


 



Praise for the Manga Guide series

“Highly recommended.”
—choice magazine

“Stimulus for the next generation of scientists.”
—scientific computing

“A great fit of form and subject. Recommended.”
—otaku usa magazine

“The art is charming and the humor engaging. A fun and fairly painless 
lesson on what many consider to be a less-than-thrilling subject.”
—school library journal

“This is really what a good math text should be like. Unlike the majority of 
books on subjects like statistics, it doesn’t just present the material as a 
dry series of pointless-seeming formulas. It presents statistics as some-
thing fun, and something enlightening.”
—good math, bad math

“I found the cartoon approach of this book so 
compelling and its story so endearing that I 
recommend that every teacher of introductory 
physics, in both high school and college, con-
sider using [The Manga Guide to Physics].”
—american journal of physics

“A single tortured cry will escape the lips of 
every thirty-something biochem major who 
sees The Manga Guide to Molecular Biology: 
‘Why, oh why couldn’t this have been written 
when I was in college?’”
—the san francisco examiner

“A lot of fun to read. The interactions between 
the characters are lighthearted, and the whole 
setting has a sort of quirkiness about it that 
makes you keep reading just for the joy of it.”
—hack a day 

“The Manga Guide to Databases was the most 
enjoyable tech book I’ve ever read.”
—rikki kite, linux pro magazine 

Wow!
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Preface

There are some things that only manga can do.
You have just picked up and opened this book. You must be 

one of the following types of people.
The first type is someone who just loves manga and thinks, 

“Calculus illustrated with manga? Awesome!” If you are this type 
of person, you should immediately take this book to the cashier—
you won’t regret it. This is a very enjoyable manga title. It’s no 
surprise—Shin Togami, a popular manga artist, drew the manga, 
and Becom Ltd., a real manga production company, wrote the 
scenario. 

“But, manga that teaches about math has never been very 
enjoyable,” you may argue. That’s true. In fact, when an editor at 
Ohmsha asked me to write this book, I nearly turned down the 
opportunity. Many of the so-called “manga for education” books 
are quite disappointing. They may have lots of illustrations and 
large pictures, but they aren’t really manga. But after seeing a 
sample from Ohmsha (it was The Manga Guide to Statistics), I 
totally changed my mind. Unlike many such manga guides, the 
sample was enjoyable enough to actually read. The editor told me 
that my book would be like this, too—so I accepted his offer. In 
fact, I have often thought that I might be able to teach mathemat-
ics better by using manga, so I saw this as a good opportunity to 
put the idea into practice. I guarantee you that the bigger manga 
freak you are, the more you will enjoy this book. So, what are you 
waiting for? Take it up to the cashier and buy it already!

Now, the second type of person is someone who picked up this 
book thinking, “Although I am terrible at and/or allergic to calcu-
lus, manga may help me understand it.” If you are this type of per-
son, then this is also the book for you. It is equipped with various 
rehabilitation methods for those who have been hurt by calculus 
in the past. Not only does it explain calculus using manga, but 
the way it explains calculus is fundamentally different from the 
method used in conventional textbooks. First, the book repeatedly 
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presents the notion of what calculus really does. You will never 
understand this through the teaching methods that stick to limits 
(or ε-δ logic). Unless you have a clear image of what calculus really 
does and why it is useful in the world, you will never really under-
stand or use it freely. You will simply fall into a miserable state of 
memorizing formulas and rules. This book explains all the formu-
las based on the concept of the first-order approximation, helping 
you to visualize the meaning of formulas and understand them 
easily. Because of this unique teaching method, you can quickly 
and easily proceed from differentiation to integration. Further-
more, I have adopted an original method, which is not described in 
ordinary textbooks, of explaining the differentiation and integra-
tion of trigonometric and exponential functions—usually, this is 
all Greek to many people even after repeated explanations. This 
book also goes further in depth than existing manga books on 
calculus do, explaining even Taylor expansions and partial dif-
ferentiation. Finally, I have invited three regular customers of 
calculus—physics, statistics, and economics—to be part of this 
book and presented many examples to show that calculus is truly 
practical. With all of these devices, you will come to view calculus 
not as a hardship, but as a useful tool.

I would like to emphasize again: All of this has been made 
possible because of manga. Why can you gain more information 
by reading a manga book than by reading a novel? It is because 
manga is visual data presented as animation. Calculus is a branch 
of mathematics that describes dynamic phenomena—thus, calcu-
lus is a perfect concept to teach with manga. Now, turn the pages 
and enjoy a beautiful integration of manga and mathematics.

Hiroyuki Kojima

November 2005

Note: For ease of understanding, some figures are not drawn 
to scale.
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2 Prologue

The Asagake 
Times’s sanda-cho 

Office must be 
around here.

Just think — me, 
Noriko Hikima, a 
journalist! My 
career starts 

here!

It’s a small 
newspaper and 
just a branch 
office. But I’m 

still a journalist!

I’ll work 
hard!!
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sanda-cho Office...
do I have the 
wrong map?

a newspaper 
distributor?

You’re looking 
for the sanda-cho 

branch office? 
Everybody mistakes 
us for the office 
because we are 

larger.

It’s next 
door.

The Asagake Times 
sanda-Cho Distributor
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Don’t...don’t get 
upset, Noriko.

It’s a branch 
office, but it’s 
still the real 
Asagake Times.

Whoosh

Oh, no!! 
It’s a prefab!

The Asagake Times 
sanda-Cho Branch Office
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Good 
morning!

Here goes 
nothing!

I’m dea---d.
lunch 

delivery?

Zzzzzzz...

Fling
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Will you 
leave it, 
please?

Wait, what?

Oh, you have 
been assigned 

here today.

I’m Noriko 
Hikima.

long trip, 
wasn’t it? I’m 

Kakeru seki, the 
head of this 

office.

The big guy there 
is Futoshi Masui, 
my only soldier.

Just 
two of 
them...
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This is a good 
place. a perfect 
environment for 
thinking about 

things.

Thinking...?
Yes! Thinking 
about facts.

a fact is somehow 
related to 

another fact.

unless you understand 
these relationships, 
you won’t be a real 

reporter.

True journalism!!



Well, you 
majored in the 

humanities.
Yes! That’s 

true—I’ve studied 
literature since 
I was a junior in 

high school.

You have a lot of 
catching up to do, 
then. let’s begin 
with functions.

Fu...functions? 
Math? What?

When one thing 
changes, it influences 

another thing. 
a function is a 
correlation.

You can think of 
the world itself as 
one big function.

a function describes a 
relation, causality, or 

change.

as journalists, 
our job is to find 
the reason why 
things happen—
the causality.

Yes...
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Did you know a 
function is often 

expressed as 
y = f(x)?

Nope!!

For example, 
assume x 
and y are 
animals.

assume x is a frog. If 
you put the frog into 
box f and convert it, 
tadpole y comes out 

of the box.

But, uh...
what is f  ?

The f stands for 
function, naturally.

f is used to show that 
the variable y has a 

particular relationship 
to x.

and we can 
actually use any 
letter instead 

of f.

Animal yAnimal x f
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In this case, f 
expresses the 
relationship 

or rule 
between 

“a parent” 
and “an 

offspring.”

and this 
relationship is 
true of almost 
any animal. If x 
is a bird, y is a 

chick.

Okay! Now 
look at this.

For example, 
the relationship 
between incomes 
and expenditures 
can be seen as a 

function. like how when 
the sales at a 
company go up, 
the employees 
get bonuses?

The speed of sound 
and the temperature 

can also be expressed 
as a function. When 

the temperature goes 
up by 1°C, the speed 

of sound goes up by 
0.6 meters/second.

and the 
temperature in the 
mountains goes 
down by about 

0.5°C each time you 
go up 100 meters, 

doesn’t it?

an offspring
a parent

Yoo-

hoo!

Caviar 

Sales 

Down 

During 

Recession

X-43 Scram Jet 

Reaches Mach 9.6 — 

New World Record
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Do you get it? We 
are surrounded by 

functions.

I see what 
you mean!

We have plenty 
of time here to 

think about these 
things quietly.

The things you 
think about here 

may become useful 
someday.

It’s a small 
office, but I hope 
you will do your 

best.
Yes... 

I will.

Whoa!

Plomp!



Ouch...

are you all 
right?

Oh, lunch is here 
already? Where is my 

beef bowl?

Futoshi, lunch 
hasn’t come 
yet. This is...

Not yet? Please 
wake me up when 

lunch is here. 
Zzz...

No, Futoshi, 
we have a 

new...

Has lunch 
come?

No, not yet.

Zzz...

Flop

12 Prologue
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Table 1: Characteristics of Functions

subject Calculation Graph

Causality The frequency of a cricket’s chirp is 
determined by temperature. We can 
express the relationship between 
y chirps per minute of a cricket at 
temperature x°C approximately as

x = 27° 7 × 27 − 30

y g x x= ( ) = −7 30

The result is 159 chirps a minute.

When we graph these 
functions, the result is 
a straight line. That’s 
why we call them linear 
functions.

x

y

0

Changes The speed of sound y in meters per sec-
ond (m/s) in the air at x°C is expressed as 

y v x x= ( ) = +0 6 331.

At 15°C, 

y v= ( ) = × + =15 0 6 15 331. 340 m/s

At −5°C, 

y v= −( ) = × −( ) + =5 0 6 5 331. 328 m/s

Unit 
Conversion

Converting x degrees Fahrenheit (°F) into 
y degrees Celsius (°C) 

y f x x= ( ) = −( )5
9

32

So now we know 50°F is equivalent to

5
9

50 32 10−( ) = °C

Computers store numbers using a binary 
system (1s and 0s). A binary number with 
x bits (or binary digits) has the potential 
to store y numbers. 

y b x x= ( ) = 2

(This is described in more detail on 
page 131.)

The graph is an expo-
nential function.

x

y

10

1024

1

0



14 Prologue

P(x) cannot be expressed by a known function, but it is still a function.
If you could find a way to predict P(7), the stock price in July, you could 

make a big profit.

Exercise

1. Find an equation that expresses the frequency of z chirps/minute of a 
cricket at x°F.

The stock price P of company A in month x in 2009 is
y = P(x)

1 2 3 4 5 6

300

200

100

Month

Y
en

fx f(x) g( f(x))g

A composite function
of f and g

The graphs of some functions cannot be expressed 
by straight lines or curves with a regular shape.

Combining two or more functions is called “the 
composition of functions.” Combining functions 

allows us to expand the range of causality.
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all right, I’m 
done for the 

day.

Noriko, I heard 
a posh Italian 

restaurant just 
opened nearby. 
Would you like 

to go?

Wow! I love 
Italian food. 

let's go!

But...you’re 
finished 
already? 

It’s not even 
noon.

This is a 
branch office. 

We operate 
on a different 

schedule.

Tap-
Tap

approximating with Functions

The Asagake Times 
sanda-Cho Office
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Do you...do 
you always 
file stories 

like this?

local news like 
this is not bad. 
Besides, human-
interest stories 

can be...

Politics, foreign 
affairs, the 
economy... I want to 

cover the 
hard-hitting 

issues!! ah...that’s 
impossible.

G
li
m
p
s
e

To: Editors

subject: Today’s Headlines

a Bear Rampages in a House again—No InjuriesThe Reputation of sanda-cho Watermelons Improves in the Prefecture

Conk
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It’s not like a 
summit meeting 
will be held 
around here.

Nothing exciting 
ever happens, 
and time goes 

by very slowly.

I knew it.  
I don’t wanna work 

here!!

Noriko, you can 
still benefit 
from your 

experiences 
here.

I don’t know 
which beat you 
want to cover,

but I will train you 
well so that you 

can be accepted at 
the main office.

Om 

Nom 

Nom
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By the way, 
do you think 
the Japanese 

economy is still 
experiencing 
deflation?

I think so. I feel 
it in my daily life.

The government 
repeatedly said 

that the economy 
would recover.

But it took a long 
time until signs of 
recovery appeared.

a true journalist 
must first ask 

himself, “What do 
I want to know?”

I have a bad 
feeling about 

this...

Prices

Economic 

stimulus
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If you can approximate what 
you want to know with a 

simple function, you can see 
the answer more clearly.

M...math 
again? 

I knew it!

Now, what we want 
to know most is if 
prices are going 

up or down.

look.

approximating 
the fluctuation 
in prices with 

y = ax + b gives...

so if a is 
negative, we know 
that deflation is 
still continuing.

Here we 
use a linear 
expression: 

y = ax + b

2004 2005 2006

y
(Prices)

x
(Year)

Turned to inflation Still in deflation

a > 00 a < 00

y ax b= +
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That’s right. 
You are a 

quick study.

Now, let’s 
do the rest 
at the Italian 
restaurant.

Futoshi, we're 
leaving for 
lunch. Don’t 
eat too many 

snacks.

speaking of snacks, 
do you know about 
Johnny Fantastic, 

the rockstar whose 
book on dieting 

has become a best 
seller? Yes.

Growl

let's get 
outta 
here!
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You’re right. Now, 
let’s imitate his 
weight gain with 

y = ax2 + bx + c

But he suddenly 
began to gain 
weight again 
after a bad 
break-up.

although his 
agent warned 
him about it,

My weight 
gain has 
already 

passed its 
peak.

He was certain. 
Now what his 

agent wants to 
know is...

Whether 
Johnny's weight 
gain is really 
slowing down 

like he said.

Weight (kg) Weight (kg)

8 9 10 11 12 8 9 10 11 12

70 70

Days Days

y ax bx c= + +2
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If a is positive, his weight 
gain is accelerating. 

and if a is negative, it’s 
slowing down.

Good! 
You’re 

doing well.

There are lots 
of tight curves 

around here.

let’s assume you 
want to know 
how tight each 

curve is.

Eh, I don’t 
really care 
about that.

We can 
approximate 

each curve with 
a circle.

...

Weight gain is 
accelerating.

Weight gain is 
slowing down.

Vr
o
o
m
...
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let’s imitate it with the formula 
for a circle with radius R 

centered at point (a, b).

look. assume the 
curvature of the road is 
on the circumference of 

a circle with radius R.

The smaller 
R is, the 

tighter the 
curve is.

are you all right?

I think so...

Vr
o
o
m
...

Oh! 
Watch 
out!

B a ng !

y R x a b= − −( ) +2 2

x a y b R−( ) + −( ) =2 2 2
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Well, that’s the 
Italian restaurant 
we want to go to.

It’s still so 
far away.

Oh!! I’ve 
got an 
idea!

let’s denote 
this accident 

site with 
point P.

What?

and let’s think 
of the road as 
a graph of the 

function f(x) = x2.Italian 
restaurant

accident 
site
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The linear function that 
approximates the function 

f(x) = x2 (our road) at x = 2 is 
g(x) = 4x − 4.* This expression 

can be used to find out, 
for example, the slope at 

this particular point.

at point P 
the slope rises 

4 kilometers vertically 
for every 1 kilometer 

it goes horizontally. In 
reality, most of this road 

is not so steep.

Futoshi? We’ve 
had an accident. 

Will you help us?

The accident 
site? It’s 
point P.

What function 
should I use to 
approximate the 
inside of your 

head?

y

4

x

Italian
restaurant

P

x = 2

f (x) = x2

y  = g(x)

Imitate with
g(x) = 4x − 4

P = (2, 4)

4km

1km

Incline at point P

* The reason is given on page 39.
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While we wait for 
Futoshi, I’ll tell 

you about relative 
error, which is 
also important.

Relative 
error?

The relative error 
gives the ratio of the 

difference between the 
values of f(x) and g(x) to 
the variation of x when x 

is changed. That is...

simple, right?

I don’t care 
about relative 
difference. I 

just want some 
lunch.

Oh, for 
example, 
look at 

that.

a ramen shop?

Calculating the Relative Error

Relative error = 
Difference between f(x) and g(x)

Change of x

Our
original

function

Our
approximating
function
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assume that x 
equals 2 at the 

point where we are 
now and that the 

distance from here 
to the ramen shop 

is 0.1.

let’s change 
x by 0.1: x = 2 

becomes x = 2.1.

so the difference is 
f(2.1) − g(2.1) = 0.01, and the 

relative error is 0.01 / 0.1 = 
0.1 (10 percent).

Now, assume the point 
where I am standing is 

0.01 from P.

Ramen

Ramen
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Change x by 0.01: x = 2 
becomes x = 2.01.

The relative error 
for this point is 
smaller than for 
the ramen shop.

In other words, the 
closer I stand to 

the accident site, the 
better g(x) imitates f(x).

Error

Relative error

As the variation approaches 0, the relative error also approaches 0.

Variation of 
x from 2

f(x) g(x) Error Relative 
error

1 9 8 1 100.0%

0.1 4.41 4.4 0.01  10.0%

0.01 4.0401 4.04 0.0001   1.0%

0.001 4.004001 4.004 0.000001   0.1%

0 0
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That’s not so 
surprising, is it?

Great! You 
already 

understand 
derivatives.

so, the 
restaurant 
having the 
smallest 
relative 

error is...

Be straight with 
me! We’re gonna 
eat at the ramen 
shop, aren’t we?

Yes. Today we will 
eat at the ramen 

shop, which is 
closer to point P.

The ramen 
shop.

The approximate linear function is such that its 
relative error with respect to the original 

function is locally zero.

so, as long as local properties are concerned, 
we can derive the correct result by using the 
approximate linear function for the original 

function.

see page 39 for the detailed calculation.
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Why is Futoshi 
eating so much? 
He just came to 

rescue us.

sigh. I like ramen, 
but I wanted to eat 

Italian food.

Noriko, we can also 
estimate the cost-
effectiveness of 
TV commercials 

using approximate 
functions.

Really?

Slurp

Ramen sanda
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You know the 
beverage 

manufacturer 
amalgamated 

Cola?

let’s consider 
whether one of 
their executives 

increased or 
decreased the airtime 
of the company’s TV 
commercial to raise 
the profit from its 
popular products.

Okay, I guess. When I worked at 
the main office, only 
one man solved this 
problem. He is now a 

high-powered...

I’ll do it! I will 
work hard. 

Please tell me 
the story.

You know...

assume amalgamated Cola 
airs its TV commercial x 

hours per month.

It is known that the profit 
from increased sales due to 

x hours of commercials is 

f x x( ) = 20  

(in hundreds of million yen).

The Derivative in action!
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amalgamated Cola 
now airs the TV 
commercial for 

4 hours per month.

and since 
f ( )4 20 4 40= = , the 

company makes a profit 
of 4 billion yen.

The fee for the 
TV commercial is 
10 million yen per 

minute.

T...ten million 
yen!?

Now, a newly 
appointed executive 

has decided to 
reconsider the 
airtime of the TV 

commercial. Do you 
think he will increase 

the airtime or 
decrease it?

Hmm.

1-minute commercial =  
¥10 million

f x x( ) = 20  hundred million yen

1-min commercial = ¥10 million

It's sooo good!
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since f x x( ) = 20  
hundred million yen 

is a complicated 
function, let’s 
make a similar 

linear function to 
roughly estimate 

the result.

since it’s impossible 
to imitate the whole 
function with a linear 

function, we will 
imitate it in the vicinity 
of the current airtime 

of x = 4.

We will draw a 
tangent line* to 

the graph of 

f x x( ) = 20  

at point (4, 40).

step 1

step 2

hundred million yen

Imitate

* Here is the calculation of the tangent line. (See also the explanation of the 
derivative on page 39.)

For f x x( ) = 20 , f′(4) is given as follows.

f f4 4 20 4 20 2
20

4 2 4 2

4 2

20
4

+( ) − ( )
= + − × =

+ −( ) × + +( )
× + +( )

= + −

ε
ε

ε
ε

ε ε

ε ε

ε 44

4 2

20

4 2ε ε ε+ +( ) =
+ + u

When ε approaches 0, the denominator of u 4 2+ +ε   4. 
Therefore, u  20 ÷ 4 = 5.
Thus, the approximate linear function g x x x( ) = −( ) + = +5 4 40 5 20
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If the change in x is 
large — for example, an 
hour — then g(x) differs 
from f(x) too much and 

cannot be used.

In reality, the change 
in airtime of the TV 

commercial must only 
be a small amount, 

either an increase or a 
decrease.

If you consider an 
increase or decrease 

of, for example, 
6 minutes (0.1 hour), 
this approximation 

can be used, because 
the relative error 
is small when the 

change in x is small.

In the vicinity of x = 4 
hours, f(x) can be safely 
approximated as roughly 

g(x) = 5x + 20.

The fact that the 
coefficient of x in g(x) is 
5 means a profit increase 
of 5 hundred million yen 

per hour. so if the change 
is only 6 minutes (0.1 hour), 

then what happens?

We find that 
an increase of 

6 minutes brings 
a profit increase 
of about 5 × 0.1 = 

0.5 hundred million 
yen.

That’s right. But, 
how much does it 
cost to increase 
the airtime of the 

commercial by 
6 minutes?

The fee for the 
increase is 6 × 0.1 = 

0.6 hundred 
million yen.

If, instead, the airtime 
is decreased by 

6 minutes, the profit 
decreases about 
0.5 billion yen. But 

since you don’t have 
to pay the fee of 

0.6 hundred million 
yen...

step 3



36 Chapter 1 let’s Differentiate a Function!

The answer is...the company 
decided to decrease the 

commercial time!

Correct!

People use functions 
to solve problems 

in business and life in 
the real world.

That’s true 
whether they are 

conscious of 
functions or not.

By the way, who is the 
man that solved this 

problem?
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Oh, it was Futoshi.

You're 
kidding!

But you 
said he was 

high-powered, 
didn’t you?

He is a high-
powered 

branch-office 
journalist.

as I expected...solving 
math problems has 
nothing to do with 

being a high-powered 
journalist. !?

Slurp

Yank!
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THis is absurd! 
I won’t give up!

Lunchtime is over. 
Let’s fix the car!!

Futoshi, lift the 
car up more! 
You’re a high-

powered branch-
office journalist, 

aren’t you?

I don’t think 
this has 

anything to do 
with being a 
journalist…
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Calculating the Derivative

Let’s find the imitating linear function g(x) = kx + l of function f(x) at x = a.
We need to find slope k.

u g x k x a f a( ) = −( ) + ( )   (g(x) coincides with f(a) when x = a.)

Now, let’s calculate the relative error when x changes from x = a to 
x = a + ε.

Relative error = 
Change of x from x = a

Difference between f and g after x has changed

When ε approaches 0, 
the relative error also 
approaches 0.

approaches k
when ε � 0.

=
+( ) − +( )f a g aε ε

ε

=
+( ) − + ( )( )f a k f aε ε

ε

=
+( ) − ( )

−  →→

f a f a
k

ε
ε ε 0 0

k
f a f a

=
+( ) − ( )

→
lim
ε

ε
ε0

g a k a a f a

k f a

+( ) = + −( ) + ( )
= + ( )

ε ε

ε

f a f a+( ) − ( )ε
ε

(The lim notation expresses the operation that obtains the value when ε 
approaches 0.)

Linear function u, or g(x), with this k, is an approximate function of f(x).
k is called the differential coefficient of f(x) at x = a.

lim
ε

ε
ε→

+( ) − ( )
0

f a f a Slope of the line tangent to y = f(x) at 
any point (a, f(a)).

We make symbol f′ by attaching a prime to f.

′ ( ) =
+( ) − ( )

→
f a

f a f a
lim
ε

ε
ε0

f′ (a) is the slope of the line tangent to 
y = f(x) at x = a.

