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ABSTRACT

Aims/ Objectives: In this note we will discuss the known (but not well known) problem of finding the minimum
polynomial and the function of a matrix providing the simplest proofs for undergraduate students. We will try to
explain with fairly simple arguments how to compute the minimum polynomial of a matrix giving also the matlab

code for its symbolic computation. Next we will describe the (symbolic) computation of the matrix of a function
via the Hermite interpolation method which seems to be the simplest method for undergraduate students.
Finally we shall see how we can compute the Drazin inverse given the nth power of a matrix A.
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1 INTRODUCTION

A problem that arises at least at the study of Markov
chains is to compute the nth power of a stochastic
matrix or the exponential matrix etA. A well known
approach is via the diagonalization of the matrix A but
this approach needs the matrix A to be diagonalizable.
Below, we will describe the Hermite interpolation
method which seems to be the simplest way for
undergraduate students. For more about the matrix
function computation one can refer to the bibliography
given at the end of this note (see for example [1], [2],
[3]).

Let Ak×k be a matrix of real or complex numbers. If we
want to compute symbolically the matrix An we can do
the following. Find a polynomial p(x) = xq +cq−1x

q−1 +
· · ·+ c0 which is such that

p(A) = Aq + cq−1A
q−1 + · · ·+ c0Ik×k = 0k×k

Dividing theoretically the polynomial xn, for n ≥ q, by
p(x) we have

xn = π(x)p(x) + v(x), ∀x ∈ R

where v(x) is a polynomial with degree at most q − 1.
That means that the polynomial ∆(x) = xn−π(x)p(x)−
v(x) has all its coefficients equal to zero and so

An = v(A)

where

v(A) = aq−1A
q−1 + · · ·+ a1A+ a0Ik×k

The only thing that we have to do is to find the
coefficients of v(x). In this problem, the roots of the
polynomial p(x) will play an important role. If p1, · · · , pl
are the roots with multiplicity j1, · · · , jl (with j1 + · · · +
jl = q) then we construct the following system, setting
f(x) = xn,

v(r)(pi) = f (r)(pi), r = 0, · · · , ji − 1, i = 1, · · · , l (1.1)

where f (r) is the r derivative of f and f (0) = f .

Let us look at the homogeneous version of the system
(1.1) and assume that it has a nontrivial solution.
According to the fundamental theorem of algebra the
sum of the multiplicities of the roots of any polynomial of
degree n is exactly n. The degree of the polynomial v(·)
equal to q − 1 therefore the sum of the multiplicities of
the roots is exactly q−1. However, by the homogeneous
version of the system (1.1) we deduce that the sum
of the multiplicities of the roots of the polynomial v(·)
equals to q and this is true only when the polynomial v(·)
is identically zero. Therefore the homogeneous version
of the system (1.1) has only the trivial solution and that
means that the system (1.1) has a unique solution.

A polynomial with the property p(A) = 0k×k is of course
the characteristic polynomial of A. The system (1.1)
suggests that the less the degree of the polynomial
p(x) the better. That means that we should find, if it
is possible, the minimum polynomial with the property
p(A) = 0k×k.

2 THE COMPUTATION OF THE MINIMUM POLYNOMIAL

Let Ak×k be a given matrix of complex numbers. Below we give the matlab function in order to compute the
minimum polynomial of this matrix. The coefficients of the polynomial are in the vector v, i.e. the minimum
polynomial is

m(x) = v(1)xr + v(2)xr−1 + · · ·+ v(r + 1)

function v=minimumpoly(A) [l,n]=size(A); if l~=n

fprintf('This is not a square matrix ')
return

end

r=1; Aj=sym(eye(l)); B=Aj(:); BB(1,1)=sym(1); while BB(r,r)==1

Aj=Aj*A;

B=[B Aj(:)];

BB=rref(B);
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r=r+1;

end v=[1 transpose(flip(-BB(1:r-1,r)))]; end

Where this code come from? We shall explain below the mathematics beyond the above code (see for example
[4], [5]).

Definition 2.1. By PA we denote all the monic polynomials p(x) which are such that p(A) = 0k×k.

It is well known that there exists the minimum monic polynomial (which is unique) of the matrix A that belongs
to PA and the proof can be found at any linear algebra book (see for example [6], [7], [8], [9]). We denote the
minimum polynomial of A by mA(x) and its degree by qmA .

Definition 2.2. By bA(q) we denote the vector which contain the matrix Aq column by column. By bA(0) we
denote the vector which contain the identity matrix column by column. By BA(q) we denote the matrix with
columns bA(0), · · · , bA(q).

