CHAPTER 1 LIMITS AND CONTINUITY

1.1 RATE OF CHANGE AND LIMITS

Af _f(3)—1(2) 289 _ Af _f()-f(-1) 20 _
L@ Ax="32 =" =1 ® =Ty =7 =!
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5. (a) Q Slope of PQ = 72
Q,(10,225) 830=225 — 42.5 m/sec
Q,(14,375) 830375 — 45.83 m/sec
Q3(16.5,‘475) %%‘{?%55 = 50.00 m/sec
Q,(18,550) 6-3-3:-?2-(1 = 50.00 m/sec
(b) At t = 20, the Cobra was traveling approximately 50 m/sec or 180 km/h.
~Ap
6. (a) Q Slope of PQ = At
Q,(5,20) 8100__250 =12 m/sec
Qy(7,39) | 80=30 =137 m/sec
Q3(85,58) | $0=08 =147 m/sec
- Qu95,72) | 81=12 = 16 m/sec
(b) Approximately 16 m/sec
7. A plot of the data shows that the slope of the secant between t = 0.8 sec and t = 1.0 sec underestimates the

instantaneous velocity (i.e., the slope of the tangent) at t = 1.0 sec, whereas the slope of the secant between

t = 1.0 sec and t = 1.2 sec overestimates it.
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10.

11.

12.

13.

14.

15.

Lower bound: a = 13:10=8.39 _ 53 55 ft /sec

1.0-0.8
Upper bound: b = l§18_’;_:_%_30_1_g = 28.85 ft/sec
v(l) ~ 2 +b_ 23.55+28.85 _ 9699 ft /sec

2 2

There are many graphs that would be correct. One possible solution looks like this:

distance traveled

time

(a) Does not exist. As x approaches 1 from the right, g(x) approaches 0. As x approaches 1 from the left, g(x)
approaches 1. There is no single number L that all the values g(x) get arbitrarily close to as x — 1.

(b) 1

(c) 0

(a) 0

(b) -1 .

(c) Does not exist. As t approaches 0 from the left, f(t) approaches —1. Ast approaches 0 from the right, f(t)
approaches 1. There is no single number L that f(t) gets arbitrarily close to as t — 0.

(a) True (b) True . (c) False

(d) False (e) False (f) True

(a) False (b) False (c) True

(d) True (e) True

}(i_r}b I’%I does not exist because I%'I = ;‘—( =1ifx>0and I_;gt—l = —Lx = ~1if x < 0. As x approaches 0 from the left,
% approaches —1. As x approaches 0 from the right, |—§—| approaches 1. There is no single number L that all

the function values get arbitrarily close to as x — 0.

As x approaches 1 from the left, the values of x-l— T become increasingly large and negative. As'x approaches 1

from the right, the values become increasingly large and positive. There is no one number L that all the

function values get arbitrarily close to as x — 1, so lini 3 1 i does not exist.
x—1 X —

Nothing can be said about lim f(x) because the existence of a limit as x — x does not depend on how the func-
0

tion is defined at x,. In order for a limit to exist, f(x) must be arbitrarily close to a single real number L when
x is close enough to x,. That is, the existence of a limit depends on the values of f(x) for x pear x,, not on the
definition of f(x) at x, itself.
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16. Nothing can be said. In order for lin?) f(x) to exist, f(x) must close to a single value for x near 0 regardless of
the value f(0) itself. *=

17. No, the definition does not require that f be defined at x = 1 in order for a limiting value to exist there. If f(1)
is defined, it can be any real number, so we can conclude nothing about f(1) from lin% f(x) = 5.
X~

18. No, because the existence of a limit depends on the values of f(x) when x is near 1, not on f(1) itself. If
lin} f(x) exists, its value may be some number other than f(1) = 5. We can conclude nothing about li‘n’i f(x),
X— X—

whether it exists or what its value is if it does exist, from knowing the value of f(1) alone.

19. (a) f(x) =(x2-9)/(x+3)

X -3.1 -3.01 -3.001 -3.0001 -3.00001  —3.000001
f(x) | -6.1 —6.01 —6.001 —6.0001 —6.00001  —6.000001

X -29 =299 -2.999 -2.9999  -2.99999  —2.999999
f(x) | 5.9 -5.99 —-5.999  -5.9999  —5.99999  —5.999999

The estimate is lim3 f(x) = —6.

X——

(b) y

X
-3i 3

|

]

L3

1

I

|

!

£ = (x2 = 9)/(x +3)

2_ x+3)(x—-3 . .
(c) f(x):’;_‘_:?:( x1§3 )=x—31fx:,é—3,andxl_1’n_13(x——3)=—3—3=—6.

20. (a) g(x) = (x*-2)/(x - /2)

x ' 1.4 1.41 1.414 1.4142 1.41421 1.414213
g(x)| 2.81421 2.82421  2.82821  2.828413 2.828423  2.828426

The estimate is lir\n/_ g(x) = 2v/2.

x—4/2
(b)

S

A
/./z 7z
2(x) = (x* - 2)/(x - VD)
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© a0 =2 = EEE R s itk VB i (x4 VD)= VB4 V=2V

21. (a) G(x) = (x +6)/(x?+4x —12) \
x | =59 —5.99 —5.999 —5.9999 —5.99999  —5.999999 .

G(x)| —0.126582 —0.1251564 —0,1250156 ~0.1250016 —0.12500016 —0.12500002

X —6.1 —6.01 —6.001 —6.0001 —6.00001 —6.000001
G(x)| —0.123457 —0.1248439 —0.1249844 —0.1249984 —0.12499984 —0.12499998

The estimate is lirn6 G(x) = —0.125.

X+

(b)

10
X
-6 2
-10
- 1442 -12)
Lol GO =+ O/t 4 b
._ x46 _ x+46 __1 . _ . 1 1 1_
(c) G(x) “Prax_12) GFOG-9  x-2 if x # —6, and xll>n—16 T3 =—g—g=—g= 0125
22. (a) h(x) =(x2-2x-3)/(x?—4x+3)
X 2.9 2.99 2.999 2.9999 2.99999 2.999999

h(x) | 2.052631 2.005025 2.000500 2.000050 2.000005 2.0000005

X 3.1 3.01 3.001 3.0001 3.00001 3.000001
h(x) [ 1.952380 1.995024 1.999500 1.999950 1.999995 1.999999

The estimate is lir% h(x) = 2.
x—
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(b)

10

-1 1 3

-10

-20
h(x) = (x3 = 2x = 3)/(x* —4x +3)

2 -
_x2-2x -3 _(x-3)(x+1) x41. . ox+4+1_ 341 _4_
(¢) h(x) = ix+3 o HE=D) —x-1 if x # 3, and ’1(13:13 x—1=-3-1=3=2
23. (a) g(#) = (sin 6)/8
6 .1 .01 .001 .0001 .00001 .000001
g(0) | .998334 .999983 .999999 999999  .999999 .999999
0 -.1 -.01 —-.001 —.0001 —.00001 —.000001
g(f) | .998334  .999983  .999999 .999999 999999 999999
lim g(8) =1
(b) y
/ y= smﬁg_@ (radians)
| J| : l—~l | |
=57 -47 =37 =227 O ™27 3w 4m 5w
NOTTO SCALE
24. (a) G(t) = (1 —cos t)/t?
t 1 .01 .001 .0001 .00001 .000001
G(t)| 499583  .499995  .499999 .5 5 5
t -1 -.01 —-.001 —.0001 —-.00001 —-.000001
G(t)| .499583 499995 499999 D .5 5

lim G(t) = 0.5




92 Chapter 1 Limits and Continuity

(b) y
6(t) o) -tcos t
05
04
03
02
0.1
40003 0.0000 0.0000 00003

Graph is NOT TO SCALE

25. (a) f(x) = x*/(1=%)

X 9 .99 .999 9999 .99999 999999
f(x) | .348678 .366032 .367695 .367861 367878 367879
X 1.1 1.01 1.001 1.0001 1.00001 1.000001
f(x) | .385543 369711 .368063 .367898 .367881 .367880
lim f(x) ~ 0.36788
x-s1
(b)
f(x) = x V(x-1)
2.71825
¢.3395 0.999935 T.000 TTo50%
2.711018 \
26. (a) f(x) =(3%-1)/x

X 1 .01 .001 .0001 .00001 .000001
f(x) | 1.161231 1.104669 1.099215  1.098672 1.098618 - 1.098612
X -1 —-.01 —.001 —.0001 —.00001 —.000001
f(x) | 1.040415 1.092599 1.098009  1.098551 1.098606 1.098611

lim f(x) ~ 1.0986
x—0




27.

28.

29.

30.

31.

32.

33.

34.

35.

(b)

Step 1:
Step 2:

Step 1:
Step 2:

Step 1:
Step 2:

Step 1:

Step 2:

Step 1:
Step 2:

Step 1:

Step 2:

Step 1:

Step 2:

Step 1:

Step 2:

Step 1:

Step 2:
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|x—5|<b=>—-6<x—5<6=>—-6+5<x<6+5

From the graph, -6 +5=4.9 = 6§ =0.1,0r 6 +5 = 5.1 = § = 0.1; thus § = 0.1 in either case.

|x—(-3)|<6=>-b6<x+3<6=>-6-3<x<6-3
From the graph, -6 -3 =-3.1 = 6§=0.1,0r 6§ -3 =-2.9 = 6 =0.1; thus § = 0.1.

Ix—1|<6=>-6<x-1<6=>-b+1<x<é+1

9

From the graph, -6+1=R-=>6=T%,or6+1=%%=>6=1%; thus&:izﬁ-.

|x—2|<6=>—6<x—-2<6=>-6+2<x<6+2

From the graph, —6 +2=1/3 = 6§ =2— /32 0.2679, or 6 +2 = /5 = 6 = /5 — 2 ~ 0.2361;

thus § = /5 — 2.

|(x+1)—5]|<0.01 = |x—4]<0.01 = —0.01 <x—4<0.01 =399 <x < 4.01

|x—4|<é6=>-6<x—4<6=>-b6+4<x<6+4=6=0.01.

|(2x —2) — (—6)| < 0.02 = | 2x + 4| < 0.02 = —0.02 < 2x + 4 < 0.02 = —4.02 < 2x < —3.98

= -2.01 <x<-1.99

|x—(-2)|<6=> -6<x+2<é6=>-6-2<x<6-2=6=00L

|Vx+1-1|<01= —01</x+1-1<01209<x+1<11=08l<x+1<121

= —0.19<x<0.21
[x—0|<é=>-6<x<6=>86=0.19.

|VI9—x-3|<1=>-1<y/T0-x-3<122<y/19-x<4=>4<19-x<16

= —4>x-19>-16=>15>x>30r3<x<15

[x-10|< 6= -6

Then —6+10=3=6=7,0r 64+10=15 = § = 5; thus 6§ = 5.