Letter a can be replaced with x.
Since f′ can been seen as a function of x, it is called “the function 

derived from function f,” or the derivative of function f.
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Calculating the Derivative of a Constant, linear, or Quadratic 
Function

1. Let’s find the derivative of constant function f(x) = α. The differential 
coefficient of f(x) at x = a is

lim lim lim
ε ε ε

ε
ε

α α
ε→ → →

+( ) − ( )
= − = =

0 0 0
0 0

f a f a

Thus, the derivative of f(x) is f′(x) = 0. This makes sense, since our 
function is constant—the rate of change is 0.

Note The differential coefficient of f(x) at x = a is often simply called the 
derivative of f(x) at x = a, or just f′(a).

2. Let’s calculate the derivative of linear function f(x) = α x + β. The deriva-
tive of f(x) at x = α is

lim lim lim
ε ε ε

α ε
ε

α ε β α β
ε

α α
→ → →

+( ) − ( )
=

+( ) + − +( )
= =

0 0 0

f f a a a

Thus, the derivative of f(x) is f′(x) = α, a constant value. This result 
should also be intuitive—linear functions have a constant rate of change 
by definition.

3. Let’s find the derivative of f(x) = x2, which appeared in the story. The dif-
ferential coefficient of f(x) at x = a is

lim lim lim lim
ε ε ε ε

ε
ε

ε
ε

ε ε
ε→ → → →

+( ) − ( )
=

+( ) −
= + =

0 0

2 2

0

2

0

2
2

f a f a a a a
a ++( ) =ε 2a

Thus, the differential coefficient of f(x) at x = a is 2a, or f′(a) = 2a.
Therefore, the derivative of f(x) is f′(x) = 2x. 

summary

•	 The calculation of a limit that appears in calculus is simply a formula 
calculating an error.

•	 A limit is used to obtain a derivative.

•	 The derivative is the slope of the tangent line at a given point.

•	 The derivative is nothing but the rate of change.
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The derivative of f(x) at x = a is calculated by

lim
ε

ε
ε→

+( ) − ( )
0

f a f a

g(x) = f′(a) (x − a) + f(a) is then the approximate linear function of f(x).
f′(x), which expresses the slope of the line tangent to f(x) at the point 

(x, f(x)), is called the derivative of f(x), because it is derived from f(x).
Other than f′(x), the following symbols are also used to denote the 

derivative of y = f(x).

′y
dy
dx

df
dx

d
dx

f x, , , ( )

Exercises

1. We have function f(x) and linear function g(x) = 8x + 10. It is known 
that the relative error of the two functions approaches 0 when x 
approaches 5.

a. Obtain f(5).

b. Obtain f′(5).

2. For f(x) = x3, obtain its derivative f′(x).





2
let’s learn Differentiation 

Techniques!
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Wow! Megatrox is a 
huge company!

!!!

This is a great 
scoop, isn’t it? ........

Criminal Charges 
Brought Against 
Megatrox 
Construction Contract 
Violates Antitrust Laws



I suppose you 
want to write a big 

story someday?

Of course!

You two must 
have got some 
really exciting 

scoops when you 
were at the main 
office. Tell me!

Nope, not 
really.

I often failed to 
report big news. I 
have also written a 
letter of apology 
for including false 
information in my 

reporting.

That’s 
nothing to 
be proud 

of!

Calm down, 
Noriko.

I understand that 
you have high 
expectations 

for newspaper 
journalism, but the 

basics are most 
important.

Oops

Ha ha 
ha

Noriko Wants a scoop!  45
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Write simply and  
clearly—don’t use big 

words or jargon.

Don’t forget 
about the 

readers on 
main street.

Okay.

also, don’t pretend to 
know everything. If you 
come across anything 
you don’t know, always 
ask someone or check 

it out yourself.

Futoshi is still 
young, but 

his ability to 
investigate is 
exceptionally 

high.

I don’t pretend to 
know everything!

By the way,

what is the antitrust 
law for?

Proud

Huff

Thump

Eek!!



Well, you know that 
the Federal Trade 

Commission keeps an 
eye on companies to 

see if they do anything 
that hinders free 

competition,  
don’t you?

Of course!

Companies and stores 
are always trying to 

supply consumers with 
better merchandise at 

lower prices.

The result of their 
competition should 

be better quality and 
lower prices.

But if some companies 
agree not to compete 

with each other, or 
something else happens 
to hinder competition, 

consumers will be 
greatly disadvantaged. 
The aim of the Federal 
Trade Commission is to 
control such activities.

I see.

Now, I will tell 
you about a moving 
walkway to explain 

why we must think of 
the antitrust law in 
terms of calculus.

What?

We'll discuss 
the sum rule of 
differentiation. 

You should 
remember this 
because it is 

useful.

Doubtful

Noriko Wants a scoop!  47



48 Chapter 2 let’s learn Differentiation Techniques!

That is, the 
derivative of a 

function is equal 
to the sum of the 
derivatives of the 

functions that 
compose it.

What 
does that 

mean?

let’s look 
into this by 

approximating 
around x = a .

Given that

We want to know k .

since h(x) = f(x) + g(x) , 
substitute u and v in 

this equation.

The sum Rule of Differentiation

Formula 2-1:  
The sum Rule of Differentiation

For h x f x g x( ) ( ) ( )= +

 ′ = ′ + ′( ) ( ) ( )h x f x g x

We did 
this 

before.

approximating

Squeaku

v

w

uh-huh.

Squeak

Squeak

approximating

approximating
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We also 
know that…

so if we rearrange 
the terms of , 
equation w says 

the coefficient of 
(x − a) will be k .

let’s see.

k = f ′(a) + g′(a) !
Right!

and the 
differential 

coefficient equals 
the derivative. so, 

k = h ′(a) = 
f ′(a) + g ′(a) .

Now, let me 
explain about 
the moving 
walkway.

suppose Futoshi 
is walking down 

the sidewalk.

I'd rather not 
think about it, 
but I guess 

I will.
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suppose the 
distance he walked 
in x minutes from 

the reference point 
0 is f(x) meters.

a minutes later, 
he is at point A .

suppose x minutes 
later, he is at 

point P .

This means that he 
traveled from A to P 

in (x − a) minutes.

That’s right. 
But does 
it mean 

anything?

suppose this 
travel time  

(x − a) is 
extremely 

short.

This can be 
changed 

into...

Mr. seki, the 
left side of 

this equation is 
Distance traveled 
divided by travel 
time. so, is this 

the speed?

Exactly! so, 
f ′(a) represents 
Futoshi’s speed 
when he passes 

point A .

f x f a x a f a( ) ( ) ( ) ( )≈ ′ − +

f x f a

x a
f a

( ) − ( )
−

≈ ′ ( )
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That means that to 
differentiate is to find 
the speed when f(x) is a 
function expressing the 

distance!

That’s right. so, if 
h(x) = f(x) + g(x) , then 

h ′(x) = f ′(x) + g ′(x) 
means the  
following.

This time, let him 
walk on a moving 
walkway, like you 
might see at an 

airport.

The moving walkway moves 
f(x) meters in x minutes. 
When measured on the 

walkway, Futoshi travels 
g(x) meters in x minutes.

so the total 
distance Futoshi 

travels in x 
minutes becomes 

h(x) = f(x) + g(x) .

Travels g(x) meters 
in x minutes

Moves f(x) meters 
in x minutes
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Then, what does  
h ′(x) = f ′(x) + g ′(x) 

mean?

It means Futoshi’s travel 
speed, as seen from 

someone not on the walkway, 
is the sum of his speed on 
the walkway and the speed 

of the walkway itself, 
doesn’t it?

That’s right.

But, it’s not so 
surprising, is 
it? Does this 
have anything 
to do with the 
antitrust law?

Be patient 
for a little 

while longer, 
grasshopper. 
I told you that 
the basics are 

important.

The next rule is 
also fundamental, 
so remember this 

one, too.

Okay.

Pant, pant

Wheeze
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Only one 
function?

Yes. let’s 
consider x = a .

(x − a) is a small 
change. That means 
(x − a)2 is very, very 
small. since we are 

approximating, we can 
throw that term out.

We get this.

Formula 2-2:  
The Product Rule of Differentiation

For h x f x g x( ) = ( ) ( )

 ′ ( ) = ′ ( ) ( ) + ( ) ′ ( )h x f x g x f x g x

The derivative of a product is the sum 
of the products with only one function 
differentiated.

The Product Rule of Differentiation

f x f a x a f a( ) ≈ ′ ( ) −( ) + ( )

g x g a x a g a( ) ≈ ′ ( ) −( ) + ( )

h x f x g x k x a l( ) = ( ) ( ) ≈ −( ) +

h x f a x a f a g a x a g a( ) ≈ ′ ( ) −( ) + ( ){ } × ′ ( ) −( ) + ( ){ }
h x f a g a x a f a g a x a f a x a g a f a g a( ) ≈ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )′ ′ − + ′ − + ′ − +2 (( )

h x f a g a f a g a x a f a g a( ) ≈ ′ ( ) ( ) + ( ) ′ ( ){ } −( ) + ( ) ( )
k f a g a f a g a= ′ ( ) ( ) + ( ) ′ ( )



Now, I will use 
differentiation 

to explain why a 
monopoly should 
not be allowed.

How do you 
solve a social 
problem using 
differentiation?

Isn’t it rather 
an issue of 

morality, justice, 
and truth?

let’s look at the 
world in a more 

businesslike 
manner.

a market where many 
companies supply 

products that cannot 
be discriminated 

between is called “a 
perfectly competitive 

market.”

For 
example?

let’s see...
video rental 

shops?

That’s right.* Companies 
in a perfectly 

competitive market 
accept the commodity 

price determined by the 
market and continue 

to produce and supply 
their product as long 
as they make profits.

Perfectly 
Competitive Market

* In reality, there are usually big-name brands for any commodity. 
There are famous chain shops in the video rental market—No market can 
be a perfectly competitive one, so this is a fictitious, ideal situation.

54 Chapter 2
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suppose, for example, a company 
producing CD players whose 

market price is ¥12,000 per unit 
considers whether or not it 

will increase production volume.

If the cost of 
producing one more 

unit is ¥10,000, the 
company will surely 
increase production, 
because it will make 

more profit.

since many  
other companies 
produce the same 

kind of product, the 
company believes 
that its increase in 

production will cause 
the price to decrease.

so the company will consider 
making additional units. But the 
cost of making one more unit 
changes, and the company’s 
production efficiency will 

change. Eventually, the cost 
of making one more unit 

will reach the market price 
of ¥12,000. at that point, an 

increase in production would 
not be worth the cost.

On the other hand, the 
story is different in a 

monopoly market, where 
only one company supplies 
a particular product. Then 
just one company is the 

entire market.

When you look 
at the market 
as a whole, an 

increase in supply 
will cause the 

price to go down. 
That’s just supply 

and demand.

Production increase

In short, the market 
stabilizes when the 

market price of 
the unit equals the 
cost of producing 

another unit.

uh-huh

Monopoly Market
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Now, let’s assume 
we know that the 
price that allows 

the company to sell 
every unit supplied 
in quantity x is p(x), 

a function of x.

By the way, p ′(x), which 
expresses the change 

in price, is negative 
because the unit's 
price decreases if 

x is increased.

That’s right. 
The company’s 

revenue from this 
product is given 

by this...
This shows 
us that the 

additional revenue 
from an increase 
in production is 

R ′(a) per unit.

I get it! The company 
needs to calculate this 
to decide whether to 
increase production, 
while comparing it 

against the costs of 
producing the units.

You’re right. since 
R(x) = p(x) × x , 

remember that 
product rule of 
differentiation.

I think I 
remember...

Squeak 
squeak

Revenue = R(x) = price × quantity = p(x) × x

Formula 2-3:  
The Company's Revenue

Since R x R a x a R a( ) ≈ ′ ( ) −( ) + ( )
we know that

R x R a R a x a( ) − ( ) ≈ ′ ( ) −( )

Change in 
production 

volume

Change in 
revenue
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We get* R ′(a) = p ′(a) × a + p(a) × 1

Right. Production 
should be 

stopped at the 
exact moment it 
becomes less 
than the cost 
of production 

increase per unit.

In other words, 
production will be stopped 
when p ′(a) × a + p(a) = cost 
of production. We know 

that the first term is 
negative, so the market 

price p(a) is greater 
than the cost.

But the price is 
actually greater 

than the cost 
of producing an 

additional unit when 
a monopolistic 
company stops 

production.

That’s undue 
price-fixing, 

isn’t it?

You are right, but you 
should take a closer 
look. Companies do 
this not because of 

malicious motives but 
based on a rational 

judgment.

look at the 
expression 

again.

* The derivative of x is 1 (see page 40 for more on differentiating linear functions).

I see.
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Sales increase (per unit) when production is increased a little more: 

′ ( ) = ′ ( ) + ( )R a p a a p a

The two terms in the last expression mean the following:

p(a) represents the revenue from selling a units

p ′(a) a  = Rate of price decrease × Amount of production 
  = A heavy loss due to price decrease influencing all units

What do you 
think, Noriko?

What do 
I think?

The monopoly 
stops production, 
considering both 

how much it obtains 
by selling one more 

unit and how much 
loss it suffers due 
to a price decrease.

!!

If so, it is not doing 
a "bad" thing but is 
just simply acting in 
accordance with a 
capitalist principle 
of profit-seeking. 

Therefore, accusing 
the company of being 
morally wrong is of 

no use.

But, for consumers 
and society, the 

company’s behavior 
is the cause of high 
prices, which is not 

desirable. That’s 
why monopolies are 
prohibited by law.
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amazing!! ??
Mr. seki, that’s great!! 

all of society's 
problems can be solved 

with differentiation, 
can’t they?

You must 
tell me.

What about 
love? How 

do you solve 
for love?

You can't be serious. 
It’s impossible!

argHHh! 
I hate 
you!!
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Asagake Times, 
sanda-cho 

Office.

Oh, hello,  
B...boss!

The newspaper 
wants to ask you 
a few questions 

about that article 
you wrote.

Yes…

The Asagake Times
main office



They want to 
know more about 
your sources and 
any background 

information. This may 
be a good opportunity 

to restore your 
honor.

Yes...I 
understand.

Thank you for 
calling me. I’ll get 

everything together.

........

What’s the 
matter? You 
don’t look 
so good.

Oh, boy.

!!!

Oh, no. It’s 
nothing 
serious.

Mr. seki Gets a Call 61
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let’s change the 
subject.

as a wrap-up, 
let’s 

memorize the 
formulas for 
differentiating 

polynomials. The 
differentiation 

of any 
polynomial can 
be performed 
by combining 

three formulas.

Differentiating Polynomials

How do we get this general rule? We use the product rule of differentiation 
repeatedly.

For h x x( ) = 2, since h x x x h x x x x( ) = × ′ ( ) = × + × =, 1 1 2  

The formula is correct in this case.

For h x x( ) = 3, since h x x x( ) = ×2 , ′ ( ) = ( )′ × + × ( )′ = ( ) + × =h x x x x x x x x x2 2 22 1 3
2

The formula is correct in this case, too.

For h x x( ) = 4, since h x x x( ) = ×3 , ′ ( ) = ( )′ × + × ( )′ = × + × =h x x x x x x x x x3 3 2 3 33 1 4

Again, the formula is correct. This continues forever. Any polynomial can 
be differentiated by combining the three formulas!

This result is used

y ax=

y ax bx c= + +2

Monomial

term

Polynomial

Formula 2-4: The Derivative of an nth-degree Function

The derivative of h x xn( ) =  is ′ ( ) = −h x nxn 1

Formula 2-5: The Differentiation Formulas of sum Rule, 
Constant Multiplication, and xn

u Sum rule: f x g x f x g x( ) + ( ){ }′ = ′ ( ) + ′ ( )

v Constant multiplication: α αf x f x( ){ }′ = ′ ( )

w Power rule (xn ): x nxn n{ }′ = −1

Let’s see it in action! Differentiate h x x x x( ) = + + +3 22 5 3

rule �

rule � rule �

′ ( ) = + + +{ }′ = ( )′ + ( )′ + ( )′ + ( )′

= ( )′ + ( )′ +

h x x x x x x x

x x

3 2 3 2

3 2

2 5 3 2 5 3

2 55 3 2 2 5 1 3 4 52 2x x x x x( )′ = + ( ) + × = + +



Differentiating Polynomials 63

I’m going out 
for a while.

.......

Don’t worry 
about him.

I want you to go out 
and do some reporting.

Really?

Yes, I heard that the 
roller coaster in the 
sanda-cho amusement 

Park was just 
renovated.

Sigh

Just a local 
roller coaster...
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Finding Maxima and Minima

Eek!

Ooh!

*

y

x

Maximum

Minimum
Something 

like a 
ro�er 
coaster 

track

Maxima and minima are where a function changes from a decrease to an 
increase or vice versa. Thus they are important for examining the properties 
of a function.

Since a maximum or minimum is often the absolute maximum or 
minimum, respectively, it is an important point for obtaining an optimum 
solution.

This means that we can find maxima or minima by finding values of a 
that satisfy f ′(a) = 0. These values are also called extrema.

Theorem 2-1: The Conditions for Extrema

If y = f(x) has a maximum or minimum at x = a, then f ′(a) = 0.

* sanda-cho 
sandaland 
amusement 

Park

Clickety-
clack

clack

clack

What's that?
I hate roller 
coasters…
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This  
discussion can 

be summarized into 
the following 

theorem.

f ′(a) = 0

f ′(a) = 0

(a, f(a))

(a, f(a))

Theorem 2-2: The Criteria for Increasing and Decreasing

y = f(x) is increasing around x = a when f ′(a) > 0.

y = f(x) is decreasing around x = a when f ′(a) < 0.

Assume f ′(a) > 0.

Since f(x) ≈ f ′(a) (x − a) + f(a) near x = a, 
f ′(a) > 0 means that the approximate 
linear function is increasing at x = a. 
Thus, so is f(x).

In other words, the roller 
coaster is ascending, and it is not at 
the top or at the bottom.

Similarly, y = f(x) is descending 
when f ′(a) < 0, and it is not at the 
top or the bottom, either.

If y = f(x) is ascending or descending when f ′(a) > 0 or f ′(a) < 0, respectively, 
we can only have f ′(a) = 0 at the top or bottom.

In fact, the approximate linear function y = f ′(a) (x − a) + f(a) = 0 × (x − a) 
+ f(a) is a horizontal constant function when f ′(a) = 0, which fits our under-
standing of maxima and minima.
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la, la, la!  
I love 

differentiation! 
I can see 

society with it!  
Tee Hee hee! Oh, so you 

understand!

What? You have 
anything new to 
say? all you say 

is differentiation, 
differentiation.

My brain hurts.

What? You 
just said you 

love…

Mr. seki, 
would you like 
another drink?

No, thank you. I don’t 
want to drink too 

much tonight.

It’s because 
of that call, 
isn’t it? What 
did the boss 

say?

Bar sandaya
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........

Delicious! Draft 
beer is the best 

beer!

Here is a question! There 
are two types of beer 

bubbles. Relatively 
small ones that become 

even smaller and 
finally disappear...

and relatively large 
ones that quickly become 

larger, rise up to the 
surface, and pop there. 
Now, explain why this 

happens!
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since carbon dioxide in 
carbonated drinks, such as 
beer, is supersaturated, it is 
more stable as a gas than 
when it is dissolved in fluid.

so, the energy of 
a bubble decreases 

in proportion to 
its volume  

(
4
3

3πr , with r being the 
radius).

On the other hand, surface 
tension acts on the boundary 
surface between the bubble 

and the fluid, trying to 
reduce the surface area.

Therefore, the energy of 
the bubble due to this force 
increases in proportion to 

the surface area, 4r2.

Considering these 
two effects, the 
energy E(r) of a 

bubble of radius r 
can be expressed

as shown here.

ah!

My 
pleasure!

Gas (bubble)

surface tension acts

Fluid

E r a r b r( ) = − 





+ ( )4
3

43 2π π

Term 
for the 
volume

Term 
for the 

area

volume 
of a 

sphere

surface 
area 
of a 

sphere
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The bubble tries to 
reduce its energy as 
much as possible. If 
we find out how E(r) 
behaves to reduce 

itself, we will solve 
the mystery of beer 

bubbles.

I see. 
Impressive, 

Futoshi!

To simplify the problem, 
let’s assume a and b 
are 1 and change the 
value of r so that E r r r( ) = − +3 33 .* That is 
enough to see the 

general shape of E(r).

First, let’s 
find the 

extremum.

since 

′ ( ) = −( )′ + ( )′
= − +
= − −( )

E r r r

r r

r r

3 2

2

3

3 6

3 2

when r = 2, E ′(r) = 0,
for 0 < r < 2 (E ′(r) > 0) , the 
function is increasing, and
for 2 < r , the function is 

decreasing (E ′(r) < 0) .
so, we find E(r) is at its 

maximum point P when r = 2 .

Now we know that The 
graph of E(r) looks like 
this. This graph tells us 
that the bubbles behave 
differently on the two 

sides of maximum P .

E(r)

M
P

N

m n

r

2

* This is called normalizing a variable. We’ve simply multiplied each term by 3/(4) .
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a bubble that has the radius 
and energy of point M 

should reduce its radius 
until it is smaller than m to 
make its energy E(r) smaller. 

The bubble will continue 
to become smaller until 

it finally disappears.

On the other hand, a bubble 
that has the radius and 

energy of point N should 
increase its radius to make 
its energy E(r) smaller. The 

bubble will continue to 
grow larger and to rise 

up inside the beer.

Heh-heh...Futoshi. N...Noriko!

Bravo
!

Clap
Yank

?!

P

N

n2

E(r)

M
P

m 2
The bubble 
becomes smaller

The bubble 
becomes larger

clap
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Don’t bring 
up graphs and 

theorems in front 
of me!!

Yeow! You behave 
totally differently 

outside of the 
office!

shut up! 
sake! Bring 
me sake!

she seems to 
have reached 
her maximum.

Help m
e!
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using the Mean Value Theorem

We saw before that the derivative is the coefficient of x in the approximate 
linear function that imitates function f(x) in the vicinity of x = a.

That is,

f x f a x a f a( ) ≈ ′ ( ) −( ) + ( )  (when x is very close to a)

But the linear function only “pretends to be” or “imitates” f(x), and for b, 
which is near a, we generally have

u f b f a b a f a( ) ≠ ′ ( ) −( ) + ( )

So, this is not exactly an equation.

In other words, we can make expression u hold with an equal sign not 
with f ′(a) but with f ′(c), where c is a value existing somewhere between a 
and b.*

* That is, there must be a value for x between a and b (which we’ll call c) that has a tangent line 
matching the slope of a line connecting points A and B.

Theorem 2-3: The Mean Value Theorem

For a, b (a < b), and c, which satisfy a < c < b, there exists a 
number c that satisfies

f b f c b a f a( ) = ′ ( ) −( ) + ( )

Why is this?

For those who cannot stand for this, we 
have the following theorem.



using the Mean Value Theorem 73

Let’s draw a line through point A = (a, f(a)) and point B = (b, f(b)) to form 
line segment AB.

We know the slope is simply Δy / Δx:

v Slope of AB
f b f a

b a
=

( ) − ( )
−

Now, move line AB parallel to its initial state as shown in the figure.
The line eventually comes to a point beyond which it separates from the 

graph. Denote this point by (c, f(c)).
At this moment, the line is a tangent line, and its slope is f ′(c).
Since the line has been moved parallel to the initial state, this slope has 

not been changed from slope v.

y = f(x)

B = (b, f(b))

Slope f ′(c)

a bc

Slope 
f b f a

b a

( ) − ( )
−

A = (a, f(a))

Therefore, we know

f b f a

b a
f c

( ) − ( )
−

= ′ ( )

Multiply both sides by the 
denominator and transpose 
to get f b f c b a f a( ) = ′ ( ) −( ) + ( )
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using the Quotient Rule of Differentiation

Let’s find the formula for the derivative of h x
g x

f x
( ) =

( )
( )

First, we find the derivative of function p x
f x

( ) = ( )
1

, which is the 
reciprocal of f(x). 

