Lattice-Subspaces and Positive Bases in Function Spaces

IOANNIS A. POLYRAKIS*

Department of Mathematics, National Technical University, 157 80 Athens, Greece (e-mail: ypoly@math.ntua.gr)

Received 1 July 2001; accepted 10 February 2002

Abstract. Let x_1, \ldots, x_n be linearly independent, positive elements of the space \mathbb{R}^{Ω} of the real valued functions defined on a set Ω and let X be the vector subspace of \mathbb{R}^{Ω} generated by the functions x_i . We study the problem: Does a finite-dimensional minimal lattice-subspace (or equivalently a finite-dimensional minimal subspace with a positive basis) of \mathbb{R}^{Ω} which contains X exist? To this end we define the function $\beta(t) = \frac{1}{z(t)} (x_1(t), x_2(t), \ldots, x_n(t))$, where $z(t) = x_1(t) + x_2(t) + \ldots + x_n(t)$, which we call basic function and takes values in the simplex Δ_n of \mathbb{R}^n_+ . We prove that the answer to the problem is positive if and only if the convex hull K of the closure of the range of β is a polytope. Also we prove that X is a lattice-subspace (or equivalently X has positive basis) if and only if, K is an (n-1)-simplex. In both cases, using the vertices of K, we determine a positive basis of the minimal lattice-subspace. In the sequel, we study the case where Ω is a convex set and x_1, x_2, \ldots, x_n are linear functions. This includes the case where x_i are positive elements of a Banach lattice, or more general the case where x_i are positive elements of an ordered space Y. Based on the linearity of the functions x_i we prove some criteria by means of which we study if K is a polytope or not and also we determine the vertices of K. Finally note that finite dimensional lattice-subspaces and therefore also positive bases have applications in economics.

1. Introduction

Suppose *E* is a vector lattice and *D* is a subset of E_+ . In the theory of ordered spaces we are interested in a lattice subspace *Y* of *E* that contains *D* and that is as 'close' as possible to the linear subspace [*D*] generated by *D*. The sublattice *S*(*D*) generated by *D* is a lattice-subspace which contains *D* but in general, it is a 'big' subspace which is 'very far' from [*D*].¹ Since the intersection of lattice-subspaces is not always a lattice-subspace, we are looking for minimal lattice-subspaces containing *D* and not for a minimum one. Also the class of lattice-subspaces is larger than that of sublattices, therefore a minimal lattice-subspace, if it exists, is 'closer' to [*D*] than *S*(*D*).

In Theorem 2.5 of [15] it is proved that if τ is a Lebesgue linear topology on E and the positive cone E_+ of E is τ -closed (especially if E is a Banach lattice

^{*} This article is dedicated to the memory of my Father Andreas.

¹ In Example 3.18 of [15], [D] is three-dimensional subspace of $C(\Omega)$, [D] is not a latticesubspace, S(D) is dense in $C(\Omega)$ and a four-dimensional lattice-subspace containing D exists.

with order continuous norm) then the set of minimal lattice-subspaces of E, which contain D and have τ -closed positive cone, has minimal elements.

An important question is 'how far' a minimal lattice-subspace is from [D]. Motivated by this question we suppose that the set D is finite and we study the existence of finite-dimensional minimal lattice-subspaces containing D. In the framework of this problem we study also whether the sublattice S(D) generated by D is a finite-dimensional subspace of E. So in the first part of this article we suppose that $D = \{x_1, x_2, \dots, x_n\}$ is a subset of the positive cone \mathbb{R}^{Ω}_+ of the space \mathbb{R}^{Ω} of the real valued functions defined in a set Ω , where the functions x_i are linearly independent and we study the existence of a finite-dimensional minimal lattice-subspace of \mathbb{R}^{Ω} which contains D. Since a finite dimensional ordered space is a vector lattice if and only if it has a positive basis, this problem is equivalent with the existence of a finite dimensional minimal subspace of \mathbb{R}^{Ω} with a positive basis which contains D. To study this problem we define the function $\beta(t) = \frac{1}{z(t)} (x_1(t), x_2(t), \dots, x_n(t))$, where $z(t) = x_1(t) + x_2(t) + \dots + x_n(t)$, which we call basic function and takes values in the simplex Δ_n of \mathbb{R}^n_+ . The study of the range $R(\beta)$ of β and also the study of the convex hull K of the closure of $R(\beta)$ are very important in this article. In Theorem 7, we prove that the sublattice S(D) generated by D is finite dimensional if and only if the range $R(\beta)$ of β is finite and also a positive basis of S(D) is determined by means of the elements of $R(\beta)$. Note that, by using the known result that $S(D) = D^{\vee} - D^{\vee}$, where D^{\vee} is the set of finite supremum of the elements of [D], we cannot conclude if S(D) is finite dimensional and if it is, we cannot also determine S(D).

In Theorem 9 we prove that an *m*-dimensional minimal lattice-subspace *Y* which contains *D* exists, if and only if the convex hull *K* of the closure of $R(\beta)$ is a polytope with *m* vertices. Then a positive basis of *Y* is determined by the vertices of *K*. In general it is difficult to study whether *K* is a polytope and if it is, it is also difficult to determine its vertices. In the derivative criterion we prove that if *K* is a polytope, $\beta(t_0)$ is a vertex of *K* and $c : t = \sigma(u), u \in (-\epsilon, \epsilon)$ is a curve of Ω with $t_0 = \sigma(0)$ and if $\varphi = \beta o \sigma$ is the composition of σ , β , then $\varphi'(0) = 0$, whenever the derivative exists. In the case where the restriction of β in the curves of Ω is not differentiable we give a more general result, Theorem 11.

In the second part of this article (Section 5) we generalize the previous results in ordered spaces. So we suppose that $\langle Y, G \rangle$ is an ordered dual system (see Def. 14) $D = \{x_1, x_2, \ldots, x_n\}$, and that x_i are linearly independent positive elements of G. Then G is a subspace of \mathbb{R}^{Ω} , where Ω is an absorbing subset of Y_+ .¹ Based on the linearity of the functions x_i we study if K is a polytope or not. In Corollary 2 we prove that if $\beta(t_0)$ is an extreme point of K then t_0 is an extreme point of the domain $D(\beta)$ of β , or the function β takes the constant value $\beta(t_0)$ on each line segment c of $D(\beta)$ that has t_0 as an interior point. In Theorem 16, we prove that if Y is a Banach lattice with a positive basis $\{d_i\}$, then $K \subseteq \overline{co}\{\beta(d_i)\}$, therefore

¹ For example Ω is the whole cone Y_+ or the positive part U_Y^+ of the closed unit ball of Y whenever Y is a normed space.

in order to study if *K* is a polytope, we study if each $\beta(t)$ is a convex combination of the vectors $\beta(d_i)$. If *Y* is an m-dimensional space with a positive basis $\{d_1, d_2, \ldots, d_m\}$, then $K = co\{\beta(d_i)\}$, therefore *K* is a polytope and its vertices are among the elements of the set $\{\beta(d_i)\}$. Also if *G* is an ordered normed space and *Y* the topological dual of *G*, we have: (*i*) $K \subseteq \overline{co}\{\beta(t) \mid t \in ep(U_Y^+)\}$, and (*ii*) if *e* is an order unit of *Y* and Y_+ is normal, then $K \subseteq \overline{co}\{\beta(t) \mid t \in L_e\}$, where $ep(U_Y^+)$ is the set of the extreme points of U_Y^+ and L_e is the Boolean algebra of the components of *e*, Theorem 15.

