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Chapter 6: Transcendental Functions 
and Differential Equations 

LOGARITHMS 

The natural logarithm is defined by In x = for x satisfying 

d 
By the first part of the Fundamental Theorem of Calculus, oe Inx = 

logarithm is a continuous function for x > 0 because it is 

, so the natural 

OBJECTIVE A: Use the three laws of logarithms to rewrite a logarithmic expression as a sum, difference, or 

8. 

multiple of logarithms. 

iInaxn= for a>O and x>0. 

a 
In-—= for a>O and x>0. 

5 

Inx” = for x >0O and n rational. 

| 2 Cae 2 
xO. geet v2 Moho 2 ona 

ns =m] =( yo{ =n ae Pir ae 

In(b? --/x) = Inb? + =3 +Inx!/? = 

In(x? +2x+))=In(x+1— = forx>-—l. 

OBJECTIVE B: Summarize the characteristics of the graph of y = Inx, and graph the functions involving the 

9. 

10. 

11. 

12. 

10. 

natural logarithm. 

The domain of y = In x is the set , and its range is the set 

The graph of y = Inx is increasing 

Since y=1nx is differentiable for x >0, it isa 

linia ne 
On 

lim Inx = and 
xXx— 090 

I en > 10 D4 ay differentiable 3} 
me: 35 

Ina-Inx 5. ninx 6. 

invx, Inb, 31nb + —Inx 8. 2, 2In(x+1) 9. 

for all x in the domain, for all x >0 11. continuous 12. 

. It is concave down 

function of x. 

x>0, -o< y<+oo 

+ co, — oo 
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: Libs d be. ie 
13. Consider the curve y = x—Inx. The derivative = = so that 7 = 0 implies 

x ix 
1 ee 
—=_—Cir X= _____. Notice that the domain of y is the set____~—~—~-~——_. The second derivative 
Xx 

a y 
se; ps is always positive. Therefore, the critical point x =1 gives a relative 
dx? 
value of y(1) = .As x30, y> . To examine the curve as x increases, notice that 

d 1 
a =1-——>0 whenever x >1. Thus the graph is everywhere increasing. Sketch a graph of y below. 
xX x 

y 

5 

OBJECTIVE C: Differentiate functions whose expressions involve the natural logarithmic function. 

14. Shes) rr ) 
dx (5+2x°)" dx 

1 d 3 a —(54+2x (42x) rea ) 

Ns(56 2° te 

15. [in (sina)? = = in(sin x) 

= 2 In(sin x) - : mea x) 
dx 

= 2 csc x In(sinx)- = 

1 See 3\4 3.3 2 33 24x? 1b tloea. wh IL se Ss) —, minimum, 1, +00 14. (5+2x")", 4(5+2x°)°, 24x°(5+ 2x") rEg 
3% x 5+2x 

ay 

1S. -21in(sinx); , coS x, 2cot x In(sin x) 
sin x 



SECTION 6.1 LOGARITHMS 

dias d 
16. —x* Invx =2xInvx + ing © 

dx dx ‘ 

=2xInvx + dy 
dx 

= 2x In-+x + = a }; 

OBJECTIVE D: Use the method of logarithmic differentiation to calculate derivatives. 

17. Find ea ee 
Ix 

Solution. Iny=In (ne) = so that 

1 dy 
——=cosxInx+ OF 
y ax 

dy sin x 
—— —— ae 4 yo em) 

SeFind A ye) ee een 
dx ND EK 

Solution. Iny=In ae = In(l—x)- so that 
ee 2 

LE) ee eens Sas eee ) 
y dx 2(1- x) 2(1— x)(1+ x) 

dy = 
—_—_— = —_ Ne = oP yl — x) 

iSMrint ete” 
dx 

. 2x’ 
Solution. Iny=Inx*" = 

POP es: Inx+ = 2x°( ) so that 
y dx 

dy _ 
dx 

16. x, x?. 

; : 1 1 
17. sinx:-Inx, sinx-—, cosxlnx+—sinx 

x BG 

1 1 =| —1/2 =3/2 
18. —In(1+x), ———., 1-x, (+x), ~(1-x) (1+ x) 

3 tas Fe ue 

a, 

19. 2x’ Inx, 2x’ Tinx +1, 2x2* *°(7Inx +1) 
x 

107 
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OBJECTIVE E: Differentiate functions involving a logarithmic function log, u 

d d 2h 
Ina 

21. Sarre —e*)= ! 
dx 

22. Find “ if y = (1+ ¥x)022*, 
X 

Iny= In(1 + -¥x)!082* = 

In(l +Vx)+ log, x: - ! 
PS 

Solution. 

la_ 
y dx 

= (14x) 

OBJECTIVE F: Integrate functions whose antiderivatives involve the natural logarithm function. 

23. [34 

x +4 

Let u=x~+4. Then du= 

J x dx =/ du be 

x7 +4 

24. [a= for 
Xi 

2 See 

Let u =Invx. Then — Boe 
xX 

: dx 
the integral becomes i =a 

xInvx 

6.2 EXPONENTIAL FUNCTIONS 

|S 

=3x+ 

. Thus the integral becomes 

+C. 

. Hence, 2 du = dx. Thus 

OBJECTIVE A: Use the derivative rule for inverse functions to calculate the derivatives of the inverse for a 

specified function. 