If we know this, we’ll be able to apply the product rule to h(x).

Using simple algebra, we see that f(x) p(x) = 1 always holds.

1 = ( ) ( ) ≈ ′ ( ) −( ) + ( ){ } ′ ( ) −( ) + ( ){ }f x p x f a x a f a p a x a p a

Since these two are equal, their derivatives must be equal as well.

0 = ( ) ′ ( ) + ′ ( ) ( )p x f x p x f x

Thus, we have ′ ( ) = −
( ) ′ ( )

( )p x
p x f x

f x
.

Since p a
f a

( ) = ( )
1

, substituting this for p(a) in the numerator gives 

′ ( ) =
− ′ ( )

( )
p a

f a

f a
2

.

For h x
g x

f x
( ) =

( )
( )  in general, we consider h x g x

f x
g x p x( ) = ( ) × ( ) = ( ) ( )1

 

and use the product rule and the above formula.

′ ( ) = ′ ( ) ( ) + ( ) ′ ( ) = ′ ( ) ( ) − ( )
′ ( )
( )

=
′ ( )

h x g x p x g x p x g x
f x

g x
f x

f x

g x f

1
2

xx g x f x

f x

( ) − ( ) ′ ( )
( )2

Therefore, we obtain the following formula.

Formula 2-6: The Quotient Rule of Differentiation

′ ( ) =
′ ( ) ( ) − ( ) ′ ( )

( )
h x

g x f x g x f x

f x
2



Calculating Derivatives of Composite Functions

Let’s obtain the formula for the derivative of h(x) = g( f(x)).
Near x = a,

 
f x f a f a x a( ) − ( ) ≈ ′ ( ) −( )

And near y = b,

g y g b g b y b( ) − ( ) ≈ ′ ( ) −( )

We now substitute b = f(a) and y = f(x) in the last expression.
Near x = a,

g f x g f a g f a f x f a( )( ) − ( )( ) ≈ ′ ( )( ) ( ) − ( )( )
Replace f(x) − f(a) in the right side with the right side of the first 

expression.

g f x g f a g f a f a x a( )( ) − ( )( ) ≈ ′ ( )( ) ′ ( ) −( )

Since g(  f(x)) = h(x), the coefficient of (x – a) in this expression gives us 
h ′(a) = g ′(  f(a))  f ′(a).

We thus obtain the following formula.

Calculating Derivatives of Inverse Functions

Let’s use the above formula to find the formula for the derivative of x = g(y), 
the inverse function of y = f(x).

Since x = g(  f(x)) for any x, differentiating both sides of this expression 
gives 1 = g ′(  f(x))  f ′(x).

Thus, 1 = g ′(y)  f ′(x), and we obtain the following formula.

Formula 2-7: The Derivatives of Composite Functions

′ ( ) = ′ ( )( ) ′ ( )h a g f x f x

Formula 2-8: The Derivatives of Inverse Functions

′ ( ) =
′ ( )g y

f x
1

Calculating Derivatives 75
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Formulas of Differentiation

Formula Key point

Constant 
multipli-
cation

α αf x f x( ){ }′ = ′ ( ) The multiplicative 
constant can be fac-
tored out.

xn (Power) x nxn n( )′ = −1 The exponent becomes 
the coefficient, reduc-
ing the degree by 1.

Sum f x g x f x g x( ) + ( ){ }′ = ′ ( ) + ′ ( ) The derivative of a 
sum is the sum of the 
derivatives.

Product
f x g x f x g x f x g x( ) ( ){ }′ = ′ ( ) ( ) + ( ) ′ ( ) The sum of the prod-

ucts with each func-
tion differentiated in 
turn.

Quotient
g x

f x

g x f x g x f x

f x

( )
( )













′
=

′ ( ) ( ) − ( ) ′ ( )
( )2

The denominator is 
squared. The numera-
tor is the difference 
between the products 
with only one function 
differentiated.

Composite 
functions g f x g f x f x( )( ){ }′ = ′ ( )( ) ′ ( ) The product of the 

derivative of the outer 
and that of the inner.

Inverse 
functions ′ ( ) =

′ ( )g y
f x

1 The derivative of an 
inverse function is 
the reciprocal of the 
original.

Exercises

1. For natural number n, find the derivative f ′(x) of f(x) = 
1
—
xn

.

2. Calculate the extrema of f(x) = x3 − 12x.

3. Find the derivative f ′(x) of f(x) = (1 − x)3.

4. Calculate the maximum value of g(x) = x2(1 − x)3 in the interval 0 ≤ x ≤ 1.



3
let’s Integrate a Function!
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Hey, did you 
read the article 

in today’s 
newspaper?

Which 
article?

This one. This 
person goes to 

my college!

The Tokyo 
Metropolitan 
Government 

has budgeted 
global warming 
countermeasures 
using the student’s 

findings. This is 
great!

Our university 
is strong in 

science.

* The Asagake Times

*

Graduate Student 

Analyzes the 

“Wind Way”

May Help to 

Reduce Heat-Island 

Phenomena in Urban 

Areas

lit
e
r
a
t
u
r
e
 

m
a
j
o

r

Proud



Carbon dioxide 
(CO2) is suspected 

to be the cause of 
global warming.

If heat radiation 
cannot escape 

the atmosphere, 
the earth gets 

too warm, causing 
abnormal weather.

The student 
analyzed how the 
wind affects the 

temperature.

He proposed 
restricting the 

construction of 
large buildings 
in the path of 

the wind.

He seems to hope 
that if the wind 
blows over the 
coast or rivers 
unhindered, the 

increase in ground 
temperature 
would slow.

It’s tough to 
reduce CO2 
emissions 
in today’s 
society.

But everybody 
should try to 
reduce them.

It is called a 
greenhouse gas. It 
has the effect of 

keeping the earth warm 
by preventing heat 

radiation from escaping 
earth’s atmosphere.

HeatHeat

studying Global Warming  79
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How do you find 
out if the amount 
of CO2 in the air is 
increasing in the 

first place?

Oh, no, 
differentiation?

No, it’s integration 
this time. But it’s 
also a function!

Integration 
allows us to find 
the total amount 
of CO2 in the air.

If we know the 
total amount 

of CO2 in the air, 
we can estimate 

these things.

But finding the 
total amount of 
CO2 is a difficult 

problem.

1. CO2’s effect on global 
warming

2. The amount of CO2 in the 
air produced by human 
factors, like cars and 
industry

Twinkle!

Integration

Huh.



But the CO2 
concentration 

differs from place 
to place, and its 
change is smooth 
and continuous.

If the CO2 
concentration in 

the air were uniform 
everywhere, we could 
calculate the total 
amount of CO2: the 
CO2 concentration 

multiplied by the total 
volume of air.

let’s think about 
how we calculate 
the total amount 

for the continuous 
change of 

concentration 
like this.

uh...can you 
think of 
a simpler 
example?

Okay. let’s use 
this, Futoshi’s 

treasured 
shochu*!

Oh, no! 
W...why?

This is for 
Noriko’s training. 

It’s your fault 
you keep it in the 

office.

No! It’s “Thousand 
Years of sleep,” a 
very rare, famous 

shochu from 
sanda-cho. Maybe that’s 

why he is 
always napping.

* a Japanese distilled spirit

studying Global Warming  81
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We will pour hot 
water into this 

glass of shochu.

Naturally, when we 
add the hot water, 
the lower part is 
strong and the 

upper part is less 
concentrated.

also, the 
concentration 

changes smoothly, 
little by little, 
from top to 

bottom.

Now let’s express the 
density of shochu at 
x centimeters from 

the bottom using the 
function p(x) in g/cm3.

...

Illustrating the Fundamental Theorem of Calculus

Height: 9 cm
Base area: 20 cm2

Hot 
water
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suppose p(x) is 
expressed as 

p x
x

( ) =
+( )
2

1
2

Now Noriko, what 
is the amount of 
alcohol in grams 
contained in this 
shochu with hot 

water?

I can’t 
figure it 
out that 
quickly.

But if the 
density is 

constant, it’s 
easy. The total 

amount of 
alcohol equals 

the density 
multiplied by the 
volume of the 

container.

If the density is 
0.1 g/cm3, as shown in 

this graph, we need to 
calculate the density 

times the height 
times the base area: 

0.1 × 9 × 20 = 18 grams, 
which is the amount of 

alcohol.

Isn’t it the same 
as calculating 
the area of the 
shaded part of 

the graph?

You are right! But 
to get the volume, 

we must also 
multiply height x 
by the base area, 

20 cm2.

Density
p(x)

2

0.02

0 9 xHeight

step 1—When the Density Is Constant

p(x)

0.1

9 x

p(x)

0.1

9 x
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Now, let’s imagine 
a glass of shochu 
where the density 
changes stepwise,

as 
represented 
by this graph, 
for example.

Why don’t you 
calculate it, 

Noriko?

Well, separating 
the graph into the 

steps...the base area 
is 20 cm2...

so…

step 2—When the Density Changes stepwise

x

0.1

0

0.2

0.3

6 92

2 4 3

Density
p(x)

0.3 × 2 × 20 + 0.2 × 4 × 20 + 0.1 × 3 × 20 

= (0.3 × 2 + 0.2 × 4 + 0.1 × 3) × 20 = 34

Alcohol for
the portion of

0 ≤ x ≤ 2( ) Alcohol for
the portion of

2 < x ≤ 6( ) Alcohol for
the portion of

6 < x ≤ 9( )
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The answer 
is 34 grams, 

isn’t it?

That’s 
right.

Now, what do 
you do when 
p(x) changes 

continuously?

What a 
bother!!

actually, it’s 
not a bother at 

all. look!

I see. We can start 
by imitating the 
function with a 

stepwise function 
and calculate 
using the same 

method we did in 
step 2.

step 3—When the Density Changes Continuously

Density
p(x)

2

0.02

0 9 x

. .
 .

p(x)

p(x0)
p(x1)
p(x2)

p(x6)

x0 x1 x2 x3 x4 x5 x6
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Right! Dividing 
the x-axis at x0 , 
x1 , x2 , ..., and x6 ,

In this way, we imitate 
p(x) with a stepwise 

function.

Calculating 
the amount of 

alcohol with this 
stepwise function 
gives us an amount 

imitating the 
exact amount of 

alcohol.

That’s this 
calculation, 

isn’t it?

Right. The shaded 
area of the 

stepwise function 
is the sum of these 
expressions (but 

without multiplying 
by 20 cm2, the 

base area).

The density is constant between 
x0 and x1 and is p(x0).

The density is constant between 
x1 and x2 and is p(x1).

The density is constant between 
x2 and x3 and is p(x2).

p x x x

p x x x

p x x x

p x x x

0 1 0

1 2 1

2 3 2

3 4

20

20

20

( ) × −( ) ×

( ) × −( ) ×

( ) × −( ) ×

( ) × − 33

4 5 4

5 6 5

20

20

20

( ) ×

( ) × −( ) ×

+ ( ) × −( ) ×

p x x x

p x x x

Approximate 
amount of alcohol

p(x)

. .
 .

p(x0)
p(x1)

p(x6)

x0 x1 x2 x3 x4 x5 x6
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Then, if we make this 
division infinitely fine, 
we will get the exact 
amount of alcohol, 

won’t we?

Well, that’s 
true, but it’s 
not realistic.

You’d have to add up 
an infinite number of 

infinitely fine portions.

look at this 
expression. Does 
it remind you of 

something?

ah! It looks like an 
imitating linear 

function!

I... 
I see.

p x x x3 4 3( ) × −( )
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step 4—Review of the Imitating linear Function

When the derivative of f(x) is given by f ′ (x), we had f(x) ≈ f ′ (a) (x − a) + f(a) 
near x = a.

Transposing f(a), we get

u f x f a f a x a( ) − ( ) ≈ ′ ( ) −( )
or (Difference in f ) ≈ (Derivative of f ) × (Difference in x)

If we assume that the interval between two consecutive values of x0, x1, 
x2, x3, ..., x6 is small enough, x1 is close to x0, x2 is close to x1, and so on.

Now, let’s introduce a new function, q(x), whose derivative is p(x). This 
means q′ (x) = p(x).

Using u for this q(x), we get 

(Difference in q) ≈ (Derivative of q) × (Difference in x)

q x q x p x x x1 0 0 1 0( ) − ( ) ≈ ( ) −( )
q x q x p x x x2 1 1 2 1( ) − ( ) ≈ ( ) −( )

The sum of the right sides of these expressions is the same as the sum 
of the left sides.

Some terms in the expressions for the sum cancel each other out.

q x q x p x x x

q x q x p x x x

q x q x

1 0 0 1 0

2 1 1 2 1

3 2

( ) − ( ) ≈ ( ) −( )
( ) − ( ) ≈ ( ) −( )
( ) − ( )) ≈ ( ) −( )
( ) − ( ) ≈ ( ) −( )
( ) − ( ) ≈ ( )

p x x x

q x q x p x x x

q x q x p x x

2 3 2

4 3 3 4 3

5 4 4 5 −−( )
+ ( ) − ( ) ≈ ( ) −( )

x

q x q x p x x x
4

6 5 5 6 5

q x q x6 0( ) − ( ) ≈
 The sum

Substituting x6 = 9 and x0 = 0, we get

The approximate amount of alcohol = the sum × 20

q x q x6 0 20( ) − ( ){ } ×

q q9 0 20( ) − ( ){ } ×

so we need to find 
function q(x) that 

satisfies q′ (x) = p(x).
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We have just 
obtained the 
following 

relationship of 
expressions 
shown in the 

diagram.

But if we increase 
the number of 

points x0, x1, x2, x3, 
and so on, until it 
becomes infinite,

we can say that 
relationship u 
changes from 
“approximation” 
to “equality.”

But, since the sum 
of the expressions 
have been imitating 
the constant value 

q(9) − q(0) ,

we get the 
relationship 
shown here.*

Step 5—Approximation  Exact Value

* We will obtain this relationship 
more rigorously on page 94.

�

�
The approximate amount of alcohol
(÷ 20) given by the stepwise function:

(Constant)

The exact amount
of alcohol (÷ 20)

≈

≈

The exact amount 
of alcohol (÷ 20)

==

=The sum of
for an infinite number of xi

p x x xi i i( ) −( )+1 q q9 0( ) − ( )

p x x x p x x x0 1 0 1 2 1( ) −( ) + ( ) −( ) + ...

q q9 0( ) − ( )
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Now Noriko, 
the next 

expression we 
will look at 

is this.

so, this q(x) is 
the function 
we wanted.

The amount of 
alcohol in a glass 
of shochu with hot 
water is generally 

24.3 grams.

so, we 
have a very 

strong 
drink here.

since the sum 
of infinite 

terms we have 
been doing 

requires a lot 
of time to write 

down, I will 
show you its 

symbol.

step 6—p(x) Is the Derivative of q(x)

If we suppose q x
x

( ) = −
+
2

1
, then ′ ( ) = −

+( )
= ( )q x

x
p x

2

1
2

In other words, p(x) is the derivative of q(x).
q(x) is called the antiderivative of p(x).

The amount of alcohol

= q q9 0 20( ) − ( ){ } ×

= −
+

− −
+















×2
9 1

2
0 1

20

= 36 grams
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The above 
expression

can be written 
in this way.

But, what is Δ?

Δ (delta) is a Greek 
letter. The symbol is 
used to express the 
amount of change.

This Δx expresses the 
distance to the next 

point. In other words, 
it is, for example, 
(x1 – x0) or (x2 – x1) .

What about ∑ ?

using the Fundamental Theorem of Calculus

Oh, simple!

Delta
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using ∑ (sigma) like so, 

x x x x=
∑

0 1 5, ,...,

expresses the operation 
“sum up from x0 = 0 

to x5 = 9 .”

Now Noriko, 
what does

p x x
x x x x

( ) ∆
=

∑
0 1 5, ,...,

mean?

It means to sum up 
(the value of p at x) times 
(the distance from x to 

the next point).

Yes, it means 
the equation we 
saw before at 
the bottom of 

page 89.

The next one is the 
symbol to simplify 

this equation 
further.

since the equation is 
the sum for a finite 
number of steps, 

we make the symbol 
round when we have 
an infinite number of 

steps.

Round? Yes, I do 
this...

Heave-
ho!

Oh!

Clap 
clap

Ya
nk

!
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I expand ∑ to 
make ∫, and

replace Δ 
with d.

Expression w means the 
sum when the interval is 
made infinitely small, and 

it expresses the area 
between the graph on the 

left and the x-axis.

This is called a 
definite integral.

If we know p(x) 
is the derivative 

of q(x),

p x dx q b q a
a

b ( ) = ( ) − ( )∫
We have calculated the 
sum extremely easily in 

this way, haven’t we? ...

Boy!

Yank!

p(x)

0 9 x

� ∫0
9
p(x)dx

Definite 
integral, 
you are 

wonderful!

Not 
nearly 

as 
excited

summary

a b

…

a b

p x p x dx p x x q b q a
a

b

x x x x

( ) = ( ) ≈ ( ) ∆ = ( ) − ( )∫ ∑
= 0 1 5, ,...,

We must find q(x) that satisfies ′ ( ) = ( )q x p x a.

This is the Fundamental Theorem of Calculus!
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a strict Explanation of step 5

In the explanation given before (page 89), we used, as 
the basic expression, q x q x p x x x1 0 0 1 0( ) − ( ) ≈ ( ) −( ), a 
“crude” expression which roughly imitates the exact 
expression. For those who think this is a sloppy expla-
nation, we will explain more carefully here. Using the 
mean value theorem, we can reproduce the same 
result.

We first find q(x) that satisfies 
q′ (x) = p(x).

We place points x0 (= a), x1, x2, 
x3, ..., xn (= b) on the x-axis.

We then find point x01 that 
exists between x0 and x1 and satis-
fies q x q x q x x x1 0 01 1 0( ) − ( ) ≈ ′ ( ) −( ).

The existence of such a point 
is guaranteed by the mean value 
theorem. Similarly, we find x12 
between x1 and x2 and get

q x q x q x x x2 1 12 2 1( ) − ( ) ≈ ′ ( ) −( )

Repeating this operation, we get

This corresponds to the diagram in step 5.

y

x

...

p(x)

x0 x1 x2 x3 x4 xn−1 xn

x01 x12 x23 x34 xn−1n

[xn = b][x0 = a]

Approximate area

Exact area

Infinitely fine sections

Always equal

Equal

+

... ... ...

q x q x

q x q x

q x q x

q x q xn n

1 0

2 1

3 2

1

( ) − ( ) =

( ) − ( ) =

( ) − ( ) =

( ) − ( ) =−

′ ( ) −( )
′ ( ) −( )
′ ( ) −( )

′ ( ) −− −

q x x x

q x x x

q x x x

q x x xn n n n

01 1 0

12 2 1

23 3 2

1 1(( )

= ( ) −( )
= ( ) −( )
= ( ) −( )

= ( ) −− −

p x x x

p x x x

p x x x

p x x xn n n n

01 1 0

12 2 1

23 3 2

1 1(( )
q x q xn( ) − ( )0

q b q a( ) − ( )

S
u

m
m

in
g u

p

Areas of
these steps
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using Integral Formulas

Expressions u through w can be understood intuitively if we draw their 
figures.

Formula 3-1: The Integral Formulas

u f x dx f x dx f x dx
a

b

b

c

a

c( ) + ( ) = ( )∫ ∫ ∫
The intervals of definite integrals of the same function can be 

joined.

v f x g x dx f x dx g x dx
a

b

a

b

a

b( ) + ( ){ } = ( ) + ( )∫ ∫ ∫
A definite integral of a sum can be divided into the sum of defi-

nite integrals.

w α αf x dx f x dx
a

b

a

b( ) = ( )∫ ∫
The multiplicative constant within a definite integral can be 

moved outside the integral.

�

�

�

a b c

Area is 
multiplied 
by α.

+ =

+=

a b c a b c

a b a b a b

f(x) g(x)Area for g

Area for f

f(x)

αf(x)
I see.
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Whew! We 
are all done. 
Futoshi, help 
yourself to 
some shochu.

This was my 
shochu in the 
first place.

That explanation 
was a little 

intense, but you 
understood it, 

didn’t you?

Even I can 
feel it!! 
uh oh…

I’ve just remembered 
a task for you. 

Will you go to the 
reference room?

Flushed



Noriko, I remember that 
about a year ago, a group 
of researchers at sanda 

Engineering College 
also analyzed wind 

characteristics and used 
their results to design 

buildings. Will you find out 
how their research has 
progressed since then?

Why do they 
keep brushing 

me off!?

What? Kakeru seki... 
This is an article 
Mr. seki wrote.

What is it 
about?

Reference 
Room

K
a
k
e
r
u s

e
k
i

The Reference Room 97
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Pollution 

in the Bay

Waste Runoff from 

Burnham Chemical 

Products Is the 

Cause

Burnham... 
They’re one of the 
sponsors of the 
Asagake Times.

Of all the 
companies in Japan, 
Mr. seki wrote an 
article accusing 

our biggest 
advertiser.

That must be why he 
was transferred to 
this branch office.



Have you found 
anything?

No, well...ah...
they proposed 

interesting ideas, 

such as constructing 
a building that 

harnesses the wind to 
reduce the heat-island 

effect—how urban 
areas retain more heat 

than rural areas.

Oh, that’s good.

so, what kind of 
architecture are 

they using?

I don’t...know.

ah, I...I will 
immediately call 

them to ask about it. 
I promise.

Call them? 
Call them?!

The Reference Room 99
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Forget about calling!! 
You write articles using 

your feet!

Go see 
them for an 
interview!!

and as punishment, 
find out if their 
theory can be 
written using 
equations!!

Yes, sir!  
I’m on my way.
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...so you’re 
talking about 

supply and 
demand, right?

Exactly! In 
economics, the 
intersection of 
the supply and 

demand curves is 
said to...

determine the 
price and quantity 
at which companies 

produce and 
sell goods.

sure, I get 
the basic 

idea.

But this 
doesn’t just 

mean that 
trade is made 
at the point 

of their 
intersection.

In truth, society 
is best served 

if trade matches 
these ideal 
conditions.

That’s great!

Yes, we 
can easily 
understand 
why this is 

true using the 
Fundamental 
Theorem of 

Calculus.

applying the Fundamental Theorem
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supply Curve

The profit P(x) when x units of a commodity are produced is given by the fol-
lowing function:

where C(x) is the cost of production.
Let’s assume the x value that maximizes the profit P(x) is the quantity of 

production s.
A company wants to maximize its profits. Recall that to find a function’s 

extrema, we take the derivative and set it to zero. This means that the com-
pany’s maximum profit occurs when

′ ( ) = − ′ ( ) =P s p C s 0

Price p1 corresponds to point A on the function, which leads us to opti-
mum production volume s1.

P(x) p x C(x)

(Profit) = (Price) × (Production Quantity) − (Cost) = px − C(x)

First, let’s consider how companies maximize 
profit in a perfectly competitive market. We’ll 

try to derive a supply curve first.

p (Price)

A

s
0

(Optimum production
volume by companies)

�

�

p C s= ′ ( )
p1

s1

The function p = C′ (s) obtained 
above is called the supply 

curve!
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The rectangle bounded by these four points (p1, A, s1, and the origin) 
equals the price multiplied by the production quantity. This should be the 
companies’ gross profits, before subtracting their costs of production. But 
look, the area u of this graph corresponds to the companies’ production 
costs, and we can obtain it using an integral.

