Chapter 3: Applications of Derivatives

3.1 EXTREME VALUES OF FUNCTIONS

OBJE	ECTIVE A: Define the terms loca value.	ıl maximum, lo	ocal minimum, abso	lute maxim	num, and absolute minimum				
1.	A function f is said to have a local maximum at $x = c$ if for all x in some I about c .								
2.	A function f is said to have an belonging to the		maximum over	its domair	n at $x = c$ if $f(c) \ge f(x)$ for all x				
3.	A function f is said to have a close to c .		minimum over i	ts domain a	at $x = c$ if $f(c) \le f(x)$ for all x				
4.	If $f(c) \le f(x)$ for all x in the don at $x = c$.	nain of f, then j	f is said to have a						
5.	Can a local maximum also be an minimum?	absolute maxir	num for a function j	f? Can a lo	cal minimum also be an absolute				
OBJE	ECTIVE B: Interpret correctly the $x = c$ of the domain			_	-				
	Answer questions 6 - 9 true or fall	lse.							
6.	If $f'(c) = 0$, then f has either a lo	cal maximum	or a local minimum	at the inter	rior point $x = c$. (True or False)				
7.	If f has a local minimum at the in	terior point x:	= c, then $f'(c) = 0$.	. (True or F	False)				
8.	If f has a local maximum or local left-hand (or right-hand) tangent				efinition of the function, then the				
9.	If f has an absolute maximum at a necessarily zero. (True or False)	an interior poir	at $x = c$ and $f'(c)$ e	xists as a f	inite number then $f'(c)$ is				
10.	If f is continuous over the closed or minimum must be an point where f' e	of the	interval, a point wh		has a (local or absolute) maximum or an				
1.	$f(c) \ge f(x)$, open interval	2. absolute	e, domain	3.	local				
4.	absolute minimum	5. Yes to b	ooth questions	6.	False; it could have a point of inflection				
7.	False; the derivative may fail to e	exist		8.	False				
9.	True	10. endpoin	t, does not exist, int	erior, 0					

OBJECTIVE C: Given a function y = f(x) continuous over a closed interval $a \le x \le b$, find the critical points of f and for each critical point, determine whether the function has a local maximum or local minimum there, or neither. If possible, find the absolute maximum and minimum values of the function on the closed interval.

11.	Consider $y = x^{3/2}(x-8)^{-1/2}$ over $10 \le x \le 16$. Now, $y' = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
	Thus, $x = $ is the only critical point in the interval $10 \le x \le 16$. Now when
	$x = 12, y \approx 20.78$. Since $y(11) \approx 21.06$ and $y(13) \approx 20.96$, we conclude that the function has a local
	when $x = 12$. Checking the endpoints of the interval [10,16] we determine that
	$y(10) \approx 22.36$ and $y(16) \approx 22.63$. Thus the absolute maximum of y occurs at $x = $ and the
	absolute minimum of y occurs at $x = $

3.2 THE MEAN VALUE THEOREM AND DIFFERENTIAL EQUATIONS

OBJECTIVE A: Apply Rolle's Theorem to show that a given equation f(x) = 0 has exactly one solution in the specified interval $a \le x \le b$.

- 12. Suppose y = f(x) and its first derivative f'(x) are continuous over $a \le x \le b$. If f(a) and f(b) have opposite signs, then according to the Intermediate Value Theorem there is at least one point c satisfying $a \le c \le b$ and f(c) =_______.
- 13. Suppose there is another point d satisfying $a \le d \le b$ and f(d) = 0. Then, according to Rolle's Theorem, there is a point between c and d for which ______ is zero. Thus, if f'(x) is different from zero for all values of x between a and b, there is exactly ______ solution to the equation f(x) = 0 in the interval
- 14. Consider the equation $x^3 + 2x^2 + 5x 6 = 0$ for $0 \le x \le 5$. When x = 0 the value of the left side is ______; and when x = 5, the value is _______. These values differ in sign. Calculating the derivative, we have $\frac{d}{dx}(x^3 + 2x + 5x 6) =$ _______, and this is always ________ for 0 < x < 5. Therefore, we conclude from Problems 12 and 13 that there is exactly one solution to the equation somewhere between x = ______ and x = _______. We could in fact use Newton's method of Section 3.8 to locate this solution.

OBJECTIVE B: Given a function y = f(x) satisfying the hypotheses of the Mean Value Theorem for $a \le x \le b$, use the theorem to find a number c satisfying the conclusion of the theorem.

- 15. The hypotheses of the Mean Value Theorem are that f is ______ over the closed interval $a \le x \le b$ and _____ over the open interval _____.
- 16. The conclusion of the Mean Value Theorem is that there is at least one number c in the open interval satisfying ______. A geometric interpretation of the conclusion is that the slope of the curve y = f(x) when x = c is the same as the slope of the _____ joining the endpoints (a, f(a)) and _____ of the curve.

