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Function of a Variable 
A function is a rule that associates, with each value of a variable x in a 

certain set, exactly one value of another variable y. The variable y is 

then called the dependent variable, and x is called the independent 

variable. The set from which the values of x can be chosen is called the 

domain of the function. The set of all the corresponding values of y is 
called the range of the function. 



2 CALCULUS 

Example 1.1 The equation x’ - y = 10, with x the independent variable, 

associates one value of y with each value of x. The function can be cal- 

culated with the formula y = x” - 10. The domain is the set of all real 

numbers. The same equation, x” - y = 10, with y taken as the indepen- 

dent variable, sometimes associates two values of x with each value of 

y. Thus, we must distinguish two functions of y: 

x= 10+y and x=- 10+y 

The domain of both of these functions is the set of all y such that y = 

-10, since 4 10+y is not a real number when 10 + y <0. 

If a function is denoted by a symbol f, then the expression f(b) 

denotes the value obtained when f is applied to a number b in the 

domain of f. Often a function is defined by giving the formula for an 

arbitrary value f(x). For example, the formula f(x) = x* - 10 determines 

the first function mentioned in Example 1.1. The same function also can 

be defined by an equation like y = x? - 10. 

Examples 1.2 

(1) If f(x) = x? - 4x + 2, then 

{(1)= (= 40) 42 = [2442 = -i 

f(-2) = (-2)° - 4(-2)4.2=-84+842=2 

f(a) =a? - 4a 4:2 

(2) The function f(x) = 18x - 3x? is defined for every number x; that is, 

without exception, 18x - 3x? is a real number whenever x is a real num- 
ber. Thus, the domain of the function is the set of all real numbers. 

(3) The area A of a certain rectangle, one of whose sides has length x, 

is given by A = 18x - 3x’. Here, both x and A must be positive. By 
completing the square, we obtain A = -3(x-3)? + 27. In order to have 
A > 0, we must have 3(x-3)? < 27, which limits x to values below 6; 
hence, 0 < x < 6. Thus, the function determining A has the open inter- 
val (0, 6) as its domain. From Figure 1-1, we see that the range of the 
function is the interval (0, 27]. 
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O 3 6 

Figure 1-1 

Graph of a Function 
The graph of a function f is the graph of the set of points on the plane 

(x, y) satisfying the equation y = f(x). 

Examples 1.3 

(1) Consider the function f(x) = Ixl. Its graph is the graph of the equa- 

tion y = Ixl, shown in Figure 1-2. 

Figure 1-2 
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Notice that f(x) = x when x > 0, whereas f(x) = -x when x < 0. The 

domain of f consists of all real numbers, but the range is the set of all 

nonnegative real numbers. 

(2) The formula g(x) = 2x + 3 defines a function g. The graph of this 

function is the graph of the equation y = 2x + 3, which is the straight 

line with slope 2 and y intercept 3. The set of all real numbers is both 

the domain and range of g. 

Infinite Sequence 
An infinite sequence is a function whose domain is the set of positive 

integers. For example, when n is given in turn the values 1, 2,3,4,..., 

the function defined by the formula 1/(n + 1) yields the sequence 1/2, 

1/3, 1/4, 1/5, . . . . The sequence is called an infinite sequence to indi- 

cate that there is no last term. 

By the general or nth term of an infinite sequence, we mean a for- 

mula s_ for the value of the function determining the sequence. The infi- 

nite sequence itself is often denoted by enclosing the general term in 

braces, as in {s_}, or by displaying the first few terms of the sequence. 

For example, the general term s_ of the sequence in the preceding para- 

graph is 1/(n + 1), and that sequence can be denoted by {1/(n + 1)} or 

by 22, Woy SIAN. 2 0 

Limit of a Sequence 
If the terms of a sequence {s,} approach a fixed number c as n gets larg- 

er and larger, we say that c is the limit of the sequence, and we write 

either a, > c or lim a, = c. This means that la, - cl < €, no matter how 
n—+0° 

small € > 0 is chosen to be. 

Example 1.4 Consider the sequence 

7 is Rs PR 2 (1.1) 

whose terms are plotted on the coordinate system in Figure 1-3. 
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7/4 9/5 

—. Tt OCOi fi 
0 1 3/2 5/3 2 

: Figure 1-3 
a 

As n increases, consecutive points cluster toward the point 2 in such a 
way that the distance of the points from 2 eventually becomes less than 
any positive number that might have been preassigned as a measure of 
closeness, however small. (For example, the point 2 - 1/1001 = 
2001/1001 and all subsequent points are at a distance less than 1/1000 
from 2 [that is, e = 1/1000], the point 20 000 001/10 000 001 and all 
subsequent points are at a distance less than 1/10 000 000 from 2 [that 
is, € = 1/10 000 000], and so on.) Hence, 

{2 - ln} or lim (2 - 1/n) = 2 

The sequence (1.1) does not contain its limit 2 as a term. On the other 

hand, the sequence 1, 1/2, 1, 3/4, 1, 5/6, 1, .. . has 1 as limit, and every 

odd-numbered term is 1. Thus, a sequence having a limit may or may 

not contain that limit as a term. 

Many sequences do not have a limit. For example, the sequence 

{(-1)"}, that is -1, 1, -1, 1, -1, 1, ... keeps alternating between -1 and 1 

and does not get closer and closer to any fixed number. 

Limit of a Function 
If f is a function, then we say that lim f(x) = A where A < %, if the 

value of f(x) gets arbitrarily close to A as x gets closer and closer to a, 

that is, the distance between them is small. 

Example 1.5 The lim x? = 9, since x? gets arbitrarily close to 9 as x 
x3 

approaches as close as one wishes to 3. 

The definition can be stated more precisely as follows: 
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f(%o) A 
OO tO 

A-€e A Ate 3 
—_—_—_—e:,Rav——xx—_—_—_—_—_—— 

(ii) 
Figure 1-4 

After € has been chosen [that is, after interval (ii) has been chosen], then 

5 can be found [that is, interval (i) can be determined] so that, wherever 

x #a is on interval (i) say at x, then f(x) is on interval (ii), at f(x). 

Notice the important fact that whether or not lim f(x) = A 
xa 

is true does not depend upon the value of f(x) when x = a. In fact, f(x) 

need not even be defined when x = a. 

Example 1.6 

. x4 
lim 
x2 KZ 

=4 

although (x? - 4)/(x - 2) is not defined when x = 2. Since 

Bia Re) ads x+2 

x-2 (x-2) 

then we see that (x? - 4)/(x - 2) approaches 4 as x approaches 2. 
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Example 1.7 Let us use the precise definition to show that 

lim. G2 3x).= 10 
x2 

Et € > 0 be chosen. We must produce a 6 > 0 such that, whenever 0 < 

Ix - 21 < 6 then I(x? + 3x) - 10I <e. First we note that 

I(x? + 3x) - 101 = I(x - 2)? + 7(x - 2) < Ix - 2? + 7Ix - 21 

where Ix - 21 < 6. Also, if 0 < 6 < 1, then & < 8. Hence, if we take 8 to 
be the minimum of 1 and € /8, then, whenever 0 < Ix - 21 < 8, 

\(x? + 3x) - 101< 8 +75<65+75=85<e 

Right and Left Limits 
By lim* f(x) = A where A < oc, we mean that f(x) approaches A 

as X approaches a through values less than a, that is, as x approaches a 

from the left. Similarly, lim f(x) = A means that f(x) approaches A as x 
X—at+ 

approaches a through values greater than a, that is, as x approaches a 

from the right. The statement lim f(x) = A is equivalent to the 
xa 

conjunction of the two statements lim f(x) = A and lim f(x) =A. 
X—a- xX—at+ 

For A to be the limit of the function f(x) as x a, it must be unique and 

finite. The existence of the limit from the left does not imply the exis- 

tence of the limit from the right, and conversely. When a function f is 

defined on only one side of a point a, then lim f(x) refers to the one- 
xa 

-sided limit, if it exists. 

Example 1.8 The function f(x) = dx ; then f is defined only to the right 

of zero. Hence, lim a x =lim AX = 0. Of course, lim sf x does 
x0 x0+ x0+ 

not exist, since ,/x is not defined when x < 0. 
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Theorems on Limits 
The following theorems on limits are listed for future reference: 

Theorem 1-1: _ If f(x) =c, a constant, then lim f(x) = c. 
xa 

If lim f(x) = A and lim g(x) = B where A, B < %, then: 
xa x7a 

Theorem 1-2: lim k f(x) = kA, where k is any constant 
xa 

Theorem 1-3: _ lim [f(x) + g(x)] = lim f(x) + lim g(x) =A+B 
xa xa xa 

Theorem 1-4: _ lim [f(x) * g(x)] = lim f(x) « lim g(x) =A*B 
xa xa xa 

fate: 5 ae = provided B # 0 
ree) lim g(x) 

Theorem 1-5: 

Theorem 1-6: 

lim) f(x) ="V li 
—a 

m f(x) Sik provided®/ A. is a real number 

— > 

Continuity 
A function f(x) is called continuous if it is continuous at every point of 

its domain. A function f(x) is continuous at x = x, if 

f(x,) is defined;lim f(x) exists; and,lim f(x) = f(x,). 
XX Lx 

0 0 

A function f is said to be continuous on a closed interval [a, b] if the 

function that restricts f to [a, b] is continuous at each point of [a, b]; in 
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other words, we ignore what happens to the left of a and to the right of 

b. A function f(x) is discontinuous at x = X,, if one or more of the con- 

ditions for continuity fails there. 

Example 1.9. Determine the continuity of: 

(a) f()=-—-: bine. 
x—2 x 

(a) This function is discontinuous at x = 2 because f(2) is not defined (has 

zero as denominator) and because lim f(x) does not exist (equals ©). 
x2 

The function is, however, continuous everywhere except at x = 2, where 

it is said to have an infinite discontinuity. See Figure 1-5. 

y | 
| 
| 

| 
| 
| 
| 
| 
| 

Figure 1-5 

(b) This function is discontinuous at x = 2 because f(2) is not defined 

(both numerator and denominator are zero), however lim f(x) = 4. 
x2 

The discontinuity here is called removable since it may be removed by 

redefining the function f(x), that is, reducing it algebraically so as to 

obtain a function g(x) which is continuous at x = 2: 

a4 _ (+ 2x2) 

x-2 x-2 

g(2)=2+2=4 

g(x)= x+2 
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The discontinuity in part (a) cannot be so removed because the limit 

also does not exist. 

The graphs of 

Ze 

oe eae 
x-2 

are identical except at x = 2, where the former has a “hole” (see Figure 

1-6). Removing the discontinuity consists simply of filling the “hole.” 

Figure 1-6 

Properties of Continuous Functions 

The theorems on limits lead readily to theorems on continuous func- 

tions. In particular, if f(x) and g(x) are continuous at x = a, so also are 

f(x)+g(x), f(x)eg(x), and f(x)/g(x), provided in the latter that g(a) # 0. 

Hence, polynomials in x are continuous everywhere whereas rational 

functions of x are continuous everywhere except at values of x for 

which the denominator is zero. 

The property of continuous functions used here is: 

Property 1.1: If f(x) is continuous on the interval a < x < b and if 

f(a) # f(b), then for any number c between f(a) and 

f(b) there is at least one value of x, say x = X,, for 

which f(x,) =c anda <x, <b. 
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Property 1.1 is also known as the intermediate value theorem. Figure 
1-7 illustrates the two applications of this property, and Figure 1-8 
shows that continuity throughout the interval is essential. 

(a) (b) f(x) =0 has three roots 
between x = a and x= b. 

Figure 1-7 

Figure 1-8 

Property 1.2: _ If f(x) is continuous on the interval a < x < b, then f(x) 

takes on a least value m and a greatest value M on the 

interval. 

Consider Figures 1-8 through 1-10. In Figure 1-8, the function is con- 

tinuous on a < x < b; the least value m and the greatest value M occur 

at x = c and x = d respectively, both points being within the interval. 

In Figure 1-9, the function is continuous on a < x < b; the least value 

occurs at the endpoint x = a, while the greatest value occurs at x =c 

within the interval. In Figure 1-10, there is a discontinuity at x = c, 

where a < c < b; the function has a least value at x = a but no great- 

est value. 
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Figure 1-9 

eb——— —— — — —— = — = 

~ 2 

Figure 1-10 

Property 1.3: _ If f(x) is continuous on the interval a < x < b, and if c 

is any number between a and b and f(c) > 0, then there 

exists a number A > 0 such that whenever c - A<x< 

c+ A, then f(x) > 0. 

This property is illustrated in Figure 1-11. 

Figure 1-11 
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Solved Problems 

Solved Problem 1.1 A rectangular plot requires 2000 ft of fencing 

to enclose it. If one of its dimensions is x (in feet), express its area y 

(in square feet) as a function of x, and determine the domain of the 

function. 

Solution. Since one dimension is x, the other is 

1 
oe (2000-—2x)=1000—x The areais then y=x (1000-x), and the do- 

main of this function is 0 < x < 1000. 

Solved Problem 1.2 From each corner of a square of tin, 12 in on a side, 

small squares of side x (in inches) are removed, and the edges are turned up 

to form an open box (Figure SP1-1). Express the volume V of the box (in 

cubic inches) as a function of x, and determine the domain of the function. 

Figure SP1-1 

Solution. The box has a square base of side 12 - 2x and a height of x. 

The volume of the box is then V = x(12 - 2x)? = 4x(6 - x)’. The domain 

is the interval 0 < x < 6. As x increases over its domain, V increases for 

a time and then decreases thereafter. Thus, among such boxes that may 

be constructed, there is one of greatest volume, say M. To determine M, 

it is necessary to locate the precise value of x at which V ceases to 

increase. 
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f(ath )-fla 
Solved Problem 1.3 If f(x )=x’+2x , find flaehie fa) and 

interpret the result. 

Solution. 

Figure SP1-2 

On the graph of the function (Figure SP1-2), locate points P and Q 

whose respective abscissas are a and a + h. The ordinate of P is f(a), and 

that of Q is f(a + h). Then 

Sta peel seid a) Maile ene OR OUNGS = ignelar PO 
h difference of abscissas 

flath)-f(a)_ [ath }+2(ath)J-(a+2a) 494 
h h 

Solved Problem 1.4 Write the general term of each of the following 
sequences: 
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(a) fi 

Se iae leno 

(b) (Soe ae 

“e wae aS 

ee eaeat p-O 16 
(c) ae ee a SF nee 

Le S28 5 

Solution. 

(a) The terms are the reciprocals of the odd positive integers. The 

general term is 
2n—it 

(b) Apart from sign, these are the reciprocals of the positve inte- 

.gers. The general term is (—1 pot or (-1 yah : 
n n 

(c) Apart from sign, the numerators are the squares of positive 

integers and the denominators are the cubes of these integers 

2 

increased by 1. The general term is (-1 ar 
n 
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Solved Problems 

domain is the increment Ax. Specifically, if Ax = x, - X,, We may write 

X, =X, + Ax. If x changes by an increment Ax from an initial value x = 

X,, then we write x = x, + Ax. In the same fashion, the change in a func- 

tion y = f(x) evaluated between x = x, and x = x, + Ax is called the incre- 

ment Ay = f(x, + Ax) - f(x,). Then, the quotient, 

17 
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Ay _ change in y 

Ax change in x 

is called the average rate of change of the function on the interval 

between x = x, and x = x, + Ax. 