We used 
the Fundamental 

Theorem here.

To simplify,
we assume

C(0) = 0.

This means we can easily find the companies’ net profit, which is repre-
sented by area v in the graph, or the area of the rectangle minus area u.

Demand Curve

Next, let’s consider the maximum benefit for consumers.
When consumers purchase x units of a commodity, the benefit B(x) for 

them is given by the equation:

B(x) = Total Value of Consumption – (Price × Quantity) = u(x) – px

where u(x) is a function describing the value of the commodity for all 
consumers.

Consumers will purchase the most of this commodity when B(x) is 
maximized. 

If we set the consumption value to t when the derivative of B(x) = 0, we 
get the following equation:*

′ ( ) = ′ ( ) − =B t u t p 0

* Again, you can see we’re looking for extrema (where B′ (t) = 0), as consumers want to maxi-
mize their benefits.

The function p = u′ (t ) obtained here is 
called the demand curve.

′ ( ) = ( ) − ( ) = ( ) =∫ C s ds C s C C s
s

0 1 1

1
0 Costs
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So let’s consider the area of the rectangle labeled w, above, which corre-
sponds to the price multiplied by the product consumption. In other words, 
this is the total amount consumers pay for a product. 

The total area of w and x can be obtained using integration. 

= Total value of consumption

To simplify,
we assume

u(0) = 0.

If you simply subtract the value of the rectangle w from the integral 
from 0 to t1, you can find the area of x, the benefit to consumers.

B

t (Optimum consumption)

�

�
p u t= ′ ( )

p (Price)

0

p1

t1

The benefit for the 
consumers x is the total 

value of consumption minus 
the amount they paid w, right?

Yes, that’s it. Now let’s 
look at the supply 
and demand curves 
combined together.

′ ( ) = ( ) − ( ) = ( )∫ u t dt u t u u t
t

0 1 1

1
0
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Do you get it?

Yes, I will 
report my 

stories using 
calculus, too.

I also think 
velocity and 

falling bodies 
are good 

topics to write 
about.

I’m going to 
look into them!

p (Price)

pe

Quantity

Companies’
profit

Benefit,
consumers

Demand curve

Supply curve

E

E

G

F

Loss of 
benefit to
society

xe

pf

xf

We can say that the companies’ 
profit plus the benefit for 

consumers equals the overall 
benefit for society, as illustrated 
by the shaded area on the right.

But what happens if trade 
does not happen at the price 
and quantity determined by 
the intersection point E ?

The overall benefit to society 
is reduced by the amount 

corresponding to the empty area 
in the figure.



The Integral of Velocity 
Proven to Be Distance!
The integral of velocity = difference in 
position = distance traveled

If we understand this formula, it’s 
said that we can correctly calculate the 
distance traveled for objects whose veloc-
ity changes constantly. But is that true? 
Our promising freshman reporter Noriko 
Hikima closes in on the truth of this mat-
ter in her hard-hitting report.

Sanda-Cho—Some readers will recall our 
earlier example describing Futoshi walk-
ing on a moving walkway. Others have 
likely deliberately blocked his sweaty 
image from their minds. But you almost 
certainly remember that the derivative of 
the distance is the speed.

u y F x= ( )
v v x dx F b F a

a

b ( ) = ( ) − ( )∫
Equation u expresses the position of 

the monstrous, sweating Futoshi. In other 
words, after x seconds he has lumbered a 
total distance of y.

Integral of Velocity = Difference in Position

The derivative F′ (x) of expression u 
is the “instantaneous velocity” at x sec-
onds. If we rewrite F ′ (x) as v(x), using v for 
velocity, the Fundamental Theorem of Cal-
culus can be used to obtain equation v! 
Look at the graph of v(x) in Figure 2-A—
Futoshi’s velocity over time. The shaded 
part of the graph is equal to the integral—
equation v. 

But also look at Figure 2-B, which 
shows the distance Futoshi has traveled 
over time. If we look at Figures 2-A and 
2-B side by side, we see that the integral 
of the velocity is equal to the difference in 
position (or distance)! Notice how the two 

graphs match—
when Futoshi’s 
velocity is posi-
tive, his dis-
tance increases, 
and vice versa.

y

x

y3

y2
y1

x3x2x1

Figure 1: This graph represents 
Futoshi’s distance traveled over 
time. He moves to point y1, y2, y3... 
as time progresses to x1, x2, x3...

y

x

y

x

=Area Difference

+ +

−

A BVelocity Distance

y3

y1

x3x1x3x1x0

y = F(x)

Figure 2
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Free Fall from Tokyo Tower
How Many Seconds to the Ground?

It’s easy to take things for granted—
consider gravity. If you drop an object from 
your hand, it naturally falls to the ground. 
We can say that this is a motion that 
changes every second—it is accelerating 
due to the Earth’s gravitational pull. This 
motion can be easily described using 
calculus.

But let’s consider a bigger drop—all the 
way from the top of Tokyo Tower—and find 
out, “How many seconds does it take an 
object to reach the ground?” Pay no atten-
tion to Futoshi’s remark, “Why don’t you go 
to the top of Tokyo Tower with a stopwatch 
and find out for yourself?”

The increase in velocity when an 
object is in free fall is called gravitational 
acceleration, or 9.8 m/s2. In other words, 
this means that an object’s velocity 
increases by 9.8 m/s every second. Why is 
this the rate of acceleration? Well, let’s just 
assume the scientists are right for today. 

Expression u gives the distance the 
object falls in T seconds. Since the integral 
of the velocity is the difference in position 
(or the distance the object travels), equa-
tion v can be derived. Look at Figure 3—
we’ve calculated the area by taking half of 
the product of the x and y values—in this 
case, ½ × 9.8t × t. And we know that the 
height of Tokyo Tower is 333 m. The square 
root of (333 / 4.9) equals about 8.2, so an 
object takes about 8.2 seconds to reach 
the ground. (We’ve neglected air resistance 
here for convenience.)

u F T F v x dx x dx
T T( ) − ( ) = ( ) = ( )∫ ∫0 9 8
0 0

.

v 4 9 4 9 0 4 92 2 2. . .T T− × =

333 4 9
333
4 9

8 22= ⇒ = =.
.

.T T  seconds
 

Figure 3

v(x) = 9.8xVelocity Distance 4.9t2

t

TimeTime
t

Distance
fallen

9.8t

Area of the velocity
9.8t × t × ½ = 4.9t2
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The Die Is Cast!!!
The Fundamental 
Theorem of Calculus 
Applies to Dice, Too

You probably remem-
ber playing games with dice 
as a child. Since ancient 
times, these hexahedrons 
have been rolled around the 
world, not only in games, but 
also for fortune telling and 
gambling.

Mathematically, you can 
say that dice are the world’s 
smallest random-number 
generator. Dice are wonder-
ful. Now we’ll cast them for 
calculus! A die can show a 1, 
2, 3, 4, 5, or 6—the probabil-
ity of any one number is 1 in 
6. This can be shown with 
a histogram (Figure 4), with 
their numbers on the x-axis 
and the probability on the 
y-axis.

This can be expressed by 
equation u, or f(x) = Probabil-
ity of rolling x. This becomes 
equation v when we try to 
predict a single result—for 
example, a roll of 4.

u f x( ) = Probability of rolling x

v f 4
1
6

( ) =  = Probability of rolling 4

Now let’s take a look at Figure 5, which 
describes a distribution function. First, 
start at 1 on the x-axis. Since no number 
less than 1 exists on a die, the probability 
in this region is 0. At x = 1, the graph jumps 
to 1/6, because the probability of rolling a 
number less than or equal to 1 is 1 in 6. You 
can also see that the probability of rolling 
a number equal to or greater than 1 and 
less than 2 is 1/6 as well. This should make 
intuitive sense. At 2, the probability jumps 
up to 2/6, which means the probability for 
rolling a number equal to or less than 2 is 
2/6. Since this probability remains until 

right below 3, the probability of numbers 
less than 3 is 2/6.

w f x dx F b F a
a

b ( ) = ( ) − ( )∫  
= Probability of rolling x where a ≤ x ≤ b

In the same way, we can find that the 
probability of rolling a 6 or any number 
smaller than 6 (that is, any number on the 
die) is 1. After all, a die cannot stand on 
one of its corners. Now let’s look at the 
probability of rolling numbers greater than 
2 and equal to or less than 5. The equation 
in Figure 6 explains this relationship. 

If we look at equation w, we see that it 
describes what we know—“A definite inte-
gral of a differentiated function = The dif-
ference in the original function.” This is 
nothing but the Fundamental Theorem of 
Calculus! How wonderful dice are.

Figure 4: Density function

1 ⁄6

1 2 3 4 5 6

f(x)

Figure 5: Distribution function

1 ⁄6

1 2 3 4 5 6

F(x)

1

Distribution functionDensity function

1

Figure 6: Derivative of distribution function F(x)
= density function f(x)

f f f F F3 4 5 5 2( ) + ( ) + ( ) = ( ) − ( )

1 ⁄6

1 2 3 4 5 6

F(x)

1 ⁄6

1 2 3 4 5 6

f(x)
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Ouch... 
it’s just a dream...

Oops!

Oops!

Flomp

No way!  
Yipes!

Only 15 minutes 
to get there!

I have to report 
on the sanda-cho 
summer Festival.

I’m coming, 
Mr. seki!
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Review of the Fundamental Theorem of Calculus

When the derivative of F(x) is f(x), that is, if f(x) = F ′ (x)

f x dx F b F a
a

b ( ) = ( ) − ( )∫
This can also be written as

′ ( ) = ( ) − ( )∫ F x dx F b F a
a

b

These expressions mean the following.

(Differentiated function) dx 
= Difference of the original function between b and a

It also means graphically that

Area surrounded by the differentiated function 
and the x-axis, between x = a and x = b

Change in the original 
function from a to b(  = () )

y

a b
x

y

a b
x

F(b)

Fundamental 
Theorem 
of Calculus

Difference in the 
original function

y f x F x= ( ) = ′ ( )

y F x= ( )

f x dx
a

b ( )∫

F(a)
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Formula of the substitution Rule of Integration

When a function of y is substituted for variable x as x = g(y), how do we 
express 

S f x dx
a

b
= ( )∫

a definite integral with respect to x, as a definite integral with respect to y?
First, we express the definite integral in terms of a stepwise function 

approximately as

S f x x x x a x bk
k n

k k n≈ ( ) −( ) = =( )
= −

+∑
0 1 2 1

1 0
, , ,...,

,

Transforming variable x as x = g(y), we set 

y y y yn0 1 2= =α β, , ,...,

so that 

a g x g y x g y b g= ( ) = ( ) = ( ) = ( )α β, , ,...,1 1 2 2

Note here that using an approximate linear function of 

x x g y g y g y y yk k k k k k k+ + +− = ( ) − ( ) ≈ ′ ( ) −( )1 1 1

Substituting these expressions in S, we get

S f x x x f g yk
k n

k k k
k n

≈ ( ) −( ) ≈ ( )( ) ′
= −

+
= −

∑ ∑
0 1 2 1

1
0 1 2 1, , ,..., , , ,...,

gg y y yk k k( ) −( )+1

The last expression is an approximation of 

f g y g y dy( )( ) ′ ( )∫α

β

Therefore, by making the divisions infinitely small, we obtain the follow-
ing formula.

Formula 3-2: The substitution Rule of Integration

f x dx f g y g y dy
a

b ( ) = ( )( ) ′ ( )∫ ∫α

β
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Example: 

Calculate:

10 2 1
4

0

1
x dx+( )∫

We first substitute the variable so that y = 2x + 1, or x g y
y= = −

( )
1

2
.

If we then take the derivative of the function, we get ′ =g y( )
1
2

.

Since we now integrate with respect to y, the new interval of integra-
tion is obtained from 0 = g(1) and 1 = g(3) to be 1 – 3.*

10 2 1 10
1
2

5 3 1 242
4

0

1 4

1

3 4

1

3 5 5x dx y dy y dy+( ) = = = − =∫ ∫ ∫

The Power Rule of Integration

In the example above we remembered that 5y4 is the derivative of y5 to finish 
the problem. Since we know that if F(x) = xn, then F′ (x) = f(x) = nx(n + 1), we 
should be able to find a general rule for finding F(x) when f(x) = xn.

We know that F(x) should have x(n + 1) in it, but what about that coef-
ficient? We don’t have a coefficient in our derivative, so we’ll need to start 
with one. When we take the derivative, the coefficient will be (n + 1), so it 
follows that 1 / (n + 1) will cancel it out. That means that the general rule for 
finding the antiderivative F(x) of f(x) = xn is 

F x
n

x xn
n
n( ) =

+
× =+( )

+
+1

1
1

1
1

* In other words, when x = 0, y = 1, and when x = 1, y = 3. We then use that as the range of our 
definite integral.
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Exercises

1. Calculate the definite integrals given below.

u 3 2

1

3
x dx∫

v 
x

x
dx

3

22

4 1+
∫

w x x dx x x dx+ +( ) + − +( )∫ ∫1 12 7

0

5 2 7

0

5

2. Answer the following questions.

a. Write an expression of the definite integral which calculates the area 
surrounded by the graph of y = f(x) = x2 − 3x and the x-axis.

b. Calculate the area given by this expression.
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let’s learn Integration 

Techniques!
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Whew! I made it, 
just in time.

ugh...It’s hot.
I wanna put 
on a yukata,* 

too.

Noriko, you’re here. 
It was nice of you to 
call and let me know 
you might be running 

late.

Yeah...since I have a 
cell phone, I can’t 
really get away 

from you.

using Trigonometric Functions

* Yukata is traditional Japanese summer wear.

Thumpa

Thumpa

Thump

Oh, it's nice to live 

in sanda-Cho!

Where else 

would you

want 

to go?
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When I was a cub 
reporter, there 

wasn’t such a 
convenience.

I often had to 
use a pay phone 
to send in my 
report when I 

was on deadline.

I read my report 
word by word over 

the phone to my 
assistant.

Wow, that’s 
crazy!

We don’t 
have to 
do that 

anymore, 
thanks to 

radio waves.

all sorts of 
other waves occur 

in nature, too.

Yeah!  
Ocean waves, 
earthquakes, 
sound waves...

and light.
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Those waves can 
be described with 

functions, for 
example, with the 
cosine of theta 
(cos θ ). Did you 

know that?

uh, I have to go 
back to work.

Noriko! Incidentally, if you 
cut out a sleeve of 
a blouse, the cut 
end is a graph of 

cos θ.

Trigonometric 
functions are 
very important 
for fashion!

Geez.

Elephant Ears
Grilled Corn

Crepes

1

−1

θ
3

2

 3
2

5
2


2
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Noriko, take a 
picture of that! 

It’s cos θ.

It is?

look at the 
dancers. This is a 

good opportunity. 
We can study 

the application 
of functions 

together while 
reporting.

You and your 
functions!!!

There is 
a unit of 

measurement 
for angles 

called a 
radian.

Radian...

Oh, shoot! I’m 
taking notes 
out of habit.

Consider a circle 
of radius 1 with 

its center at (0, 0). 
suppose that we 

start at point A and 
travel to point P on 
the circumference 

of the circle, 
corresponding to 

the angle θ.

For a circle with 
radius = 1, the 
length of the 
arc AP equals 
the angle θ in 

radians!

Shocked!

y

P

A

1

−1

θ

1−1
x
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Because the total 
circumference of this 

circle is 2, we know that 
90 degrees = 

π
2  radians 

and 180 degrees = 
 radians. a radian is 

about equal to 57.2958 
degrees.

From now on, 
we will use 

radians as the 
unit for any 

angle.

and we can express 
x as the function 

cos θ = x. That means 
when a dancer moves 
by θ radians, she is at 
a horizontal position 
determined by cos θ. 

You better 
remember 

this!

Oh, that’s why you 
shouted, “That’s 

cos θ.”

What’s going 
on inside his 

head?

In the same way, 
the dancer’s 

vertical 
position can 

be expressed 
as the function 

sin θ = y.

um, okay... look, Noriko!!

Yank!
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Beautiful!

What?

Beautiful!? Yes! as θ becomes larger, the value 
of cos θ changes from 1, gradually 

becomes smaller until it’s 0, goes all 
the way down to −1, back to 0, then 

back to 1 again!

so, cos θ 
vibrates 
between 
1 and -1, 

doesn’t it?

Right. and since 
trigonometric 

functions express 
waves, they can 

be used as a tool 
for clarifying 
many things in 

nature.

aww! The old 
ladies think you’re 

talking about 
them, and they’re 

beaming!

Really 
beautiful!

Blush

�

�
�

�

�

�
�

y

1

−1

1−1
x

0

�
� �
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It’s a pretty 
big festival, 

isn’t it?

Yes. But, why 
do you have 
drumsticks?

Because it’s a 
festival!

I see...

Did you know that 
the length of 
a shadow of a 

drumstick equals 
the length of the 
stick multiplied by 

cos θ ?

Yes, it’s rather 
surprising, but 
I remember it 

vaguely.

Then, let’s 
find this 

accurately.

Clack-a

clack

clack

Thunk!
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The sun is shining 
straight down on 
stick AB, which is 
standing tilted at 
angle θ from the 

ground.

If we assume the 
resulting shadow 
(the orthogonal 

projection) to be AC, 
the length of shadow 
AC equals the length 
of stick AB multiplied 

by cos θ.

We can think of the 
stick in terms of 

a function.
and by definition,

cosθ = AC
AB

 (shadow)
 (stick)

so the shadow’s  
length is AB × cos θ. 

Right?

That's right! 
Cosine 

expresses how 
much shorter 
the shadow is 
than the stick 

itself!

y

B

1

θ
x

A cos θ C
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Incidentally, since the 
x-axis coincides with 
the y-axis when it is 

rotated by 90 degrees 
(
π
2 radians), we can 

say sin θ is a function 
that outputs, delayed 
by 

π
2 , the same values 

as cos θ.

In other words,

sin cosθ
π

θ+





=
2

Yes?
uh...will you give 

us back our 
drumsticks?

Now, we are ready 
for the main part of 

the sanda summer 
Festival!!

y

θ x
cos θ

sin (θ +    )
2

θ

Oops!
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Here are special 
seats for you. Be 
careful not to 
fall, reporters, 
and take good 

pictures.

Okay. We will.

Now, we are 
going to look at 
cos θ in terms of 

calculus!

Mr. seki, 
your actions 
are totally 

different from 
what you say.

In fact, integrals are 
easier to obtain than 

derivatives.

It’s easier to 
understand if 
we look down 

at the circle of 
dancers from 
way up here.

using Integrals with Trigonometric Functions
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What we need to do is to find out what  
∑ cos θ × Δθ = cos θ0 (θ1 − θ0) + cos θ1 (θ2 – θ1) + ... 

+ cos θn−1 (θn – θn−1) becomes.

looking at this 
puts me in a 

fog.

look at this 
figure. Doesn’t 
this give you a 
good idea? This 
shows that the 

intersecting 
angle of the 
y-axis with the 

tangent line PQ, 
where P is the 

point moved from 
(1, 0) by angle θ, 

is also θ.

?
Futoshi! Why does 

he get to eat chow 
mein while I have 
to learn about 

integrals?

1

−1

2 3
2

5
2


2

0

y

P

1

θ
x

Q

θ

0 1

y

A′1

x
0

A1

A′2
A2

A0

A3

θ2 − θ1

θ3 − θ2

θ1 − θ0

At angle θ1 
with the y-axis

Length θ2 − θ1

The change in cos θ is the length A′1A′2. 
That length is the orthogonal projection A1A2. 
Length A′1A′2 ≈ arc A1A2 × cos θ1 = (θ2 − θ1) × cos θ1

Chow Mein
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Let’s use this 
to integrate 
from 0 to α. Uh...

Is this right?

Right! If we 
make these 
infinitely 
small...

We find that 
the integral 
of cosine is 

sine.

Then, to put it the 
other way around, the 
derivative of sine is 

cosine?

You’re 
right!

Now, 
remember 

these 
formulas.

A1 (cos θ1, sin θ1)

A2

An (cos θn, sin θn) = (cos α, sin α)sin α = sin θn

A0 (cos θ0, sin θ0) = (1, 0)

α

y

A′1

x
0

A′2

∑ cos θ∆θ when θ is changed from 0 to α

cos θ0 (θ1 − θ0) + cos θ1 (θ2 − θ1) + ... + cos θn−1 (θn − θn−1)

≈ A′0 A′1 + A′1 A′2 + ... + A′n−1 A′n = A′0 A′n = sin α
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all right! let’s 
do the calculus 

dance song!!

Calc...
That’s a 
strange 
sound!

Formula 4-1: The Differentiation and Integration of Trigonometric Functions

Since u cos sin sinθ θ α
α

d = −∫ 0
0

, we know that sine must be cosine’s derivative. 

v sin cosθ θ( )′ =

Now, substitute θ + 
π
2 for θ in v. We get sin cosθ

π
θ

π+













′
= +



2 2
. 

Using the equations from page 124,  
we then know that 

w cos sinθ θ( )′ = −

We find that differentiating or integrating sine gives cosine and vice versa.

Calc

Calculus Dance song
Trigonometric version

Raise 
both arms 

toward 
upper right.

Jump and 
turn to 
the left.

Jump again 
and clap 

your hands 
twice.

Calc

Calculus
Calc

Calculus
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The dance song makes 
boring logic easier! 
Calc, calculus. Yay!

Circle of sine, 
cosine does 

integration! Raise 
both arms to form 

a circle.

Differentiation 
of sine is 

cosine. Form 
an S with both 

arms.

sine
Differentiation 
or integration 
interchanges 

sine and cosine. 
Raise and lower 

your arms.

Cosine integral 
becomes sine. 
Form a C with 

both arms.

CalcCalculus
Calculus

Diff
eren-

tia
tio

n

sin cosθ θ( )′ =

Cosine

Inte-
gration

Diff
eren tiatio

n

In
te

 g
ra

ti
o
n

cos sinθ θd x
x

=∫0
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Futoshi, let’s 
dance!

No, I can’t. I 
haven’t eaten 
even half the 
food at these 

stands.

We came here 
to report!

Yeah, well, 
you're the one 

wearing dancing 
clothes!

Cut it out! You 
two haven’t even 
started working. 

We don’t have 
much time before 

tomorrow’s 
morning paper!

You two are 
enjoying the 

festival too much!
You are too...

Oh, 
no!
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Okay. 
send!

Whew!  
I sent my story.

PCs and the 
Internet have 

really changed 
reporters’ 

work.

By the way...

the information 
handled by computers 
is expressed in terms 
of two digits: 0 and 1 , 
or sequences of bits.

Oh, I know a 
little bit about 

computers.

Y...yes.

using Exponential and logarithmic Functions

No reaction? 
Oh, well.

Click

Send
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since computers 
handle information in 
the binary system, one 
bit can represent two 
numbers ( 0 and 1 ); two 

bits can represent 
four ( 00, 01, 10, 

and 11 ); three bits can 
represent eight; and 

n bits correspond to 
2n possible numbers.

If we suppose f(x) 
is the number of 

values that can be 
expressed by x bits, 
then f(x) = 2x, which 
is an exponential 

function.

Exponential 
function? an exponential 

function can 
express an 

increase like 
economic 
growth.

let me see...
for example...

