Lattice-Subspaces and Positive Bases in Function Spaces

IOANNIS A. POLYRAKIS*
Department of Mathematics, National Technical University, 15780 Athens, Greece
(e-mail: ypoly@math.ntua.gr)

Received 1 July 2001; accepted 10 February 2002

Abstract

Let x_{1}, \ldots, x_{n} be linearly independent, positive elements of the space \mathbb{R}^{Ω} of the real valued functions defined on a set Ω and let X be the vector subspace of \mathbb{R}^{Ω} generated by the functions x_{i}. We study the problem: Does a finite-dimensional minimal lattice-subspace (or equivalently a finite-dimensional minimal subspace with a positive basis) of \mathbb{R}^{Ω} which contains X exist? To this end we define the function $\beta(t)=\frac{1}{z(t)}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$, where $z(t)=x_{1}(t)+x_{2}(t)+\ldots+x_{n}(t)$, which we call basic function and takes values in the simplex Δ_{n} of \mathbb{R}_{+}^{n}. We prove that the answer to the problem is positive if and only if the convex hull K of the closure of the range of β is a polytope. Also we prove that X is a lattice-subspace (or equivalently X has positive basis) if and only if, K is an ($n-1$)-simplex. In both cases, using the vertices of K, we determine a positive basis of the minimal lattice-subspace. In the sequel, we study the case where Ω is a convex set and $x_{1}, x_{2}, \ldots, x_{n}$ are linear functions. This includes the case where x_{i} are positive elements of a Banach lattice, or more general the case where x_{i} are positive elements of an ordered space Y. Based on the linearity of the functions x_{i} we prove some criteria by means of which we study if K is a polytope or not and also we determine the vertices of K. Finally note that finite dimensional lattice-subspaces and therefore also positive bases have applications in economics.

1. Introduction

Suppose E is a vector lattice and D is a subset of E_{+}. In the theory of ordered spaces we are interested in a lattice subspace Y of E that contains D and that is as 'close' as possible to the linear subspace $[D]$ generated by D. The sublattice $S(D)$ generated by D is a lattice-subspace which contains D but in general, it is a 'big' subspace which is 'very far' from $[D] .{ }^{1}$ Since the intersection of lattice-subspaces is not always a lattice-subspace, we are looking for minimal lattice-subspaces containing D and not for a minimum one. Also the class of lattice-subspaces is larger than that of sublattices, therefore a minimal lattice-subspace, if it exists, is 'closer' to $[D]$ than $S(D)$.

In Theorem 2.5 of [15] it is proved that if τ is a Lebesgue linear topology on E and the positive cone E_{+}of E is τ-closed (especially if E is a Banach lattice

[^0]with order continuous norm) then the set of minimal lattice-subspaces of E, which contain D and have τ-closed positive cone, has minimal elements.

An important question is 'how far' a minimal lattice-subspace is from $[D]$. Motivated by this question we suppose that the set D is finite and we study the existence of finite-dimensional minimal lattice-subspaces containing D. In the framework of this problem we study also whether the sublattice $S(D)$ generated by D is a finite-dimensional subspace of E. So in the first part of this article we suppose that $D=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a subset of the positive cone \mathbb{R}_{+}^{Ω} of the space \mathbb{R}^{Ω} of the real valued functions defined in a set Ω, where the functions x_{i} are linearly independent and we study the existence of a finite-dimensional minimal lattice-subspace of \mathbb{R}^{Ω} which contains D. Since a finite dimensional ordered space is a vector lattice if and only if it has a positive basis, this problem is equivalent with the existence of a finite dimensional minimal subspace of \mathbb{R}^{Ω} with a positive basis which contains D. To study this problem we define the function $\beta(t)=\frac{1}{z(t)}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$, where $z(t)=x_{1}(t)+x_{2}(t)+\ldots+x_{n}(t)$, which we call basic function and takes values in the simplex Δ_{n} of \mathbb{R}_{+}^{n}. The study of the range $R(\beta)$ of β and also the study of the convex hull K of the closure of $R(\beta)$ are very important in this article. In Theorem 7, we prove that the sublattice $S(D)$ generated by D is finite dimensional if and only if the range $R(\beta)$ of β is finite and also a positive basis of $S(D)$ is determined by means of the elements of $R(\beta)$. Note that, by using the known result that $S(D)=D^{\vee}-D^{\vee}$, where D^{\vee} is the set of finite supremum of the elements of [D], we cannot conclude if $S(D)$ is finite dimensional and if it is, we cannot also determine $S(D)$.