1 

ulna 
20. Inu, 

22. lo In(l+ In(l+ + 
ON reir as ae 

1 1 1 2 
23. 2x dx, —du, 2u, —In|u|, —In(x* +4)+C 

2 2 2 

25, —= Vx, =, ,u, 2Inful, 2In(dinyx)+C rr 

l 

MiG ee inl0: 
2x -e* 

(x? —e*)In10 

Inx 

21n2-Vx(1+¥x) 

24, =, f=, In| x| 
x x 
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-1 
26. Iffand f —! are inverse functions on suitably restricted domains, then of (5) = — where a and b are 

dx f(a) 
related by and 

, -1 

27. Let f(x) =—-6x+2 and let f ~~ denote the inverse of f. We wish to calculate the derivative (14). First, 
ax 

—6x+2=14 implies x = . Thus, f(-2)=14soa= and b= in Problem 

-l 

26. Then; -( (x)= so that ff (14) = ee = 
dx if Cerner es) 

28. To calculate the inverse of y =—6x +2, interchange the letters x and y obtaining . Solving the 

resultant equation for y yields ROE Gs Ty) = is the inverse function of 

-1 

f(x) =-6x +2. Calculating the derivative o (14) directly from the formula for i gives — Z as 
os 

before. 
Remark. The advantage of the derivative formula for the inverse function given by Theorem | of the text is 

—1 

that it provides for the calculation of the derivative a even though a formula for the inverse function f at 

is not known. 

-l 

29. Let f7! be the inverse of f(x) =x? +4x—3 for x > -2.To find ee hictee f(x) =x? +4x-3 equal 
dx 

to and solve the quadratic equation yielding x =—3 or x = . We reject x =-3 

because —3 is outside the allowable interval x >—-2. Thus, a=_ and b= f(a)= 

-1 
Now eae +4x—-3)= , sof’(-l)= . Thus, of (6) 2 

dx dx J Gees) 

Notice that we did not need a formula for the inverse function f —! itself. 

OBJECTIVE B: Use the equivalent equations y = e* and x = Iny to simplify logarithms of exponentials and 

exponentials of logarithms. 

30. The equation y= e" is equivalent to Iny = . Since the logarithm is one — one , the last equation 

is equivalent to ; that is e™* = . In other words, the exponential “undoes” the 

natural logarithm. 

31. The equation y= In(e”) is equivalent to e” = . Since the exponential function is one — one, the 

last equation is equivalent to ; that is, In(e*) = 

32, e 2/nG@+) — -n_____ by Problem 30. 

i 
26. b= f(a), a= f(b) 27, -2,-2, b=14, -6, -2, -= 

1 
28. x= Oy +2, y= 2 (8-2), JM) = - 2 (4-2) 29. -6,-1,-1,-6, 2x+4, 2, -1, > 

30) nx, y= x, x Ole ey ae Aor) ee 
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SEE In (ie**) =Invx + 

OBJECTIVE C: Differentiate functions whose expressions involve exponential functions. 

34. 

35. — 

36. 

AYE 

38. 

39. 

40. 

33. 

36. 

38. 

40. 

a ier vate: a 

dx dx 

ae 1x? 5 I 

2vl-—x 

d exinx 

dx 

Bin on : ks 
dx Be rei whe 

) 

a _ 

ot ) 

)= 

Seal = cos ve~* eae ees) 
dx dx 

=cosve* gue ES 
dx 

OBJECTIVE D: Integrate functions whose antiderivatives involve exponential functions. 

3 
(ater dx 

Let u=—x°. then du= 

lptetae = | 

Je ~2)4 e*dx 

Let u=e* —2. Then du= 

Je EO Ae de } 

e 
dx 

J 146% 

Let u=e*. Then du= 
x J e dx= | du 

est pls! Baty itorten 

In(e?~*), Invx +(2—x) 

so that x?dx = 

+C= 

. Thus the integral becomes 

and the integral becomes, 

ain +C= 

and the integral becomes, 

+C= 

ere) Inc +1 34. Vi-x?, 1-27, me I-x’ 35, 
l-x 

37. Ve*, e*!?, = Ve¥ cos Ve* 

+C 39. e%dx, u', =u ale" 20) 0 

e*dx, 1+u’, tan! u, tan7!(e*)+C 



OBJECTIVE E: Understand the function y= a’. 

41. The function y= a” is defined by a* = 

SECTION 6.2 EXPONENTIAL FUNCTIONS 

and it is well-defined whenever 

42. The definition in Problem 41 is equivalent to saying that Ina* = 

43. If x >0, the number x” is defined for any real number n and means x” = er 1)! 

44. If x>0, then eerie 
dx 

OBJECTIVE F: Differentiate functions whose expressions involve an exponential function a“, where wu is a 

45. 

46. 

47. 

48. 

49, 

differentiable function of x. 