In the 1950s in 
Japan, we had a high 
rate of economic 

growth: about 
10 percent a year.

a person with an 
annual income of 

¥5 million one year 
earned ¥5.5 million 

the next year.

His salary increased 
10 percent, and he 

could enjoy 10 percent 
more commodities and 

services than in the 
previous year.

Exponential 
function

Well...
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We had such good 
days! I would have 
bought a whole 
new wardrobe 
and lots of 

other things!

Don’t get too 
excited.

suppose the economic 
growth is 10 percent, 

and the present gross 
domestic product is 

G0. In a few years, 
it will change as 

follows.

Then, what is the 
gross domestic 
product after 

n years in 
general?

It’s  
Gn = G0 × 1.1n.

G7 = G0 × 1.17, or 1.95 
times G0. so the GDP 
nearly doubled in 

just 7 years.

Doubled? 
Wow! What 

would I buy 
if my salary 
doubled?

so, a function in 
a form like  

f(x) = a0ax 
is called an 
exponential 

function.

an economy having 
an annual growth 

rate of α is 
expressed with the 

exponential function 
f(x) = a0(1 + α)x.

G1 = G0 × 1.1  
Gross domestic product after 1 year

G2 = G1 × 1.1 = G0 × 1.12  
Gross domestic product after 2 years

G3 = G0 × 1.13  
Gross domestic product after 3 years

G4 = G0 × 1.14  
Gross domestic product after 4 years

G5 = G0 × 1.15 
Gross domestic product after 5 years
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I just told 
you that bits 

are codes for 
expressing 
information.

Yes, 1 bit 
is for 2 
patterns, 

2 bits 
for 4 

patterns.

Bits are also 
an exponential 

function. If x bits 
correspond to f(x) 
possible numbers, 
then f(x) = 2x. You 
know, there is a 

function called an 
inverse function, 
which turns what 

you called patterns 
back into bits.

It’s easy—you just 
need to think the 
other way around.

so, we can 
represent 

2n possible 
numbers using 

n bits.

Now, assume g(y) 
is the inverse 

function of f(x), 
which turns y 
patterns back 
into bits. Try it.

We get g(2) = 1, 
g(4) = 2, g(8) = 3, 

g(16) = 4 ...

so, the relationship 
between f and g can be 
expressed as g(  f(x)) = x 

and f(g(y)) = y.

Remember now 
that the inverse 
function of an 

exponential 
function is called 

a logarithmic 
function and is 
expressed with 
the symbol log.

In the above 
case, it is 

expressed as 
g(y) = log2 y .

Right, and log22 = 1, 
log24 = 2, log28 = 3, 

log216 = 4 ...

2 patterns

4 patterns

8 patterns

1 bit

2 bits

3 bits

Inverse 
function

log
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Annual growth rate =  = 
Value after 1 year − Present value

Present value

f x f x

f x

+( ) − ( )
( )

1

Generalizing Exponential and logarithmic Functions

although exponential and logarithmic 
functions are convenient, our definition of 

them up to now allows only natural numbers 
for x in f(x) = 2x and the powers of 2 for y 
in g(y) = log2 y. We don’t have a definition for 
the −8th power, the 7⁄3rd power or the 2th 
power, log25, or log2.

Hmm, what do 
we do, then?

I will tell you how we 
define exponential and 

logarithmic functions in 
general, using examples.

Glad that you asked am I.  
The power of calculus we use 

for this. Yes.

First, using our earlier example, let’s change the economy’s 
annual growth rate to its instantaneous growth rate.

This is the expression 
we start with.
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Instantaneous growth rate 

Idealization of 
Value slightly = llater  Present value

Present value
Time elapsed

− ÷





= →
+( ) − ( )

( )








 Result obtained by letting  in ε

ε
0

f x f x

f x 
1
ε

= ( )
+( ) − ( )







 = ( )

′ ( )
→

lim
ε

ε
ε0

1 1
f x

f x f x

f x
f x

Now, let’s consider a function that satisfies the instantaneous growth 
rate when it is constant, or

′ ( )
( ) =

f x

f x
c  where c is a constant.

Here we assume c = 1, and we 
will find f(x) that satisfies

′ ( )
( ) =

f x

f x
1

1. We first guess this is an exponential function.

Now we develop this into the instantaneous 
growth rate, as follows.

′ ( )
( )

f x

f x

so, we define the 
instantaneous 

growth rate as

Find f(x)? But how do 
we find it?

since ′ ( ) = ( )f x f x , u ′ ( ) = ( )f f0 0  

Now, recall that when h was close enough to zero, 
we had f h f h f( ) ≈ ′ ( ) −( ) + ( )0 0 0
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From u, we have f h f h f( ) ≈ ( ) + ( )0 0  and get

v f h f h( ) ≈ ( ) +( )0 1

If x is close enough to h, we have

f x f h x h f h( ) ≈ ′ ( ) −( ) + ( )

Replacing x with 2h and using f ′(h) = f(h),

f h f h h h f h2 2( ) ≈ ′ ( ) −( ) + ( )

f h f h h f h2( ) ≈ ( ) ( ) + ( )

f h f h h2 1( ) ≈ ( ) +( )

We’ll then substitute f h f h( ) = ( ) +( )0 1  into our equation.

f h f h h2 0 1 1( ) = ( ) +( ) +( )

f h f h2 0 1
2( ) = ( ) +( )

In the same way, we substitute 3h, 4h, 5h, ..., for x and allow mh = 1.

f f mh f h
m

1 0 1( ) = ( ) ≈ ( ) +( )

Similarly,

f f mh f h f h
m m

2 2 0 1 0 1
2 2

( ) = ( ) ≈ ( ) +( ) = ( ) +( ){ }
f f mh f h f h

m m
3 3 0 1 0 1

3 3

( ) = ( ) ≈ ( ) +( ) = ( ) +( ){ }
Thus, we get

f n f an( ) ≈ ( )0  where we used a = (1 + h)m

which is suggestive of an exponential function.* 

* Since mh = 1, h = f f
m

m

1 0 1
1( ) ≈ ( ) +




. Then, f f

m

m

1 0 1
1( ) ≈ ( ) +





. If we let m → ∞ here, 1
1+





→
m

e
m

, or Euler’s 

number, a number about equal to 2.718. Thus, f(1) = f(0) × e, which is consistent with the dis-

cussion on page 141.
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2. Next we will find out that f(x) surely exists and what it is like.

w ′ ( ) =
′ ( )g y

f x
1

 ′ ( ) =
′ ( ) = ( ) =g y

f x f x y
1 1 1

Now, we can use the Fundamental 
Theorem of Calculus. It gives

y 
1

1
1 y

dy g g= ( ) − ( )∫ α
α

If we assume g(1) = 0 here . . .
*

* As shown on page 75, if the inverse function of y = f(x) is x = g(y), f ′(x) g ′(y) = 1.

Express the inverse function 
of y = f(x) as x = g(y).

From f ′(x) = f(x) indicated on page 136, the derivative 
of f(x) is itself. But this does not help us. What is 

the derivative of g(y) then?

Since we get this generally,*

we get this result, which 
shows that the derivative of 
the inverse function g(y) is 
explicitly given by 1

y
.

Since we now know g ′(y) = 1
y

, 
function g(α) is found to 
be a function obtained by 
integrating 1

y
 from 1 to α.

We get g
y

dyα
α( ) = ∫

1
1

Good! Now, let’s draw the graph of

 

z
y

= 1

 

!
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ah, how about 
the recent 

growth rate 
of the Asagake 

Times?

... Please tell 
me the truth. 
I won’t be 
surprised.

You’re 
crying! Is it 
that bad?

z
y

= 1z

yα

g(α)

1

This is a graph of 
inverse proportion.

let’s define g(α) as the area between this graph and 
the y-axis in the interval from 1 to α. This is a well-
defined function. In other words, g(α) is strictly 
defined for any α, whether it is a fraction or 2 .

since

 

z
y

= 1

 

is an explicit function, the area can be 
accurately determined.

Since g
y

dy
y

dy g g1
1

0
1

1
11

1( ) = = = ( ) − ( )∫∫ , α
α

 which satisfies y.

Thus, we have found out the inverse function g(y), the area under the 
curve, which also gives the original function f(x).
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summary of Exponential and logarithmic Functions

u 
′ ( )
( )

f x

f x
 is thought to be the growth rate.

v y = f(x) which satisfies 
′ ( )
( )

f x

f x
 = 1 is the function that has a constant 

growth rate of 1.

This is an exponential function and satisfies

′ ( ) = ( )f x f x

w If the inverse function of y = f(x) is given by x= g(y), we have

′ ( ) =g y
y
1

 

 If we define g(α), we can find the area of h(y) = 
1
y

, 

g
y

dyα
α( ) = ∫

1
1

The inverse function of f(x) is the function that satisfies  and g(1) = 0.

y

z

e

z
y

= 1

Area = 1

1

�

e is an irrational number 
that is about 2.7178.

We define e (the base of the 
natural logarithm) as y that 
satisfies g(y) = 1. That is, it 
is the α for which the area 
between the 1 / y curve and 
the y-axis in the interval 
from 1 to α equals 1.
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Since f(x) is an exponential function, we can write, using constant a0,

f x a ax( ) = 0

Since f(g(1)) = f(0) = a0a0 = a0 and f(g(1)) = 1, we get

f g a1 1( )( ) = =

And so we know

f x ax( ) =

Similarly, since

f g e f a( )( ) = ( ) =1 1  and

f g e e( )( ) =

e a= 1

Thus, we have f x ex( ) = .
The inverse function g(y) of this is loge  y, which can be simply written as 

ln y (ln stands for the natural logarithm).
Now let’s rewrite v through  in terms of ex and ln y.

z ′ ( ) = ( ) ⇔ ( )′ =f x f x e ex x

{ ′ ( ) = ⇔ ( )′ =g y
y

y
y

1 1
ln

| g
y

dy y
y

dy
y

α
α( ) = ⇔ =∫ ∫

1 1
1 1

ln

} To define 2x, a function of bits, for any real number x, we look at 

f x e x( ) = ( )ln2  (x is any real number)

The reason is as follows. Because ex and ln y are inverse functions to 
each other,

eln2 2=

Therefore, for any natural number x, we have

f x e
x x( ) = ( ) =ln2 2
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More applications of the Fundamental Theorem

Other functions can be expressed in the form of f(x) = xα. Some of them are

1 1 11
2

2
3

3

x
x

x
x

x
x= = =− − −, , ,...

For such functions in general, the formula we found earlier holds true.

Example:

For f x
x

f x x x
x

( ) = ′ ( ) = ( )′ = − = −− −1
3

3
3

3 4
4

,

For f x x f x x x
x

( ) = ′ ( ) =









′

= =
−

4
1
4

3
4

34

1
4

1

4
,

Proof:

Let’s express f(x) in terms of e. Noting eln x = x, we have

f x x e ex x( ) = = ( ) =α α αln ln

Thus,

ln lnf x x( ) = α

Differentiating both sides, remembering that the derivative of ln w = 
1
w , 

and applying the chain rule,

1 1
f x

f x
x( ) × ′ ( ) = ×α

Therefore,

′ ( ) = × × ( ) = × × = −f x
x

f x
x

x xα α αα α1 1 1

Formula 4-2: The Power Rule of Differentiation

f x x( ) = α

   
′ ( ) = −f x xα α 1
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Integration by Parts

If h(x) = f(x) g(x), we get from the product rule of differentiation,

′ ( ) = ′ ( ) ( ) + ( ) ′ ( )h x f x g x f x g x

Thus, since the function (the antiderivative) that gives f ′(x) g(x) + f(x) g ′(x) 
after differentiation is f(x) g(x), we obtain from the Fundamental Theorem of 
Calculus,

′ ( ) ( ) + ( ) ′ ( ){ } = ( ) ( ) − ( ) ( )∫ f x g x f x g x dx f b g b f a g a
a

b

Using the sum rule of integration, we obtain the following formula.

As an example, let’s calculate:

x x dxsin
0

π

∫

We guess the integral’s answer will be a similar form to x cos x, so we 
say f(x) = x and g(x) = cos x. So we try,

′ + ( )′ = ( ) ( )∫ ∫x x dx x x dx f x g xcos cos
0 0 0

π π π

We can evaluate that

= ( ) ( ) − ( ) ( )f g f gπ π 0 0

Substituting in our original functions of f(x) and g(x), we find that

= − = −( ) − = −π π π πcos cos0 0 1 0

We can use this result in our first equation.

′ + ( )′ = −∫ ∫x x dx x x dxcos cos
0 0

π π
π

Formula 4-3: Integration by Parts

′ ( ) ( ) + ( ) ′ ( ) = ( ) ( ) − ( ) ( )∫∫ f x g x dx f x g x dx f b g b f a g a
a

b

a

b
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We then get:

cos sinx dx x x dx
0 0

π π
π∫ ∫+ −( ) = −

Rearranging it further by pulling out the negatives, we find:

cos sinx dx x x dx
0 0

π π
π∫ ∫− = −

And you can see here that we have the original integral, but now we have 
it in terms that we can actually solve! We solve for our original function:

x x dx x dxsin cos
0 0

π π
π∫ ∫= +

Remember that ∫ cos x dx = sin x, and you can see that

x x dx xsin sin
0 0

π π π∫ = +

= − +sin sinπ π0

= − + =0 0 π π

There you have it.

Exercises

1. tan x is a function defined as sin x / cos x. Obtain the derivative of tan x.

2. Calculate

1
20

4

cos x
dx

π

∫
3. Obtain such x that makes f(x) = xex minimum.

4. Calculate 

2
1

x x dx
e

ln∫
A clue: Suppose f(x) = x2 and g(x) = ln x, and use integration by parts.



5
let’s learn about 

Taylor Expansions!
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Wow! What 
an office.

I wanna 
work here!

I have a meeting. 
Will you wait for 
me in the lobby?

What...will I be 
a nuisance?

Smirk

The Asagake Times
Main Office
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Nice to meet 
you.

I have heard so 
much about you, 

Mr. seki.

I would like you 
to look at this 

data first.

Excuse me. Oh, thank...

You!?

Imitating with Polynomials

Reception

Thank you.
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Noriko, what are 
you doing? You 
look suspicious.

This is the same 
data that you used 

in your article, 
isn’t it?

It’s from Burnham 
CHemical. We 
received the 

document itself 
from a whistle-
blower. We've 

already checked 
its credibility with 

other sources.

ah, yes...what’s 
the source of 

this data?

I can’t publish 
my new story 

yet.

But I will lend you 
the data that I have 
collected so far.

The similarities are 
encouraging.

so dusty! 
Hmm...

Wipe 

Wipe
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I never 
imagined you 
would be so 

bold!

I was so 
anxious to 
know...I’m 

sorry.

Well, you 
have a lot of 

curiosity.

Mr. seki, I’m worried. 
Burnham Chemical 
is an important 
sponsor of the 
Asagake Times.

If their illegal 
act is revealed, I’m 
sure they will stop 

supporting us.

I thought 
about this. This is Taylor 

expansion. What?
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Differentiation 
was nothing but 

making an imitating 
linear function.

We imitated 
functions to 

get rough ideas 
by simplifying 
things, didn’t 

we?

If we set p = f ′(a) and 
q = f(a) for function f(x), for 
example, we could imitate 

f(x) with a linear function as 
f(x) ≈ q + p(x − a) very near 

x = a .

But, in other cases, 
we imitated a function 
with a quadratic or a 

cubic function.

Yes, an example 
is the case of 

Johnny Fantastic, 
who began to 

gain weight again 
because of his 

breakup.

I haven’t done 
this recently. 

so, here’s 
another 
example.

assume you 
borrow M yen 
at an annual 
interest rate 

of x.

If you pay back the money 
after 1 year, you pay M(1 + x). 
If you pay back the money 

after 2 years, you pay 
M (1 + x) (1 + x). If it’s after 
n years, you pay M (1 + x)n. 

Now, if we want to “expand” 
that function...*

We have this.

1 1 1 2
2

3
3+( ) = + + + + +x C x C x C x C x

n

n n n n n
n...

* This is the formula of binomial expansion, where n rC
n

r n r
=

−( )
!

! !  
and n C n1 =  

n n n rC
n n

C
n n n

C
n n n r

r2 3

1

2

1 2

6

1 1
=

−( )
=

−( ) −( )
=

−( ) − −( ){ }
, ,...,

...

!
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Taking only the 
first part, we can 
imitate (1 + x)n with 

linear function 
1 + nx.

But...

this imitation 
is in fact too 

rough to be of 
much use.

If you used this 
approximation, 

you would easily 
borrow too much 

money and sink 
into debtor’s 

prison.

Oh, no. Help me!
so, we use the 

quadratic function 
to imitate...

Ju...just a minute! 
I thought Taylor 

expansion applied to 
our newspaper!

Just bear 
with me for 
a minute, will 

you?

1 1+( ) ≈ +x nx
n

Pa
y
 b

a
c
k
!

sham
e o

n 

yo
u!
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For any pair of n and x that satisfy nx = 0.7, we get

Nearly zero, so we neglect it.≈ + + × = ≈1 0 7
1
2

0 7 1 945 22. . .

1 1
1

2
1

1
2

1
2

2 2 2+( ) ≈ + +
−( )

≈ + + ( ) −x nx
n n

x nx nx nx
n

In short, if nx = 0.7, (1 + x)n is almost 2. This can be written as a law as 
follows.

Formula 5-1: The Formula of Quadratic approximation

1 1
1

2
2+( ) ≈ + +

−( )
x nx

n n
x

n

law of Debt Hell

When years to repay loan × interest rate = 0.7, the amount 
you will repay is about twice as much as you borrowed.

If we modify this expression 
a little, we get a very 

interesting law.

Oh, no!!  
This is terrible!!

about twice if borrowed for  
35 years at 2 percent

about twice if borrowed for  
7 years at 10 percent

about twice if borrowed for  
2 years at 35 percent
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For example, if we set f x
x

( ) =
−
1

1
, we get

� (continues infinitely)

Note this is = instead of ≈.

f x
x

x x x x( ) =
−

= + + + + +1
1

1 2 3 4 ...

Suppose x = 0.1. We get

f 0 1
1

1 0 1
1

0 9
10
9

.
. .

( ) =
−

= =

Right side = + + + + +
= + + + + +
=

1 0 1 0 1 0 1 0 1

1 0 1 0 01 0 001 0 0001

1 11

2 3 4. . . . ...

. . . . ...

. 11111...

If we actually calculate 10/9 by long division, we 
will obtain the same result.

The terms xn
 for which n is more than 1 

are called high-degree terms.

Imitating a function with a quadratic (2nd-degree) 
function in this way often allows us to find 

interesting things. Now, let’s consider imitating a 
function with a higher-degree polynomial. In fact, it 

is known that we can make the exact function, instead 
of an imitation, with an infinite-degree polynomial.

This is a 
mistake, isn’t 
it? It can’t be 

equal to!

I thought 
you would 

say that. let’s 
calculate it.

9
1.111...

10
9

10
9

10
9

10
9
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When a general function f(x) (provided it is differentiable infinitely many 
times) can be expressed as

f x a a x a x a x a xn
n( ) = + + + + + +0 1 2

2
3

3 ... ...

the right side is called the Taylor expansion of f(x) (about x = 0).

Left side =
−

= −1
1 2

1

Right side = + + + + +1 2 4 8 16 ...

It turns out that expression u is correct for all 
x satisfying −1 < x < 1, which is the allowed interval 
of a Taylor expansion. In technical terms, the inter-
val −1 < x < 1 is called the circle of convergence.

see? The two 
sides are not 

equal.

For example, substituting x = 2 
in both sides of expression u,

This means that f(x) perfectly coincides with an 
infinite-degree polynomial in a definite interval 

including x = 0. It should be noted, however, 
that the right side may become meaningless 

because it may not have a single defined value 
outside the interval.
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How to Obtain a Taylor Expansion

When we have

v f x a a x a x a x a xn
n( ) = + + + + + +0 1 2

2
3

3 ... ...

let’s find the coefficient an.
Substituting x = 0 in the above equation and noting f(0) = a0, we find that 

the 0th-degree coefficient a0 is f(0).
We then differentiate v.

w ′ ( ) = + + + + +−f x a a x a x na xn
n

1 2 3
2 12 3 ... ...

Substituting x = 0 in w and noting f ′(0) = a1, we find that the 1st-degree 
coefficient a1 is f ′(0).

We differentiate w to get

 ′′ ( ) = + + + −( ) +−f x a a x n n a xn
n2 6 12 3

2... ...

Substituting x = 0 in , we find that the 2nd-degree coefficient a2 is
 1

2
0′′ ( )f .

Differentiating , we get

′′′ ( ) = + + −( ) −( ) +−f x a n n n a xn
n6 1 23

3... ...

From this, we find that the 3rd-degree coefficient a3 is 
1
6

0′′′ ( )f .

Repeating this differentiation operation n times, we get

f x n n an
n

( ) ( ) = −( ) × × +1 2 1... ...

where f  (n)(x) is the expression obtained after differentiating f(x) n times.
From this result, we find

nth-degree coefficient a
n

fn
n= ( )( )1

0
!

n! is read “n factorial” and means n n n× −( ) × −( ) × × ×1 2 2 1... .
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Well, that 
introduction 
was a little 
too long...

so, why is our 
company’s 

predicament 
the Taylor 
expansion?

I mean that if f(x) is a 
function that describes 

Burnham Chemical’s 
advertising expenses, 

their support of 
our paper could be 
considered the third 

term of a Taylor 
expansion. f(x) = The Japan 
Times + The Kyodo News + 

The Asagake Times

That’s right.

actually for 
Burnham Chemical, 

the amount of money 
they spend for 

us is only a very 
small amount—the 
3rd-degree term, 

obtained after 
differentiating 

three times.

since it’s 
insignificant for 

them anyway, 
they’ll likely 

support us like 
they did before 

even if they 
change their 
executives.

Mr. seki, where 
did you go out 

for drinks when 
you worked at 

the main office?

What?

all the 
way at 

the end?
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You know, 
drinking with 

your colleagues 
after work, 

talking about 
success stories...

Oh.

We’re done 
with our work. 
so, shall we 
go out for a 

drink?

Okay,  
let’s go.

Yes!

Headliner’s Pub  
(Open 24 Hours)
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Nice 
atmosphere, 

isn’t it? ah, yes. are all 
these people 
journalists?

look, that’s Ishizuka, 
the photographer 

who is the youngest 
winner of the Japan 
Photographic Prize.

and that’s Mr. Nakata, 
a heavyweight in the 
designers’ circle.

The guys over 
there are from the 

Sanda City Post.

Mr. 
Calculus!?

Hey, Calculus, 
long time no 
see. Join us.

What a 
nickname! But, 
it certainly 

fits.

let’s see. I 
hope I can 

listen to their 
professional 

discussion.

Bitterman 
got diabetes 

recently.

Mr. stack 
now sees 
a doctor 

because of 
high blood 
pressure...

Maybe I 
should think 

about getting 
a medical 
checkup  
soon.

It’s just middle-
aged men’s talk! 
This is useless.

Hello.
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For the moment, we forget about the conditions for having Taylor expansion 
and the circle of convergence.

Using this formula, we check u on page 153.

f x
x

f x
x

f x
x

f x
x

( ) =
−

′ ( ) =
−( )

′′ ( ) =
−( )

′′′ ( ) =
−( )

1
1

1

1

2

1

6

1
2 3 4

, , , ,...

ff f f f f nn0 1 0 1 0 2 0 6 0( ) = ′ ( ) = ′′ ( ) = ′′′ ( ) = ( ) =( ), , , ,..., !

