Preliminaries

P.1 LINES

OBJECTIVE A: Find the net changes $\triangle x$ and $\triangle y$ in a particle's coordinates as it moves from a point P to a point Q.

- 1. If a particles starts at P(2, -1) and goes to Q(-7, -3), then its x-coordinate changes by $\triangle x = -7 = -7$
- 2. Its y-coordinate changes by $\triangle y = \underline{\qquad} (-1) = \underline{\qquad}$

OBJECTIVE B: Given the increments from the point P to the point Q and the coordinates of one of these points, determine the coordinates of the other point.

- 3. The coordinates of a particle change by $\triangle x = -3$ and $\triangle y = 5$ in moving from P(1, -4) to Q(x, y). The x-coordinate of Q is given by $x = 1 + \underline{\qquad} = \underline{\qquad}$.
- 4. The y-coordinate of Q is given by $y = \underline{\hspace{1cm}} + 5 = \underline{\hspace{1cm}}$

OBJECTIVE C: Define the *slope* of a straight line and calculate the slope (if any) of the line determined by two given points.

5. The slope of the line through the points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is given by

$$m = \frac{\text{rise}}{\text{run}} = \frac{1}{1 + 1}$$
, provided that $x_1 \neq x_2$.

- **6.** If $x_1 = x_2$, then the line throught the points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is a ______ line. For vertical lines, the _____ is not defined.
- 7. The slope of the line through the points $A\left(-\frac{1}{2}, 1\right)$, B(0, -2) is m =_____.

OBJECTIVE D: Find the slope (if any) of a line perpendicular to a line determined by two given points.

8. The slope of the line perpendicular to AB in Problem 7 is m =_____.

OBJECTIVE E: Write an equation of any vertical line given a point on the line.

9. An equation of the vertical line passing through the point P(4, -7) is _____.

OBJECTIVE F: Write an equation of any line with given slope and passing through a given point.

- 10. Using the *point-slope* equation of the line, we have $y = y_1 + m(x x_1)$. Thus an equation of the line with slope m = -2 through the point (1, 3) is given by ______.
- 1. 2, -9

2. -3, -2

3. −3, −2

4. -4, 1

- 5. $\frac{y_2 y_1}{x_2 x_1}$, $\frac{y_1 y_2}{x_1 x_2}$
- **6.** vertical, slope

7. -6

8. $\frac{1}{6}$

9. x = 4

10. y = 3 + (-2)(x - 1) or y = 5 - 2x

11. The line perpendicular to the line in Problem 10 has slope $m = -\left(\frac{1}{-2}\right) = \frac{1}{2}$. Thus an equation of the perpendicular through (1, 3) is ___

OBJECTIVE G: Write an equation of any line given two points on the line.

- 12. Let $P_1(-3, 0)$ and $P_2(2, -1)$ be two points on the line L. The slope of L is m =_____. Thus, an equation of L using P_1 is ______, using P_2 an equation is ______. In either case, solving for y we obtain the equation $y = \underline{}$
- 13. Let $P_1(1, -3)$ and $P_2(1, 5)$ be two points on the line L. Since the x-coordinates of the points are the same, we conclude that L is a ______ line and hence has no ______. An equation for L is

OBJECTIVE H: Recognize an equation as representing a line and determine the slope (if any), the x-intercept (if any), and the y-intercept (if any).

- 14. The equation 3x 2y = 6 represents a straight line because it contains only ______ powers of x and y. When x = 0, y =_____, which gives the value where the line crosses the y-axis. This is called the _____, giving the value where the line crosses the . This is called the x-intercept.
- 15. The equation y = 3 represents a straight line that is parallel to the ______. It is called a _____ line and has slope m =_____.
- 16. The equation xy = 1 does not represent a straight line because it is not a _______equation when the variables x and y are multiplied together.

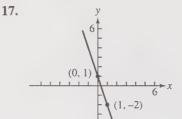
OBJECTIVE I: Graph any equation representing a line.

17. Graph the line y = -3x + 1.

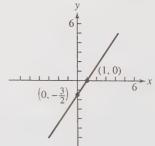
18. Graph the line $\frac{x}{2} - \frac{y}{3} = \frac{1}{2}$.

- 11. $y = 3 + \frac{1}{2}(x 1)$ or $y = \frac{5}{2} + \frac{1}{2}x$ 12. $-\frac{1}{5}$, $y = 0 + \left(-\frac{1}{5}\right)(x + 3)$, $y = -1 + \left(-\frac{1}{5}\right)(x 2)$, $-\frac{x + 3}{5}$
- 13. vertical, slope, x = 1
- 14. first, -3, y-intercept, 2, x-axis
- 15. x-axis, horizontal, 0

16. linear



18.



OBJECTIVE J: Find an equation of the line passing through a given point and parallel or perpendicular to a given line.

- 19. The line containing the point (-1, 2) that is parallel to the line 3x y 1 = 0 has slope m =______.
- 20. The line containing the point (4, 1) that is perpendicular to the line 2y 3x = 5 has slope m =______. Since the line contains the point (4, 1), its equation in point-slope form is ______.