4

<x-10<é6=>-6+10<x<6+10.

1_1

|x—4|<b=> -b6<x—4<b6=>-b6+4<x<b6+4

Then -—6-%—4:13—0

or6=%,or6+4:=5or6=1;thus&=

2

2
3

1-if<005 = 005 <}-i<om=o02<}<03=Pox>

10

30T

10

<x<b.
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36. Step1: |x2—3]<0.1= ~0.1<x>-3<0.1=>29<x?<31=+29<x<+/31
Step 2: |x—\/§|<6=>—-6<x—\/§<6=>—6+\/§<x<6+\/§.

Then —6 + /3 = /2.9 = 6§ = /3 — /2.9 % 0.0291, or § + /3 = /3.1 = 6§ = /3.1 — /3 ~ 0.0286;

thus 6 = 0.0286.

2 2
37. |A-9]/<0.01 = —0.01 < w(%) ~9<0.01 = 8.99 <TX < 9.01 = 7(8.99) < x* < 7(9.01)

=2 %9_ <x< 2\/% or 3.384 < x < 3.387. To be safe, the left endpoint was rounded up and the right

endpoint was rounded down.

_ V_ y_ _ 120 _ 1200 10, R 510
38.V_R1=>R_1=>|R 5|50.1=> 01<B5<01249< <1 Ho>me>8] =

(120)(10)
51
To be safe, the left endpoint was rounded up and the right endpoint was rounded down.

< ngl?%(l—o)- = 23.53 <R < 24.49.

39. (a) The limit can be found by substitution.
’l:erlzf(x)zf(2)=\W3 D—2=+4=2

(b) The graphs of y; = f(x), y, = 1.8, and y3 = 2.2 are shown.

e

—

— ;
BRGNP wern . . |

[1.5,2.5) by [1.5,2.3]}

The intersections of y, with y, and y; are at x &~ 1.7467 and x = 2.28, respectively, so we may choose any
value of a in [1.7467,2) (approximately) and any value of b in [2,2.28].
One possible answer: a = 1.75, b = 2.28.

(c) The graphs of y; = f(x), y, = 1.99, and y3 = 2.01 are shown.

e

e

A e .

{1.97, 2.03] by [1.98, 2.02]

The intersections of y, with y, and y; are at x = 1.9867 and x =~ 2.0134, respectively, so we may choose
any value of a in [1.9867,2) and any value of b in [2,2.0134] (approximately).
One possible answer: a =1.99, b = 2.01.




40. (a)
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(5)=5-1

(b) The graphs of y; = f(x), y, = 0.3, and y; = 0.7 are shown.

(c)

41. (a)
(b)

42. (a)

(b)
(c)

sl

-

Int, /;
(HES0RE5REE ven s
{0, 1]by [0, 1]

The intersections of y, with y, and y; are at x & 0.3047 and x =~ 0.7754, respectively, so we may choose
any value of a in [0.3047,%) and any value of b in (%, 0.7754], where the interval endpoints are
approximate. One possible answer: a = 0.305, b = 0.775.

The graphs of y; = f(x), y, = 0.49, and y; = 0.51 are shown.

)

RURSR .

[0.49, 0.55] by [0.48, 0.52]

The intersections of y, with y, and y; are at x & 0.5121 and x & 0.5352, respectively, so we may choose
any value of a in [0.5121,%) and any value of b in (%, 0.5352], where the interval endpoints are

approximate. One possible answer: a = 0.513, b = 5.35.

In three seconds, the ball falls 4.9(3)% = 44.1 m, so its average speed is %—1 = 14.7 m/sec.

The average speed over the interval from time t = 3 to time 3+ h is

Ay _49(3+h)®>—4.9(3)* _ 4.9(6h +h?
At~ 3+h)-3 - h

Since lllinb (29.4 + 4.9h) = 29.4, the instantaneous speed is 29.4 m/sec.

=29.4+4.9h

y=gt2-—>20=g(42)-—»g:%—g=§=1.25

4
—20 _
Average speed = T= 5 m/sec.

If the rock had not been stopped, its average speed over the interval from time t =4 to timet =4 +h is

Ay _ 1.25(4+h)2—1.25(4)> _ 1.25(8h +h?)
At~ (4+ h)—4 - h

Since l{in}) (10 + 1.25h) = 10, the instantaneous speed is 10 m/sec.

=10+ 1.25h




96 Chapter 1 Limits and Continuity

43. (a) x -0.1 —0.01 —0.001 —0.0001
f(x) | —0.054402 —0.005064 —0.000827 —0.000031
(b) x 0.1 0.01 0.001 0.0001
f(x) | —0.054402 —0.005064 —0.000827 —0.000031
The limit appears to be 0.
44. (a) x —0.1 —0.01 —0.001 —0.0001
f(x) [ 0.5440 —0.5064 —0.8269 0.3056
(b) x 0.1 0.01 0.001 0.0001
f(x) | —0.5440 —0.5064 0.8269 —0.3056
There is no élear indication of a limit.
45. (a) x —0.1 -0.01 —0.001 —0.0001
f(x) | 2.0567 2.2763 2.2999 2.3023
(b) x 0.1 0.01 0.001 0.0001
f(x) | 2.5893 2.3293 2.3052 2.3029
The limit appears to be approximately 2.3.
46. (a) x -0.1 -0.01 —0.001 —0.0001
f(x) | 0.074398 —0.009943 0.000585 0.000021
(b) x 0.1 0.01 0.001 0.0001
f(x) | —0.074398 0.009943 —0.000585 —0.000021

The limit appears to be 0.

47-50. Example CAS commands:

Maple:
fi=x -> (x A4 —81)/(x—3);
plot (f(x), x=2.9..3.1);
limit (f(x), x=-1);
Mathematica:
x0=3; f=(x A4 -81)/(x—3)
Plot [f,{x,x0—0.1,x0 +0.1}]
Limit [f,x - > x0]

51-54. (values of del may vary for a specified eps):

Maple:
fi=x -> (x A4—-81)/(x—-3);
x0:='x0": eps :='eps’:L:='L’:del:="del":




yl:i=x -> L —eps: y2:=x -> L + eps:
x0:=3: L=limit(f(x),x=x0);

eps:=0.1: del:= 0.16:

xmin:= x0 — 2*del: xmax :=x0 + 2xdel:
ymin:=L — 2xeps: ymax:=L + 2xeps:
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plot({f(x),y1(x),y2(x)}, x=x0—del..x0+del,view = [xmin..xmax,ymin..ymax]);

Mathematica:
Clear [f,x,L,eps,del]
yl := L —eps; y2 := L + eps;
x0=3;f=(xA4-81)/(x-3)
Plot [f, {x,x0 —0.2,x0 + 0.2}]
L = Limit[f, x -> x0]
eps = 0.1; del = 0.0015;
Plot [{f,y1,y2}, {x,x0 — del,x0 + del},

PlotRange -> {{x0 — del,x0 + del}, {L —eps,L + eps)}}]

1.2 RULES FOR FINDING LIMITS

1. (a) xl_i)r:ral_ f(x)=3

(b) lim,_ f(x) = -2

x—3

() ,l(m% f(x) does not exist, because the left-

and right-hand limits are not equal.

(d) £(3) =1

3. () lim_ f(h)=—4
(b) lim, (h) = ~4
(c) Jim f(b) = —4
(d) £(0) = —4

5. (a) lim F(x)=4
(b) lim F(x)=-3

x—0

(¢) ,l‘ir% F(x) = does not exist because the left-
and right-hand limits are not equal.
(d) F(0) =4

7. (a) quotient rule
(c) sum and constant multiple rules

8. (a) quotient rule
(c) difference and constant multiple rules

. (@) lim_g(t) =5

(b) lim g(t)=2

t——4
(c) t_1_i)r24 g(t) does not exist, because the left-

and right-hand limits are not equal.

(d) g(—4) =2

. (a) x_lér_r;__ p(s) =3

(b) lim+ p(s) =3

x——2

(©) Jim, p(e) =3

@) p(-2) =3

. (a) xl_igl__ G(x) =1

(b) lim G(x)=1

x—2
(c) ’1:1_.11;2 G(x)=1
d) G2) =3

(b) difference and power rules

(b) power and product rules
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9.

10.

11.

12.

13.

(2)
(b)
()
(d)
(a)
(b)
()

(d)

(2)
(b)
(¢)
(d)

Jim 1) g0 = Jim, £69][ Jim ()] = (5)(=2) = -

lim 2f(x) g(x) = 2[ lim f(x)][ lim g(x)]=2(5)(-2) = -

lim [f(x) +3g(x)] = lim f(x) +3 lim g(x) =5+3(-2) =

X—C

3

- f(x) hm f(x) 5 5
) —g(x) | m f(x)— im gx) 5-(-2) 7
,l‘l_r’n [g(x)+3]) = iﬂr}i g(x) + 11(1_1& 3=-3+3=0
)l(i_r_’r}i xf(x) = hm X- llm f(x) = (4)(0) =0

2 _ [ 2 a2 _
lim, [(x))? = lim g(0)] =[-3]* =9

hm g(x)

lim BC)__ =3-=3
x—4 f(x)—1 llm f(x) - 11m 1-0-
lim_ (22 +5) =2(-7)+5=-14+5 = -9
lim 8(t —5)(t —7) = 8(6 ~5)(6 ~ 7) = -
h _ Y2 242 4 _ 4 _
y=2 y245y4+6 (2)2+5(2)+6 4+10+6 20

3 __3 _3

lim

h—0 3h+1+1 3O +1+1 1+1

O'H—l

(a) lim, (BP—2r2+4r+8)=(-2)%-2(-2)?+4(-2)+8=-8—-8—-8+8=—16

(b)

X4

hm xT6°=

+3

™o

+

246

3

Qo| Ot

© Jlim, (59" = 5- (-3 = @*° = (®1*) =2

(d) lim

(a)
(b)

(c)

o 0-5
9—5 6295
lim

t——5

lim
x—=2 Y

lim
y—1

t2

25

—2x—4 _
3+2x2

-1

+ 3t —
t+5

o T el A e

10

2

y+3-2

1

p—

_ o EH5)(E-2) -
= Jim = lim (t-2) =
-2(x+2) _ . _—2_ -2

x—=—2 x2(x+2) T xo—2 xz -4

(y—l)(,/y+3+2)

=vi+2=4

4 =16

1
10

-5-2=-7

[ o

- -1(/y+3+2)

y=1 (Wy+3-2)(\/y+8+2) y-i

(y+3)—4

=&ﬂ(dy+3+ﬂ
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(d) lim sin(}-3)=sin(}-})=—sin (3)=—0.1650

Vii+8-3_ . (Vx+8-3)(VP+8+3) _ (x*+8)-9

14. (a) lim = =
x—r—1 x+1 x—r—1 (x+1)(\/x2+8+3) x—-1 (x+1)(\/x2+8+3)