Example 2.1 When x is given the increment Ax = 0.5 from x, = 1, the 

function y = f(x) = x? + 2x is given the increment Ay = f(1 + 0.5) - (1) 

= 5.25 - 3 = 2.25. Thus, the average rate of change of y on the interval 

between x = | and x = 1.5 is 

Ay 22.25 

oe (9/5) 
=4.5 

The derivative of a function y = f(x) with respect to x at the point x = 

X, 18 defined as 

Ay lim — = lim 
Ao, Ax-0 NX 

provided the limit exists. This limit is also called the instantaneous 

rate of change of y with respect to x at x = x,. 

Example 2.2 Find the derivative of y = f(x) = x? + 3x with respect to x 

at x = x,. Use this to find the value of the derivative at (a) X, = 2 and (b) 

xX, =-4. 

f(x,) = x,? + 3x, 

f(x, + Ax) = (x, + Ax )? + 3(x, + Ax) 

= X,? + 2x, Ax + (Ax)? + 3x, + 3 Ax 

Ay = f(x, + Ax) - f(x,) = 2x, Ax + 3 Ax + (Ax)? 
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Ay_ f(x,+Ax)-f(x,)_ 
ne Rate re eee =2x,+3+Ax 

The derivative at x = x is 

f A : 
lim dee lim (2x,+34+Ax )=2x,+3 
Ax>0 AX Ax>0 

(a) At x, = 2, the value of the derivative is 2(2) + 3 =7. 

(b) At x, = - 4, the value of the derivative is 2(- 4) +3 =- 5. 

In finding derivatives, it is customary to drop the subscript 0 and obtain 
the derivative of y = f(x) with respect to x as 

i Ay Bia f(x+Ax )-f(x) 

Ago OE Ax30 Ax 

The derivative of y = f(x) with respect to x may be indicated by any one 
of the symbols 

Bhooip ic By d 
Dany, fax — f(x 

dx dx oe (x) a 

Differentiation 
A function is said to be differentiable at a point x = x, if the derivative 

of the function exists at that point. Also, a function 

is said to be differentiable on an interval if it is dif- 

ferentiable at every point of the interval. The func- 

tions of elementary calculus are differentiable, 

except possibly at isolated points, on their intervals 

of definition. If a function is differentiable, it must 

be continuous. The process of finding the deriva- 

tive of a function is called differentiation. 
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Differentiation Rules 

In the following formulas, u, v, and w are differentiable functions of x, 

and c and m are constants. 

Rule 1. a (c)=0 
dx . 

Rule 2. a 
dx 

Rule 3. EE er a ea eo is 
dx dx dx 

Rule 4. fh tcou ie 
dx dx 

Rule 5. cu eam ea gancan ie 
dx dx dx 

Rule 6. Gti aves bw awe (yee 
dx dx dx x 

Rule 7. me ete c#0 
dx \c Ce 1dx 

Rule 8. leo ~$-SL lu), veo 
dx \u dx \u u’ dx 

d d 
d see ls ete 

Rule 9. ae 5 ; = v#0 
dx \v ve 

d m m-1 Rule 10. atte )=mx™ 
dx 

Rule 11. oa jeri (a 
dx dx 

Example 2.3 Differentiate y = 4 + 2x - 3x? - 5x3 - 8x4 + 9x5 
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d <2 =0+2(I )—3 (2x )—5 (3x?)—8 (4x3 )+9 (5x*) 

=2—6x— 15x?—32x?+45x* 
Vv 
7 

Example 2.4 Differentiate y= ee 
3+2x 

(gyox elegy 29-99) 51942x) 
y's dx dx 

(3+2x} 

= 13¥2x)(-2)- (3-22 (a 02 
(3+2x (3+2x/) 

Inverse Functions 
Two functions f and g such that g(f(x)) = x and f(g(y)) = y are said to be 

inverse functions. Inverse functions reverse the effect of each other. 

Specifically, if f(a) = b, then g(b) = a. 

Example 2.5 

(a) The inverse of f(x) = x + 1 is the function g(y) = y - 1. 

(b) The inverse of f(x) = - x is the same function. 

(c) The inverse of f(x) = Ax is the function g(y) = y” (defined for y > 0). 

sus 
yp 

(d) The inverse of f(x) = 2x - | is the function g(y) = y = 
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Not every function has an inverse function. For example, the function 

f(x) = x* does not possess an inverse. Since f(1) = f(- 1) = 1, an inverse 

function g would have to satisfy g(1) = 1 and g(1) = - 1, which is impos- 

sible. However, if we restrict the function f(x) = x? to the domain x > 0, 

then the function g(y) = y* would be an inverse of f which we recog- 

nize as the function y=+ Ax . The condition that a function f must sat- 

isfy to have an inverse is that f is one-to-one; that is, for any x, and x, 

in the domain of f, if x, # x,, then f(x,) # f(x,). 

Notation: The inverse of f is denoted f-'. If y = f(x), we often write x = 

f-'(y). If f is differentiable, we write, as usual, dy/dx for the derivative 

f'(x), and dx/dy for the derivative (f~')'(y). 

If a function f has an inverse and we are given a formula for f(x), then 

to find a formula for the inverse f~', we solve the equation y = f(x) for x 

in terms of y. For example, given f(x) = 5x + 2, set y = 5x + 2. Then, 

y—2 
x= 

and solving for y, we obtain a formula for the inverse function: 

=2 
filxj=2 x} 
The differentiation formula for finding dy/dx given dx/dy: 

Rule 12. oe 
dx (dx/dy) 

Example 2.6 Find dy/dx, given x = Jy +5. 

First method: 

Solve for y = (x - 5)*. Then dy/dx = 2(x - 5). 

Second method: 

Differentiate to find 

@x_ A inst 
dy 2 2dy 
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Then, by Rule 12, 

Oye 2x5) 
dx 
x 

The Chain Rule 
For two functions f and g, the function given by the formula f(g(x)) is 

called a composite function. If f and g are differentiable, then so is the 

composite function, and its derivative may be obtained by either of two 

procedures. The first is to compute an explicit formula for f(g(x)) and 

differentiate. 

Example 2.7 If f(x) = x? + 3 and g(x) = 2x + 1, then 

y = f(g(x)) = (2x + 1)? +3 = 4x? + 4x + 4 and 

GY gx44 
dx 

The derivative of a composite function may also be obtained with the 

following rule: 

Rule 13. The Chain Rule: D (f(g(x))) = f '(g(x))g'(x) 

If f is called the outer function and g is called the inner function, then 

D(f(g(x))) is the product of the derivative of the outer function [evalu- 

ated at g(x)] and the derivative of the inner function. 

Example 2.8 In Example 2.7, f'(x) = 2x. Therefore, f'(g(x)) = 2g(x) and 

g'(x) = 2. Hence by the chain rule, 

D_(f(g(x))) = f'\(g(x))g'(x) = 2g(K) * 2 = 4g(x) = 42x + 1) = 8x +4 
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Example 2.9 Let y = u? and u = 4x? - 2x + 5. Then the composite func- 

tion y = (4x? - 2x + 5)* has the derivative: 

oe ~ 3u2(8x—2 )=3 (4x?—2x+5 ) (8x—2) 
Gxt ax 

Note: In the second formulation of the chain rule, 

dy _ dy du 
dx du dx’ 

the y on the left denotes the composite function of x, whereas the y on 

the right denotes the original function of u (what we called the outer 

function before). 

Example 2.10 Differentiate y = (x? + 4)?(2x3 - 1)°. 

y'=(x'+4)P 2 (2x1) + (2x1) (x44) 

E(2¢4) (3)(2x-1-<— (2xt-i)+(2x-1)°2)(x?+-4)P-( 244) 

(x’+4) (3) (2x-1) 6x’) +(2x+-1)°(2) (x?+4)(2x) 

=(2x)(x?+4)(2x-1)(13x°+ 36x —2) 
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Higher Derivatives 

Let y = f(x) be a differentiable function of x, and let its derivative be 

called the first derivative of the function. If the first derivative is dif- 

_ ferentiable, its derivative is called the second derivative of the (origi- 

nal) function and is denoted by one of the symbols 
a 

ly ys or f"(x) 
dx 

In turn, the derivative of the second derivative is called the third deriv- 

ative of the function and is denoted by one of the symbols 
3 

dy 
gust: 

dx 

and so on. 

yo or f."" (x ) 

Example 2.11 Given 

f(x)= =2(1-x)', find f(x). 

f'(x)=2(-1)(1-x J? (-1)=2(1—x)?=2(1!)(1-x J? 

f "(x )=2(1!)(-2)(1-x)?(-1)=2(2!)(1-x}° 

f(x )=2(2!)(-3)(1—x 4 (-1)=2(3!)(1-x* 

which suggests f(x) = 2(n!)(1 - x)@* ). This result may be established 

by mathematical induction by showing that if 

f(x) = 2(kC - xy®*, then 
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fk + D(x) = - AkN(k + 1 - x)&*2(-1) = 2k + DNC - xk + 

Implicit Differentiation 
An equation f(x, y) = 0, on perhaps certain restricted ranges of the vari- 

ables, is said to define y implicitly as a function of x. 

Example 2.12 
(a) The equation xy + x - 2y - 1 = 0, with x # 2, defines the function 

1-x 

x-2 
= 

(b) The equation 4x” + 9y? - 36 = 0 defines the function 

y== 9-8 

when Ix! < 3 and y 2 0, and the function 
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when Ix! <3 and y <0. This describes an ellipse determined by the given 
equation, which should be thought of as consisting of two arcs joined at 
the points (-3, 0) and (3, 0). 

Examples 2.13 

(a) Find y', given xy + x - 2y-1=0. 

We have 

d d d d d d 
x— (y )+y— (x) ]+— (x )-2— (y )-— (1 )=—(0 a Wg (a) pS (x)-2-8 fy) 2 (124 (0) 

or xy'+ y + 1 - 2y'=0; then 

ey 

sas aa 

(b) Find y' when x = 4/5 , given 4x? + 9y? - 36 =0. 

We have 

d d d d dy 
4— (x? }+9— (y? )+ — (- 36 )=8x+9— (y? )—2=8x+ 18yy'=0 (9S ly8)+ (36) a8 9 y?) SE 18yy 

or y' = -4x/9y. When x = AS , y = +4/3. At the point ( AS 4/3) on the 

upper arc of the ellipse, y' = — es /3 , and at the point 5 , - 4/3) on 

the lower arc, y'= nm Se 

Derivatives of Higher Order 
Derivatives of higher order may be obtained in two ways: 

¢ The first method is to differentiate implicitly the derivative of one 

lower order and replace y' by the relation previously found. 

Example 2.14 From Example 2.13 (a), 
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Then 

5 l+y 

ails 5 y= (St Dray sll hye Meds) x 2 Ge fedy 
dx ax 2=x Q=er (2-5 

ie 2+2y 

ers i 

¢ The second method is to differentiate implicitly both sides of the 

given equation as many times as is necessary to produce the 

required derivative and eliminate all derivatives of lower order. This 

procedure is recommended only when a derivative of higher order 

at a given point is required. 

Example 2.15 Find the value of y" at the point (-1, 1) of the curve 

x*y + 3y -4=0. 

We differentiate implicitly with respect to x twice, obtaining 

(x2y' + 2xy) + 3y'=0 

and 

[(x’y" + 2xy’) + (2xy' + 2y)] + 3y" =0 

We substitute x = -1, y = 1 in the first relation to obtain y' = 1/2. Then we 

substitute x = -1, y = 1, y' = 1/2 in the second relation to get y" = 0. 

Solved Problems 
Solved Problem 2.1 Given y = f(x) = x? + 5x - 8, find Ay and Ay/Ax 
as x changes from x, = | tox, =x, + Ax = 1.2. 
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Solution. Ax = x, - x, = 1.2-1=0.2. Ay = f(x, + Ax)- f(x,) = (1.2) 
- f(1) = - 0.56 - (- 2) = 1.44. So 

Solved Problem 2.2 Differentiate 

Yetta 4 On 
eee 

Solution. 

BY ots (—2x-3 )+2(-—3x-4) 
dx 

=—x "6x °—6x* 

Solved Problem 2.3 Differentiate 

s=(t?-3) 

Solution. 

oA (?—3 ) (2t )=8t(t?-3) 

Solved Problem 2.4 Differentiate 

f(x) = x? + x+ + x°® 
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Solution. 

d d d d 
f’ (x )=— (x?+x*+x° )=— (x? )+— (x*)+— (x° xe E extent io € jE xt} x0) 

= 2x+4x?+6x° 

Solved Problem 2.5 Differentiate 

Solution. 

(x?) (2x Weer Nak) 2x2 A ae 
iy (x = (x2 p x! x! 

Solved Problem 2.6 Given f(x) = 1 - x3, find f'(-4) and f'(4). 

Solution. We first must find the derivative of f(x): 

f' (x )=—3x? 

Therefore, 

f’(-4)=-3(-4)'=-3-16=-48 

f'(4)=-3(4)=-3-16=—48 

Solved Problem 2.7 Differentiate the function: 
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_ ax’+bx+c 
f(x )=— 

dx +ex+f 

Solution. We must use the quotient rule to find the derivative of f(x): 

f(x = de text f)(2axtb J (ax'+bxte)(2dx+e) 
(dx’-+ex+f) 

Solved Problem 2.8 Determine the rate of change of the area of a cir- 

cle with respect to its radius, R. Also, evaluate the rate of change when 

R=5. 

Solution. The area of a circle is related to the radius by the function: 

Ac ack 

Therefore, the rate of change of the area of the circle in terms of the 

radius, R, is 

ae 27R 
dR 

which is the circumference of a circle. When R is 5, 

GA 2nR=2n (5 )=107 
dR 

Solved Problem 2.9 Determine the rate of change of the height, 

h, in terms of the radius, R, for the volume of a circular cylinder assum- 

ing a constant volume as R increases. The formula of a circular cylin- 

der is V = 1R7h. 

Solution. Given in the problem, the volume of a circular cylinder is: 
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V =7R*h 

To determine the rate of change of the cylinder volume with respect to 

the radius, R, we take the following derivative: 

OY = (np?) sp (er? = (eR?) + eR 
dR dR dR dR 

Given that V remains constant, 

ie =(0 and thus 
dR 

nR2oo +2mRh=0 
dR 

Dividing through by mR yields 

pee oye 0 
dR 

Solvi fi dh olving for aR: 

dh 2h 

dR R 

Solved Problem 2.10 Determine dy/dx given: 

1 

x+ 1 
y= 4u°+4 and u= 

Solution. This is an application of the chain rule. In order to calculate 
dy/dx, we need to calculate dy/du and du/dx. 
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Therefore, using the chain rule: 

ey au fk Pech tus’ 
Gx a dx leer le ae) pat 



(ape eee =r 4 

a 
7 
a 

Pa > = : " a a : 

ee od 
: nee i NaN i b> Sli = 
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Tangents 

If the function f(x) has a finite derivative f'(x,) at x = x,, the curve y = 

f(x) has a tangent at P_(x,, y,) whose slope is 

m = tan 0 = f'(x,) 

If m = 0, the curve has a horizontal tangent of equation y = y, at P., as 

at A, C, and E of Figure 3-1. Otherwise, the equation of the tangent is 

35 
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y - Y, = mx - x,) 

If f(x) is continuous at x = x, but lim f'(x) = ©, the curve has a vertical 
X—xo 

tangent given by the equation x = x,, as at B and D of Figure 3-1. 