Definition 2.3. By CA(q) we denote the following set, given q ∈ N,

CA(q) = {c ∈ Rq : BA(q − 1) · c = −bA(q)}

Proposition 1. If p(x) = xq + cq−1x
q−1 + · · ·+ c0 and c =

 c0
...

cq−1

 then

p(x) ∈ PA ⇐⇒ c ∈ CA(q)

Proof. Let p(x) ∈ PA. That means that

p(A) = Aq + cq−1A
q−1 + · · ·+ c0Ik×k = 0k×k

In other words

cq−1A
q−1 + · · ·+ c0Ik×k = −Aq (2.1)

The above set of equations can be written at the following form

BA(q − 1) · c = −bA(q) (2.2)

where c =

 c0
...

cq−1

. That is the systems (2.1) and (2.2) are equivalent and therefore the desired conclusion is

true.

Definition 2.4. We denote by QA the following set of integers

QA = {q ∈ N : CA(q) 6= ∅}
Theorem 1. Let m(x) be the minimum polynomial of A with degree qmA . Then

qmA = minQA

Proof. The set QA is nonempty because for q = k the CA(q) contains the coefficients of the characteristic
polynomial. Therefore the q∗ = minQA is well defined and of course q∗ ∈ QA. That means that there exists
a monic polynomial pq∗(x) of degree q∗ which is such that pq∗(A) = 0k×k.

We know that the minimum polynomial exists and is unique therefore qmA ∈ QA so qmA ≥ q∗. This immediately
mean that qmA = q∗ using proposition 1.

Therefore in order to compute the minimum polynomial we have to find the minimum q for which the system
BA(q − 1) · c = −bA(q) has a solution.

We have compared the above matlab code with the integrated function minpoly and we have deduced that in
many examples is much faster.
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3 THE FUNCTION AND THE DRAZIN INVERSE OF THE MATRIX A

Below we shall give two equivalent definitions of the function of a matrix. Before that we define the matrix v(A)
where v(·) is a polynomial.

Definition 3.1. Let a polynomial v(x) = aqx
q + · · · + a0 and a given matrix Ak×k. The matrix v(A) is defined to

be the

v(A) = aqA
q + · · ·+ a0Ik×k

Definition 3.2 (Hermite Interpolation). Let a matrix Ak×k and a function f : U ⊆ R → R. The matrix f(A) is
defined to be the v(A) where v(·) is the polynomial which satisfies the system 1.1, given a polynomial p(x) which
is such that p(A) = 0k×k and p1, · · · , pl are the roots with multiplicities j1, · · · , jl of p(x).

Definition 3.3 (Taylor Expansion). Let a matrix Ak×k and a function f : U ⊆ R → R. The matrix f(A) is defined
to be the v(A) where the v(·) is the Taylor expansion of f around zero.

It is not always defined the matrix f(A) as we have discussed in [14].

Definition 3.4. Let a function f : R → R and a polynomial p(x) with p1, · · · , pl are the roots of multiplicities
j1, · · · , jl of p(x). We say that the function f is well defined at the roots of p(x) if f (k)(pi), for i = 1, · · · , l and
k = 0, · · · , ji − 1 are well defined.

Proposition 2. Let a matrix Ak×k and set ∆ = maxi,j |Aij |. If the function f : R→ R can be expanded in a Taylor
series around zero which is absolute convergent for any x ∈ [−M,M ] with M > k∆ then the matrix f(A) is well
defined by definition 3.3. Let a polynomial p(x) which is such that p(A) = 0k×k. Then the matrix f(A) is well
defined by the definition 3.2 if the function f is well defined at the roots of p(x).

Proof. The matrix f(A) via the Taylor expansion is defined as

f(A) =

∞∑
n=0

f (n)(0)

n!
An

This matrix is well defined because the infinite series converges. Indeed, define by ∆ = maxi,j |Aij | we have that

|(An)ij | ≤ kn−1∆n

We will prove it by induction. For n = 1 is obvious that |(A1)ij | ≤ k0∆. We assume that it holds for some n, that is
|(An)ij | ≤ kn−1∆n and we will prove that it holds for n+ 1. We have that

|(An+1)ij | = |
k∑

l=1

(An)ilAlj | ≤
k∑

l=1

kn−1∆nAlj ≤ kn∆n+1

Therefore ∣∣∣∣∣
∞∑

n=0

f (n)(0)

n!
(An)ij

∣∣∣∣∣ ≤ f(0) +

∣∣∣∣∣
∞∑

n=1

f (n)(0)

n!
(An)ij

∣∣∣∣∣ ≤ f(0) +

∞∑
n=1

|f (n)(0)|
n!

kn−1∆n

That means that
∑∞

n=0
f(n)(0)

n!
(An)ij converges absolutely and therefore the matrix f(A) is well defined.

On the other hand it is easy to see that the matrix f(A) via definition 3.2 is well defined as soon as the right hand
side of 1.1 is well defined.