= fim —&ADED o xo1 -2 1
x>-1 (x4+1)(Vx¥+8+3) *=-1 /x?+8+3 3+3° 3
4 2 - 2
b tim £=1= gim (*+1)@0+n06-1_ (6 jl)(e“):(l“)(l“):i
61 g3—1" 6-1 (2460+1)06-1) 61 924+04+1 I+1+1 3
C 3=V Vi-3 : 1 1 _1
(©) i 5= = I (Aoa)(ira) o8 i3 Vet3 ©
(d) Let 7'2_ 8 = u so that u — 0 as s — 7, and then rewrite and evaluate the limit as
3% (m — 2u) cos (u) ::11113}) (7r-2u)-1111_% cs(u)=7-1=n
xsinx _

2
i X )=1-0= im 1=1: . .
15. (a) ’1‘1_1;1%) (1 3 )_ 1-g=1 and ’1(11% 1 = 1; by the sandwich theorem, )lcllv% 52 cosx ~ !
(b) For x # 0, y = (x sin x)/(2 — 2 cos x) lies between
the other two graphs in the figure, and the graphs

converge as x — 0.
_Xxsinx

-2 -1 | 1 2
16. (a) lim 1.2) gim 1 g _1_ 0=1and lim 1 =1 by the sandwich theorem
' x—0 \2 2 x—0 2 x—0 24 2 2 x—0 2 2’ !
: l—cosx_1
L
(b) For all x # 0, the graph of f(x) = (1 — cos x)/x> .
lies between the line y = % and the parabola
y= %— x2/24, and the graphs converge as x — 0.
y
y=3

99
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17.

18.

19.

20.

21.

22.

23.

24.

25.

Chapter 1 Limits.and Continuity
(+b?-12 L 14oh4h?-1_ o hC+h) _
e T T L
h—0 h h—0 h v
( 1 ) 1 -2
lim \=2th _(:2_)— lim _2+h—1 lim Z2-(2+4h) lim —=f __—_1
h—0 h ~ h-0 —2h  ~ h=0 —2h(-2+h) ~ h—o h(4-2h) " 4
e = (¢7T+f) T h(x/7"¥'+\f)
. h : 1 1
= lim = lim =
b0 h(VTFR+T) M0 VTHRHVT VT
(a) False (b) True | (c) False (d) True
(e) True (f) True (g) False (h) False
(i) False () False (k) True (1) False
a 11m f(x) = +1-2 llm fx)=3-2=1
(a) =2

(b) No, hrra f(x) does not exist because hm+ f(x) # lixg_ f(x)
X— x—

x—2

() hm f(x) = 2+1—3 11m fx)=5+1=3

x—>4

(d) Yes, ,l{inr‘li f(x) = 3 because 3 = liril_ f(x) = hm f(x)
— X—

x—»4

(a) No, hm f(x) does not exist since s1n(1) does not approach any single value as x approaches 0
x—>0

(b) lim f(x)= lim 0=0

(¢) hm f(x) does not exist because lim f(x) does not exist
x—ot

(a) Yes, hm g(x) = 0 by the sandwich theorem since —/x < g(x) < 1/x when x >0

x—»O

(b) No, 11%1_ g(x) does not exist since y/x does not exist, and therefore the function is not defined, for x <0
X— .

(¢) No, lim g(x) does not exist since lim_g(x) does not exist
x—0 x—0 -

rn -2, 08x¢!
y-
Yy

(a) domain: 0<x<2 L 18142
range: 0 <y<landy=2 2, xe2

(b) ’l(Ln}: f(x) exists for ¢ belonging to i .
(0,1)u(1,2)

(c) x=2 "'\
(d) x=0 i X




26.

217.

28.

29,

30.

31.

32.

(a) domain: —oco < x < 00
range: —1<y<1

(b) lim f(x) exists for ¢ belonging to

(=00, -1) U (—-1,1) U (1,00)
(c¢) none

(d) none

lim
x——0.5"

—0.54+2 _
x+1 -0.5+1"

-2

Section 1.2 Rules for Finding Limits

1, x=0
0, x<1or

x, -1<x<0 or 0<xg<l
|

x>l

== s

2(-2) +5

Jim (xi 1)(,231,5() =(

Vvh? +4h +5-v6 _

h-—00+

2 _
i (h2+4h+5)—5

-2+1

)((-2;%(—2)) @
(\/W— ﬁ)(M+ \/5)

h—>0+

= lim

h—o?t h(w/h7+4h+5+\/5) h—ot
V6—1/5h2 + 11h +6 _ i
h _h—-§0_

)=1

[

Vhi+ah+5++/5

h(h +4) 0+4 2

(Vs amas+y5) Vorve V5

(\/E—\/5h2+11h+6) V6 +1/502+11h +6
b0 h V6 +/5h% + 11h + 6
_ 6—(5h2+11h+6) _ . —h(5h 4 11) _—(0+11) 1
T heo- (\/—+\/5h2+11h+ ) h0" h(/6+v/Bh2+11h +6 ) v+ 2v/6
|x+2| (X+2) — OF X > —
(a) x_l"lr_n2 (x+3) ) —x-l->u—n2 (x+3) =) (Ix+2|=x+2 for x> -2)
= lim (x+3)=(-2)+3=1
X—=—2
(b) x_lér_nz_ (x+3)|§igi= hm (x+3)[ (Ecx-:2§)] (Ix+2|=—(x+2) forx < -2)
= lim_ (x+3)(-1)=—~(-2+3) =
. M(x . V2x(x-1) o 1l= %1 for x
@ Jm, = im YIS (= tl=x =t forx>)
= lim V2x=1/2
x—>1
\/2—x(x \/ﬁz(x—l) _
(b) xl_lgl -—1| L o1 (lell——(x—l)forx<1)

= lim_ —V2x = /2
X

101
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33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

lim f(x) exists at those points c where lim x* = lim x?. Thus, ¢! =c? = 2(1-¢?)=0
X—C X—C X—C

= c¢=0, 1, or —1. Moreover, lim f(x) = lim x? =0 and lim_f(x) = lim f(x) = 1.
x—0 x—0 x——1 x—1

Nothing can be concluded about the values of f, g, and h at x = 2. Yes, f(2) could be 0. Since the
conditions of the sandwich theorem are satisfied, lim2 f(x) = -5 #£0.
X—

f(_x)_ lirr_l2 f(x) _ xli)n_l2 f(x)

(a) 1= 11 = 7} = xl—i»n—lz f(x) =

-2 x2 lim x
Xx—=—2

X——2 x—=2

(a) 0=3-0= [ im, 1= ] limy (x-2)) = lim [(f(}f)_‘zs)(x-z)]= lim [f(x) ~5] = lim £(x) 5

= ,1(131 f(x) =

f(x) -5

(b)0=4-0=[’1‘i__)2 ][lm(x 2)]=»hmf(x)_5asmpart(a)

Yes. If lim f(x) =L = lim_ f(x), then lim f(x) =L. If lim f(x)# lim_f(x), then lim f(x) does not exist.
+ X—a X=a + x—a x=a

X—a X—a

Since lim f(x) =L if and only if llm f(x) =L and hm f(x) =L, then lim f(x) can be found by calculating
hm+ f(x). wet

X~—C

I=(5, 5+6)=>5<x<5+6. Also, /x -5 <e=>x—-5< e = x<5+€2 Choose § = €

= hm VX =0.

x—»5

I=(4-6,4) =>4-6<x<4. Also, /i-x<e=>4—-x<e?=>x>4—¢ Choose § = ¢

= lil"lil_ Vi—-x=0.
X—

If f is an odd function of x, then f(—x) = —f(x). Given 11m f(x) =3, then hm f(x) =

x—-bO

If f is an even function of x, then f(—x) = f(x). Given lim_ f(x) = 7 then 1im+ f(x) = 7. However, nothing
x—2 x——2

can be said about llm2 f(x) because we don’t know hm+ f(x).

X —

x—2
(1
(a) g(x) =x sin i)
T T -~ T
"SX<9p 80 =* < 1gp
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The graphs suggest that linb k(x) does not exist.
x—

For both g(x) and k(x), the frequency of the oscillations increases without bound as x — 0. For g(x), the

sandwich theorem can be applied. If x>0, —x<x sin(l) <x=> lim+ g(x) =0 and if x < 0,
x—0

X

x < x sin (%) <—x= xli%l_ g(x) = 0. Therefore, ’1(1_{’% g(x) = 0 since the left- and right-hand limits are both

0. For k(x), the amplitude of the oscillations remains equal to one. Therefore, k(x) cannot be kept
arbitrarily close to any number by keeping x sufficiently close to 0.

44. (a) h(x) =x? cos(%)

The graphs suggest that lin%J h(x) = 0.
X
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-

L

The graphs suggest that ,1({_% k(x) does not exist.

For both h(x) and k(x), the frequency of the oscillations increases without bound as x — 0. For h(x), the

1

sandwich theorem can be applied: —x? < x2 cos(i> <x!> ’1‘% g(x) = 0. For k(x), the amplitude of the

oscillations remains equal to one. Therefore, k(x) cannot be kept arbitrarily close to any number by

keeping x sufficiently close to 0.

1.3 LIMITS INVOLVING INFINITY

Note: In these exercises we use the result

from Example 1 and the power rule in Theorem 7:

= 0.

1. (a)

N

™o
~~
»
p —
o=

X= (X)x

n} 5= 0 whenever _rrrll_ > 0. This result follows immediately

P (xn}/n) = (%{‘)m/n =(, lim_ )l()m/ ® _ gm/n
(b) =
(b) 3
® -3

(b) 3

5. —% < sinx2x < )1—( = lim §_i_nY2_)_( = 0 by the Sandwich Theorem

. 2—t+sint _ .
6. tllr_“oo W‘t-l-}rlloo 1




10.

11.

12.

13.

14.

15.

17.

18.