P.2 FUNCTIONS AND GRAPHS

In this section of the textbook, there are several terms associated with the concept of a function with which you will need to become familiar. The following items are designed to assist you in learning the precise mathematical meanings of these various terms.

- 21. Calculus is concerned with how variables are related. If to each value of the variable x there corresponds a unique value of the variable y, then y is said to be a ________ of x. The key word in this definition of function is _______ : we do not want to input a single value for the variable x with two or more possible outcomes for y. Every function is determined by two things: (1) the _______ of the first variable x and (2) the _______ or condition describing how y is obtained from x. The variable x is called the ______ variable of the function; the second variable y is called the ______ variable. The set of values taken on by the dependent variable y is called the ______ of the function.
- 23. Convention: If the domain of a function is not stated explicitly, then the domain is automatically ______ for which the formula for the function gives ______. This is the function's ______ domain.
- 24. The graph of the function y = f(x) is the set of points ______ pairs of the function.

- 19. 3, y = 2 + 3(x + 1)
- 20. $-\frac{2}{3}$, $y = 1 \frac{2}{3}(x 4)$
- 21. function, unique, domain, rule, independent, dependent, range
- 22. by zero, negative numbers
- 23. the largest set of x-values, real y-values, natural
- 24. (x, y) in the plane, input-output

OBJECTIVE A: Given an equation for a function y = f(x), calculate the value of f at a specified point, find the domain and range of f, and graph f by making a table of pairs.

25. Consider the function y = -3x + 2. The domain of the function is the interval ______. Solving the equation for x, gives x =______ so that the variable y may take on any value whatsoever. Thus, the range of the function is the interval ______. Sketch the graph.

26. Consider the function $y = \frac{x^2 - 1}{x + 1}$. The function is defined for all values of x except _______; hence the domain consists of the union of the intervals ______ and _____. When $x \neq -1$, $y = \frac{x^2 - 1}{x + 1} = \frac{(x - 1)(x + 1)}{x + 1} = \frac{(x - 1)(x + 1)}{x + 1} = \frac{(x - 1)(x + 1)}{x + 1}$. Therefore, the range of the function is all real numbers except for $y = \frac{(x - 1)(x + 1)}{x + 1} = \frac{(x - 1)(x + 1)}{(x + 1)} = \frac{(x - 1)(x +$

25. $(-\infty, \infty), x = \frac{2-y}{3}, (-\infty, \infty)$

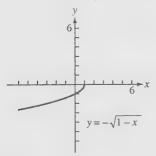
26. $x = -1, (-\infty, -1), (-1, \infty), x - 1, -2, (-\infty, -2), (-2, \infty)$

27. The domain of the function $y = -\sqrt{1-x}$ is the interval ______, since $\sqrt{1-x}$ is defined whenever $1-x \ge 0$. Squaring both sides and solving the resultant equation for x, we obtain x =see from this last equation that y can take on any value. However, since y is the negative square root, the range is the interval

- 28. If $g(x) = \frac{1}{\sqrt{x-2}}$, the domain of g is _______; g(11) is _______; g(a) is _______; g(b+2) is _______.
- 29. Consider the function y = [x-1] + 2, where [x-1] denotes the greatest integer in ___ domain of this function is the interval _____. A table of some of the values for this function is given by (complete the table):

х	-2.0	-1.5	-1.0	-0.5	0	0.5	1.0	1.5	2.0	2.5
у	-1.0	,								

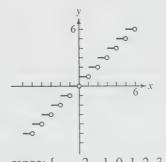
27. $(-\infty, 1], x = 1 - y^2, (-\infty, 0]$



29. $x - 1, (-\infty, \infty),$

	-2.0				
у	-1.0	-1.0	0	0	1.0
х	0.5	1.0	1.5	2.0	2.5
у	1.0	2.0	2.0	3.0	3.0

28. $(2, \infty), 1, \frac{1}{3}, \frac{1}{\sqrt{a-2}}, \frac{1}{\sqrt{b}}$



range: $\{..., -2, -1, 0, 1, 2, 3, ...\}$

Sketch the graph of the function using the table. The range of this function is not an interval, but the set of numbers ______.

OBJECTIVE B: Test a given function to find what symmetries its graph has.

- 30. If whenever the point (x, y) lies on the graph, then the point (-x, -y) also lies on the graph, we say that the graph is symmetric about the _____.
- 31. If whenever the point (x, y) lies on the graph, then the point _____ also lies on the graph, we say that the graph is symmetric about the x-axis.
- 32. If whenever the point (x, y) lies on the graph, then the point (-x, y) also lies on the graph, we say that the graph is symmetric about the _____.
- 33. The graph of the function $y = 3 x^2$ is symmetric about the ______. The reason is that (x, y) on the graph implies $y = 3 x^2 \implies y = 3 (-x)^2$.

Therefore, the point ______ also lies on the graph. The graph has no other symmetries.