4 ysecx = -—secx = 
dx dx 

ae = 2x7 4x 
dx 

rine yan x > 0) 
ax 

Solution. \ny =1In(x""*) = 

eae ine 
y dx 

Ay _ tan, 

dx 

Find 2 if y=(x’)*, x >0, rany real number. 
Xx 

Solution. iInv=in@” > = 

The derivative of a“, where u is a differentiable function of x, is given by ee = 
oe 

so that 

LS ine = ), so that 

y ax 

Byes 
dx 

Al, eo" 89 a0 42. xIna Asa ee 

44, nx"! 45. gt. ft. 
dx 

46. 2°°* .1n2, (sec x tan x)2°°°* -In2 47, 3%, 3* In3, 2x+x7 In3 

1 2 | r 1 ryx 48. tanx-Inx, tanx-—, sec” xInx+—tanx 49. xInx’, rxInx, rx-—, Inx+1,r(x’ ) (Inx+1)) 
x, x x 

111 
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OBJECTIVE G: Graph functions whose expressions involve an exponential function a”. 

d 
50. Consider the curve y= ap) eae +2. a = oe +l)= . Therefore, as 

dx dx dx 
is of constant sign, since In (0.2) < 0, and the curve is everywhere 4 

2 

Calculation of the second derivative gives + = which is of constant 
X 

sign; hence, the curve is everywhere concave . AS x 3°79, 2)" ~ so 

vo JAS t=, 0.2)" => soy—> . Finally, the points (-1, ); 

(0, ), and (1, ) lie on the curve. You can now sketch the graph of the curve in the coordinate system 
provided below. 

Vy 

8 

OBJECTIVE H: Use the definition of log, x to evaluate simple expressions. 

51. Ifa>Oanda¥ 1, then y=log, x is defined and equivalent to a” = whenever x is positive. 

If a or x is negative, log, x is 

52. In terms of natural logarithms, log, x = 

53. logs 4 

If y=logg 4, then 8” = or 2—— =2°. Thus, 3y= or y= ; 

Therefore, logg 4 = 

50. (0.2)**! In(0.2), (0.2)**! In (0.2), negative, decreasing, (0.2)**![In(0.2)]”, positive, up, 0,2, +20, +0, 3, 2.2, 
2.04 

51. x, undefined Sp rea 53. 4, 3y, 2, 
b 

Wwl]ry wiry 



SECTION 6.3 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS; INTEGRALS 

27 
54. 108975 — 

64 

27 2 i 
If y= logo 75 64" then = ieee NOW, (=) Cpe ee TO, 

log ile 0.75 64 

OBJECTIVE !: Integrate functions whose antiderivatives involve an exponential function a”. 

So we fo*ax 
Ope 

Let u=-—x so that du= , and the integral becomes 

leet) du = +C= 

2 a 

56. J =10* ae 

Let u=x?—1. Then du= so that x dx = 

[x10 tae = [ Ali Cr tence, 
2 2 1 

10* “lax = = = 
J . te ouaat ) 

6.3 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS; INTEGRALS 

OBJECTIVE A: Differentiate functions whose expressions involve inverse trigonometric functions. 

one ae 
57. —(sin = a u) 

ag pac 
58. —(tan z o ( u) 

d = 
59. — = n (secu) 

Ad oe ( int2) 1 d ( in) 5 
60. — —| =|2sin- — | —— |— =|2sin. — | ——— = 

< (sin _ 3) h(a) re SJ\ .J95 x2 ( ) 

y 
54. (=) gel re ies) NS : “ 

4) 64 In2 2” in? 

1 1 1 i 2_) 3 999 
. 2x dx, —du, —10", 4 ———— 10" 5", 10° —} 

hare ay Saat epgeenr haem 21n10 

d d 
57, 58. é 9 i il 

1=u" Le |u|vu? -1 

113 
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61 4 (sec!) = shies 

iy i = 

62. (an ee) gd SEE See) 
er dx 

63. Differentiating tan} = = : implicitly, we find 
sy 

2 - d 
dx y 1+(z) dx x+y x+y dx 

y 

OBJECTIVE B: Evaluate integrals leading to inverse trigonometric functions. 

1 ax 2 ae 
64. { » Ket u=x-, then du= so that x dx = , and the indefinite integral 

0V1-x* 

becomes | ae me Et + Ce Thus, 
a ee 

lx ax i che Sy 
= =—(sin 1- = pegs lee 

1/2 
65. { gE Let w=sinx, then du= , and the indefinite integral becomes 

0° “1+sin” x 

[j<4e-j/—“ - +C. Thus, 
1+sin“ x pee 
12 | oe - Pe tann 1 = -0= 
Oe 4-sin® x 

6.4 FIRST-ORDER SEPARABLE DIFFERENTIAL EQUATIONS 

66. A first order differential equation is a relation 

67. A function y = y(x) is said to be a of a differential equation if the latter is satisfied 
when and its are replaced throughout by and 
its corresponding derivative. 

pe peas ee ae bss ee a 
So yrebal y= ” Oxx—1 

x y-x a dy y 1 1 1 1 63. =, #®,12,7 64. 2xdx, —du, V1-u2, —sin"! uv, =sin™ x?, sin“! 0, 2 
y y dkms, 2 2 Z 4 

65. cosx dx, 1+u, tan! u, tan7!(sin x), tan! 0, a + 66. o . f(x, y) 

67. solution, y, derivative, y(x) 



SECTION 6.4 FIRST-ORDER SEPARABLE DIFFERENTIAL EQUATIONS 115 

OBJECTIVE A: Show that a given function is a solution to a specified first order differential equation. 

68. Consider the differential equation 3xy’ — y =Inx+1, x >0, and the function y = y(x) = Cx!/3 —inx-—4, where 

C is any constant. Then, =) ed , and 3xy’ = . Thus, 
by 

3xy’-y= (Or? —3)- (Ge —Inx-4)= . Therefore, the function 

y= y(x) = Cx? —tnx— 4, and its derivative, satisfy the differential equation. We have verified that y = y(x) is 

a solution. 