Thus, we have

f x f f x f x f x
n

f n( ) = ( ) + ′ ( ) + ′′ ( ) + ′′′ ( ) + + (( )0
1
1

0
1
2

0
1
3

0
1

02 3

! ! !
...

!
)) +

= + + × + × + + +

= + + + +

x

x x x
n

n x

x x x

n

n

...

! !
...

!
! ...

...

1
1
2

2
1
3

6
1

1

2 3

2 3 xxn + ...

f x f a f a x a f a x a

f a x a

( ) = ( ) + ′ ( ) −( ) + ′′ ( ) −( )

+ ′′′ ( ) −( ) +

1
1

1
2

1
3

2

3

! !

!
....

!
...+ ( ) −( ) +( )1

n
f a x an n

Formula 5-2: The Formula of Taylor Expansion

If f(x) has a Taylor expansion about x = 0, it is given by

f x f f x f x f x
n

f n( ) = ( ) + ′ ( ) + ′′ ( ) + ′′′ ( ) + + (( )0
1
1

0
1
2

0
1
3

0
1

02 3

! ! !
...

!
)) +xn ...

For the above,

f

f x

f x

f x

0

0

1
2

0

1
3

0

2

3

( )
′ ( )

′′ ( )

′′′ ( )
!

!  

0th-degree constant term

1st-degree term

2nd-degree term

3rd-degree term
 

a f

a f

a f

a f

0

1

2

3

0

0

1
2

0

1
6

0

= ( )
= ′ ( )
= ′′ ( )

= ′′′ ( )

They 
coincide!

Taylor expansion is a superior imitating function.

The formula above is for an infinite-degree polynomial that coincides with 
the original near x = 0. The formula for a polynomial that coincides near x = a 

is generally given as follows. Try the exercise on page 178 to check this!
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Taylor Expansion of Various Functions

[1] Taylor Expansion of a square Root

We set
 

f x x x( ) = + = +( )1 1
1
2. 

Thus, from
 

′ ( ) = +( )−
f x x

1
2

1
1
2

′′ ( ) = − × +( )

′′′ ( ) = × × +( )

′ ( ) =

−

−

f x x

f x x

f

1
2

1
2

1

1
2

1
2

3
2

1

0
1
2

3
2

5
2 ,...

, ′′′ ( ) = − ′′′ ( ) =

( ) = +

= + + × −





+

f f

f x x

x x

0
1
4

0
3
8

1

1
1
2

1
2

1
4

12

, ,...

! 33
3
8

3

!
...× +x

1 1
1
2

1
8

1
16

2 3+ = + − +x x x x ...

[2] Taylor Expansion of Exponential 
Function ex

If we set f x ex( ) = ,

′ ( ) = ′′ ( ) = ′′′ ( ) =f x e f x e f x ex x x, , ,...

So, from 

e x x x x

n
x

x

n

= + + + + +

+ +

1
1
1

1
2

1
3

1
4

1

2 3 4

! ! ! !
...

!
...        

Substituting x = 1, we get

e
n

= + + + + + + +1
1
1

1
2

1
3

1
4

1
! ! ! !

...
!

...

In Chapter 4, we learned that e is 
about 2.7. Here, we have obtained the 
expression to calculate it exactly.

[3] Taylor Expansion of logarithmic 
Function ln (1 + x)

We set f x x( ) = +( )ln 1

′ ( ) =
+

= +( )
′′ ( ) = − +( ) ( ) = +( )

( )

−

− ( ) −

( )

f x
x

x

f x x f x x

f x

1
1

1

1 2 1

1

2 3 3

4

, ,

== − +( )
( ) = ′ ( ) = ′′ ( ) = − ( ) =

( )

−

( )

( )

6 1

0 0 0 1 0 1 0 2

0

4

3

4

x

f f f f

f

,...

, , , !,

== −3!,...

Thus, we have

ln

!
! ! ...

1

0
1
2

1
3

2
1
4

32 3 4

+( ) =

+ − + × − +

x

x x x x

ln

... ...

1

1
2

1
3

1
4

1
12 3 4 1

+( ) =

− + − + + −( ) ++

x

x x x x
n

x
n n

[4] Taylor Expansion of Trigonometric 
Functions

We set f(x) = cos x.

′ ( ) = − ′′ ( ) = − ( )
= ( ) =

( )

( )

f x x f x x f x

x f x x

sin , cos ,

sin , cos ,...

3

4

From 

f f f

f f

0 1 0 0 0 1

0 0 0 13 4

( ) = ′ ( ) = ′′ ( ) = −

( ) = ( ) =( ) ( )

, , ,

, ,...

Thus,

cos
! ! !

...x x x x x= + − × × + × × + × × +1 0
1
2

1
1
3

0
1
4

12 3 4

cos
! !

...
!

...x x x
n

x
n n= − + + + −( ) ( ) +1

1
2

1
4

1
1

2
2 4 2

Similarly,

sin
! !

...
!

...x x x x
n

x
n n= − + + + −( )

−( ) +− −1
3

1
5

1
1

2 1
3 5 1 2 1
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What Does Taylor Expansion Tell us?

y

x

0

y = x

1 Linear approx.

0th degree 
approx. 2 Quadratic approx.

3 Cubic approx.

y = f(x)

ln ...1 0
1
2

1
3

1
4

2 3 4+( ) = + − + − +x x x x x

Taylor expansion replaces complicated functions 
with polynomials. Can you draw the graph of, 

for example, ln (1 + x)?

after all, it is necessary to approximate or imitate 
functions to uncover their complicated world, isn’t it?

let’s use
 
ln ...1

1
2

1
3

1
4

2 3 4+( ) = − + − +x x x x x
 
, an example given 

above, to see what we can gain from a Taylor expansion.

First, 0th-degree approximation. ln (1 + x) ≈ 0 near 
x = 0 . What does this mean?

ah, well...it means that the value of f(x) is 0 at x = 0 and 
it passes through point (0, 0).

That’s right. Next is linear 
approximation. You see that y = f(x) 

roughly resembles y = x near 
x = 0 ? so, this means that the 
function is increasing at x = 0 . 

(Note: The equation of a tangent 
line = linear approximation.)
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We’ll now take one 
more step to quadratic 

approximation. let’s 
consider the graph of

 
ln 1

1
2

2+( ) ≈ −x x x

around x = 0. Noriko, 
what does this mean?

y

x

0−1

y f x= ( )

y x x= − 1
2

2

This means that y = f(x) roughly resembles
 
y x x= − 1

2
2

 near x = 0 and its graph is concave down 
at x = 0 . (Quadratic approximation allows us to 

find how it is curved at x = a .)

let’s use cubic 
approximation as the 
last push!! Near x = 0, 

ln 1
1
2

1
3

2 3+( ) ≈ − +x x x x

(Cubic approximation 
further corrects the 

error in quadratic 
approximation.)

y

x

0

y f x= ( )

y x x x= − +1
3

1
2

3 2

Now, Mr. seki,  
on to the next bar!

!



This is better! We 
can talk more 
quietly at this 

hotel bar.

We should have 
just come here 

in the first 
place.

You could have 
talked more 
with the guys 
at that pub.

Well, they all seemed 
brilliant. I felt...I would 
say, somewhat inferior.

so what's your 
deal, Mr. seki?

all of those 
people are 
famous—

they’ve all won 
journalistic 

prizes.

But, I could 
immediately 

tell that they 
respected you.
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How can you be 
happy tucked away in 
our branch office?

Your writing 
has become so 
inconsequential!

No more 
alcohol 
for her.

I wonder what 
the probability 
is of me ever 

becoming a top-
notch journalist 

like those 
people in the 

pub.

If all you’re worried 
about is the probability 

of becoming great, 
you won’t become 

anything. You won’t get 
anywhere by waiting.

Weep



although they were 
chatting about silly 

things, they are all making 
desperate efforts in 

their work.

They just keep doing 
what they want to do. 

None of them would ever 
surrender themselves to 
their fate. and I wouldn’t, 

either.

Oh, speaking of 
probability!

What? No way! 
We’re going to 

study now?

Of course! I’m your 
teacher, and you are 

a precious asset.

Drooped
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When we analyze 
uncertain things using 
probability, we most 
frequently use the 
normal distribution.

uh-huh.

This distribution 
is described by a 

probability density 
function that is 

proportional to 

f x e
x( ) =

−1
2

2

 
after scaling. The graph 

of f(x) is symmetrical 
about the y-axis, as 

shown in this figure, and 
it looks like a bell.

sorry. He’s going 
to be writing a 

lot. Can you give 
us some more 

coasters?

Many phenomena 
have this form of 
distribution. For 

example, the heights 
of humans or animals 

typically have this 
distribution.

Measurement 
errors, too.

In financial circles, 
the earning rates of 
stocks are believed 

to have a normal 
distribution.

some student grading 
has been based on a 
normal distribution 

because exam results 
are often expected to 

fall in such a way.

Scratch 

Scratch Plump

Conk



so you can 
understand, I 

will show you, 
using a Taylor 

expansion, 
that flipping 

coins follows 
a normal 

distribution. 
What’s the 

probability of 
a coin showing 

heads when 
flipped?

Don’t take me 
for a fool. 

It’s ½.

Yes. We don’t know 
which side will 

appear. But we do 
know the chances 

of a particular side 
is 1 in 2.

The graph on top shows 
the probability of getting 
heads when 20 coins are 
flipped at once, plotted 
with the number of heads 

on the horizontal axis 
and the probability on the 

vertical axis.

Oh, it looks like 
the lower graph.

Yes, it overlaps 
with the graph 
of a normal 
distribution 

almost perfectly.

F
l
ip

0

0.05

0.10

0.15

0.20

1 3 5 7 9 11 13 15 17 19

The number of heads when 
20 coins are flipped at once
(binomial distribution)

g (x )

0

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4−1−2−3−4

Standard normal distribution

f x e
x( ) =

−1

2

1
2

2

π
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In fact, if we define gn(x) 
as “the probability of 
getting x heads when 
n coins are flipped at 
once”* and allow n to 
approach +∞ for the 

graph of gn(x)...
(∞ is read as 

infinity)...

He wrote the same 
equation before! He 
doesn’t have to use 

two coasters!

...we can 
rewrite it to 
see that it is 
proportional 
to the normal 

function 
above.

* The distribution of such probabilities as that of getting x heads when n coins 
are flipped is generally called the binomial distribution.

For example, let’s find the probability of getting 3 heads when 5 coins are 
flipped. The probability of getting HHTHT (H: heads, T: tails) is

1
2

1
2

1
2

1
2

1
2

1
2

5

× × × × = 





Since there are 5C3 ways of getting 3 heads and 2 tails, it is 5 3

5
1
2

C 





. The 

general expression is n x

n

C
1
2







. We will show that if n is very large, the binomial 

distribution is the normal distribution.

Now, 
now...



using the 
binomial 

distribution,

gn(x) can be written 
in this way.

since the graph of  
f(x) is symmetrical 

about x = 0 
and gn(x) about x = g

n
Cn n

n

n

2
1
22







= 




 ...

we consider gn(n
2

) 
instead  
of gn(x).

First...

dividing gn(x) 
by this...

we get hn , 
the scaled 
function

since

so then...

Divide:

g x C

C

n n x

x n

n x

n

( ) = 











= 





−
1
2

1
2

1
2

1

g
n

Cn n

n

n

2
1
22







= 





h x
g x

g
C
Cn

n

n
n

n x

n n

( ) =
( )
( ) =

2
2

h x
n

x n x n xn

n n n n

( ) =
−( )









 ×

( ) ( )







 =

( ) ( )!
! !

! !

!

! !

!
2 2 2 2

nn x−( )!

ah, so many 
coasters...

Scribble

S
c
r
ib
b
le

n xC
n

x n x
=

−( )
!

! !

n n n
C

n
n
2

2 2

= ( ) ( )
!

! !
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so many...wasted 
coasters...

Well, we now 
convert the unit into 

n
2

since x is away 
from the center 

n
2
.

n
2  is the standard 
deviation. If you 

don’t know statistics, 
simply regard it as a 

magic word!*

* standard deviation is an index we use 
to describe the scattering of data.

Ig
...
n
o

r
e
d
...

Ab
rac

ad
ab

ra!



In other 
words, in this way, we 

change the variable. 
The new one, z, is the 
number of standard 

deviations away 
from the center.

We set 
n n

z x
2 2

+ =  

and substitute x in hn .

We take a ln of 
each side.*

Now we need 
to calculate 
this, but shall 
we move on to 
the next bar?

and get

* We use

ln ln ln

ln ln ln

ab a b

d
c

d c

= +

= −

h x

n n

n n
z

n n
z

n ( ) =













+








 −











2 2

2 2 2 2

! !

! !

n
n n

z− +




















2 2

ln

ln ! ln ! ln

h x

n n n n
z

n ( )

= 













 + 













 − +








2 2 2 2














− −






















! ln !
n n

z
2 2
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Thank you. I think 
we’re done.

Ready to go? I guess I should 
be happy I still 

have some...

Positive thinking

There are only a 
few left!!Phew

Approximating ln (m!)

ln ! ln ln ln ... lnm m= + + + +1 2 3

If we pack rectangles in the 
graph of ln x, as shown here, we get

ln ... ln ln2
1

+ + ≈ ∫m xdx
m

x x x x x
x

xln ln ln−( )′ = + × − =1
1

Thus,

ln ln ln

ln

xdx m m m

m m m

m

1
1 1 1

1
∫ = −( ) − −( )

= − +

Since we will use this where m is very large, m ln m is the important term. 
−m + 1 is much smaller, so we’ll ignore it. Therefore, we can consider roughly 
that ln m! = m ln m.

Area = ln m

ln m
Area = ln 2

. . . . . .

2 3 m−1 m

y = ln x



Well, let’s just finish 
this here! If we use 

ln m! ≈ m ln m 
(see the previous 

page)...

Now, let’s use a 
Taylor expansion, 
which you’ve been 

waiting for.

I haven’t been 
waiting for it.

...

Quick, give these 
to us!!

ahhhh!

after a lot of algebra, we get

We used, e.g., ln ln ln ln
n n

z
n n

n
z

n n
n

z
2 2 2

1
2

1+








 = +






















= + +











Just take 
them

Sque
ak

 

Sque
ak

What Does Taylor Expansion Tell us? 173



174 Chapter 5 let’s learn about Taylor Expansions!

When t is 
close to 

zero, Now, 

n
n n

= 1
 is very 

close to zero if n is 
large enough.

n
n

z
 also is therefore 

as close as we want 
to zero for fixed z.

Therefore,

We put 
these back.

(Quadratic 
approximation)*

* see page 161.



since we now know 

lnh x zn ( ) ≈ − 1
2

2,
we get h x en

z( ) ≈ −
−1

2
2

. 

That’s it!

If you are afraid that the higher-degree terms of 
x3 and more that appear in the Taylor expansion 
of ln might affect the shape of hn(x) (n: large 

enough), actually calculate hn(x), using

ln 1
1
2

1
3

2 3+( ) ≈ − +t t t t

You will find that the term of z4 has n in the 
denominator of its coefficient and converges to 

zero, or disappears, when n → ∞.

as for the normal 
distributions, can we 
apply them to things 

other than coin 
flipping?
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are you thinking 
about applying our 

studies to love again? 
Probability can only 

apply when phenomena 
are unintentional and 

purely random. How about in 
the case of 

unintentional and 
pure love?

It’s out 
of the 

question!

listen! If we dare to 
assume very roughly that 
the way two people fall in 
love is something like the 
combination of the results 

of flipping an infinite 
number of coins...

...

Well, since we 
have found that 
the distribution 

of the results of 
coin flipping is 
approximately a 

normal distribution, 
it would not be 
surprising if a 

normal distribution 
could be calculated 

for love.

Really?



But!

Probability is limited 
only to uncertain 

phenomena that allow 
no intentionality. 

I’m sorry for being 
pedantic.

But, Mr. seki, suppose 
there is a very 
innocent girl...

Why do you never 
understand me?

Pit-a-Pat
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Exercises

1. Obtain the Taylor expansion of f(x) = e−x at x = 0.

2. Obtain the quadratic approximation of f x
x

( ) = 1
cos

 at x = 0.

3. Derive for yourself the formula for the Taylor expansion of f(x) centered 
at x = 1, which is given on page 159. In other words, work out what cn 
must be in the equation:

f x c c x a c x a c x an

n( ) = + −( ) + −( ) + + −( )0 1 2

2
...



6
let’s learn about 

Partial Differentiation!
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What????

Mr. seki is going 
back to the main 

office?

What happened? 
Were you 

promoted?

I don’t 
know...

What are Multivariable Functions?
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But you told me, 
“an effect occurs 
because it has a 

cause.”

You’ve been 
teaching me 

every day! I even 
had nightmares 

about it!

Cause and effect...I 
remember that. We 
talked about that 

in one of our first 
lessons.

It’s true that we 
have been exploring 

simple functions 
that have a cause 

and an effect.

such a 
relationship can 

be expressed

in a diagram 
like this.

But this transfer 
has reminded me that 
the world is not so 

simple, after all.

Yes.

I guess my transfer 
to the main office has 
been brought about as 
a combined result of 

several causes.

Cause Effect

Slurp
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It can be 
expressed

by these diagrams.

In the case of 
Mr. seki, x is 

excellent writing, 
y is hard-hitting 
reporting, and 

z is transfer to 
the main office. Is 

that right?

Well, I don’t 
know the 

reasons for 
my transfer 

yet.

In the case of Noriko, x1 
is last month’s blunder, 

x2 is this month’s blunder, 
and x3 and x4 are poor 
grooming and hygiene, 

which makes y her 
demotion to writing 

obituaries.

all right, that’s 
enough. Noriko, 

we don’t have much 
time left.

let’s learn the 
basics quickly.

shut up, 
you dumb 

ox!

Squeeze
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The function of 
the left diagram 

is written as 
z = g(x, y), and 

that of the right 
diagram is written 
as y = h(x1, x2, x3, x4).

I will give you 
some examples of 
functions that have 
two causes, that 
is, two-variable 

functions.

Example 1

Assume that an object is at height h(v, t) in meters after t seconds when 
it is thrown vertically upward from the ground with velocity v. Then, h(v, t) 
is given by

h v t vt t, .( ) = − 4 9 2

Example 2

The concentration f(x, y) of sugar syrup obtained by dissolving y grams of 
sugar in x grams of water is given by

f x y
y

x y
,( ) =

+
×100

Example 3

When the amount of equipment and machinery (called capital) in a nation 
is represented with K and the amount of labor by L, we assume that the 
total production of commodities (GDP: Gross Domestic Product) is given 
by Y(L, K).

Example 4

In physics, when the pressure of an ideal gas is given by P and its volume 
by V, its temperature T is known to be a function of P and V as T(P, V). And 
it is given by

T P V PV,( ) = γ

In economics, Y L K L K,( ) = −β α α1

 (called the 
Cobb-Douglas function ) (where α and β are 

constants) is used as an approximate function 
of Y(L, K). see page 203.
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What do you think 
we do to examine 
the properties of 
these complicated 

two-variable 
functions?

Do we use 
imitating linear 

functions?

Well, yes. But since we now 
have two-variable functions, 
we have to use two-variable 

linear functions.

Two-variable linear 
functions are given in a 
form like z = f(x, y) = ax + 
by + c (where a, b, and c 

are constants.)

For example, 
z = 3x + 2y + 1 or 

z = −x + 9y − 2, 
see?

Now, let’s see what 
their graphs look like. 

since they have two 
inputs (x and y) and an 
output (z), it is natural 
to use 3-dimensional 

coordinates.

Well, just think 
of an image in 
which the x-y 
plane is the 

floor and the 
z-axis is a pillar.

a pillar...

The Basics of Variable linear Functions

z =x

y
f ax by c+ +

Hmm

Hmm
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Is something 
wrong?

Oh! No, nothing. 
let’s continue.

You see, the point P 
at the coordinates 
(2, 3, 5) is the point 

at the top of a 
stick standing at 

(2, 3) on the floor 
and having a length 

of 5.

Now, what do you 
think the graph of 
the two-variable 
linear function 

z = f(x, y) = ax + by + c 
looks like?

let’s draw 
the graph of 

z = f(x, y) = 3x + 2y + 1 
as an example.

* although we should actually write it as (4, 3, 0), 
we’ll use (4, 3) for simplicity.

2

3

5

P = (2, 3, 5)z

y

x

8

2

1

4

3

19

(4, 3)(1, 2)

y

x

First, we place a stick having the 
length f(1, 2) = 3 × 1 + 2 × 2 + 1 = 8 

at point (1, 2) on the floor. 
In the same way, the height 

of the graph has a value of 
f(4, 3) = 3 × 4 + 2 × 3 + 1 = 19 

at point (4, 3).*
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In the same way, we put 
up 16 sticks at 16 points 
(x, y) satisfying 1 ≤ x ≤ 4 

and 1 ≤ y ≤ 4, which 
are shown in this 

figure.

looking at this 
figure, you can 

vaguely see that 
the graph forms a 
plane, can’t you?

Yes, I see it!

Now, let’s look at 
the pillars on the 

nearest side.

Their heights are, 
beginning from the 

left, f(1, 1) = 6, f(2, 1) = 9, 
f(3, 1) = 12, and f(4, 1) = 15 .

These points form 
 a line whose  

slope is 3,  
which is intuitive 
because if y is a 

constant ( y = 1 ) in 
z = f(x, y) = 3x + 2y + 1 , 
we get z = 3x + 2 × 1 

+ 1 = 3x + 3 .

Next, let’s look at the 
heights of the sticks right 

behind the first ones. 
Their heights are f(1, 2) = 8, 
f(2, 2) = 11, f(3, 2) = 14, and 
f(4, 2) = 17 , each of which 
is higher than the stick in 

front of it by 2.

Furthermore,  
the heights of the sticks behind 
these ones are f(1, 3) = 10, f(2, 3) = 

13, f(3, 3) = 16, and f(4,3) = 19 , each of 
which is again higher than the one in 

front of it by 2.

20

15

10

5

0
1 2 3 4

1
2

3
4

20

15

10

5

0
1 2 3 4

1
2

3
4
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since the sticks 
become higher by 
2 the further away 
from us they are,

we find that the 
tops of the sticks 
as a whole form a 
plane. We can now 
generalize this.

First, let’s draw 
the graph of 

z = f(x, y) = ax + by 
(let constant c = 0 ).

let’s consider a plane that 
represents the function 

f(x, y). We can start at 
point O, which we know is 
(0, 0, 0), or the origin. Now 

consider line segment 
OA—a function to describe 
this line can be found if we 

set y = 0. This means that 
line is represented by the 

function z = ax, and has 
slope a. similarly, we find 
that line segment OB of 
this plane is represented 

by the function z = by (as we 
have set x equal to zero), 
and has a slope of b. Point 
C on the plane OACB has a 
height equal to ax + by. If 
we wanted to physically 
represent this plane, we 

could tie a sheet to 
line segments OA and 

OB, and tighten the 
sheet.

Now, if we have to 
consider a constant (an 
equation that takes the 
form z = ax + by + c) we 
simply adjust the graph 
by raising the plane by c. 
Point O on our plane is 

now at (0, 0, c), Point A has 
a height of (ax + c), 

and so on.

z

C

B

(x, y)

by
y

y

A

ax

x
x

O

ax + by

z = by

z = ax

(x, y)

z

c

y

y

x
x

O

by + c

ax + by + c

ax + c
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Noriko!
Yes!?!

let’s stop here for 
today. You don’t seem 

to be very focused on 
our lesson.