Remark 1. It is easy to see that the matrices f(A), g(A), h(A) are well defined for any matrix Ak×k for f(x) = etx,
g(x) = cos(tx) and h(x) = sin(tx).

Theorem 2. Let a function f and a matrix Ak×k. Suppose that the matrix f(A) is well defined for both definitions
3.3 and 3.2. Then the two matrices are equal.
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Proof. Let q the degree of the polynomial p(x) which is such that p(A) = 0k×k and the roots p1, · · · , pl with
multiplicities j1 · · · , jl. For any m ∈ N with m ≥ q there are a0(m), · · · , aq−1(m) such that

Am = aq−1(m)Aq−1 + · · ·+ a0(m)I

Then it is easy to see that,

fTaylor(A) = Aq−1

(
∞∑

n=q

f (n)(0)

n!
aq−1(n) +

f (q−1)(0)

(q − 1)!

)
︸ ︷︷ ︸

bq−1

+ · · ·+ I

(
∞∑

n=q

f (n)(0)

n!
a0(n) +

f (0)(0)

0!

)
︸ ︷︷ ︸

b0

In order to get the above result we have rearranged the terms and this can be done since the series is absolutely
convergent.

We shall see below that the same coefficients b0, · · · , bq−1 will appear if we compute the matrix f(A) via the
Hermite interpolation. ComputingAm form ≥ q the system 1.1 will contain the following equations, for i = 1, · · · , l,

aq−1(m)pq−1
i + · · ·+ a0(m) = pmi

aq−1(m)(q − 1)pq−2
i + · · ·+ a1(m) = mpm−1

i

...

aq−1(m)(q − 1) · · · (q − ji + 1)pq−ji
i + · · ·+ aji−1(m) =

m · (m− 1) · · · (m− ji + 2)pm−ji+1
i

We multiply these equations by f(m)(0)
m!

and then we sum from m = q to ∞. Therefore the above system will
contain the following equations, for i = 1, · · · , l,

pq−1
i

∞∑
m=q

aq−1(m)
f (m)(0)

m!
+ · · ·+

∞∑
m=q

a0(m)
f (m)(0)

m!
=

∞∑
m=q

pmi
f (m)(0)

m!

(q − 1)pq−1
i

∞∑
m=q

aq−1(m)
f (m)(0)

m!
+ · · ·+

∞∑
m=q

a1(m)
f (m)(0)

m!
=

∞∑
m=q

mpm−1
i

f (m)(0)

m!

...

(q − 1) · · · (q − ji + 1)pq−ji
i

∞∑
m=q

aq−1(m)
f (m)(0)

m!
+ · · ·+

+

∞∑
m=q

aji−1(m)
f (m)(0)

m!
=

∞∑
m=q

m · (m− 1) · · · (m− ji + 2)pm−ji+1
i

f (m)(0)

m!

We add the corresponding terms in each equation so the right hand side equal to f(pi), f
′
(pi), · · · , f (ji−1)(pi).

Then the unknown coefficients of the above system are the b0, · · · , bq−1 and therefore we obtain the desired result.

The matlab function for this computation is matfun(A,f) and can be found at the following link
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https://www.mathworks.com/matlabcentral/fileexchange/132518-computing-the-minimum-polynomial-of-
a-matrix. At this link one can find several auxiliary functions and examples.

The Drazin inverse of a matrix can be used at the context of differential equations, Markov chains and
others (see for example [10], [11], [12], [13]).
Theorem 3. Let a given matrix Ak×k and let aij(n) be the elements of An. Then the matrix B which
has as its elements the numbers aij(−1) is the Drazin inverse of the matrix A.

Proof. See remark 3.2 of [14]. Therefore, one way to compute the Drazin inverse of a matrix is to
compute the nth power of the matrix and then set n = −1. Of course if the matrix is invertible then
setting n = −1 we will get its inverse.
Remark 2. In all the above computations we can use the characteristic polynomial, the minimum
polynomial or any polynomial p(x) with the property p(A) = 0k×k. The result will be the same as we
have seen in [14].

Indeed, let v(x) and v̂(x) be the polynomials that satisfies system 1.1 using the characteristic polynomial
to get v(x) and a polynomial p(x) (with p(A) = 0k×k) to get v̂(x). Note that the polynomial v(x) is of
degree k − 1 and suppose that the polynomial p(x) is of degree less or equal k − 1. Dividing v(x) by
p(x) we get

v(x) = π(x)p(x) + q(x)

Using the roots (and their multiplicities) of p(x) we can compute the polynomial q(x) and see that
q(x) = v̂(x). Moreover, v̂(A) = v(A) = f(A).
Remark 3. Under the above point of view two things can be changed in order to increase the accuracy
and decrease the time of computations. The first is to find a better way to compute the minimum
polynomial and the second is to find a better way to solve the confluent Vandermonde linear system
(see for example [15], [16]).

