the elliptic cylinder 2x2 + y2 = 25.

Ans. 50π square units

36. Find the area of the surface of x2 + y2 - az = 0 which lies directly above the lemniscate 4r 2 = a2 cos 2q.

Ans. S
a

a d d
a4

4
3

5
3 4

square units2 2
2

∫∫ ρ ρ ρ θ π= + = −



  

37. Find the area of the surface of x2 + y2 + z2 = 4 which lies directly above the cardioid r = 1 - cos q.

 Ans. 8[ 2 ln( 2 1)] square unitsπ − − +  
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CHAPTER 57

Triple Integrals

CYLINDRICAL AND SPHERICAL COORDINATES

Assume that a point P has coordinates (x, y, z) in a right-handed rectangular coordinate system. The corre-
sponding cylindrical coordinates of P are (r, q, z), where (r, q ) are polar coordinates for the point (x, y) in 
the xy-plane. [Note the notational change here from (r, q) to (r, q) for the polar coordinates of (x, y); see  
Fig. 57-1.] Hence, we have the relations

x r y r r x y
y
x

cos , sin , , tan2 2 2θ θ θ= = = + =  

In cylindrical coordinates, an equation r = c represents a right cylinder of radius c with the z-axis as its axis 
of symmetry. An equation q = c represents a plane through the z-axis. 

A point P with rectangular coordinates (x, y, z) has the spherical coordinates ( r, q, φ), where OP| |ρ = ,  
q is the same as in cylindrical coordinates, and φ is the directed angle from the positive z-axis to the vector 
OP. (See Fig. 57-2.) In spherical coordinates, an equation r = c represents a sphere of radius c with center at 
the origin. An equation cφ =  represents a cone with vertex at the origin and the z-axis as its axis of symmetry.

   
    Fig. 57-1   Fig. 57-2

The following additional relations, easily deduced from Fig. 57-2 and the equations above, hold among 
spherical, cylindrical, and rectangular coordinates:

r x y z

x y z

sin ,

sin cos , sin sin , cos

2 2 2 2ρ φ ρ

ρ φ θ ρ φ θ ρ φ

= = + +

= = =
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532 CHAPTER 57 Triple Integrals

THE TRIPLE INTEGRAL

Let f (x, y, z) be a continuous function on a three-dimensional region R. The definition of the double integral 

can be extended in an obvious way to obtain the definition of the triple integral f x y z dV( , , )
R

∫∫∫  .

If f (x, y, z) = 1, then f x y z dV( , , )
R

∫∫∫  may be interpreted as measuring the volume of the region R.

EVALUATION OF TRIPLE INTEGRALS

As in the case of double integrals, a triple integral can be evaluated in terms of iterated integrals.
In rectangular coordinates,

f x y z dV f x y z dz dy dx

f x y z dz dx dy

( , , ) ( , , )

( , , ) , etc.

z x y

z x y

y x

y x

a

b

R

z x y

z x y

x y

x y

c

d

( , )

( , )

( )

( )

( , )

( , )

( )

( )

1

2

1

2

1

2

1

2

∫∫∫∫∫∫

∫∫∫

=

=
 

where the limits of integration are chosen to cover the region R.
In cylindrical coordinates,

f r z dV f r z r dz dr d( , , ) ( , , )
z r

z r

r

r

R
( , )

( , )

( )

( )

1

2

1

2 ∫∫∫∫∫∫ θ θ θ=
θ

θ

θ

θ

α

β
 

where the limits of integration are chosen to cover the region R. (See Problem 23.)
In spherical coordinates,

f dV f d d d( , , ) ( , , ) sin
R

2

( , )

( , )

( )

( )

1

2

1

2 ∫∫∫∫∫∫ ρ φ θ ρ φ θ ρ φ ρ φ θ=
ρ φ θ

ρ φ θ

φ θ

φ θ

α

β
 

where the limits of integration are chosen to cover the region R. (See Problem 24.)
Discussion of the definitions: Consider the function f (x, y, z), continuous over a region R of ordinary 

space. After slicing R with planes x = xi and y = hj as in Chapter 54, let these subregions be further sliced by 
planes z = zk. The region R has now been separated into a number of rectangular parallelepipeds of volume 
DVijk = D  xi Dyj D zk and a number of partial parallelepipeds that we shall ignore. In each complete parallele-
piped, select a point Pijk(xi, yj, zk); then compute f (xi, yj, zk) and form the sum

 f x y z V f x y z x y z( , , ) ( , , )i j k ijk
i m
j n
k p

i j k i j k
i m
j n
k p

1, ,
1, ,
1, ,

1, ,
1, ,
1, ,

∑ ∑∆ = ∆ ∆ ∆
= …
= …
= …

= …
= …
= …

  (57.1)

The triple integral of f (x, y, z) over the region R is defined to be the limit of (57.1) as the number of paral-
lelepipeds is indefinitely increased in such a manner that all dimensions of each go to zero.

In evaluating this limit, we may sum first each set of parallelepipeds having D i  x and D j y, for fixed i and j, 
as two dimensions and consider the limit as each Dk z → 0. We have

f x y z z x y f x y z dz x ylim ( , , ) ( , , )
p i i k k i j

k

p

i iz

z

i j
1 1

2∑ ∫∆ ∆ ∆ = ∆ ∆
→+∞

=

 

Now these are the columns, the basic subregions, of Chapter 54; hence,

f x y z V f x y z dz dx dy f x y z dz dy dxlim ( , , ) ( , , ) ( , , )
m
n
p

i j k ijk
i m
j n
k p

R R1, ,
1, ,
1, ,

∑ ∫∫∫ ∫∫∫∆ = =
→+∞
→+∞
→+∞

= …
= …
= …
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CENTROIDS AND MOMENTS OF INERTIA

The coordinates x y z( , , ) of the centroid of a volume satisfy the relations

x dV x dV y dV ydV z dV z dV, ,
R R R R R R

∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫= = =  

The moments of inertia of a volume with respect to the coordinate axes are given by

I y z dV I z x dV I x y dV( ) , ( ) , ( )x y

RR

z

R

2 2 2 2 2 2∫∫∫∫∫∫ ∫∫∫= + = + = +  

SOLVED PROBLEMS

1. Evaluate the given triple integrals:

(a) xyz dz dy dx

xyz dz dy dx

xyz
dy dx

xy x
dy dx

xy x
dx x x x x x dx

2
(2 )

2

(2 )
4

1
4

(4 12 13 6 )
13
240

xx

xx

z

z x
x x

y

y x

0

2

0

1

0

1

0

2

0

1

0

1

2

0

2

0

1 2

0

1

0

1

0

1

2 2

0

1

0

1
2 3 4 5

0

1

∫∫∫

∫∫∫

∫ ∫∫∫

∫ ∫

( )= 





=






















= −





= −





= − + − + =

−−

−−

=

= −
− −

=

= −

 

(b) zr dz dr d

z
r dr d r dr d

r d

sin

2
sin 2 sin

2
3

[ ] sin
2
3

[cos ]
2
3

2

0

2

0

1

0

/2

2

0

1

0

2

2

0

/2
2

0

1

0

/2

3
0
1

0

/2

0
/2

∫∫∫

∫∫ ∫∫

∫

θ θ

θ θ θ θ

θ θ θ

= 





=

= = − =

π

π π

π
π 

(c) d d d

d d d

sin 2

2 sin 2 (1 2) (2 2)

0

sec

0

/4

0

1
2

00

/4

0

∫∫∫

∫∫∫

φ ρ φ θ

φ φ θ θ π= = − = −

φππ

πππ

 

2. Compute the triple integral of F(x, y, z) = z over the region R in the first octant bounded by the planes y = 0,  
z = 0, x + y = 2, 2y + x = 6, and the cylinder y2 + z2 = 4. (See Fig. 57-3.)

Integrate first with respect to z from z = 0 (the xy-plane) to z y4 2= −  (the cylinder), then with respect to x 
from x = 2 - y to x = 6 - 2y, and finally with respect to y from y = 0 to y = 2. This yields

z dV z dz dx dy z dx dy

y dx dy y x dy

[ ]

1
2

(4 )
1
2

[(4 ) ]
26
3

R

y

y

y y

y

y

y
y

y

y

0

4

2

6 2

0

2
1
2

2
0

4

2

6 2

0

2

2 2
2
6 2

0

2

2

6 2

0

2

2
2

∫∫∫ ∫∫∫ ∫∫

∫∫∫

= =

= − = − =

−

−

− −

−

−

−
−

−

−
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Fig. 57-3

 3. Compute the triple integral of f (r, q, z) = r2 over the region R bounded by the paraboloid r2 = 9 - z and the plane 
z = 0. (See Fig. 57-4.)

y

z

x

r (0, 3, 0)
O

Fig. 57-4

Integrate first with respect to z from z = 0 to z = 9 - r2, then with respect to r from r = 0 to r = 3, and finally 
with respect to q  from q = 0 to q = 2π. This yields

r dV r r dz dr d r r dr d

r r d d

( ) (9 )

9
4

1
6

243
4

243
2

R

r
2 2 3 2

0

3

0

2

0

9

0

3

0

2

4 6

0

3

0

2

0

2

2

∫∫∫ ∫∫∫∫∫

∫∫

θ θ

θ θ π

= = −

= −





= =

ππ

π

−

π

 

 4. Show that the following integrals give the same volume: (a) dz dy dx4
x y

x

( )/4

4

0

16

0

4

2 2

2

∫∫∫ +

−
, (b) dy dx dz

z xz

0

4

0

2

0

4 2

∫∫∫
−

; 

and (c) dx dz dy4
z y

y 0

4

/4

4

0

4 2

2 ∫∫∫
−

.
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(a) Here z ranges from z x y( )1
4

2 2= +  to z = 4, that is, the volume is bounded below by the paraboloid 
4z = x2 + y2 and above by the plane z = 4. The ranges of y and x cover a quadrant of the circle x2 + y2 = 16, z = 0,  
the projection of the curve of intersection of the paraboloid and the plane z = 4 on the xy-plane. Thus, the 
integral gives the volume cut from the paraboloid by the plane z = 4.

(b) Here y ranges from y = 0 to y z x4 2= − , that is, the volume is bounded on the left by the xz-plane and on 
the right by the paraboloid y2 = 4z - x2. The ranges of x and z cover one-half the area cut from the parabola 
x2 = 4z, y = 0, the curve of intersection of the paraboloid and the xz-plane, by the plane z = 4. The region R is 
that of (a).

(c) Here the volume is bounded behind by the yz-plane and in front by the paraboloid 4z = x2 + y2. The ranges 
of z and y cover one-half the area cut from the parabola y2 = 4z, x = 0, the curve of intersection of the 
paraboloid and the yz-plane, by the plane z = 4. The region R is that of (a).