I have a lot of things 
to do before I leave, 

including packing up all 
my stuff. so, will you 

meet with me this sunday?

I know you want to have 
sundays off, but let’s have 

one last lesson. When 
we’re done, I’ll treat you 

to dinner.

uh, sure...

Dinner??

Huff

That’s 
not 
true.



This school was 
closed a few 

years ago.

No. I just like it 
here because it’s 
where I learned 

math.

Really? are you 
going to write a 
story about it?

Wow!

actually, I was 
born in this town.

This was a small school. 
But there was a teacher 

here who gave me the best 
lessons in the world.

Tanaka school 
sunday

at Tanaka school 189
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If we draw a graph of 
the two-variable function 

z = f(x, y) = 3x + 2y + 1 
in the 3-dimensional 

coordinate system, what 
does it look like, Kakeru?

Now, if we make 
the plane OACB 
with this straw 

mat...

Teacher, there 
were still 

some potatoes 
in there. What 

should we do?

Mr. Kinjiro Bunda. 
He was a very 
good teacher.

Now, Noriko, 
let’s begin our 

last lesson. Okay!

If you can solve the 
problem, let’s steam and 

eat them. Ho, ho, ho.



Partial Differentiation 191

Oh, there’s the 
first period bell! 
let’s explore the 
differentiation 

of two-variable 
functions.

since we now know that 
a linear two-variable 

function appears to be a 
plane, we can imitate more 
complicated two-variable 

functions.

Our original 
function looks 
like a flat-top 

tent, doesn’t it?

It looks more 
like a pie 

to me.

Well, that’s not an important 
disagreement. Now, let’s make 

an imitating two-variable 
linear function of f(x, y) near 
a point (a, b) ( x = a and y = b ).

Partial Differentiation

z y

y

x

x

O

f(x, y)

(x, y)

Class schedule

Partial 
differentiation
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We make a two-variable linear function that has the same height as f(a, b) at 
the point (a, b). The formula is L(x, y) = p(x − a) + q(y − b) + f(a, b). Substitut-
ing a for x and b for y, we get L(a, b) = f(a, b).

While the graph of z = f(x, y) and that of z = L(x, y) pass through the 
same point above the point A = (a, b), they differ in height at the point 
P = (a + ε, b + δ ). The error in this case is f(a + ε, b + δ ) − L(a + ε, b + δ ) = 
f(a + ε, b + δ ) − f(a, b) − (pε + qδ ), and the relative error expresses the ratio 
of the error to the distance AP.

Relative error = 
difference between f and L

distance AP

u =
+ +( ) − ( ) − +( )

+

f a b f a b p qε δ ε δ

ε δ

, ,
2 2

We consider L(x, y) as the difference between it and f becomes infinitely 
close to zero (when P is infinitely close to A) as the imitating linear func-
tion. For that case, we obtain p and q. p is the slope of DE and q that of DF 
in the figure. Since ε and δ are arbitrary, we first let δ = 0 and analyze u. 
u becomes

Relative error =
+ +( ) − ( ) − + ×( )

+

=
+( ) −

f a b f a b p q

f a b f a

ε ε

ε
ε

, ,

,

0 0

02 2

,,b
p

( )
−

ε

ε

δ

C
D E

B

GF
H(Imitating

two-variable
linear function)

z L x y= ( ),

z f x y= ( ),

f a b+ +( )ε δ,

P a b= + +( )ε δ,
f a b,( )

A a b= ( ),
ε δ2 2+
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Thus, the statement “the relative error → 0 when ε → 0” means the 
following:

v lim
, ,

ε

ε
ε→

+( ) − ( )
=

0

f a b f a b
p

This is the slope of DE.
Here, we should realize that the left side of this expression is the same 

as single-variable differentiation. In other words, if we substitute b for y and 
keep it constant, we obtain f(x, b), which is a function of x only. The left side 
of v is then the calculation of finding the derivative of this function at x = a.

Although we are very much tempted to write the left side as f′(a, b) since 
it is a derivative, it would then be impossible to tell with respect to which, x 
or y, we differentiated it.

So, we write “the derivative of f obtained at x = a while y is fixed at b” as 
fx(a, b).

This fx is called “the partial derivative of f in the direction of x”. This is 
the notation corresponding to the “prime” in single-variable differentiation.

The notation 
df
—
dx (a, b), that corresponds to 

∂ f
—
∂ x , is also used. In short, we 

have the following:

“The derivative of f in the direction of x obtained at x = a while y is 
fixed at b”

f a b
f
x

a b
f
xx

x a y b

, ,
,

( ) = ∂
∂

( ) ∂
∂

















=
= =

also written as

SSlope of DE

In exactly the same way, we can obtain the 
following.

“The derivative of f in the direction of y 
obtained at y = b while x is fixed at a”

f a b
f
y

a b

DF

y , ,( ) = ∂
∂

( )

= Slope of 

∂ is read as 
“partial derivative.”
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We have now found the following.
If z = f(x, y) has an imitating linear function near (x, y) = (a, b), it is 

given by

w z f a b x a f a b y b f a bx y= ( ) −( ) + ( ) −( ) + ( ), , ,

or* z
f
x

a b x a
f
y

a b y b f a b= ∂
∂

( ) −( ) + ∂
∂

( ) −( ) + ( ), , ,  

Consider a point (α, β ) on a circle with radius 
1 centered at the origin of the x − y plane (the 
floor). We have α 2 + β 2 = 1 (or α = cos θ and 
β = sin θ). We now calculate the derivative in the 
direction from (0, 0) to (α, β ). A displacement 
of distance t in this direction is expressed as 
(a, b) → (a + α t, b + β t). If we set ε = α t and δ = β t 
in u, we get

Relative error =
+ +( ) − ( ) − +( )

+

=
+

f a t b t f a b p t q t

t t

f a

α β α β

α β

α

, ,
2 2 2 2

tt b t f a b

t
p q

f a t b t f a b

t
p q

, ,

, ,

+( ) − ( )
+

− −

=
+ +( ) − ( )

− −

β

α β
α β

α β
α β

2 2

 Since α β2 2 1+ =

Assuming p = fx(a, b) and q = fy(a, b), we modify  as follows:

y f a t b t f a b t

t

f a b t f a b

t
f a b f a bx y

+ +( ) − +( )
+

+( ) − ( )
− ( ) − ( )α β β β

α
, , , ,

, , ββ

Since the derivative of f(x, b + β t), a function of x only, at x = a is 

f a b tx , +( )β

we get, from the imitating single-variable linear function,

f a t b t f a b t f a b t tx+ +( ) − +( ) ≈ +( )α β β β α, , ,

* We have calculated the imitating linear function in such a way that its relative error 
approaches 0 when AP → 0 in the x or y direction. It is not apparent, however, if the relative 
error → 0 when AP → 0 in any direction for the linear function that is made up of the deriva-
tives fx(a, b) and fy(a, b). We’ll now look into this in detail, although the discussion here will 
not be so strict.

−1

−1

1

1

y

x

θ
(α, β)
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Similarly, for y we get

f a b t f a b f a b ty, , ,+( ) − ( ) ≈ ( )β β

Substituting this in y,

≈ +( ) + ( ) − ( ) − ( )
= +( ) − (

f a b t f a b t f a b f a b

f a b t f a b

x y x y

x x

, , , ,

, ,

β α β α β

β ))( )α

y  

Since fx(a, b + β t) − fx(a, b) ≈ 0 if t is close enough to 0, the relative 
error = y ≈ 0. Thus, we have shown “the relative error → 0 when AP → 0 
in any direction.”

It should be noted that fx must be continuous to say fx(a, b + β t) − fx(a, b) 
≈ 0 (t ≈ 0). Unless it is continuous, we don’t know whether the derivative 
exists in every direction, even though fx and fy exist. Since such functions 
are rather exceptional, however, we won’t cover them in this book.

Examples (Function of Example 1 from page 183)

Let’s find the partial derivatives of h(v, t) = vt − 4.9t2 at (v, t) = (100, 5).
In the v direction, we differentiate h(v, 5) = 5v − 122.5 and get

∂
∂

( ) =h
v

v,5 5

Thus,

∂
∂

( ) = ( ) =h
v

hv100 5 100 5 5, ,

In the t direction, we differentiate h(100, t) = 100t − 4.9t2 and get

∂
∂

( ) = −h
t

t t100 100 9 8, .

∂
∂

( ) = ( ) = − × =h
t

ht100 5 100 5 100 9 8 5 51, , .

And the imitating linear function is 

L x y v t, .( ) = −( ) + −( ) −5 100 51 5 377 5
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In general, 

∂
∂

= ∂
∂

= −h
v

t
h
v

v t, .9 8

Therefore, from w on page 194, near (v, t) = (v0, t0),

h v t t v v v t t t h v t, . ,( ) ≈ −( ) + −( ) −( ) + ( )0 0 0 0 0 0 09 8

Next, we’ll try imitating the concentration of sugar syrup given y 
grams of sugar in x grams of water.

f x y
y

x y

f
y

f
y

x y

f
y

f
x y y

x

y

y

,( ) =
+

∂
∂

= = −
+( )

∂
∂

= =
+( ) − ×

+

100

100

100 100 1

2

yy

x

x y( )
=

+( )2 2

100

Thus, near (x, y) = (a, b), we have

f x y
b

a b
x a

a

a b
y b

b
a b

,( ) ≈ −
+( )

−( ) +
+( )

−( ) +
+

100 100 100
2 2

Definition of Partial Differentiation

When z = f(x, y) is partially differentiable with respect to x for every point 
(x, y) in a region, the function (x, y) → fx(x, y), which relates (x, y) to fx(x, y), 
the partial derivative at that point with respect to x, is called the partial dif-
ferential function of z = f(x, y) with respect to x and can be expressed by any 
of the following:

f f x y
f
x

z
xx x, , , ,( ) ∂

∂
∂
∂

Similarly, when z = f(x, y) is partially differentiable with respect to y for 
every point (x, y) in the region, the function 

x y f x yy, ,( ) → ( )
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is called the partial differential function of z = f(x, y) with respect to y and is 
expressed by any of the following:

f f x y
f
y

z
yy y, , , ,( ) ∂

∂
∂
∂

Obtaining the partial derivatives of a function is called partially 
differentiating it.

From the imitating linear function of z = f(x, y) at (x, y) = (a, b), we have 
found

f x y f a b x a f a b x b f a bx y, , , ,( ) ≈ ( ) −( ) + ( ) −( ) + ( )

We now modify this as

 f x y f a b
f
x

a b x a
f
y

a b y b, , , ,( ) − ( ) ≈ ∂
∂

( ) −( ) + ∂
∂

( ) −( )

Since f(x, y) − f(a, b) means the incre-
ment of z = f(x, y) when a point moves from 
(a, b) to (x, y), we write this as Δz, as we 
did for the single-variable functions.

Also, (x − a) is Δx and (y − b) is Δy.
Then, expression  can be written as

{ ∆ ≈ ∂
∂

∆ + ∂
∂

∆z
z
x

x
z
y

y

This expression means, “If x increases from a by Δx and y from b by Δy 
in z = f(x, y), z increases by 

∂
∂

∆ + ∂
∂

∆z
x

x
z
y

y

Total Differentials

2nd 
Period

Total 
differentials

∂z
∂y
∆y

∆z

∆y

∆x

∂z
∂x
∆x

∂z
∂x
∆x

∂z
∂y
∆y= +
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Since
 
∂z
—
∂x 

Δx is “the increment of z in the x direction when y is fixed at b” 

and
 
∂z
—
∂y 

Δy is “the increment in the y direction when x is fixed at a,” expres-

sion { also means “the increment of z = f(x, y) is the sum of the increment 
in the x direction and that in the y direction.”

When expression { is idealized (made instantaneous), we have

| dz
z
x

dx
z
y

dy= ∂
∂

+ ∂
∂

or

} df f dx f dyx y= +

(Δ has been changed to d.)
The meaning of the formula is as follows.

Increment of height of a curved surface = 

Increment in 
the y direction

Partial derivative 
in the x direction

 × 
Increment in 
the x direction

 + 
Partial derivative 
in the y direction

 × 

Now, let’s look at the expression of a total differential from Example 4 
(page 183).

By converting the unit properly, we rewrite the equation of temperature 
as T = PV.

∂
∂

=
∂ ( )

∂
= ∂

∂
=

∂ ( )
∂

=T
P

PV

P
V

T
V

PV

P
P   and   

Thus, the total differential can be written as dT = VdP + PdV.
In the form of an approximate expression, this is ΔT ≈ VΔP + PΔV.

This means that for an ideal gas, the 
increment of temperature can be 

calculated by the volume times the 
increment of pressure plus the pressure 

times the increment of volume.

Expression | or } is 
called the formula of 
the total differential.

Higher temperatures

Volume

P
re

ss
u

re

T = constant

P

V
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3rd 
Period

What a view! 
sanda hasn’t 

changed at all!
!

If we look at that 
mountain as a two-

variable function, its 
top is a maximum.

Oh, you started 
the lesson 
already?

Conditions for Extrema

Maximum
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The extrema of a two-variable function f(x, y) are where its graph is at 
the top of a mountain or the bottom of a valley.

Since the plane tangent to the graph at point P or Q is parallel to the x-y 
plane, we should have 

f x y p x a q y b f a b, ,( ) ≈ −( ) + −( ) + ( )

with p = q = 0 in the imitating linear function.
Since 

p
f
x

f q
f
y

fx y= ∂
∂

=( ) = ∂
∂

=( )

the condition for extrema* is, if f(x, y) has an extremum at (x, y) = (a, b), 

f a b f a bx y, ,( ) = ( ) = 0

or

∂
∂

( ) = ∂
∂

( ) =f
x

a b
f
y

a b, , 0

* The opposite of this is not true. In other words, even if fx(a, b) = fy(a, b) = 0, f will not always 
have an extremum at (x, y) = (a, b). Thus, this condition only picks up the candidates for 
extrema.

Maximum

Minimum

Maximum point

Horizontal plane

z

x

y

0

z

x

y

0

z

x

y

0

Q

P

P
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Example

Let’s find the minimum of f(x, y) = (x − y)2 + (y − 2)2. First, we’ll find it 
algebraically.

Since 

x y y−( ) ≥ −( ) ≥2 2
0 2 0

f x y x y y,( ) = −( ) + −( ) ≥2 2
2 0

If we substitute x = y = 2 here,

f 2 2 2 2 2 2 0
2 2

,( ) = −( ) + −( ) =

From this, f(x, y) ≥ f(2, 2) for all (x, y). In other words, f(x, y) has a 
minimum of zero at (x, y) = (2, 2).

On the other hand, ∂
∂

= −( )f
x

x y2  and ∂
∂

= −( ) −( ) + −( ) = − + −f
y

x y y x y2 1 2 2 2 4 4. 
If we set

∂
∂

= ∂
∂

=f
x

f
y

0

and solve these simultaneous equations, 

2 2 0

2 4 4 0

x y

x y

− =
− + − =









we find that (x, y) = (2, 2), just as we found above.

at the extrema of a two-
variable function, the partial 
derivatives in both the x and y 

directions are zero.

The solutions are 
the same!
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There was a senator 
from Illinois named Paul 

Douglas who served from 
1949 to 1966.

He was a former 
economist, and in 
1927, he thought 

about the problem 
of sharing national 

income in capital 
and labor.

How is it 
shared?

There are roughly 
two types of routes 

in which gross 
domestic product 
(GDP), which is the 

amount of production 
within a country in 
one year, is shared 
among the people 

of the country.

The first one is the 
way in which GDP is 
shared as wages 

for labor.

The second is the way 
in which GDP is shared 
as stock dividends to 
the owners of capital, 
such as machinery and 

equipment.

applying Partial Differentiation to Economics
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Douglas studied the 
labor and capital 

shares in the united 
states and found that 
their ratio had been 

almost constant for 
about 40 years.

It’s strange that the 
ratio was constant, 

even though the 
economic situation 
was changing every 

minute.

You want to know 
what the production 
function f(L, K) that 
brings this result 

looks like,  
don’t you? Douglas was 

troubled too, so he 
asked Charles Cobb, a 
mathematician, about it.

The function they 
found is the famous 

Cobb-Douglas 
function. Below, 

L represents labor, 
K represents capital, 

and β and α are 
constants.

ah, will you tell me in 
more detail about my 

wages?

Okay. This is a good 
application of two-
variable functions.

about 70 percent (0.7) 
of GDP was shared 

as wages for labor, 
and 30 percent (0.3) 

as stock dividends to 
capital owners.

Cobb-Douglas function

f L K L K,( ) = −β α α1
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First, let’s suppose that wages are measured in units of w, and capital 
is measured in units of r. We’ll consider the production of the entire coun-
try to be given by the function f(L, K) and assume the country is acting as a 
profit-maximizing business. The profit P is given by the equation: 

P f L K wL rK= ( ) − −,

Because we know that a business chooses values of L and K to maximize 
profit (P), we get the following condition for extrema: 

∂
∂

= ∂
∂

=

= ∂
∂

= ∂
∂

−
∂ ( )

∂
−

∂ ( )
∂

= ∂
∂

− ⇒ = ∂
∂

= ∂
∂

P
L

P
K

P
L

f
L

wL

L

rK

L
f
L

w w
f
L

P
K

0

0

0 == ∂
∂

−
∂ ( )

∂
−

∂ ( )
∂

= ∂
∂

− ⇒ = ∂
∂

f
K

wL

K

rK

K
f
K

r r
f
K

u

v

The relations far to the right mean the following.

Wages = Partial derivative of the production function  
with respect to L

Capital share = Partial derivative of the production function  
with respect to K

Now, the reward the people of the country receive for labor is Wage × 
Labor = wL. When this is 70 percent of GDP, we have

w wL f L K= ( )0 7. ,

Similarly, the reward the capital owners receive is

 rK f L K= ( )0 3. ,

From u and w,

y 
∂
∂

× = ( )f
L

L f L K0 7. ,

From v and ,

z 
∂
∂

× = ( )f
K

K f L K0 3. ,
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Cobb found f(L, K) that satisfies these equations. It is 

f L K L K, . .( ) = β 0 7 0 3

where β is a positive parameter meaning the level of technology.
Let’s check if this satisfies the above conditions.

∂
∂

× =
∂ ( )

∂
× = ×

=
=

−( )f
L

L
L K

L
L L K L

L K

β
β

β

0 7 0 3
0 3 0 3 1

0 7 0 3

0 7

0 7

0

. .
. .

. .

.

.

.77

0 3

0 3

0 7 0 3

0 7 0 7 1

0

f L K

f
K

K
L K

K
K L K K

L

,

.

.

. .

. .

.

( )

∂
∂

× =
∂ ( )

∂
× = ×

=

−( )β
β

β 77 0 3

0 3

K

f L K

.

. ,= ( )

Yes, it surely 
does.

so, partial differentiation 
revealed a mysterious 
law hiding in a large-
scale economy—rules 

that determine a 
country’s wealth.

Partial 
differentiation 

is alive and well 
behind the scenes, 

isn’t it?
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The Chain Rule

We have seen single-variable composite functions before (page 14).

y f x z g y z g f x

g f x g f x f x

= ( ) = ( ) = ( )( )
( )( )′ = ′ ( )( ) ′ ( )

, , ,

We assume that z is a two-variable function of x and y, expressed as z = 
f(x, y), and that x and y are both single-variable functions of t, expressed as 
x = a(t) and y = b(t), respectively. Then, z can be expressed as a function of t 
only, as shown below.

This relationship can be written as

z f x y f a t b t= ( ) = ( ) ( )( ), ,

What is the form of 
dz
—
dt  then?

We assume a(t0) = x0, b(t0) = y0 and f(x0, y0) = f(a(t0), b(t0)) = z0 when t = t0, 
and consider only the vicinities of t0, x0, y0, and z0.

If we obtain an α that satisfies

u z z t t− ≈ × −( )0 0α

it is 
dz
—
dt  (t0).

Here, let’s derive the formula of 
partial differentiation (the chain rule) 
for multivariable composite functions.

t

a

b

x

y

f z
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First, from the approximation of x = a(t),

v x x
da
dt

t t t− ≈ ( ) −( )0 0 0

Similarly, from the approximation of y = b(t),

w y y
db
dt

t t t− ≈ ( ) −( )0 0 0

Next, from the formula of total differential for a two-variable function 
f(x, y),

 z z
f
x

x y x x
f
y

x y y y− ≈ ∂
∂

( ) −( ) + ∂
∂

( ) −( )0 0 0 0 0 0 0, ,

Substituting v and w in ,

y z z
f
x

x y
da
dt

t t t
f
y

x y
db
dt

t t t− ≈ ∂
∂

( ) ( ) −( ) + ∂
∂

( ) ( ) −( )

= ∂

0 0 0 0 0 0 0 0 0, ,

ff
x

x y
da
dt

t
f
y

x y
db
dt

t t t
∂

( ) ( ) + ∂
∂

( ) ( )







 −( )0 0 0 0 0 0 0, ,

Comparing u and y, we get

α = ∂
∂

( ) ( ) + ∂
∂

( ) ( )f
x

x y
da
dt

t
f
y

x y
db
dt

t0 0 0 0 0 0, ,

This is what we wanted, and we now have the following formula!

Formula 6-1: The Chain Rule

When z f x y x a t y b t= ( ) = ( ) = ( ), , ,

dz
dt

f
x

da
dt

f
y

db
dt

= ∂
∂

+ ∂
∂
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Mr. seki, why don’t 
I give you a lesson 

now?

uh, okay. It’ll 
be fun to be a 
student again.

Okay! let’s use 
a multivariable 

function to think 
about...

an environmental 
problem!

!

Here, we have a factory 
from which waste is 

released as a result of 
production of commodities. 

The waste subsequently 
pollutes the sea, causing 
a reduction in the local 

fisherman’s catch.

The effect that production 
activities of a business have 

on other fields without 
going through the market, 
as is this case, is called an 
externality. In particular, 

harmful externalities, such 
as pollution, are called 
negative externalities.

suppose that x workers 
produce an amount of goods 
given by f(x). The factory also 

releases waste as goods 
are made, which affects the 

catch of fish.  

let’s call the 
quantity of waste 

b = b(  f(x)). Now...

Factory

Factory
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We assume that the catch of fish can be expressed as a two-variable 
function g(y, b) of the amount of labor y and the amount of waste b. 

(The catch g(y, b) decreases as b increases. Thus, 
∂g
—
∂b

 is negative.)

Since the variable x is contained in g(y, b) = g(y, b(  f(x))), production at 
the factory influences fisheries without going through the market. This is 
an externality.

First, let’s see what happens if the factory and the fishery each act (self-
ishly) only for their own benefit. If the wage is w for both of them, the price 
of a commodity produced at the factory p and the price of a fish q, the profit 
for the factory is given by

 P x pf x wx1 ( ) = ( ) −

Thus, the factory wants to maximize this, and the condition for 
extrema is

 
dP
dx

pf x w pf x w1 0= ′ ( ) − = ⇔ ′( ) =

Let s be such x that satisfies this condition. Thus, we have

 pf s w′ ( ) =

This s is the amount of labor employed by the factory, the amount of pro-
duction is f(s), and the amount of waste is given by

b b f s* = ( )( )

Next, the profit P2 for the fishery is given by

P qg y b wy2 = ( ) −,

Since the amount of waste from the factory is given by b* = b(  f(s)),

 P qg y b wy2 = ( ) −, *

which is practically a single-variable function of y. To maximize P2, we use 
only the condition about y for extrema of a two-variable function.