OBJECTIVE C: For a given function y = f(x), identify the function as even, odd, or neither.

- 34. The function y = f(x) is even if f(-x) = ______. The graph of an even function is symmetric about
- 35. If f(-x) = -f(x), the function y = f(x) is said to be an _____ function. The graph of an odd function is symmetric about the _____.
- **36.** For the function $f(x) = x^2 + x^4$, we find $f(-x) = (-x)^2 + (-x)^4 =$ _____. Thus the function is
- 37. For the function $f(x) = x^2 x^5$, we find $f(-x) = (-x)^2 (-x)^5 =$ _____. Is f(-x) = f(x)? Is $f(-x) = -f(x) = -x^2 + x^5$? Thus, this function is neither an even nor an odd function.

31.
$$(x, -y)$$

33. *y*-axis,
$$(-x, y)$$

34.
$$f(x)$$
, the y-axis

36.
$$x^2 + x^4$$
, even

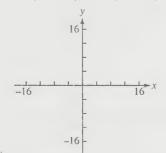
37.
$$x^2 + x^5$$
, no, no

^{30.} origin

OBJECTIVE D: Make a table of values and graph a piecewise defined function.

38. Complete the table of values and graph the function defined by

$$y = \begin{cases} 1 - x, & x < 0, \\ x^2 - 1, & x \ge 0. \end{cases}$$



OBJECTIVE E: Define absolute value and know its basic properties.

39. The absolute value of a number x is denoted by ______, and is defined by ______ if $x \ge 0$ and if x < 0. Thus, $|-3| = -(\underline{}) = \underline{}$ and $|\frac{2}{3}| = \underline{}$.

40. Geometrically, |x| represents the distance from _____ to the _____ on the real line. More generally, |x - y| is the ___

41. $\sqrt{x^2} =$ _____. If you already know $x \ge 0$ you can write $\sqrt{x^2} =$ _____.

42. The basic absolute value properties are

$$|a+b| \leq$$

$$|-a| =$$

$$\left| \frac{a}{b} \right| =$$

38.	х	-3	-2	-1	0
	у	4	3	2	-1
	Х	1	2	3	4
-	у	0	3	8	15

39. $|x|, x, -x, -3, 3, \frac{2}{3}$

40. x, origin, distance between x and y

41. |x|, x

42. |a| + |b|, |a| |b|, |a|, $\frac{|a|}{|b|}$

OBJECTIVE F: Given an equation representing a line, circle, or parabola, write an equation for a shifted graph when the number of units and directions of the shift are specified.

- 43. The equation y = f(x) + k shifts the graph of f | k | units if k < 0.
- 44. The equation y = f(x h) shifts the graph of f_____ h units if h > 0.
- **45.** The equation y = f(x) + k shifts the graph of f_____ k units if k > 0.
- **46.** The equation y = f(x h) shifts the graph of f h units if h < 0.
- 47. To shift the graph of the line y = -2x + 1 horizontally 3 units to the right, we rewrite its equation as

Simplifying algebraically, y = -2x +

48. To shift the graph of the parabola $y = -x^2$ up 2 units and to the left 1 unit, we rewrite its equation as

Simplifying algebraically y =

OBJECTIVE G: Given two functions f and g, write an expression for their composite f(g(x)).

49. If f(x) = 5x + 2 and $g(x) = x^2$, then a formula for f(g(x)) is obtained as follows:

 $f(g(x)) = f(x^2) =$

The domain of y = f(g(x)) is all values of x in the domain of g such that f(g(x)) is defined. This is the interval

50. If $f(x) = \sqrt{x-1}$ and g(x) = x + 1, then

The domain of the composite is all values of x in the domain of g such that f(g(x)) is defined. This is the interval

51. Let $f(x) = x^2$ and $g(x) = \sqrt{x-1}$. The $f(g(x)) = \underline{\hspace{1cm}}$. The domain of g is the set of all real numbers x satisfying _____. Thus, the domain of the composite y = f(g(x)) is the interval

OBJECTIVE H: Find two functions f and g that will produce a given composite function h such that h(x) = f(g(x)).

- 52. Consider $h(x) = \sin(x^2 1)$. If we let $f(x) = \sin x$ and $g(x) = \frac{1}{2}$, then h(x) =_____ = $f(x^2 - 1) =$ ____
- **53.** If $h(x) = \sqrt{x^5 + 2x^3 1}$, then for $f(x) = \sqrt{x}$ and g(x) =_____, it is true that h(x) = f(g(x)).
- 43. down

44. right

45. up

46. left

- **47.** y-1=-2(x-3), 7
- **48.** $y-2=-(x+1)^2$, $-x^2-2x+1$ **49.** $5x^2+2$, $(-\infty, \infty)$

50. \sqrt{x} , [0, ∞)

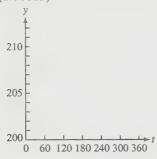
- **51.** x 1, x ≥ 1, [1, ∞)
- 52. $x^2 1$, f(g(x)), $\sin(x^2 1)$
- 53. $x^5 + 2x^3 1$

P.3 EXPONENTIAL FUNCTIONS

OBJECTIVE A: Work with functions of the form $f(x) = a^x$, a > 1.