In Theorem 9 we prove that an m-dimensional minimal lattice-subspace Y which contains D exists, if and only if the convex hull K of the closure of $R(\beta)$ is a polytope with m vertices. Then a positive basis of Y is determined by the vertices of K. In general it is difficult to study whether K is a polytope and if it is, it is also difficult to determine its vertices. In the derivative criterion we prove that if K is a polytope, $\beta\left(t_{0}\right)$ is a vertex of K and $c: t=\sigma(u), u \in(-\epsilon, \epsilon)$ is a curve of Ω with $t_{0}=\sigma(0)$ and if $\varphi=\beta o \sigma$ is the composition of σ, β, then $\varphi^{\prime}(0)=0$, whenever the derivative exists. In the case where the restriction of β in the curves of Ω is not differentiable we give a more general result, Theorem 11.

In the second part of this article (Section 5) we generalize the previous results in ordered spaces. So we suppose that $\langle Y, G\rangle$ is an ordered dual system (see Def. 14) $D=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, and that x_{i} are linearly independent positive elements of G. Then G is a subspace of \mathbb{R}^{Ω}, where Ω is an absorbing subset of $Y_{+}{ }^{1}$ Based on the linearity of the functions x_{i} we study if K is a polytope or not. In Corollary 2 we prove that if $\beta\left(t_{0}\right)$ is an extreme point of K then t_{0} is an extreme point of the domain $D(\beta)$ of β, or the function β takes the constant value $\beta\left(t_{0}\right)$ on each line segment c of $D(\beta)$ that has t_{0} as an interior point. In Theorem 16, we prove that if Y is a Banach lattice with a positive basis $\left\{d_{i}\right\}$, then $K \subseteq \overline{c o}\left\{\beta\left(d_{i}\right)\right\}$, therefore

[^1]in order to study if K is a polytope, we study if each $\beta(t)$ is a convex combination of the vectors $\beta\left(d_{i}\right)$. If Y is an m-dimensional space with a positive basis $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$, then $K=\operatorname{co}\left\{\beta\left(d_{i}\right)\right\}$, therefore K is a polytope and its vertices are among the elements of the set $\left\{\beta\left(d_{i}\right)\right\}$. Also if G is an ordered normed space and Y the topological dual of G, we have: (i) $K \subseteq \overline{c o}\left\{\beta(t) \mid t \in e p\left(U_{Y}^{+}\right)\right\}$, and (ii) if e is an order unit of Y and Y_{+}is normal, then $K \subseteq \overline{c o}\left\{\beta(t) \mid t \in L_{e}\right\}$, where $e p\left(U_{Y}^{+}\right)$is the set of the extreme points of U_{Y}^{+}and L_{e} is the Boolean algebra of the components of e, Theorem 15 .

For applications of lattice-subspaces in economics, see in [3] and [4] and for an application of finite dimensional minimal lattice-subspaces in optimization, see in [16]. Also we refer to the book of Aliprantis et al. [2].

2. Notations

Let E be a (partially) ordered vector space with positive cone E_{+}. Any subspace X of E, ordered by the induced ordering (i.e., by the cone $X_{+}=X \cap E_{+}$) will be referred as an ordered subspace of E. An ordered subspace X of E which is also a vector lattice, i.e., for each $x, y \in X$ the supremum $x \vee_{X} y$ of $\{x, y\}$ in X exists, ${ }^{1}$ is a lattice-subspace of E. We will denote also this supremum by $\sup _{X}\{x, y\}$. It is clear that

$$
x \vee y \leqslant x \vee_{X} y
$$

whenever the supremum $x \vee y$ of $\{x, y\}$ in E, exists. If E is a vector lattice and $x \vee y=x \vee_{X} y$ for any $x, y \in X$, then X is a sublattice (Riesz subspace) of E. In lattice-subspaces, $x \vee_{X} y$ depends on the subspace. In other words, in this kind of subspaces we have the induced ordering and a lattice structure but not the induced one. ${ }^{2}$ Suppose also that E is a Banach space. A sequence $\left\{e_{n}\right\}$ of E is a