 
∂
∂

= ∂
∂

( ) − = ⇔ ∂
∂

( ) =
P
y

q
g
y

y b w q
g
y

y b w2 0, * , *

Therefore, the optimum amount of labor t to be input satisfies 

 q
g
y

t b w
∂
∂

( ) =, *
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The production at the factory and the catch in the fishery when they act 
freely in this model are given by f(s) and g(t, b*), respectively, where s and t 
satisfy the following.

pf s w

b b f s q
g
y

t b w

′ ( ) =

= ( )( ) ∂
∂

( ) =* , , *





Since P3 is a two-variable function of x and y, the condition for extrema 
is given by

∂
∂

=
∂
∂

=
P
x

P
y

3 3 0

The first partial derivative is obtained as follows.

∂
∂

= ′ ( ) +
∂ ( )( )( )

∂
−

= ′ ( ) + ∂
∂

( )( )( ) ′

P
x

pf x q
g y b f x

x
w

pf x q
g
b

y b f x b f

3
,

, xx f x w( )( ) ′ ( ) −

(Here, we used the chain rule.)

In summary...

Now, Mr. seki, let’s check if this 
is the best result for the whole 

society. If we take both the factory 
and the fishery into account, we 
should maximize the sum of the 

profit for both.

P pf x qg y b f x wx wy3 = ( ) + ( )( )( ) − −,
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Thus,

∂
∂

= ⇔ + ∂
∂

( )( )( ) ′ ( )( )





′ ( ) =
P
x

p q
g
b

y b f x b f x f x w3 0 ,

Similarly,

 
∂
∂

= ⇔ ∂
∂

( )( )( ) =
P
y

q
g
y

y b f x w3 0 ,

Thus, if the optimum amount of labor is S for the factory and T for the 
fishery, they satisfy

p q
g
b

T b f S b f S f S w

q
g
y

T b f S w

+ ∂
∂

( )( )( ) ′ ( )( )





′ ( ) =

∂
∂

( )( )( ) =

,

,





Although these equations look complicated, they are really just two-
variable simultaneous equations.

If we compare these equations with equations  and , we find that  
and  are different while  and  are the same. Then, how do they differ?

p f s w

p f S w

× ′ ( ) =

+( ) × ′ ( ) =





As you see here,  has appeared in the expression.

Since = ∂
∂

′ ( )( )





q
g
b

b f S  is negative, p +  is smaller than p.

Since f′(S) or f′(s) is multiplied to the first part to give the same value w, 
f′(S) must be larger than f′(s).

f(x)

xsS

Slope f ′ is large.

Slope f ′ is small.

Now, since 
the graph of 
f(x) generally 

looks like this,
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For the benefit 
of society, the 
factory should 

reduce production 
down to S from s, 
their production in 
the case of purely 
selfish activities.

While the benefit of 
the society basically 
reaches a maximum at 

the intersection of the 
demand curve, which 
expresses selfish 

activities, and the supply 
curve,* it does not happen 
if a negative externality 
exists, such as pollution, 

in this case.

so are there any 
good means to 

make the factory 
voluntarily reduce 
production from 

s to S ? If the  
government 
forces the 

factory to reduce 
production, it 

becomes a planned 
economy, or 
socialism.

a good means 
other than that is 

taxation.

The government 
taxes the factory 
in proportion to 
its production.

This is 
called an 

environmental 
tax.

To alleviate global 
warming, a carbon tax, 

taxation on the emission 
of carbon, is also 
being discussed.

* see page 105.

Factory Factory

Tax Tax Carbon
Carbon

Tax



let’s assume that the 
tax on a unit commodity 

produced at the 
factory is  

−.

Then, the profit  in 
the case of selfish 
activities becomes 

like this.

The condition 
for extrema that 
maximize this is...

since  is the same equation 
as , the production at the 
factory now maximizes the 

benefit for society.

Ordinary taxes 
(income tax, 

consumption tax) 
are for public 

investment...

an environmental 
tax is for 

maintaining a 
healthy environment 

by controlling 
the economy.

Have you got it, 
Mr. seki?

− = − ∂
∂

′ ( )( ) q
g
b

b f S

This is a positive constant.

P x pf x wx f x1 ( ) = ( ) − − − ( )( )

∂
∂

= ′ ( ) − + ′ ( ) = ⇔ +( ) ′ ( ) =
P
x

pf x w f x p f x w1 0 
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Yes...

Teacher.

Mathematics is fun.



Phew!

I think I’m almost 
done packing.

Noriko, here 
you are.

an assignment 
letter...me, 

too? You’re not 
the only one 

leaving?

Futoshi, 
too.

I already 
told him.

actually, the paper 
decided to close 

the sanda-cho 
Office.

Noriko’s apartment 
a few days later

L i v ing Room

Be dRoom

assignment

a New assignment 215
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I never 
imagined I’d be 
going to work 

in Okinawa.

I didn’t even know 
our company had 
an Okinawa Office.

This is a farewell 
present for 

you. Write good 
articles with this.

You will be 
notified soon 
where you are 

going.

Transfer to 

Okinawa



Goodbye...

k i tch en

k i tch en

S
eries: E

n
viro

n
m

en
t a

n
d

 E
co

n
o

m
y

Burnham 
Chemical 
Apologizes
Ox Bay Pollution

Reconciliation 
with Fishery 
Cooperative 

Expected

a New assignment 217
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Derivatives of Implicit Functions

A point (x, y) for which a two-variable function f(x, y) is equal to constant c 
describes a graph given by f(x, y) = c. When a part of the graph is viewed as a 
single-variable function y = h(x), it is called an implicit function. An implicit 
function h(x) satisfies f(x, h(x)) = c for all x defined. We are going to obtain 
h(x) here.

When z = f(x, y), the formula of total differentials is written as dz = fxdx + 
fydy. If (x, y) moves on the graph of f(x, y) = c, the value of the function f(x, y) 
does not change, and the increment of z is 0, that is, dz = 0. Then, we get 
0 = fxdx + fydy. Assuming fy ≠ 0 and modifying this, we get

dy
dx

f
f
x

y

= −

The left side of this equation is the ideal expression of the increment 
of y divided by the increment of x at a point on the graph. It is exactly the 
derivative of h(x). Thus, 

′ ( ) = −h x
f
f
x

y

Example

f(x, y) = r2, where f(x, y) = x2 + y2, describes a circle of radius r centered 
at the origin. Near a point that satisfies x2 ≠ r2, we can solve f(x, y) = x2 + 
y2 = r2 to find the implicit function y = h(x) = r2 − x2 or y h x r x= ( ) = − −2 2 . 
Then, from the formula, the derivative of these functions is given by

′ ( ) = − = −h x
f
f

x
y

x

y

Exercises

1. Obtain fx and fy for f(x, y) = x2 + 2xy + 3y2.

2. Under the gravitational acceleration g, the period T of a pendulum hav-
ing length L is given by

T
L
g

= 2π
 

(the gravitational acceleration g is known to vary depending on the 
height from the ground).

Obtain the expression for total differential of T.
If L is elongated by 1 percent and g decreases by 2 percent, about 

what percentage does T increase?

3. Using the chain rule, calculate the differential formula of the implicit 
function h(x) of f(x, y) = c in a different way than above.



Epilogue: 
What Is Mathematics for?
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Phew, it’s hot!

No matter where 
they put me, I’ll do 

my best.

Well, where is 
the Asagake 

Times Okinawa 
Office?

Naha airport
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This situation 
looks all too 
familiar to me!!

You?!?

You aren’t 
the head of 
this office, 
are you?!?

No way!  
I just got 
here from 
the airport, 

too.

Oh, that’s 
good!

Who is in charge 
of this office?

G o n n n g !

Whoosh

But yo
u haven’t 

been here long 

enough to be 

sleeping already!! 

You lazy bum!

Eek!

Trot

Trot

The Asagake Times 
Okinawa Office



222 Epilogue

Excuse me, do 
you know where 

the person in 
charge is?

Oh, he is always 
swimming.

There you are!

Pat

Pat

Pat
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Mr. seki!!! Mr. seki!!

I decided to 
spend one more 

year thinking 
about things in 
a warm place.

Woo! I’m 
going to eat 
everything in 

Okinawa!!

Mr. seki, I have 
discovered the 

purpose of 
mathematics.

Oh, really?
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To convey things 
that cannot be 

conveyed in words.

Well, then, Noriko, 
suppose the 

horizon is the 
x-axis... What? What are we 

going to eat 
tonight? Mmmm, 
noodles sound 

good.

Tomorrow will 
be another 
great day.

Hee 
hee



A
solutions to Exercises

Prologue

1. Substituting

y x z y z x= −( ) = − = −( ) −5
9

32 7 30
35
9

32 30in ,

Chapter 1

1. a. f(5) = g(5) = 50
b. f ′(5) = 8

2. lim lim lim

li

ε ε ε

ε
ε

ε
ε

ε ε ε
ε→ → →

+( ) − ( )
=

+( ) −
= + +

=

0 0

3 3

0

2 2 33 3f a f a a a a a

mm
ε

ε ε
→

+ +( ) =
0

2 2 23 3 3a a a

Thus, the derivative of f(x) is f′(x) = 3x2.

Chapter 2

1. The solution is

′ ( ) = −
( )′
( )

= − = −
−

+f x
x

x

nx
x

n
x

n

n

n

n n2

1

2 1
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2.  ′ ( ) = − = −( ) +( )f x x x x3 12 3 2 22

When x < −2, f ′(x) > 0, when −2 < x < 2, f ′(x) < 0, and when x > 2, f ′(x) 
> 0. Thus at x = −2, we have a maximum with f(−2) = 16, and at x = 2, we 
have a maximum with f(2) = −16.

3. Since f(x) = (1 − x)3 is a function g(h(x)) combining g(x) = x3 and h(x) = 
1 − x.

′ ( ) = ′ ( )( ) ′ ( ) = −( ) −( ) = − −( )f x g h x h x x x3 1 1 3 1
2 2

4. Differentiating g(x) = x2(1 − x)3 gives 

′ ( ) = ( )′ −( ) + −( )( )′
= −( ) + − −( )( )
= −( )

g x x x x x

x x x x

x x

2 3 2 3

3 2 2

1 1

2 1 3 1

1
22

2

2 1 3

1 2 5

0
2
5

1 1 0

−( ) −( )
= −( ) −( )

′ ( ) = = = ( ) =

x x

x x x

g x x x gwhen or , and .

Thus it has the maximum g x
2
5

108
3125

2
5







= =at

Chapter 3

1. The solutions are

u 3 3 1 262

1

3 3

1

3
3 3x dx x∫ = = − =

v 
x

x
dx x

x
dx xdx

x
dx

3

22

4

22

4

22

4

2

4

2 2

1 1 1

1
2

4 2
1

+ = +





= +

= −( ) −

∫ ∫ ∫∫  

44
2
4

25
4

−





=

w x x dx x x dx xdx+ +( ) + − +( ) = = − =∫ ∫ ∫1 1 2 5 0 252

0

5 7
2

0

5 7
2 2

0

5
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2. a. The area between the graph of y = f(x) = x2 − 3x and the x-axis equals

− −∫ x xdx2

0

3
3

b. − − = − −





= − −( ) + −( ) =∫ x xdx x x2

0

3 3 2

0

3
3 3 2 23

1
3

3
2

1
3

3 0
3
2

3 0
9
2

Chapter 4

1. The solution is

tan
sin
cos

sin cos sin cos

cos

cos

x
x
x

x x x x

x

x

( )′ = 




′

=
( )′ − ( )′

=

2

2 ++ =sin
cos cos

2

2 2

1x
x x

2. Since

tan
cos

cos
tan tan

x
x

x
dx

( )′ =

= − =∫

1

1
4

0 1

2

20

4
π π

 

3. From

′ ( ) = ( )′ + ( )′ = + = +( )f x x e x e e xe x ex x x x x1

the minimum is 

f
e

−( ) = −1
1

4. Setting f(x) = x2 and g(x) = ln x, integrate by parts.

x xdx x x dx e e
e e2

1

2

1

2 1( )′ + ( )′ = −∫ ∫ln ln ln ln
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Thus, 

2
1

1

2 2

1
x xdx x

x
dx e

e e
ln + =∫ ∫

2
1
2

1

1
2

1

2

1

2 2 2

2

x xdx xdx e e e

e

e e
ln = − + = − −( ) +

=

∫ ∫
                  ++ 1

2

Chapter 5

1. For

f x e f x e f x e f x e

f f

x x x x( ) = ′ ( ) = − ′′ ( ) = ′′′ ( ) = −

( ) = ′ (

− − − −, , ,

,

   

 0 1 0)) = − ′′ ( ) = ′′′ ( ) = −

( ) = − + − +

1 0 1 0 1

1
1
2

1
3

2 3

, , ...

! !
...

  f f

f x x x x

2. Differentiate

f x x f x x x

f x x x

( ) = ( ) ′ ( ) = ( )
′′ ( ) = ( ) ( ) +

− −

−

cos , cos sin

cos sin co

1 2

3 2
2 ss cos

cos sin cos

x x

x x x

( )
= ( ) ( ) + ( )

−

− −

2

3 2 1
2

 

from f f f0 1 0 0 0 1( ) = ′ ( ) = ′′ ( ) =, ,

3. Proceed in exactly the same way as on page 155 by differentiating f(x) 
repeatedly. Since you are centering the expansion around x = a, plugging 
in a will let you work out the cns. You should get cn = 1/n! f  (n)(a), as 
shown in the formula on page 159.
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Chapter 6

1. For f(x, y) = x2 + 2xy + 3y2, fx = 2x + 2y, and fy = 2x + 6y.

2. The total differential of 

T
L
g

g L= =
−

2 2
1
2

1
2π π

is given by 

dT
T
g

dg
T
L

dL g L dg g L dL= ∂
∂

+ ∂
∂

= − +
− − −

π π
3
2

1
2

1
2

1
2

Thus, 

∆ ≈ − ∆ + ∆
− − −

T g L g g L Lπ π
3
2

1
2

1
2

1
2

Substituting Δg = −0.02g, ΔL = 0.01L, we get

∆ ≈ +

= = =

− − −

−

T g L g g L L

g L
T

T

0 02 0 01

0 03 0 03
2

0 015

3
2

1
2

1
2

1
2

1
2

1
2

. .

. . .

π π

π

So T increases by 1.5%.

3. If we suppose y = h(x) is the implicit function of f(x, y) = c.
Thus, since the left side is a constant in this region, f(x, h(x)) = c 

near x.
From the chain rule formula 

df
dx

df
dx

f f h xx y= = + ′ ( ) =0 0,

Therefore

′ ( ) = −h x
f
f
x

y





B
Main Formulas, Theorems, and 

Functions Covered in this Book

linear Equations (linear Functions)

The equation of a line that has slope m and passes through a point (a, b):

y m x a b= −( ) +

Differentiation

Differential Coefficients

′ ( ) =
+( ) − ( )

→
f a

f a h f a

hh
lim

0

Derivatives

′ ( ) =
+( ) − ( )

→
f x

f x h f x

hh
lim

0

Other notations for derivatives

dy
dx

df
dx

d
dx

f x, , ( )

Constant Multiples

α αf x f x( ){ }′ = ′ ( )

Derivatives of nth-degree Functions

x nxn n{ }′ = −1
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sum Rule of Differentiation

f x g x f x g x( ) + ( ){ }′ = ′ ( ) + ′ ( )

Product Rule of Differentiation

f x g x f x g x f x g x( ) ( ){ }′ = ′ ( ) ( ) + ( ) ′ ( )

Quotient Rule of Differentiation

g x

f x

g x f x g x f x

f x

( )
( )













′
=

′ ( ) ( ) − ( ) ′ ( )
( ){ }2

Derivatives of Composite Functions

g f x g f x f x( )( ){ }′ = ′ ( )( ) ′ ( )

Derivatives of Inverse Functions

When y = f(x) and x = g(y)

′ ( ) =
′ ( )g y

f x
1

Extrema

If y = f(x) has a maximum or a minimum at x = a, f′(a) = 0.
y = f(x) is increasing around x = a, if f′(a) > 0.
y = f(x) is decreasing around x = a, if f′(a) < 0.

The Mean Value Theorem

For a, b (a < b), there is a c with a < c < b, so that

f b f c b a f a( ) = ′ ( ) −( ) + ( )

Derivatives of Popular Functions

Trigonometric Functions

cos sin , sin cosθ θ θ θ{ }′ = − { }′ =
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Exponential Functions

e ex x{ }′ =

logarithmic Functions

log x
x

{ }′ = 1

Integrals

Definite Integrals

When F′(x) = f(x)

f x dx F b F a
a

b ( ) = ( ) − ( )∫

Connection of Intervals of Definite Integrals

f x dx f x dx f x dx
a

b

b

c

a

c( ) + ( ) = ( )∫ ∫ ∫

sum of Definite Integrals

f x g x dx f x dx g x dx
a

b

a

b

a

b( ) + ( ){ } = ( ) + ( )∫ ∫ ∫

Constant Multiples of Definite Integrals

α αf x dx f x dx
a

b

a

b( ) = ( )∫ ∫

substitution of Integrals

When x = g(y), b = g(β ), a = g(α )

f x dx f g y g y dy
a

b ( ) = ( )( ) ′ ( )∫ ∫α

β

Integration by Parts

′ ( ) ( ) + ( ) ′ ( ) = ( ) ( ) − ( ) ( )∫ ∫f x g x dx f x g x dx f b g b f a g a
a

b

a

b
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Taylor Expansion

When f(x) has a Taylor expansion near x = a,

f x f a f a x a f a x a

f a x a

( ) = ( ) + ′ ( ) −( ) + ′′ ( ) −( )

+ ′′′ ( ) −( ) +

1
1

1
2

1
3

2

3

! !

!
....

!
...+ ( ) −( ) +( ) ( )1

n
f a x an n

Taylor Expansions of Various Functions

cos
! !

...
!

...

sin
! !

x x x
n

x

x x x x

n n= − + + + −( ) ( ) +

= − +

1
1
2

1
4

1
1

2

1
3

1
5

2 4 2

3 55 1 2 1

2 3 4

1
1

2 1

1
1
1

1
2

1
3

1
4

+ + −( )
−( ) +

= + + + +

− −...
!

...

! ! ! !

n n

x

n
x

e x x x x ++ + +

+( ) = − + − + + −( ) ++

...
!

...

ln ... ..

1

1
1
2

1
3

1
4

1
12 3 4 1

n
x

x x x x x
n

x

n

n n ..

Partial Derivatives

Partial Derivatives

∂
∂

=
+( ) − ( )

∂
∂

=
+( ) − ( )

→

→

f
x

f x h y f x y

h

f
y

f x y k f x y

k

h

k

lim
, ,

lim
, ,

0

0

Total Differentials

dz
z
x

dx
z
y
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binomial distribution, 
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binomial expansion, 150
bits, computer, 131–132
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cause and effect, 181
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circle of convergence, 
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theorem, 64, 199–201. 
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constant multiplication, 62, 
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cubic approximation, 
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62, 76, 231, 233
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polynomials, 
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exercises
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quadratic approximation, 
161–162, 174, 178

quotient rule of 
differentiation, 74, 76

substitution rule of inte-
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trigonometric functions, 
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129, 232
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overview, 8–14
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fundamental theorem of 
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illustrating, 82–90
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G
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gross domestic product 

(GDP), 202
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high-degree terms, 153
higher-degree polynomials, 

153, 175

I
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39, 87, 88, 150–151, 
184, 192, 194–195, 
194n, 197, 200

implicit functions, 218
infinite-degree polynomials, 

153–154, 159
infinity, 168
integral formulas, 95, 

106–107, 233
integrals

definite, 93, 95, 108, 111, 
113, 154, 233

formulas of, 233
integration by parts, 

143–144, 233
power rule of 

integration, 112
substitution rule of 

integration, 111–112, 
233

sum of definite, 95, 233
trigonometric functions, 

differentiation and 
integration of, 128, 
129, 232

integration by parts, 
143–144, 233

inverse functions, 75, 
76, 134, 138–141, 
138n, 232

inverse proportion, 139

l

laws, antitrust, 44, 46–47, 
52, 58

linear approximation, 161
linear equations, 231
linear expressions, 20, 26
linear functions

approximate, 30, 34, 39, 
41, 65, 72, 111

calculating the deriva-
tive of, 40

imitating, 39, 87, 88, 
150–151, 184, 192, 
194–195, 194n, 
197, 200

overview, 13, 34, 39–41
two-variable, 184–187, 
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logarithmic functions, 131, 
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160, 233, 234

Taylor expansion of, 
160, 234
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maxima/minima, 64–65. See 
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mean value theorem, 72–73, 
94, 232
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multivariable functions, 
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natural logarithm, 140, 141
normal distribution, 

166–168, 175, 176
nth degree functions, 

62–63, 155, 231

P

partial differentiation
chain rule, 142, 206–211, 

218, 229, 234
conditions for extrema, 

199–201
definition of, 196–198
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overview of, 191–198
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total differentials, 
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229, 234

polynomials
differentiating, 62
higher-degree, 153, 175
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159
positive constants, 213
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power rule of 

integration, 112
probabilities, distribution 

of, 165–168, 177
product rule of 

differentiation, 53–59, 
62, 74, 143, 232
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quadratic approxima-
tion, 152, 161–162, 
174, 178

quadratic functions, 40, 
150, 151–153

quotient rule of 
differentiation, 74, 76

R

radian, 119–120, 124
rate of change, 40
relationships, expression, 

9–10, 13, 89, 134, 
181, 206

relative error, 27–30, 35, 39, 
41, 192–195, 194n
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sigma (symbol), 91-92
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slopes, 26, 39–40, 72–73, 
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square root, 107
Taylor expansion of, 

160, 234
standard deviation, 169–170
substitution rule of 

integration, 111–112, 
233

sum of definite integrals, 
95, 233

sum rule of differentiation, 
47, 48–52, 62, 76, 232

supply curve, 101, 102–103, 
105, 212

supply and demand, 55, 
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tangent lines, 34, 40, 72n, 
73, 126, 161

Taylor expansion
formulas of, 159, 234
of logarithmic functions, 

160, 234
obtaining, 155
overview, 149–156, 

161–162
of a square root, 

160, 234
of trigonometric func-

tions, 160, 234
theorems

of calculus, fundamental, 
91–93, 101–108, 
110–112, 142–144

conditions for extrema, 
64, 199–201

criteria for increasing 
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extrema, 64, 78, 102, 
103n, 199–201, 
200n, 204, 209–210, 
213, 232

mean value, 72–73, 
94, 232

total differentials, 197–198, 
207, 218, 229, 234

trigonometric functions
differentiation and 

integration of, 128, 
129, 232

integrals with, 125
Taylor expansion of, 

160, 234
using, 116, 118–124

two-variable functions, 
183–185, 191–192, 
200, 206, 207, 
209–211, 218

linear, 184–187, 190–192

u

unit conversion, 13

V

variable linear functions, 
184–190

variation, 27, 29
velocity, 105, 106–107, 183

X

x-axis, 86, 93, 94, 108, 110, 
113, 124, 224, 227

xn (power), 76



Differential and Integral Calculus Dance 
song for Trigonometric Functions

In the loop of sine and 
cosine, it’s so natural—
solutions take turns 

for the differential and 
integral.

It sounds quite bookish, 
indeed. But this dance 

song makes it so easy!

In the loop of sine and 
cosine, differential 

and integral calculus 
skills are mine.

Differentiate sine and 
you get cosine!

Integrate cosine and 
you get sine!
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