Figure 3-1 

Normals 

The normal to a curve at one of its points is the line that passes through 

the point and is perpendicular to the tangent at the point. Hence, if m is 

the slope of the tangent, then -1/m is the slope of the normal. The equa- 

tion of the normal at P_(x,, y,) is 

X =X, if the tangent is horizontal 

=y, if the tangent is vertical 

=——(x-x : 
Y~ Yo m ( o) otherwise 

Example 3.1 Find the equations of the tangent and normal to 

y = x? - 2x” + 4 at (2, 4). 

f'(x) = 3x? - 4x; hence the slope of the tangent at (2, 4) is 

Uyah (2) 4 
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The equation of the tangent is y - 4 = 4(x - 2) or y = 4x - 4. 
The equation of the normal is 

y-4=-5 (x-2) or x+4y=18 
~ 

Example 3.2 Find the equation of the line containing the point 
(2, -2), which is tangent to the hyperbola x? - y? = 16. 

Let P.(x,, y,) be the point of tangency. Then, P, is on the hyperbola, so 

x? -y,7= 16 (3-1) 

Also, 

aes 
dx y 

Hence, at ica y,), the slope of the line joining P . and (2, -2) is 

mon) yer (—2) 
a 

Yo X,—2 

Then, 

2x, + 2Y, =X," -¥,°= 16 or X,+ y, =8 (3-2) 

The point of tangency is the simultaneous solution (5, 3) of Eqs. (3-1) 

and (3-2). Thus, the equation of the tangent is 

5 
—3=—(x-5 alee 9) 

or 

5x ~3y = 16 

Angle of Intersection 
The angle of intersection of two curves is defined as the angle between 

the tangents to the curves at their point of intersection. 
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To determine the angles of intersection of two curves: 

1. Solve the equations simultaneously to find the points of intersec- 

tion. 

2. Find the slopes m, and m, of the tangents to the two curves at each 

point of intersection. 

3. If m, = m, the angle of intersection is = 0°. If m, = -1/m, the 

angle of intersection is o = 90°. 

Otherwise, it can be found from 

m,—m 
tan ¢=——— 

1+m,m, 

where @ is the acute angle of intersection when tan @ > 0, and 180° - o 

is the acute angle of intersection when tan 6 < 0. 

Example 3.3 A cable of a certain suspension bridge is attached to sup- 

porting pillars 250 feet (ft) apart. If it hangs in the form of a parabola 

with the lowest point 50 ft below the point of suspension, find the angle 

between the cable and the pillar. 

Take the origin at the vertex of the parabola, as in Figure 3-2. The equa- 

tion of the parabola is y = (2/625)x* and y'=4x/625. At (125, 50), m = 

4(125)/625 = 0.8000 and 8 = 38°40". Hence the required angle is @ = 90° 

= 6151920". 

Figure 3-2 
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Maximum and Minimum Values 

Increasing and Decreasing Functions 

A feinction f(x) is said to be increasing on an open interval if u < v 

implies f(u) < f(v) for all u and v in the interval. A function f(x) is said 

to be increasing at x = x, if f(x) is increasing on an open interval con- 

taining x,. Similarly, f(x) is decreasing on an open interval if u < v 

implies f(u) > f(v) for all u and v in the interval, and f(x) is decreasing 

at x = x, if f(x) is decreasing on an open interval containing x.,. 

If f'(x,) > 0, then it can be shown that f(x) is an increasing function 

at xX = X,; similarly, if f (x,) < 0, then f(x) is a decreasing function at x 

= x,. If f'(x,) = 0, then f(x) is said to be stationary at x = x,. 

In Figure 3-3, the curve y = f(x) is rising (the function is increas- 

ing) on the intervals a< x <r andt<x <u; the curve is falling (the func- 

tion is decreasing) on the interval r < x < t. The function is stationary at 

X =r, X = 8, and x =t; the curve has horizontal tangents at points R, S, 

and T. The values of x (that is, r, s, and t), for which the function f(x) is 

stationary [that is, for f'(x) = 0] are critical values for the function, and 

the corresponding points (R, S, and T) of the graph are called critical 

points of the curve. 

Figure 3-3 
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Relative Maximum and Minimum 

Values of a Function 

A function f(x) is said to have a relative maximum at x = x, if f(x,) 2 

f(x) for all x in some open interval containing x,, that is, if the value of 

f(x,) is greater than or equal to the values of f(x) at all nearby points. A 

function f(x) is said to have a relative minimum at x = x, if f(x,) < f(x) 

for all x in some open interval containing x,, that is, if the value of f(x,) 

is less than or equal to the values of f(x) at all nearby points. 

In Figure 3-3, R(r, f(r)) is a relative maximum point of the curve 

since f(r) > f(x) on any sufficiently small neighborhood 0 < Ix - rl < 6. 

We say that y = f(x) has a relative maximum value (= f(r)) when x =r. 

In the same figure, T(t, f(t)) is a relative minimum point of the curve 

since f(t) < f(x) on any sufficiently small neighborhood 0 < Ix - tl < 6. 

We say that y = f(x) has a relative minimum value (= f(t)) when x = t. 

Note that R joins an arc AR which is rising (f'(x) > 0) and an arc RB 

which is falling (f'(x) < 0), while T joins an arc CT which is falling 

(f'(x) < 0) and an arc TU which is rising (f'(x) > 0). At S, two arcs BS 

and SC, both of which are falling, are joined; S is neither a relative max- 

imum point nor a relative minimum point of the curve. 

If f(x) is differentiable on a < x < b and if f(x) has a relative maxi- 

mum (minimum) value at x = x,, where a < x, < b, then f'(x,) = 0. 

First Derivative Test 

The following steps can be used to find the relative maximum (or min- 
imum) values (hereafter called simply maximum [or minimum] values) 
of a function f(x) that, together with its first derivative, is continuous. 

1. Solve f'(x) = 0 for the critical values. 

2. Locate the critical values on the x axis, thereby establishing a num- 
ber of intervals. 

3. Determine the sign of f'(x) on each interval. 
4. Let x increase through each critical value x = X,; then: 

(a) f(x) has a maximum value f(x,) if f(x) changes from + to - 

(Figure 3-4). 
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a dae 
Xo 

(a) 
Figure 3-4 

(b) f(x) has a minimum value f(x,) if f(x) changes from - to + 

(Figure 3-5). 

a cee 

(6) 

Figure 3-5 

(c) f(x) has neither a maximum nor a minimum value at x = x, if 

f'(x) does not change sign (Figure 3-6). 
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Xo 

(c) 

i eee 

(d) 
Figure 3-6 

Example 3.4 Given 

ga iq ose 
5 2 

find (a) the critical points; (b) the intervals on which y is increasing and 

decreasing; and (c) the maximum and minimum values of y. 

(a) y' = x* + x - 6 = (x + 3)(x - 2). Setting y' = 0 gives the critical val- 
ues x = - 3 and 2. The critical points are (- 3, 43/2) and (2, 2/3). 

(b) When y' is positive, y increases; when y' is negative, y decreases. 

When x < - 3, say x = - 4, y' = (-)(-) = +, and y is increasing 

When -3<x<2,sayx=0, y'=(+)(-) =-, and y is decreasing 

When x > 2, say x = 3, "= (+)(+) = +, and y is increasing 

These results are illustrated by Figure 3-7: 
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iia x>2 

y’ — a y’ =+ 

y increases y decreases y increases 

(2, 2/8) 

Figure 3-7 

(c) We test the critical values x = - 3 and 2 for maxima and minima. 

As x increases through - 3, y' changes sign from + to -; hence at x 

= - 3, y has a maximum value 43/2. 

As x increases through 2, y' changes sign from - to +; hence at x = 

2, y has a minimum value 2/3. 
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Example 3.5 Examine y = |x| for maximum and minimum values. 

The function is everywhere defined and has a derivative for all x except 

x = 0. Thus, x = 0 is a critical value. For x < 0, f'(x) = - 1; for x > 0, 

f'(x) = + 1. The function has a minimum (= 0) when x = 0. 

Concavity 

An arc of a curve y = f(x) is called concave upward if, at each of its 

points, the arc lies above the tangent at that point. As x increases, f'(x) 

either is of the same sign and increasing (as on the interval b <x <s of 

Figure 3-3) or changes sign from negative to positive (as on the interval 

c <x <u). In either case, the slope f'(x) is increasing hence f"(x) > 0. 

An arc of a curve y = f(x) is called concave downward if, at each 

of its points, the arc lies below the tangent at that point. As x increases, 

f'(x) either is of the same sign and decreasing (as on the interval s < 

x <c of Figure 3-3) or changes sign from positive to negative (as on the 
interval a < x <b). In either case, the slope f'(x) is decreasing and f"(x) 

<0. 

Point of Inflection 

A point of inflection is a point at which a curve changes from concave 

upward to concave downward, or vice versa. In Figure 3-3, the points of 

inflection are B, S, and C. A curve y = f(x) has one of its points x = X,, 

as an inflection point if f"(x,) = 0 or is not defined and f"(x) changes 

sign between points x < x, and x > x,. (The latter condition may be 

replaced by f""(x,) # 0 when f"(x,) exists.) 

Example 3.6 Examine y = x* - 6x + 2 for concavity and points of inflec- 
tion. 

The graph of the function is shown in Figure 3-8. 
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Figure 3-8 

We have y" = 12x’. The possible point of inflection is at x = 0. On the 

intervals x < 0 and x > 0, y" = +; hence the arcs on both sides of x = 0 are 

concave upward. Therefore, the point (0, 2) is not a point of inflection. 

Second-Derivative Test 

There is a second test for maxima and minima: 

1. Solve f'(x,) = 0 and determine where f'(x,) does not exist for the 

critical values. 

2. For each critical value x = X,: 

f(x) has a maximum value f(x,) if f"(x,) < 0 (Figure 3-4) 

f(x) has a minimum value f(x,) if f"(x,) > 0 (Figure 3-5) 

The test fails if f"(x,) = 0 or is not defined (Figure 3-6). In this 

case, the first derivative test must be used. 

Example 3.7 Examine f(x) = x(12 - 2x)’ for maxima and minima using 

the second-derivative method. 

Here f'(x) = 12(x? - 8x + 12) = 12(x - 2)(x - 6). Hence, the critical val- 

ues are x = 2 and 6. Also, f"(x) = 12(2x - 8) = 24(x - 4). Because f"(2) 

< 0, f(x) has a maximum value (= 128) at x = 2. Because f"(6) > 0, f(x) 

has a minimum value (= 0) at x = 6. 
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Applied Problems Involving 
Maxima and Minima 
To determine absolute maxima and minima over a closed interval [a, 

b], we use the following method (in lieu of either the first- or second- 

derivative tests): First, identify all critical values, c. Then, determine the 

value of the function y = f(x) at each of the endpoints f(a) and f(b) and 

at each critical value f(c). Finally, compare these to obtain the maximum 

and minimum values. 

Example 3.8 Divide the number 120 into two parts such that the prod- 

uct P of one part and the square of the other is a maximum. 

Let x be one part, and 120 - x the other part. Then, P = (120 - x)x?, and 

0 <x < 120. Since dP/dx = 3x(80 - x), the critical values are x = 0 and 

x = 80. Now P(O) = 0, P(80) = 256,000, and P(120) = 0; hence the max- 

imum value of P occurs when x = 80. The required parts are 80 and 40. 

Example 3.9 A cylindrical container with a circular base is to hold 64 

cubic inches (in*). Find its dimensions so that the amount (surface area) 

of metal required is a minimum when the container is (a) an open cup 

and (b) a closed can. 

Let r and h be, respectively, the radius of the base and the height in inch- 
es, A the amount of metal, and V the volume of the container. 

(a) Here V = mr’h = 64 in’, and A = 2nrh + mr. To express A as a func- 
tion of one variable, we solve for h in the first relation (because it is eas- 
ier) and substitute in the second, obtaining 

3 

A= 2m n= + ne and ee ee ee 
TE r dr r r 

and the critical value is r = 4/4 . Then h = 64/mr2 = 4/3/n . Thus, 

r=h=4/qn in, 
Now dA/dr > 0 to the right of the critical value, and dA/dr < 0 to 

the left of the critical value. So, by the first-derivative test, we have a 
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relative minimum. Since there is no other critical value, that relative 

minimum is an absolute minimum. 

(b) Here again V = mr*h = 64 in?, but A = 2nrh + 2nr? = 2n1(64/nr’) + 

2nr= 128/r + 21. Hence 

dA: 128 4(nr—32) 
= - + 4s 
dr r r 

and the critical value is r = on 4/n . Thenh = 64/nr? = 24/4/70. Thus, 

hor = AN 4/n in. That we have found an absolute minimum can be 

shown as in part (a). 

Example 3.10 A man in a rowboat at P in Figure 3-9, 5 miles (mi) from 

the nearest point A on a straight shore, wishes to reach a point B, 6 mi 

from A along the shore, in the shortest time. Where should he land if he 

can row 2 miles per hour (mi/h) and walk 4 mi/h? 

Pe 

5 veer a 

C B 
Ane 6-2 

Figure 3-9 

Let C be the point between A and B at which the man lands, and let 

AC = x. The distance rowed is PC=25+x’, and the rowing time 

required is 

_ — distance_ A 25+x° 

' speed i Z 

The distance walked is CB = 6 - x, and the walking time required is 
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t, = (6 - x)/4. Hence, the total time required is 

t=ty+t,=— 25+x? oa (6—-x) and 

dt X 1 2x-4254+x’ 

dx 2,f25+x2 4 4,254 

The critical value, obtained from 2x— 1 25+ x? =0, is 

eee a 2.09 
3 

Thus, he should land at a point 2.89 mi from A toward B. 

Solved Problems 

Solved Problem 3.1 Show that the curve y = x° - 8 has no maximum 

or minimum value. 

Solution. Setting y' = 3x” = 0 gives the critical value x = 0. But y'>0 

when x < 0 and when x > 0. Hence y has no maximum or minimum 

value. The curve has a point of inflection at x = 0. 

Solved Problem 3.2 Examine y = 3x*- 10x? - 12x? + 12x - 7 for concavity 
and points of inflection. 

Solution. We have 

y' = 12x? - 30x? - 24x + 12 
y" = 36x? - 60x - 24 = 12(3x + 1)(x - 2) 

Set y"= 0 and solve to obtain the possible points of inflection x = Ee 
and 2. Then 
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When x < 2 y" = +, and the arc is concave upward. 

eh : When — <x <2; y" = -, and the arc is concave downward. 

When x > 2, y' = +, and the arc is concave upward. 

; : : Lineee : 
The points of inflection are Lae ane and (2, - 63), since y" 

1 
changes sign at x = ee and x = 2 (see Figure SP3-1). 

y 

(—1/3, —822/27) 

Figure SP3-1 

Solved Problem 3.3 Examine y = x” + 250/x for maxima and minima 

using the second-derivative method. 