[^2](Schauder) basis of E if each element x of E has a unique expression of the form $x=\sum_{i=1}^{\infty} \lambda_{n} e_{n}$. If moreover
$$
E_{+}=\left\{x=\sum_{n=1}^{\infty} \lambda_{n} e_{n} \mid \lambda_{n} \geqslant 0 \text { for each } n\right\}
$$
we say that $\left\{e_{n}\right\}$ is a positive basis of E.
A positive basis is unique in the sense that if $\left\{b_{n}\right\}$ is an other positive basis of E, then each element of $\left\{b_{n}\right\}$ is a positive multiple of an element of $\left\{e_{n}\right\}$. If $\left\{e_{n}\right\}$ is a positive basis of E, then the following statements are equivalent, see in [17], Theorem 16.3.

1. The basis $\left\{e_{n}\right\}$ is unconditional.
2. The cone E_{+}is generating and normal.

Remind that cone E_{+}is generating if $E=E_{+}-E_{+}$and E_{+}is normal (or self-allied) is there exists $c \in \mathbb{R}_{+}$such that $0 \leq x \leq y$ implies $\|x\| \leq c\|y\|$. In the case where X is an n-dimensional subspace of E and the positive cone X_{+}of X is generating the following statements are equivalent:
(i) X is a lattice-subspace of E.
(ii) X has a positive basis.
(iii) X is order-isomorphic to \mathbb{R}^{n}. ${ }^{1}$

The equivalence of (i) and (ii) is the most useful criterion for finite-dimensional lattice-subspaces of E.

For notation and terminology not defined here we refer to $[8,5,10]$.

3. Subspaces of \mathbb{R}^{Ω} with positive bases

In this article we shall denote by Ω a nonempty set, by \mathbb{R}^{Ω} the space of real valued functions defined in Ω and by $\mathbb{R}_{+}^{\Omega}=\left\{x \in \mathbb{R}^{\Omega} \mid x(t) \geqslant 0, \quad\right.$ for each $\left.t \in \Omega\right\}$, the positive cone of \mathbb{R}^{Ω}.

Suppose that $\left\{b_{r}\right\}$ is a (finite or infinite) sequence of \mathbb{R}^{Ω}. If t is a point of Ω and there exists $m \in \mathbb{N}$ such that $b_{m}(t) \neq 0$ and $b_{r}(t)=0$ for each $r \neq m$, then we shall say that t is an m-node (or simply a node) of the sequence $\left\{b_{r}\right\}$. If for each r there exists an r-node t_{r} of $\left\{b_{r}\right\}$, we shall say that $\left\{b_{r}\right\}$ is a sequence of \mathbb{R}^{Ω} with nodes and also that $\left\{t_{r}\right\}$ is a sequence of nodes of $\left\{b_{r}\right\}$.

THEOREM 1. Let E be an ordered subspace of \mathbb{R}^{Ω} and suppose that $\left\{b_{r}\right\}$ is a sequence of E consisting of positive functions.

[^3](i) If $\left\{b_{r}\right\}$ is a positive basis of E, then ${ }^{2}$ for each m there exists a sequence $\left\{\omega_{\nu}\right\}$ of Ω (depending on m) such that for each $k \in \mathbb{N}$ we have
$$
0 \leq \sum_{i=1, i \neq m}^{k} \frac{b_{i}\left(\omega_{k}\right)}{b_{m}\left(\omega_{k}\right)}<\frac{1}{k}
$$
therefore $\lim _{v \rightarrow \infty} b_{i}\left(\omega_{\nu}\right) / b_{m}\left(\omega_{v}\right)=0$ for each $i \neq m$.
(ii) If E is an n-dimensional subspace of \mathbb{R}^{Ω} and the sequence $\left\{b_{r}\right\}$ is consisting of n vectors $b_{1}, b_{2}, \ldots, b_{n}$, the converse of (i) is also true, i.e. if for each $1 \leq$ $m \leq n$ there exists a sequence $\left\{\omega_{\nu}\right\}$ of Ω (depending on m) satisfying
$$
\lim _{\nu \rightarrow \infty} \frac{b_{i}\left(\omega_{\nu}\right)}{b_{m}\left(\omega_{\nu}\right)}=0 \text { for each } i \neq m
$$
then $\left\{b_{1}, \ldots, b_{n}\right\}$ is a positive basis of E.
Proof. Suppose that $\left\{b_{r}\right\}$ is a positive basis of E. Then for each k we put $z_{k}=$ $-\frac{1}{k} b_{m}+\sum_{i=1, i \neq m}^{k} b_{i}$. Since $\left\{b_{r}\right\}$ is a positive basis we have that $z_{k} \notin E_{+}$, therefore there exists $\omega_{k} \in \Omega$ such that $z_{k}\left(\omega_{k}\right)<0$, or
$$
0 \leq \sum_{i=1, i \neq m}^{k} \frac{b_{i}\left(\omega_{k}\right)}{b_{m}\left(\omega_{k}\right)}<\frac{1}{k}, \text { for each } k
$$