For applications of lattice-subspaces in economics, see in [3] and [4] and for an application of finite dimensional minimal lattice-subspaces in optimization, see in [16]. Also we refer to the book of Aliprantis et al. [2].

2. Notations

Let *E* be a (partially) ordered vector space with positive cone E_+ . Any subspace *X* of *E*, ordered by the induced ordering (i.e., by the cone $X_+ = X \cap E_+$) will be referred as an **ordered subspace** of *E*. An ordered subspace *X* of *E* which is also a vector lattice, i.e., for each $x, y \in X$ the supremum $x \vee_X y$ of $\{x, y\}$ in *X* exists,¹ is a **lattice-subspace** of *E*. We will denote also this supremum by $\sup_X \{x, y\}$. It is clear that

 $x \vee y \leqslant x \vee_X y,$

whenever the supremum $x \lor y$ of $\{x, y\}$ in *E*, exists. If *E* is a vector lattice and $x \lor y = x \lor_X y$ for any $x, y \in X$, then *X* is a **sublattice** (Riesz subspace) of *E*. In lattice-subspaces, $x \lor_X y$ depends on the subspace. In other words, in this kind of subspaces we have the induced ordering and a lattice structure but not the induced one.² Suppose also that *E* is a Banach space. A sequence $\{e_n\}$ of *E* is a

¹ $x \lor_X y = z$ if and only if $z \in X$, $z \ge x$, y and for each $w \in X$, $w \ge x$, y implies $w \ge z$.

² Lattice-subspaces appear in the work of many authors in their attempt to study the subspaces Xof a vector lattice E which are the range of a positive projection P, i.e., X = P(E). Then it is easy to show that X is a lattice-subspace with $x \lor_X y = P(x \lor y)$, for each x, $y \in X$ but as it is remarked in [1], there are even finite-dimensional lattice-subspaces which are not the range of a positive projection. For results on this special class of lattice-subspaces (which are the range of a positive projection) see in [6, 7, 9]. The notion of the lattice-subspace was introduced by Polyrakis in [12] where it is proved that each infinite dimensional closed lattice-subspace of ℓ_1 is order-isomorphic to ℓ_1 . At the same time the notion of the lattice-subspace was introduced independently by Miyajima in [11], where the term 'quasi sublattice' is used and it is proved that X is a lattice-subspace if and only if X is the range of a positive projection from the sublattice S(X) generated by X onto X. In [13], it is proved that each separable Banach lattice is order-isomorphic to a closed lattice-subspace of C[0, 1], therefore C[0, 1] is also a universal Banach lattice. Since the class of sublattices is not enough for this representation this result shows the importance of lattice-subspaces in the geometry of Banach lattices. In 1992 C. Aliprantis and D. Brown understood the meaning of lattice-subspaces in economics and posed the problem of the study of finite-dimensional lattice-subspaces. This problem is interesting, even in \mathbb{R}^n , because many economic models, as the famous Arrow-Debreu model, are finite. This problem was the motivation for [1], where the lattice-subspaces of \mathbb{R}^n are studied.

(Schauder) **basis** of *E* if each element *x* of *E* has a unique expression of the form $x = \sum_{i=1}^{\infty} \lambda_n e_n$. If moreover

$$E_{+} = \left\{ x = \sum_{n=1}^{\infty} \lambda_{n} e_{n} \mid \lambda_{n} \ge 0 \text{ for each } n \right\}$$

we say that $\{e_n\}$ is a positive basis of *E*.

A positive basis is unique in the sense that if $\{b_n\}$ is an other positive basis of E, then each element of $\{b_n\}$ is a positive multiple of an element of $\{e_n\}$. If $\{e_n\}$ is a positive basis of E, then the following statements are equivalent, see in [17], Theorem 16.3.

1. The basis $\{e_n\}$ is unconditional.

2. The cone E_+ is generating and normal.

Remind that cone E_+ is generating if $E = E_+ - E_+$ and E_+ is normal (or self-allied) is there exists $c \in \mathbb{R}_+$ such that $0 \le x \le y$ implies $||x|| \le c ||y||$. In the case where X is an *n*-dimensional subspace of E and the positive cone X_+ of X is generating the following statements are equivalent:

(i) X is a lattice-subspace of E.

(ii) X has a positive basis.

(iii) X is order-isomorphic to \mathbb{R}^{n} .¹

The equivalence of (i) and (ii) is the most useful criterion for finite-dimensional lattice-subspaces of E.

For notation and terminology not defined here we refer to [8, 5, 10].

3. Subspaces of \mathbb{R}^{Ω} with positive bases

In this article we shall denote by Ω a nonempty set, by \mathbb{R}^{Ω} the space of real valued functions defined in Ω and by $\mathbb{R}^{\Omega}_{+} = \{x \in \mathbb{R}^{\Omega} \mid x(t) \ge 0, \text{ for each } t \in \Omega\}$, the positive cone of \mathbb{R}^{Ω} .

Suppose that $\{b_r\}$ is a (finite or infinite) sequence of \mathbb{R}^{Ω} . If t is a point of Ω and there exists $m \in \mathbb{N}$ such that $b_m(t) \neq 0$ and $b_r(t) = 0$ for each $r \neq m$, then we shall say that t is an *m*-node (or simply a node) of the sequence $\{b_r\}$. If for each r there exists an r-node t_r of $\{b_r\}$, we shall say that $\{b_r\}$ is a sequence of \mathbb{R}^{Ω} with nodes and also that $\{t_r\}$ is a sequence of nodes of $\{b_r\}$.

THEOREM 1. Let *E* be an ordered subspace of \mathbb{R}^{Ω} and suppose that $\{b_r\}$ is a sequence of *E* consisting of positive functions.

¹ I.e., there exists a linear operator T of Y onto \mathbb{R}^n with the property: $y \in Y_+$ if and only if $T(y) \in \mathbb{R}^n_+$.

(i) If $\{b_r\}$ is a positive basis of E, then² for each m there exists a sequence $\{\omega_{\nu}\}$ of Ω (depending on m) such that for each $k \in \mathbb{N}$ we have

$$0 \leq \sum_{i=1, i \neq m}^{k} \frac{b_i(\omega_k)}{b_m(\omega_k)} < \frac{1}{k},$$

therefore $\lim_{\nu \to \infty} b_i(\omega_{\nu})/b_m(\omega_{\nu}) = 0$ *for each* $i \neq m$.

(ii) If E is an n-dimensional subspace of R^Ω and the sequence {b_r} is consisting of n vectors b₁, b₂, ..., b_n, the converse of (i) is also true, i.e. if for each 1 ≤ m ≤ n there exists a sequence {ω_ν} of Ω (depending on m) satisfying

$$\lim_{\nu \to \infty} \frac{b_i(\omega_{\nu})}{b_m(\omega_{\nu})} = 0 \text{ for each } i \neq m,$$

then $\{b_1, \ldots, b_n\}$ is a positive basis of E.