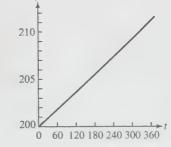
54. For $f(x) = 2^x - 3$, $f(-1) = ______, f(1) = ______,$ and $f(2) = _____.$ Graph the function for $-3 \le x \le 3$.

55. \$200 deposited in a bank account grows by 0.015% per day. Graph the account balance over 360 days as $f(t) = 200(1.00015)^t$.



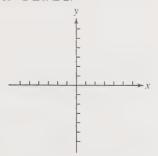
54. -2.5, -1, 1

55.

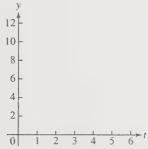


OBJECTIVE B: Work with functions of the form $f(x) = a^x$, 0 < a < 1.

56. For $f(x) = \left(\frac{1}{3}\right)^x + 1$, $f(-2) = \underline{\hspace{1cm}}$, $f(-1) = \underline{\hspace{1cm}}$, and $f(1) = \underline{\hspace{1cm}}$. Graph the function for $-2 \le x \le 2$.



57. A population of 10 million bacteria is dying off in the presence of a toxin, according to the population function $P(t) = 10 \left(\frac{1}{2}\right)^t$, with P in millions and t in hours. Graph P(t) for the first six hours after t = 0.

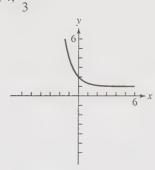


OBJECTIVE C: Know the Rules for Exponents.

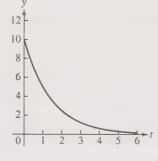
- **58.** Simplified, $2^x \cdot a^x =$ _____.
- **59.** Simplified, $(3^b)^2 =$ ______.

- **56.** 10, 4, $\frac{4}{3}$

59. 3^{2b}



57.



58.

 $(2a)^x$

60. $\left(\frac{9}{3}\right)^4$, 81

61. 4^{b+x-y}

OBJECTIVE D: Use the natural exponential function to model exponential growth and decay.

- **62.** A chemical reaction produces a reaction product in an accumulated amount given by the function $A(t) = 2.7e^{1.38t}$, where t is in minutes and A is in milligrams. To find out how much product has accumulated after 5 minutes, substitute 5 for _____ and evaluate the expression _____ to find that A(5) =_____ mg.
- 63. A bank account earns no interest but is subject to a service charge that gradually depletes the account. At t = 0, the balance is \$5000, and at later t (in days) the balance is $A(t) = 5000e^{-0.000016t}$. To find the balance after 117 days, substitute ______ for _____ and evaluate the expression ______ to find that $A(\underline{\hspace{0.5cm}}) = \underline{\hspace{0.5cm}}$

P.4 INVERSE FUNCTIONS AND LOGARITHMS

OBJECTIVE A: Find the inverse for a specified function.

- **64.** If f and g are inverse functions on suitably restricted domains, then $g(f(x)) = \underline{\hspace{1cm}}$ and $f(g(y)) = \underline{\hspace{1cm}}$. That is, the composite of g and f or of f and g is the $\underline{\hspace{1cm}}$ function.
- 65. Given a function y = f(x), to find a formula for the inverse function f^{-1} , solve the equation y = f(x) for ______ in terms of ______. Interchange the letters x and y. The resulting formula is the inverse ______.
- **66.** To calculate the inverse of y = -6x + 2, interchange the letters x and y obtaining ______. Solving the resultant equation for y yields ______, or $f^{-1}(x) =$ ______ is the inverse function of f(x) = -6x + 2.
- 67. If y = 4 7x, then the inverse function is $f^{-1}(x) = \underline{\hspace{1cm}}$
- 68. If $y = \sqrt{x+2} 5$, then the inverse function is found by solving the equation _____ for y to obtain y =_____, where $x \ge$ ____.
- 69. A common feature of y = x, y = 3 x, and $y = \frac{1}{x 2} + \frac{1}{x 2}$ is that in each case the inverse of the function equals ______.

OBJECTIVE B: Use the Properties of Logarithms to rewrite expressions containing logarithms.

- 70. $\log_a bx =$ for b > 0 and x > 0.
- 71. $\log_{10} \frac{100}{y} = \log_{10} \frac{100}{y} = \log_{10}$

62.
$$t$$
, $2.7e^{1.38.5}$, 2679.14

63. 117,
$$t$$
, $e^{-0.000016 \cdot 117}$, 117, \$4990.65

64.
$$x, y$$
, identity

65.
$$x, y, y = f^{-1}(x)$$

66.
$$x = -6y + 2$$
, $y = -\frac{1}{6}(x - 2)$, $-\frac{1}{6}(x - 2)$

67.
$$\frac{1}{7}(4-x)$$

68.
$$x = \sqrt{y+2} - 5$$
, $(x+5)^2 - 2$, 5

70.
$$\log_a b + \log_a x$$

71.
$$100, y, 2 - \log_{10} y$$

- **72.** $\log_5 25^x =$ ______ = ____
- 73. $5^{2\log_5 10} = 5^{\log_5} = 2$

OBJECTIVE C: Solve equations with logarithms.