11.
$$\frac{3}{2}x^{1/2}(x-8)^{-1/2} - \frac{1}{2}x^{3/2}(x-8)^{-3/2}$$
, $(2x-24)$, 12, minimum, 16, 12 12. 0

13.
$$f'(x)$$
, one, $a \le x \le b$

14.
$$-6{,}194$$
, $3x^2 + 4x + 5$, positive, 0, 5

15. continuous, differentiable,
$$a < x < b$$

16.
$$(a,b)$$
, $f(b)-f(a)=f'(c)(b-a)$, chord, $(b, f(b))$

17.	Let $f(x) = 3x^2 + 4x - 3$ over $1 \le x \le 3$. Then $f'(x) = 2$, so that f and f' satisfy the hypotheses of
	the Mean Value Theorem. To find a value for c, the equation $f(b) - f(a) = f'(c)(b-a)$ becomes
	f(3) - f(1) = f'(c)(), or $36 - 4 = 2($). Solving for c gives $c =$
10	Decrete Man V. I. The control of the

18.	Does the Mean Value Theorem apply to the function $f(x) = x $	in the interval [-2, 1]?
	No, because the derivative $f'(x)$ is not defined for $x = $	so the function f is not
	over the open interval	as required by the hypotheses

OBJECTIVE C: Know the main consequence of the Mean Value Theorem.

- 19. If f'(x) = 0 for all x in an interval I, then
- 20. Functions with the same derivative differ ___

OBJECTIVE D: Find all the possible functions with a given derivative. Also find that function whose graph passes through a specified point P.

- 21. Since $y' = 5x^4 2x$ is the derivative of ______, we know that y =_____ for some constant C.
- 22. If y = 3 when x = -1 in Problem 21, then the value of C must be ____
- 23. If $y' = \cos 3t$, then y =_____
- 24. If $y' = 3x^4 x^{-2} + 5$, then y =_____
- 25. If $y' = x^{3/2} + x^{1/2} + \frac{1}{x^2}$, then y =______. If the graph of y passes through

OBJECTIVE E: Use consequences of the Mean Value Theorem to solve simple differential equations.

26. An object sits at rest at position x = 0. Starting at t = 0, it is subjected to an acceleration of $\frac{d^2x}{dt^2} = \cos t$. To find x as a function of t, we first note that $\frac{dx}{dt}$ must differ from ______ by only a _____. So let $\frac{dx}{dt} =$ _____ + C_1 . Since the object is at rest at t = 0, $C_1 =$ ____ and $\frac{dx}{dt} = \sin t$. Then x(t) differs from ______ by only a constant, so let x(t) = ______ + C_2 . Since x(0) = ______ , $C_2 =$ _____ and x(t) = ______ .

17.
$$6x + 4$$
, 2, $6c + 4$, 2

- 18. 0, differentiable, (-2, 1) 19. f(x) is constant for all x in I 20. only by a constant

21.
$$x^5 - x^2$$
, $x^5 - x^2 + C$

23.
$$\frac{1}{3}\sin 3t + C$$

24.
$$\frac{3}{5}x^5 + x^{-1} + 5x + C$$

24.
$$\frac{3}{5}x^5 + x^{-1} + 5x + C$$
 25. $\frac{2}{5}x^{5/2} + \frac{2}{3}x^{3/2} - x^{-1} + C, \frac{1}{3}$

26. $\sin t$, constant, $\sin t$, 0, $-\cos t$, $-\cos t$, 0, 1, 1 $-\cos t$

3.3 THE SHAPE OF A GRAPH

OBJECTIVE A: Use the derivative Test for Increasing and Decreasing to determine the values of x where the graph of y versus x is increasing and where it is decreasing.

- 27. The function f when f' < 0
- **28.** The function *f* increases when _____
- 29. The function f increases over a domain D of real numbers if $x_1 < x_2$ implies
- 30. Let y = f(x) be a differentiable function of x. When $\frac{dy}{dx}$ has a ______ value, the graph of y versus x is rising (to the right). In this case it is said that the function f is _____.
- 31. When $\frac{dy}{dx} < 0$ the graph of y versus x is _____ and the function f is _____.
- 32. Let $y = \frac{1}{3}x^3 x^2 + 2$. Then $y' = \underline{\qquad} = x(\underline{\qquad})$. The derivative $\frac{dy}{dx}$ is zero when $x = \underline{\qquad}$ or $x = \underline{\qquad}$. Thus, the curve y is increasing when x < 0, it is decreasing when

x satisfies ______, and it is increasing again when x >_____. We construct a table of some values for the curve (complete the table):

Sketch the graph in the coordinate system at the right.

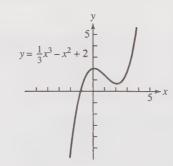
27. decreases

28. f' > 0

29. $f(x_1) < f(x_2)$

- 30. positive, increasing
- 31. falling, decreasing
- 32. $x^2 2x$, x 2, 0, 2, 0 < x < 2, 2

х	-2	-1	0	1	2	3	4
у	$-\frac{14}{3}$	2/3	2	4/3	2/3	2	<u>22</u> 3



OBJECTIVE B:	Use the First Derivative Test for Local Extreme Values to identify the local extreme values of a
	given function $y = f(x)$.

- 33. Suppose the function y = f(x) has the derivative f'(x) = x(x+1)(x-2). Then the critical points of f are x = 0, x =______, and x =______. At x = 0 the derivative f' changes from _______ to _____ so f has a local maximum value at x = 0. At x = -1, the derivative f' changes from negative to positive so f has a local ______ value at x = -1. At x = 2 the function f has a local ______ value because the derivative f' changes from ______ to _____.
- **34.** The function f in Problem 33 is increasing on the intervals ______ and _____, and it is decreasing on the intervals _____ and ____.
- 35. For the function whose derivative is $f'(x) = x^{-2/3}(2-x)$ the critical points are x =_____ and x =_____. The function f is increasing on the interval _____ and decreasing on the interval _____. Thus the function assumes a local maximum at the critical point x =_____.