Solution. Here 
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250 2(x3-125) 
e 2 

; , so the critical value is x = 5. 
x 

y’=2x= 
X 

Also, ele . Because y" > 0 at x = 5, y has a minimum value 
% . 

(vide =e 

Solved Problem 3.4 Using 200 feet of wire, Alexandra would like to 

construct a rectangular garden consisting of three sides with the fourth 

side against a wall of the house. What are the dimensions of the gar- 

den that will yield the maximum possible area? 

Solution. We first begin by defining 

x = length of the garden side perpendicular to the house 

y = length of the garden side parallel to the house 

Given the total amount of fencing wire is 200 feet, then 

2x + y = 200 (1) 

Also, the area of the rectangular garden is 

Bean (2) 

Solving Eq. (1) for y in terms of x 

y = 200 - 2x (3) 

Substituting Eq. (3) into Eq. (2) 

A=, (200\-2x) (4) 
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defined over the interval 0 < x < 100. Given this, we seek to determine 
the maximum of A = f(x) = x (200 - 2x) for x in the interval {O, 100]. 
In this case, 

A =x) = 200x - 2x? 

We take the derivative of A: 

f' (x)=200 - 4x 

Setting f'(x) = 0 - 

200 - 4x =0 

4x = 200 

x = 50 feet 

Substituting this value into Eq. (3), 

y = 200 - 2(50) = 200 - 100 = 100 feet 

Thus, the dimensions of the garden that yield the maximum possible 

area are x = 50 feet and y = 100 feet. 

Solved Problem 3.5 Given a square piece of cardboard with sides 

equal to 16 inches, Laura would like to construct a box by cutting out 

four squares, one from each corner. What is the size of the square that 

should be cut out in order to maximize the volume of the box? 

Solution. We begin by defining the length of the square to be cut from 

each corner of the cardboard as x. Then, each side of the cardboard 

square is defined as: 

Length = 16 - 2x 

Therefore, the volume of the cardboard box can be determined as: 
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Volume = V(x) = (length)(width)(height) 

= (16 - 2x)(16 - 2x)(x) 

= 4x3 - 64x? + 256x 

The value of x that maximizes the volume fo the box is in the interval 

(0, 8] and can occur at either 0, 8 or at some critical number which 

satisfies the calculation V'(x) = 0. The values of 0 and 8 do not make 

sense as far as possibilities so therefore we must determine the critical 
values. 

V (x)= 12x’— 128x+ 256 

= 4 (3x? - 32x + 64) 
= 4 (3x - 8)(x - 8) 

The equation 

V'(x) = 4 (3x - 8)(x - 8) =0 

has two roots: 

iS 
X= 3 andx=8 

Since x = 8 was eliminated previously, the value of x that yields the 
maximum volume is 

8 
x=— 

3 

and is equal to 

8 8) 8 8 
Vi— F4!/— |-64]— |+256|— —455.2 ic j i } c (2) (5 f cubic inche 
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Differentiation of Trigonometric 
Functions 

Radian Measure 

Let s denote the length of an arc AB intercepted by the central angle 

AOB on a circle of radius r, and let S denote the area of the sector AOB 

(see Figure 4-1). 

Figure 4-1 

(If s is 1/360 of the circumference, then angle AOB has measure 1°; if 

s =r, angle AOB has measure | radian (rad). And, since a full circle has 

a circumference of 27 rad, we can write | rad = 180/m degrees and 1° = 

7/180 rad. Thus 0° = 0 rad; 30° = n/6 rad; 45° = 17/4 rad; 180° = m rad; 

and 360° = 27 rad.) 

Suppose AOB is measured as & degrees; then we formulate the arc 

length and area of the sector as: 

or dues x or Se an =) eos 

180 R60 (Ar) 

Suppose next that AOB is measured as 0 rad; then 

s=@0r and Sean 

: (4.2) 
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Trigonometric Functions 

Let 6 be any real number. Construct the angle whose measure is 8 radi- 

ans with vertex at the origin of a rectangular coordinate system, and ini- 

tial side along the positive x axis (see Figure 4-2). 

y 

‘ P(x, y) 

Figure 4-2 

Take P(x, y) on the terminal side of the angle a unit distance from O; 

then we define the functions sin 0 = y and cos @ = x. The domain of def- 

inition of both sin 8 and cos @ is the set of real numbers; the range of 

sin @ is - 1 < y < 1, and the range of cos @ is - 1 <x < 1. Recall that, if 

@ is an acute angle of a right triangle ABC (see Figure 4-3), then 

opposite side _ BC 
sin 6 = 

hypotenuse AB 

adjacent side AC 
cos 0 = 

hypotenuse AB 

patna opposite side _ BC 

adjacent side AC 
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ae) Ce 

Figure 4-3 

The slope m of a nonvertical line is equal to tan &, where © is the coun- 

terclockwise angle from the positive x axis to the line. Table 4-1 lists 

some standard trigonometric identities, and Table 4-2 contains some 

useful values of the trigonometric functions. 

sin? 6 + cos’ 6 =1 

sin (—@) = —sin 0, cos (—@) = cos 6 

sin (a + B)=sin a cos B + cosa sin B 

sin (a — B)=sinacos B — cosa sin B 

cos (a + B) =cos a cos B — sina sin B 

cos (a — B) =cosacos B + sina sin B 

sin 2a = 2 sin a cos @ 

cos 2a = cos” a — sin? a =1—2sin? a =2cos’a-1 

sin (a + 27) =sin a, cos(a@ + 27) =cosa 

sin (a + 7) = —sin a, cos (a + 7) = —cos a, tan(a + 7) =tana 

. 8 Tv is 
sin Bis ake = COS @, COS Dinas = sin @ 

sin (7 — a) =sin a, cos(7 — a) = —cosa 

sec’ a =1+tan’ a 

tana +tan B 
tan(a + B)= 1—tana tan B 

tan a —tan B 

1+ tan a tan B 
tan (a — B)= 

Table 4-1 
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0 1 0 

1/2 V3/2 V3/3 

V2/2 V2/2 1 

V3/2 12 V3 
1 0 00 

0 =i 0 

0 oo 

Table 4-2 

Differentiation Formulas 

Now, we can define the trigonometric functions in terms of the usual 

variable x (rather than denoting the angle argument 0). Then, we can 

derive the following formulas: 

Rule 14. pte x )=cos x Rule 15. bee x )=—sin x 
dx dx 

d 2 d 2 
Rule 16. —(tan x)=sec’ x Rule 17. —(cot x )=—csce’ x 

dx dx 

Rule 18. ROE: x )=sec x tan x Rule 19. ere x )=—csc x cot x 
x x 

Example 4.1 Find the first derivative of y = sin 3x + cos 2x. 

y'=cos axe ot )—sin 94 Shoe )=3 cos 3x — 2 sin 2x 
x x 

Example 4.2 Find the first derivative of f(x)=““~. 
IX 
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d d 
x— (cos x)—cos x—(x) 

rats dx dk += sill: A— €0S-% 

x x 

Differentiation of Inverse 
Trigonometric Functions 

The Inverse Trigonometric Functions 

If x = sin y, the inverse function is written y = arcsin x. (An alternative 

notation is y = sin! x.) The domain of arcsin x is - 1 < x < 1, which is 

the range of sin y. The range of arcsin x is the set of real numbers, which 

is the domain of sin y. The domain and range of the remaining inverse 

trigonometric functions may be established in a similar manner. 

The inverse trigonometric functions are multivalued. In order that 

there be agreement on separating the graph into single-valued arcs, we 

define in Table 4-3 one such arc (called the principal branch) for each 

function. In Figure 4-4, the principal branches are indicated by a thick- 

er curve. 

Function Principal Branch 

y = arcsin x 

y = arccos x 

y = arctan x 

y = arccot x 

y = arcsec x 

y = arccsec x 

Table 4-3 
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y 

R 

aa 

y =arcsin x y =arccos x y = arctan x 

Figure 4-4 

Differentiation Formulas 

Rule 20. a (arcsin x )= : 
dx Foo? 

Rube lerceos x oe 
dx 1-2 

d 
Rule 22. — (arctan x )= : 

dx 1+x 

d 
Rule 23. —(arccot x )=- - 

dx 4 

Rule 24. (arcsec x )= 
dx - [2-4 

Rule 25. A (arcese x j=- 
dx z Pe] 
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Example 4.3 Find the first derivative of y = arctan Sx 

1 dy oes 
1+ (3x?) dx 

d 3x2 6x 

“dx 1+9x4 

x 
Example 4.4 Find the first derivative of f(x)=x 4 a’—x? +aarcsin .- 

ee aiid : 

a a 
f'(x)=x a (ext "9(-2x) +(@—x2)!”? ic 

a 

=24a—x* 

Differentiation of Exponential 
and Logarithmic Functions 
Define the number e by the equation 

C= im{1+ 
h—+e0 h 

Then e also can be represented by lim (1 + k)!*. In addition, 
k>0 

it can also be shown that 

e=1+ ae “ oes. ->-=2,71828 
2! ! n! 

Called the “natural” number or Euler’s number, e will serve as a base 

for the natural logarithm function. 

Logarithmic Functions 

Assume a > 0 and a # 1. If aY = x, then define y = log,x. That is, x = a¥ 

and y = log. x are inverse functions. 



CHAPTER 4: Differentiation of Special Functions 61 

Let In x = log.x. Then In x is called the natural logarithm of x. See 
also Figure 4-5. The domain of log,x is x > 0; the range is the set of real 
numbers. 

y y 

1 1 

x 

O O x 

y= Inz y = e* y=e-* 

Figure 4-5 

Differentiation Formulas 

Rule 26. cals (log.x = loge, a 10ra4l 
dx x 

je ied 

xIna 

Rule 27. ei (In ne 
dx x 

Rule 28. See In a, a> 0 
dx 

Ruleoowece (e* )=e* 
dx 

Example 4.5 Find the first derivative of y = log (3x? - 5). 

dy _ 1 

dx 923x745 

6 
(log,e = (3x?-5 )= log,e= - 

Xx 

3x75 3x?—5 In a 
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Example 4.6 Find the first derivative of y = In sin 3x. 

"= os Bhs 3x )=3 
sin 3x dx sin 3x 

= 51 COU ox 
cos 3x 

Logarithmic Differentiation 

If a differentiable function y = f(x) is the product and/or quotient of sev- 

eral factors, the process of differentiation may be simplified by taking 

the natural logarithm of the function before differentiation since 

d id 
tn ES weld 

This amounts to using the formula 

d d 
Rule 30. — =y— (In alt ae! y) 

Example 4.7 Use logarithmic differentiation to find the first derivative, 

given the function y = (x? + 2)>(1 — x3). 

In y=In(x?+2) (1—-x?}'=3 In(x?+2)+4 In(1—x?) 

yy G13 imler+ 2rd n(x = (42) (1-2 : 
dx eet ta 

6x 12x” 

=6x(x242) (1-8) (14x38?) 

Differentiation of Hyperbolic 
Functions 
Definitions of Hyperbolic Functions 

For any real number, x, except where noted, the hyperbolic functions are 
defined as: 
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XxX =X 
x =X . e-e 1 sinh x = coth x = ee ESSE EEE 20 

2 tanh x e*-e™* 
Sh: 9 

e+e 1 Y cosh x = sech x = = 
“a 2 cosh x e*+e% 

sinh x . e'—e * 1 2 0h <= esch x = — = , x#0 
cosh X Ce “he * Sinn x " @ =e * 

Differentiation Formulas 

Rule 31. oO fein x )=cosh x 
dx 

Rule 32. oe (cosh x )=sinh x 
dx 

Rule 33. € (tanh x )=sech’ x 
X 

Rule 34. Le (coth x )=—csch’ x 
dx 

Rule 35. = (sech x )=—sech x tanh x 
x 

Rule 36. <(esch x )=—csch x coth x 
X 

Example 4.8 Find dy/dx given the function: y = sinh 3x. 

ean oe (3x )=3 cosh 3x 
dx dx 

Z 1 
Example 4.9 Find dy/dx given the function: y=coth — 

xX 

2 Dd 1 21 
oS esth oe => >esch — 
dx x dx x x 
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Differentiation of Inverse 
Hyperbolic Functions 
Definitions of Inverse Hyperbolic Functions 

4 a 
sinh” 'x=In (x+4 1+x? ) for all x cot 'x=— In, x l 

x= 

2 

cosh 'x=In(x+4x2—1 Ni Sis stole ys ig hey O0<x<l 
x 

Paes tn = exe csch 'x=In [+s ie x#0 
2) Mex x Ix | 

Differentiation Formulas 

Rule 37. = (sinh”'x )= 
1x 

Rule 38. Se ee : koa 
dx ct 

Rule 39. ae ele = x°< 1 
dx ix" 

Rule 40, 2 (eoth As, 9S 
dx l-x 

Rua eee eee pee 
dx xbox 

Rule 42. ee (csch 'x )= 
dx 

—| 
ee) 

Ix|4 1+x° 

a 1+x? 

Let y = sinh! x. Then sinh y = x and differentiation yields 

Example 4.10 Derive - (sinh”!x )= 
X 
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dy cosh y —=]1 
dx 

so, 

dy” 1 1 

dx cosh y_ ca Sta 

Example 4.11 Find dy/dx given the function 

y = cosh"! e* 

ptt 
| @2x a a (ore { 

Solved Problems 
Solved Problem 4.1 Find the first derivative of: 

y = tan x? 

Solution. 

d 
y'=sec x — (x’)=2x sec x” 

dx 

Solved Problem 4.2 Find the first derivative of: 

y = tan?x = (tan x)’ 
Solution. 

d 
y =2 tan re (tan x)=2 tan x sec x 

x 
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Solved Problem 4.3 Find the derivative of: 

y =X - Sin X cos x 

Solution. 

Oya as X COS x) 
dx dx , 

disses ' é 
sia x cos x )=cos x cos x+(—sin x )sin x 

x 
2 Ps 

= COS X—SI1N X 

Therefore, by substituting into the previous equation, the derivative 

can be found: 

d We GB 2 nee 
nia (cos X—sin Kiet enc x+sin x 

i 

Solved Problem 4.4 Find the derivative of: 

ne CSCRX 

dx Ax 

Solution. 

Simplifying leads to: 

xe | OSC XaCOLIXe Ee GSCaX 

dx Ax Ax iz ol 
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Solved Problem 4.5 Find the first derivative of: 

Wan s* 

Solution. 

/ 2 d ms x d 2 29x y/=x°— (3° )4+3*— (x? )=x?3* In 34. 3°2x=x3*(x In 3+2) 
dx dx 

Solved Problem 4.6 Find the derivative of: 

fy = sin 3% 

Solution. The derivative of the function is the composite of the func- 
tions below: 

y =u’, U = sit V, V="3% 

Therefore, 

S (sin’?3x )-— (uw? )< (sin ve (3x ) 

=(2u)(cos v)(3) 

= 6U COs V 

Making the appropriate substitutions yields: 

sa (sin?3x )=6 sin Vv COS V 
dx 

= 6 sin 3x cos 3x 

Solved Problem 4.7 Find the derivative of: 

y=sin'! =| 
6 
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Solution. 