 5. Compute the triple integral of F(r, q, φ) = 1/r over the region R in the first octant bounded by the cones 
4

φ π=  

and tan 21φ = −  and the sphere 6ρ = . (See Fig. 57-5.)

z

y

x

O

f2

(0, √6, 0)

f1

Fig. 57-5

Integrate first with respect to r from r = 0 to 6ρ = , then with respect to φ  from 
4

φ π=  to tan 21φ = − , and 

finally with respect to q from 0 to 
2
π

. This yields

dV d d d

d d

d

1 1
sin

3 sin

3
1

5

1

2

3
2

1

2

1

5

R

2

0

6

/4

tan 2

0

/2

/4

tan 2

0

/2

0

/2

1

1

∫∫∫ ∫∫∫

∫∫

∫

ρ ρ ρ φ ρ φ θ

φ φ θ

θ π

=

=

= − −





= −





π

π

π

π

π

−

−

 

 6. Find the volume bounded by the paraboloid z = 2x2 + y2 and the cylinder z = 4 - y2. (See Fig. 57-6.)
Integrate first with respect to z from z = 2x2 + y2 to z = 4 - y2, then with respect to y from y = 0 to y x2 2= −  

(obtain x2 + y2 = 2 by eliminating x between the equations of the two surfaces), and finally with respect to x from 
x = 0 to x 2=  (obtained by setting y = 0 in x2 + y2 = 2) to obtain one-fourth of the required volume. Thus,

V dz dydx y x y dydx

y x y
y

dx x dx

4 4 [(4 ) (2 )]

4 4 2
2
3

16
3

(2 ) 4 cubicunits

x y

y xx

x

2

4
2 2 2

0

2

0

2

0

2

0

2

2
3

0

2

0

2
2 3/2

0

2

2 2

2 22

2

∫ ∫∫∫∫

∫ ∫ π

= = − + +

= − −





= − =

+

− −−

−  
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x

x2 + y2 = 2, z = 0

y

z

O

(0, 2, 2)

( 2, 0, 4)
(0, 0, 4)

Fig. 57-6

 7. Find the volume within the cylinder r = 4 cos q bounded above by the sphere r2 + z2 = 16 and below by the plane 
z = 0. (See Fig. 57-7.)

Fig. 57-7

Integrate first with respect to z from z = 0 to z r16 2= − , then with respect to r from r = 0 to r = 4 cos q, and 
finally with respect to q  from q = 0 to q = π to obtain the required volume. Thus,

V r dz dy d r r dr d

d

16

64
3

(sin 1)
64
9

(3 4)cubicunits

r

0

16
2

0

4 cos

00

4 cos

0

3

0

2

∫ ∫∫∫∫

∫

θ θ

θ θ π

= = −

= − − = −

θπθπ

π

−

 

 8. Find the coordinates of the centroid of the volume within the cylinder r = 2 cos q, bounded above by the 
paraboloid z = r2 and below by the plane z = 0. (See Fig. 57-8.)

V r dz dr d r dr d

r d d

M x dV r r dz dr d

r dr d d

2 2

1
2

[ ] 8 cos

2 ( cos )

2 cos
64
5

cos 2

r

yz

R

r

0

2

0

2cos

0

/2

0

2cos

0

/2

4
0
2cos

0

/2
4

0

/2
3
2

00

2cos

0

/2

4 6

0

/2

0

2cos

0

/2

2

2

∫ ∫∫∫∫

∫ ∫

∫∫∫ ∫∫∫

∫∫∫

θ θ

θ θ θ π

θ θ

θ θ θ θ π

= =

= = =

= =

= = =

θπθπ

θ
π π

θπ

πθπ
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Fig. 57-8

Then x M V/yz
4
3= = . By symmetry, y 0= . Also,

M z dV zr dz dr d r dr d

d

2

32
3

cos

xy

R

r
5

0

2cos

0

/2

00

2cos

0

/2

6 5
3

0

/2

2

∫∫∫ ∫∫∫∫∫

∫

θ θ

θ θ π

= = =

= =

θπθπ

π
 

and z M V/xy
10
9= = . Thus, the centroid has coordinates ( , 0, )4

3
10
9 .

 9. For the right circular cone of radius a and height h, find (a) the centroid; (b) the moment of inertia with respect to 
its axis; (c) the moment of inertia with respect to any line through its vertex and perpendicular to its axis; (d) the 
moment of inertia with respect to any line through its centroid and perpendicular to its axis; and (e) the moment 
of inertia with respect to any diameter of its base.

Take the cone as in Fig. 57-9, so that its equation is r
a
h

z= . Then:

V r dz dr d hr
h
a

r dr d

ha d ha

4 4

2
3

1
3

hr a

h aa

/

2

00

/2

00

/2

2

0

/2
2

∫ ∫∫∫∫

∫

θ θ

θ π

= = −





= =

ππ

π
 

Fig. 57-9

57_Mendelson_ch57_p531-542.indd   537 27/07/21   11:29 AM



538 CHAPTER 57 Triple Integrals

(a) The centroid lies on the z-axis, and we have

M z dV zr dz dr d

h r
h
a

r dr d h a d h a

4

2
1
2

1
4

xy

R
hr a

ha

a

/00

/2

2
2

2
3

0

2 2

0

/2
2 2

0

/2

∫∫∫ ∫∫∫

∫ ∫∫

θ

θ θ π

= =

= −





= =

π

ππ
 

 Then z M V h/xy
3
4= = , and the centroid has coordinates (0, 0, h3

4  ).

(b) I x y dV r r dz dr d ha a V( ) 4 ( )
1

10
3

10z

R
hr a

ha
2 2 2 4 2

/00

/2

∫∫∫ ∫∫∫ θ π= + = = =
π

 

(c) Take the line as the y-axis. Then

I x z dV r z r dz dr d

hr
h
a
r h r

h
a
r dr d

ha h a h a V

( ) 4 ( cos )

4 cos
1
3

1
5

1
4

3
5

1
4

y

R
hr a

ha

a

2 2 2 2 2

/00

/2

3 4 2 3
3

3
4

00

/2

2 2 2 2 2

∫∫∫ ∫∫∫

∫∫

θ θ

θ θ

π

= + = +

= −



 + −















= +



 = +





π

π

 

(d) Let the line c through the centroid be parallel to the y-axis.

I I V h( )y c
3
4

2= +    and   I h a V h V h a V( ) ( 4 )c
3
5

1
4

2 9
16

2 3
80

22 2= + − = +  

(e) Let d denote the diameter of the base of the cone parallel to the y-axis. Then

I I V h h a V h V h a V( ) ( 4 ) (2 3 )d c
1
4

3
80

2 1
16

2 1
20

2 22 2= + = + + = +  

10. Find the volume cut from the cone 1
4φ π=  by the sphere a2 cosρ φ= . (See Fig. 57-10.)

V dV d d d

a
d d a d a

4 4 sin

32
3

cos sin 2 cubic units

R

a
2

0

2 cos

0

/4

0

/2

3
3

0

/4
3 3

0

/2

0

/2

∫∫∫ ∫∫∫

∫ ∫∫

ρ φ ρ φ θ

φ φ φ θ θ π

= =

= = =

φππ

π ππ
 

O

x

y

z

q

f r

Fig. 57-10
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11. Locate the centroid of the volume cut from one nappe of a cone of vertex angle 60° by a sphere of radius 2 whose 
center is at the vertex of the cone.

Take the surface as in Fig. 57-11, so that x = y = 0. In spherical coordinates, the equation of the cone is 

/6φ π= , and the equation of the sphere is r = 2. Then

V dV d d d d d

d

M z dV d d d

d d

4 sin
32
3

sin

32
3

3
2

1
8
3

(2 3)

4 ( cos ) sin

8 sin 2

R

xy

R

2

0

2

0

/6

0

/2

0

/6

0

/2

0

/2

2

0

2

0

/6

0

/2

0

/6

0

/2

∫∫∫ ∫ ∫∫∫∫

∫

∫∫∫ ∫∫∫

∫∫

ρ φ ρ φ θ φ φ θ

θ π

ρ φ ρ φ ρ φ θ

φ φ θ π

= = =

= − −






= −

= =

= =

ππππ

π

ππ

ππ

 

and z M V/ (2 3)xy
3
8= = + .

q

x

O
y

z

f
r

Fig. 57-11

12. Find the moment of inertia with respect to the z-axis of the volume of Problem 11.

I x y dV d d d

d d d V

( ) 4 ( sin ) sin

128
5

sin
128

5
2
3

3
8

3
8
15

(16 9 3)
5 2 3

5

z

R

2 2 2 2 2

0

2

0

/6

0

/2

3

0

/6

0

/2

0

/2

∫∫∫ ∫∫∫

∫∫ ∫

ρ φ ρ φ ρ φ θ

φ φ θ θ π

= + =

= = −



 = − = −

ππ

ππ π
 

SUPPLEMENTARY PROBLEMS

13. Describe the curve determined by each of the following pairs of equations in cylindrical coordinates:
(a) r = 1, z = 2; (b) r = 2, z = q; (c) q = π/4, r 2= ; (d) q = π/4, z = r .

Ans. (a) circle of radius 1 in plane z = 2 with center having rectangular coordinates (0, 0, 2); (b) helix on right 
circular cylinder r = 2; (c) vertical line through point having rectangular coordinates (1, 1, 0); (d) line 
through origin in plane q = π/4, making an angle of 45° with xy-plane
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14. Describe the curve determined by each of the following pairs of equations in spherical coordinates:

(a) r = 1, q = π; (b) 
4

θ π= , 
6

φ π= ; (c) r = 2, 
4

φ π= . 