Proof. Suppose that $\{b_r\}$ is a positive basis of E. Then for each k we put $z_k = -\frac{1}{k}b_m + \sum_{i=1, i \neq m}^k b_i$. Since $\{b_r\}$ is a positive basis we have that $z_k \notin E_+$, therefore there exists $\omega_k \in \Omega$ such that $z_k(\omega_k) < 0$, or

$$0 \le \sum_{i=1, i \ne m}^{k} \frac{b_i(\omega_k)}{b_m(\omega_k)} < \frac{1}{k}, \text{ for each } k.$$

For each fixed $i \neq m$ we have $0 \leq b_i(\omega_k)/b_m(\omega_k) < 1/k$, for each $k \geq i$. By letting $k \to \infty$ we have that (*i*) is true.

To prove the converse assume that b_1, b_2, \ldots, b_n satisfy the assumptions of (ii). To show that $\{b_1, \ldots, b_n\}$ is a positive basis assume that $x = \sum_{i=1}^n \lambda_i b_i \in E_+$. Then we have that

$$0 \leqslant \frac{x(\omega_{\nu})}{b_m(\omega_{\nu})} = \sum_{i=1}^n \lambda_i \frac{b_i(\omega_{\nu})}{b_m(\omega_{\nu})},$$

and taking limits as $\nu \to \infty$ we have $\lambda_m = \lim_{\nu \to \infty} x(\omega_{\nu})/b_i(\omega_{\nu}) \ge 0$ for each *m*. Also if we suppose that x = 0, similarly we have that $\lambda_m = 0$ for each *m*, therefore the vectors b_i are also linearly independent. Hence $\{b_1, b_2, \ldots, b_n\}$ is a positive basis of *E*.

PROPOSITION 2. Let *E* be an ordered subspace of \mathbb{R}^{Ω} and let $\{b_1, \ldots, b_n\}$ be a positive basis of *E*. For each $x = \sum_{i=1}^n \lambda_i b_i \in E$, we have:

- (i) If a point t_i is an *i*-node of the basis, then $\lambda_i = x(t_i)/b_i(t_i)$.
- (ii) If $\{\omega_{\nu}\}$ is a sequence of Ω such that $\lim_{\nu \to \infty} b_j(\omega_{\nu})/b_i(\omega_{\nu}) = 0$ for each $j \neq i$, then $\lambda_i = \lim_{\nu \to \infty} x(\omega_{\nu})/b_i(\omega_{\nu})$.

² We suppose also that E is a Banach space with respect to some norm which is defined on E.

Proof. If the point t_i is an *i*-node, then $x(t_i) = \lambda_i b_i(t_i)$. Statement (ii) is also true because $\lim_{\nu \to \infty} x(\omega_{\nu})/b_i(\omega_{\nu}) = \lim_{\nu \to \infty} \sum_{i=1}^n \lambda_i b_i(\omega_{\nu})/b_i(\omega_{\nu}) = \lambda_i$.

4. Finite-dimensional lattice-subspaces of \mathbb{R}^{Ω}

In this section we suppose that $x_1, x_2, ..., x_n$ are fixed, linearly independent positive elements of \mathbb{R}^{Ω} , $z = x_1 + x_2 + ... + x_n$ and we suppose that

$$X = [x_1, x_2, \ldots, x_n],$$

is the subspace of \mathbb{R}^{Ω} generated by the functions x_i .

DEFINITION 3. Let $y_1, y_2, ..., y_m \in \mathbb{R}^{\Omega}_+$. The **basic function (curve)** of $y_1, y_2, ..., y_n$ is the function

$$\gamma(t) = \left(\frac{y_1(t)}{w(t)}, \frac{y_2(t)}{w(t)}, \dots, \frac{y_m(t)}{w(t)}\right), \quad t \in \Omega \text{ with } w(t) > 0,$$

where *w* is the sum of the functions y_i^1

In this paper we will denote by β the basic function of x_1, x_2, \ldots, x_n , i.e.

$$\beta(t) = \left(\frac{x_1(t)}{z(t)}, \frac{x_2(t)}{z(t)}, \dots, \frac{x_n(t)}{z(t)}\right), \quad t \in \Omega \text{ with } z(t) > 0,$$

where z is the sum of the functions x_i . Also we will denote by $D(\beta)$ the domain of β , by $R(\beta)$ the range of β and by K the convex hull of the closure of the range of β , i.e.,

$$K = co\overline{R(\beta)}.$$

Recall that for any subset *C* of a linear topological space, denote by \overline{C} the closure of *C*, by co *C* the convex hull of *C* and by $\overline{co}C$ the closure of co *C*. A subset *C* of \mathbb{R}^l is a **polytope** if *C* is the convex hull of a finite subset of \mathbb{R}^l and *C* is an **rsimplex** if it is the convex hull of r + 1 affinely independent vectors of \mathbb{R}^l . In both cases the extreme points of *C* are referred as **vertices** of *C*. Also for any matrix *A* we denote by A^T the transpose and by A^{-1} the inverse matrix of *A*.

Finite dimensional lattice-subspaces of the space of the continuous real valued functions $C(\Omega)$ defined on a compact, Hausdorff, topological space Ω , have been studied in [14] and [15]. In this section we generalize the results of these articles in \mathbb{R}^{Ω} , where Ω is a set. The proofs of this section (except that of Theorem 11) are the same with the proofs of the corresponding results of [14] and [15]. So we give only the proof of the next Theorem and we omit the others.

¹ If Ω is an interval of the real line, then γ defines a curve in Δ_n . For this reason γ is referred also as the basic curve of the functions x_i .

THEOREM 4. The following statements are equivalent.

- (i) X is a lattice-subspace
- (ii) K is an (n-1)-simplex.

Suppose that statement (ii) is true and that $P_1, P_2, ..., P_n$ are the vertices of K. Then for each i = 1, 2, ..., n there exists a sequence $\{\omega_{i\nu}\}$ of Ω such that

$$P_i = \lim_{\nu \to \infty} \beta(\omega_{i\nu}).$$

Suppose also that A is the $n \times n$ matrix whose, for each i = 1, 2, ..., n, the i^{th} column is the vector P_i and $b_1, b_2, ..., b_n$ are the functions defined by the formula

$$(b_1(t), b_2(t), \dots, b_n(t))^T = A^{-1}(x_1(t), x_2(t), \dots, x_n(t))^T.$$
(4.1)

Then the set $\{b_1, b_2, \ldots, b_n\}$ is a positive basis of X and

$$\lim_{\nu \to \infty} \left(\frac{b_j}{b_i} \right) (\omega_{i\nu}) = 0 \text{ for each } j \neq i.$$

If $P_k = \beta(t_k)$, then t_k is a k-node of the basis $\{b_1, \ldots, b_n\}$.