OBJECTIVE C: Relate the concavity of a function y = f(x) to the second derivative $\frac{d^2y}{dx^2}$.

- 36. If the second derivative $\frac{d^2y}{dx^2}$ is positive, the y-curve is concave _____ at that point; if $\frac{d^2y}{dx^2}$ is _____, the curve is concave down at that point.
- 37. When a curve is concave up at a point, locally the curve lies ______ the tangent line; when it is concave _____, locally the curve lies below the tangent line.
- **38.** A point where the curve changes concavity is called a ______, and is characterized by a change in sign of ______.
- 39. A point of inflection occurs where $\frac{d^2y}{dx^2}$ is ______ or ______
- **40.** Does the condition $\frac{d^2y}{dx^2} = 0$ guarantee a point of inflection?

34.
$$(-1,0)$$
 and $(2,\infty)$, $(-\infty,-1)$ and $(0,2)$

36. up, negative

37. above, down

38. point of inflection, $\frac{d^2y}{dx^2}$

- 39. zero, undefined
- **40.** No, the function $y = x^4$ affords a counterexample at x = 0.

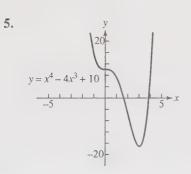
^{33.} -1, 2, positive, negative, minimum, minimum, negative, positive

^{35.} 0, 2, $(-\infty, 2)$, $(2, \infty)$, 2

- STEP 1: Find y' and y".
- STEP 2: Find where y' is positive, negative, and zero.
- STEP 3. Find where y'' is positive, negative, and zero.
- STEP 4, Make a summary table, and show the curve's general shape.
- STEP 5. Plot specific points and sketch the graph.
 - 41. Consider the function $f(x) = x^4 4x^3 + 10$, we follow the five-step strategy in order to sketch the graph of y = f(x).
- STEP 1: $\frac{dy}{dx} =$ and $\frac{d^2y}{dx^2} =$.
- STEP 2: In factored terms, $\frac{dy}{dx} = 4x^2(x-3)$, so the curve is decreasing when x belongs to the interval _____ and increasing when x >_____. The slope of the curve is zero when x =_____ or x =_____.
- STEP 3: In factored form, $\frac{d^2y}{dx^2} =$ ______. Thus $\frac{d^2y}{dx^2}$ is negative when x belongs to the interval and consequently the curve is concave _______ there. The second derivative is positive when x satisfies ______ or ______, and the curve is concave _______. Therefore, the second derivative changes sign when x =______ or x =______ so that these are points of inflection of f.
 - **41.** 1. $4x^3 12x^2$, $12x^2 24x$ 2. $(-\infty, 3)$, 3, 0, 3

3. 12x(x-2), (0, 2), down, x < 0, x > 2, up, 0, 2

4.	х	у	y'	y"	Conclusions
	0	10	0	0	point of inflection
	1	7	_	_	decreasing, concave down
	2	-6	-	0	point of inflection
	3	-17	0	+	"Holds water"; min



STEP 4: Complete the following table.

х	у	y'	y"	Conclusions
-2	58	_	+	decreasing; concave up
-1	15	_	+	decreasing; concave up
0				
1				
2				
3				
4	10	+	+	increasing; concave up

STEP 5: Sketch a smooth curve of y = f(x) in the given coordinate system to the right.

OBJECTIVE E: Analyze the graph of a given function y = f(x) to investigate the following properties of the curve: (a) symmetry, (b) intercepts, (c) asymptotes, (d) rise and fall, (e) concavity, and (f) end behavior. Using the information you have discovered, sketch the curve.

42. Sketch the graph of $y = x^{-2} + 2x$. Solution. We follow the five steps as in Problem 41.

1. y' =_____ and y'' =_____.

2. In fractional form, $y' = \frac{y'}{x^3}$, so y' is zero when $x = \frac{y'}{x^3}$. the curve is decreasing when xbelongs to the interval _____; it is increasing for x satisfying _____ and

42. 1.
$$-2x^{-3} + 2$$
, $6x^{-4}$

2.
$$2(x^3-1)$$
, 1, (0,1), $x < 0$, $x > 1$ 3. positive, up

4. 0,
$$2x$$
, $\frac{1}{x^2}$

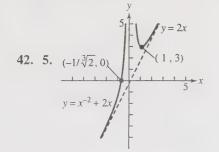
х	у	y'	y"	Conclusions
-1	-1	+	+	increasing; concave up
$-\frac{1}{2}$	3	+	+	increasing, concave up
1/2	5	-	+	decreasing; concave up
1	3	0	+	min.; concave up

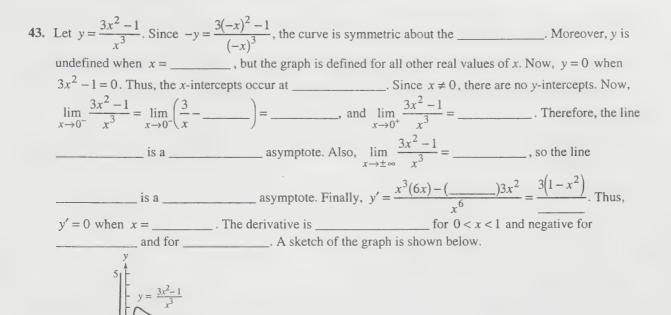
- 3. $\frac{d^2y}{dx^2}$ is always ______ so the curve is everywhere concave _____. Therefore, there are no points of inflection.
- 4. The curve is discontinuous at x =______. To identify the end behaviors, note that for large values of |x|, the curve is approximately $y \approx$ ______. When x is small, the curve is approximately $y \approx$ ______.