Ans. (a) circle of radius 1 in xz-plane with center at origin; (b) half line on intersection of plane q = π/4 and 
cone /6φ π= ; (c) circle of radius 2  in plane z 2=  with center on z-axis

15. Transform each of the following equations in either rectangular, cylindrical, or spherical coordinates into 
equivalent equations in the two other coordinate systems:
(a) r = 5; (b) z2 = r2; (c) x2 + y2 + (z - 1)2 = 1

Ans. (a) x2 + y2 + z2 = 25, r2 + z2 = 25; (b) z2 = x2 + y2, cos2 1
2φ =  (that is, /4φ π=  or 3 /4φ π= ); (c) r2 + z2 = 2z, 

2cosρ φ=  

16. Evaluate the triple integral on the left in each of the following:

(a) dz dx dy 1
2

3

1

2

0

1

∫∫∫ =  

(b) dz dy dx
1

24
xy

x

x

00

1

2 ∫∫∫ =  

(c) x dz dx dy x dz dy dx144
y xy y xx

0

4 2 /3 /3

0

12 2

0

4 2 /3 /3

0

6 /2

0

12

0

6

∫∫ ∫∫∫∫ = =





− −− − −−
 

(d) r rz dr d(16 )
256

5
z

2 1/2

0

16

0

4

0

/2 2

∫∫∫ θ π− =
π −

 

(e) d d dsin 25004

0

5

00

2

∫∫∫ ρ φ ρ φ θ π=
ππ

 

17. Evaluate the integral of Problem 16(b) after changing the order to dz dx dy.

18. Evalute the integral of Problem 16(c), changing the order to dx dy dz and to dy dz dx.

19. Find the following volumes, using integrals in rectangular coordinates:
(a) Inside x2 + y2 = 9, above z = 0, and below x + z = 4 Ans. 36π cubic units
(b) Bounded by the coordinate planes and 6x + 4y + 3z = 12 Ans. 4 cubic units
(c) Inside x2 + y2 = 4x, above z = 0, and below x2 + y2 = 4z Ans. 6π cubic units

20. Find the following volumes, using triple integrals in cylindrical coordinates:
(a) The volume of Problem 4.
(b) The volume of Problem 19(c).
(c) That inside r2 = 16, above z = 0, and below 2z = y Ans. 64/3 cubic units

21. Find the centroid of each of the following volumes:
(a) Under z2 = xy and above the triangle y = x, y = 0,
 x = 4 in the plane z = 0 Ans. (3, , )9

5
9
8  

(b) That of Problem 19(b) Ans. ( , ,1)1
2

3
4  

(c) The first-octant volume of Problem 19(a) Ans. 
64 9

16( 1)
,

23
8( 1)

,
73 128
32( 1)

π
π π

π
π

−
− −

−
−





  

(d) That of Problem 19(c) Ans. ( , 0, )8
3

10
9  

(e) That of Problem 20(c) Ans. (0, 3π/4, 3π/16)
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22. Find the moments of inertia Ix, Iy, Iz of the following volumes:

(a) That of Problem 4 Ans. I I Vx y
32
3= = ; I Vz

16
3=  

(b) That of Problem 19(b) Ans. I Vx
5
2= ; Iy = 2V; I Vz

13
10=  

(c) That of Problem 19(c) Ans. I Vx
55
18= ; I Vy

175
18= ; I Vz

80
9=  

(d) That cut from z = r 2 by the plane z = 2 Ans. I I Vx y
7
3= = ; I Vz

2
3=  

23. Show that, in cylindrical coordinates, the triple integral of a function f(r, q, z) over a region R may be represented by

f r z r dz dr d( , , )
z r

z r

r

r

( , )

( , )

( )

( )

1

2

1

2 ∫∫∫ θ θ
θ

θ

θ

θ

α

β
 

[Hint: Consider, in Fig. 57-12, a representative subregion of R bounded by two cylinders having the z-axis as 
axis and of radii r and r + Dr, respectively, cut by two horizontal planes through (0, 0, z) and (0, 0, z + Dz), 
respectively, and by two vertical planes through the z-axis making angles q and q + Dq, respectively, with the xz-
plane. Take DV = (r Dq) Dr D z as an approximation of its volume.]

Fig. 57-12

24. Show that in spherical coordinates, the triple integral of a function f ( , , )ρ φ θ  over a region R may be represented 
by

f d d d( , , ) sin2

( , )

( , )

( )

( )

1

2

1

2 ∫∫∫ ρ φ θ ρ φ ρ φ θ
ρ φ θ

ρ φ θ

φ θ

φ θ

α

β
 

[Hint: Consider, in Fig. 57-13, a representative subregion of R bounded by two spheres centered at O, of radii 
r and r + Dr, respectively, by two cones having O as vertex, the z-axis as axis, and semivertical angles φ  and 

φ φ+ ∆ , respectively, and by two vertical planes through the z-axis making angles q and q + Dq, respectively, 
with the yz-plane. Take V ( )( sin )( ) sin2ρ φ ρ φ θ ρ ρ φ ρ φ θ∆ = ∆ ∆ ∆ = ∆ ∆ ∆  as an approximation of its volume.]

25. Change the following points from rectangular to cylindrical coordinates: (a) (1, 0, 0); (b) ( 2 , 2, 2);  
(c) ( 3, 1, 5)− . 

Ans. (a) (1, 0, 0); (b) 2,
4

, 1
π



 ; (c) 2,

5
6

, 5
π
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Fig. 57-13

26. Change the following points from cylindrical to rectangular coordinates: (a) 5,
3

, 1
π



; (b) 2,

6
, 0

π−



 ; (c) (0, 7, 1).

Ans. (a) 
5
2

,
5 3

2
, 1






;  (b) ( 3, 1, 0)− ; (c) (0, 0, 1)

27. Change the following points from rectangular to spherical coordinates: (a) (1, 0, 0); (b) ( 2 , 2, 2);  
(c) (1, 1, 2)− − . 

Ans. (a) 1, 0,
2
π



 ; (b) 2 2,

4
,

4
π π



 ; (c) 2,

7
4

,
3
4

π π




 

28. Change the following points from spherical to rectangular coordinates: (a) (1, 0, 0); (b) (2, 0, π); (c) 4,
4

,
6

π π



 . 

Ans. (a) (0, 0, 1); (b) (0, 0, -2); (c) ( 2 , 2, 2 3) 

29. Describe the surfaces determined by the following equations:

(a) z = r2; (b) r = 4 cos q ; (c) cos 4ρ φ = ; (d) sin 4ρ φ = ; (e) 
2

φ π= ; (f) 
4

θ π= ; (g) 2sinρ φ=  

Ans. (a) circular paraboloid; (b) right circular cylinder (x - 2)2 + y2 = 4; (c) plane z = 4; (d) right circular 
cylinder x2 + y2 = 16; (e) the xy-plane; (f  ) right circular cone with the z-axis as its axis; (g) right circular 
cylinder x2 + y2 = 4
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CHAPTER 58

Masses of Variable Density

Homogeneous masses can be treated as geometric figures with density d = 1. The mass of a homogeneous 
body of volume V and density d is m = d V.

For a nonhomogenous mass whose density d varies continuously, an element of mass dm is given by

(1) d (x, y) ds for a planar material curve (e.g., a piece of fine wire);
(2) d (x, y) dA for a material two-dimensional plate (e.g., a thin sheet of metal);
(3) d (x, y, z) dV for a material body.

The center of mass x y( , ) of a planar plate that is distributed over a region R with density d (x, y) is deter-
mined by the equations

 mx My=  and my M ,x=  where  M x y x dA( , )y

R
∫∫δ=  and M x y ydA( , )x

R
∫∫δ=  

An analogous result holds for the center of mass of a three-dimensional body. The reasoning is similar to 
that for centroids in Chapter 55.

The moments of inertia of a planar mass with respect to the x-axis and the y-axis are I x y y dA( , )x

R

2∫∫δ=  

and I x y x dA( , ) .y

R

2∫∫δ=  Similar formulas with triple integrals hold for three-dimensional bodies. 

[For example, I x y z y z dA( , , )( )x

R

2 2∫∫∫δ= + .]

SOLVED PROBLEMS

 1. Find the mass of a semicircular wire whose density varies as the distance from the diameter joining the ends.
Take the wire as in Fig. 58-1, so that d (x, y) = ky. Then from x2 + y2 = r 2

 ds
dy
dx

dx
r
y

dx1
2

= + 



 =  

  and m x y ds ky
r
y

dx kr dx kr( , ) 2 units
r

r

r

r
2∫ ∫∫δ= = = =

− −
 

Fig. 58-1
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 2. Find the mass of a square plate of side a if the density varies as the square of the distance from a vertex.
Take the square as in Fig. 58-2, and let the vertex from which distances are measured be at the origin. Then 

d (x, y) = k(x2 + y2) and

 m x y dA k x y dx dy k a ay dy ka( , ) ( ) ( ) units
R

a aa
2 2

0

1
3

3 2 2
3

4

00∫∫ ∫ ∫∫δ= = + = + =  

x2  + y
2 P(x, y)

xO

y

Fig. 58-2

 3. Find the mass of a circular plate of radius r if the density varies as the square of the distance from a point on the 
circumference.

Take the circle as in Fig. 58-3 and let A(r, 0) be the fixed point on the circumference. Then d (x, y) =  
k[(x - r)2 + y2] and

 m x y dA k x r y dy dx k r( , ) 2 [( ) ] units
r x

r

r

R

2 2 3
2

4

0

2 2

∫∫∫∫δ π= = − + =
−

−
 

O

y

x

P(x, y)

(–r, 0) A(r, 0)

(x – r) 2 + y 2

Fig. 58-3

 4. Find the center of mass of a plate in the form of the segments cut from the parabola y2 = 8x by its latus rectum  
x = 2 if the density varies as the distance from the latus rectum. (See Fig. 58-4.)

Here, d (x, y) = 2 - x and by symmetry, y 0=  . For the upper half of the plate,

 

m x y dA k x dx dy k
y y

dy k

M x y x dA k x x dx dy k
y y

dy k

( , ) (2 ) 2
4 128

64
15

( , ) (2 )
4
3 64 (24)(64)

128
35

y
R

y

R
y

/8

2 2 4

0

4

0

4

/8

2

0

4 4 6

0

4

2

2

∫ ∫∫∫∫

∫∫ ∫∫ ∫

δ

δ

= = − = − +





=

= = − = − +





=

 

and x M m/y
6
7= = . The center of mass has coordinates ( ,0)6

7 .
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O

y

x

(2, 4)

P(x, y)

2 – x

Fig. 58-4

 5. Find the center of mass of a plate in the form of the upper half of the cardioid r = 2(1 + cos q ) if the density 
varies as the distance from the pole. (See Fig. 58-5.)

 

m r dA kr r dr d k d k

M r y dA kr r r dr d

k d k

M r x dA kr r r dr d k

( , ) ( ) (1 cos )

( , ) ( )( sin )

4 (1 cos ) sin

( , ) ( )( cos ) 14

R

x

R

y

R

0

2(1 cos )

0

8
3

3

0

20
3

0

2(1 cos )

0

4

0

128
5

0

2(1 cos )

0

∫∫ ∫∫ ∫

∫∫ ∫∫

∫

∫∫ ∫∫

δ θ θ θ θ π

δ θ θ θ

θ θ θ

δ θ θ θ π

= = = + =

= =

= + =

= = =

θπ π

θπ

π

θπ

+

+

+

Then x
M
m

21
10

y= = , y
M
m

96
25

x

π= = , and the center of mass has coordinates 
21
10

,
96

25π




 .