Proof. Suppose that statement (ii) is true. Since the vectors P_i are extreme points of K we have that P_i is not a convex combination of elements of $\overline{R(\beta)}$, therefore we have that $P_i \in \overline{R(\beta)}$, hence there exists a sequence $\{\omega_{i\nu}\}$ such that $P_i = \lim_{\nu \to \infty} \beta(\omega_{i\nu})$. Suppose that the functions b_i are defined as in the Theorem. Since $\{x_1, x_2, \ldots, x_n\}$ is a basis of X and the vectors P_i are linearly independent we have that $\{b_1, b_2, \ldots, b_n\}$ is a basis of X. Let

$$P_i = (a_{i1}, a_{i2}, \ldots, a_{in}), i = 1, 2, \ldots, n.$$

Since the vectors P_i belong to the simplex $\Delta_n = \{\xi \in \mathbb{R}^n_+ \mid \sum_{i=1}^n \xi_i = 1\}$, it follows that $\sigma_i = \sum_{j=1}^n a_{ij} = 1$ for each *i*. By (4.1) we have that $x_i = \sum_{j=1}^n a_{ji}b_j$, therefore

$$z = \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \sigma_i b_i = \sum_{i=1}^{n} b_i.$$

Let $\beta(t) = \sum_{i=1}^{n} \xi_i(t) P_i$ be the expansion of $\beta(t)$ relative to the basis $\{P_1, P_2, \dots, P_n\}$. Then

$$\frac{1}{z(t)} (x_1(t), x_2(t), \dots, x_n(t))^T = A (\xi_1(t), \xi_2(t), \dots, \xi_n(t))^T$$

and in view of (4.1) we get

$$(\xi_1(t), \xi_2(t), \dots, \xi_n(t))^T = \frac{1}{z(t)} (b_1(t), b_2(t), \dots, b_n(t))^T.$$

Since $\beta(t)$ is a convex combination of the vectors P_i , we have that $\xi_i(t) \in \mathbb{R}_+$, therefore $b_i(t) \in \mathbb{R}_+$ for each *i*. Thus, $b_i \in X_+$ for each *i*. From (4.1) we have

$$(\beta(t))^T = A\left(\frac{b_1(t)}{z(t)}, \frac{b_2(t)}{z(t)}, ..., \frac{b_n(t)}{z(t)}\right)^T.$$

Since $0 \leq b_j(t)/z(t) \leq 1$, there exists a subsequence of $\{\omega_{i\nu}\}$ which we will denote again by $\{\omega_{i\nu}\}$ such that $b_j(\omega_{i\nu})/z(\omega_{i\nu})$ is convergent for each *j* and suppose that $\eta_{ij} = \lim_{\nu \to \infty} b_j(\omega_{i\nu})/z(\omega_{i\nu})$.

Replacing t by $\omega_{i\nu}$ and taking limits, we get

$$(a_{i1}, a_{i2}, \dots, a_{in})^T = A(\eta_{i1}, \eta_{i2}, \dots, \eta_{in})^T.$$
(4.2)

We remark that the columns of *A* are the vectors P_k , therefore $\eta_{ii} = 1$ and $\eta_{ij} = 0$ for each $i \neq j$. Since $\omega_{i\nu}$ belong to the domain of β we have that $z(\omega_{i\nu}) > 0$, therefore $b_j(\omega_{i\nu}) > 0$ for at least one *j*. Since $\eta_{ii} = 1$, we have $b_i(\omega_{i\nu}) > 0$ for each ν . Therefore,

$$\lim_{\nu \to \infty} \left(\frac{b_i}{z}\right)(\omega_{i\nu}) = \lim_{\nu \to \infty} \frac{1}{1 + \left(\sum_{\substack{j=1 \ j \neq i}}^n \frac{b_j}{b_i}\right)(\omega_{i\nu})} = 1$$

Hence

$$\lim_{\nu\to\infty}\left(\sum_{\substack{j=1\\j\neq i}}^n \frac{b_j}{b_i}\right)(\omega_{i\nu})=0.$$

Since

$$0 \leqslant rac{b_j}{b_i} \leqslant \sum_{j=1 \atop j \neq i}^n rac{b_j}{b_i},$$

we have that

$$\lim_{\nu \to \infty} \left(\frac{b_j}{b_i} \right) (\omega_{i\nu}) = 0 \text{ for each } j \neq i,$$
(4.3)

and by Theorem 1, $\{b_1, \ldots, b_n\}$ is a positive basis of *X*, therefore *X* is a latticesubspace. Hence (*ii*) implies (*i*). To prove the last assertion of (*ii*) we suppose now that $P_k = \beta(t_k)$. Then we may suppose that $\omega_{k\nu} = t_k$ for each ν . As we have remarked before, $b_k(\omega_{k\nu}) > 0$ for each ν and

$$\lim_{\nu \to \infty} \left(\frac{b_j}{b_k} \right) (\omega_{k\nu}) = 0 \text{ for each } j \neq k.$$

Therefore we have that $b_k(t_k) > 0$ and $b_j(t_k)/b_k(t_k) = 0$, for each $j \neq k$, hence $b_j(t_k) = 0$ for each $j \neq k$, therefore t_k is a k-node for the basis $\{b_1, b_2, \dots, b_n\}$. The proof that (*i*) implies (*ii*) is the same with the corresponding proof of [14], Theorem 3.6.

4.1. SUBLATTICES

LEMMA 5 ([15], Lemma 3.4). The functions $y_i \in \mathbb{R}^{\Omega}_+$, i = 1, 2, ..., m are linearly independent if and only if the space generated by the range of the basic function of $y_1, y_2, ..., y_m$ is \mathbb{R}^m .

THEOREM 6 ([15], Theorem 3.6). The following statements are equivalent: (i) X is a sublattice of \mathbb{R}^{Ω} .

(ii) $R(\beta) = \{P_1, P_2, \dots, P_n\}.$

If statement (ii) is true, a positive basis $\{b_1, b_2, ..., b_n\}$ of X is given by the formula:

$$(b_1(t), b_2(t), \dots, b_n(t))^T = A^{-1}(x_1(t), x_2(t), \dots, x_n(t))^T,$$
 (4.4)

where A is the $n \times n$ matrix whose the *i*th column is the vector P_i , for each i = 1, 2, ..., n.

THEOREM 7 (Construction of the sublattice generated by X). Let Z be the sublattice of \mathbb{R}^{Ω} generated by x_1, x_2, \ldots, x_n and let $m \in \mathbb{N}$. Then statements (i) and (ii) are equivalent:

- (i) $\dim(Z) = m$.
- (ii) $R(\beta) = \{P_1, P_2, \dots, P_m\}.$

If statement (ii) is true then Z is constructed as follows:

- (a) Enumerate $R(\beta)$ so that its *n* first vectors to be linearly independent. (A such enumeration exists by Lemma 5). Denote again by P_i , i = 1, 2, ..., m the new enumeration and let $I_i = \beta^{-1}(P_i)$, i = 1, 2, ..., m.
- (b) Define the functions

$$x_{n+k}(t) = a_k(t) z(t), \quad t \in \Omega, \quad k = 1, 2, \dots, m-n$$

where a_k is the characteristic function of I_{n+k} .

(c) $Z = [x_1, x_2, \dots, x_n, x_{n+1}, \dots, x_m].$

The proof of the above theorem is the same with the proof of Theorem 3.7, in [15].

4.2. MINIMAL LATTICE-SUBSPACES

Suppose that L(X) is the set of lattice-subspaces of \mathbb{R}^{Ω} which contain *X*. (Recall that *X* is the subspace of \mathbb{R}^{Ω} generated by the functions x_1, x_2, \ldots, x_n). If $Y \in L(X)$ and for any proper subspace *Z* of *Y* we have that $Z \notin L(X)$, then we say that *Y* is a **minimal lattice-subspace** of \mathbb{R}^{Ω} containing x_1, x_2, \ldots, x_n . We study the problem: **Does a finite-dimensional minimal lattice-subspace of** \mathbb{R}^{Ω} **containing** x_1, x_2, \ldots, x_n exist?