Section 1.3 Limits Involving Infinity

3
. 2% +3 _ 243 _2 2
(a) Jim &= 7= Jim 5+% =£ (b) 5 (same process as part (a))
1.1
. 1 . X X2
lim XtE = lim =0 b) 0 (same process as part (a
@ dm, B m T ®) 0 ( @)
., X
1 1
4 19x = —12x
1-12x3 _ 0 X —_ o 11263 X _
x? 2
73 7 -
(a) Jim B ax? 1 6% Jim m_’? (b) 7 (same process as part (a))
X
X
: Ix“—6x __ 1 3x—6 _ : 3x% — 6x —6x _ Ix—6_ _
(2) i, 31(}( 8 lengo 48 © (b) Jim, 4x -8 Jm 48 ©
X
2)(3-'}‘i 2x3+_3_
5 2 5 2
(a) Jim 2F3 = jim £ = -0 ®) Jim A3 him X =00
X920 x“+x -1+% —X“+x -1+43
2 .3
-2 - 4=
. —2x3—2x+3 _ .. 2 x>_ 2
(a) Jim —F—5——=lim —g—p-=-%
3x” 4 3x” — 5x 3+3-3%
X
(b) —% (same process as part (a))
4
. —x . —~1 _
@) lim, T TE Ty % AN By '
x* X
(b) —1 (same process as part (a))
2 1 2
= |+l 5 —“=1+1
)+ (%) ) (F9)
2/xhx (x )0 16 dim EVE o
x-—»oo T 3x—7 x5 1 X—00 2__\/;( X—60 2 _1
x V)

YE-4& x (1/5) amz .
Jim,, 3 = i (e = b

m
X——00

105
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513 9x1/15 _ 1/ 7
5 19/15 8/5
19. Jim_ 21‘8_/5"‘_4'7___ Jim_ 3x - A o
x° 4 3x 4+ 4 /x 1+ =75+ T
X x
l__ 5438
3 x—0x+3 . x273 5+x 5
20. X——00 2x+x2/3 4 xllvgloo 2+ 1 _i=_-2-
AR X
21. Here is one possibility. 22. Here is one possibility.

y=f(x)

y
¥ | A
: .
©.0),
1
- J\ - ud l

(=

24. Here is one possibility.

y

= X, x20
ixl 1
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ts Involving

imi

.

Section 1.3 L

it
| | "
»
|
-
+ :
M —_——— L
] : A
41 e i - (=] .ﬂ.
I wl | T ——————
o ) o] — )
Lo | v ;
I _. I *
> ' >
S _ o
o o™
x —
. 4 il
. * .. »

y
4
o
3.—
wedi--
L
.0
a4
-2
xt+1
x§
\\ l,'
¥
) ~
-1
x2—x+1
x—

y=2__

el
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33.

35.

37.

39.

40.

41.

42,

43.

8 4x
= M. y=—"
y x2+4 y xt 44
y
y
y=8/(* +4)
(2,1
X
o . .
(2.1 x2 +4
: : . 2x3 2 ; (X0 3
An end behavior model is = 2x°. (a) 36. An end behavior model is 2= = 0.5x°. (c)
= 2X2
: . 2xt 3 ; ox? 2
An end behavior model is 25 = —2x°. (d) 38. An end behavior model is *— = —x*. (b)
—x
(a) The functi = e* is a right end behavi del b lim &52X = i 1-2X)=1-0=1
a e function y = €* is a right end behavior mo ecause lim =— _erxgo( eT)— -0=1

(b) The function y = —2x is a left end behavior model because lim ex__'éfx = _lim (—% + 1) =0+1=1.

2 —X -
(a) The function y = x? is a right end behavior model because lim x__-_}-_2e__ = lim (1 + %) =1-0=1.
X—00 X X—00 X

2 -X 2
(b) The function y = e™* is a left end behavior model because _lim % = _lim (—&_—,—( + 1)
Xx——=00 e x——00 \ e

= x}illloo(xzex + 1) =0+1=1.
(a, b) The function y = x is both a right end behavior model and a left end behavior model because
lim (Eii?i‘)= lim (1+h‘—,L’EJ)= 1-0=1.

x— + oo x— £ 0o

(a, b) The function y = x? is both a right end behavior model and a left end behavior model because
2 o . '
lim (x + 311’1 x) = lim (1 + s1n2x> =1,
x— + 00 X x— + 00 X

f(x) = vVxi+x+1-x
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0.2

10 20 30 40

The graph suggests that lim f(x) = %

(b) X f(x) to 6 decimal places
0 1.000000
10 0.535654
100 0.503731
1000 0.500375
10000 0.500037
100000 0.500004
1000000 0.500000

The table of values also suggest that lim f(x) =-%—

tx+1+x/)| TP\ rx+14x

2
Proof: xli__rrol<> (\/x2 +x+4+1- x) = ler{go [(\/x2 +x4+1- x)(-ﬂm)] = lim (___H—_x__)

. 1+1/x 1
=4, )
\/1+1/x+1/x2+1

[\/x2+x+\/x2—x]= lim (x2+x)——(x2—x)
[V +x+vVxi-x] % Vxtrx+vVx2—x

44. xli_{r& \ﬁc2+x—\/x2—x:xli_'ngo [\/x2+x-—\/x2—x]-

: 2x . 2 2
= lim = lim = =1
X~3060 \/x2+x+\/x2—x X—00 \/1+%+\/1-—;1{- 1+1

45. At most 2 horizontal asymptotes: one for x — oo and possibly another for x — ~oo.

46. At most the degree of the denominator, which is zero at a vertical asymptote. A polynomial of degree n has at
most n real roots (or zeros).
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47, y = —=X 48.y=—_1-—
4—x? 4 —x2
y
[} ]
]
: ' . y
ly= = : i Y = e |
o I : d
' '
X
: l jX==2 X=2 !
yXx=-2 | 1 -1/2 '
t } I 1
+ —X ) '
[} [} ! 1
t 1 i "
: X-2: A
i ]
) '
) '
1 '
! '
] ]
' '
49, y=x2/3 41 50. =sin( i
y x1/3 y z2+1)
y
V y y-sin[ 2“ ]
23 1 X"+ 1
N TR 1
x -1 | 1 X
51.

(~4,4)by[-1,3]

The graph of y = f(jlt-) = %el/x is shown.

Jim f(x) = lim+ f (%) =00

x—0

Jim,, 1) = lim 1(})=0
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52.
!
[~4,4]1by[—1,3]
The graph of y = f(}l() = %e 1/% is shown
X
Jim f(x) = lim f(%) =0
x—0
lim_ f(x) f(%) =00
53.
—
< \
{-3,31by [-2,2]
The graph of y = f(;li) =xIn |%| is shown.
Jim f(x) = xg:;l i(1)=0
1
(im0 = lim_ m_f(1)=0
54.

AR

p— e

[-5, 51 by [—1.5, 1.5]

The graph of y = f (,l() sm X is shown.

Jim, 1) = lim_£(})=1

x—>0

(im0 = lim_ im_£(1)=1
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55.

56.

57.

58.

89.

61.

Jim (%)llx = lim+ zZ=1, (z = —}12)

lim (3 +%)(cos 51(-) = ;% (3 4 268)(cos 8) = (3)(1) = 3, (0 = %)

x— + o0

Jim_ (%— cos %)(1 +sin %) = lim, (362 —cos 6)(1 +sin 6) = (0 — 1)(1 +0) = —1, (9 = %)
2 3_ .2
__X“—=4_,_ 3 _x=x"-1_ x—=2
Y=o5%F T R 00y =t T =Xt
The graph of the function mimics each The graph of the function mimics each term
term as it becomes dominant. as it becomes dominant,.
y y
X w1 | L}
N ! \ ! | X =1
N | 2 1
~ X~ -4 ] \
*. : y--x+1 y.xa—x2—1 : :
|k N x2 -1 1 l
e X ——ef X
N | ‘1
|l MR X==1 1e] 1
\ N P 4 {
' 1-x Sl
| pox-t
i L2 1
\ AL
The graph of the function mimics each term 62. The graph of the function mimics each term
as it becomes dominant. as it becomes dominant.
y
LU’ !
]
J ' y=2sinx+ 1—
o
y = xa + -3. I(\ Y = 3
X NI
4 Sea -
— " L
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63. (a) y — oo (see the accompanying graph)
(b) y — oo (see the accompanying graph)
(c) cusps at x = +1 (see the accompanying graph)

64. (a) y — 0 and a cusp at x = 0 (see the accompanying

graph) y i
(b) y — % (see the accompanying graph) y= 3 'IL
(c) a vertical asymptote at x = 1 and contains the IO == oo T

point (—1,23—-————\/‘1) (see the accompanying graph)

1.4 CONTINUITY

1. No, discontinuous at x = 2, not defined at x =2

2. No, discontinuous at x =3, 1 = 1i1:131_ g(x) #g(3)=1.5
X—.

3. Continuous on [—1, 3]

4. No, discontinuous at x =1, 1.5 = lim_k(x) # lim k(x)=0
x—1 x—1T

5. (a) Yes (b) Yes, . _lfn1+ f(x) = 0
(c) Yes (d) Yes

6. (a) Yes, f(1) =1 (b) Yes, lim f(x) =2
(c) No (d) No

7. (a) No (b) No
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10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

[—1,0)U(0,1) U(1,2) U(2,3)

. f(2) =0, since lil’;l_ flx) =-2(2)+4=0= lim+ f(x)
X—

X—2

(1) should be changed to 2 = lin{ f(x)
X—

The function f(x) is not continuous at x = 0 because ;1_1)% f(x) = 0, f(0) = 1 and, therefore, ’1‘% f(x) # £(0).
The function f(x) is not continuous at x = 1 because )l(l_I’I:ll f(x) does not exist since xl_igl_ f(x) = —1 and

lim f(x) = 0. The discontinuity at x = 0 is removable because the function would be continuous there if the
:;i{le of f(0) were 0 instead of 1. The discontinuity at x = 1 is not removable because ,1(1_’11} f(x) does not exist

and the discontinuity cannot be removed by defining or redefining f(1).

The function f(x) is not continuous at x = 1 because im} f(x) does not exist since liril_ f(x) = -2 and
— —

X
xl—i»r{1+ f(x) = 0. The function f(x) is not continuous at x = 2 because ’1(1_’115 f(x) = 1, f(2) = 0 and, therefore,
’l‘imz f(x) # £(2). The discontinuity at x =1 is not removable because )l‘Ln'i f(x) does not exist and the
discontinuity cannot be removed by defining or redefining f(1). The discontinuity at x = 2 is removable
because the function would be continuous there if the value of f(2) were 1 instead of 0.

Discontinuous only when x -2 =0=>x=2 14. Discontinuous only when (x + 2)2 =0=>x=-2
=> continuous on (—o0,2) U (2,00) = continuous on (—o0,—2) U (=2, 00)

Discontinuous only when t2—4t+3 =0 = (t—3)(t—1) =0 => t = 3 or t = 1 => continuous on
(—00,1) U(1,3) U(3,00)

Continuous everywhere. (|t|+1 # 0 for all t; limits exist and are equal to function values.)

Discontinuous only at § = 0 = continuous on (—o0,0) U (0, 00)

Discontinuous when 7_er is an odd integer multiple of —g—, ie., %Q =(2n-1) %, n an integer => f =2n—1,n an

integer (i.e., # is an odd integer). Continuous everywhere else => continuous on

((2n - 1)7/2,(2n+1)7/2) for n an integer.
Discontinuous when 2v+3 <0 or v< —% => continuous on the interval [-—%,oo).