OBJECTIVE B: Solve first order differential equations in which the variables can be separated. If initial conditions 
are prescribed, determine the value of the constant of integration. 

69. Solve the differential equation (xy — x) dx +(xy + y)dy =0. 

Solution. We separate the variables and integrate: x(y—1)dx + y(x+1)dy =0, y dy = »y#il. 
eat 4 

Then 

c + = dy = and integration gives yl) 

y+In|y-1|= +Inc. 
We introduce In C, C > 0, as the constant of integration in order to simplify the form of the solution. Thus, by 

algebra, x+y=InC ea 
y= 

or|y—1]e"? =__ yale 

70. Solve the differential equation x? yyesier: whenwo= 2ay= 0: 

Solution. We change to differential form, separate the variables, and integrate: x? y dy =e dx or, 

ye Ydy= . In Chapter 7 you will see that the left side integrates to -e ”(y +1). Thus, 

=e (yt )=___ , or simplifying algebraically, x(y+1)= . Using the initial 

condition x = 2 and y=0 gives, 2(0+1)= ,orC= . Thus, the solution is 

given by x(y+1)= ( = =) 

OBJECTIVE C: Solve exponential growth and decay initial value problems: 

Differential equation: = = ky 

Initial condition: y = yg when t = 0. 

71. The Law of Exponential Change asserts that the dependent variable y-is functionally related to the independent 
variable t according to the rule: . If k > 0 the rule gives exponential : 

if the rule gives exponential decay. 

72. The half-life of a radioactive substance is the length of time it takes for of a given amount of 

the substance to disintegrate through radiation. The half-life of the carbon isotope C 14 is about 5700 years. 

68, bex723 4, cy¥3 3, nx 4 69. -24-(1- Jae, x4 In|x41} Cl 
3 x x+l x+1 

70. x 7dx, ae C, (l— Cx)e”, 1-2C, “5 71. y= yoe™’, growth, k<0O 
x 

72. half 
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73. Assume that the amount x of C!4 present in a dead organism decays exponentially from the time of death. 

74. 

Ube 

76. 

Tis 

: aot f 4 
Then, x= per , where XQ is the original amount present. To find the constant k in the case of carbon C sa 

(>) Se —In2 
9 0 0 

determine the amount of C!4 present after 10,000 years. Then, the percentage is given by the ratio 
4 

oe ek 10 

Kor In = . Thus, k = ==1.22% 1075 Suppose we want to 

=e = 0.2964, or approximately 29.64 percent of the amount of C 14 remains after 10,000 years. 
ad 

The “1470” skull found in Kenya by Richard Leakey is reputed to be 2,500,000 years old. The percentage of 

k-2.5x10° 
ci4 ae ; : Xe ~ 

remaining is given by ——————— = e 
XO 

. However, if x <—21 then e* <10~ so the percentage of 

c'* left in the skull would be negligible. The current reliable limit for C ei dating is about 40,000 years, so 
another method for dating the skull had to be found. 

Suppose an object is immersed in a fluid having constant temperature T,. If T(t) is the temperature of the 

object at time tr, then Newton’s Law of Cooling asserts that - = , where k > 0 if the object 
t 

is cooling; if k <0 the object is . If T = 7 is the temperature of the object at time 

t = 0, the solution to the differential equation (also called Newton’s Law of Cooling) is 

A thermometer is taken from a room where the air temperature is 70°F to the outside where the temperature is 

20°F. Write an initial value problem modeling the situation, assuming T(t) is the temperature of the 
thermometer at time t. 

Differential equation: 
Initial condition: ; 

The solution to this initial value problem is . As t ce, the temperature 
of the thermometer approaches 

Continuing with Problem 76, to evaluate the constant k we need additional information. Suppose then that after 

A minute the thermometer reads 45°. From the solution in Problem 76, this condition means 

oo 20e 
. Applying the natural logarithm function to both sides to solve for k gives 

50 

In 1 = Ole kis = 1.04. Thus, after | minute the temperature of the 

thermometer will be T = 20+ = 37.7°F. We used a calculator to evaluate 

(3 In 2] 

Gee he 0.354, 

In2 2. 
73. 5700, 5700k, 5700, SS: x10 74. -304 

75. -k(T-T,), warming, T -T, = (Tp —T,)e“ 

76. gl 

Ti. 

— = KT =20), TO) = 70, T - 20 = (70 - 20)e*", 20°F 

— >in2 

eK(2/3) wecey Sine 50e (3 
ree, 



SECTION 6.5 LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS 

6.5 LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS 

OBJECTIVE A: Determine if a differential equation of first order is linear, and if it is, solve it. 

78. A differential equation of first order, which is linear in the dependent variable y, can always be put in the 
standard form , where P and Q are functions of x. 