THEOREM 8 ([15], Theorem 3.8). Let Y be an l-dimensional lattice-subspace of \mathbb{R}^{Ω} containing x_1, x_2, \ldots, x_n . Suppose that $\{b_1, b_2, \ldots, b_l\}$ is a positive basis of Y,

$$x_i = \sum_{j=1}^l \lambda_{ij} b_j, \quad i = 1, 2, \dots, n,$$

$$\sigma_i = \sum_{j=1}^n \lambda_{ji}, \quad i = 1, 2, \dots, l,$$

$$\Phi = \{ i \in \{1, 2, \dots, l\} \mid \sigma_i \neq 0 \},\$$

$$P_i = \frac{1}{\sigma_i} (\lambda_{1i}, \lambda_{2i}, \dots, \lambda_{ni}), \quad i \in \Phi$$

and K is the convex hull of $\overline{R(\beta)}$. Then

- (i) $P_i \in \overline{R(\beta)}$ for each $i \in \Phi$.
- (ii) *K* is a polytope with vertices $P_{i_1}, P_{i_2}, \ldots, P_{i_m}$ where $n \leq m \leq l$ and $i_v \in \Phi$ for each $v = 1, 2, \ldots, m$.

THEOREM 9 (Construction of a minimal lattice-subspace). Let the set $K = \operatorname{co} \overline{R(\beta)}$ be a polytope with vertices P_1, P_2, \ldots, P_m . Suppose that the *n* first vertices P_1, P_2, \ldots, P_n of *K* are linearly independent.¹ Suppose also that ξ_i , $i = 1, 2, \ldots, m$ are positive, real-valued functions defined on $D(\beta)$ such that $\sum_{i=1}^{m} \xi_i(t) = 1$ and $\beta(t) = \sum_{i=1}^{m} \xi_i(t) P_i$, for each $t \in D(\beta)$. Let x_{n+i} , $i = 1, 2, \ldots, m-n$ be the functions $x_{n+i}(t) = \xi_{n+i}(t) z(t)$ for each $t \in D(\beta)$ and $x_{n+i}(t) = 0$ if $t \notin D(\beta)$. Then

 $Y = [x_1, x_2, \ldots, x_n, x_{n+1}, \ldots, x_m]$

is a minimal lattice-subspace of \mathbb{R}^{Ω} containing x_1, x_2, \ldots, x_n and dim Y = m.

¹ Such an enumeration of the vertices of K exists by Lemma 5.

A positive basis $\{b_1, b_2, \ldots, b_m\}$ of Y is given by the formula

$$(b_1, b_2, \dots, b_m)^T = D^{-1} (x_1, x_2, \dots, x_m)^T,$$
 (4.5)

where D is the $m \times m$ matrix with columns the vectors

$$R_i = \frac{M_i}{\|M_i\|_1}, i = 1, 2, \dots, m,$$
(4.6)

with $M_i = (P_i, 0)$ for i = 1, 2, ..., n and $M_i = (P_{n+i}, e_i)$ for i = 1, 2, ..., m-n.

Proof. The proof is the same with the proof of Theorem 3.10 of [15]. \Box

The next result says that all the finite-dimensional minimal lattice-subspaces containing X are of the same dimension.

THEOREM 10 ([15], Theorem 3.20). Let $K = \operatorname{co} \overline{R(\beta)}$ and let L be the set of finite-dimensional minimal lattice-subspaces of \mathbb{R}^{Ω} containing x_1, x_2, \ldots, x_n . Then the following statements are equivalent:

(i) *K* is a polytope with *m* vertices.
(ii) *L* ≠ Ø and dim *Y* = *m*, for each *Y* ∈ *L*.
(iii) *L* ≠ Ø.

4.3. THE DERIVATIVE CRITERION

In general it is difficult to study if *K* is a polytope or not and if it is it is also difficult to determine its vertices. The derivative criterion says that if *K* a polytope and $\beta(t_0)$ is a vertex of *K*, then the derivative of the restriction of β at any curve of Ω having t_0 as an interior point is equal to zero, whenever the derivative exists. We start with a more general criterion for the case where the functions are not differentiable.

THEOREM 11. Let K be a polytope and let $\beta(t_0)$ be a vertex of K. Suppose that $\{a_r\}$ is a sequence of real numbers convergent to zero with $a_{2r} > 0$ and $a_{2r+1} < 0$ for each r and suppose also that $\{t_r\}$ is a sequence of Ω . If $\lim_{r\to\infty} \frac{\beta(t_r) - \beta(t_0)}{a_r} = \ell, \ell \in \mathbb{R}^n$, then $\ell = 0$.

Proof. Let $\lim_{r\to\infty} \frac{\beta(t_r)-\beta(t_0)}{a_r} = \ell \neq 0$. Then there exists r_0 such that $\beta(t_r) \neq \beta(t_0)$ for each $r > r_0$. Hence

$$\lim_{r \to \infty} \frac{\beta(t_{2r}) - \beta(t_0)}{\|\beta(t_{2r}) - \beta(t_0)\|} = \lim_{r \to \infty} \frac{\beta(t_{2r}) - \beta(t_0)}{a_{2r}} \cdot \lim_{r \to \infty} \frac{1}{\left\|\frac{\beta(t_{2r}) - \beta(t_0)}{a_{2r}}\right\|} = \frac{\ell}{\|\ell\|},$$

¹ (P_i , 0), (P_{n+i} , e_i) are the vectors of \mathbb{R}^m whose the *n* first coordinates are the corresponding coordinates of P_i and the other are the coordinates of zero, of e_i respectively, where $\{e_k\}$ is the usual basis of \mathbb{R}^{m-n} . Also $||M_i||_1$ is the ℓ_1 -norm of M_i .

and similarly

$$\lim_{r \to \infty} \frac{\beta(t_{2r+1}) - \beta(t_0)}{\|\beta(t_{2r+1}) - \beta(t_0)\|} = -\frac{\ell}{\|\ell\|},$$

because

$$\left\|\frac{\beta(t_{2r+1}) - \beta(t_0)}{a_{2r+1}}\right\| = -\frac{\left\|\beta(t_{2r+1}) - \beta(t_0)\right\|}{a_{2r+1}}.$$

Since $\beta(t_0)$ is a vertex of *K* it is easy to show that there exists a real number $\rho > 0$ such that

$$\beta(t_0) + \rho \frac{\xi - \beta(t_0)}{\|\xi - \beta(t_0)\|} \in K, \quad \text{for each } \xi \in K, \, \xi \neq \beta(t_0),$$

therefore

$$\lim_{r \to \infty} \left(\beta(t_0) + \rho \frac{\beta(t_{2r}) - \beta(t_0)}{\|\beta(t_{2r}) - \beta(t_0)\|} \right) = \beta(t_0) + \rho \frac{\ell}{\|\ell\|} = z_1 \in K$$

and

$$\lim_{r \to \infty} \left(\beta(t_0) + \rho \frac{\beta(t_{2r+1}) - \beta(t_0)}{\|\beta(t_{2r+1}) - \beta(t_0)\|} \right) = \beta(t_0) - \rho \frac{\ell}{\|\ell\|} = z_2 \in K.$$

Hence $\beta(t_0) = \frac{1}{2}(z_1 + z_2)$, contradiction. Therefore $\ell = 0$.