For each fixed $i \neq m$ we have $0 \leqslant b_{i}\left(\omega_{k}\right) / b_{m}\left(\omega_{k}\right)<1 / k$, for each $k \geqslant i$. By letting $k \rightarrow \infty$ we have that (i) is true.

To prove the converse assume that $b_{1}, b_{2}, \ldots, b_{n}$ satisfy the assumptions of (ii). To show that $\left\{b_{1}, \ldots, b_{n}\right\}$ is a positive basis assume that $x=\sum_{i=1}^{n} \lambda_{i} b_{i} \in E_{+}$. Then we have that

$$
0 \leqslant \frac{x\left(\omega_{\nu}\right)}{b_{m}\left(\omega_{\nu}\right)}=\sum_{i=1}^{n} \lambda_{i} \frac{b_{i}\left(\omega_{\nu}\right)}{b_{m}\left(\omega_{\nu}\right)}
$$

and taking limits as $v \rightarrow \infty$ we have $\lambda_{m}=\lim _{v \rightarrow \infty} x\left(\omega_{\nu}\right) / b_{i}\left(\omega_{v}\right) \geq 0$ for each m. Also if we suppose that $x=0$, similarly we have that $\lambda_{m}=0$ for each m, therefore the vectors b_{i} are also linearly independent. Hence $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a positive basis of E.

PROPOSITION 2. Let E be an ordered subspace of \mathbb{R}^{Ω} and let $\left\{b_{1}, \ldots, b_{n}\right\}$ be a positive basis of E. For each $x=\sum_{i=1}^{n} \lambda_{i} b_{i} \in E$, we have:
(i) If a point t_{i} is an i-node of the basis, then $\lambda_{i}=x\left(t_{i}\right) / b_{i}\left(t_{i}\right)$.
(ii) If $\left\{\omega_{\nu}\right\}$ is a sequence of Ω such that $\lim _{\nu \rightarrow \infty} b_{j}\left(\omega_{\nu}\right) / b_{i}\left(\omega_{\nu}\right)=0$ for each $j \neq i$, then $\lambda_{i}=\lim _{\nu \rightarrow \infty} x\left(\omega_{\nu}\right) / b_{i}\left(\omega_{\nu}\right)$.

[^4]Proof. If the point t_{i} is an i-node, then $x\left(t_{i}\right)=\lambda_{i} b_{i}\left(t_{i}\right)$. Statement (ii) is also true because $\lim _{v \rightarrow \infty} x\left(\omega_{\nu}\right) / b_{i}\left(\omega_{\nu}\right)=\lim _{v \rightarrow \infty} \sum_{j=1}^{n} \lambda_{j} b_{j}\left(\omega_{\nu}\right) / b_{i}\left(\omega_{\nu}\right)=\lambda_{i}$.

4. Finite-dimensional lattice-subspaces of \mathbb{R}^{Ω}

In this section we suppose that $x_{1}, x_{2}, \ldots, x_{n}$ are fixed, linearly independent positive elements of $\mathbb{R}^{\Omega}, z=x_{1}+x_{2}+\ldots+x_{n}$ and we suppose that

$$
X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

is the subspace of \mathbb{R}^{Ω} generated by the functions x_{i}.
DEFINITION 3. Let $y_{1}, y_{2}, \ldots, y_{m} \in \mathbb{R}_{+}^{\Omega}$. The basic function (curve) of y_{1}, y_{2}, \ldots, y_{n} is the function

$$
\gamma(t)=\left(\frac{y_{1}(t)}{w(t)}, \frac{y_{2}(t)}{w(t)}, \ldots, \frac{y_{m}(t)}{w(t)}\right), \quad t \in \Omega \text { with } w(t)>0
$$

where w is the sum of the functions $y_{i}{ }^{1}$
In this paper we will denote by β the basic function of $x_{1}, x_{2}, \ldots, x_{n}$, i.e.