Discontinuous when 3x —1 < 0 or x < % = continuous on the interval [%—,oo).

lim sin (x —sin x) = sin (7 —sin 7) = sin (7 —0) = sin 7 = 0; continuous at x =7
X—T

lim sin (% cos (tan t)) = sin (% cos (tan (0))) = sin(—"2£ cos (0)) =sin (12[) = 1; continuous at t =0

)l,l_'II% sec(y sec?y —tan’y — 1): }1,1_% sec(y sec’y —sec?y) = 3111-—% sec((y—l)seczy)=sec((1 - 1)sec21)

=sec 0 = 1; continuous at y =1

éi_i% tan[% cos(sin 01/3)] = tan [% cos (sin(O))] = tan (% cos (O)) = tan (%) = 1; continuous at § = 0.




25.

26.

27.

28.

29.

30.

31
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f(x) is continuous on [0,1] and f(0) < 0, £f(1) > 0 Y

=> by the Intermediate Value Theorem f(x) takes ) y=i) .

on every value between f(0) and f(1) = the cr-
—x

x=0and x=1.

equation f(x) = 0 has at least one solution between :
t(ml J

cos X=X => (cos x) —x = 0. Ifx:—%, cos(—%)—(—%)>0. Ifx=%, cos(-’zi)—lzr-<0. Thus cos x—x =10

for some x between —% and % according to the Intermediate Value Theorem.

All five statements ask for the same information because of the intermediate value property of continuous
functions.

(a) A root of f(x) = x> —3x—1is a point c where f(c) = 0. The roots are approximately x; = —1.53,
X, = —0.347, x5 = 1.88, the points where f(x) changes sign.

(b) The points where y = x°

crosses y = 3x + 1 have the same y-coordinate, or y =x3=3x+1 = y = f(x)
=x3-3x-1=0.
(c) x3—3x=1=>x3-3x—1=0. The solutions to the equation are the roots of f(x) =x3 - 3x — 1.

(d) The points where y = x3 — 3x crosses y = 1 have common y-coordinates, or y =x3—3x=1=>y = f(x)
3
=x"-3x-1=0.

(¢) The solutions of x3 —3x — 1 = 0 are those points where f(x) = x® — 3x — 1 has value 0.

Answers may vary. Note that f is continuous for every value of x.

(a) £(0) =10, f(1) = 13~ 8(1) + 10 = 3. Since 3 < 7 < 10, by the Intermediate Value Theorem, there exists a c
so that 0 < c <1 and f(c) = .

(b) £(0) = 10, f(—4) = (—4)® —8(—4) 4+ 10 = —22. Since —22 < —/3 < 10, by the Intermediate Value
Theorem, there exists a ¢ so that —4 < ¢ < 0 and f(c) = —/3.

(c) £(0) = 10, £(1000) = (1000)® — 8(1000) + 10 = 999,992,010. Since 10 < 5,000,000 < 999,992,010, by the
Intermediate Value Theorem, there exists a ¢ so that 0 < ¢ < 1000 and f(c) = 5,000,000.

sin (x — 2)
x—

Answers may vary. For example, f(x) = ) is discontinuous at x = 2 because it is not defined there.

However, the discontinuity can be removed because f has a limit (namely 1) as x — 2.

Answers may vary. For example, g(x) = 1 _hasa discontinuity at x = —1 because lim_g(x) does not exist.
x+1 x——1 g

(’}%r_nl g(x) = —oo0 and xlir_n1 g(x) = +00.)

Noting that r = 0 is triple zero, the polynomial can be rewritten as xs(x2 —-x- 5). Therefore, the roots of the

quintic polynomial are r; = 1;2-—-— V21 ~-1791, 1, =r3=r1r,=0,and 1y = I_ZFT_ V21 ~ 2.791.
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32.

33.

34.

35.

36.

37.

38.

The graph shows that the polynomial has three zeros between —2 and 2, any one a candidate for r. By
zooming in, the choices for r are estimated at —1.532, —0.347, or 1.879.

p{x)

(a) Suppose X is rational = f(x,) = 1. Choose € = 5 For any & > 0 there is an irrational number x (actually
infinitely many) in the interval (xo — 6,%y + 6) = f(x) = 0. Then 0 <|x—xq|< é but If(x) —f(xo)l
=1> % =¢, 50 lim f(x) fails to exist = f is discontinuous at x, rational. On the other hand, x,
x—»xo
irrational = f(xo) = 0 and there is a rational number x in (xo — §,xy +6) = f(x) = 1. Again lim f(x) fails
0
to exist = f is discontinuous at x, irrational. That is, f is discontinuous at every point.
(b) f is neither right-continuous nor left-continuous at any point x, because in every interval (xg — 6,%g) or
(XgsXo + 6) there exist both rational and irrational real numbers. Thus neither limits lim_ f(x) and
x—-oxo

lim f(x) exist by the same arguments used in part (a).
X—X
0

f(x)

Yes. Both f(x) = x and g(x) = x —% are continuous on [0,1]. However ——% is undefined at x = % since

00 g(x)
N_ BX) 6 di : =1
g(z) =0= ey is discontinuous at x .

Yes, because of the Intermediate Value Theorem. If f(a) and f(b) did have different signs then f would have to
equal zero at some point between a and b since f is continuous on [a,b].

D=

Let f(x) be the new position of point x and let d(x) = f(x) —x. The displacement function d is negative if x is
the left-hand point of the rubber band and positive if x is the right-hand point of the rubber band. By the
Intermediate Value Theorem, d(x) = 0 for some point in between. That is, f(x) = x for some point x, which is
then in its original position.

If £(0) = 0 or f(1) = 1, we are done (i.e., ¢ = 0 or ¢ =1 in those cases). Then let f0)=a>0and f(1)=b< 1
because 0 < f(x) < 1. Define g(x) = f(x) —x = g is continuous on [0,1]. Moreover, g(0) =f(0)-0=a>0 and
g(1) =f(1) -1 =b—1 < 0 = by the Intermediate Value Theorem there is a number c in (0,1) such that

gc) =0 = f(c)—c=0orf(c) =c.

fi
Let ¢ =|-—(2c—)—| > 0. Since f is continuous at x = ¢ there is a § > 0 such that [x —c|1< § = If(x) ——f(c)|< €
= f(c) — e < f(x) < f(c) +e. 7 7

If f(c) > 0, then € = -12-f(c) = %f(c) < f(x) < -g—f(c) = f(x) > 0 on the interval (c —§,c + 9).

If f(c) < 0, then e = ——%f(c) = %f(c) < f(x) < %f(c) = f(x) < 0 on the interval (¢ — 6,c + §).
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f(c)-¢

39. (a) Luisa’s salary is $36,500 = $36,500(1.035)° for the first year (0 <t <1),$36,500(1.035) for the second
year (1 <t < 2), $36,500(1.035) for the third year (2 <t < 3), and so on. This corresponds to

y = 36,500(1.035)1"t ¢,
(b)

s
[ e
Wl
[ o |

r—.

{0, 4.98] by [35,000, 45,000]

The function is continuous at all points in the domain [0,5) except at t =1, 2, 3, 4.

40. (a) We require:

(0, x=0
1.10, 0<x<1
220, 1<x<2
3.30, 2<x<3
440, 3<x<14
550, 4<x<5
6.60, 5<x<6
| 7.25, 6 <x < 24.

f(x) =<

This may be written more compactly as

_ [ -1.10int(-x), 0<x<6
“”‘{1%, 6<x<24

(b)

[0, 24] by [0, 9]

This is continuous for all values of z in the domain [0, 24] except for z =0, 1, 2, 3, 4, 5, 6.
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41. The function can be extended: f(0) ~ 2.3. 42. The function cannot be extended to be continuous at
- x=0. If f(0) ~ 2.3, it will be continuous from the
right. Or if f(0) ~ —2.3, it will be continuous from the

left.
y
G 1
107 =1
f(x)=
X ! ¥
=0.1 -0.05 0.05 0.1 X
-1
T

43. The function cannot be extended to be continuous 44. The function can be extended: f(0) ~ 7.39.
at x = 0. If f(0) = 1, it will be continuous from
the right. Or if f(0) = —1, it will be continuous
from the left.

y

\;: F(x) = (1 + 2x)w
0.5 7‘3\

% 7.2
0.05 0.1 :
=0.1 <0.01 -0.005 0.005 o0.01 X
sinx
T =]
45. x ~ 1.8794, —1.5321, —0.3473 46. x ~ 1.4516, —0.8546, 0.4030
47. x =~ 1.7549 48. x 7~ 1.5596 '
49, x ~ 3.5156 50. x &~ —3.9059, 3.8392, 0.0667
51. x~0.7391 52. x &~ —1.8955, 0, 1.8955
1.5 TANGENT LINES
1. P].: ml = 1, Pz: m2 = 5 2- P].: ml = _2, P2: m2 = 0
5 1 . - . _
3. Pl: ml = i, P2: m2 = —'§ 4. Pll ml = 3, P2- m2 = _3
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5 m= lim [4—(-1+h)211_(4_(_1)2)

‘h—

2 -
g —(1=2h+h?)4+1 lim BB
h—0 h h—0 h

at (-1,3): y=3+2(x—(-1)) =>y=2x+5,

tangent line

6 m— lim 2V/1th-2V1_ 2¢/1+h—2 24/T+h+2
. — ——‘—‘_B-——‘_..- .

lim

—0 h—0 h 24/1+h+2
. 4(1+h)—4 . 2

=1 = lim ——2 =1,
ho0 2h(y/I+h+1) B0 \JI+h+1

at (1,2): y=2+41(x—1) = y =x+1, tangent line

7. m= lim
h—0

(=2+0)°—~(=2)> . -8+12h—6h?+h%+8
A -

h—0 h

= lim (12—6h+h?) =12

at (—2,-8): y=—8+12(x—(~2)) = y = 12x + 16,

tangent line
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1 1
( 2+h)3 (=2)° _

-8—(-2+h)3
" h—0 —8h(—2+h)

i":

—(12h—6h2+1%) _ . 12-—6h+h?