COROLLARY 1 (**The derivative criterion**). Let *K* be a polytope and let $\beta(t_0)$ be a vertex of *K*. Suppose that σ is a function defined on the real interval $(-\epsilon, \epsilon)$ with values in Ω with $\sigma(0) = t_0$ and suppose that $\varphi = \beta \sigma \sigma$ is the composition of σ , β . Then

$$\varphi'(0) = 0,$$

whenever the derivative $\varphi'(0)$ of φ at the point 0 exists.

REMARK 12. Suppose that the assumptions of the derivative criterion are satisfied and that the range of β is closed. Then $K = coR(\beta)$, therefore the extreme points of *K* are images of elements of Ω . The following remarks show the way we study if *K* is a polytope or not.

In the simplest case where Ω is the real interval [a, b] we proceed as follows: suppose that *K* is a polytope and $\beta(t_0)$ is a vertex of *K*. Then $\beta'(t_0) = 0$ or t_0 is not an interior point of [a, b] therefore the vertices of *K* belong to the set

 $G = \{\beta(t) \mid t \text{ is a root of the equation } \beta'(t) = 0 \text{ or } t = a \text{ or } t = b\}.$

So in order to study if K is a polytope or not we solve the equation $\beta'(t) = 0$ and determine G. In the sequel we study if a finite and minimal subset Φ of G exists

such that each $\beta(t)$ is a convex combination of elements of Φ . If a such set Φ exists, then *K* is a polytope and the elements of Φ are the vertices of *K*, therefore a minimal lattice-subspace is determined by Theorem 9.

If Ω is a convex subset of \mathbb{R}^l the situation is analogous but more complicated. So if we suppose that *K* is a polytope and $\beta(t_0)$ is a vertex of *K* we have: If t_0 is an interior point of Ω , then the partial derivatives of β at the point t_0 are equal to zero and if t_0 belongs to the boundary $\vartheta(\Omega)$ of Ω , then the derivative at t_0 of the restriction of β at any differentiable curve of $\vartheta(\Omega)$ having t_0 as an interior point is equal to zero. Hence the points t_0 of Ω whose the images $\beta(t_0)$ are vertices of *K* can be obtained as solutions of a system of equations or they are extreme points of Ω which cannot be interior points of a differentiable curve of Ω .

If for example Ω is the square $[0, 1] \times [0, 1]$ of \mathbb{R}^2 , and $\beta(t_0)$ is a vertex of K, then t_0 is:

(i) a root of the system of equations $D_1\beta(t) = 0$, $D_2\beta(t) = 0^1$ (if t_0 is an interior point of Ω), or

(ii) a root of an equation $D_i\beta(t) = 0$ (if t_0 is an interior point of an edge of Ω), or (iii) t_0 is a vertex of the square.

If Ω is the circle of \mathbb{R}^2 with center 0 and radius 1, the restriction of β on the boundary of Ω is $\sigma(\vartheta) = \beta(\cos\vartheta, \sin\vartheta)$, therefore the vertices of *K* are of the form $\beta(t_0)$, where t_0 is a root of the system $D_1\beta(t) = 0$, $D_2\beta(t) = 0$, or $t_0 = \sigma(\vartheta_0)$ with $\sigma'(\vartheta_0) = 0$.

5. Linear functions

In this section we suppose also that $x_1, x_2, ..., x_n$ are linearly independent positive elements of \mathbb{R}^{Ω} , *z* is the sum of x_i and *X* is the subspace of \mathbb{R}^{Ω} generated by the functions x_i but we add the assumption that Ω is a convex set and the functions x_i are **linear**, i.e.,

$$x_i\left(\sum_{k=1}^m \lambda_k t_k\right) = \sum_{k=1}^m \lambda_k x_i(t_k),$$

for each convex combination $\sum_{k=1}^{m} \lambda_k t_k$ of Ω and $x_i(\lambda t) = \lambda x_i(t)$, for each positive real number λ with $t, \lambda t \in \Omega$.

We denote also by β the basic function of the elements x_i and by K the convex hull of the closure of the range of β . The domain $D(\beta)$ of β is convex because $D(\beta) = \{t \in \Omega \mid \text{with } z(t) > 0\}$ and the function z is linear.

THEOREM 13. Suppose that x_1, x_2, \ldots, x_n are linear functions. Then

(i) the basic function β is homogeneous of degree zero in the sense that $\beta(\lambda t) = \beta(t)$ for each positive real number λ with $t, \lambda t \in D(\beta)$.

¹ D_i is the operator of the i^{th} partial derivative.

(ii) for each positive, linear combination $t = \sum_{k=1}^{m} \lambda_k t_k \in D(\beta)$ of elements of $D(\beta)$ we have

$$\beta(t) = \sum_{k=1}^{m} \frac{\lambda_k z(t_k)}{z(t)} \beta(t_k),$$

therefore $\beta(t)$ is a convex combination of the vectors $\beta(t_i)$, i = 1, 2, ..., m.

- (iii) If $t = t_1 + t_2$ with $t_1, t_2 \in \Omega$, z(t) > 0 and $z(t_2) = 0$, then $\beta(t) = \beta(t_1)$.
- (iv) Let τ be a topology on Ω and suppose that $T = \{t_i, i \in I\}$ and A are subsets of the domain $D(\beta)$ of β .
 - (a) If A is contained in the positive linear span of ¹ T, then the image $\beta(A)$ of A is contained in the convex hull of the set { $\beta(t_i) \mid i \in I$ }.
 - (b) If A is contained in the τ -closure Ψ of the positive linear span of T and the basic function β is τ -continuous on Ψ , then the image $\beta(A)$ of A is contained in the closed convex hull of the set { $\beta(t_i), i \in I$ }.

Proof. Statement (*i*) is an easy consequence of the linearity of x_i . To prove (*ii*) suppose that $r(\omega) = (x_1(\omega), x_2(\omega), \dots, x_n(\omega)), \omega \in \Omega$. Then we have:

$$\beta(t) = \frac{r(t)}{z(t)} = \frac{1}{z(t)} \sum_{k=1}^{m} \lambda_k r(t_k) = \frac{1}{z(t)} \sum_{k=1}^{m} \lambda_k z(t_k) \beta(t_k) = \sum_{k=1}^{m} \frac{\lambda_k z(t_k)}{z(t)} \beta(t_k).$$

Statement (*iii*) is also true because if we suppose that $z(t_2) = 0$, then by the fact that the functions x_i are positive we have $x_i(t_2) = 0$ for each *i*, therefore $z(t) = z(t_1)$ and $x_i(t) = x_i(t_1)$, for each *i*. Hence $\beta(t) = \beta(t_1)$. Statement (*iv*) is proved as follows: Suppose that each $t \in A$ is a positive linear combination of elements of *T*. Then by (*ii*), $\beta(t)$ is a convex combination of $\beta(t_i)$, therefore $\beta(A) \subseteq co\{\beta(t_i) | i \in I\}$. In the case (*b*), each element $t \in A$ is the limit of a net $\{\omega_{\alpha}\}$ where ω_{α} is a positive linear combination of t_i , therefore $\beta(\omega_{\alpha})$ is a convex combination of elements of $\beta(T)$ and by the continuity of β on Ψ we have that $\beta(t)$ belongs to the closed convex hull of the set $\{\beta(t_i) | i \in I\}$, therefore (*b*) is also true.