Complete the following table.

x	у	y'	y"	Conclusions
-2	$-\frac{15}{4}$	+	+	increasing; concave up
-1				
$-\frac{1}{2}$				
$\frac{1}{2}$				
1				
2	<u>17</u> 4	+	+	increasing; concave up

5. Sketch the graph below.





3.4 GRAPHICAL SOLUTIONS TO DIFFERENTIAL EQUATIONS

OBJECTIVE A: Sketch a set of solution curves for an autonomous differential equation.

44. The equilibrium values for $\frac{dy}{dx} = y \cos y$ are ______, because those are the values where _____ or ____ are equal to _____.

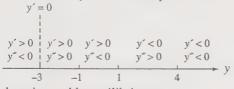
43. origin, 0,
$$x = \frac{\pm\sqrt{3}}{3}$$
, $\frac{1}{x^3}$, ∞ , $-\infty$, $x = 0$, vertical, 0, $y = 0$, horizontal, $3x^2 - 1$, x^4 , ± 1 , positive, $x > 1$, $x < -1$

44. 0,
$$\pm \frac{\pi}{2}$$
, $\pm \frac{3\pi}{2}$, $\pm \frac{5\pi}{2}$, ..., y, $\cos y$, zero

. Using this information, draw first the phase line then the set of solution curves.

OBJECTIVE B: Identify stable and unstable equilibria for an autonomous differential equation.

- **46.** If all solution curves except the one through an equilibrium value move away from that value, the equilibrium is considered to be ______.
- 47. For a function y of t with the phase line



there is a stable equilibrium at y =_____ because y' is _____ for values just below ____ and y' is _____ for values just above ____, and there is an unstable equilibrium at y =_____ because y' = 0 there, but y' is _____ for values just above ____

OBJECTIVE C: Solve application problems involving autonomous differential equations.

48. For a population of wolves in the wild, with population size $P \ge 0$, $\frac{dP}{dt} = -(y-100)(y-200)$. Since $\frac{dP}{dt} = P'$ is positive between _____ and ____, and is _____ elsewhere, any population greater than _____ will eventually settle into a stable equilibrium at _____, whereas any population less than _____ will die off. _____ is an unstable equilibrium.

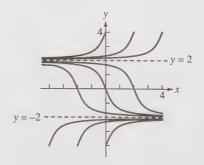
3.5 MODELING AND OPTIMIZATION

OBJECTIVE: Solve a max – min problem by the following strategy:

STEP 1: Read the problem until you understand it.

STEP 2: Draw a figure, if possible, to illustrate the problem.

45. y = 2, y = -2, equilibrium, 2y, $2y(y^2 - 4)$, -2, 2, 0



- 46. unstable
- 47. 1, greater than zero, 1, less than zero, 1, -3, greater than zero, -3
- 48. 100, 200, negative, 100, 200, 100, 100

- STEP 3: Introduce variables and list every relation in your picture and in the problem as an equation or algebraic expression.
- STEP 4: Identify and write an equation for the unknown that is to be a maximum or minimum,
- STEP 5: Find and test the critical and endpoints for a possible maximum or minimum. Use what you know about the shape of the function's graph and the physics of the problem.
 - **49.** At 9:00 A.M., ship *B* was 65 miles due east of ship *A*. Ship *B* was then sailing due west at 10 miles per hour, and ship *A* was sailing due south at 15 miles per hour. If they continue to follow their respective courses, when will they be nearest one another and how near?

Solution. Let A_0 and B_0 denote the original positions of the ships at 9:00 A.M., and let A and B denote their new positions, respectively, at t hours later. This is pictured in the figure below.



Let s denote the distance between A and B. The problem is to minimize ______ and to find the time when its minimum occurs. Since (rate)(time) = distance, the distance covered by ship A in t hours is _____ miles, and by ship B _____ miles. The original distance between ships A and B is given as 65 miles, so the distance between the original position A_0 and ship B after t hours is _____.

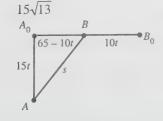
Fill this information into the figure and then calculate the square of the distance: s^2 = _____.

Differentiation of both sides of this equation with respect to t gives $2s\frac{ds}{dt}$ = _____. Thus, $\frac{ds}{dt}$ = _____. Thus, $\frac{ds}{dt}$ = _____. Thus, $\frac{ds}{dt}$ is ______ when t < 2 and ______ when t > 2. Therefore, a relative ______ distance occurs for s at t = 2 hours. Solving for the distance s after two hours, we find $s^2 = (30)^2 + ($ _______)^2 or s = ______ miles, the distance the ships are apart at 11:00 A.M. when they are nearest each other.

50. A company's cost function is C(x) = 10x + 3, and its revenue function is $R(x) = 50x - 0.5x^2$, both in the thousands of dollars per thousand items. Find the company's maximum profit.

Solution. If P(x) denotes the profit function, then $P(x) = R(x) - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$. The maximum profit occurs when $P'(x) = \underline{\hspace{1cm}}$, so $P'(x) = \underline{\hspace{1cm}} = 0$. Thus, $x = \underline{\hspace{1cm}}$ thousand items. Since $P''(x) = \underline{\hspace{1cm}}$ is always negative, this yields a maximum profit of $P(40) = \underline{\hspace{1cm}}$ thousand dollars.