$$
\beta(t)=\left(\frac{x_{1}(t)}{z(t)}, \frac{x_{2}(t)}{z(t)}, \ldots, \frac{x_{n}(t)}{z(t)}\right), \quad t \in \Omega \text { with } z(t)>0
$$

where z is the sum of the functions x_{i}. Also we will denote by $D(\beta)$ the domain of β, by $R(\beta)$ the range of β and by K the convex hull of the closure of the range of β, i.e.,

$$
K=c o \overline{R(\beta)}
$$

Recall that for any subset C of a linear topological space, denote by \bar{C} the closure of C, by $\operatorname{co} C$ the convex hull of C and by $\overline{c o} C$ the closure of $\operatorname{co} C$. A subset C of \mathbb{R}^{l} is a polytope if C is the convex hull of a finite subset of \mathbb{R}^{l} and C is an \mathbf{r} simplex if it is the convex hull of $r+1$ affinely independent vectors of \mathbb{R}^{l}. In both cases the extreme points of C are referred as vertices of C. Also for any matrix A we denote by A^{T} the transpose and by A^{-1} the inverse matrix of A.

Finite dimensional lattice-subspaces of the space of the continuous real valued functions $C(\Omega)$ defined on a compact, Hausdorff, topological space Ω, have been studied in [14] and [15]. In this section we generalize the results of these articles in \mathbb{R}^{Ω}, where Ω is a set. The proofs of this section (except that of Theorem 11) are the same with the proofs of the corresponding results of [14] and [15]. So we give only the proof of the next Theorem and we omit the others.

[^5]THEOREM 4. The following statements are equivalent.
(i) X is a lattice-subspace
(ii) K is an ($n-1$)-simplex.

Suppose that statement (ii) is true and that $P_{1}, P_{2}, \ldots, P_{n}$ are the vertices of K. Then for each $i=1,2, \ldots, n$ there exists a sequence $\left\{\omega_{i v}\right\}$ of Ω such that

$$
P_{i}=\lim _{v \rightarrow \infty} \beta\left(\omega_{i v}\right)
$$

Suppose also that A is the $n \times n$ matrix whose, for each $i=1,2, \ldots, n$, the $i^{\text {th }}$ column is the vector P_{i} and $b_{1}, b_{2}, \ldots, b_{n}$ are the functions defined by the formula

$$
\begin{equation*}
\left(b_{1}(t), b_{2}(t), \ldots, b_{n}(t)\right)^{T}=A^{-1}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)^{T} \tag{4.1}
\end{equation*}
$$

Then the set $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a positive basis of X and

$$
\lim _{v \rightarrow \infty}\left(\frac{b_{j}}{b_{i}}\right)\left(\omega_{i v}\right)=0 \text { for each } j \neq i
$$

If $P_{k}=\beta\left(t_{k}\right)$, then t_{k} is a k-node of the basis $\left\{b_{1}, \ldots, b_{n}\right\}$.
Proof. Suppose that statement (ii) is true. Since the vectors P_{i} are extreme points of K we have that P_{i} is not a convex combination of elements of $\overline{R(\beta)}$, therefore we have that $P_{i} \in \overline{R(\beta)}$, hence there exists a sequence $\left\{\omega_{i v}\right\}$ such that $P_{i}=\lim _{v \rightarrow \infty} \beta\left(\omega_{i v}\right)$. Suppose that the functions b_{i} are defined as in the Theorem. Since $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a basis of X and the vectors P_{i} are linearly independent we have that $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a basis of X. Let

$$
P_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right), \quad i=1,2, \ldots, n
$$