4 EXAMPLES

We will compute the nth power of a non invertible matrix and then its Drazin inverse. Let the matrix

C =


1
5

2
5

2
5

3
10

3
5

1
10

1
10

1
5

7
10


Note that C is not invertible. Setting f(x) = xn we can use our function matfun(C,f) in order to
compute the nth power of C. We get the following result

Cn =


1
5

2
5

2
5

2n+1
5 2n

2 (2n+1)
5 2n

2 2n−3
5 2n

2n−1
5 2n

2 (2n−1)
5 2n

2 2n+3
5 2n


Setting n = −1 we get the Drazin inverse of the matrix C which is the following

CD =


1
5

2
5

2
5

3
5

6
5 − 4

5

− 1
5 − 2

5
8
5
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Using our function isdrazin we verify that the matrix CD is indeed the Drazin inverse of C. We have
taken care in our functions so that we can let n = −1 in order to get the Drazin inverse. This is not the
case concerning the matlab integrated function funm.

Finally we will compute the nth power and the exponential of a matrix with complex eigenvalues. Let
the matrix A

A =

(
3 2
−1 3

)
Setting f(x) = xn and g(x) = exp(t ∗x) and typing matfun(A,f) and matfun(A,g) we get the following
results

An =

 11n/2 cos
(
n atan

(√
2
3

)) √
2 11n/2 sin

(
n atan

(√
2
3

))
−
√
2 11n/2 sin

(
n atan

(√
2

3

))
2 11n/2 cos

(
n atan

(√
2
3

))


and

etA =

(
e3 t cos

(√
2 t
) √

2 e3 t sin
(√

2 t
)

−
√
2 e3 t sin(

√
2 t)

2 e3 t cos
(√

2 t
)

)

In our matlab functions we have transformed the complex roots of the minimum polynomial into their
polar forms in order to arrive at the above results. This is not the case with the matlab integrated
function funm.

Our functions isan(an,a) and isexpt(at,a) verify that the matrices an and at are indeed the nth
power of a and the exponential matrix of a. For the first case we use induction while for the second
case we use the fact that the matrix etA is the only matrix which satisfies the following matrix differential
equation

(M(t))
′

= AM(t)

M(0) = I

The fact that the above matrix differential equation has a unique solution can be proved as follows. It
is easy to see that the exponential matrix etA solves the above matrix differential equation by using the
Taylor expansion and differentiating term by term since the Taylor series converges absolutely. Next, if
there are two or more solutions then their difference will satisfy the following

(M(t))
′

= AM(t)

M(0) = 0

But (M(t)e−tA)
′
= M

′
(t)e−tA − AM(t)e−tA = 0. Therefore M(t)e−tA = C where C is a matrix

independent of t. Multiplying by etA, using the fact that eAeB = eA+B for commutative matrices A,B
and since M(0) = 0 it follows that M(t) = 0 for any t ∈ R.

Below we compare our functions with the integrated functions of Matlab for large sparse matrices. We
see that increasing the dimension of the matrix the ratio of times increases as well.

clear; syms x n t f(x)=x^n; g(x)=exp(t*x);
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K=45;

H=zeros(K,K);

H(1,1)=1; for i=2:K H(i,i)=0.7; H(i,1) =0.3; end H(4,1) =0.1;

H(4,2) =0.1; H(4,3) =0.2; H(6,7) =0.4;

%Comparing the nth power and the exponential

tic matfun(H,f); matfun(H,g);

t3=toc;

tic simplify(funm(H,f)); simplify(funm(H,g)); t4=toc; t4/t3

%comparing the minimum polynomial computation

tic ppH=poly2sym(minimumpoly(H),x); pH=solve(ppH==0,x); t1=toc

tic ppmH=poly2sym(minpoly(H),x); pmH=solve(ppH==0,x); t2=toc

t2/t1

The comparison concerning the computation of the minimum polynomial gives the result t2/t1 =
348.17.

The comparison concerning the computation of
the nth power and the exponential matrix gives the
following t4/t3 = 1.39 using the matlab online.
We believe that the reason that we get better
results is the use of the minimum polynomial
in order to do these computations for sparse
matrices.

5 CONCLUSION

In this paper we have study the problem of
the computation of the minimum polynomial, the
function of a matrix A and the Drazin inverse.
Our first goal is to give simple but rigorous proofs
for the above and the second goal is to give the
matlab codes. We have compared our code with
the integrated matlab code and see that in many
cases our code is much faster. Moreover, in the
case where the matrix A has complex roots our
code give a prettier result.
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