COROLLARY 2. Suppose that $x_1, x_2, ..., x_n$ are linear functions and that $\beta(t_0)$ is an extreme point of K. Then t_0 is an extreme point of $D(\beta)$ or t_0 has the property: If c is a line segment of $D(\beta)$, having t_0 as an interior point, then the function β is constant on c and also

$$\frac{x_j(t)}{x_i(t)} = \frac{x_j(t_0)}{x_i(t_0)}, \quad \text{for each } t \in c \text{ and each } j, i \text{ with } x_i(t_0) \neq 0.$$

Proof. Suppose that t_0 as an interior point of a line segment c and that $t_1 \in c$ with $t_1 \neq t_0$. Then t_0 is a convex combination $t_0 = \lambda_1 t_1 + \lambda_2 t_2$ with $t_2 \in c$, therefore

¹ The positive linear span of T is the set of positive linear combinations of elements of T

 $\beta(t_0) = \lambda_1 \frac{z(t_1)}{z(t_0)} \beta(t_1) + \lambda_2 \frac{z(t_2)}{z(t_0)} \beta(t_2), \text{ hence } \beta(t_1) = \beta(t_2) = \beta(t_0) \text{ because } \beta(t_0) \text{ is an extreme point of } K. \text{ Therefore } \beta(t) = \beta(t_0), \text{ for each } t \in c. \text{ So we have that } x_k(t)/z(t) = x_k(t_0)/z(t_0), \text{ for each } t \in c \text{ and for each } k, \text{ therefore } x_j(t)/x_i(t) = x_j(t_0)/x_i(t_0).$

Suppose that *Y* is an ordered space. A set *S* is an **absorbing subset of** Y_+ if $S \subseteq Y_+$ and for each $y \in Y_+$, $y \neq 0$, there exists a real number $\lambda > 0$ such that $\lambda y \in S$. The positive cone Y_+ , and also each base for the cone Y_+ ¹ of *Y* are absorbing subsets of Y_+ . If *Y* is an ordered normed space the positive part $U_Y^+ = \{y \in Y_+ \mid ||y|| \leq 1\}$ of the closed unit ball of *Y* is an absorbing subset of Y_+ and if *e* is an order unite of *Y*, the order interval [0, e] of *Y* is also an absorbing subset of Y_+ .

DEFINITION 14. A dual system $\langle Y, G \rangle$ is² an **ordered dual system** if Y, G are ordered spaces with

$$Y_{+} = \{ y \in Y \mid \langle y, g \rangle \ge 0 \text{ for each } g \in G_{+} \} and$$

$$G_+ = \{g \in G \mid \langle y, g \rangle \ge 0 \text{ for each } y \in Y_+\}.$$

Suppose $\langle Y, G \rangle$ is an ordered dual system and suppose that Ω is a convex and absorbing subset of Y_+ .

Any element of *G* can be considered as an element of \mathbb{R}^{Ω} but the equality in *G* and equality in \mathbb{R}^{Ω} are not the same. If for example we suppose that $g_1, g_2 \in G$, then $g_1 = g_2$ in *G*, if and only if $\langle y, g_1 \rangle = \langle y, g_2 \rangle$ for each $y \in Y$ and $g_1 = g_2$ in \mathbb{R}^{Ω} , if and only if $g_1(t) = g_2(t)$ for each $t \in \Omega$. It is clear that the equality in *G* implies equality in \mathbb{R}^{Ω} but the converse is not true in general. If the cone Y_+ is generating (i.e. $Y = Y_+ - Y_+$) it is easy to show that the two equalities are equivalent, therefore then we can identify algebraically *G* with a subspace of \mathbb{R}^{Ω} . If for example *Y* is a Banach lattice, then the cone Y_+ is generating therefore we may suppose that *G* is a subspace of \mathbb{R}^{Ω} . For the space *Y* hold also similar results.

Suppose that $x_1, x_2, ..., x_n$ are linearly independent positive elements of *G* and that *X* is the subspace of \mathbb{R}^{Ω} generated by these functions. As before, the basic function of the elements x_i is

$$\beta(t) = \left(\frac{x_1(t)}{z(t)}, \frac{x_2(t)}{z(t)}, \dots, \frac{x_n(t)}{z(t)}\right), \ t \in \Omega \text{ with } z(t) > 0,$$

where z is the sum of the elements x_i .

Also we denote by $D(\beta)$ the domain, by $R(\beta)$ the range of β and by K the convex hull of the closure of $R(\beta)$.

¹ Any subset $B = \{y \in Y_+ \mid f(y) = 1\}$, where *f* is a strictly positive linear functional of *Y* is a base for the cone *Y*₊.

² Remind that in any dual system $\langle Y, G \rangle$, G separates the points of Y and conversely.

THEOREM 15. Let $\langle Y, G \rangle$ be an ordered dual system. Suppose that G is an ordered normed space and Y the topological dual of G.

- (i) If $\Omega = U_Y^+$, then $K \subseteq \overline{co}\{\beta(t) \mid t \in ep(U_Y^+)\}$.
- (ii) If *e* is an order unite of *Y*, the cone *Y*₊ is normal and $\Omega = [0, e]$, then $K \subseteq \overline{co}\{\beta(t) \mid t \in L_e\}$, where L_e is the Boolean algebra of components of ³ *e*. *Proof.* Suppose that τ is the $\sigma(Y, G)$ topology of *Y*.
- (i) The positive cone Y_+ of Y is τ -closed, therefore the positive part U_Y^+ of the closed unit ball of Y is τ -compact, hence U_Y^+ is the τ -closed convex hull of its extreme points. Therefore by Theorem 13, $K \subseteq \overline{co}\{\beta(t) \mid t \in ep(U_Y^+)\}$.
- (ii) Since *e* is an order unit, the order interval [0, e] is an absorbing subset of Y_+ . Also [0, e] is norm-bounded therefore it is τ -compact, hence $K \subseteq \overline{co}\{\beta(t) \mid t \in L_e\}$.

THEOREM 16. Let $\langle Y, G \rangle$ be an ordered dual system. Suppose that Y is a Banach lattice with a positive basis $\{d_i\}$ with $||d_i|| = 1$, for each i and suppose also that $\Omega = U_Y^+$. If x_1, x_2, \ldots, x_n are linearly independent positive elements of G and β is the basic function of the vectors x_i , then

 $R(\beta) \subseteq \overline{co}\{\beta(d_i) \mid i \in \Phi\},\$

where $\Phi = \{i \in \mathbb{N} \mid d_i \in D(\beta)\}.$

If Y is an m-dimensional space with a positive basis $\{b_1, b_2, \ldots, b_m\}$, then

 $K = co\{\beta(d_i) \mid i \in \Phi\},\$

where $\Phi = \{i \in \{1, 2, ..., m\} \mid d_i \in D(\beta)\}$, therefore K is a polytope and a finite dimensional minimal lattice subspace of \mathbb{R}^{Ω} which contains the elements x_i exists and is determined by Theorem 9.