Fig. 58-5

 6. Find the moment of inertia with respect to the x-axis of the plate having for edges one arch of the curve y = sin x 
and the x-axis if its density varies as the distance from the x-axis. (See Fig. 58-6.)

 

m x y dA ky dy dx k x dx k

I x y y dA ky y dy dx k x dx k m

( , ) sin

( , ) ( )( ) sin

R

x

x

R

x

1
2

0

sin

0

2 1
4

0

2 2

0

sin

0

1
4

4

0

3
32

3
8

∫∫ ∫∫ ∫

∫∫ ∫∫ ∫

δ π

δ π

= = = =

= = = = =

π π

π π
 

Fig. 58-6
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546 CHAPTER 58 Masses of Variable Density

7. Find the mass of a sphere of radius a if the density varies inversely as the square of the distance from the center.

Take the sphere as in Fig. 58-7. Then x y z
k

x y z
k

( , , ) 2 2 2 2δ ρ= + + =  and

 

m x y z dV
k

d d d

ka d d ka d k a

( , , ) 8 sin

8 sin 8 4 units

R

a

2
2

00

/2

0

/2

0

/2

0

/2

0

/2

∫∫∫ ∫∫∫

∫∫ ∫

δ ρ ρ φ ρ φ θ

φ φ θ θ π

= =

= = =

ππ

ππ π  

Fig. 58-7

8. Find the center of mass of a right circular cylinder of radius a and height h if the density varies as the distance 
from the base.

Take the cylinder as in Fig. 58-8, so that its equation is r = a and the volume in question is that part of the 
cylinder between the planes z = 0 and z = h. Clearly, the center of mass lies on the z-axis. Then

 

m z r dV kz r dz dr d kh r dr d

kh a d k h a

M z r z dV kz r dz dr d kh r dr d

kh a d k h a

( , , ) 4 ( ) 2

( , , ) 4 ( )

R

ha a

xy

R

ha a

2

000

/2

00

/2

2 2

0

/2
1
2

2 2

2

000

/2
4
3

3

00

/2

2
3

3 2

0

/2
1
3

3 2

∫∫∫ ∫∫∫ ∫∫

∫

∫∫∫ ∫∫∫ ∫∫

∫

δ θ θ θ

θ π

δ θ θ θ

θ π

= = =

= =

= = =

= =

π π

π

π π

π

 

and = =z M m h/xy
2
3 . Thus the center of mass has coordinates h(0, 0, )2

3 .

Fig. 58-8
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547CHAPTER 58 Masses of Variable Density

SUPPLEMENTARY PROBLEMS

9. Find the mass of

(a) A straight rod of length a whose density varies as the square of the distance from one end

Ans. ka1
3

3 units

(b) A plate in the form of a right triangle with legs a and b, if the density varies as the sum of the distance from 
the legs

Ans. kab a b( )1
6 +  units

(c) A circular plate of radius a whose density varies as the distance from the center

Ans. ka2
3

3π  units

(d) A plate in the form of an ellipse b2x2 + a2y2 = a2b2, if the density varies as the sum of the distances from its axes

Ans. kab a b( )4
3 +  units

(e) A circular cylinder of height b and radius of base a, if the density varies as the square of the distance from 
its axis

Ans. ka b1
2

4 π  units

(f ) A sphere of radius a whose density varies as the distance from a fixed diametral plane

Ans. ka1
2

4π  units

(g) A circular cone of height b and radius of base a whose density varies as the distance from its axis

Ans. ka b1
6

3 π units

(h) A spherical surface whose density varies as the distance from a fixed diametral plane

Ans. 2ka3π units

10. Find the center of mass of

(a) One quadrant of the plate of Problem 9(c)

Ans. (3a/2π, 3a/2π)

(b) One quadrant of a circular plate of radius a, if the density varies as the distance from a bounding radius  
(the x-axis)

Ans. (3a/8, 3aπ/16)

(c) A cube of edge a, if the density varies as the sum of the distances from three adjacent edges (on the 
coordinate axes)

Ans. (5a/9, 5a/9, 5a/9)
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548 CHAPTER 58 Masses of Variable Density

(d) An octant of a sphere of radius a, if the density varies as the distance from one of the plane faces

Ans. (16a/15π, 16a/15π, 8a/15)

(e) A right circular cone of height b and radius of base a, if the density varies as the distance from its base

Ans. (0, 0, 2b/5)

11. Find the moment of inertia of

(a) A square plate of side a with respect to a side, if the density varies as the square of the distance from an 
extremity of that side

Ans. a m7
15

2  

(b) A plate in the form of a circle of radius a with respect to its center, if the density varies as the square of the 
distance from the center

Ans. a m2
3

2  

(c) A cube of edge a with respect to an edge, if the density varies as the square of the distance from one 
extremity of that edge

Ans. a m38
45

2  

(d) A right circular cone of height b and radius of base a with respect to its axis, if the density varies as the 
distance from the axis

Ans. a m2
5

2  

(e) The cone of (d), if the density varies as the distance from the base

Ans. a m1
5

2  
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CHAPTER 59

Differential Equations of First and 
Second Order

A differential equation is an equation that involves a function, say y, of one variable, say x, and derivatives 

of y or differentials of x and y. Examples are 
d y
dx

dy
dx

y x x2 3 7sin 4 0
2

2 + + − + =  and dy = (x + 2y) dx. The first 

equation also can be written as y′′ + 2y′ + 3y − 7 sin x + 4x = 0.
The order of a differential equation is the order of the derivative of highest order appearing in it. The first 

of the above equations is of order two, and the second is of order one.
A solution of a differential equation is a function y that satisfies the equation. A general solution of an 

equation is a formula that describes all solutions of the equation. It turns out that a general solution of a 
differential equation of order n will contain n arbitrary constants.

SEPARABLE DIFFERENTIAL EQUATIONS

A separable differential equation is a first-order equation that can be put in the form

f x dx g y dy( ) ( ) 0,+ =   which is equivalent to 
dy
dx

f x
g y

( )
( )

= −  

A separable equation can be solved by taking antiderivatives

f x dx g y dy C( ) ( )∫∫ + =  

The result is an equation involving x and y that determines y as a function of x. (See Problems 4–6, and for 
justification, see Problem 61.)

HOMOGENEOUS FUNCTIONS

A function f (x, y) is said to be homogeneous of degree n if f (lx, ly) = lnf (x, y). The equation  
M(x, y) dx + N(x, y) dy = 0 is said to be homogeneous if M(x, y) and N(x, y) are homogeneous of the same 
degree. It is easy to verify that the substitution

y x dy dx x d,= = +v v v  

will transform a homogeneous equation into a separable equation in the variables x and v.

INTEGRATING FACTORS

Certain differential equations may be solved after multiplication by a suitable function of x and y produces an 
integrable combination of terms. Such a function is called an integrating factor of the equations. In looking 
for integrable combinations, note that:

     (i)  d(xy) = x dy + y dx  (ii)  d(y/x) = x dy ydx
x2

−

   (iii)  d(ln xy) = 
x dy ydx

xy
+

 (iv) d(
k

u
1

1
k 1

+
+ ) = uk du
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550 CHAPTER 59 Differential Equations of First and Second Order

Moreover, d(F) + d(G) + . . . = 0 yields F + G + . . .  = constant. (See Problems 10–14.)

The so-called linear differential equations of the first order, 
dy
dx

Py Q+ = , where P and Q are functions of 

x alone, have the function x e( )
P dxξ = ∫  as integrating factor. (See Problems 15–17.)

An equation of the form 
dy
dx

Py Qyn+ = , where n ≠ 0, 1 and where P and Q are functions of x alone, can 

be reduced to the linear form by the substitution

y z y
dy
dx n

dz
dx

,
1

1
n n1 = = −

− −

(See Problems 18 and 19).

SECOND-ORDER EQUATIONS

The second-order equations that will be solved in this chapter are of the following types:

d y
dx

f x( )
2

2 =   (See Problem 23.)

d y
dx

f x
dy
dx

,
2

2 = 



   (See Problems 24 and 25.)

d y
dx

f y( )
2

2 =   (See Problems 26 and 27.)

d y
dx

P
dy
dx

Qy R
2

2 + + = ,  where P and Q are constants and R is a constant or function of x only.

(See Problems 28–33.)

If the equation m2 + Pm + Q = 0 has two distinct roots m1 and m2, then y C e C em x m x
1 2

1 2= +  is the general 

solution of the equation 
d y
dx

P
dy
dx

Qy 0
2

2 + + = . If the two roots are identical so that m1 = m2 = m, then

y C e C xe e C C x( )mx mx mx
1 2 1 2= + = +  

is the general solution.
The general solution of 

d y
dx

P
dy
dx

Qy 0
2

2 + + =  is called the complementary function of the equation

 
d y
dx

P
dy
dx

Qy R x( )
2

2 + + =   (59.1)

If f (x) satisfies (59.1), then the general solution of (59.1) is

y f xcomplementary function ( )= +  

The function f (x) is called a particular solution of (59.1).

SOLVED PROBLEMS

 1. Show that (a) y = 2e x, (b) y = 3x, and (c) y = C1e x + C2 x, where C1 and C2 are arbitrary constants, are solutions of 
the differential equation y′′(1 − x) + y′x − y = 0.

(a) Differentiate y = 2e x twice to obtain y′ = 2e x and y′′ = 2e x. Substitute in the differential equation to obtain the 
identity 2e x(1 − x) + 2e xx − 2e x = 0.

(b) Differentiate y = 3x twice to obtain y′ = 3 and y′′ = 0. Substitute in the differential equation to obtain the 
identity 0(1 − x) + 3x − 3x = 0.

(c) Differentiate y = C1e x + C2 x twice to obtain y′ = C1e x + C2 and y′′ = C1e x. Substitute in the differential 
equation to obtain the identity C1e x(1 − x) + (C1e x + C2)x − (C1e x + C2 x) = 0.

Solution (c) is the general solution of the differential equation because it satisfies the equation and contains 
the proper number of essential arbitrary constants. Solutions (a) and (b) are called particular solutions because 
each may be obtained by assigning particular values to the arbitrary constants of the general solution.
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551CHAPTER 59 Differential Equations of First and Second Order

 2. Form the differential equation whose general solution is:

(a) y = Cx2 − x; (b) y = C1x3 + C2x + C3.

(a) Differentiate y = Cx2 − x once to obtain y′ = 2Cx − 1. Solve for C
y

x
1
2

1= ′ +



  and substitute in the given 

relation (general solution) to obtain y
y

x
x x

1
2

1 2= ′ +



 −  or y′x = 2y + x.

(b) Differentiate y = C1x3 + C2x + C3 three times to obtain y′ = 3C1x2 + C2, y′′ = 6C1x, y′′′ = 6C1. Then y′′ = xy′′′ 
is the required equation. Note that the given relation is a solution of the equation y(4) = 0 but is not the 
general solution, since it contains only three arbitrary constants.