49. s, 15t, 10t, 65-10t, $(15t)^2 + (65-10t)^2$, 30(15t) - 20(65-10t), 2. $\frac{325t-650}{s}$, negative, positive, minimum, 45.



50. C(x), $40x - 0.5x^2 - 3$, 0, 40 - x, 40, -1, 797

Solution. The harvest function H(P) = f(P) - P =______. The maximum sustainable harvest occurs when H'(P) =______, so H'(P) =______ = 0, or P =______ thousand hares. This is the population at which the maximum sustainable harvest occurs, since H''(P) =______ is always ______. The maximum harvest is H(60) =______ thousand animals.

52. Determine the point on the ellipse $4x^2 + 9y^2 = 36$ that is nearest the origin.

53. A light house is at a point A, 4 miles offshore from the nearest point O of a straight beach; a store is at point B, 4 miles down the beach from O. If the lighthouse keeper can row 4 miles/hour and walk 5 miles/hour, find the point C on the beach to which the lighthouse keeper should row to get from the light house to the store in the least possible time.

52. minimize,
$$\sqrt{x^2 + y^2}$$
, $\frac{5}{9}x^2 + 4$, 0, 0, minimum

53.
$$\sqrt{16+x^2}$$
, $4-x$, $\frac{1}{8}(16+x^2)^{-1/2}(2x)-\frac{1}{5}$, $4\sqrt{16+x^2}$, $\frac{256}{9}$, $\frac{16}{3}$, endpoints, 1.8, $\sqrt{2}$, 4

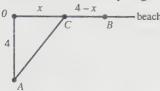
^{51.} $-0.025P^2 + 3P$, 0, -0.05P + 3, 60, -0.05, negative, 90

Solution. The information is sketched in the figure below. From the diagram and the Pythagorean theorem, the distance from A to C is ______. The total time required to get from A to C to B is

$$T = \frac{\sqrt{16 + x^2}}{4} + \left(\frac{1}{5}\right)$$
, where $0 \le x \le 4$. The minimum time occurs when $\frac{dT}{dx} = 0$, or

However, $x = \frac{16}{3}$ is outside the allowable range of values $0 \le x \le 4$. Therefore, the minimum must be taken on

at one of the _____ of the interval. Checking each point, T(0) = _____ hours and T(4) = _____ hours. The smaller of these values occurs when x = _____ so our conclusion is that the lighthouse keeper should row all the way to get to the store in the least possible time.



54. The cost per hour of driving a ship through the water varies approximately as the cube of its speed in the water. Suppose a ship runs into a current of V miles per hour, measured relative to the ocean bottom. find the total cost for the ship to travel M miles, and find the most economical speed of the ship relative to the ocean bottom.

Solution. Let x denote the speed of the ship relative to the water. Then _____ will be its speed relative to the bottom. The time taken to travel M miles will be _____. The cost per hour in fuel will be kx^3 for some constant of proportionality k, so the total cost function is given by C(x) =_____. To find the most

economical speed, minimize the cost. Now, $C'(x) = \underline{}$. The minimum cost occurs when $\frac{dC}{dx} = 0$, or

 $kMx^2[3(x-V)-x]=0$. Thus, x= _____ or x= _____. Since x=0 is ruled out if the ship moves, and since $C(x)\to +\infty$ as $x\to V^+$, we see that x=1.5V must provide the minimum cost.

3.6 LINEARIZATIONS AND DIFFERENTIALS

OBJECTIVE A: Given a function y = f(x) and a point x = a, find the linearization of f(x) at a. Use your linearization to estimate a specified function value.

55. If y = f(x) is differentiable at x = a, then the linearization of f at a is given by L(x) =_____.

56. To find the linearization to $f(x) = \frac{1}{2}x^2 - 7x + 9$ at x = 4, first calculate the derivative f'(x) =_______ The value f'(4) =_______ is the slope of the linearization at the point $(4, ______)$ on the graph of f. Thus, an equation of the linearization is $L(x) = -11 + ______(x - 4)$, or $L(x) = ______$.

57. From the result in Problem 56, an estimate to $\frac{1}{2} \left(\frac{1}{6}\right)^2 - \frac{7}{6} + 9$ is _____.

54.
$$x-V, \frac{M}{(x-V)}, \frac{kMx^3}{x-V}, \frac{(x-V)3kMx^2 - kMx^3}{(x-V)^2}, 0, 1.5V$$

55.
$$f(a) + f'(a)(x-a)$$
 56. $x-7, -3, -11, -3, -3x+1$ **57.** $-3\left(\frac{1}{6}\right) + 1 = \frac{1}{2}$

OBJECTIVE B: Given y = f(x), find the differential dy.

- 58. If $y = x^2 + \sin 3x$, then $\frac{dy}{dx} =$ _____. Thus, dy =_____.
- 59. If y = f(x) is differentiable at x = a, and x changes from a to $a + \Delta x$, the error $|\Delta y dy|$ in the approximation $f'(a)\Delta x$ is given by ______ as $\Delta x \to 0$.