- 74. To solve $4^{\log_2(4)} 3^{\log_9(9)} = 5^{\log_5(x) \log_5(2)}$ for x, first simplify the exponent on the right side to obtain $4^{\log_2(4)} 3^{\log_9(9)} =$ ______. This equation simplifies to _____ = _____, which can be solved to find x =______.
- 75. To find out how long it will take an initial bank deposit of \$1230, compounded continuously at 6.3% annual interest, to grow to \$5000, solve the equation ______, where t is in years. After one divides both sides by 1240 and takes the natural logarithm of both sides, the equation becomes ______. Then t =_____ \approx _____ years.

P.5 TRIGONOMETRIC FUNCTIONS AND THEIR INVERSES

OBJECTIVE A: Convert radian measure to degree measure, and vice versa.

- 76. The radian measure of 180° is _____ units. Here the symbol _____ represents a real number. This real number corresponds to the length that is subtended by an _____ of a circle of radius 1 with central angle _____. Therefore, 1° corresponds to _____ radians, and 1 radian corresponds to _____ degrees.
- 78. Converting from radian to degree measure, $\frac{\pi}{6}$ radians = ______ degrees, $-\frac{3\pi}{2}$ radians = _____ degrees, and 2 radians = _____ degrees.

Remark. Whenever you encounter sin 2, for instance, you must think the sine of 2 radians, not the sine of 2 degrees. The latter is written sin 2°.

OBJECTIVE B: Given an angle in radians, calculate the values of its sine, cosine, tangent, cotangent, secant, and cosecant.

79.
$$\sin \frac{\pi}{2} =$$
______.

80.
$$\tan \frac{\pi}{4} =$$
 ______.

81.
$$\sec \frac{\pi}{3} =$$
 _____.

82.
$$\cos\left(-\frac{\pi}{6}\right) = \underline{\hspace{1cm}}$$

72.
$$x \log_5 25, 2x$$

74.
$$5^{\log_5(x/2)}$$
, 16, 3, $\frac{x}{2}$, 26

75.
$$5000 = 1230e^{0.063t}$$
, $\ln\left(\frac{500}{123}\right) = 0.063t$, $\ln\left(\frac{\left(\frac{500}{123}\right)}{0.063}\right)$, 22.26

76.
$$\pi$$
, π , arc, 180°, $\frac{\pi}{180}$, $\frac{180}{\pi}$

77.
$$\frac{\pi}{3}, -\frac{\pi}{4}, \frac{2\pi}{5}$$

78. 30, –270,
$$\left(\frac{360}{\pi}\right)$$

82.
$$\frac{\sqrt{3}}{2}$$

83.
$$\cot\left(-\frac{\pi}{6}\right) = \underline{\hspace{1cm}}$$

84.
$$\csc\left(-\frac{\pi}{3}\right) =$$

OBJECTIVE C: Know from memory the most important trigonometric formulas.

Problems 85–94 give the most important trigonometric formulas to remember.

85.
$$\sin(A+B) =$$

86.
$$\cos(A+B) =$$

87.
$$\sin(-x) =$$

88.
$$\cos(-x) =$$

89.
$$\sin^2\theta + \cos^2\theta = \underline{\hspace{1cm}}$$

90. Dividing both sides of the equation in Problem 89 by
$$\cos^2 \theta$$
 gives $\tan^2 \theta + 1 = \underline{\hspace{1cm}}$.

91.
$$\cos 2\theta =$$
 ______.

92.
$$\sin 2\theta =$$

93.
$$\cos^2 \theta =$$

94.
$$\sin^2 \theta =$$

$$\sin\left(x - \frac{\pi}{2}\right) = \sin\left[x + \left(-\frac{\pi}{2}\right)\right]$$

$$= \sin x \cos\left(-\frac{\pi}{2}\right) + \dots$$

$$= \sin x \cos\left(\frac{\pi}{2}\right) - \dots$$

$$= (\sin x) \cdot 0 - \dots$$

$$= \dots$$

96. If a, b, and c are the sides of a triangle ABC and if θ is opposite c, then the law of cosines is the equation

OBJECTIVE D: Find the values of inverse trigonometric functions at selected points without the use of tables or a calculator.

97.
$$y = \sin^{-1} x$$
 is equivalent to ______, where _____ $\leq x \leq$ ____ and ____ $\leq y \leq$ ____.

83.
$$-\sqrt{3}$$

84.
$$-\frac{2}{\sqrt{3}}$$

85.
$$\sin A \cos B + \cos A \sin B$$

86.
$$\cos A \cos B - \sin A \sin B$$

87.
$$-\sin x$$

88.
$$\cos x$$

90.
$$\sec^2 \theta$$

91.
$$\cos^2\theta - \sin^2\theta$$

92.
$$2 \sin \theta \cos \theta$$

93.
$$\frac{1+\cos 2\theta}{2}$$

94.
$$\frac{1-\cos 2\theta}{2}$$

95.
$$\cos x \sin\left(-\frac{\pi}{2}\right)$$
, $\cos x \sin\frac{\pi}{2}$, $(\cos x) \cdot 1$, $-\cos x$

$$96. \quad c^2 = a^2 + b^2 - 2ab\cos\theta$$

97.
$$x = \sin y, -1, 1, -\frac{\pi}{2}, \frac{\pi}{2}$$

- 98. $y = \tan^{-1} x$ is equivalent to ______, where ______ < x < _____ and _____ < y < ____
- **99.** Let $y = \sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$; then $\sin y =$ _____, so y =_____. That is, $y = \sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) =$ ____.
- 100. If $\alpha = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$, then $\tan \alpha = \underline{\hspace{1cm}}$, so $\alpha = \underline{\hspace{1cm}}$. Hence, $\sin \alpha = \underline{\hspace{1cm}}$ and $\cos \alpha = \underline{\hspace{1cm}}$.

OBJECTIVE E: Evaluate expressions involving inverse trigonometric functions and trigonometric functions.

101. To find $\sin\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$, let $y = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$. Then, $\cos y =$ ______ so y =_____. Hence, $\sin y =$ _____. Alternatively, since $\sin^2 y + \cos^2 y = 1$ holds, $\sin\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right) = \sqrt{1-\cos^2\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)}$

$$\sin\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right) = \sqrt{1 - \cos^2\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)}$$

$$= \left[1 - \cos^2\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)\right]^{1/2}$$

$$= \sqrt{1 - 2} = 2$$

P.6 PARAMETRIC EQUATIONS

OBJECTIVE A: Given parametric equations x = f(t) and y = g(t) for the motion of a particle in the xy-plane, eliminate the parameter t to find a Cartesian equation for the particle's path. Graph the Cartesian equation.

102. Consider the curve given by the parametric equations x = t - 2, y = 2t + 3, $-\infty < t < \infty$. Complete the following table providing some of the points P(x, y) on the curve:

t	-2	-1	0	1	2	3
x	-4					
у	-1					

To elimate the parameter t, note that t = x + 2. Substitution for t in the parametric equation for y gives y =_____. This is a cartesian equation for a ______ with slop m =____ and y-intercept b =__

Sketch the curve in the coordinate system to the right.

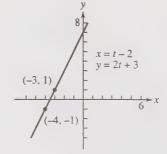
98.
$$x = \tan y, -\infty, \infty, -\frac{\pi}{2}, \frac{\pi}{2}$$
 99. $-\frac{\sqrt{2}}{2}, -\frac{\pi}{4}, -\frac{\pi}{4}$

99.
$$-\frac{\sqrt{2}}{2}, -\frac{\pi}{4}, -\frac{\pi}{4}$$

100.
$$-\frac{\sqrt{3}}{3}$$
, $-\frac{\pi}{6}$, $-\frac{1}{2}$, $\frac{\sqrt{3}}{2}$

101.
$$-\frac{\sqrt{3}}{2}$$
, $\frac{5\pi}{6}$, $\frac{1}{2}$, $\frac{3}{4}$, $\frac{1}{2}$

2x + 7, line, 2, 7



103. For the curve given by the parametric equations $x = e^t$ and $y = e^{-t}$, $-\infty < t < \infty$, complete the following table:

t	-2	-1	0	1	2	3
х						
у						

To elimate the parameter t, notice that xy =_____. This equation describes a _____. Sketch the graph in the coordinate system at the right.

- For the curve given parametrically in Problem 103, notice that x and y are always positive. Are the parametric equations and the cartesian equation coextensive? _______, because x and y can both be ______ in the cartesian equation xy = 1.
- **OBJECTIVE B:** Find parametric equations for a curve described geometrically, or by an equation, in terms of some specified or arbitrary parameter.
- 105. Find parametric equations for the circle with center C(-2, 3) and radius $r = \sqrt{2}$.

 Solution. An equation of the circle is $(x+2)^2 + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$, or $\underline{\hspace{1cm}} = 1$ This suggests the substitutions $\frac{x+2}{\sqrt{2}} = \sin \theta$ and $\frac{y-3}{\sqrt{2}} = \underline{\hspace{1cm}}$. Hence, parametric equations for the circle are $x = \underline{\hspace{1cm}}$ and $y = \underline{\hspace{1cm}}$, $0 \le \theta \le 2\pi$.
- 106. Find parametric equations for the line in the plane through the point (a, b) with slope m, where the parameter t is the change x a.