 3. Form the second-order differential equation of all parabolas with principal axis along the x-axis.
The system of parabolas has equation y2 = Ax + B, where A and B are arbitrary constants. Differentiate twice 

to obtain 2yy′ = A and 2yy′′ + 2(y′)2 = 0. The latter is the required equation.

 4. Solve 
dy
dx

y
xy x

1
(1 )

0
3

2 2+ +
+ = .

Here xy2(1 + x2)dy + (1 + y3)dx = 0, or 
y

y
dy

x x
dx

1
1

(1 )
0

2

3 2+ + + =  with the variables separated. Then the 
partial-fraction decomposition yields

y dy
y

dx
x

x dx
x1 1

0,
2

3 2+ + − + =  

 and integration yields

y x x cln |1 | ln | | ln(1 )1
3

3 1
2

2+ + − + =  

 or y x x c2ln |1 | 6 ln | | 3ln(1 ) 63 2+ + − + =

 from which 
x y

x
cln

(1 )
(1 )

6
6 3 2

2 3

+
+ =   and   

x y
x

e C
(1 )

(1 )
c

6 3 2

2 3
6+

+ = =  

 5. Solve 
dy
dx

y
x

1
1

2

2= +
+ .

Separate the variables: 
dy

y
dx

x1 12 2+ = + . Integration yields tan−1 y = tan−1 x + tan−1 C, and then

y x C
x C

Cx
tan(tan tan )

1
1 1= + = +

−
− −  

 6. Solve 
dy
dx

y
x

cos
sin

2

2= .

The variables are easily separated to yield 
dy

y
dx

xcos sin2 2= .

Hence, sec2y dy = csc2 x dx and integration yields tan y = −cot x + C.

 7. Solve 2xy dy = (x2 − y2) dx.

The equation is homogeneous of degree two. The transformation y = vx, dy = v dx + x dv yields (2x)(vx)

(v dx + x dv) = (x2 − v 2x) dx or 
d dx

x
2

1 3 2− =
v v

v . Then integration yields

x cln |1 3 | ln | | ln1
3

2− − = +v  

 from which ln |1 − 3v 2 | + 3 ln |x| + ln C′ = 0 or C′′ |x3(1 − 3v 2)| = 1.
Now ± C′x3(1 − 3v 2) = Cx3(1 − 3v 2) = 1, and using v = y/x produces C(x3 − 3xy2) = 1.
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552 CHAPTER 59 Differential Equations of First and Second Order

 8. Solve x
y
x

y dx x dy
y
x

x dy y dxsin ( ) cos ( ) 0+ + − = .

The equation is homogeneous of degree two. The transformation y = vx, dy = v dx + x dv yields

x x dx x d x dx x x d x dx x dxsin ( ) cos ( ) 02 2+ + + + − =v v v v v v v v v  

 or dx x d x dsin (2 ) cos 0+ + =v v v v v v

 or d
dx
x

sin cos
sin

2 0
+ + =v v v

v v v

Then ln |v sin v | + 2 ln |x| = ln C′, so that x2v sin v = C and xy
y
x

Csin = .

 9. Solve (x2 − 2y2) dy + 2xy dx = 0.
The equation is homogeneous of degree two, and the standard transformation yields

dx x d dx(1 2 )( ) 2 02− + + =v v v v  

 or d
dx
x

1 2
(3 2 )

0
2

2

−
− + =v

v v v

 or 
d d dx

x3
4

3(3 2 )
02− − + =v

v
v v

v

Integration yields x cln | | ln |3 2 | ln | | ln1
3

1
3

2+ − + =v v , which we may write as x Cln | | ln |3 2 | 3ln | | ln2+ − + = ′v v .  
Then x3(3 − 2vv 2) = C and y(3x2 − 2y2) = C.

10. Solve (x2 + y) dx + ( y3 + x) dy = 0.
Integrate x2 dx + ( y dx + x dy) + y3 dy = 0, term by term, to obtain

x
xy

y
C

3 4

3 4

+ + =  

11. Solve (x + e−x sin y) dx − ( y + e−x cos y) dy = 0.
Integrate x dx − y dy − (e−x cos y dy − e−x sin y dx) = 0, term by term, to obtain

x y e y Csinx1
2

2 1
2

2− − =−  

12. Solve x dy − y dx = 2x3 dx.
The combination x dy − y dx suggests d

y
x

x dy y dx
x2





 =

−
. Hence, multiplying the given equation by 

x
x

( )
1

2ξ = , we obtain 
x dy y dx

x
x dx22

−
= , from which

y
x

x C2= +   or  y x Cx3= +  

13. Solve x dy + y dx = 2x2y dx.
The combination x dy + y dx suggests d xy

x dy y dx
xy

(ln ) =
+

. Hence, multiplying the given equation by 

x y
xy

( , )
1ξ = , we obtain 

x dy y dx
xy

x dx2
+

= , from which In |xy| = x2 + C.
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14. Solve x dy + (3y − ex) dx = 0.
Multiply the equation by x(x) = x2 to obtain x3 dy + 3x2y dx = x2ex dx. This yields

x y x e dx x e xe e C2 2x x x x3 2 2∫= = − + +  

15. 
dy
dx x

y x
2

6 3+ = .

Here P x
x

( )
2= , P x x( ) ln 2∫ = , and an integrating factor is x e x( ) xln 22ξ = = . We multiply the given equation by 

x(x) = x2 to obtain x2 dy + 2xy dx = 6x5 dx. Then integration yields x2y = x6 + C.

Note 1: After multiplication by the integrating factor, the terms on the left side of the resulting equation are 
an integrable combination.

Note 2: The integrating factor for a given equation is not unique. In this problem, x2, 3x2, x1
2

2, etc., are all 
integrating factors. Hence, we write the simplest particular integral of P(x) dx rather than the general integral, 
ln x2 + ln C = ln Cx2.

16. Solve x
dy
dx

y xtan sec+ = .

Since 
dy
dx

y x xcot csc+ = , we have P x dx x dx x( ) cot ln |sin |∫∫ = = , and x e x( ) |sin |xln|sin |ξ = = . Then multipli-

cation by x(x) yields

 x
dy
dx

y x x xsin cot sin csc+



 =   or  x dy y x dx dxsin cos+ =  

 and integration gives

y x x Csin = +  

17. Solve 
dy
dx

xy x− = .

Here P(x) = −x, P x dx x( ) 1
2

2∫ = − , and x e( ) x1
2

2ξ = − . This produces

e dy xye dx xe dxx x x1
2

2 1
2

2 1
2

2− =− − −  

and integration yields

 ye e C,x x1
2

2 1
2

2= − +− −   or  y Ce 1x1
2

2= −  

18. Solve 
dy
dx

y xy2+ = .

The equation is of the form 
dy
dx

Py Qyn+ = , with n = 2. Hence we use the substitution y1−n = y−1 = z, 

y
dy
dx

dz
dx

2 = −− . For convenience, we write the original equation in the form y
dy
dx

y x2 1+ =− − , obtaining 

dz
dx

z x− + = , or 
dz
dx

z x− = − .

 The integrating factor is x e e e( ) P dx dx xξ = = =∫ ∫− − . It gives us e−x dx − ze−x dx = − xe−x dx, from which ze−x = 
xe−x + e−x + C. Finally, since z = y−1, we have

y
x Ce

1
1 .x= + +  
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19. Solve 
dy
dx

y x y xtan sec3+ = .

Write the equation in the form y
dy
dx

y x xtan sec3 2+ =− − . Then use the substitution y−2 = z, y
dy
dx

dz
dx

1
2

3 = −−  to 

obtain 
dz
dx

z x x2 tan 2sec− = − .

The integrating factor is x e x( ) cosx dx2 tan 2ξ = =∫− . It gives cos2x dz − 2z cos x sin x dx = − 2cos x dx, from 
which

 z x x Ccos 2sin ,2 = − +   or  
x

y
x C

cos
2sin

2

2 = − +  

20. When a bullet is fired into a sand bank, its retardation is assumed equal to the square root of its velocity on 
entering. For how long will it travel if its velocity on entering the bank is 144 ft /sec?

 Let v represent the bullet’s velocity t seconds after striking the bank. Then the retardation is 
d
dt

− =v
v , so 

d
dt= −v

v
 and t C2 = − +v .

 When t = 0, v = 144 and C 2 144 24= = . Thus, t2 24= − +v  is the law governing the motion of the bul-
let. When v = 0, t = 24; the bullet will travel for 24 seconds before coming to rest.

21. A tank contains 100 gal of brine holding 200 lb of salt in solution. Water containing 1 lb of salt per gallon flows 
into the tank at the rate of 3 gal/min, and the mixture, kept uniform by stirring, flows out at the same rate. Find 
the amount of salt at the end of 90 min.

Let q denote the number of pounds of salt in the tank at the end of t minutes. Then 
dq
dt

 is the rate of change 
of the amount of salt at time t.

Three pounds of salt enter the tank each minute, and 0.03q pounds are removed. Thus, 
dq
dt

q3 0.03= − .

 Rearranged, this becomes 
dq

q
dt

3 0.03− = , and integration yields

q
t C

ln(0.03 3)
0.03

.
− = − +  

When t = 0, q = 200 and C
ln3
0.03

=  so that ln(0.03q − 3) = −0.03t + ln3. Then 0.01q − 1 = e−0.03t, and  

q = 100 + 100e−0.03t. When t = 90, q = 100 + 100e−2.7 ~ 106.72 lb.

22. Under certain conditions, cane sugar in water is converted into dextrose at a rate proportional to the amount that 
is unconverted at any time. If, of 75 grams at time t = 0, 8 grams are converted during the first 30 min, find the 
amount converted in 1

1

2
 hours.

Let q denote the amount converted in t minutes. Then 
dq
dt

k q(75 )= − , from which 
dq

q
k dt

75 − = , and integration 
gives ln (75 − q) = −kt + C.

When t = 0, q = 0 and C = ln 75, so that ln (75 − q) = −kt + ln 75.
When t = 30 and q = 8, we have 30k = ln75 − ln 67; hence, k = 0.0038, and q = 75(1 − e−0.0038t).
When t = 90, q = 75(1 − e−0.34) ~ 21.6 grams.

23. Solve 
d y
dx

xe xcosx
2

2 = + .

Here 
d
dx

dy
dx

xe xcosx



 = + . Hence, 

dy
dx

xe x dx xe e x C( cos ) sinx x x
1∫= + = − + + , and another integration 

yields y = xex − 2ex − cosx + C1x + C2.

24. Solve x
d y
dx

x
dy
dx

a2
2

2 + = .