Ad 7 

79. Assuming that P and Q are continuous functions of x, we can solve a linear differential equation y’ + Py = Q by 

finding an integrating factor, v(x) = , providing a solution equation v(x): y= 

: d as , 
80. Let us solve the equation ae +(x —2)y =3x%e. In standard form, ° + {1 — =)y = 3x7e*. Here 

bi Xx x 

P= and Q= , and the differential equation is linear. An integrating factor is 

; Pd 1-2)d 
given by v(x) = 5 _ wa oe e =x e*. Hence a solution is given by 

xety= | dx+C= dx+C= ST hissy = 

31. The differential equation y’ = x —4xy can be written in standard form as y’ + 4xy = x, so it is linear. The 
y 

equation may also be written in the form ——— = , SO it is separable in the variables x and y. Thus 

we have a choice of methods of solution. As a separable equation, we integrate the last equation, and find 

—=In| l- 4y| = se +1InC, or | 1—4y | =C, , where C; = C~*. If we consider the differential 

fax dx = 
equation as linear, an integrating factor is v(x) =e , from which we get 

2 
ye>* =| dx+C,= + C) or 4y= .If 1—4y<0,we 

choose 4C, = C,, and if 1-4y 20, we choose 4C, =—C\. Thus, both solution forms agree. 

OBJECTIVE B: Solve application problems involving linear differential equations. 

82. A tank contains 1000 gallons of water containing 60 parts per gallon (ppg) of pollutant. Every second, 50 
gallons in the tank receive 100 ppg of additional pollutant from various sources. At the same time, a purifier 
processes 5 gallons per second, reducing the pollutant level to 15 ppg. Find the long-term (i.e. steady-state) 

pollutant level in the tank in ppg, and determine when it reaches 600 ppg. Assume that the pollutant has 
negligible volume and that the tank maintains a uniform concentration through constant stirring. 

STEP 1: y = (Total pollutants amount, in “parts”) = (Parts per gallon) x 

. 4) Pads 
78. “ +Py=Q v4 ; J ee) dx+C 

80. 1- eS 3x2e-*, x—2Inx, —2, x-2e* -3x7e*, 3, 3x +C, Bx? + Cx2)e 
x 

mind 2 A OPE Bee 
Sivan dine" fer aes al Mi+4C,e 

1 3 wee 
82. 1000 gallons, 100, gal, 15, 5, 0, 5000, 1.015 million, 1015 ppg, =, 5075, PCa walencgae she DEER car! aa 

~955,000, 955,000e7/2, 167 sec, 2.8 
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So LEP 2: “ = (Total pollutants amount, in parts) — (Pollutant part removed every second) 
t 

y = x 50 -|—_—_——- x al. ae ee eee) ag 7a re 8 

dy y : : 
STEP 3: At steady-state — = , so that -15|x5= , which yields 

dt 1,000 

y= parts, and that means a pollutant concentration of in 

steady-state. 

STEP 4: To find out when the concentration reaches 600 ppg, solve the differential equation to find when 

y = 600,000 parts. Write it in standard form: “ + P(t)y = Q(t). Here P(t) = and Q(t) = ; 

P(t)d 
Then the integrating factor is v(t) = a pape and 

y(t) = os v(t)Q(t) dt = 5,075 (200e—— + C) = 1,015,000 + 5,075 and since 
v 

y(0) = 60 x 1,000 = 60,000 parts, 5075C = and y(t) = 1,015,000 — . Solving 

for y(t) = 600 x 1,000 = 600,000 parts yields t = , or about minutes. 

6.6 EULER’S METHOD; POPULATION MODELS 

OBJECTIVE A: Find the first three approximations y), yj, and y3, using the Euler approximation for an initial 

value problem y’ = f(x,y), y(xX9) = Yo- 

83. Consider the initial value problem y’ = f(x,y) and (x9) = yo. Then Euler’s method allows you to approximate 

the solution stepping along the tangent lines in increments dx according to the formulas 
Xp = and y, = 

84. For the initial value problem y’ = oe y, y) =2 we find using the increment size dx = 0.1 that 

xo = and y, =2+( )(0.1) =1.9. Next, x, = +0.1 and 

y= + (Cae —1.9](0.1) = 1.831. At the third step we obtain, x2 = and 

y3= = 1a7o19: 

OBJECTIVE B: Solve problems involving population models. 

85. A population starts at t= 0 with a size of P(O) = 11. It grows according to the logistic model 

“ = 0.00027(120 — P)P. One can use Euler’s method with dt = 2 to estimate the population size at t = 50. 
t 

dP There PR = P,-1 oe -dt becomes P, = P,-1 + A Starting with PB = P(0) = Wk P(50) 

is reached after iterations of the formula: P(50) = , rounded to the nearest whole 

number. 

86. To find the exact solution for P(50) in Problem 88, rounded to the nearest whole number, use the solution form 

M 
P =—————.. Here M = r= , and because P(0)=11, A= . Then 

Ace. - 
P(50) = 

83. Xp Fax, Vn PFO Ynn ae B4P 17 271, 19-1, PRSsia [ley = ean) 

85. 0.00027(120 — P,_;)P,-1, 2, 25, 40 86. 120, 0.00027, “ = 9.90, 41 
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6.7 HYPERBOLIC FUNCTIONS 

OBJECTIVE A: Define the six hyperbolic functions and graph them. 

87. coshx= . Sketch the graph below. 

y 

5 

5 x 

88. sinhx= . Sketch the graph above on the same coordinate system as the cosh x. 

89. tanhx= 

90. cothx=___ . Sketch the graphs below. 

sinh x 90 cosh x 
89, _— 

cosh x sinh x 

119 
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91. sechx= . Sketch the graph below. 

y) 

3 

SJ Se cSenwa= ' 

OBJECTIVE B: Given the value for one of the six hyperbolic functions at a point, determine the values of the 
remaining five at that point. Also, use hyperbolic identities. 