= 1i =
hm0  —8h(—2+h)°  h—0 8(—2+h)°
_12 __3,
8(~8) ~ 16’
a.t(—2,——%): y= ————(x (-2))

=y= —-i%x %— tangent line

o la+w-20+h?]-(-1) _ . (1+h-2-4h—2p%)+1_ . h(-3-2h)
Pom= b = 5 B R R
at (1,—-1): y+1=-3(x— 1), tangent line
10. m = lim [(1+h)3+3(1+h)]—4 _ lim (1+3h+3h2+h3+3+3h)—4 _ i h(6+3h+h2)—6-
T R0 h ~ h—0 h =pm =g =%

at (1,4): y—4=6(t—1), tangent line

_3+h 4
. (3+h)-2 _ (3+h)—3h+1) _—%h  _ .
11 m= lim ——p——= lim gy = i gl =
at (3,3): y—3=—2(u-3), tangent line
VEFRFI- VITh-3 VO+E+3_ . (9+h)-9

12. m = lim

h—0 h = 2% B e+h+3 nZd h(vV9+h+3) e h( ;79+h+3)

1 5= ?15_; at (8,3): y-3= %(x — 8), tangent line

N
11
_ “lom= B3+h)-1 2 2—(2+h) _ -h 1
13 Atx=3y=g=m=lim =—F——=[In, JETH) _ am W+ 4P
h-1
b-1_(_y)
o T v S S (T Vo (VO oh
4. Atx=0,y=-1=m= lim ===p——s= lim ——g—y—= lim gp= gy =2 slope

2 _11-(+2 _
15. At a horizontal tangent the slopem =0=0=m = lllir% [(x +h)” +akx+ h)h 1] (x +4x 1)

i & +2xh+h2+dx+4h—1)—(x+4x—1) _ (2xh +h? +4h) _
h—to h h—'O h

hm (2x+h+4)=2x+4;

2x+4=0=>x=—-2. Then f(—2) =4—~8—1= -5 = (-2,-5) is the point on the graph where there is a

horizontal tangent.
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0=m= lim [(x+h)3—3(x+h)]—(x3—3x)_ Jim (x® + 3x%h + 3xh? + h3 — 3x — 3h) — (x® — 3x)
U T T S0 h ~ h—0 h

2 2 3
h—-0 h

= ll‘ir% (3x2+3xh+h2—3)=3x2—3; 3x2-3=0=>x=-1orx=1. Then
f(—1) = 2 and f(1) = -2 = (—1,2) and (1,—2) are the points on the graph where a horizontal tangent exists.

1 1
I T B ! (x-1)—(x+h—-1) —h 1
-l=m= lim h =M BE-DEFESD) A% AE-D&FR-D - xo1)?

= x-1)2=1=2x-2x=0=2>x(x—-2)=0=>x=00orx=2. Ifx=0,theny=—-1and m = —1
>y=-1-(x-0)=-(x+1). Ifx=2,theny=landm=—1ﬁy:l—(x—2)=—(x—3).

l—m— lim. ﬂ:—\/}_{— lim Vx+h \/— vx+h +\/_ (x+h)~x
47 o h ~ B0 B VRrheya b B(vX+h+ k)
h _ 1

. Thus,%:ﬁ: \/-::2=>x=4=>y=2. The tangent line is

lim f(2+h) f(2) (100 — 49(2+h)2) (100 —4.9(2)%) _ —4.9(4 +4h +h?) +4.9(4)
" b0 h—% h-rfb h

= }llil'l'(l) (-19.6 —4.9h) = —19.6. The minus sign indicates the object is falling downward at a speed of
19.6 m/sec.

f(10 +h) —£(10) _ . 3(10+h)2—3(10)2 3(20h +h?) _
— lim 1m T

= 60 ft/sec.
h—tO " h—0 b0
2 _ 2 2_
f(3+h) f3) _ yim 7r(3+h) "3 _ piy TO4+6h+RI-0] 7(6+h) = 6
h—-»O h_’o "~ h—0 h h=0

fe+h)-f2) . Ee+nP-4@P®  4[12h+ 602+ 1]
Cfim AR g = lim
h—0 h h—0 h h—0 h

— Lim 47 2] _
= lim 3[12+6h+h]—161r

_ 2 _ 2 2
iy SLFD) —s(1) _ . 1.86(1+0)?—1.86(1)% _ .  1.86+3.72h+1.86h2—1.86 _

hm (3.72 +1.86h)

" ho0 h h—0 h h—0 h
= 3.72
5 52+ h) —8(2) _ . 114402+ h)? —11.44(2)% i 45:76 + 45.76h + 11.44h% — 45.76
) h-»o h—-O h " h-0 h

= lllir% (45.76 + 11.44h) = 45.76

2 gnfl
... f0+n)—f0) b sm(H)_ 1Y
. Slope at origin = 11113%) — = }111_’ A 1111_% h sm(E) = 0 = yes, f(x) does have a tangent at

the origin with slope 0.
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— h sin
26. lim g(0+h) —g(0) = lim -T(h-) = lm}) sin h Since lm% sin }11 does not exist, f(x) has no tangent at

h—0 h h—0
the origin.

27. lim_ w: lm_ i--'—_—0=c>o, and lim w lim 120 - . Therefore,
h—0 h h—0 h h—ot h hoot B

£(0 + h) —(0) _

lll'n}) = 0o => yes, the graph of f has a vertical tangent at the origin.
28. lim_ H(O—+h-)——U—(O-)- = lim_ 0-1_ 00, and lim w = lim lzl- 0 = no, the graph of f
h—0 h—0- h h—ot h—ot b

does not have a vertical tangent at (0,1) because the limit does not exist.

2. (a) %:f(g)_“(f_(;)z) =1=¢ 0432 (o) AT T _ e g8

Af _f4)—f1) Im4-0_1In4,
30. (a) —A—x-— 4_1 = 3 -——3—~0.462

£(103) — £(100) _ In 103 I 100 _ 1, 108 _ L1y 1,03 50,0099

_ 1m 1 -1
(b) Xx=—T03=100 — 100=3

03

31, (a) AL TOT/H) = En/) _1-1_ 4

At~ (@Br/d) = (x/d) =2 ~-1.273

14

wl.

f(n/2) —f(x/6) _0—+/3 343 _
(b) &L= e B
32. (a) = (’2 2(0) = —2 ~ —0.637

() — f(—m) -
(b) &= _(_(W) =1=1=0

91-15 _
33. (2) 19951093 = 03

The rate of change was 0.3 billion dollars per year.

3.1-921 _
(b) 19971595 = 0-

The rate of change was 0.5 billion dollars per year.

(c) y =0.0571x? — 0.1514x + 1.3943

7

L.___._.—n—n—-———-‘
{0, 10} by [0, 4]
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(d) @—:—%@ ~0.31

(e)

) -y(5
Y(g_g()zo.m

According to the regression equation, the rates were 0.31 billion dollars per year and 0.53 billion dollars
per year.

y(7+h) —y(7)

. . [0.0571(7 4+ h)® — 0.1514(7 + h) + 1.3943] — [0.0571(7)% — 0.1514(7) + 1.3943]
lim = lim :
h—-0 h h—0 h -
. 0.0571(14h 4+ h?%) — 0.1514h
= lim
h—0 h

}llin%) [0.0571(14) — 0.1514 + 0.0571h]

~ 0.65

The funding was growing at a rate of about 0.65 billion dollars per year.

34. (a)
{7, 18] by [0, 900]
(b) Q from year Slope
440 — 225
1988 B s ke 23.9
440 — 289 .,
1989 =9~ 18.9
440 — 270 .,
440 —-493 ., _
440 — 684 .
440 —-1763 ., _
1993 T3~ 80.8
440 —-651 .,
440 —600 ., _
1995 T N 80.0
440 — 296 .,
(¢) As Q gets closer to 1997, the slopes do not seem to be approaching a limit value. The years 1995-97

seem to be very unusual and unpredictable.




124 Chapter 1 Limits and Continuity

35. (a) The graph appears to have a cusp at x =0.

Yy

(0,0)

\

. (0 + h) — £(0) . h2/5 _ o 1 . 1 - .
1 —_—= _— = =75 — T35
(b) W _1:(1)1_ L hl_l'l’(ljl_ 5 W ir(r)l_ 378 oo and hl_lf;l‘i’ T oo = limit does not exist
=> the graph of y = x2/% does not have a vertical tangent at x = 0.
36. (a) The graph appears to have a cusp at x = 0.
¥
g x5
(0,0)
. f0+h)—f0) . m¥S_o_ . 1 _ . 1 . .
(b) h!_l}’él_ I = hl_l}(!)l_ = hl_lf(r)l_ Wy i oo and hl-l-)r(r)l_*_ v e 00 => limit does not exist
2y= x*/5 does not have a vertical tangent at x = 0.

37. (a) The graph appears to have a vertical tangent at x = 0.
y

/s
(0,0 y=x

- 1/5
(b) }llir% wﬁ—f-(o—) = }{inb }—I—Tﬂ = }llinb flil/—s =co=>y= x'/5 has a vertical tangent at x = 0.

38. (a) The graph appears to have a vertical tangent at x = 0.
Y

(0,0 y=x3/8

3/5
lim B =0_ yiy —-1—-=oo=>thegraphofy=x

3/5
h-+0 h h—0 h2/5

) tim QD=0

at x = 0.

has a vertical tangent




39. (a) The graph appears to have a cusp at x.= 0.

Yy
]
y= ax2/5 _gx
, 3
' X
-1 0 1 2
- 2/5 2/5
(b) lim_ w: lim_ 4}1/——2}1= lim_ 4h?/5 _oh _
h—0 h h—0 h h—0 h h—0

4
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= lim_ —x-

1375

2=—o0c and lim 2

4 __
h—oTt h3/5

= 0o => limit does not exist => the graph of y = 4x*/5 — 2x does not have a vertical tangent at x = 0.

40. (a) The graph appears to have a cusp at x = 0.
y

ys x5/3 - 5)(‘?/3
(0,0)

(2.0,-4.76)
. f0+h)—f0) _ . n¥3_5n23_ . 253 5 _o_ o 5
R S g R T R - N7

y= x%/3 — 5x2/3 does not have a vertical tangent.

h1/3

41. (a) The graph appears to have a vertical tangent at x =1 and a cusp at x = 0.

y
2
y.x2/3_(x_.|)1/3
1
X
-1 0 1 2
2/3 _- _1\1/3 _ 2/3 _1,1/3 _
ORI (13 o ¢ 0 it WY (B3 Ay s
h—0 h h—0 h

=>y= x*/3 (x— 1)1/3 has a vertical tangent at x = 1;

does not exist = the graph of
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f(0+h) €0) _ i W3 - (h - 1)1/3 (=113 1 (=13
h—»o ~ h—0 h—0 h1/3 h

=0: 1
x=0: +i

2/3

does not exist = y = x“/° = (x— 1)1/ 3 does not have a vertical tangent at x = 0.

42. (a) The graph appears to have vertical tangents at x =0 and x = 1.

y
2

-1 /).5 1.5

-1

/ y_’('l/3*(x_.|)1/3

_ K173 _\1/3 _(_1\1/3
(b) x=0: 111_% Qﬂ%ﬂ=ﬁi_r% + (b 1%1 (1) —oo=y=x34+(x-1)/3has a
vertical tangent at x = 0;
f1+h)—-f1) .  (A+h)P+a+h-1)/3_
x=1: 111—% (_tF'l=}l‘_‘.% d+h) +(h+h ) 1=<><>=>)’=xl/3+()c—1)1/3ha,sa,

vertical tangent at x = 1.

43. (a) The graph appears to have a vertical tangent at x = 0.