Let p
dy
dx

= ; then 
d y
dx

dp
dx

2

2 =  and the given equation becomes x
dp
dx

xp a2 + =  or x dp pdx
a
x

dx+ = . Then inte-

gration yields xp = a ln |x|+C1, or x
dy
dx

a x Cln | | 1= + . When this is written as dy a x
dx
x

C
dx
x

ln | | 1= + , integration 

gives y a x C x C
1
2

ln | | ln | |2
1 2= + + .
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25. Solve xy′′ + y′ + x = 0.

 Let p
dy
dx

= . Then 
d y
dx

dp
dx

2

2 =  and the given equation becomes x
dp
dx

p x 0+ + =  or x dp pdx x dx+ = − .

Integration gives xp x C
1
2

2
1= − + , substitution for p gives 

dy
dx

x
C
x

1
2

1= − + , and another integration yields  

y x C x C
1
4

ln | |2
2 2= + + .

26. Solve 
d y
dx

y2 0
2

2 − = .

Since 
d
dx

y y y[( ) ] 22′ = ′ ′′, we can multiply the given equation by 2y′ to obtain 2y′y′′ = 4yy′, and integrate to 

obtain y yy dx ydy y C( ) 4 4 22 2
1∫∫′ = ′ = = + .

Then 
dy
dx

y C2 2
1= + , so that 

dy

y C
dx

2 2
1+

=  and y y C x Cln | 2 2 | 2 ln2
1 2+ + = + . The last equation 

yields y y C C e2 2 x2
1 2

2+ + = .

27. Solve y′′ = −1/y3.
Multiply by 2y′ to obtain y y

y
y

2
2

3′ ′′ = − ′
. Then integration yields

 y
y

C( )
12

2 1′ = +   so that  
dy
dx

C y
y

1 1
2

=
+

  or  
ydy

C y
dx

1 1
2+

=  

Another integration gives C y C x C1 1
2

1 2+ = +  or C x C C y( ) 11 2
2

1
2+ − = .

28. Solve 
d y
dx

dy
dx

y3 4 0
2

2 + − = .

Here we have m2 + 3m − 4 = 0, from which m = 1, −4. The general solution is y = C1ex + C2e−4x.

29. Solve 
d y
dx

dy
dx

3 0
2

2 + = .

Here m2 + 3m = 0, from which m = 0, −3. The general solution is y = C1 + C2e−3x.

30. Solve 
d y
dx

dy
dx

y4 13 0
2

2 − + = .

Here m2 − 4m + 13 = 0, with roots m1 = 2 + 3i and m2 = 2 − 3i. The general solution is

y C e C e e C e C e( )i x i x x ix ix
1

(2 3 )
2

(2 3 ) 2
1

3
2

3= + = ++ − −  

Since eiax = cos ax + i sin ax, we have e3ix = cos 3x + i sin 3x and e−3ix = cos 3x − i sin 3x. Hence, the solution 
may be put in the form

y e C x i x C x i x

e C C x i C C x

e A x B x

[ (cos3 sin3 ) (cos3 sin3 )]

[( )cos3 ( )sin3 )]

( cos3 sin3 )

x

x

x

2
1 2

2
1 2 1 2

2

= + + −

= + + −

= +

 

31. Solve 
d y
dx

dy
dx

y4 4 0
2

2 − + = .

Here m2 − 4m + 4 = 0, with roots m = 2, 2. The general solution is y = C1e2x + C2xe2x.

32. Solve 
d y
dx

dy
dx

y x3 4
2

2
2+ − = .

From Problem 6, the complementary function is y = C1ex + C2e−4x.
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To find a particular solution of the equation, we note that the right-hand member is R(x) = x2. This suggests 
that the particular solution will contain a term in x2 and perhaps other terms obtained by successive differentia-
tion. We assume it to be of the form y = Ax2 + Bx + C, where the constants A, B, C are to be determined. Hence 
we substitute y = Ax2 + Bx + C, y′ = 2Ax + B, and y′′ = 2A in the differential equation to obtain

 A Ax B Ax Bx C x2 3(2 ) 4( )2 2+ + − + + =   or  Ax A B x A B C x4 (6 4 ) (2 3 4 )2 2− + − + + − =  

 Since this latter equation is an identity in x, we have −4A = 1, 6A − 4B = 0, and 2A + 3B − 4C = 0. These yield 

A
1
4

= − , B
3
8

= − , C
13
32

= − , and y x x
1
4

3
8

13
32

2= − − −  is a particular solution. Thus, the general solution is 

y C e C e x x
1
4

3
8

13
32

x x
1 2

4 2= + − − −− .

33. Solve 
d y
dx

dy
dx

y x2 3 cos
2

2 − − = .

Here m2 − 2m − 3 = 0, from which m = −1, 3; the complementary function is y = C1e−x + C2e3x. The right-
hand member of the differential equation suggests that a particular solution is of the form A cos x + B sin x. 
Hence, we substitute y = A cos x + B sin x, y′= B cos x − A sin x, and y′′ = − A cos x − B sin x in the differential 
equation to obtain

A x B x B x A x A x B x x( cos sin ) 2( cos sin ) 3( cos sin ) cos− − − − − + =  

 or A B x A B x x2(2 )cos 2( 2 )sin cos− + + − =

The latter equation yields −2(2A + B) = 1 and A − 2B = 0, from which A
1
5

= − , B
1

10
= − . The general 

solution is C e C e x x
1
5

cos
1

10
sinx x

1 2
3+ − −− .

34. A weight attached to a spring moves up and down so that the equation of motion is 
d s
dt

s16 0
2

2 + = , where s is the 

stretch of the spring at time t. If s = 2 and 
ds
dt

1=  when t = 0, find s in terms of t.

Here m2 + 16 = 0 yields m = ± 4i, and the general solution is s = A cos 4t + B sin4t. Now when t = 0, s = 2 = A, 
 so that s = 2 cos 4t + B sin4t.

Also when t = 0, ds/dt = 1 = −8 sin 4t + 4B cos 4t = 4B, so that B
1
4

= . Thus, the required equation is 

s t t2cos4
1
4

sin 4= + .

35. The electric current in a certain circuit is given by 
d I
dt

dI
dt

I4 2504 110
2

2 + + = . If I = 0 and 
dI
dt

0=  when t = 0, find I 
in terms of t.

Here m2 + 4m + 2504 = 0 yields m = −2 + 50i, −2 − 50i; the complementary function is e−2t (A cos 50t + B 
sin 50t). Because the right-hand member is a constant, we find that the particular solution is I = 110/2504 = 
0.044. Thus, the general solution is I = e−2t (A cos 50t + B sin 50t) + 0.044.

Also when t = 0, dI/dt = 0 = e−2t[(−2A + 50B) cos 50t − (2B + 50A) sin 50t] = −2A + 50B. Then B = −0.0018, 
and the required relation is I = −e−2t(0.044 cos 50t + 0.0018 sin 50t) + 0.044.

36. A chain 4 ft long starts to slide off a flat roof with 1 ft hanging over the edge. Discounting friction, find (a) the 
velocity with which it slides off and (b) the time required to slide off.

Let s denote the length of the chain hanging over the edge of the roof at time t.

(a) The force F causing the chain to slide off the roof is the weight of the part hanging over the edge. That 
weight is mgs/4. Hence,

F ms mgs s gsmass acceleration or1
4

1
4= × = ′′ = ′′ =  

 Multiplying by 2s′ yields s s gss2 1
2′ ′′ = ′  and integrating once gives s gs C( )2 1

4
2

1′ = + .
 When t = 0, s = 1 and s′ = 0. Hence, C g1

1
4= −  and s g s 11

2
2′ = − . When s = 4, s g15 ft /sec1

2′ = .
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(b) Since 
ds

s
g dt

12

1
2−

= , integration yields + − = +s s gt Cln 12 1
2 2. When t = 0, s = 1. Then

 C2 = 0 and s s gtln( 1)2 1
2+ − = .

 When s = 4, = +t
g

2
ln(4 15) seconds.

37. A boat of mass 1600 lb has a speed of 20 ft /sec when its engine is suddenly stopped (at t = 0). The resistance 
of the water is proportional to the speed of the boat and is 200 lb when t = 0. How far will the boat have moved 
when its speed is reduced to 5 ft /sec?

Let s denote the distance traveled by the boat t seconds after the engine is stopped. Then the force F on the 
boat is

 F ms Ks= ′′ = − ′  from which s ks′′ = − ′  

To determine k, we note that at t = 0, s′ = 20 and s
gforce

mass
200
1600

4′′ = = − = − . Then k s s/ 1
5= − ′′ ′ = . Now 

s
d
dt 5′′ = = −v v

, and integration gives t Cln 1
5 1= − +v , or v = C1e−t/5.

When t = 0, v = 20. Then C1 = 20 and v
ds
dt

e20 t /5= = − . Another integration yields s = −100e−t/5 + C2.

When t = 0, s = 0; then C2 = 100 and s = 100(1 − e−t/5). We require the value of s when v = 5 = 20e−t/5, that is, 
when e t /5 1

4=− . Then s 100(1 ) 75 ft1
4= − = .

SUPPLEMENTARY PROBLEMS

38. Form the differential equation whose general solution is:

(a) y = Cx2 + 1 (b) y = C 2x + C
(c) y = Cx2 + C2 (d) xy = x3 − C
(e) y = C1 + C2 x + C3x2 (f ) y = C1ex + C2e2x

(g) y = C1 sin x + C2 cos x (h) y = C1ex cos(3x + C2)

Ans. (a) xy′ = 2(y − 1); (b) y′ = (y − xy′)2; (c) 4x2y = 2x3y′ + (y′)2; (d) xy′ + y = 3x2; (e) y′′′ = 0; 
(f ) y′′ − 3y′ + 2y = 0; (g) y′′ + y = 0; (h) y′′ − 2y′ + 10y = 0

39. Solve:

(a) y dy − 4x dx = 0 Ans. y2 = 4x2 + C
(b) y2 dy − 3x5 dx = 0 Ans. 2y3 = 3x6 + C
(c) x3y′ = y2(x − 4) Ans. x2 − xy + 2y = Cx2y
(d) (x − 2y) dy + (y + 4x) dx = 0 Ans. xy − y2 + 2x2 = C
(e) (2y2 + 1)y′ = 3x2y Ans. y2 + ln |y| = x3 + C
(f) xy′(2y − 1) = y(1 − x) Ans. ln |xy = x + 2y + C
(g) (x2 + y2) dx = 2xy dy Ans. x2 − y2 = Cx
(h) (x + y) dy = (x − y) dx Ans. x2 − 2xy − y2 = C
(i) x(x + y) dy − y2 dx = 0 Ans. y = Ce−y/x

(j) x dy − y dx + xe−y/x dx = 0 Ans. ey/x + ln |Cx| = 0
(k) dy = (3y + e2x) dx Ans. y = (Cex − 1)e2x

(l) x2y2 dy = (1 − xy3) dx Ans. 2x3y3 = 3x2 + C

40. The tangent and normal to a curve at a point P(x, y) meet the x-axis in T and N, respectively, and the y-axis in S 
and M, respectively. Determine the family of curves satisfying the conditions:

(a) TP = PS; (b) NM = MP; (c) TP = OP; (d) NP = OP

Ans. (a) xy = C; (b) 2x2 + y2 = C; (c) xy = C, y = Cx; (d) x2 ± y2 = C
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41. Solve Problem 21, assuming that pure water flows into the tank at the rate of 3 gal/min and the mixture flows out 
at the same rate.