The function above is a composite of two functions and thus the deriv- 

ative is determined by using the chain rule, where 

Say 5x 
y = sin’ u where u= ree 

ae and ae 
du (Ss Ww dx 

Therefore, 

ay_ dy du 
dx du dx 

“(ev Keb hey (e Te) 5] 

eral 
ieee 
Solved Problem 4.8 Find the derivative of: 

y = sec} 6x 

Solution. This problem requires the chain rule given 

y=sec'u where u=6x 

Thus, 

dy _ l 1 
=—_——. ¢§ = —_____ ef 

dx lulvut=1 |6x| 4 36 x?-1 

mi I 
l6||x| 436 x2—1 |x| 36 x2—1 
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Rolle’s Theorem 

If f(x) is continuous on the interval a < x < b, if f(a) = f(b) = 0, and if 

f'(x) exists everywhere on the interval except possibly at the endpoints, 

then f'(x) = 0 for at least one value of x, say x = x,, between a and b. 

Geometrically, this means that if a continuous curve intersects the x axis 

at x = a and x = b, and has a tangent at every point between a and b, then 

69 
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(xo, 0) 

Figure 5-1 

Figure 5-2 
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there is at least one point x = x, between a and b where the tangent is 

parallel to the x axis. (See Figure 5-1.) 

Example 5.1 Find the value of x, prescribed in Rolle’s theorem for 
od 

f(x) = x3 - 12x on the interval 0 <x < Dae 

f'(x) = 3x? - 12 = 0 when x = +2; then X, = 2 in the prescribed value. 

The Law of the Mean 

If f(x) is continuous on the interval a < x < b, and if f'(x) exists every- 

where on the interval except possibly at the endpoints, then there is at 

least one value x = X,, between a and b, such that 

f(b )-f(a) Se 4Gibh 

b-a 

Also known as the mean-value theorem, this means, geometrically, that 

if P, and P, are two points of a continuous curve that has a tangent at 

each intermediate point between P, and P,,, then there exists at least one 

point of the curve between P, and P, at which the slope of the curve is 

equal to the slope of the line between the endpoints, P, and P,. (See 

Figure 5-3.) 

y 

| f(a) 

| 
| 
| 
| 
| 
| 
| 
x 

| 
| 
| 
a 

Figure 5-3 

The law of the mean may be put in several useful forms. The first is 

obtained by multiplication by b - a: 

f(b) = f(a) + (b - a)f'(x,) for some x, between a and b (5.1) 
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A simple change of letter yields an expression for any arbitrary value of x: 

f(x) = f(a) + (x - a)f'(x,) for some x, between a and x (5.2) 

6 

Example 5.2 Use the law of the mean to approximate N65 . 

Let f(x) = {x , a= 64, and b = 65, and apply Eq. (5.1), obtaining 

65-64 
x5/6 z 

f(65 )=f(64 )+ 64< x,< 65 

Since x, is not known, take x, = 64; then approximately, 

65 =5/64 +1/(69/645 )=2+1/192=2.00521 

Example 5.3 A circular hole with a diameter of 4 in and a depth of 1 ft 

in a metal block is rebored to increase the diameter to 4.12 in. Estimate 

the amount of metal removed. 

The volume of a circular hole of radius x in and depth 12 in is given by 

V = f(x) = 12 1 x”. We are to estimate f(2.06) - f(2). By the law of the 

mean, 

f(2.06) - f(2) = 0.06 f'(x,) = 0.06(24 x.) 2<x, < 2.06 

Take x, = 2; then, approximately, 

£(2.06) - £(2) = 0.06(24 m)(2) = 2.88 x in’. 

Generalized Law of the Mean 

If f(x) and g(x) are continuous on the interval a < x < b, and if f'(x) and 
g'(x) exist and g'(x) # 0 everywhere on the interval except possibly at the 
endpoints, then there exists at least one value of x, say x = X,, between 

a and b such that 

For the case g(x) = x, this becomes the law of the mean. 
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Extended Law of the Mean 

If f(x) and its first n - 1 derivatives are continuous on the interval a < x 

<b, and if f(x) exists everywhere on the interval except possibly at the 

endp@ints, then there exists at least one value of x, say x = X,, between 

a and b such that 

f'(a) 
f(b )=f(a)+ i (b—a )+ 7 (b-a) + 

fee ee ee a ace Eas (b—a) 

When b is replaced with the variable x, Eq. (5.3) becomes 

f(x )=fla ya! (x-a ye) (xo a pee 

fe" la) = 

(n—1)! n! 

for some x - between a and x. 

When a is replaced with 0, Eq. (5.4) becomes 

r(x)=f(0)s2 0, P10) 2, 

pO) aE) 
ere | Th 

for some x, between 0 and x. 

Indeterminate Forms 
The derivative of a differentiable function f(x) is defined as: 

$ f(x+Ax )-f(x) 
in. 
Ax0 (x+Ax )—x 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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Since the limit of both the numerator and the denominator of the frac- 

tion is zero, Eq. (5.6) is an example of a limit which is called indeter- 

minate of the type 0/0. Similarly, it is customary to call a limit such as 

; ax 2 
lim 
ee XRT 

indeterminate of the type oo/co. These symbols, 0/0, -/co, and others 

(Osco, 00 - 00, ()°, o09, and 1°) to be introduced later must not be taken lit- 

erally; they have no numerical meaning and are merely convenient 

labels for distinguishing types of behavior at certain limits. 

Indeterminate Type 0/0; L’‘Hopital’s Rule 

If a is a number, if f(x) and g(x) are differentiable and g(x) # 0 for all x 

on some interval 0 < Ix - al < 6, and if lim f(x) = 0 and lim g(x) =0, 

then, when 

egtel xr kee 
lim ——> exists or is infinite, we can write 
pone Sen) 

! f : : 
lim ix) = lim f(x) (L’Hopital’s rule ) 
xa g(x) xa g'(x) 

Example 5.4 

wees | roe ; 
lim =108 is indeterminate of type 0/0. Because 
x33 ae 

= (x‘—81) 
lim = =lim 4x*=108 
xo a Cm 3 ) x3 

dx 
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x81 
we have lim 

x33 eS 

Indeterminate Type ~/ 

The conclusion of L’Hopital’s rule is unchanged if one or both of the 
following changes are made in the hypotheses: 

1. “lim f(x) =0 and lim g(x) = 0” is replaced by 
xa x7a 

> 

“lim f(x) = co and lim g(x) =e 
xa x7a 

2. “ais a number” is replaced by “a = + ©, - o, or co” and 

“0 < Ix - al < 8” is replaced by “Ixl > M.” 

Example 5.5 

2 a: 
lim ~ is indeterminate of type o/oo. Applying L’Hopital’s rule 
X—-+00 

twice gives us 

Q 
lim oe shim ~~ = lim 
X—+0° X—-+t00 X09 
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Indeterminate Types 0 * © and ~- = 

These may be handled by first transforming to one of the types 0/0 or 

co/oo, For example, 

lim x?e* is of type 0 ¢ co but 
X—>+oo 

2 

lim . 
xote0 © — is of type ce/co. 

lim [ose x- = 
x40 X / is of type ce - co but 

(eee x 

x4 X SIN X } ig Of type 0/0. 

Example 5.6 Evaluate lim (x? In x). 
x>0+ 

In x 
As x0, x?-0 and In x ~. Then, hes has an indeterminate limit 

of type ce/cs, - 

lin G2) lie ee ee =lim(->x' Fo 
+) 

ae ak 
x30+ x30+ 1/x x30+ —2/x x0 

Indeterminate Types 0°, ©°, and 1” 

If lim y is one of these types, then lim (In y) is of the type 0 ¢ ©, 

Example 5.7 Evaluate lim (sec 2x )°"**. 
x0 

This is of the type 1°. Let y=(sec’ 2x Jpot? 3x 
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Then, In y=cot3xIn pee ope eee 
tan’3x 

and lim In y is of the type 0/0. L’Hopital’s rule gives 
a0 

ot RN ROC in 2x Pie 6 tan 2x _ yi, tan 2x 
eo SK 4 O tan 3x sec3x ., tan 3x 

since lim sec? 3x = 1, and the last limit above is of the type 0/0. 
x0 

L’Hopital’s rule now gives 

tan 2x i 2 sec’ 2x 2 
i 
x90 tan3x x30 3 sec 3x 3 

. . * 2 . . ee xX 

Since lim In y = 3° then lim y = lim (sec *ox ) eave 
x0 x0 x0 

Differentials 
For the function y = f(x), we define the following: 

1. dx, called the differential of x, given by the relation dx = Ax 

2. dy, called the differential of y, given by the relation dy = f'(x)dx 

The differential of the independent variable is, by definition, equal to 
the increment of the variable. But the differential of the dependent 

variable is not equal to the increment of that variable. (See Figure 5-4.) 
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Q(xt+Az, yt+Ay) 

S(z+dzx, y+dy) Z 

P(x, y) Li, 

Figure 5-4 

The increment Ay measures the vertical displacement from an initial 

point x, if followed along the curve y = f(x), whereas the differential dy 

measures the vertical displacement from x, if followed along the tan- 

gent to the curve at x,. 

Example 5.8 When y = x”, dy = 2x dx while Ay = (x + Ax)?- x? = 

2x Ax + (Ax)? = 2x dx + (dx)*. A geometric interpretation is given in 

Figure 5-5, where it can be seen that Ay and dy differ by the small 

square of area (dx)?. 

Figure 5-5 

The differential dy may be found by using the definition dy = f'(x)dx or 
by means of rules obtained readily from the rules for finding derivatives. 
Some of these are: 
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d(c )=0 d(cu )=c du d (uv =u dv+v du 

d =f ee dent fcoswda ¢ inul= 
Vv + Win u 

— 

sniff 5.9 Find dy for each of the following: 

(a) y=x?+4x?-5x+6 

dy = d(x?) + d(4x’) - d(5x) + d(6) = (3x? + 8x - 5)dx 

(b) y = (2x* + 5)°” 

dy== (2x45) "d(2x°+5 = (2x3+5))!/? (6x? dx)=9x?(2x3-+5 }!/dx 
N | wo 

Approximations by Differentials 

If dx = Ax is relatively small when compared with x, dy is a fairly good 

approximation of Ay, that is, lim Ay = dy. 
Ax-0 

Example 5.10 Take y = x? + x + 1, and let x change from x = 2 to x = 

2.01. The actual change in y is Ay = [(2.01)* + 2.01 + 1] - (27 +24 
1) = 0.0501. The approximate change in y, obtained by taking x = 2 and 

dx = 0.01, is dy = f'(x) dx = (2x + 1) dx = [2(2) + 1](0.01) = 0.05. 

Approximations of Roots of Equations 

Let x = x, be a fairly close approximation of a root r of the equation 

y = f(x) = 0, and let f(x,) = y, # 0. Then y, differs from 0 by a small 

amount. Now if x, were changed to r, the corresponding change in f(x,) 

would be Ay, = - y,. An approximation of this change in x, is given by 

f'(x,)dx, = - y, or 
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dx,=— = 
f (x, 

Thus, a second and better approximation of the root r is 

vite: = f(x, ) 

r(x)" FG) 
A third approximation is 

f(x.) 

f(x) 
and so on. (See Figure 5-6) 

X,=x,+dx,=x,- 

X,=X,+ dx,=x,- 

y 

Q(x1, f(x1)) 

Figure 5-6 

When x, is not a sufficiently close approximation of a root, it will be 

found that x, differs materially from x,. While at times the process of 

finding these approximations is self-correcting, it is often simpler to 

make a new first approximation. 

Example 5.11 Approximate the roots of 2 cos x - x* = 0. 

The curves y = 2 cos x and y = x? intersect in two points whose 

abscissas are approximately 1 and - 1. (Note that if r is one root, then 
-r is the other.) 

Using x, = 1 yields 
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__2cosi=1 _,, 2(0.5403) 
xX =] = es £A9.5403 )— 1 

—2 sin 1-2 2 (0.8415 )+2 
2 =1+0.02=1.02 

Then, 

2 cos(1.02)-(1.027 _ 102-4 0:0064 
—2 sin(1.02)-2(102) ~~ 3.7442 

= 1.02+0.0017 = 1.0217 

x= 1.02- 

Thus, to four decimal places, the roots are 1.0217 and -1.0217. 

Curve Sketching 
Symmetry 

A curve is symmetric with respect to: 

1. The x axis, if its equation is unchanged when y is replaced by -y, 

that is, f(x) = y and f(x) = -y both hold. 

2. The y axis, if its equation is unchanged when x is replaced by -x, 

that is f(-x) = f(x). 

3. The origin, if its equation is unchanged when x is replaced by -x 

and y by -y, simultaneously, that is, f(-x) = - f(x). 

4. The line y = x, if its equation is unchanged when x and y are inter- 

changed, that is, y = f(x) implies x = f(y). 

Intercepts 

An intercept is a point on either axis of a coordinate system where the 

curve of a function passes through or intercepts. The x intercepts are 

obtained by setting y = 0 in the equation for the curve and solving for x 

(when possible). The y intercepts are obtained by setting x = 0 and solv- 

ing for y. 
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Extent 

The horizontal extent of a curve is given by the values of x, for which 

the curve exists. The vertical extent is given by the range of y. A point 

(x,, y,) is called an isolated point of a curve if its coordinates satisfy 

the equation of the curve while those of no other nearby point do. 

Asymptotes 

An asymptote of a curve is a line that comes arbitrarily close to the 

curve as the abscissa or ordinate of the curve approaches infinity. 

Specifically, given a curve y = f(x), the vertical asymptotes x = a can be 

described by the infinite limits: lim f(x) = + ce. Likewise, the horizontal 
xa 

asymptotes y = b can be defined as the limits at infinity: lim f(x) = b. 
X—-te° 

The maximum and minimum points, points of inflection, and concavity 

of a curve are discussed in Chapter 4. 

Example 5.12 Discuss and sketch the curve y7(1 + x) = x?(1 - x). 

The curve is drawn in Figure 5-7. 

yi(l-F a) = x*(1 — 2) 

Figure 5-7 
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We may write the equation of the curve as 

ae x*(1-x) 

a 1+x- 
“* 

Symmetry: The curve is symmetric with respect to the x axis. 

Intercepts: The x intercepts are x = 0 and x = 1. The y intercept is 
y= 

Extent: For x = 1, y = 0. For x = -1, there is no point on the curve. 

For other values of x, y* must be positive so 1 + x and 1 - 

X must have the same sign; hence, for points on the curve, 

X is restricted to -1 <x < 1. Thus, -1 <x <1. 

2 _ 

Asymptotes: y= x (=x) 
1+x a 

Hence, y 0 as x —-1. Thus, x = -1 is a vertical asymptote. 

Maximum and minimum points, etc.: The curve consists of two 

branches 

_ xd 1-x andl ate 1-x 

i 4 1+x : 1+x 

For the first of these, 

‘ay: (=x x a dy_ x-—2 
dx as (iar Ctx de (ieexer (tx b 

The critical values are x = 1 and (-1 eA )/2. The point 

=1+45. -1ea5 445-2 sina 
Z 

is a maximum point. There is no point of inflection. The branch is con- 

cave downward. By symmetry, there is a minimum point at 
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-14+45 (14/5 )4 15-2 ae. 
2 

and the second branch is concave upward. 

The curve passes through the origin twice. The tangent lines at the 

origin are the lines y = x and y =-x. 