OBJECTIVE C: Estimate the change Δf produced in a function y = f(x) when $x = x_0$ changes by a small amount

- **60.** An estimate of $\Delta f = f(x_0 + \Delta x) f(x_0)$ is given by the differential df =_____. thus, dfdenotes the change in the linearization of f that results from the change dx in x.
- **61.** The equation $\frac{df}{dx} = f'(x)$ says we may regard the derivative as a ______ of differentials.
- **62.** Suppose we wish to estimate the change in $y = x^3$ when x changes by dx = 0.1 at x = 2. Now $\Delta y \approx dy = \frac{dy}{dx} dx =$ ______ dx. When x = 2 and dx = 0.1, dy = 3(______)²(_____) = 1.2. Therefore, since $f(x + dx) = y + \Delta y \approx y + dy$, $(2 + 0.1)^3 \approx 2^3 + \dots = \dots$. The actual values of $(2.1)^3$ is _____ giving an error in our estimate of $\varepsilon \cdot dx = \Delta y - dy = ___$ positive sign if $\varepsilon \cdot dx$ indicates that our estimate 9.2 is too small.
- 63. To estimate the value of $\sqrt{16.56}$, let $y = \sqrt{x}$, x = 16, and dx = 0.56. Then $dy = (\underline{})dx$, so when x = 16 and dx = 0.56, $dy = (______)(0.56) = .07$. Thus, $\sqrt{16.56} = \sqrt{____} + .07 = _____$. (The actual value of $\sqrt{16.56}$ is 4.0694 correct to 5 decimal places, so our estimate is accurate.)

NEWTON'S METHOD 3.7

OBJECTIVE: Use Newton's method to estimate the root of an equation f(x) = 0 within specified $a \le x \le b$.

64. In using Newton's new method, to go from the n^{th} approximation x_n of the root to the next approximation x_{n+1} , use the formula $x_{n+1} =$ _____. This formula fails if the derivative $f'(x_n)$ equals

59.
$$|\varepsilon\Delta x|, \varepsilon\to 0$$

60.
$$f'(x_0)\Delta x$$
 or $f'(x_0)dx$

62.
$$3x^2$$
, 2, 0.1, 1.2, 9.2, 9.261, 0.061

63.
$$\frac{1}{2\sqrt{x}}, \frac{1}{8}, 16, 4.07$$

64.
$$x_n - \frac{f(x_n)}{f'(x_n)}, 0$$

^{58.} $2x + 3\cos 3x$, $(2x + 3\cos 3x)dx$ 59. $|\varepsilon\Delta x|, \varepsilon \to 0$

$$x_2 = x_1 - \frac{x_1^3 + x_1 - 1}{3x_1^2 + 1} = \frac{1}{2} - \frac{\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right) - 1}{2} = \frac{1}{2} + \frac{1}{14} = \frac{1}{7} \approx 0.71429$$
, and $x_3 = x_2 - \frac{1}{3x_2^2 + 1} = \frac{5}{7} - \frac{1}{3\left(\frac{5}{7}\right)^2 + 1} = \frac{5}{7} - \frac{1}{7 \cdot 124} = \frac{1}{7 \cdot 124} \approx 0.68318$.

With the aid of a calculator, we have computed the following iterations in the same way: $x_4 = 0.68233$ and $x_5 = 0.68233$. Thus, a root to $f(x) = x^3 + x - 1$ is r = 0.68233 correct to 5 decimal places. The method is easy, but the arithmetic can be cumbersome without the aid of a calculator.

66. The speed with which Newton's method converges to a root r is expressed by the formula $|r-x_{n+1}| \le \underline{\hspace{1cm}}$ in an interval surrounding r. For the function $f(x) = x^3 + x - 1$ in Problem 65, on 0 < x < 1, min $f'(x) = \min \left(3x^2 + 1\right) = \underline{\hspace{1cm}}$ and max $f''(x) = \max 6x = \underline{\hspace{1cm}}$. Thus, $|r-x_{n+1}| \le \frac{1}{2} \left| \frac{6}{1} \left| (r-x_n)^2 \right|$.

65. -1, 1,
$$3x^2 + 1$$
, $3\left(\frac{1}{2}\right)^2 + 1$, 3, 5, $x_2^3 + x_2 - 1$, $\left(\frac{5}{7}\right)^3 + \left(\frac{5}{7}\right) - 1$, 27, 593

66.
$$\frac{1}{2} \frac{\max |f''|}{\min |f'|} (r - x_n)^2, 1, 6$$

CHAPTER 3 SELF-TEST

1. Find the absolute maximum and minimum values (if they exist) of $f(x) = x^3 - x^2 - x + 2$ over the interval $0 \le x < 2$.

In Problems 2-4, sketch the curves. Find the intervals of values of x for which the curve is increasing, decreasing, concave up, and concave down. Locate all asymptotes.

2.
$$y = \frac{x}{\sqrt{1+x^2}}$$

3.
$$y = \frac{4x}{x^2 + 1}$$

4.
$$y = 1 - (x+1)^{1/3}$$

- **5.** Apply Rolle's Theorem to show that the equation $\cos x = \sqrt{x}$, $x \ge 0$, has exactly one real solution.
- 6. Find all the numbers c which satisfy the conclusion of the Mean Value Theorem for $f(x) = 1 + 2x^2$ over $-1 \le x \le 1$.
- 7. Let $f(x) = \frac{1}{x}$. Show that there is no c in the interval $-1 \le x < 2$ such that $f'(c) = \frac{f(2) f(-1)}{2 (-1)}$. Explain why this does *not* contradict the Mean Value Theorem.

In Problems 8 and 9, find all stable and unstable equilibria of the autonomous differential equation.

$$8. \quad \frac{dy}{dt} = y + 1$$

9.
$$\frac{dy}{dt} = -y^2(y+2)(y-1)$$

- 10. Suppose a company can sell x items per week at a price P = 200 0.01x cents, and that it costs C = 50x + 20,000 cents to produce the x items. How much should the company charge per item in order to maximize its profits?
- 11. The weight W (lbs/sec) of flue gas passing up a chimney at different temperatures T is represented by $W = A(T T_0)(1 + \alpha T)^{-2}$, where A is a positive constant, T the absolute temperature of the hot gases passing up the chimney, T_0 the temperature of the outside air (all in °C), and $\alpha = \frac{1}{273}$ is the coefficient of expansion of the gas. For a given $T_0 = 15$ °C, find the temperature T at which the greatest amount of gas will pass up the chimney.
- 12. Find the linearization of $f(x) = \sqrt{x + \frac{1}{x}}$ at x = 4.
- 13. Use the linearization L(x) to estimate the value of $\sin 29^{\circ}$.
- 14. Beginning with the estimate $x_1 = \frac{\pi}{2}$, apply Newton's method once to calculate a positive solution to the equation $\sin x = \frac{2}{3}x$.

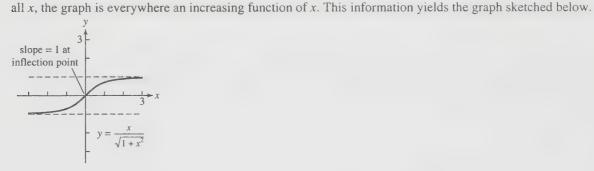
71

SOLUTIONS TO CHAPTER 3 SELF-TEST

- 1. $f(x) = x^3 x^2 x + 2$ for $0 \le x < 2$, and $f'(x) = 3x^2 2x 1 = (3x + 1)(x 1)$. Thus f'(x) = 0 implies $x = -\frac{1}{3}$ or x = 1. Then x = 1 is the only critical point in the interval [0, 2). Next note that f'(x) < 0 in [0, 1), so f is decreasing to the left of x = 1, and f'(x) > 0 in (1, 2) so f is increasing to the right of x = 1. Also, f(0) = 2, f(1) = 1, and f(2) = 4. Since x = 2 is not in the interval, there is no absolute maximum. The absolute minimum value is f(1) = 1 (which is also a relative minimum).
- 2. $y = \frac{x}{(1+x^2)^{1/2}}$ $y' = \frac{(1+x^2)^{1/2} - x \cdot \frac{1}{2}(1+x^2)^{-1/2} 2x}{1+x^2} = \frac{1}{(1+x^2)^{3/2}}$, and $y'' = \frac{-3x}{(1+x^2)^{5/2}}$.

Note that $y = \frac{1}{\left(\frac{1}{x^2} + 1\right)^{1/2}}$ for $x \ge 0$ (since $\sqrt{x^2} = |x|$) and that $y = \frac{-1}{\left(\frac{1}{x^2} + 1\right)^{1/2}}$ for x < 0. Thus $\lim_{x \to \infty} y = 1$

and $\lim_{x\to-\infty} y=-1$. Hence the lines y=1 and y=-1 are horizontal asymptotes. Since y' exists for all x and is never zero, there are no critical points. At x=0, y''=0 so that x=0 is a point of inflection where the graph has slope 1. On $(-\infty,0)$ y''>0 and the function is concave up; on $(0,\infty)$ it is concave down. Since y'>0 for

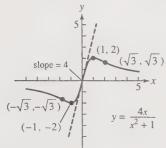


3. Since $\lim_{x \to \pm \infty} y = \lim_{x \to \pm \infty} \frac{\frac{4}{x}}{1 + \frac{1}{x^2}} = 0$, the x-axis is a horizontal asymptote. Next, $y' = \frac{4(1 - x^2)}{(x^2 + 1)^2}$ and

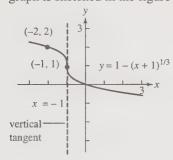
 $y'' = \frac{8x(x^2 - 3)}{(x^2 + 1)^3}$. Hence, y' = 0 implies $x = \pm 1$. Since y' > 0 at x = -1 and y'' < 0 at x = 1, it follows from the

second derivative test that y(-1) = -2 is a *relative minimum* and y(1) = 2 is a *relative maximum*.

Next, y'' = 0 when x = 0, $-\sqrt{3}$, and $\sqrt{3}$, so that these values for x are *points of inflection*. Moreover, for $x < -\sqrt{3}$, y'' < 0 and the graph of y is concave down; $-\sqrt{3} < x < 0$, y'' > 0 and the graph of y is concave up; $0 < x < \sqrt{3}$, y'' < 0 and the graph of y is concave down; $x > \sqrt{3}$, y'' > 0 and the graph of y is concave up. Note that at x = 0, y' = 4. The graph of y is sketched below. Note the symmetry about the origin.



4. $y = 1 - (x+1)^{1/3}$, $y' = -\frac{1}{3}(x+1)^{-2/3}$, and $y'' = \frac{2}{9}(x+1)^{-5/3}$. The derivative y' does not exist when x = -1, although the curve y is continuous at x = -1. Since $\lim_{x \to -1} \frac{dx}{dy} = \lim_{x \to -1} -3(x+1)^{2/3} = 0$, the graph has a vertical tangent at x = -1. Since y' < 0 for all $x \ne -1$, the curve is everywhere decreasing. We note that y'' is never zero. However, y'' fails to exist at x = -1. When x < -1, y'' < 0 and the curve is concave down; when x > -1, y'' > 0 and the curve is concave up. Therefore, x = -1 is a point of inflection. The graph is sketched in the figure below.



- 5. Let $f(x) = \cos x \sqrt{x}$. Since $|\cos x| \le 1$, we see that f(x) < 0 if x > 1. Thus, the only possible root must lie within the interval [0,1]. Now, f(0) = 1 and $f\left(\frac{\pi}{2}\right) = -\sqrt{\frac{\pi}{2}}$, so the Intermediate Value Theorem guarantees a root in the interval $\left[0, \frac{\pi}{2}\right]$: we know in fact that the root must lie in [0, 1]. Calculating the derivative, $f'(x) = -\sin x \frac{1}{2\sqrt{x}}$, we see that f' is negative in the interval (0, 1). Since f' is different from zero for all values of x between 0 and 1, we conclude that there is exactly one real root to the equation f(x) = 0 for $x \ge 0$.
- 6. f(-1) = 3 and f(1) = 3; f'(x) = 4x. Hence $\frac{f(1) f(-1)}{1 (-1)} = f'(c)$ translates into 0 = 4c or c = 0.

- 7. $\frac{f(2) f(-1)}{2 (-1)} = \frac{\frac{1}{2} (-1)}{3} = \frac{1}{2}$ and $f'(c) = -\frac{1}{c^2}$. Since $-\frac{1}{c^2} = \frac{1}{2}$ is impossible to solve for real values of c, there is no number c in the interval (-1, 2) satisfying the conclusion of the Mean Value Theorem. However, this does not contradict the Theorem because $f(x) = \frac{1}{x}$ is not continuous over the closed interval [-1, 2]: it fails to be continuous at x = 0. Thus the hypotheses of the theorem are not satisfied.
- 8. $\frac{dy}{dt} = y + 1 = 0$ only when y = -1, so that is the only equilibrium. It is unstable because y increases (y' < 0) for y > -1 and decreases (y' < 0) for y < -1. There are no stable equilibria.
- 9. $\frac{dy}{dt} = -y^2(y+2)(y-1) = 0$ when y = 0, y = -2, or y = 1, so those are the three equilibria. Near y = 0, y' is positive when y > 0 and when y < 0, so y = 0 is a stable equilibrium. Near y = -2, y' is positive when y > -2 and negative when y < -2, so y = 2 is an unstable equilibrium. And y = 1 is an unstable equilibrium for the same reasons.
- 10. Let Q denote the profit function. Then, $Q(x) = xP C = 150x 0.01x^2 20,000$. The maximum occurs when $\frac{dQ}{dx} = 0$, or 150 0.02x = 0; thus, x = 7500 items. Since $\frac{d^2Q}{dx^2} = -0.02 < 0$, this provides a maximum profit. The price per item is then given by P(7500) = 200 (0.01)(7500) = 125 cents, the price required to obtain the maximum profit Q(7500) = \$5,425.00.
- 11. We want to maximize the weight function W. Now, $W = A(T T_0)(1 + \alpha T)^{-2}$, $\frac{dW}{dT} = A(1 + \alpha T)^{-2} 2A\alpha(T T_0)(1 + \alpha T)^{-3}$. Setting $\frac{dW}{dT} = 0$, and simplifying algebraically, gives $(1 + \alpha T) 2\alpha(T T_0) = 0$, or $T = \frac{1 + 2\alpha T_0}{\alpha}$. Thus, for $T_0 = 15^{\circ}C$ and $\alpha = 1/273$ as given, $T = \frac{1}{\alpha} + 2T_0 = 273 + 30 = 303^{\circ}C$. Setting $\frac{dW}{dT} > 0$ if T < 303, and $\frac{dW}{dT} < 0$ if T > 303, it is clear that $T = 303^{\circ}$ provides an absolute maximum for W.
- 12. $f'(x) = \frac{1}{2} \left(x + \frac{1}{x} \right)^{-1/2} \cdot \frac{d}{dx} \left(x + \frac{1}{x} \right) = \frac{1}{2} \left(x + \frac{1}{x} \right)^{-1/2} \left(1 \frac{1}{x^2} \right)$. Thus, $f'(4) = \frac{1}{2} \left(4 + \frac{1}{4} \right)^{-1/2} \left(1 - \frac{1}{16} \right) = \frac{15}{16\sqrt{17}} \approx 0.227$ and $f(4) = \sqrt{\frac{17}{4}} \approx 2.062$. Therefore, $L(x) = \frac{\sqrt{17}}{2} + \frac{15}{16\sqrt{17}} (x - 4) \approx 2.062 + 0.227(x - 4)$.
- 13. The calculation must be done when $y = \sin x$ for x measured in radians. Thus, $\sin 29^\circ \approx \sin \frac{\pi}{6} + dy$, where $dy = \frac{dy}{dx} dx$ when $x = \frac{\pi}{6}$ and $dx = -\frac{\pi}{180}$ radians. Now, $\frac{dy}{dx}\Big|_{\pi/6} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, so that $\sin 29^\circ \approx \frac{1}{2} + \left(\frac{\sqrt{3}}{2}\right)\left(-\frac{\pi}{180}\right) \approx 0.48489$.
- 14. Let $f(x) = \sin x \frac{2}{3}x = 0$, $f'(x) = \cos x \frac{2}{3}$. By Newton's method, $x_2 = x_1 - \frac{\sin x_1 - \frac{2}{3}x_1}{\cos x_1 - \frac{2}{3}} = \frac{\pi}{2} - \frac{1 - \frac{\pi}{3}}{0 - \frac{2}{3}} = \frac{\pi}{2} + \frac{3}{2} \left(1 - \frac{\pi}{3}\right) = \frac{3}{2}.$

NOTES.