Proof. The positive cone Y_+ of Y is generating and normal, therefore the basis $\{b_i\}$ is unconditional, [17], Theorem 16.3. Let Y_1 be the closed linear span of the vectors d_i , $i \in \Phi$. Then Y_1 is a closed sublattice of Y and each element y of Y has a unique expression $y = y_1 + y_2$, with $y_1 \in Y_1$ and $y_2 \in Y_2$, where Y_2 is the closed linear span of the vectors d_i , $i \notin \Phi$. It is clear that $z(y_2) = 0$, therefore $\beta(y) = \beta(y_1)$ by statement (*iii*) of Theorem 13, hence $R(\beta) = \beta(U_Y^+ \cap (Y_1^+ \setminus \{0\}))$. Since each positive linear functional of a Banach lattice is continuous, [5], Theorem 12.3, the x_i are continuous linear functionals of Y. Since each element of Y_1^+ is limit of a sequence of positive linear combinations of elements of the basis $\{b_i \mid i \in \Phi\}$, by statement (*iv*) of the Theorem 13 we have that

 $R(\beta) \subseteq \overline{co}\{\beta(d_i) \mid i \in \Phi\},\$

therefore the first part of the Theorem is true.

Suppose now that dim Y = m and $\{b_1, b_2, \dots, b_m\}$ is a positive basis of Y. As we have shown above $R(\beta) \subseteq \overline{co}\{\beta(d_i) \mid i \in \Phi\}$. Since the set Φ is finite,

³ I.e. L_e is the set of extreme points of [0, e].

 $co\{\beta(d_i) \mid i \in \Phi\}$ is closed therefore $\overline{R(\beta)}$ is contained in the set $co\{\beta(d_i) \mid i \in \Phi\}$, hence $K = co\{\beta(d_i) \mid i \in \Phi\}$. Therefore K is a polytope and the Theorem is true.

EXAMPLE 17. Suppose that X is the subspace of ℓ_{∞} generated by the vectors x_1, x_2, x_3 , where

$$x_{1}(3n) = \frac{n^{2} + n + 2}{n^{2}}, x_{1}(3n + 1) = \frac{n^{2} + n + 2}{n^{2}}, x_{1}(3n + 2) = \frac{n^{2} + n + 2}{n^{2}},$$
$$x_{2}(3n) = \frac{n^{2} + 3}{n^{2}}, x_{2}(3n + 1) = \frac{2n + 1}{n^{2}}, x_{2}(3n + 2) = \frac{2n^{2} + n + 2}{n^{2}},$$
$$x_{3}(3n) = \frac{2n^{2} + n + 2}{n^{2}}, x_{3}(3n + 1) = \frac{n^{2} + 3}{n^{2}}, x_{3}(3n + 2) = \frac{2n + 1}{n^{2}}.$$

Consider the dual system $\langle \ell_1, \ell_{\infty} \rangle$ and suppose that $\{e_i\}$ is the usual basis of ℓ_1 . By Theorem 16 we have that $K \subseteq \overline{co}\{\beta(e_i)\}$. It is easy to see that

$$\beta(e_{3n}) = \frac{1}{4n^2 + 2n + 7}(n^2 + n + 2, n^2 + 3, 2n^2 + n + 2),$$

$$\beta(e_{3n+1}) = \frac{1}{2n^2 + 3n + 6}(n^2 + n + 2, 2n + 1, n^2 + 3) \text{ and}$$

$$\beta(e_{3n+2}) = \frac{1}{3n^2 + 4n + 5}(n^2 + n + 2, 2n^2 + n + 2, 2n + 1).$$

The vectors $\lim_{n\to\infty} \beta(e_{3n}) = \frac{1}{4}(1, 1, 2)$, $\lim_{n\to\infty} \beta(e_{3n+1}) = \frac{1}{2}(1, 0, 1)$ and $\lim_{n\to\infty} \beta(e_{3n+2}) = \frac{1}{3}(1, 2, 0)$, belong to $\overline{R(\beta)}$. We remark that the second and third coordinate of the vectors $\beta(e_i)$ are greater than zero and also that the first coordinate of these vectors is greater than $\frac{1}{4}$. After these remarks we show that each $\beta(b_i)$ is a convex combination of the vectors $\frac{1}{4}(1, 1, 2), \frac{1}{2}(1, 0, 1), \frac{1}{3}(1, 2, 0)$, therefore *K* is a simplex and *X* a lattice-subspace. A positive basis of *X* is given by the formula $(b_1, b_2, b_3)^T = A^{-1}(x_1, x_2, x_3)^T$, where *A* is the matrix with columns the vectors $\frac{1}{4}(1, 1, 2), \frac{1}{2}(1, 0, 1), \frac{1}{3}(1, 2, 0)$. So we find that $b_1 = \frac{4}{3}(-2x_1 + x_2 + 2x_3), b_2 = \frac{2}{3}(4x_1 - 2x_2 - x_3)$ and $b_3 = x_1 + x_2 - x_3$ is a positive basis of *X*.

References

1. Abramovich, Y. A., Aliprantis, C. D. and Polyrakis, I. A.: Lattice-subspaces and positive projections, *Proc. R. Ir. Acad.* **94 A** (1994), 237–253.

- 2. Aliprantis, C. D., Brown, D. and Burkinshaw, O.: Existence and Optimality in Competitive Equilibria. Springer-Verlag, Heidelberg & New York, 1990.
- 3. Aliprantis, C. D., Brown, D., Polyrakis, I. and Werner, J.: Portfolio dominance and optimality in infinite security markets, *J. Mathematical Economics* **30** (1998), 347–366.
- 4. Aliprantis, C. D., Brown, D. and Werner, J.: Minimum-Cost Portfolio Insurance, *J. Economic Dynamics and Control* 24 (2000), 1703–1719.
- 5. Aliprantis, C. D., and Burkinshaw, O.: *Positive Operators*, Academic Press, New York & London, 1985.
- 6. Donner, K. Extensions of positive operators and Korovkin theorems, Lecture Notes in Mathematics 704, Springer-Verlag, Heidelberg & New York, 1982.
- 7. Ghoussoub, N.: Positive embeddings of $C(\Delta)$, l_1 , $l_1(\Gamma)$, and $(\sum_n \oplus l_{\infty}^n)_{l_1}$, *Mathematische Annalen* **262** (1983), 461–472.
- 8. Jameson, G. J. O.: *Ordered Linear Spaces*, Lecture Notes in Mathematics 142, Springer-Verlag, Heidelberg & New York, 1970.
- 9. Jameson, G. J. O. and Pinkus, A.: Positive and minimal projections in function spaces, *Journal of Approximation Theory* **37** (1983), 182–195.
- 10. Meyer-Nierberg, P.: Banach lattices, Springer-Verlag, Berlin, 1991.
- 11. Miyajima, S.: Structure of Banach quasi-sublattices, Hokkaido Math. J. 11 (1983), 83-91.
- Polyrakis, I. A.: Lattice Banach spaces order-isomorphic to l₁, *Math. Proc. Cambridge Phil.* Soc. 34 (1983), 519–522.
- 13. Polyrakis, I. A.: Lattice-subspaces of C[0, 1] and positive bases, J. Math. Anal. Appl. 184 (1994), 1–14.
- 14. Polyrakis, I. A.: Finite-dimensional lattice-subspaces of $C(\Omega)$ and curves of \mathbb{R}^n , *Trans. American Math.* Soc. **384** (1996), 2793–2810.
- 15. Polyrakis, I. A.: Minimal lattice-subspaces, *Trans. American Math. Soc.* **351** (1999), 4183–4203.
- 16. Polyrakis, I. A.: A New Method of Optimization, (to appear).
- 17. Singer, I.: Schauder Bases in Banach Spaces I, Springer-Verlag, Heidelberg & New York, 1970.