Example 5.13 Discuss and sketch the curve y= In x 

The curve is drawn in Figure 5-8. X 

Figure 5-8 

Symmetry: There is no symmetry. 

Intercepts: The only x intercept is x = 1. 

Extent: The curve is defined for x > 0. 

Asymptotes: The y axis is a vertical asymptote, 
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In x 
: ~—© since as x—>0*. By I’Hospital’s rule, 

In x 
0 

xX 

as x —> +co. Hence, the positive x axis is a horizontal asymptote, that 
is, the line y = 0. 

Maximum and minimum points, etc.: We have 

dy? 141 dye Dink dy nx a y _2Inx 5 
= 2 2 

dx X dx a 

Hence, the critical point is (e, 1/e). At that point, 

which gives us a relative maximum. There is a point of inflection for 

2 In x = 3, that is, at (e*, 3/2e”). The curve is concave downward for 

0 <x <e*” and concave upward for x > e?”. 

Solved Problems 
Solved Problem 5.1 Verify the mean value theorem for the 

function: 

y =4x°-x+5 

on the interval [1, 4]. 

Solution. We first calculate the function value at the endpoints of the 

interval a = | and b = 4. 

f(a) = f(1) = 4(1)? -1+5=4-14+5=8 

f(b) = (4) = 4(43 -4 45 = 256-445 =257 
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According to the mean value theorem, there exists one number, c, in the 

open interval (a, b) such that 

— 257-8 249 f! pee 
b-a 4-] 3 

83 

To find c explicitly, we determine the derivative of the original function 

defined at c: 

f' (x )=12x?—1=83 

This can be simplified: 

12x? = 84 

Since only + a is in (1, 4), it is the number that serves as the c whose 

existence is guaranteed by the mean value theorem. 

Solved Problem 5.2 In graphing a function, what holds true if (a) the 

ordinate f(x), (b) the slope f'(x), and (c) the second 

derivative f"(x) are positive? 

Solution. (a) When the ordinate f(x) is positive, the graph is above the 

X-axis. 

(b) When the slope f"'(x) is positive, the graph slopes upward. 

(c) When the second derivative f"(x) is positive, the graph is concave 

upward. 

Solved Problem 5.3 Repeat Solved Problem 5.2, assuming all entities 

described are negative? 

Solution. (a) When the ordinate f(x) is negative, the graph is below the 
X-axis. 
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(b) When the slope f"(x) is negative, the graph slopes downward. 

(c) When the second derivative f"(x) is positive, the graph is concave 
downward. 

Solved Problem 5.4 Repeat Solved Problem 5.2, assuming all entities 
described change sign? 

Solution. (a) When the ordinate f(x) changes sign, the graph crosses the 

X-axis. 

(b) When the slope f"(x) changes sign, the graph has a horizontal tan- 

gent and a relative maximum or minimum. 

(c) When the second derivative f"(x) changes sign, the graph has an 

inflection point. 
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IN THIS CHAPTER: 

WY Fundamental Integration Formulas 

Y Integration by Parts 

Y Trigonometric Integrals 

Y Trigonometric Substitutions 

Y Integration by Partial Fractions 

Y Miscellaneous Substitutions 

WY Other Substitutions 

Y Integration of Hyperbolic Functions 

Y Applications of Indefinite Integrals 

WY Solved Problems 

If F(x) is a function whose derivative F'(x) = f(x) on a certain interval 

of the x axis, then F(x) is called an antiderivative or indefinite inte- 

gral of f(x). The indefinite integral of a given function is not unique; 

for example, x?, x* + 5, and x? - 4 are all indefinite integrals of f(x) = 

2x, since 

89 
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8 (2) 4 (9245 )= 4 (2-4 = 2x 
dx dx dx 

All indefinite integrals of f(x) = 2x are then described by the general 

form of the antiderivative F(x) = x? + C, where C, called the constant of 

integration, is an arbitrary constant. 

The symbol {f(x )dx is used to indicate the indefinite integral of 

f(x) where the function f(x) is called the integrand. Thus we write 

J2x dx = x24+C 

where dx denotes the antiderivative being taken with respect to x. 

Fundamental Integration 
Formulas 
A number of the formulas below follow immediately from the standard 

differentiation formulas of earlier sections, while others may be 

checked by differentiation. Formula 25 displayed below, for example, 

may be checked by showing that 

a a eee + -@aresin~+C ble 
a dx \2 

f2x dx=x’?+C 

Absolute value signs appear in several of the formulas. For example, for 

Formula 5 displayed below, we write 

(oon ieee 
x 

instead of 

jain x+C forx > 0 and phen (-x)+C forx < 0 
x 
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d 
: lagu (x )]dx=f (x )+C (Fundamental Theorem of Calculus) — 

2 [f(x )+g(x)ldx= ft(x)dx+ fe (x \dx 

3. faf(x )dx=a [f(x )dx, a=any constant 

m+l 
Xx 

jik Ore —+C, m#-1 
m+ 

Nn ph Sie 
», « 

6. fa"dx=—*_+¢, a>0, a¥l 
Ina 

7. fe*dx=e"+C 

oo . fsin x dx=—cos x + C 

9. {cos x dx=sin x+ C 

10. {tan x dx=In|sec x|+ C 

11. fcot x dx=In|sin x|+ C 

12. fsec x dx=In|sec x+tan x|+ C 

13. [esc x dx=In|csc x—cot x|+ C 

14. Jsec’ x dx=tan x+-C 

1S; fese” x dx=-cot x+ C 
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16. {sec x tan x dx=sec x+ C 

17. fcesc x cot x dx=—csc x+ C 

dx aoa 
18. /————=arcsin —+C 

4a—x’ e 

1O rh ee ae gie O 
2 2 
atx a a 

dx 1 X 
20. {/———— =— arcsec —+C 

x{x-a a 4 

Deel es = In See 
Xe ae eal X+a 

29 Ap ee ay (EEE te 
a — 2a a-X 

dx oe earpe (edged Mee 

dx / 
24. eaega ca" lc 

25. f4a°—x’ dx=5x4 a—x" +a°aresin ee 
a 

26. fax+a’ dx=oxd xa’ +Sa"In (oy. Ax +a ec 

The Method of Substitution 

To evaluate an antiderivative | f (g (x ) \dx- g' (x \dx , it is often useful to 

replace g(x) with a new variable u by means of a substitution u = g(x), 

du = g'(x) dx. The equation 

J f(u )du= J f(g (x ))g’ (x )dx (6.1) 
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is valid. After finding the right side of Eq. (6.1), we replace u with g(x); 
that is, we obtain the result in the original terms of x. To verify Eq. (6.1), 
observe that, if 

F (x }= J f(x )dx, then 

<F (x)= F [x) =f" {u)=fle(u))8(u) 
Hence, 

F(x)=/f(g(u))g’(u)du 

which is Eq. (6.1). This method, called “u-substitution” applies to inte- 

grands which are a product of the form Eq. (6.1). (Such a product results 

from the chain rule applied to the original composite function F(g(x)).) 

Example 6.1 Evaluate f(x+3 )Mdx. 

To evaluate the integral, replace x + 3 with u; that is, let u= x + 3. Then 

dx = du, and we obtain 

J (x+3 )"'dx= fide ees (x+3)?+C 
12 2 

Quick Integration by Inspection 

Two simple formulas enable us to find antiderivatives almost immedi- 

ately. The first is 

fe’ (xl g(x) Fdx= : le(x) f° +C r#-—1 
r+ 1 (6.2) 

This formula is justified by noting that 

af [etal fre’ (e)la (ot 
dx {r+l 
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Examples 6.2 Evaluate the following integrals 

(a) phim xl ay and (b) [x4 x?+3 dx 

2 

(a) f (In x) dx= re (In x Pax=— (In x }+C (verify by differentiation) 
xX x ‘ 

(b) fx4x?+3 dn =F jl2x) 043 "axa 4 | (3 Pate 
3/2 

=—[1x°+3 [+e 

The second quick integration formula is 

;£ (x) 
g(x) 

This formula is justified by noting that 

d _8'(x) Gy lintels a 

dx =Inlg(x)|+C 

Examples 6.3 Evaluate the following integrals 
2 

(a) foot x dx and (b) Jf dx 
3 

(a) foot x dx= f — * dx=In|sin ha 
s In X 

x sxe 
b dx=— 
( J x 3 J r=—4 

dx=— In|x*-5|+C 

Integration by Parts 
When u and v are differentiable functions of x, then 

d(uv )=u dv+v du or u dv=d(uv )—v du (6.4) 

and, integrating both sides, we get 

fu dv=uv— fv du (6.5) 
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When used in a required integration, the given integral must be separat- 
ed into two parts, one part being u and the other part, together with dx, 
being dv. For this reason, integration by use of Eq. (6.5) is called inte- 
gration by parts. Two general rules can be stated: 

oe 
% 

1. The part selected as dv must be readily integrable. 

2. Jv du must not be more complex than fv du. 

Example 6.4 Find | x°e" dx , 

1 
Take u = x? and dv = ex dx; then du = 2x dx and v = oe (by u- 

substitution). Now, by Eq. (6.5), 

1 2 2 1 fe Aled 
x3e" dx=—x’e" — [xe dx=— x’e" ——e" +C 

J 2 J 2 2 

(where again, we applied u-substitution to find the integral xe dx), 

Example 6.5 Find [In (x?+2 )dx . 

2x dx 
Take u = In (x? + 2) and dv = dx; then OS es and v = x. By Eq. 

(6.5), 
2 

fin (x?+2 )dx=x In(x?+2 )- f a dx 
x +2 

4 
=x In(x’+2)- f{2- Ke x n(x?+ ) i[ aot 

=x In [ee ie 2x+2.[2 arctan —=+C 
12. 
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Reduction Formulas 

The labor involved in successive applications of integration by parts to 

evaluate an integral may be materially reduced by the use of reduction 

formulas. 

f St 
(a ey a’ | (2m—2 are se ped fat ne 

ml (6.7) 

fla?sx? Paxa kee p +2ma__ fla? 4x? PP dx gvek (6.8) 
2m+1  2m+1 ta : 2 

f dx aie Meg x pees dx 

(a7 yt ca" | (Qm—2 tea Sm 2 

ae i ml (6.9) 

a? dx ee 8 2ma° 2 2\m-1 al 

[ae ee ee ee (6.10) 
maerax eas max MM - m-1 ax pele axa are : Dx" verdx (6.11) 
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* .~m—1 
sin” xX cos x. m—1 in™ d a ee ee) ee + .m-2 fsin™x dx = + Jsin™-*x dx (6.12) 

=| : 

Jcos™x A dx 
ne m m (6.13) 

4 sin? x cos x n=l 
Jsin™x cos"x dx=—————— + fsin™x cos’~*x dx 

m+n m+n 

ie pk Cos kh 1, LS 
et | sin®™ “x cosx dx,meA=n (6.14) 

m+n m+n 

Jx™sin bx dx=———cos bxt 1x? cos bx dx (6.15) 

fx™cos bx d= sin bx-—= fx" sin bx dx (6.16) 

dx 
Example 6.6 Find (a) [ (ax)? 

+X 
and (b) {(9+x?)/7dx. 

(a) Since the exponent in the denominator can be reduced by 1, we use 

this formula twice to obtain 

dx X 2 dx 
|—-=————_-- + = J ———— (+e F? 3(1+eP? 3° (14 P? 

x 2 x 
————— + = ———— +€ 3(148 P39 (14x?) 

(b) Using the appropriate reduction formula, we obtain 

i /2 1 27 
f (94x? are (94x? eg f (94x? "ax 

=7x(9+x Pee ikoex V7 onze yore ec 
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Trigonometric Integrals 
The following identities, including those found in Table 4-1, are . 

employed to find some of the trigonometric integrals in this section: 

ls 

De 

3: 

ee 2 
sin x+cos x=1 

2 2 
l+tan x=sec x 

D Dy 
l+cot x=csc x 

Man aee een 2x) 
2 

.cos°x=—(1+005 2x ) 

. i, 
. SiN X COS Ae 2x 

. SIN X COS y=5 [sin (x-y )+sin (x+y )] 

. Sin X sin y=5 [eos ({x-y)-cos (x+y) 

. COS X COS y=5 [eos (x-y)+c0s (x+y)] 

10. l—cos x=2 sin’ x 

11. l+cos x=2 £08" x 

12. 1+sin x=l+cos (nx 

Two special substitution rules are useful in a few simple cases: 

1. For Jsin™x cos'x dx: If m is odd, substitute u = cos x. If n is odd > 

substitute u = sin x. 
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2. For ftan™x sec x dx: If n is even, substitute u = tan x. If m is 
odd, substitute u = sec x. 

Exaniple 6.7 Evaluate the integral J sin? x dx. 

: 1 1 1 
sin’x dx= {[—(1—cos 2x )dx=—x-——sin 2x+ J vag )dx ae a x+C 

Trigonometric Substitutions 
Some integrations may be simplified with the following substitutions: 

1. If an integrand contains 1 a’—x° , substitute x = a sin z. 

2. If an integrand contains 1 a°+x’ , substitute x = a tan z. 

3. If an integrand contains 1 x?—a’ , substitute x = a sec z. 

More generally, an integrand that contains one of the forms 

da—bix?, 4a+b'x?, or 4 b-x’-2 

but no other irrational factor may be transformed into another involving 

trigonometric functions of a new variable as follows: 

aV1-—sin* z= acosz 

aV1+tan? z=asecz 

aV sec? z-—1=atanz 

= It 

& It > set) 3 N 

a 

b 
a 

b 
a 

b 

Table 6-1 
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In each case, integration yields an expression in the variable z. The cor- 

responding expression in the original variable may be obtained by the 

use of a right triangle as shown in the following example. 

dx 
E le 6.8 Find J == xample in ye 

Let x = 2 tan z, so that x and z are related as in Figure 6-1. Then 

dx = 2 sec?z dz and | 4+x* =2 sec z, and 

f dx =f 2 sec z dz oe sec Z 4, 

x 44x" (4 tan’z )(2 sec z) 4° tan’z 

2 

=f sini cos z dz=— : eine ae 
4 4 sin z 4x 

Figure 6-1 

Integration by Partial Fractions 

A polynomial in x as a function of the form 

ax"+ax™l+eeeta xt+a, 
0 I n-| n 

where the a’s are constants, a, # 0, and n, called the degree of the poly- 

nomial, is a nonnegative integer. 

Every polynomial with real coefficients can be expressed (at least, 
theoretically) as a product of real linear factors of the form ax + b and 
real irreducible quadratic factors of the form ax? + bx + c. (A polyno- 
mial of degree 1 or greater is said to be irreducible if it cannot be 



CHAPTER 6: Fundamental Integration Techniques 101 

factored into polynomials of lower degree.) By the quadratic formula, 
ax* + bx +c is irreducible if and only if b? - 4ac < 0. (In that case, the 
roots of ax? + bx + c = 0 are not real.) 

Example 6.9 

(a) x*-x + 1 is irreducible, since (- 1)? - 4(1)(1) = - 3 <0. 