93. Suppose tanh x = a Then, sech*x =1- = or sech x = 

1 
Thus, cosh x = = 

sech x 

94. Continuing Problem 96, sinh? x = cosh? x — = . Since tanh x is negative and 

cosh x is positive, it follows that sinh x = . Then, csch x = and coth x = 

95. cosh(—x)= 

96. sinh(—x) = 

97. sinh(x+ y)= 

98. cosh(x+ y)= 

99. sinh2x= 

91. 2 93. ‘anne ee 
sinh x Al ®) 

CA tag i ac Os enchiy OG. canhee 
V3” 3 

97. sinh x cosh y + cosh x sinh y 98. cosh x cosh y + sinh x sinh y 99, 2 sinh x cosh x 
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100. cosh2x = 

101. cosh2x-l= 

OBJECTIVE C: Calculate the derivatives of functions expressed in terms of hyperbolic functions. 

102. ee (cor uw) =_ 
dx 

103 een 
dx 

104. Be (tanh u) = 
dx 

105. y =sinh3(3-2x?) 
d ; d 
<Y = 3sinh2(3—2x2)-— = 3sinh7(3 — 2x”) cosh(3— 5 gid. 
dx dx dx 

106. =y=e* tanh2x 

121 

d d 
Fem )+e* tanh 2x = e* ~( )+e* tanh2x 
be be by 

107, y= xSimhx 150 
D = (eth insy — sinha ~( y= esi tns| sinh x2 Inx +n 

by Xx dx G 
= ey, )= ce aa | ). 

108. e =sech x 

Differentiating implicitly, *(e?) = <sech x, OF = —sech x tanh x. Thus, 
be Bs 

dy -y 
——=-e —_ <2 Se 

100. cosh? x+sinh? x 101. 2sinh? x 102. sinh ue 
be 

103. coshu ao 104. sech* ay 
dx dx 

105. sinh(3—2x”), 3-2x”, —12xsinh?(3 —2x”)cosh(3— 2x7) 

106. tanh2x, sech?2x, 2x, e*(2 sech?2x + tanh 2x) 

hx , ay 
107. sinhx-Inx, sinh x, alt +coshx-Inx, sinhx+x coshx Inx 108. e a sech x tanh x, —tanhx 

x 
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OBJECTIVE D: Integrate functions whose expressions involve hyperbolic functions. 

109. Je eeehirs tayae 

Let u=x7 +3, then du= , and the integral becomes 

We AEE ee ee =i ie tee . 

110. [ sinh? xdx 

From the identities cosh 2x = sinh? x + cosh? x and cosh” x —sinh? x = 1, we have cosh 2x = 

or sinh? x = =( ). thus, [ sinh? xdx = +C. 

111. } tanh x In(cosh x) dx 

Let u=In(coshx), sodu= and the integral becomes 

J (cosh x) tanh x de = | au a Oo 

OBJECTIVE E: Define and use the six inverse hyperbolic functions. Be able to calculate their derivatives. 

a 
112. y=sinh~! x means Cy eS a ee 

mates et 2 
Es —1=0. The solution of this quadratic equation by the quadratic formula gives, 

Declan] 
5 . Since e” >0 we must have e” = or sinh!x = y= . 

or 

OP 

113. sech7!x = 

114. coth7!x= 

115. csch7!x= 

116. Wecan use the formula found in Problem 115 to calculate a) for y= sinh! x: 

& n(x Vx? +1) ae ee ee ) cas) (a eee eee ( 
x+1x74+1 & x+yx7 41 

eo eae eee 

x+yx741 x7 +1 

1 
109. 2x d= cosh, sinh U, 5 sinh (7 43)+C 110. 2sinh? x+1, cosh 2x—1, =sinh 2x -s 8 

: ies] y) 
111. -sinh x dx, u, —u~, —[In(cosh x)]“ +C 

cosh x Z. 2 

112;. x=sinhy,'¢-,; e*Y —1, xe”, 4x7 +4, x+V x? +1, In(x+V x2 +1) 113. cosh! 2 
».G 

{id tanh 115, nh 
xX x 

ere a? as ee 
Nx? +1 x2 +1 
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117. An alternative way to calculate the derivative of y= sinh7! x is as follows: Differentiate x = sinh y implicitly: 

d qd. ; 
—x =—sinhyorl= yt re ghia che eer Genes 
dx dx dx ajl+ 

The positive square root is taken in the penultimate step because cosh y is always 

OBJECTIVE F: Calculate the derivatives of functions expressed in terms of inverse hyperbolic functions. 

118. = (tanh! ee 
dx ad dx 

119. £ in (sinh x) = eee __= 
dx sinh x ax 

12 
130 pe ecm! x =< (coth™! x) us = 

dx 2 dx 

121. Mea eilaen 2 vale? 
dx x? x? 

OBJECTIVE G: Evaluate integrals using integration formulas for inverse hyperbolic functions. 

<2 tx 122. | 
-3 x7 +1 

Since { ae erin )+C (Problem 115), 
x? +1 

=9 

ee ee ee Gs oe ~ 0.375. 
-3 x? +4 

0.9 

123. { va 
9.5 x ae 

dx 
For 0<x<1l, | ———— = +C. Now, 

x {= x7 

=i ei 1 1 J sech “x = cosh =|In}| —+ =a = lh) = _ |. Thus, 
x aX x 

09 dx 0.9 1+-+v1-.81 eo. 09 pf 4ViST), 
0.5 sal ie 2 9 

22in [ew ), ~ 0.850. 
9 

117 Bye! cosh y, sinh? y . positive Li8e te". e 
dx’ V1+x? t-2* 

host 1 A 1 l 6 
119. sinh Lae 120. coth ‘x, —-—-———————__121. ——. ,, ——— 

sinh7! x-/1+ x? 2(1—x?)Vcoth™! x Jr] xV9—x4 

122 rein hee ene? ea ot ee 821); (4/10 = 3) 

2 WT epee. 
123. -sech7!x, as i= xes In pace nf S| In(2 +3) 

2 ‘i x 
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124. | eZ : 
16—%7 ig 

Betsu= a du = , and the integral becomes 

lees 5 -f/—S—-2L )4 C= +C. 
—x | rds 

[dh eS de 16 a) lal i 
4 2 l-u| 8 4-x (a 
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CHAPTER 6 SELF-TEST 

In Problems 1-14 calculate the derivative °. 
x 

@) eee 

1, y=tan( cos = 2. y=cos! - ee O 
x l+x 

3s y= ope logs x 4. y= asin x 

5. y=2xtan7! 2x—Inyv1+4x2 6. y= sec3Vx 
lx 

7. y= (xy¥*, x>0 8. ee” +e*% =e**) 

9. y= tanh(sin x) 10. y=coth!(Inx) 

11. y=~+cosh7! x? 12. y=In(sinh x?) 

13. y= x7! tanh! x? 14. y= sinh! (tan x) 

In Problems 15-23 calculate the indicated integrals. 

5/4 Se 
a 16. | ———dx 

5/4 D5 + 16x ] _ eet 

In x 

ek Ei ode 18. [ ae 
i=3x (e* os eae 

19, jue 20. | Jit cosh xax 
x 

7 1/2 41. [ dx 22. | cosh x dx 

Wee 0 1-sinh? x 

1 

23. — 
0 e2* 4] 

log3 243 
24. Simplify the expression —————=->—_————_. 

~™ log, 4/64 + logs 81° 

25. Let f(x) =log, x, f(5) =1.46, f(2) = 0.63, f(7) =1.77. Use the properties of logarithms to find, 

(a) f (10) (b) (49) () (2) 

(d) f(1.4) 

26. Solve the following equations for x. 

Ba f= (b) log,(5x—1)=-2 (c) e* =10**! 
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27. Graph the curve y= a 
1+3e°* 

Y 

3 

3 x 

28. Sketch the graph of y= mute 
x 

y 

2 

3 x 

29. Define the hyperbolic function y = csch x, and sketch its graph. 
y 

3 

3 x 

30. 

31. 

32. 

SBP 

34. 

ons 

Given that cosh x = 2, x < 0, find the values of the remaining hyperbolic functions at x. 

Find the length of the catenary y =3 cosh = from x =0 tox =3. 

Suppose that a dose d mg of a drug is injected into the bloodstream. Assume that the drug leaves the blood and 
enters the urine at a rate proportional to the amount of the drug present in the blood. Assume that at the end of 

1 hour the amount of the drug in the urine is =a. Find the time at which 10 percent of the original dose is in 

the bloodstream. 

Suppose that the number of bacteria in a yeast culture grows at a rate proportional to the number present. If the 
population of a colony of yeast bacteria doubles in one hour, find the number of bacteria present at the end of 
3.5 hours. 

Solve the differential equation a = x3e* + aD -—l,x>0. 
x x 

Solve the differential equation e*(y—1)dx +2(e* + 4)dy = 0. 
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SOLUTIONS TO CHAPTER 6 SELF-TEST 

10. 

at; 

12. 

13. 

14, 

dy 
dx 

dy 
dx 

X 

5* -In5-logs x + 

y = 2sin”' x(n 2) 

= 2tan! 2x+2x:- 

Le sec?{cos =) ; [sin =) : - =) 
d. x x x? 

= [Sean en. ~(1+x7) Me 

1-(Ex) a (L+x2)? x2)? +27)? x? Wa? 
l+x 

2G 

(1+ x*)| x| 

x 

2 = 5*! Inx+ : 
5 xIn5_ x in 

l-x 

> l 8x 1 Fee 
1+ 4x Vl+4x? 2y1+4x? 

=2tan7!2x 

—= a (see 30 tan in) se 4[-5x 9? secs = sce (3vx tan3Vx ~1) 

y=)" gives Iny =x Inx 

= splat =n +2) 

= or (In x +2)(x)¥* 

e “ +e* =e*t) mae +y)= et + 2) Hence, (e” — et) 2 = e**Y —e*, or from the original 
: ic x 

expression, —e” ae e>. Thus, ae -e”*. 
dx dx 

io = sech?(sin x): cos x 

By : ae Inx>1 
dx (1—(Inx)’] x 

= a d 3 1 LZ 1 d 5 
a eee ee 1/2“ (cosh ly?) =—(cosh oye SG) = ey 525 
dx dx 2 x4) & (x4 — 1) cosh7! x? 

d 3 
we : jee = z cosh x? -— (x3) = 3x? coth x? 
dx  sinhx” dx sinh x dx 

ee, ho! x2 + x7! : Filk =z 2 tanh! x? t,x <I 
dx 56 l-x l-x 

2 
dy l 
= = cer SCC“ X = 
dx tan? x+1 sec” x 

2 sec x E 3 
= SEC.X; a cya | 
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dx 1 dx Pee Sn art 
|\—-= ae Ge 
2416x7254 14(4x)' 25 4 5 

5/4 dx 1 =| = a 
——; = — (tan 1-tan (—1))=— 

are: 20 aa 

16. u=e*, dw=-e “dx 

J mise =cos (e*)+C 
Via 

IW mS lines, oly aL 
x 

qinx 

| dx =~ f2"du=——2"* + 
SBe 3 31n2 

eomx 

{ pay ane UG Sie 
Sis 31n2 31n2 

18. [Js = Jeseh?xar = -coth r+ 
(e* -e*) 

19. Let u=Inx, du Em Ee and the integral becomes —— | sinh du =coshu+C=cosh(Inx)+C. 
Xx x; 

20. From the identity 2 cosh? x = cosh2x + 1, we find that 2 cosh = =~+coshx+1. Thus, 

[ Veoshx-+1 dx = 12 | cosh ax = 22 sinh=+C, 

21. A ze = cosh"! a},=Inta-t Va? =I) = n(7 +B) ~In@ +8) = n{ LEE | = 2.39, 
ce ae 34+2V2 

22. Let u=sinhx,du =cosh x dx, so that 

ih cosh x dx peat) i Ee 
0 1-—sinh? x 2 

1 
= tanh! sinh x 1/2 = 5 in| n 

( No D (0:50 | 
- O.STTSs 

1—sinh x Jo 

fs dx =[ e*~dx dx 

Ove2* 44 +0 ok ye2* 41 |u|vu7 +1 

1 

[ dx BT nyonn( ee) na etiee) 

e 
0 

23. , which is of the for, i =-—csch7!u+C, for u=e* #0. Thus, 

- +In(1+-+2) = 0.52. 
(S 

24. log3 243 5 0 

log, 4/64 + log, 81° . + (6) - 100) ii, 

25. (a) log, 10=log,2+log, 5 =2.09 

(b) log, 49 =2log, 7 = 3.54 

5 
(c) ae hae een ae 

(d) log, 1.4=log, 14—log, 10 = log, 2+ log, 7—log, 5—log, 2 =0.31 
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26. (a) 3787+ 3737-44 oF 8, 46 = 23x 224 oF x = 6. 

(by Sy ones 
125 

Pe onto ere 1768: 
1-1n10 

2) 12e72* Dhe** (2143e7**) Don) ae ee ee py Se Ce 
1+3e72* je (iekje 5) £@) (Iuka 223° 

f’ > 0 for every x; f”(x)=0 when x=5In3 = 0.5. 

lim f(x)=2and lim f(x)=0 
X——00 X—>+00 

The graph is sketched below. 

28. f(x)= hl f(x) = we so f(x) =0 implies Inx = ; orx =e. 
x x 

f(x) = ae so f(x) = 0 implies x = e°/° = 2.3. 
x 

ae 

lim f(x)= lim -+=0 and lim f(x) =—o. The graph is sketched below. 
X00 Fes pe x 0* 

(ra ) (2.3, 0.16) 

29. y= cschx =———, where sinhx = = (e* —e*). The graph is sketched below. 
sinn x ys 
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30. 

31. 

32. 

a3: 

34, 

35. 
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sechixi= : = ie tanh? x =1—sech?x = 2 so that tanh x = =3 Since x < 0; 
cosh x 4 2 

: 1 2D 1 1 
sinh x = cosh x tanh x = —/3; cothx = = = ——= and cschx = ——— = -—. 

anh x AES sinh x 43 

3 dy\* 3 2x 3 x xP i=] 1+(2) dx = [ Lesinh ~ d= Cosh di = Saint ee ooinh P= 353, 
0 dx 0 3 0 3 3 0 

Let y(t) denote the amount of the drug in the bloodstream at any time ¢t. Then, “ = —ky, k > 0 and y(0) =d. The 

a 1 1 A 
solution to this initial value problem is y(t) = de Kt We are given that y(1) = att Xe) ae = de Then 

—(In2)t —k= In- or k = 1n2. Substituting into the original solution, y(t) = de . The desired time t = T is such 

—In10 

—In2 
that y(T) = —d . Thus, —d = de~"™)T or In— =(-In2)T. Solving, T = ~ 3.32 hr. 

: , d 
Let x denote the number of bacteria present at any time t. Then = = kx or x = Ce*, for some constant C. If Xo 

is the initial number of bacteria at t=0, then C = x9, sox= nee When t =1, x = 2x9 so that 2= e* or 

k =|n2. Therefore, x = xge’*. Finally, when t = 3.5,x = xge>>!* = 11.31x9. Thus, there are 11.31 times the 
initial number of bacteria present at the end of 3.5 hours. 

3x as ; ; f-2ar ony 2 
e~ —1, x >0 is linear. An integrating factor is v(x)=e’ * =e oe, oF 0h INS. 

ae 
Va 

x 

y= eee 1dr = [ xe%ax -fx? Wea Wet Pee. 

Remark: You will learn [ xe%ax = (x —l)e* +C in Chapter 7. Thus, y = Cx? +x+x7(x—De*. 

x 2 
dx + ji dy = 0. Integration The variables are separable, and the differential equation can be written as — ji 

Cm Vie 

gives, In(e* +4)+2In|y—1|=InC, or (y-)7(e* +4) =C. 