Since the vectors P_{i} belong to the simplex $\Delta_{n}=\left\{\xi \in \mathbb{R}_{+}^{n} \mid \sum_{i=1}^{n} \xi_{i}=1\right\}$, it follows that $\sigma_{i}=\sum_{j=1}^{n} a_{i j}=1$ for each i. By (4.1) we have that $x_{i}=\sum_{j=1}^{n} a_{j i} b_{j}$, therefore

$$
z=\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} \sigma_{i} b_{i}=\sum_{i=1}^{n} b_{i}
$$

Let $\beta(t)=\sum_{i=1}^{n} \xi_{i}(t) P_{i}$ be the expansion of $\beta(t)$ relative to the basis $\left\{P_{1}, P_{2}, \ldots\right.$, $\left.P_{n}\right\}$. Then

$$
\frac{1}{z(t)}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)^{T}=A\left(\xi_{1}(t), \xi_{2}(t), \ldots, \xi_{n}(t)\right)^{T}
$$

and in view of (4.1) we get

$$
\left(\xi_{1}(t), \xi_{2}(t), \ldots, \xi_{n}(t)\right)^{T}=\frac{1}{z(t)}\left(b_{1}(t), b_{2}(t), \ldots, b_{n}(t)\right)^{T}
$$

Since $\beta(t)$ is a convex combination of the vectors P_{i}, we have that $\xi_{i}(t) \in \mathbb{R}_{+}$, therefore $b_{i}(t) \in \mathbb{R}_{+}$for each i. Thus, $b_{i} \in X_{+}$for each i. From (4.1) we have

$$
(\beta(t))^{T}=A\left(\frac{b_{1}(t)}{z(t)}, \frac{b_{2}(t)}{z(t)}, \ldots, \frac{b_{n}(t)}{z(t)}\right)^{T}
$$

Since $0 \leqslant b_{j}(t) / z(t) \leqslant 1$, there exists a subsequence of $\left\{\omega_{i v}\right\}$ which we will denote again by $\left\{\omega_{i v}\right\}$ such that $b_{j}\left(\omega_{i v}\right) / z\left(\omega_{i v}\right)$ is convergent for each j and suppose that $\eta_{i j}=\lim _{v \rightarrow \infty} b_{j}\left(\omega_{i v}\right) / z\left(\omega_{i v}\right)$.

Replacing t by $\omega_{i v}$ and taking limits, we get

$$
\begin{equation*}
\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)^{T}=A\left(\eta_{i 1}, \eta_{i 2}, \ldots, \eta_{i n}\right)^{T} \tag{4.2}
\end{equation*}
$$

We remark that the columns of A are the vectors P_{k}, therefore $\eta_{i i}=1$ and $\eta_{i j}=$ 0 for each $i \neq j$. Since $\omega_{i v}$ belong to the domain of β we have that $z\left(\omega_{i v}\right)>0$, therefore $b_{j}\left(\omega_{i v}\right)>0$ for at least one j. Since $\eta_{i i}=1$, we have $b_{i}\left(\omega_{i v}\right)>0$ for each ν. Therefore,

$$
\lim _{v \rightarrow \infty}\left(\frac{b_{i}}{z}\right)\left(\omega_{i v}\right)=\lim _{v \rightarrow \infty} \frac{1}{1+\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \frac{b_{j}}{b_{i}}\right)\left(\omega_{i v}\right)}=1
$$

Hence

$$
\lim _{v \rightarrow \infty}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \frac{b_{j}}{b_{i}}\right)\left(\omega_{i v}\right)=0
$$

Since

$$
0 \leqslant \frac{b_{j}}{b_{i}} \leqslant \sum_{\substack{j=1 \\ j \neq i}}^{n} \frac{b_{j}}{b_{i}}
$$

we have that

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty}\left(\frac{b_{j}}{b_{i}}\right)\left(\omega_{i v}\right)=0 \text { for each } j \neq i \tag{4.3}
\end{equation*}
$$

and by Theorem $1,\left\{b_{1}, \ldots, b_{n}\right\}$ is a positive basis of X, therefore X is a latticesubspace. Hence (ii) implies (i). To prove the last assertion of (ii) we suppose now that $P_{k}=\beta\left(t_{k}\right)$. Then we may suppose that $\omega_{k v}=t_{k}$ for each v. As we have remarked before, $b_{k}\left(\omega_{k \nu}\right)>0$ for each ν and

$$
\lim _{v \rightarrow \infty}\left(\frac{b_{j}}{b_{k}}\right)\left(\omega_{k v}\right)=0 \text { for each } j \neq k
$$

Therefore we have that $b_{k}\left(t_{k}\right)>0$ and $b_{j}\left(t_{k}\right) / b_{k}\left(t_{k}\right)=0$, for each $j \neq k$, hence $b_{j}\left(t_{k}\right)=0$ for each $j \neq k$, therefore t_{k} is a k-node for the basis $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. The proof that (i) implies (ii) is the same with the corresponding proof of [14], Theorem 3.6.