(b) x? - x - 1 is not irreducible, since (- 1)? - 4(1)(- 1)=5>0 

In fact, 

x’?—-x-1l=|x 
_itds i 1-d5 

2 2 

A function F(x) = f(x)/g(x), where f(x) and g(x) are polynomials, is 

called a rational fraction. If the degree of f(x) is less than the degree of 

g(x), F(x) is called proper; otherwise, F(x) is called improper. 

An improper rational fraction can be expressed as the sum of a 

polynomial and a proper rational fraction. Thus, 

x? Xx 
————— = xX ——_ 

x+] x+1 

Every proper rational fraction can be expressed (at least, theoretically) 

as a sum of simpler fractions (partial fractions) whose denominators 

are of the form (ax + b)" and (ax? + bx + c)", n being a positive integer. 

Four cases, depending upon the nature of the factors of the denomina- 

tor, arise. 
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Case I: Distinct Linear Factors 

To each linear factor ax + b occurring once in the denominator of a 

proper rational fraction, there corresponds a single partial fraction of the 

form 

A 

ax+b- 

where A is a constant to be determined by the solution of simultaneous 

equations. 

‘ dx 
Example 6.10 Find ieee « 

x —-4 

We factor the denominator into (x - 2)(x + 2) and write 

Page 
4 XD wee 

Clearing of fractions yields: 

1=A(x + 2) + B& - 2) (6-17) 

or 1 =(A + B)x + (2A - 2B) (6-18) 

We can determine the constants by either of two methods. 

General Method: Equate coefficients of like powers of x in Eq. (6-18) 
and solve simultaneously for the constants. Thus, 

A+B=0Oand 2A - 2B=1 

This yields 

1 1 
A= and B=—— 

gee 4 

Short Method: Substitute in Eq. (6-17) the values x = 2 and x = - 2 to 

obtain | = 4A and | = - 4B; then 
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By either method, we have 

a xh 
ins 4 q 4 

Kg! Re gD 

Then, 

dx i dx 1 dx 

Parr per sas 

eee 2h nlx 214. 
4 a 

x+2 

Case II: Repeated Linear Factors 

To each linear factor ax + b occurring n times in the denominator of a 

proper rational fraction, there corresponds a sum of n partial fractions 

of the form: 

A A 
es ot of 

axtb (ax+b) (axtb)" 

where the A’s are constants to be determined. 

aor (3x+5 )dx 
Example 6.11 Find ! \3_ 2 44 

xo -x?-x+1=(x+ 1)(x - 1)’. Hence, 

3x+5 A B C = + - ; 
ox S=x+I x¥1 (x1 (x=1) 

and 
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3x+5=A(x- 1% + B+ 1)(K- 1) + CK + 1) 

For x = - 1,2 =4A, andA = 1/2. For x = 1, 8 = 2C and C = 4. To deter- 

mine the remaining constant, we use any other value of x, say x = 0; for 

x=0,5=A-B +Gand B=- 1/2, Thus; 

Sk D ae dx =e dx +4) dx 

Cee esel eer x-1 (x=1/) 

Se he ie i ote 
2 ; 2 x=] 

4 1 
=- in 

x1. 2 

x+1 
+C 

x-l 

Case III: Distinct Quadratic Factors 

To each irreducible quadratic factor ax? + bx + c occurring once in the 

denominator of a proper rational fraction, there corresponds a single 

partial fraction of the form 

Ax+B 

ax’+bx+c 

where A and B are constants to be determined. 

Xo+xX°+x+2 
Example 6.12 Find ! Ka a 

x4 + 3x? + 2 = (x? + 1)(x? + 2). We write 

x°+x°+x+2  Ax+B  Cx+D 
439x749) Ox? + 1 x?+2 

and obtain 

x3 +x?4+x+2=(Ax + B)(x? + 2) + (Cx + D)(x? + 1) 

= (A + C)x? + (B + D)x? + (2A + C)x + (2B + D) 
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Hence A +C=1,B+D=1,2A+C=1, and 2B + D =2. Solving simul- 
taneously yields A = 0, B = 1,C = 1, D=0. Thus, 

pe eee J _ +} ues arctan x + In (x?+2)+C = = x+—In (x 
x 43x +2 x +1 x2 2 

Case IV: Repeated Quadratic Factors 

To each irreducible quadratic factor ax” + bx + c occurring n times in 

the denominator of a proper rational fraction, there corresponds a sum 

of n partial fractions of the form: 

A,x+B, . A.X+B, ee A,X+B, 

ax+bxt+c (ax’+bx+c) (ax’+bx+ce]" 

where the A’s and B’s are constants to be determined. 

Example 6.13 Find 

Saeed AA? of (2 x +4x°—4x°+ 8x foae 

(xe+ 2) 

We write 

x°—x'+4x7-4x°+8x-4 Ax+B, Cx+D , Ext+F 

(x?4+2) Kt) eee ay 

Then 

x5— x44. 4x3— 4x24 8x—4= (Ax+B)(x?+2)+(Cx+D)(x?+2 )+Ex+F 

=Ax°+Bx'+(4A+C )x?+ (4B+D )x? 

+(4A4+2C+E)x+(4B+2D+F ) 

from which A = 1, B =- 1,C =0, D =0, E=4, F=0. Thus, the given 

integral is equal to: 
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x-1 x 
dx+4 {|———~ dx= 

re, J (xe 

1 2 x 1 
—In (x?+2)—+= arctan —-—————+C 
ze 2 A2 (x42) 

Miscellaneous Substitutions 

If an integrand is rational except for a radical of the form 

1. ‘Jax+b , then the substitution ax + b = z" will replace it with a 

rational integrand. 

2. Aqtpx+x’ , then the substitution q+ px + x?=(z- x)? will replace 

it with a rational integrand. 

3. Agqtpx—x’ =A (a+x)(B—x) , then the subsitution q + px - x? = 

(a + x)*z? or q + px - x* = (B - x)’z? will replace it with a rational 
integrand. 

Example 6.14 Find 

i dx 

x41 —x ; 

Let 1 - x = z?. Then x = 1 - z?, dx = -2z dz, and 

dx —2z dz dz 
== ——_—_—_=-) 

Barr i pais Toe 

<Uyer EEEN SE pte ahi 
I-z 1+ 1-x 
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Other Substitutions 
The substitution x = 2 arctan z will replace any rational function of 
sin X and cos x with a rational function of z, since 

¥ 

2z l-az5 2 dz 
No.2 5 COS X=, 1; alld dk = 5 

14+z 1+z 1+z 

The first and second of these relations are obtained from Figure 6-2, and 
the third by differentiating x = 2 arctan z. After integrating, use 

1 ee : 
Z= oy to return to the original variable. 

Ss De 

1-2? 

Figure 6-2 

Example 6.15 Evaluate the following integral 

2 dz 

dx S 1+2 6 dz 
1+sin x—cos x 27 ey z(1+z) 

+ a 

1+2  1+7 

1 
tan x 

vA 2 
=|n|z|—In|1+z|+C=In 5 Oath 

1 
1+tan—x 

2 



108 CALCULUS 

Integration of Hyperbolic 
Functions 
The following formulas are direct consequences of the differentiation 

formulas of Chapter 3. 

Jsinh x dx=cosh x+C 

fcosh x dx=sinh x+C 

tanh x dx=1In cosh x+C 

Jcoth x dx=In lsinh x|+C 

fseclt x dx=tanh x+C 

fesclt x dx=—coth x+C 

Jsech x tanh xdx=—sech x+C 

Jesch x coth x de—csh x+C 

dx 2 xX 
f———= sinh '—+C 

x+2" a 

eas 
=cosh '—+C, x>a>0 

xa a 

dx 1 eX 
paar tanh Cae: of 

a—x* a a 

dx 1 X 
; >=-—coth'—+C, x > a 

x’ 4a a a 

J 

J 
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Example 6.16 Evaluate the following integrals 

Jsinh—x dx and | seclt (2x—1 )dx 
x 

warey eer 1 sinh —x dx=2 {sinh —x d|—x 2 h—x+C J 5 f 5 é } coshry x 

[seck (2x-1 Jax=— [sect (2x—1)d(2x-1 }=> tanh (2x- 1)+C 

Applications of Indefinite 
Integrals 
When the equation y = f(x) of a curve is known, the slope m at any point 
P(x, y) on it is given by m = f'(x). Conversely, when the slope of a curve 
at a point P(x, y) On it is given by m = dy/dx = f'(x), a family of curves, 

y = f(x) + C, may be found by integration. 

ts) 

Example 6.17 Find the equation of the family of curves whose slope at 

any point P(x, y) is m = 3x’y. Find the equation of the curve of the fam- 

ily which passes through the point (0, 8). 

Since a OY 325 , we have AY 3,24x., Then In ¥ apc Sexe 
dx y; 
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In c and y=ce. When x = 0 and y = 8, then 8 = ce® = c. The equation 

of the required curve is y=8e* . 

We can also use indefinite integrals to describe equations of motion. An 

equation s = f(t), where s is the distance at time t of a body from a fixed 

point in its (straight-line) path, completely defines the motion of the 

body. The velocity and acceleration at time t are given by: 

Conversely, if the velocity (or acceleration) is known at time t, together 

with the position (or velocity) at some given instant, usually at t = 0, the 

equation of motion may be obtained. 

Example 6.18 A ball is rolled over a level lawn with initial velocity 25 

feet per second (ft/sec). Due to friction, the velocity decreases at the rate 

of 6 ft/sec?. How far with the ball roll? 

Here dv/dt = -6. So v = -6t + Cr. When t = 0, v = 25; hence C = 2. and 

v= -6t + 25. 

Since v = ds/dt = -6t + 25, integration yields s = -3t? + 25t + C,. When 

t=0,s =0; hence C, =O ands = -3t? + 25t. 

25 25 
When v = 0, t= es hence the ball rolls for 6% see before coming to 

rest. In that time, it rolls a distance 

2 

s=-3 ee tio er pe. ea 
6 6 12 6 12 

Solved Problems 
Solved Problem 6.1 Evaluate the indefinite integral: 
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Solved Problem 6.2 Evaluate the indefinite integrals: 

(a) ftan x dx (b) tan 2x dx 

Solution. 

(a) ftan x dx = f2P* dx=— pS ax 
COS X cos xX 

=-In|cos x|+C=In|sec x|+C 

(b) ftan 2x x= | (tan 2x )(2 dx}=+In|sec2x|+C 

Solved Problem 6.3 Evaluate the integral 

fsin’ 6 cos 0d 0 

Solution. We begin by making the following definitions: 

u='sin. 9 or du = cos 8d 8 

Therefore, 
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[sin @ cos 0 d® = fur du 

u 

Se 
3 

sin’ @ 
=——+ 

5 
ic 

Solved Problem 6.4 Evaluate the integral 

{ (1+x3 Px? dx 

Solution. We first begin by defining 

u=1+x3 

It follows that 

du=3x? dx or ax dx 

Thus, 

(fax Px? dx=fur a0 

Solved Problem 6.5 Evaluate the integral 
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Jx Inx dx 

Solution. We begin by defining 

u=inx 

which implies 

d(in xJ= > 

Thus, 

Jx Inx dx= J (1n x) (x dx) 

wheres =1p x. 7 du== 

yathx? dv = x dx 

Integrating the parts yields: 

Jx Inx dx= J ( (1n x) ( ) (x dx) 

2 2 

Sele Ae 
2 4 

Solved Problem 6.6 Evaluate the integral 

J xe* dx 

Solution. This is a problem requireing integration by parts. We begin by 
defining: 
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u=x2 du=2x dx 

dv = e* dx Vv =e" 

Jx?e* dx=x’e*— feX 2x dx=x’e*—2 [ xe* dx 

The integral { xe“ dx, which is also solved using integration by parts, is 

given by 

fxe dx=xe"—e* 

Therefore, 

fx’e* dx=x’e*—2 [xe*—e* ee 

= x’e*—2xe*+2e°+C 

Solved Problem 6.7 Evaluate the integral 

7 x’ +1 
J 
1 2x-3 

dx 

Solution. We start with the substitution 

We Xe 

from which 

du = 2 dx; daa and x= = 

Therefore, 
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(u+3) ee 
2 

(a dx= | 2 du 

2X ie u 2 

re 
i +6u+ 13 a 

su 

E 3. 33 
= {|—+—+— fu 

Se esar ecu 

2 

= See inlnlec 
16 4 8 

_ (2x-3) (2x23 inxs 
16 4 8 

Now that we have the general form for the solution of the integral, we 

can then eyaluate over the defined limits to obtain the numerical value. 

Suse 2 5 

De salve 
C263 16 4 8 I 

2 2 |e Binrec[ Ot 3. Binise 
ona 16 4 8 

= 2 94—"'In id 
8 



ae ess 
nad a) a - 
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WY The Definite Integral 

WY Plane Areas by Integration 

Y Improper Integrals 

WY Solved Problems 

Riemann Sums 

Let a < x <b be an interval on which a given function f(x) is continu- 

ous. Divide the interval into n subintervals h,, h,, ..., h, by the inser- 

tion of n- 1 points €, €,,.... 6, where a < €)< €, << Geb, 

and relabel a as €, and b as E_. Denote the length of the subinterval h, 

117 
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by Aix= €)-€, of h, by Ax= €-€,.-., of bh, byA x= €- 

(This is done in Figure 7-1. The lengths are directed distances, each 

being positive in view of the above inequality.) On each subinterval, 

select a point (x, on the subinterval h,, x, on iene Xen) and form 

the Riemann sum 

S = ¥ f(x, JA,X=F(x, JA K+ f(x, JA xt +f (x, JAX (7.1) 
k= 

each term being the product of the length of a subinterval and the value 

of the function at the selected point on that subinterval. Denote by A, the 

length of the longest subinterval appearing in Eq. (7.1). Now let the 

number of subintervals increase indefinitely in such a manner that 

i, 0. (One way of doing this would be to bisect each of the original 

subintervals, then bisect each of these, and so on.) Then 

lim S,= lim y f(x, )A,x 
n—-+0o N+00 k=] 

exists and is the same for all methods of subdividing the interval a < x 

< b, so long as the condition 4,0 is met, and for all choices of the 

points x, in the resulting subintervals. 

a Z Xe @ 5b 

Aix Asx Anz Ax 

0 £0 1 &2 &e-1 & fa-1 én 

Figure 7-1 

The Definite Integral 
Theorem: The fundamental theorem of calculus states the 

equivalence of the anti-derivative and the area under 
the curve over an interval [a, b] as: 

b n 

Jf(x)dx=lim S,=lim Y f(x, )A,x 
a n—-+too N+eo k=] 



CHAPTER 7: The Definate Integral 119 

b 

The symbol Jf f(x)dx is read “the definite integral of f(x), with respect 

to x, from x = a to x = b.” The function f(x) is called the integrand; a 

and.b are called, respectively, the lower and upper limits (bounds) of 

integration. This rule establishes the inverse relationship between dif- 
ferentiation and integration. That is, if F'(x) = f(x) over [a, b], then 

j f(x)dx=F (x)I = F (b)-F (a) 

Example 7.1 

(a) Take f(x) =c, a constant, and F(x) = cx; then 

b b 

fc dx=cxl=c(b—a) 

1 4 
(b) Take f(x) = x and F(x) = 2 *’ s then 

We have defined {f (x )dx when a <b. The other cases are taken care of 

by the following definitions: 

(f(x )dx=0 

a b 

Ifa <b, then {f(x )dx=— {f(x )dx 
b a 

Properties of Definite Integrals 

If f(x) and g(x) are continuous on the interval of integration 

a<x<b, then 
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Property 7.1: 

b b 

fcf(x )dx=c [f(x )dx, for any constant c 

Property 7.2: 

(tl rlaneahideeahaladdns ites 
a 

Property 7.3: 

fe (x \dx= fee )dx+ fe (x )dx, for a<c<b 
a 

Property 7.4 (the first mean-value theorem): 

f(x )dx=(b—a)f(x, ) 
a 

for at least one value x = x, between a and b. This also can be interpreted 

as a method of computing the average value of a continuous function 

over an interval [a, b], usually written in the form: 

b 

f(x)= : J f(x) dx 
b-aa 

Property 7.5: 

If F(u}= {f(x)dx, then <P (u)=f(u) 
a 
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The Theorem of Bliss 

If f(x) and g(x) are continuous on the interval a <x <b, if the interval 

is divided into subintervals as before, and if two points are selected in 

each subinterval (that is, x, and X,, in the kth subinterval), then 

lim SiS g (X, )A,x= f(x )g (x )dx 
n—>+too k=l 

We note first that the theorem is true if the points x, and X, are identi- 

cal. The force of the theorem is that when the points of each pair are dis- 

tinct, the result is the same as if they were coincident. 