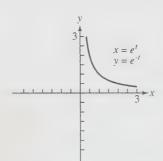
 Solution. For any point P(x, y) on the line, $y b = m(\underline{}) = \underline{}$. Thus, $x = \underline{}$ and $y = \underline{}$ give parametric equations of the line in terms of the specified parameter t.

P.7 MODELING CHANGE

OBJECTIVE A: Use proportionality to model relationships between physical variables.

107. If y is proportional to x, and y = 8 when x = 32, then the constant of proportionality is ______, and when x = 4, y =______.

103.	t	-2	-1	0	1	2	3
	х	0.14	0.37	1	2.7	7.4	20
	у	7.4	2.7	1	0.37	0.14	0.05
(approximate values)							



1, hyperbola

- **104.** No, negative **105.** $(y-3)^2$, 2, $\left(\frac{x+2}{\sqrt{2}}\right)^2 + \left(\frac{y-3}{\sqrt{2}}\right)^2$, $\cos\theta$, $\sqrt{2}\sin\theta 2$, $3 + \sqrt{2}\cos\theta$
- **106.** x-a, mt, a+t, b+mt **107.** $\frac{1}{4}$, 1

108. The table below gives the relationship between the weight and the cost of a product.

Weight (lb)	3.0	4.5	7.6	10.1	15.5
Cost (dollars)	10.80	16.20	27.36	36.36	55.80

The relationship can be summarized by the equation cost = _____.

OBJECOMITED				
OBJECTIVE B:	Understand th	e limitations of	mathematical	models

109.	Making predictions that go beyond the range of the available data is called	While sometimes
	appropriate, it can lead to erroneous predictions, especially if there is no	for the model.

PRELIMINARIES CHAPTER SELF-TEST

- 1. A particle moves in the plane along a straight line from P(-3, -1) to Q(7, -3). Find the net changes $\triangle x$ and $\triangle y$ and distance from P to Q.
- 2. A particle moves from the point A(2, -3) to the x-axis in such a way that $\triangle y = -6\triangle x$. What are its new coordinates?
- 3. Determine if the points A(1, -3), B(-2, 9), and C(5, -19) lie exactly along a single straight line.
- 4. Find the slope of the line through the points (1, 4) and (-3, 2), and write an equation of the line.
- 5. Determine the slope, the *x*-intercept, and the *y*-intercept for each of the following equations:
 - (a) 3x + 4y = -1
- **(b)** x = 2

(c) y = -1

- (d) $x^2 = 2y 1$
- 6. Find an equation of the line through the point (5, -7) and perpendicular to the line 2y x = 8.
- 7. Let f be defined by the equation $f(x) = x^2 + 3x 2$. Find the domain and range of f. Also find the values of f(-2), f(-1), f(0), f(2), f(2b), and f(a + b), and sketch the graph of f.

8. Find the domain and range of the function $f(x) = \frac{x^2 - x - 6}{x + 2}$ and sketch the graph.

- 9. Investigate any symmetries of the equation $x^{2/3} + y^{2/3} = 1$.
- 10. Say whether the functions are even, odd, or neither.
 - (a) $y = 1 + 2 \sin x$
- **(b)** $y = |x| \cos 2x$
- 11. The following tell how many units and in what directions the graphs of the given equations are to be shifted. Give an equation for the shifted graph.
 - (a) $y = x^2$, up 2, left 3
- **(b)** $y = \sin x$, down 3, right $\frac{\pi}{4}$
- 12. Write an equation of the circle with center (1, -3) and radius 4.

- 13. Find the coordinates of the center and the radius of the circle $x^2 + y^2 + 2x 4y 40 = 0$.
- 14. Graph the parabola and label the vertex, axis, and intercepts: $y = x^2 4x + 5$.

15. Graph the function $y = \frac{1}{2}\sin(3x-2) + \frac{1}{2}$.

16. Determine the following values.

(a)
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

(b)
$$\tan^{-1} \frac{\sqrt{3}}{3}$$

(c)
$$\tan^{-1}\left(\cos\frac{\pi}{2}\right)$$

(d)
$$\cos^{-1}\left(\sin\frac{\pi}{6}\right)$$

- 17. In the parametrization x = 3t + 1, $y = t^2$, $0 \le t \le 6$, eliminate the parameter t and write y as a function of x.
- 18. Find parametric equations, using θ as the parameter, $0 \le \theta \le 2\pi$, for a circle with radius 5 and center at (-11, 7).
- 19. Given that y = kx, where k is a constant of proportionality, if k = 2.5 then the relationship between x and y can be described by saying, in English, that ______.

SOLUTIONS TO PRELIMINARIES CHAPTER SELF-TEST

1.
$$\triangle x = 7 - (-3) = 10$$
, $\triangle y = -3 - (-1) = -2$, $d = \sqrt{(\triangle x)^2 + (\triangle y)^2} = \sqrt{104} \approx 10.198$

- 2. The new coordinates can be written as (x, 0) since the point lies on the x-axis. From $\Delta y = -6\Delta x$, we have 0 (-3) = -6(x 2) or, solving, $x = \frac{3}{2}$. Thus, $(\frac{3}{2}, 0)$ gives the coordinates of the new position of the particle.
- 3. The slope of AB is $m_1 = \frac{9 (-3)}{-2 1} = -4$ and the slope of BC is $m_2 = \frac{-19 9}{5 (-2)} = -4$. Since these slopes are equal, the three points do lie along a single straight line.
- 4. $m = \frac{2-4}{-3-1} = \frac{1}{2}$ is the slope, and $y = 4 + \frac{1}{2}(x-1)$ or 2y x = 7 is an equation of the line.

- 5. (a) Solving algebraically for y, $y = -\frac{3}{4}x \frac{1}{4}$. Thus, the slope is $m = -\frac{3}{4}$, the y-intercept is $b = -\frac{1}{4}$; and when y = 0, $x = -\frac{1}{2}$ is the x-intercept.
 - **(b)** This is a vertical line so it has no slope and no y-intercept. The x-intercept is 2.
 - (c) This is a horizontal line. It has slope 0 and y-intercept -1. It has no x-intercept.
 - (d) Since the variable x is squared, this equation does not represent a straight line. When x = 0, $y = \frac{1}{2}$ so the y-intercept is $\frac{1}{2}$. If y = 0, $x^2 = -1$ which is impossible, so it has no x-intercept.
- **6.** The slope of 2y x = 8 or $y = \frac{1}{2}x + 4$ is $m = \frac{1}{2}$. Therefore, the slope of the perpendicular line is $m_{\perp} = -2$ and an equation is given by y + 7 = -2(x - 5) or y = -2x + 3.
- 7. The function $f(x) = x^2 + 3x 2$ is defined for all values of x, so the domain is $-\infty < x < \infty$ (all real numbers). Setting $y = x^2 + 3x - 2$ or $y + 2 = x^2 + 3x$ and completing the square on the righthand side gives

$$y+2+\frac{9}{4}=\left(x+\frac{3}{2}\right)^2$$
, or $y+\frac{17}{4}=\left(x+\frac{3}{2}\right)^2$.

Thus, $y \ge -\frac{17}{4}$, so the range of f is the interval $\left[-\frac{17}{4}, \infty\right]$.

$$f(-2) = -4, f(-1) = -4,$$

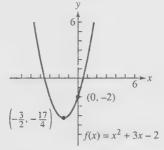
 $f(0) = -2, f(2) = 8,$

$$f(0) = -2, f(2) = 8,$$

$$f(2b) = 4b^2 + 6b - 2,$$

$$f(a + b) = a^2 + 2ab + b^2 + 3(a + b) - 2$$

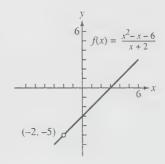
The graph of f is shown below.



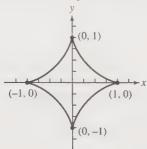
8. $\frac{x^2 - x - 6}{x + 2} = \frac{(x - 3)(x + 2)}{x + 2}.$

Thus, the domain of f is all real numbers except x = -2. Also, for $x \neq -2$, f(x) = x - 3. This is a straight line with the point (-2, -5) deleted so the range of f is all real numbers except y = -5.

The graph of f is shown at the right.



9. Since $x^{2/3} + y^{2/3} = 1$ can be written $(x^{1/3})^2 + (y^{1/3})^2 = 1$, the curve is symmetric with respect to both axes and the origin. Also, $1 - x^{2/3}$ and $1 - y^{2/3}$ must both be nonnegative, so $-1 \le x \le 1$ and $-1 \le y \le 1$ defines the extent of the curve in the x and y directions. The points (-1, 0), (1, 0), (0, -1), and (0, 1) are the intercepts.



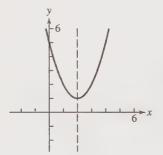
10. (a) neither

- (b) even
- 11. (a) $y-2=(x+3)^2$
- **(b)** $y+3=\sin\left(x-\frac{\pi}{4}\right)$
- 12. $(x-1)^2 + (y+3)^2 = 16$ or $x^2 + y^2 2x + 6y 6 = 0$.
- 13. Completing the square, $(x+1)^2 + (y-2)^2 = 45 = (3\sqrt{5})^2$. The center is (-1, 2) and the radius is $3\sqrt{5}$.
- **14.** $y = x^2 4x + 5 = (x 2)^2 + 1$ or $y 1 = (x 2)^2$

Vertex: (2, 1)

Axis of symmetry: $x = -\frac{(-4)}{2(1)} = 2$

Intercepts: (0, 5), no x-intercepts



- 15.
- 16. (a) $-\frac{\pi}{3}$

(b) $\frac{\pi}{6}$

(c) 0

- (d) $\frac{\pi}{3}$
- 17. $y = \left(\frac{x-1}{3}\right)^2, 1 \le x \le 19$
- **18.** $x = -11 + 5 \cos \theta$, $y = 7 + 5 \sin \theta$
- 19. y is always 2.5 times as much as x.