Ans. 13.44 lb

42. Solve Problem 41 assuming that the mixture flows out at the rate 4 gal/min. Hint: dq
q

t
dt(

4
100

).= − −  

Ans. 0.02 lb

In Problems 43–59, solve the given equation.

43. 
d y
dx

x3 2
2

2 = +  Ans. y x x C x C1
2

3 2
1 2= + + +  

44. e
d y
dx

e4( 1)x x2
2

2
4= +  Ans.  y = e2x + e−2x + C1x + C2

45. 
d y
dx

x9sin3
2

2 = −  Ans.  y = sin 3x + C1x + C2

46. x
d y
dx

dy
dx

x3 4 0
2

2 − + =  Ans.  y = x2 + C1x4 + C2

47. 
d y
dx

dy
dx

x x2
2

2
2− = −  Ans. y

x
C e C

3
x

3

1 2= + +  

48. x
d y
dx

dy
dx

x8
2

2
3− =  Ans.  y = x4 + C1x2 +C2

49. 
d y
dx

dy
dx

y3 2 0
2

2 − + =   Ans.  y = C1ex + C2e2x

50. 
d y
dx

dy
dx

y5 6 0
2

2 + + =  Ans.  y = C1e−2x + C2e−3x

51. 
d y
dx

dy
dx

0
2

2 − =  Ans.  y = C1 + C2ex

52. 
d y
dx

dy
dx

y2 0
2

2 − + =  Ans.  y = C2xex + C2ex

53. 
d y
dx

y9 0
2

2 + =  Ans.  y = C1 cos 3x + C2 sin 3x

54. 
d y
dx

dy
dx

y2 5 0
2

2 − + =  Ans.  y = ex(C1 cos 2x + C2 sin 2x)

55. 
d y
dx

dy
dx

y4 5 0
2

2 − + =  Ans.  y = e2x(C1 cos x + C2 sin x)

56. 
d y
dx

dy
dx

y x4 3 6 23
2

2 + + = +  Ans.  y = C1e−x + C2e−3x + 2x + 5
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57. 
d y
dx

y e4 x
2

2
3+ =  Ans. y C x C x

e
sin 2 cos 2

13

x

1 2

3

= + +  

58. 
d y
dx

dy
dx

y x e6 9 x
2

2
2− + = +  Ans. y C e C xe e

x
9

2
27

x x x
1

3
2

3 2= + + + +  

59. 
d y
dx

y x xcos 2 2 sin 2
2

2 − = −  Ans.  y C e C e x xcos 2 sin 2x x
1 2

1
5

2
5= + − +−  

60. A particle of mass m, moving in a medium that offers a resistance proportional to the velocity, is subject to an 
attracting force proportional to the displacement. Find the equation of motion of the particle if at time t = 0, s = 0 

and s′ = v0. Hint m
d s
dt

k
ds
dt

k s
d s
dt

b
ds
dt

c s b( : Here or 2 0, 0.)
2

2 1 2

2

2
2= − − + + = >  

Ans. If b2 = c2, s = v0te−bt; if b2 < c2, s
v

c b
e c b tsinbt0

2 2
2 2=

−
−− ; if b2 > c2, 

s
v

b c
e e

2
( )b b c t b b c t0

2 2

( ) ( )2 2 2 2=
−

−− + − − − −  

61. Justify our method for solving a separable differential equation 
dy
dx

f x
g y

( )
( )

= −  by integration, that is, 

f x dx g y dy C( ) ( )∫ ∫+ = .

Ans. Differentiate both sides of f x dx g y dy C( ) ( )∫∫ + =  with respect to x, obtaining f x g y
dy
dx

( ) ( ) 0+ = .  

Hence, 
dy
dx

f x
g y

( )
( )

= −  and the solution y satisfies the given equation.
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APPENDIX A

cos2 q + sin2 q = 1
cos(q + 2p) = cos q
sin(q + 2p) = sin q
cos(-q ) = cos q
sin(-q ) = -sin q
cos(u + v) = cos u cos v - sin u sin v
cos(u - v) = cos u cos v + sin u sin v
sin(u + v) = sin u cos v + cos u sin v
sin(u - v) = sin u cos v - cos u sin v
sin (2q) = 2 sin q cos q
cos 2q = cos2 q - sin2 q
   = 2 cos2 q  - 1 = 1 - 2 sin2 q

cos
2

1 cos 
2

2 θ θ= +  

sin
2

1 cos 
2

2 θ θ= −  

cos
2

sin ;
π θ θ−



 =  sin(p - q) = sin q; sin(q + p) = -sin q

sin
2

cos  ;
π θ θ−



 =  cos(p - q) = -cos q; cos(q + p) = -cos q

Law of cosines: c a b ab2 cos2 2 2 θ= + −  

Law of sines: A
a

B
b

C
c

sin sin sin= =  

x
x
x x

tan
sin
cos

1
cot

= =  

x
x
x x

cot
cos
sin

1
tan

= =  

x
x

sec
1

cos
=

x
x

csc
1

sin
=  

x xtan( ) tan− = −  

x xtan( ) tanπ+ =  

x x1 tan sec2 2+ =  

x x1 cot csc2 2+ =  

v
v
vu

u
u

tan( )
tan tan

1 tan tan
+ = +

−
 

v
v
vu

u
u

tan( )
tan tan

1 tan tan
− = −

+

Trigonometric Formulas
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APPENDIX B

Geometric Formulas

A C V S( area, circumference, volume, lateral surface area)= = = =  

Triangle Trapezoid Parallelogram Circle

A bh
1
2

= A b b h
1
2

( )1 2= + A bh= a r C r, 22π π= =

Sphere Cylinder Cone

V r

S r

4
3

4

3

2

π

π

=

=

V r h

S rh2

2π

π

=

=
V r h

S rs r r h

1
3

2

2 2

π

π π

=

= = +
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Index

A
Abel’s theorem, 412
Abscissa, 9
Absolute maximum and minimum, 

115, 484
Absolute value, 1
Absolutely convergent series, 402
Acceleration:

angular, 175
in curvilinear motion, 355
in rectilinear motion, 173
tangential and normal  

components of, 356
vector, 355

Alternating:
harmonic series, 402 
series, 401
theorem, 401

Amplitude, 151
Analytic proofs of geometric 

theorems, 13
Angle:

of inclination, 154, 365
measure, 139
between two curves, 154, 366

Angular velocity and acceleration, 
175

Antiderivative, 193
Approximation by differentials,  

186
Approximation by series, 425
Arc length, 251, 328

derivative of, 333, 367
formula, 252

Area:
under a curve, 203
of a curved surface, 521
between curves, 250
by integration, 203, 513
in polar coordinates, 375, 553
of a surface of revolution, 321

Argument, 51
Asymptote, 128

of hyperbola, 41
Average rate of change, 77
Average value of a function, 211

Average velocity, 173
Axis of revolution, 259
Axis of symmetry, 128

of a parabola, 39

B
Binomial series, 426
Binormal vector, 492
Bliss’s theorem, 325
Bounded sequence, 378
Bounded set in a plane, 484

C
Carbon dating, 245
Cardioid, 364
Catenary, 220
Center of curvature, 335
Center of mass, 543
Center:

of an ellipse, 44
of a hyperbola, 45

Centroid:
of a plane region, 513
of a volume, 533

Chain rule, 84, 444
Change of variables in an integral, 

212
Circle, 31

of curvature, 334
equation of, 31
osculating, 334

Circular motion, 175
Closed interval, 2
Closed set, 484
Comparison test, 392
Complement, 484
Complementary function, 550
Completing the square, 32
Components of a vector, 344
Composite function, 84
Composition, 84
Compound interest, 234, 245
Concave upward, downward, 127
Concavity, 127
Conditionally convergent series,  

402

Cone, elliptic, 473
Conic sections, 41
Conjugate axis of a hyperbola, 45
Continuous function, 69, 71, 433

on [a, b], 71
on the left (right), 71

Convergence, uniform, 411
Convergence of series, 385

absolute, conditional, 402
Convergent sequence, 377
Coordinate, 1

axes, 9
Coordinate system:

cylindrical and spherical, 531
linear, 1
rectangular, 9
right-handed, 455
polar, 142, 363

Cosecant, 152
Cosine, 140

direction cosines, 457
Cotangent, 152
Critical numbers, 113
Cross product of vectors, 457
Cross-section formula, 263
Cubic curve, 41
Curl, 496
Curvature, 334

of a polar curve, 367
Curve sketching, 130
Curvilinear motion, 355
Cycloid, 336
Cylindrical coordinates, 531
Cylindrical shell formula,  

262
Cylindrical surfaces, 471

D
Decay constant, 243
Decreasing:

function, 107
sequence, 379

Definite integral, 205
Degree, 139
Del, 495
Deleted disk, 433
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Delta neighborhood, 4
Delta notation, 77
Density, 543
Dependent variable, 51
Derivative, 77

directional, 483
first, 86
higher order, 86, 95
of arc length, 333, 367
of inverse functions, 85
partial, 433
second, 86
third, 86
of a vector function, 346

Determinants, 457
Difference of shells formula,  

262
Difference rule for derivatives,  

83
Differentiability, 78, 444
Differential, 186

total, 443
Differential equation, 549

linear, of the first order, 550
order of a, 549
second order, 550
separable, 549
solution (general) of a, 549

Differentiation, 83
formulas, 83
implicit, 95, 446
of inverse functions, 85
logarithmic, 223
of power series, 409
of trigonometric functions, 149
of vector functions, 346, 491

Directed angles, 140
Direction cosines, 457
Direction numbers, 460
Directional derivative, 483
Directrix of a parabola, 43
Discontinuity, 69

jump, 70
removable, 69

Disk:
deleted, 433
open, 433

Disk formula, 259
Displacement, 78
Distance formula, 11

for polar coordinates, 375
Divergence (div):

of a sequence, 377
of a series, 385
of a vector function, 495

Divergence theorem, 387
Domain of a function, 51
Dot product of vectors, 345
Double integral, 505, 521