Yy
1
Vx
-1 1
-1 . -m » X<0
y X, x>0
(b) lim Mﬁ—i@= lim ‘/Hh 0 lim —-1—=oo;
h—.0+ x—->0+ h—-»0+ \/i;
lim_ w= lim_ ____VM"O: lim_ Z_.V|h| = 00
h—0 h h—0 h h—0~ —|h| Tzl

= y has a vertical tangent at x = 0.

44. (a) The graph appears to have a cusp at x = 4.
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_ V4= (@+h)|-0
(b) lim f(—‘l—tllh)ﬂ= jim V) " = lim —-Vhih'= lim L = oo;
h—0 h—oT h—ot h—ot vh
- 4—-(4+h)
M CER YT OO IV ad Gl L SRRY;
h—0 h h—0 h h—0" _y/h2

= y = 4/4 — x does not have a vertical tangent at x = 4.

45-48. Example CAS commands:

Maple:
fi=x -> cos(x) + 4#sin(2xx);
x0:=Pi:

dg:=h -> (f(x0 +h) — £(x0))/h;
slope:=limit(dq(h),h=0);

L:=x -> f(x0) + slope*(x — x0);

y1l:=f(x0) + dq(3)*(x — x0):

y2:=f(x0) + dq(2)*(x — x0):

y3:=£(x0) + dq(1)*(x — x0):

plot ({f(x),y1,y2,y3,L(x)},x = x0 — 1..x0 + 3);

Mathematica:
Clear [f,m,x,y]
x0 = Pi; f[x_] := Cos[x] + 4 Sin[2x]
Plot[ f[x], {x,x0 —1,x0+3) ]
dqfh_] := (f[x0 + h] - f[x0])/h
m = Limit[ dq[h], h -> 0]
y := f[x0] + m (x —x0)
yl := f[x0] +dq[1] (x —x0)
y2 := f[x0] + dq[2] (x —x0)
y3 := f[x0] + dq[3] (x — x0)
Plot[ {f[x]ay’ylay2,y3}9 {x,x0 - 1,x0 + 3} ]

CHAPTER 1 PRACTICE EXERCISES

1. Atx=-1: lim_ f(x) = lim+ fx)=1= lim1 f(x)
X—t—

x—=-1"

x—-=1
=1=1{(—1) = fis continuous at x =-1. y=1
At x=0: xl_l‘l’(l;l_ f(x) = xl_l'I(1;1+ fx)=0= ’1(1_% f(x) =0. TN T
But f(0) =1 # ’l‘l_l'% f(x) = f is discontinuous at x = 0. J\
Atx=1: lim_f(x)=-1and lim f(x)=1= lim f(x)
x—1 x_,1+ x—1

does not exist => f is discontinuous at x = 1.

2. Atx=-1: lim_f(x)=0and lim+ fx)=-1= x{_i_'m__1 f(x)

x——1" x—-1

does not exist => f is discontinuous at x = —1.
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0 x5~
- I/X. 0 ‘
At x = 0: hm f(x) = —oco and lim_ f(x) = co = lim f(x) fer=q 0, x:llxl <!
x—0T x—0 L x>1
does not exist = f is discontinuous at x = 0. R !
Atx=1: lir{]‘ f(x) = hm fx)=1= lim f(x) =1. But ! ]
x— .

x—-vl

f(1)=04# }(1__)11} f(x) = f is discontinuous at x = 1.

3. (a) tlggo (3f(t)) = 3 tli.rilo f(t) = 3(=7) = —
(®) Jimp () = (fimp €Y = (7" =49
(¢) Jimp ((9)-g(t) = Jlim £(t)- Jlim g(t) = (=7)(0) =

£(t) dim £(t) 7 7

—tg g(t) — 7= hm (g(t) 7 - l1m g(t)—hm 7=0=7"

(d) h =1

(e) tllr{lo cos (g(t)) = cos(tllr{lo g(t)) =cos0=1
O Ji 80| =| i 10| =1-7I=7
© Jim () +&0) = lim 1)+ Jim ) =~7+0=—7

(h) Jim (1/£(t)) = tli_r{llf(t—f L= _%
~%

4. (a) lim —g(x) = - lim g(x) = —v/2

&)

(b) lim (g(x)-1(x)) = lim g(x)- lim ) = (v2)(3) = —‘25
() lim (100 +g(x) = lim f(x) + lim g(x) =5+ V2

1 1 _
3 el Ty

l\D|Hli—l
i
no

. 1 . _ 1_1
(e) ’l‘l_r'% (x+£f(x)) = ,l‘%x+ ’l‘%f(x)—0+2—2

: f(x) -cos x _ ,l(l_r_'n f(x) - hm cos X ()(1)_
(®) ety x—-1 = ,l(mbx—,l(l_r%1 0—1 —

D=

5. Since ,1(1_% x = 0 we must have that li_r'n (4 — g(x)) = 0. Otherwise, if ,l{in'b (4 — g(x)) is a finite positive

- g(X)] [4 - f(x)]

number, we would have lim_ [ —oo and lim
x—0" +

x—0

= 0o so the limit could not equal 1 as
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x — 0. Similar reasoning holds if ’l‘in%) (4 — g(x)) is a finite negative number. We conclude that lir% g(x) =
— X—
6. 2= Jim, [« 1y )] = Jim, x,lm, | fy o] =~ Jm, | i 9] = -4l 9

. . . . _2 _
(since )1‘1_'1'% g(x) is a constant) = ’l(l_r_% g(x) =53 =

ST

7. (a) lim f(x) = lim x3 =3 = f(c) for every real number ¢ = f is continuous on (~o0,00)

(b) lim g(x) = lim X34 = 34 = g(c) for every nonnegative real number ¢ => g is continuous on [0, c0)
(c) lim h(x) = lim x~23 = ZL/a = h(c) for every nonzero real number ¢ => h is continuous on (—o0,0) and
c

(0,00)
(d) lim k(x) = lim x~1/6 = -11/—6 = k(c) for every positive real number ¢ = h is continuous on (0,c0)
c

8. (a) U ((n --—) L8 (n +%)7r), where I = the set of all integers.

(b) U (nm, (n + 1)), where I = the set of all integers.
nel

() (=00,00)
(d) (—o00,0) U (0,00)

x}-dx+4 _ . (x=2(z-2)
9. (a) :l(l—% %3 + 5x2 14)(—}(1_!_}1’(1) x(x+7)(x—-2
+

. x—2 = 1- X — 2
Jm ern o ced M T T

2 - -
o xedx 4 _ g (x=2)(x-2) -
(b) :lcl—»n% X3 4 5x% — 14x ’1(1_% x(x+7)(x—-2) " :1c1—»m2 x(x + 7) XFEL= 2(9)

’1(1_’ 1 = (x T 7), x # 2; the limit does not exist because

—00

. 2 x(x+1) x+1 . 1
10. lim ——2XEX = lim <75 — = lm 5————= lim ———,x#0and x# -1
. 1 1 X% +x

Now 1 —_—— = d lim ——— = lim 2T X =00

oW o x3(x+1) o0 an x_l.r(I)l+ xX3(x+1) = +2x* 4+ x3

(b) lim —"2—+’5-—— lim —-"(L“-)—— lim ————, x # 0 and x# —1. The limit does not

x—~——1 x5+2x4+x x——1 x (x +2x + 1) x—-1 x (x+]_)

. 1 : 1

t b li — e —— - d 1 —_—=

exist because lim _ i 0o an x_:l_nl_*_ 2ot

R VLI 1- vk 1 _1
T T TR AV TR 2

. x2—a _ (x2-a?)  _ . 1 _1
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. (x+h)2-x® . (x*+2hx+h?)-x2 B
13. }lll_r'% I = 1111_141(1) B = }lxl-g%) (2x+h) =2x
. (x+h)2—x2_ . (x2+2hx+h2)—x2_ . R
14 lim =—p—= lim R = lim (2x+h)=h
-1 2-(2+x)
24X 2 - X)_ 1 -1 __1
B lm =M %0 2% Trx- 1
. 2+x)®-8 . (P+6x>+12x+8)—8 . _
16. lim “—5——= lim . = lim (x*+6x+12)=12
2x+3 243 _2+0_2 2x2 + 3 2+ % 40 p
17. lim = lim =g ls=2 18. lim ==T==1i X —2T - _2
=00 JX 4T x=oo 7 05 == 2 ==
x + 541 5+ x3=00 pxli7 X °°5+;CZ§ °+0 75
2
. X“—4x+8 __ . 1 4 , 8\ _4_ —
19. lim_ e = lim (3x 3x2+3x3)_0 04+0=0
1
. 1 x2 0
20. lim —s—=——= lim = =0
X500 2 _ X060 7,1 1-040
x“=Tx+1 1_2_4.?
2 4, .3
921, lim X =TX_ iy (X=T\_- _o 22. lim X tX __ fjy (XE1_ =00
x—=-00 x+1 x—\b—oo 1+% X300 12X3+128 X300 12 +.1_2_3§
X
23. lim MS li L _ 0 since int x — 0o as x — oo
x=0o0 int X x—oo int x
2. lim le0s0=1l oy 12214
6—c0 [ 600 0
1+sinx+__2___
) x+sinx+2\/;(_ ) X \/J_( 14040 _
25. lim —————— = lim - = =1
X500 X +sin x x=00 sin x 1+0
1+5%=
2/3 , -1 -5/3
) x4 xt . 1+x _140_
2 o P T | T¥0= !
x“ +cos“x 14808 X
273
X
2
27. lim e™* = lim %:0 28. Lettingu:%gives lim_e!/* = lim e"=1.
X—00 X—00 ex X—=—00 u—0

29. (a) f(—-1) = —1 and f(2) = 5 = f has a root between —1 and 2 by the Intermediate Value Theorem.
(b), (c) root is 1.32471795724
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30. (a) f(~2) = —2 and f(0) = 2 = f has a root between —2 and 0 by the Intermediate Value Theorem.
(b), (c) root is —1.76929235424

CHAPTER 1 ADDITIONAL EXERCISES-THEORY, EXAMPLES, APPLICATIONS

1. (a)xIO.l 0.01  0.001  0.0001 0.00001
x*| 0.7943  0.9550 0.9931 0.9991  0.9999

Apparently, lim+ x*=1

x—0
(b) ¥
1
0.6
y=x*
0.2
X
0.2 0.6 1
2. (a) x | 10 100 1000
1 1/(lnx)
() 0.3678 0.3678 0.3678
1/(inx)
Apparently, Jim (1) =o03678=1
o
1/(1n 2)
rw=(H"
0.4
0.2
X

2 4 6 8

V2 lim_v c2
: . H — v—C — _
3. Vli.r?—L_vl_l_,T—LM“_?_LO 1- 2 _LM/I—-C—2_0

The left-hand limit was needed because the function L is undefined if v > ¢ (the rocket cannot move faster
than the speed of light).
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VX VX

4. )12;5— ’<0.2=>-0.2<—2—-—1<0.2$0.8<T<1.2=>1.6<\/§<2.4=>2.56<x<5.76.