In evaluating definite integrals directly from the definition, we 

sometimes make use of the following summation formulas: 

¥ke142+---+n= Bt!) 
k=} 

yD 

R= eRe pe Bint )(2n+1) 

k=1 
6 

n(n+1) 
k?=1°+2?+---+n?= 

1 
Ms 

2. k 

Plane Areas By Integration 
Area as the Limit of a Sum 

If f(x) is continuous and nonnegative on the interval a < x < b, the 

Fundamental Theorem of Calculus allows us to identify the infinite 

Riemann sum with the definite integral 

b n 

ff(x)dx= lim Yi f(x, )A.x 
a k=1 

n—+teo : 

can be given a geometric interpretation. Let the interval a <x S b be sub- 

divided and points x, be selected as in the preceding section. Through 
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each of the endpoints € = a, €,, §,° °°, &, = b erect perpendiculars to 

the x axis, and laterally by the abscissas x = a and x = b. Approximate 

each strip as a rectangle whose base is the lower base of the strip and 

whose altitude is the ordinate erected at the point x, of the subinterval. 

The area of the kth approximating rectangle, shown in Figure 7-2, is 

f(x,) A.x. Hence )' f os )A,x is simply the sum of the areas of the n 
k=1 

approximating rectangles. 

Figure 7-2 

b 

The limit of this sum is [ f(x) dx ; it is also, by definition, the area of 
. a . . 

the portion of the plane described above, or, more briefly, the area under 
the curve from x = a to x = b. 

Similarly, if x = g(y) is continuous and nonnegative on the interval c < 
d 

y <d, the definite integral [ g(y) dy is by definition the area bounded 

by the curve x = g(y), the y axis, and the ordinates y = c and y = d. 



CHAPTER 7: Plane Areas By Integration 123 

i y = f(x) is continuous and nonpositive on the interval a < x <b, then 

f(x) dx is negative, indicating that the area lies below the x axis. 
a 

Similarly, if x = g(y) is continuous and nonpositive on the interval c < y 
d 

<d, then { g(y) dy is negative, indicating that the area lies to the left 

of the y axis. 

If y = f(x) changes sign on the interval a < x < b, or if x = g(y) changes 
sign on the interval c < y < d, then the area “under the curve” is given 

by the sum of two or more definite integrals. 

Areas By Integration 

The steps in setting up a definite integral that yields a required area are: 

1. Make a sketch showing the area sought, a representative (kth) strip, 

and the approximating rectangle. We shall generally show the rep- 

resentative subinterval of length Ax (or Ay), with the point x, (or y,) 

on this subinterval as its midpoint. 

2. Write the area of the approximating rectangle and the sum for the 

n rectangles. 

3. Assume the number of rectangles to increase indefinitely, and apply 

the fundamental theorem of the preceding section. 

Areas Between Curves 

Assume that f(x) and g(x) are continuous functions such that 0 < g(x) < 

f(x) for a < x <b. Then the area A of the region R between the graphs 

of y = f(x) and y = g(x) and between x = a and x = b (see Figure 7-3) is 

given by 

b 

A= [flx)dx- fg (x Jax= f[t(x)-s(x ex 
a 

b 

That is, the area A is the difference between the area {f(x )dx of the 
a 
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b 

region above the x axis and below y = f(x) and the area | g (x )dx of the 
a 

region above the x axis and below y = g(x). 

Figure 7-3 

Example 7.2 Find the area enclosed by the curve y? = x? - x*. 

The curve is symmetric with respect to the coordinate axes. Hence the 

required area is four times the portion lying in the first quadrant. 

For the approximating rectangle shown in Figure 7-4, the width is Ax, 

the height is y= x?-x?=x1—x?, and the area is x 1—x? Ax 
Hence the required area is 

1 

41-2) a square units 
3 oe 

1 

A=4Jx41-x’ dx= 
0 

Figure 7-4 
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Improper Integrals 

b 

The definite integral {f(x )dx is called an improper integral if either 

1. The integrand f(x) has one or more points of discontinuity on the 

interval a < x <b, or 

2. At least one of the limits of integration is infinite. 

Discontinuous Integrand 

If f(x) is continuous on the interval a < x < b but is discontinuous at x = 

b, we define 

b b-€ 

ff (x )dx= lim, J f (x )dx provided the limit exists 
0 a a 

B 

(This can also be written lim {f(x )dx.) 
Bob a 

If f(x) is continuous on the interval a < x < b but is discontinuous at x = 

a, we define 

b b 

Jf (x )dx = lim, f f(x )dx provided the limit exists 
a €>0 ate 

b 

which can also be found as lim {f(x )dx. 
ara & 

If f(x) is continuous for all values of x on the interval aS x S$ b except 

at x =c, where a<c <b, we define 

b c-€ b 

[f(x )dx=lim | f(x)dx+lim J f(x )dx provided both limits exist. 
ps 

a e505 a 630 ‘c+e’ 
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ae OX 
Example 7.3 Show that | 7 

0 

is meaningless. 

The integrand is discontinuous at x = 2. We consider 

2-€ 

=lim {in —In- 
2 0 e 0t E 

2=€ dx 

lim | f =lim|In 
6-30) Oem e500) 

=x 

The limit does not exist; so the integral is meaningless. 

Infinite Limits of Integration 

If f(x) is continuous on every interval a < x < U, we define 

+400 U 

J f(x )dx=lim f f(x )dx provided the limit exists 
a U-+t00 a 

If f(x) is continuous on every interval u < x < b, we define 

b b 

J £(x )dx=lim [f(x )dx provided the limit exists. 
7 u-co ou 

If f(x) is continuous, we define 
+00 U a 

J £(x )dx=lim J f(x )dx+lim | (x )dx 

U+tee u—-co 

provided both limits exist. 

ee Os 
Example 7.4 Evaluate | =—. 

0 x +4 

The upper limit of integration is infinite. We consider 
U U 

lim f a = lim ES arctan == 
0 xX +4 2 2, 0 

U+e0 U+teo 

from which 

es 
J 

T 

0 +4 4 
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Solved Problems 
Solved Problem 7.1 Given the region bounded by the curve y = 

tys : 1 : : 
x?, the line y = aye , and the line x = 3, find the area of the region. 

Solution. The area between two curves can be determined by: 

b 

area = f [f(x )—g(x)]dx 

where, in this case, 

1 
fx) =x" and.e(x)= aie Therefore, the area of this region is: 

ibe-(3"] x -|-—x 
Z 

area ={ 
0 

dx 
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Polynomial Functions 

d Re ee n-1l 
ix (a,x ) = na,x- 

d BS oe n-l du 
ag (a,u ) = na,u [saa 

Trigonometric Functions 

5 du 
a (sin w) = cos u [Ge 

d ; du 
a (os Y) == sinu [a 

d as 2; du, 
Gx (tan) =I SCC ula 
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< (cot) = — csc’ u (2) 

© (sec u) = — secutan uo] 

+ (ese u) = — ese ucotu [$4] 

a’) aan liad 

Exponential Functions 

de. Sanat = vise fae 

Logarithmic Functions 

d 1 du 
ax ln) = Wea 

d log,e du 
ax (08.4) = : bax | a#0,1 



Polynomial Functions 

ptl 

fu’du = at p#l 

2 d 
fu''du = oe =Inu 

Trigonometric Functions 

fsinudu = — cosu 

fcosudu = sinu 

ftanudu = — Incosu 

fcotudu = Insinu 

fsecudu = In(sec u + tanu) 

fcsc udu = In(csc u — cot u) 

13:1 
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Exponential Functions 

u 
a 

Ina 
fa’du = a>0O,a#l 

fede se" 

Logarithmic Functions 

Jinx dx = xInx - x 



Angle of intersection, 37—38 

Antiderivative, 89—90 

Approximations 

differentials, 79 

roots of equations, 79-81 

Asympote, 82-84 

Average rate of change, 8 

Chain rule, 23-24 

Composite function, 23-24 

Concavity, 44 

Continuity, 8-12 

Critical points, 39 

Critical values, 39 

Curve sketching, 81—85 

Decreasing functions, 39 

Definite integrals, 118-20 

Degree of polynomial, 100-01 

Dependent variable, 1 

Derivatives of higher order, 

27-28 

Differentials 

approximations, 79 

x, 77-78 

y, 77-78 

Differentiation 

chain rule, 23-24 

derivative, 17-19 

formulas, 57-58, 61, 62-64 

higher derivatives, 25-26 

increment, 17 

implicit functions, 21—23 

inverse trigonometric, 58-59 
inverse functions, 21—23 

logarthmic, 61-62 

rate of change, 18-19 

rules, 20-21 

special functions, 53-62 

trigonometric functions, 

53-62 

Discontinuity, 9-10 

Distinct linear factors, 102—03 

Distinct quadratic factors, 104 

Domain, 1 

Exponential functions, 60-62 

Extended law of mean, 71 

Extent, 82-84 

Factors 

distinct linear, 102—03 

distinct quadratic, 104 
reapeated linear, 103-04 
repeated quadratic, 105 

First derivative, 24 

test, 40-44 

Formulas 

differentiation, 57-59, 61, 

62-64 

integration, 90-94 

reduction, 96-97 

Fractions 

partial, 100-105 

rational, 101 
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Function 

composite, 23—24 

continuity, 8-12 

decreasing, 39 

discontinuity, 9-10 

domain, 1 

exponential, 60-62 

first deriviative test, 40-44 

graph, 3 

hyperbolic, 63-64, 107-08 

increasing, 39 

infinite sequence, 4 

inverse, 21—23 

inverse hyperbolic, 63-64 

inverse trigonometric, 58—59 

limit, 5—7 

logarithmic, 60-62 

range, | 

relative max/min values, 40 

second derivative test, 45 

special, 53-62 

trigonometric, 54—59 

variable, 1—3 

Fundamental theorem of calcu- 

_lus, 188-19 

oN 

General term (sequence), 4 

Generalized law of mean, 72-73 

Higher derivatives, 25-28 

Horizontal extent, 82 

Hyperbolic functions, 62-64, 

107-08 

Implicit differentiation, 26—27 
Improper, 101 

Improper integrals, 125-26 

Increasing functions, 39 

Increment, 17-18 

Indefinite derivative, 89-90 

Indefinite integrals, 109-10 

Independent variable, 1 

Indeterminate forms, 74-77 

Indeterminate types, 75—77 

Infinite limits of integration, 126 

Infinite sequence, 4 

Inspection, 93-94 

Integrals 

definite, 118—20 

indefinite, 109-10 

improper, 125-26 

Integrand, 90, 119 

discontinuous, 125—26 

Integration 

formulas, 90-94 

hyperbolic functions, 107-08 

infinite limits, 126 

inspection, 93-94 

parts, 94-95 

partial fractions, 100-05 

plane areas, 121-24 

Intercept, 81-84 

Intermediate value theorem, 11 

Isolated point, 82 

Instantaneous rate of change, 

18-19 

Inverse functions, 21—23 

hyperbolic, 63-64 

trigonometric, 58-59 

Law of mean, 71-73 

L’Hospital’s rule, 74-76 
Limit 

function, 5—7 

left, 7-8 

right, 7-8 

sequence, 4—5 

theorems, 8 



Linear factors, 103-04 

Logorithmic differentiation, 

61-62 

Logorithmic functions, 60-62 

Maxima, 35-48 

Maximum and minimum points, 

83-85 
Minima, 35-48 

Nth term (sequence), 4 

Natural logorithim, 60 

Normals, 36—37 

Partial fractions, 100-05 

Parts, integration by, 94-95 

Plane areas by integration, 

121-24 

Points of inflection, 44-45 

Principal branch, 58-59 

Proper, 101 

Properties of definite integrals, 

119-20 

Quadratic factors, 104—05 

Radian measure, 54-55 

Range, | 

Rate of change, 18 

Rational fraction, 101 

Reduction formulas, 96—97 

Reimann sums, 117-18 

Relative values, 40 

Removable discontinuity, 9-10 

Repeated linear factors, 103-04 

Repeated quadratic factors, 105 

INDEX 135 

Rolle’s theorem, 69-71 

Roots of equations, 79-81 

Rules 

chain, 23-24 

differentiation, 21—22 

L’Hospital’s, 74-76 

Second derivative, 24 

test, 45 

Sequence 

general term, 4 

infinite, 4 

limit, 4—5 

nth term, 4 

Substitution, 92-93, 106—07 

Symmetry, 81-84 

Tangents, 35-36 

Theorem of Bliss, 121 

Theorems 

Bliss, 121 

continuous functions, 10-12 

fundamental of calculus, 

91-92, 118-19 

intermediate value, 11 

Rolle’s 69-71 

Third derivative, 24 

Trigonometry 

functions, 54-59 

integrals, 98-99 

substitutions, 99-100 

Upper and lower limits, 119 

Variables, 1-3 

Vertical extent, 82 
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STUDY GUIDES/MATHEMATICS 

Get ready for test day in a fraction of the time! 

Let’s talk bottom line: Schaum's Easy Outline 

of Calculus gives you what you want—better 

grades with less work and more free time! 

This super-condensed guide is built for quick, 

effective study that will make mastering this — 

subject fast, fun, and painless. Inside you get 

the essentials your professor expects you to 

know on exam day, reducing the time you 

need to study. Whether you are doing a final 

review or a last-minute cram session, Schaum's 

Easy Outline of Calculus will help you get the 

grade you want! 

Inside you'll find 

* Quick study tips 

* At-a-glance tables 

* Easy-to-understand instruction 

* Memory joggers 

* Rapid-absorption teaching techniques 

Learn more. a Do more. 

MHPROFESSIONAL.COM 

Master these concepts 

almost instantly! 

* Maxima and Minima 

¢ The Law of the Mean 

* Fundamental Integration 

Techniques and Applications 

* The Definite Integral 

* Plane Areas by Integration 

¢ Improper Integrals 

USD $11:00° 
ISBN 978-0-07-174582-6 
MHID 0:07-174582-3 
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