E
e, 228
ex, 227
Eccentricity

of an ellipse, 44
of a hyperbola, 45

Ellipses, 40
center, eccentricity, foci, major 

axis, 
minor axis of, 44

Ellipsoid, 472
Elliptic:

cone, 473
paraboloid, 472

Equations, graphs of, 39
Equilateral hyperbola, 48
Even functions, 130
Evolute, 335
Exponential functions, 227, 229
Exponential growth and decay,  

243
Extended law of the mean, 107
Extreme Value Theorem, 72
Extremum, relative, 105

F
First derivative, 86
First derivative test, 114
First octant, 455
Foci:

of an ellipse, 44
of a hyperbola, 45

Focus of a parabola, 43
Free fall, 174
Frequency, 151
Function, 51

composite, 84
continuous, 433
decreasing, 107
differentiable, 78, 444
domain of a, 51
even, 130
exponential, 227, 229
homogeneous, 549
hyperbolic, 233
implicit, 95
increasing, 107
integrable, 205
inverse, 85
inverse trigonometric,  

163
logarithmic, 219 
odd, 130
one-to-one, 85
range of a, 51
of several variables, 433
trigonometric, 149

Fundamental Theorem of Calculus, 
212

G
Gamma function, 320
General exponential function, 229
General logarithmic functions, 230
Generalized Rolle’s theorem, 106
Geometric series, 385
Gradient, 484, 495
Graphs of equations, 21, 39
Graphs of functions, 130
Gravity, 174
Growth constant, 243

H
Half-life, 244
Half-open interval, 3
Harmonic series, 387
Higher order:

derivatives, 95
partial derivatives, 433

Higher order law of the mean, 107
Homogeneous:

bodies, 543
equation, 549
function, 549

Horizontal asymptote, 128
Hyperbola, 40, 45

asymptotes of, 41
center, conjugate axes,  

eccentricity,
equilateral, 45, 48
foci, transverse axes, vertices

Hyperbolic functions, 233
Hyperbolic paraboloid, 473
Hyperboloid:

of one sheet, 473
of two sheets, 474

I
Implicit differentiation, 95, 446
Implicit functions, 95
Improper integrals, 313
Increasing:

function, 107
sequence, 379

Indefinite integral, 193
Independent variable, 51
Indeterminate types, 236
Inequalities, 3
Infinite intervals, 3
Infinite limit, 60

of integration, 313
Infinite sequence, 377

limit of, 377
Infinite series, 385
Inflection point, 128
Initial position, 174
Initial velocity, 174
Instantaneous rate of change, 77
Instantaneous velocity, 173
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Integrable, 205
Integral:

definite, 205
double, 505
improper, 313 
indefinite, 193
iterated, 506
line, 496
Riemann, 205
test for convergence, 391
triple, 532

Integrand, 193
Integrating factor, 549
Integration:

by miscellaneous substitutions, 
307

by partial fractions, 297
by parts, 275
plane area by double, 513
of power series, 411
by substitution, 194
by trigonometric substitution,  

285
Intercepts, 22
Intermediate Value Theorem,  

72
Interval of convergence, 409
Intervals, 2
Inverse cosecant, 166
Inverse cosine, 164
Inverse cotangent, 165
Inverse function, 85
Inverse secant, 166
Inverse sine, 163
Inverse tangent, 164
Inverse trigonometric functions,  

163
Irreducible polynomial, 297
Iterated integral, 506

J
Jump discontinuity, 70

L
Latus rectum of a parabola, 43
Law of cosines, 143
Law of sines, 143
Law of the mean, 106

Extended, 107
Higher-Order, 107

Lemniscate, 364
Length of arc, 139
L’Hôpital’s Rule, 235
Limaçon, 364
Limit:

of a function, 59, 433
infinite, 60
right and left, 60
of a sequence, 377

Limit comparison test, 393
Line, 19

equation of a, 21
in space, 460
slope of a, 19

Line integral, 497
Linear coordinate system, 1
Linear differential equation of the 

first order, 550
Logarithm, natural, 219
Logarithmic differentiation, 223
Logarithmic functions, 230
Lower limit of an integral, 205

M
Maclaurin series, 423
Major axis of an ellipse, 44
Mass, 543
Maximum and minimum:

absolute, 115
relative, 105

Mean-Value theorem for derivatives, 
106

Mean-Value theorem for integrals, 
211

Midpoint formulas, 12
Midpoint rule for integrals, 217
Minor axis of an ellipse, 44
Moment of inertia:

of planar mass, 543
of planar region, 514
of a volume, 533

Monotonic sequence, 379
Motion:

circular, 175
curvilinear, 355
rectilinear, 173

Motion under the influence of  
gravity, 174

N
Natural logarithm, 219
Newton’s law of cooling, 245
Newton’s method, 187
Nondecreasing (nonincreasing) 

sequence, 379
Normal component of acceleration, 

356
Normal line to a plane curve, 100
Normal line to a surface, 475
Normal plane to a space curve, 475, 

492

O
Octants, 455
One-to-one function, 85
Open disk, 433
Open interval, 2
Open set, 444

Ordinate, 9
Origin, 1
Osculating circle, 334
Osculating plane, 492

P
Pappus, theorem of, 520
Parabola, 39

focus, directrix, latus rectum, 
vertex, 43

Paraboloid:
elliptic, 472
hyperbolic, 473

Paradox, Zeno’s, 389
Parallel lines, slopes of, 22
Parameter, 327
Parametric equations, 327

for surfaces, 493
Partial derivative, 433

higher order, 435
Partial fractions, 297
Partial sums of a series, 385
Particular solution, 550
Period, 151
Perpendicular lines, slopes of, 23
Plane, 461

vectors, 343
Point of inflection, 128
Point–slope equation of a line, 22
Polar axis, 363
Polar coordinates, 142, 363, 364
Polar curves, 364
Polar equation, 363
Pole, 363
Position vector, 346, 455
Positive series, 391
Positive x axis, y axis, 9
Power chain rule, 88
Power rule for derivatives, 83
Power series, 409

differentiation of, 411
integration of, 411
interval of convergence of, 409
radius of convergence of, 410
uniform convergence of, 411

p-series, 393
Principal normal, 492
Product rule for derivatives, 83

Q
Quadrants, 10
Quick formula I, 194
Quick formula II, 221
Quotient rule for derivatives, 83

R
Radian measure, 139
Radius of convergence, 410
Radius of curvature, 334
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Radius vector, 346
Range of a function, 51
Rate of change, 77
Ratio of a geometric series, 385
Ratio test, 402
Rational function, 71, 297
Rectangular coordinate system, 9
Rectifying plane, 492
Rectilinear motion, 173
Reduction formulas, 279–280
Related rates, 179
Relative extrema (maximum and 

minimum), 105, 113, 114, 484
Remainder term, 424
Removable discontinuity, 73
Riemann integral, 205
Riemann sum, 205
Right-handed system, 455
Rolle’s theorem, 105

generalized, 106
Root test, 402
Rose with three petals, 364

S
Scalar product of vectors, 345
Scalars, 343
Secant function, 152
Second derivative, 86
Second derivative test, 113
Semimajor (semiminor) axis of an 

ellipse, 44
Separable differential equation, 549
Sequences:

bounded, 378
convergent and divergent, 377
limit of, 377
 decreasing, increasing, 

nondecreasing,
 nonincreasing, monotonic, 379

Series, infinite, 385
absolutely convergent, 402
alternating, 401
binomial, 426
conditionally convergent, 402
convergent and divergent, 385
geometric, 385
harmonic, 387
Maclaurin, 423
partial sums of, 385
positive, 391
with positive terms, 391
power, 409
p-series, 393
remainder after n terms of a, 424
Taylor, 423
sum of, 385
terms of, 385

Sigma notation, 203

Simpson’s rule, 217
Sine, 140
Slicing formula, 263
Slope of a line, 19
Slopes:

of parallel lines, 22
of perpendicular lines, 23

Slope–intercept equation of a line,  
22

Solid of revolution, 259
Space curve, 475, 492
Space vectors, 455
Speed, 355
Sphere, 471
Spherical coordinates, 531
Squeeze theorem, 378
Standard equation of a circle, 31
Standing still, 174
Substitution method, 194
Sum of a series, 385
Sum rule for derivatives, 83
Surface of revolution, 321, 476
Surfaces, 493

cylindrical, 471
Symmetry, 128, 130

axis of, 39, 128

T
Tabular method for absolute  

extrema, 115
Tangent function, 152
Tangent line to a plane curve, 99
Tangent line to a space curve, 475
Tangent plane to a surface, 475
Tangential component of 

acceleration, 356
Taylor series, 423
Taylor’s formula with remainder,  

424
Terms of a series, 385
Third derivative, 86
Total differential, 443
Transverse axis of a hyperbola,  

45
Trapezoidal rule, 215
Triangle inequality, 2
Trigonometric functions, 140, 150, 

152
Trigonometric integrands, 283
Trigonometric substitutions, 285
Trigonometry review, 139
Triple integral, 532
Triple scalar product, 459
Triple vector product, 460

U
Uniform convergence, 411
Unit normal to a surface, 494

Unit tangent vector, 347
Upper limit of an integral,  

205

V
Vector:

equation of a line, 460
equation of a plane, 461
position, 346, 455
product, 457
projections, 346
radius, 346
unit, 344
unit tangent, 347
velocity, 355
zero, 343

Vector functions, 346
curl of, 496
differentiation of, 346,  

491
divergence of, 495
integration of, 496

Vectors, 343
acceleration, 355
addition of, 343
components of, 344
cross product of, 457
difference of, 344
direction cosines of, 457
dot product of, 345
magnitude of, 343
plane, 343
scalar product of, 345
scalar projection of, 344
space, 455
sum of, 343
triple scalar product of, 459
triple vector product of,  

460
vector product of, 457
vector projection of, 346

Velocity:
angular, 175
average, 173
in curvilinear motion,  

355
initial, 174
in rectilinear motion, 173
instantaneous, 173
vector, 355

Vertex of a parabola, 43
Vertical asymptote, 128
Vertices:

of an ellipse, 44
of a hyperbola, 45

Volume:
with area of cross section given, 

263
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Volume (Cont.):
given by an iterated integral, 506
of solids of revolution, 259
under a surface, 521

W
Washer formula, 261
Work done by a force, 351

X
x axis, 9

positive, 9
x coordinate, 9

Y
y axis, 9

 positive, 9 

y coordinate,  
9

y intercept, 22

Z
Zeno’s paradox,  

389
Zero vector, 343
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