VX VX

VX
|—2—-— ‘<0.1 = -01<5-1<01=09<5-<11=18</x<22=>324<x<484.

5. |10 + (t - 70) x 10™* — 10| < 0.0005 = | (t — 70) x 10~*| < 0.0005 = —0.0005 < (t — 70) x 10~* < 0.0005
=> -H<t—70<5 = 65’ <t <75 = Within 5" F.

6. Yes. Let R be the radius of the equator (earth) and suppose at a fixed instant of time we label noon as the
zero point, 0, on the equator => 0 + 7R represents the midnight point (at the same exact time). Suppose x;
is a point on the equator “just after” noon = x; + 7R is simultaneously “just after” midnight. It seems
reasonable that the temperature T at a point just after noon is hotter than it would be at the diametrically
opposite point just after midnight: That is, T(x;) — T(x; + #R) > 0. At exactly the same moment in time
pick x, to be a point just before midnight => x, + 7R is just before noon. Then T(x;) — T(xy + 7R) < 0.
Assuming the temperature function T is continuous along the equator (which is reasonable), the Intermediate
Value Theorem says there is a point ¢ between 0 (noon) and 7R (simultaneously midnight) such that
T(c) — T(c + 7R) = 0; i.e., there is always a pair of antipodal points on the earth’s equator where the
temperatures are the same.

7. (a) At x=0: l%r+(a)= lim 1+‘/ ( 1+m>< m)

a—0 &-—)0 1—\/1+a.
- lim 1-(1+4a) _ -1 _1
am0 a(—1—+/I+a) —1-,/1+0 2
Atx=-1 lim_ r.(a)= lim _A1-0+a) oy =1 _ -

a——1T a——11 a( 1—\/l-|-a,) a.—»—l a( 1_\/1+a) _1_\/6
(b) Atx=0: lim r_(a) = lim_ “lovite g ( \/1+a)(—1+\/1+a)
a— a—

a a—0" -1+/1+a

_1-(1+a) _

lim = b
P S Ty eary i S e oy i L

denominator is always negative); lim r_(a) = lim = —oo (because the denominator
’ a.—>0+ a—>0+ "1 + \/ (

is always positive). Therefore, lin(l) r_(a) does not exist.

-1—-4/1+a . -1

Atx=-1: lim r_(a)= lim 6 ———7a——= lim =1
a——1% a—-1F a——1T -1+ ; 1+a
(c) r_(a)
r (a)
]’ r. (a) - .-—1:—2
-1+ /T%a 2 a
0.8 ry(a) = —_—
: a
0.6 3 ;
2
-1 -0.5 0.5 1 -2
Graph not to scale .




10.

11.
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) f(X)

(d) a=0.2

a=0,1 a=0.5

1
a=0.05
X
R .5 1
. X

fymax? +2x =1

f(x)-ax +ux-1

(a) Since x — 0F, 0 < x3 <x<12(B-x)=0" = lim f(x3-x)= hm f(y) = B where y = x3 —x.

x—0
(b) Sincex = 07, -1 <x < x> <0=(x3-x)—0t= hm £(x3 —x)— hm f(y) = A where y = x> ~x.
y—ot
(c) Sincex — 0%, 0 <x?<x 2¢1=(x2-x) >0t = 11m+f(x -x¥)= lim f(y) = A where y = x? —x*.
x—0 y—0
(d) Since x — 07, —1<x<0=>0<x4<x2<1=>(x - X )—v0+=> lim f(x -—x4)=Aasinpart (c).
x—0

(a) True, because if lim (f(x) + g(x)) exists then lim (f(x) +g(x)) — lim f(x) = lim [(f(x) +g(x)) - f(x))

X~—a

= lim g(x) exists, contrary to assumption.
(b) False; for example take f(x) = % 1 and g(x) = —-,12. Then neither :1:136 f(x) nor ’1(13‘1) g(x) exists, but
hm (f(x) + g(x)) = 11m (,—( —-li) = :lclino 0 = 0 exists.

(c) True, because g(x) =1x|is continuous => g(f(x)) = |f(x) | is continuous (it is the composite of continuous

functions).

1, x<

(d) False; for example let f(x) = {—1 = f(x) is discontinuous at x = 0. However If(x) l =1is

'

continuous at x = 0.

f(x) =x+2cos x => f(0) =0+2 cos 0 =2 >0 and f(—7) = —7 +2 cos(—7) = —1 —2 < 0. Since f(x) is
continuous on [—,0], by the Intermediate Value Theorem, f(x) must take on every value between [-7-2,2].

Thus there is some number ¢ in [—m,0] such that f(c) = 0; i.e., ¢ is a solution to x +2 cos x = 0.

. 1 2_7)= _g = )
Show lim f(x) = lim (x2=7)=-6=1(1)

Step 1: I(x2—7)+6|<e¢—e<x2—1<e=>l—e<x2<1+e:\/1—e<x<\/1+c.
Step 2: Ix—1|l<é=> -6<x-1<6=>—-6+1<x<é+1

Then —6+1=+/1l—coré+1=+/1+c¢ Choose6=min{1-—\/1—e,\/1+e—1},then
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12.

13.

14.

15.

0<lx—-1l<b6= |(x2 ~7)—6 l <eand lim f(x) = —6. By the continuity test, f(x) is continuous at x = 1.

L _9_gfl
Show )l(l_’rrig(xg_ hm 5_2_g(4).
4 4

1 1

. - e _ 1
Step 1: |2 2|<6=> €<y 2<e=>2 €<y <2+e=>4

e >">4+2e

clp_1 - ~1 5+1 1
Step 2: \x 4‘<6:> d<x 4<¢S=> 6+4<x<6+4.

o1 1 _1_ 1 € 1__1 —_1__1__ ¢
Then 5+4———4+2€=>5—4 4+2€_4(2+€),or6+4—4_2€=>5—4_2€ 47 4(2-¢)°
=€ -7 o=
Choose6_4(2+€),the smaller of the two values. Then0<‘x |<6=>|2 |<cand ’l(l_'rr} 5z = 2
1

By the continuity test, g(x) is continuous at x = 211"

Show ,I(era h(x) = ,l¢1_>mz Vv2x-3=1=h(2).
— )2 2
Step 1: |\/2x-3—1|<e=>—c<\/2x—3——1<e=>1—-e<\/2x—-3<1+e=>(1€#<x<(—1+6)—+3.

2

Step 2: |x—2|<6=>—6<x—2<bor—6+2<x<6+2.

— )2 1— 2 _ 2 2 2
Then—6+2=-(-1—M=>6=2—( 62) +3=1 (12 2 "f“—2—101‘6+2————-—(1+€) +3
2 2
1 - 2 2
=>6=(1+€2) +3 2—( +6) ! e+%. Chooseé:e—%—, the smaller of the two values. Then,

0<|x-2l<é=> I VvV2x-3-1 | <€, so }l(l_)mz v/2x — 3 = 1. By the continuity test, h(x) is continuous at x = 2.
Show lin% F(x) = ’lcmé V9-x=2=F(5).
X~ —

Step 1: I\/QTX—2|<6=>—e<\/S)_:_x-—2<e=>9—(2—e)2>x>9—(2+e)2.

Step2: 0<|x—5|<éd=>-6<x—-5<6=>-6+5<x<86+5.

Then —6+5=9—-(24+¢)> 2 6=(2+¢)%-4=e42,0r64+5=9-(2-€)? 2 6=4—(2-¢)? =2 - 2¢.
Choose 6 = €% — 2¢, the smaller of the two values. Then,0<|x-5|<6=>|\/§——_x—2|<e, S0

’1(1__)1:(15 /9 —x = 2. By the continuity test, F(x) is continuous at?c=5.

(a) Let € >0 be given. If x is rational, then f(x) = x = |f(x) - 0| =[x —0|< € & |x - 0| < ¢; i.e., choose
§=¢. Then|x—0|<6 = |f(x)—0|< e for x rational. If x is irrational, then f(x) =0 = |f(x) - 0|<¢
& 0 < € which is true no matter how close irrational x is to 0, so again we can choose § = €. In either case,
given € > 0 there is a § = ¢ > 0 such that 0 <[x—0|< 6 = |f(x) -0 | < €. Therefore, f is continuous at
x=0.

(b) Choose x = ¢ > 0. Then within any interval (c —é,c + 6) there are both rational and irrational numbers.

C

If c is rational, pick ¢ = 5. No matter how small we choose § > 0 there is an irrational number x in

Nﬂ

(c—é,c+6) = |f(x) —f(c) I =|0-cl=c> '% = €. That is, f is not continuous at any rational ¢ > 0. On




16. (a)

(b)

(c)
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the other hand, suppose c is irrational = f(c) = 0. Again pick € = % No matter how small we choose 6§ >0

there is a rational number x in (c —é,c + 6) Withlx—-c|<%= €& %<x <-329-. Then |f(x) —f(c) | =Ix— 0]

=|x|> % = ¢ = f is not continuous at any irrational ¢ > 0.

If x = ¢ < 0, repeat the argument picking ¢ = '—%l = _Tc Therefore f fails to be continuous at any

nonzero value x = c.

Let ¢ = ¢ be a rational number in [0, 1} reduced to lowest terms = f(c) = % Pick € = 21_n No matter how
small § > 0 is taken, there is an irrational number x in the interval (c —6,c + 6) = |f(x) —f(c)|= |0 —%‘

= % > 511—1 = ¢. Therefore f is discontinuous at x = ¢, a rational number.

Now suppose ¢ is an irrational number = f(c) = 0. Let ¢ > 0 be given. Notice that % is the only rational

number reduced to lowest terms with denominator 2 and belonging to [0, 1]; % and -%— the only rational with

denominator 3 belonging to [0, 1]; % and % with denominator 4 in [0, 1]; %, %—, % and % with denominator 5 in

[0,1]; etc. In general, choose N so that §< ¢ = there exist only finitely many rationals in [0, 1] having

denominator < N, say ry, Iy, ..., Ip. Let § = min{|c—ri|: i= 1,...,p}. Then the interval (c — §,c + 6)
contains no rational numbers with denominator < N. Thus, 0 < {x—c|< 6 = |f(x) —f(c) | =|f(x) - 0|
=|f(x)| < % < € = f is continuous at x = c irrational.

The graph looks like the markings on a typical ruler

when the points (x,f(x)) on the graph of f(x) are

connected to the x-axis with vertical lines.

y.
1
0.8
0.6
0.8
0.2
— X
0 02 0.4 06 0.8 1

1/n if x'= m/n is & rational number in lowest terms
fG) =10 ifx is irrational
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NOTES:




