Chapter 1: Limits and Continuity

1.1 RATES OF CHANGE AND LIMITS

OBJECTIVE A: Find the average rate of change of a function y = f(x) over an interval $[x_1, x_2]$.

- 1. The average rate of change of y = f(x) over $[x_1, x_2]$ is the change in y, $\Delta y =$ ______ divided by $\Delta x =$ ______, the length of the interval over which the change occurred.
- 2. Geometrically, an average rate of change is a ______
- 3. The average rate of change of $f(x) = x^2 x + 1$ over [0, 2] is

$$\frac{\Delta y}{\Delta x} = \frac{f(2) - \underline{\hspace{1cm}}}{2 - 0} = \frac{(2^2 - 2 + 1) - \underline{\hspace{1cm}}}{2} = \underline{\hspace{1cm}}.$$

OBJECTIVE B: Know the informal definition of the limit $\lim_{x \to x_0} f(x) = L$.

- **4.** According to the informal definition, we write $\lim_{x \to x_0} f(x) = L$ if the values of _____ approach the value L as x approaches _____ .
- 5. If f is the identity function f(x) = x, then for any value of x_0 , $\lim_{x \to x_0} f(x) = \underline{\qquad}$.
- **6.** If f is the constant function f(x) = k, then for any value of x_0 , $\lim_{x \to x_0} f(x) =$ _____.

OBJECTIVE C: Find limits of elementary functions by substitution, if possible.

- 7. $\lim_{x \to \frac{1}{4}} (8x 3) = \underline{\qquad} -3 = \underline{\qquad}$
- 8. $\lim_{x \to \frac{1}{2}} \frac{6x^2 + \frac{1}{2}}{4x 1} = \frac{6\left(\frac{1}{4}\right) + \frac{1}{2}}{\left(\underline{}\right)} = \underline{}$
- 9. $\lim_{x \to \frac{\pi}{4}} (\cos x)(2 \sin x) = \underline{\qquad} \left(\frac{2}{\sqrt{2}}\right) = \underline{\qquad}$
- 10. A function may fail to have a limit as x approaches x_0 because it
 - a. ______
 - b. ______,
 - c. _____
- 1. $f(x_2) f(x_1)$, $x_2 x_1$
- 2. secant slope

3. f(0), $(0^2 - 0 + 1)$, $\frac{2}{2} = 1$

4. f(x), x_0

5. *x*₀

6. *k*

7. 2, −1

8. 2 − 1, 2

9. $\frac{1}{\sqrt{2}}$, 1

10. a. jumps

b. grows too large

c. oscillates too much

OBJECTIVE D: Given a function y = f(x), a positive number ε , a point x_0 , and a target value L, determine an interval about x_0 in which we must hold x to be sure that y = f(x) lies within ε units of L.

11. Suppose y = -3x + 1, $\varepsilon = 1$, $x_0 = 2$, L = -5. We must know in what interval of values to hold x to make to make y satisfy the inequality |y - (-5)| < 1.

Substituting for y, we find |(-3x+1)-(-5)| < 1 or _____ < 1. Thus, |-3(x-2)| < 1 or |x-2| <____ . Thus, $-\frac{1}{3} < x - 2 < \frac{1}{3}$, or x satisfies the inequality ____ < x < ___ .

In summary, the interval $|x-2| < \frac{1}{3}$ contains the values near $x_0 = 2$ to which x must be held to ensure y = -3x + 1 is within $\varepsilon = 1$ of L = -5.

OBJECTIVE E: Write the formal definition of the limit of a function f(x) as x approaches a number x_0 .

- 12. Let f be a function defined on an open interval containing the point x_0 , except possibly at x_0 itself. Then the limit of f as x approaches x_0 is L, written _______, if, given any number ε , there is a corresponding positive number δ such that _______ holds whenever ______
- 13. As an application of the definition, consider the limit of the function f(x) = 3 2x as x approaches 5. The limit is L = -7. To show this it is required to establish that: For any positive number ε , there is a positive number δ such that _____ when $0 < \underline{}$ when $0 < \underline{}$ when $0 < \underline{}$.

Now, $|(3-2x)-(-7)| = 2 \cdot$ _____. Thus, $2|x-5| < \varepsilon$ provided |x-5| <_____.

Therefore, if $\delta =$ ______, then $|(3-2x)-(-7)| < \varepsilon$ whenever ______.

That is, $\lim_{x \to 5} (3 - 2x) = -7$.

OBJECTIVE F: Given a function f(x), a point x_0 , and a positive number ε , find a number $\delta > 0$ such that for all $x = 0 < |x - x_0| < \delta$ implies $|f(x) - L| < \varepsilon$, where $L = \lim_{x \to x_0} f(x)$.

14. For the limit $\lim_{x\to 4} \sqrt{2x+1} = 3$, find a $\delta > 0$ that works for $\varepsilon = 1$.

Solution:

STEP 1: We first find an interval about $x_0 = 4$ on which the inequality $\left| \sqrt{2x+1} - 3 \right| < 1$ holds for $x \ne 4$.

11. $\left|-3x+6\right|, \frac{1}{3}, \frac{5}{3}, \frac{7}{3}$

- 12. $\lim_{x \to x_0} f(x) = L, |f(x) L| < \varepsilon, 0 < |x x_0| < \delta$
- **13.** $|(3-2x)-(-7)| < \varepsilon, |x-5|, |x-5|, \frac{\varepsilon}{2}, \frac{\varepsilon}{2}, 0 < |x-5| < \delta$

The inequality holds for all x in the open interval $\left(\frac{3}{2}, \frac{15}{2}\right)$.

STEP 2: We now find an interval centered at 4. The distance from 4 to the nearest endpoint of $\left(\frac{3}{2}, \frac{15}{2}\right)$ is . If we take $\delta =$ _____ or any smaller positive number, the inequality $0 < |x - 4| < \delta$ will automatically place x between $\frac{3}{2}$ and $\frac{15}{2}$ to make the inequality _____ hold.

1.2 FINDING LIMITS AND ONE-SIDED LIMITS

OBJECTIVE A: Specify the five important limit rules related to the arithmetic operations, as stated in Theorem 1 of

15.	Sum Rule:							

- 16. Difference Rule:
- 17. Product Rule:
- 18. Constant Multiple Rule:
- 19. Quotient Rule:

OBJECTIVE B: Evaluate limits $\lim_{x \to a} f(x)$ when f(x) is a sum, difference, product, or quotient of polynomials.

- **20.** To find the limit as x approaches c of any polynomial function $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ you simply the number c for ______ thus evaluating f(c). Hence, $\lim_{x \to -1} (2x^3 + x^2 - 4x - 3) = _____ = ____.$
- 21. $\lim_{x \to 1} \frac{x^3 2x}{x^2 + 3} = \frac{1+3}{1+3} = \frac{1}{1+3}$

14. -1, 1,
$$\sqrt{2x+1}$$
, 4, $2x+1$, $\frac{3}{2}$, $\frac{15}{2}$, $\frac{5}{2}$, $\frac{5}{2}$, $\left|\sqrt{2x+1}-3\right| < 1$

15.
$$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$
 16. $\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$

16.
$$\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$$

17.
$$\lim_{x \to c} f(x) \cdot g(x) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$$

18.
$$\lim_{x \to c} k \cdot f(x) = k \lim_{x \to c} f(x)$$

19.
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$
 provided that $\lim_{x \to c} g(x)$ is not zero

20. substitute,
$$x$$
, $2(-1)^3 + (-1)^2 - 4(-1) - 3$, 0 **21.** $1 - 2$, $-\frac{1}{4}$

21.
$$1-2, -\frac{1}{2}$$

22.
$$\lim_{x \to -2} (4+3x)(x^2-x+1) = \lim_{x \to -2} (4+3x)$$
 = _____ (4+2+1) = -14.

23.
$$\lim_{x \to 4} \frac{x^2 + x - 2}{x^2 - 1} = \frac{18}{\lim_{x \to 4} (x^2 - 1)} = \frac{18}{-}.$$

OBJECTIVE C: Evaluate limits of functions when the denominator is zero at the limit point c by canceling a common factor, or by creating and canceling a common factor.

24.
$$\lim_{x \to 1} \frac{x^3 + x^2 - 3x + 1}{x - 1} \neq \frac{\lim_{x \to 1} (x^3 + x^2 - 3x + 1)}{x - 1}$$
 because the limit of the denominator is ______.

However,
$$\frac{x^3 + x^2 - 3x + 1}{x - 1} = \frac{(x - 1)(\underline{\hspace{1cm}})}{x - 1}$$
,

so that
$$\lim_{x \to 1} \frac{x^3 + x^2 - 3x + 1}{x - 1} = \lim_{x \to 1} = \frac{1}{x + 1}$$

25.
$$\lim_{h \to 0} \frac{(1+h)^3 - 1}{h} = \lim_{h \to 0} \frac{(\underline{}) - 1}{h}$$
$$= \lim_{h \to 0} \underline{}$$
$$= \lim_{h \to 0} \underline{}$$

26.
$$\lim_{x \to 9} \frac{x^2 - 81}{3 - \sqrt{x}} = \lim_{x \to 9} \frac{x^2 - 81}{3 - \sqrt{x}} \cdot \frac{3 + \sqrt{x}}{3 + \sqrt{x}}$$

$$= \lim_{x \to 9} \frac{(x^2 - 81)(3 + \sqrt{x})}{(\underline{\hspace{1cm}})}$$

$$= \lim_{x \to 9} \frac{(x - 9)(\underline{\hspace{1cm}})(3 + \sqrt{x})}{9 - x}$$

$$= \lim_{x \to 9} -(\underline{\hspace{1cm}})(\underline{\hspace{1cm}}) = \underline{\hspace{1cm}}.$$

OBJECTIVE D: State and use the Sandwich Theorem for limits.

27. If
$$g(x) \le f(x) \le h(x)$$
 for $x \ne c$ over some interval containing c, and if $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$, then

28. For
$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$
 it is known that $1 \le \frac{\tan x}{x} \le \frac{1}{\cos x}$. Therefore, since $\lim_{x \to 0} \cos x = \underline{\qquad}$ we have,
$$\lim_{x \to 0} \frac{\tan x}{x} = \underline{\qquad}$$

22.
$$\lim_{x \to -2} (x^2 - x + 1), (4 - 6)$$

23.
$$\lim_{x \to 4} (x^2 + x - 2)$$
, 15

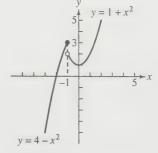
24.
$$\lim_{x \to 1} (x-1)$$
, 0, $x^2 + 2x - 1$, $x^2 + 2x - 1$, 2

25.
$$1+3h+3h^2+h^3$$
, $3h+3h^2+h^3$, $3+3h+h^2$, 3

26.
$$3 + \sqrt{x}$$
, $9 - x$, $x + 9$, $x + 9$, $3 + \sqrt{x}$, $-(18)(6) = -108$

$$27. \quad \lim_{x \to c} f(x) = L$$

OBJECTIVE E: For elementary functions y = f(x), find the right-hand and left-hand limits as x approaches a, and from these determine if $\lim f(x)$ exists.



The graph is shown above right.

$$\lim_{\substack{x \to -1^{+} \\ \lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} = \\ \lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} = \\ \operatorname{Since } \lim_{x \to -1^{+}} f(x) \neq \lim_{x \to -1^{-}} f(x), \text{ the limit } \lim_{x \to -1} f(x) = exist.$$

30.
$$\lim_{x \to 1^{-}} \frac{5x^{2} - 7x + 2}{x^{2} + x - 2} = \lim_{x \to 1^{-}}$$
 (factor)
$$= \lim_{x \to 1^{-}} \frac{5x - 2}{x^{2} + x - 2} = \frac{5 - 2}{x^{2} + x - 2}$$

In this problem you must factor the numerator and denominator first and cancel the term (x-1) before _____ is zero in the original expression: calculating the limit because _____

 $\lim (x^2 + x - 2) = 1^2 + 1 - 2 = 0$. Note also that the limit as $x \to 1^+$ equals 1.

OBJECTIVE F: Evaluate limits of trigonometric functions by making use of appropriate trigonometric identities and the limit theorems.

- 31. One of the most useful facts in calculus is that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} =$ ______. For this limit the angle θ must be measured in __
- 32. To find $\lim_{x\to 0} \frac{\sin 5x}{3x}$ first substitute $\theta = 5x$, and note that $\theta \to 0$ as $x \to 0$. Then the limit

becomes,
$$\lim_{x \to 0} \frac{\sin 5x}{3x} = \lim_{\theta \to 0}$$

$$= \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \frac{5}{3} (\underline{\hspace{1cm}}) = \underline{\hspace{1cm}}.$$

29.
$$1+x^2$$
, 2, $4-x^2$, 3, does not

29.
$$1+x^2$$
, 2, $4-x^2$, 3, does not **30.** $\frac{(5x-2)(x-1)}{(x+2)(x-1)}$, $x+2$, $1+2$, 1, the limit of the denominator

32.
$$\frac{\sin \theta}{3(\frac{\theta}{5})}, \frac{5}{3}, 1, \frac{5}{3}$$

33.
$$\lim_{x \to 0} \frac{1 - \cos x}{1 - \sin x} = \frac{\lim_{x \to 0} (1 - \cos x)}{1 - \sin x} = \frac{(1 - \frac{1}{1 - \cos x})}{(1 - 0)} = \frac{1}{1 - \cos x}$$

34.
$$\lim_{h \to 0} \frac{h}{\sin h} = \lim_{h \to 0} \frac{1}{1} = \frac{1}{\lim_{h \to 0} \frac{\sin h}{1}} = \frac{1}{1} = \frac{1}{1}$$

1.3 LIMITS INVOLVING INFINITY

OBJECTIVE A: Calculate the limit of f(x) as x approaches $+\infty$ or $-\infty$, whenever the limit exists.

35.
$$\lim_{x \to \infty} \frac{5x^3}{1 + 3x - 2x^3} = \lim_{h \to 0} \frac{\frac{5}{h^3}}{1 + 3x - 2x^3} = \lim_{h \to 0} \frac{5}{h^3} = \lim_{h \to$$

36.
$$\lim_{x \to \infty} \frac{1 - 3x^2}{4x^3 + 2x - 5} = \lim_{x \to \infty} \frac{1 - 3x^2}{4 + \left(\frac{2}{x^2}\right) - \left(\frac{5}{x^3}\right)} = \frac{0 - \frac{1}{4 + 0 - 0}}{4 + 0 - 0} = \frac{1 - 3x^2}{4 + 0 - 0}$$

37.
$$\lim_{x \to -\infty} \frac{3-x^2}{6x+1} = \lim_{x \to -\infty} \frac{\left(\frac{3}{x}\right)-x}{-x} = \underline{\qquad}$$

OBJECTIVE B: Analyze the behavior of the graph of a function y = f(x) as $x \to \pm \infty$.

- 38. A line y = b is a ______ asymptote of the graph of a function y = f(x) if either $\lim_{x \to \infty} f(x) = b$ or _____.
- 39. A line x = a is a ______ asymptote of the graph of a function y = f(x) if either $\lim_{x \to a^-} f(x) = \pm \infty$ or ______.
- 40. Consider the function $y = \frac{2x-5}{x^2-2x-3} + 4$. If we divide the top and bottom of the rational expression by x, we obtain y =______. As $x \to \pm \infty$, the numerator of the rational expression approaches ______ and the denominator goes to ______. So the rational expression approaches ______. Thus the function y has a ______ asymptote at ______. Furthermore, in the original expression for y the denominator of the rational expression can be factored to obtain y =______, from which it is evident that y has ______ asymptotes at ______ and

33.
$$\lim_{x\to 0} (1-\sin x), 1, 0$$

34.
$$\frac{\sin h}{h}$$
, h, 1, 1

35.
$$1 + \frac{3}{h} - \frac{2}{h^3}$$
, $h^3 + 3h^2 - 2$, $-\frac{5}{2}$

36.
$$\frac{1}{x^3} - \frac{3}{x}$$
, 0, 0

37.
$$6 + \frac{1}{x}, +\infty$$

38. horizontal,
$$\lim_{x \to -\infty} f(x) = b$$

39. vertical,
$$\lim_{x \to a^+} f(x) = \pm \infty$$

40.
$$\frac{2-\frac{5}{x}}{x-2-\frac{3}{x}}+4$$
, 2, $\pm \infty$, 0, horizontal, $y=4$, $\frac{2x-5}{(x+1)(x-3)}+4$, vertical, $x=-1$, $x=3$

OBJECTIVE C: Find "infinite limits" such as $\lim_{x \to a} f(x) = \infty$, $\lim_{x \to a^{-}} f(x) = \infty$, $\lim_{x \to a^{+}} f(x) = -\infty$, and so forth.

41.
$$\lim_{x \to 1^+} \frac{|x|+1}{x^2-1} = \lim_{x \to 1^+} \frac{|x|+1}{(x+1)(\underline{\hspace{1cm}})} = \lim_{x \to 1^+} \underline{\hspace{1cm}}, \text{ since } |x|+1 = \underline{\hspace{1cm}} \text{ for } x \text{ near } 1. \text{ Therefore,}$$

$$\lim_{x \to 1^+} \frac{|x|+1}{x^2-1} = \underline{\hspace{1cm}}$$

OBJECTIVE D: Find an end behavior model for a function y = f(x).

- **42.** Consider the rational function $y = \frac{x^2 3x 1}{x 3}$. If we divide x 3 into $x^2 3x 1$ we obtain y = x -_______ is both a ______ and _____ end behavior model for y.
- 43. Consider the function $y = x\sqrt{x^2 + 1}$. Since for large x, $\sqrt{x^2 + 1} \approx \sqrt{\underline{}} = x$, one might expect that $u = x \cdot \underline{\underline{}} = \underline{\underline{\phantom{$

1.4 CONTINUITY

OBJECTIVE A: Specify the test for a function f to be continuous at an interior point x = c of its domain.

- 44. The three conditions that must be satisfied if the function f is to be continuous at the point x = c are that ______ exists, ______ exists, and ______.
- 45. A function is continuous over an interval if it is continuous at ______ within that interval.
- **46.** If a function f is not continuous at the point x = c, it is said to be ______ at c.

OBJECTIVE B: Given an elementary function y = f(x), determine its points of continuity and discontinuity. Be able to justify your conclusions.

41.
$$x-1, \frac{1}{x-1}, x+1, +\infty$$

42.
$$\frac{1}{x-3}$$
, x, right, left

43.
$$x^2$$
, x , x^2 , $x\sqrt{x^2+1}$, $\sqrt{1+\frac{1}{x^2}}$, $\sqrt{1+\frac{1}{x^2}}$, 1, 1

44.
$$f(c)$$
, $\lim_{x \to c} f(x)$, $\lim_{x \to c} f(x) = f(c)$

46. discontinuous

^{45.} all points

47. Consider $f(x) = \begin{cases} x+4 & \text{if } x < -1 \\ -x & \text{if } x \ge -1 \end{cases}$. Observe that c = -1 belongs to the domain of f: f(-1) = 1. Does f have a limit as

 $x \rightarrow -1$? To answer that question, we calculate the right- and left-hand limits:

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (_{ }) = _{ } ,$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (_{ }) = _{ } .$$

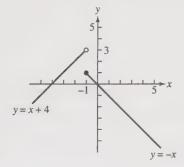
Since $\lim_{x \to -1^-} f(x) = 3 \neq \lim_{x \to -1^+} f(x) = 1$, then $\lim_{x \to -1} f(x)$, we conclude that f is

at x = -1. Sketch a graph of f.

48. Let $f(x) = \frac{x}{x-1}$. Since $x = \underline{\hspace{1cm}}$ does not belong to the domain of f we conclude that f is $\underline{\hspace{1cm}}$ at 1. Also, $\lim_{x \to 1^-} f(x) = \underline{\hspace{1cm}}$ and $\lim_{x \to 1^+} f(x) = \underline{\hspace{1cm}}$ so f does not have a finite limit as $x \to 1$. However, as $x \to +\infty$ or $x \to -\infty$, $f(x) \to \underline{\hspace{1cm}}$. Sketch a graph of f. Observe that f is continuous at all points except x = 1.

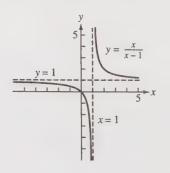
OBJECTIVE C: Specify the main facts related to continuous functions.

- **49.** Every constant function is continuous ______.
- 50. Every polynomial function is continuous
- 51. Every rational function is continuous _____
- **52.** If f and g are continuous at c, then f + g, f g, and $f \cdot g$ are _______ at c.
- 53. If f and g are continuous at c, then $\frac{f}{g}$ is ______ at c provided that _____
- 54. If f is continuous at c, and k is any constant, then kf is ______ at c
- 47. x + 4, 3, -x, 1, does not exist, discontinuous



- **49.** at every number
 - 50. at every number
- 51. at every number at which the denominator is not zero
- 52. continuous

- 53. continuous, $g(c) \neq 0$
- 54. continuous



48. 1, discontinuous, $-\infty$, $+\infty$, 1

55. If f is continuous at c and g is continuous at f(c), then the composite ______ is continuous at ______ is

OBJECTIVE D: Understand the Intermediate Value Theorem

56. Suppose that f(x) is continuous for all x in the closed interval [a,b], and that N is any number between f(a) and f(b) What is your conclusion?

1.5 TANGENT LINES

OBJECTIVE A: Find the slope of the function y = f(x) at a given point $P(x_0, f(x_0))$ using the definition $m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$.

57. Find the slope of the curve $y = (x+1)^2$ at P(0,1).

Solution. Here $f(x) = (x+1)^2$ and $x_{0=}$.

STEP 1. Calculate $f(x_0)$ and $f(x_0 + h)$: $f(x_0) = f(0) =$ _____ and $f(x_0 + h) = f(h) =$ ____.

STEP 2.
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\frac{1}{h}}{h}$$

$$= \lim_{h \to 0} \frac{h^2 + \frac{1}{h}}{h}$$

$$= \lim_{h \to 0} (h + \frac{1}{h}) = \frac{1}{h}$$

OBJECTIVE B: Find an equation for the tangent to a curve y = f(x) at a given point $P(x_0, f(x_0))$.

58. Find an equation for the tangent to $y = (x+1)^2$ at P(0,1).

Solution. From Problem 57, the slope of the tangent line is m = 2. An equation of the tangent in point-slope form is ______.

59. Find an equation for the tangent to $y = \frac{1}{\sqrt{x-1}}$ when x = 2.

Solution. Here
$$f(x) = \frac{1}{\sqrt{x-1}}$$
.

STEP 1. Calculate f(2) and f(2+h): $f(2) = ______$ and $f(2+h) = ______$

STEP 2. Calculate the slope *m*:

$$m = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{\frac{1}{\sqrt{1+h}} - 1}{h}$$

$$= \lim_{h \to 0} \frac{1 - \frac{1}{h\sqrt{1+h}}}{h\sqrt{1+h}} = \lim_{h \to 0} \frac{(1 - \sqrt{1+h})(1 + \sqrt{1+h})}{h\sqrt{1+h}(1 + \sqrt{1+h})}$$

$$= \lim_{h \to 0} \frac{\frac{1}{h\sqrt{1+h}} - 1}{h\sqrt{1+h}(1 + \sqrt{1+h})} = \lim_{h \to 0} \frac{\frac{1}{\sqrt{1+h}} - 1}{h\sqrt{1+h}(1 + \sqrt{1+h})} = \frac{1}{h\sqrt{1+h}(1 + \sqrt{1+h}$$

STEP 3. Find the tangent line using the point-slope equation: ______, or $y = -\frac{1}{2}x + 2$.

OBJECTIVE C: Find the rate of change of a given function f(x) with respect to x at a specified point $x = x_0$.

- **60.** The rate of change of f(x) with respect to x at $x = x_0$ is the same as the ______ of y = f(x) at $x = x_0$ or the ______ of f at $x = x_0$.
- **61.** Find the rate of change of the area of a square $(A = x^2)$ with respect to its side length when the side length is x = 5.

Solution. We first calculate A(5) and A(5+h):

$$A(5) =$$
_____ and $A(5 + h) =$ _____

Then the rate of change is

That is, the area changes at the rate 10 square units per side length unit when the side length is 5 units.

59. 1,
$$\frac{1}{\sqrt{1+h}}$$
, $\sqrt{1+h}$, $1-(1+h)$, -1 , $-\frac{1}{2}$, $y=1+\left(-\frac{1}{2}\right)(x-2)$

61. 25,
$$(5+h)^2 = 25+10h+h^2$$
, $10h+h^2$, 10

CHAPTER 1 SELF-TEST

Find the limits in Problems 1–6.

1.
$$\lim_{t \to 3} \frac{t^2 - 1}{t - 1}$$

2.
$$\lim_{x \to 2} \frac{2x^2 - 3x - 2}{x - 2}$$

3.
$$\lim_{x \to 1^+} \frac{3x - 1}{5x^3 - 2x + 1}$$

4.
$$\lim_{t \to 0^{-}} \frac{2t^2 + 3t - 1}{t^3 - 2t}$$
 5. $\lim_{t \to \infty} \frac{t^2}{4 - t^2}$

$$5. \lim_{t \to \infty} \frac{t^2}{4 - t^2}$$

$$6. \qquad \lim_{x \to \infty} \left(\frac{1}{x} \cos x^2 \right)$$

7. Let f be defined by
$$f(x) = \begin{cases} 2x - 3 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

(a) Find
$$\lim_{x\to 0^+} f(x)$$
 and $\lim_{x\to 0^-} f(x)$.

(b) Is f continuous at x = 0? Justify your answer.

8. Consider the function
$$f(x) = \frac{x-1}{x^2 - x}$$
.

- (a) For what values of x is f continuous? Justify your conclusion.
- (b) Is f continuous at x = 1? If not, what value can be assigned to f(1) so that the resultant function is continuous there.?
- 9. It can be shown that for all values of x

$$\frac{x^2}{2} - \frac{x^4}{24} \le 1 - \cos x \le \frac{x^2}{2}.$$

Use this result to find $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.

- 10. In what interval about $x_0 = -1$ must we hold x to be sure that $y = -\frac{x}{3} + \frac{2}{3}$ lies within $\varepsilon = 0.5$ units of $y_0 = 1$?
- 11. Justify that the function $f(x) = x^5 + 1$ has at least one real zero; that is, where there is some real number c so that f(c) = 0.
- 12. Given f(x) = 2x + 7, $x_0 = -2$, and $\varepsilon = 0.01$, find $L = \lim_{x \to x_0} f(x)$. Then find $\delta > 0$ such that $0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon$
- 13. Find the slope of $f(x) = \frac{2x}{x+1}$ at (1,1). Then find an equation for the line tangent to the graph there.
- 14. At t seconds after lift off, the height of a rocket is $4t^2$ ft. How fast is the rocket climbing after one minute?

SOLUTIONS TO CHAPTER 1 SELF-TEST

1.
$$\lim_{t \to 3} \frac{t^2 - 1}{t - 1} = \frac{9 - 1}{3 - 1} = 4$$

2.
$$\lim_{x \to 2} \frac{2x^2 - 3x - 2}{x - 2} = \lim_{x \to 2} \frac{(2x + 1)(x - 2)}{x - 2} = \lim_{x \to 2} (2x + 1) = 2(2) + 1 = 5$$

3.
$$\lim_{x \to 1^+} \frac{3x - 1}{5x^3 - 2x + 1} = \frac{3 - 1}{5 - 2 + 1} = \frac{1}{2}$$

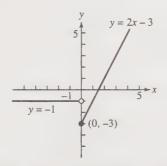
4.
$$\lim_{t \to 0^{-}} \frac{2t^2 + 3t - 1}{t^3 - 2t} = \lim_{t \to 0^{-}} \frac{2t^2 + 3t - 1}{t(t^2 - 2)} = \lim_{t \to 0^{-}} \frac{1}{t} \lim_{t \to 0^{-}} \frac{2t^2 + 3t - 1}{t^2 - 2} = -\infty$$

5.
$$\lim_{t \to \infty} \frac{t^2}{4 - t^2} = \lim_{h \to 0} \frac{\frac{1}{h^2}}{4 - \frac{1}{h^2}} = \lim_{h \to 0} = \frac{1}{4h^2 - 1} = \frac{1}{0 - 1} = -1$$

- **6.** $0 \le \left| \frac{1}{x} \cos x^2 \right| \le \frac{1}{|x|}$ because $\left| \cos x^2 \right| \le 1$ for all values of x. Since $\lim_{x \to \infty} \frac{1}{|x|} = 0$, we have $\lim_{x \to \infty} \left(\frac{1}{x} \cos x^2 \right) = 0$ by the Sandwich Theorem.
- 7. (a) From the graph of f shown below right,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (2x - 3) = -3$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (-1) = -1$$



- (b) No, $\lim_{x\to 0} f(x)$ does not exist because the left-hand and right-hand limits differ as x tends to zero, so f is not continuous at x = 0.
- 8. (a) Since division by zero is never permitted, the points x = 0 and x = 1 do not belong to the domain of f, and therefore f is discontinuous at those two values; it is continuous for all other values of x.
 - **(b)** $f(x) = \frac{x-1}{x^2 x} = \frac{x-1}{x(x-1)} = \frac{1}{x}$ if $x \ne 1$ and $x \ne 0$. Since $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{1}{x} = 1$, if we specify f(1) = 1 the new function so defined is continuous at x = 1.
- 9. From the assumed inequality, we divide through by the positive number x^2 obtaining, $\frac{1}{2} \frac{x^2}{24} \le \frac{1 \cos x}{x^2} \le \frac{1}{2}$ Applying the Sandwich Theorem, $\lim_{x\to 0} \left(\frac{1}{2} - \frac{x^2}{24}\right) = \frac{1}{2}$ and $\lim_{x\to 0} \frac{1}{2} = \frac{1}{2}$ so that $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$.

10.
$$y_0 = 1$$
, $\varepsilon = 0.5$

$$|y - y_0| = |y - 1| - \left| \left(-\frac{x}{3} + \frac{2}{3} \right) - 1 \right| < \varepsilon$$

$$\Leftrightarrow \left| -\frac{x}{3} - \frac{1}{3} \right| = \frac{1}{3} |x + 1| < 0.5$$

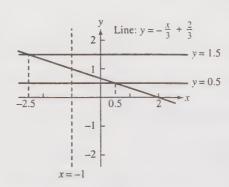
$$\Leftrightarrow |x + 1| < 1.5$$

$$\Leftrightarrow -1.5 < x + 1 < 1.5$$

$$\Leftrightarrow -2.5 < x < 0.5$$

$$\Leftrightarrow$$
 $-1.5 < x + 1 < 1.5$

$$\Leftrightarrow$$
 $-2.5 < x < 0.5$



11. Notice that $f(-2) = (-2)^5 + 1 = -31$ is a negative and $f(1) = 1^5 + 1 = 2$ is positive. Since f is a continuous function, the Intermediate Value Theorem guarantees the existence of a real number c satisfying -2 < c < 1 and f(c) = 0.

12.
$$\lim_{x \to -2} (2x+7) = 2 \lim_{x \to -2} x + \lim_{x \to -2} 7 = 2(-2) + 7 = 3.$$

 $|(2x+7)-3| = |2x+4| = 2|x+2| = 2|x-(-2)|.$
Thus
 $|(2x+7)-3| < 0.01$ whenever $|x-(-2)| < 0.005.$

That is, $\delta = 0.005$ for $\varepsilon = 0.01$ in the formal definition of the limit of f(x) = 2x + 7 as x approaches $x_0 = -2$.

13. The slope is

$$m = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\frac{2(1+h)}{2+h} - \frac{2}{2}}{h}$$

$$= \lim_{h \to 0} \frac{(2+2h) - (2+h)}{h(2+h)} = \lim_{h \to 0} \frac{h}{h(2+h)}$$

$$= \lim_{h \to 0} \frac{1}{2+h} = \frac{1}{2}.$$

An equation of the tangent line is $y = 1 + \frac{1}{2}(x-1)$ or $y = \frac{1}{2}(x+1)$.

14. The rate of change of $H(t) = 4t^2$ at t = 60 seconds is

$$\lim_{h \to 0} \frac{H(60+h) - H(60)}{h} = \lim_{h \to 0} \frac{4(60+h)^2 - 4(3600)}{h}$$

$$= \lim_{h \to 0} \frac{4(3600+120h+h^2) - 4(3600)}{h}$$

$$= \lim_{h \to 0} \frac{4(120h+h^2)}{h} = \lim_{h \to 0} (480+4h) = 480$$
The rocket is climbing at the rate of 480 ft/sec after 1 minutes.

The rocket is climbing at the rate of 480 ft/sec after 1 minute.

NOTES.