4.1. SUBLATTICES

LEMMA 5 ([15], Lemma 3.4). The functions $y_{i} \in \mathbb{R}_{+}^{\Omega}, i=1,2, \ldots, m$ are linearly independent if and only if the space generated by the range of the basic function of $y_{1}, y_{2}, \ldots, y_{m}$ is \mathbb{R}^{m}.

THEOREM 6 ([15], Theorem 3.6). The following statements are equivalent:
(i) X is a sublattice of \mathbb{R}^{Ω}.
(ii) $R(\beta)=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$.

If statement (ii) is true, a positive basis $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of X is given by the formula:

$$
\begin{equation*}
\left(b_{1}(t), b_{2}(t), \ldots, b_{n}(t)\right)^{T}=A^{-1}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)^{T} \tag{4.4}
\end{equation*}
$$

where A is the $n \times n$ matrix whose the $i^{\text {th }}$ column is the vector P_{i}, for each $i=$ $1,2, \ldots, n$.

THEOREM 7 (Construction of the sublattice generated by X). Let Z be the sublattice of \mathbb{R}^{Ω} generated by $x_{1}, x_{2}, \ldots, x_{n}$ and let $m \in \mathbb{N}$. Then statements (i) and (ii) are equivalent:
(i) $\operatorname{dim}(Z)=m$.
(ii) $R(\beta)=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$.

If statement (ii) is true then Z is constructed as follows:
(a) Enumerate $R(\beta)$ so that its n first vectors to be linearly independent. (A such enumeration exists by Lemma 5). Denote again by $P_{i}, i=1,2, \ldots, m$ the new enumeration and let $I_{i}=\beta^{-1}\left(P_{i}\right), i=1,2, \ldots, m$.
(b) Define the functions

$$
x_{n+k}(t)=a_{k}(t) z(t), \quad t \in \Omega, \quad k=1,2, \ldots, m-n
$$

where a_{k} is the characteristic function of I_{n+k}.
(c) $Z=\left[x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m}\right]$.

The proof of the above theorem is the same with the proof of Theorem 3.7, in [15].

4.2. MINIMAL LATTICE-SUBSPACES

Suppose that $L(X)$ is the set of lattice-subspaces of \mathbb{R}^{Ω} which contain X. (Recall that X is the subspace of \mathbb{R}^{Ω} generated by the functions $x_{1}, x_{2}, \ldots, x_{n}$). If $Y \in$ $L(X)$ and for any proper subspace Z of Y we have that $Z \notin L(X)$, then we say that Y is a minimal lattice-subspace of \mathbb{R}^{Ω} containing $x_{1}, x_{2}, \ldots, x_{n}$. We study the problem: Does a finite-dimensional minimal lattice-subspace of \mathbb{R}^{Ω} containing $x_{1}, x_{2}, \ldots, x_{n}$ exist?

THEOREM 8 ([15], Theorem 3.8). Let Y be an l-dimensional lattice-subspace of \mathbb{R}^{Ω} containing $x_{1}, x_{2}, \ldots, x_{n}$. Suppose that $\left\{b_{1}, b_{2}, \ldots, b_{l}\right\}$ is a positive basis of Y,

$$
\begin{aligned}
x_{i} & =\sum_{j=1}^{l} \lambda_{i j} b_{j}, \quad i=1,2, \ldots, n, \\
\sigma_{i} & =\sum_{j=1}^{n} \lambda_{j i}, \quad i=1,2, \ldots, l, \\
\Phi & =\left\{i \in\{1,2, \ldots, l\} \mid \sigma_{i} \neq 0\right\}, \\
P_{i} & =\frac{1}{\sigma_{i}}\left(\lambda_{1 i}, \lambda_{2 i}, \ldots, \lambda_{n i}\right), \quad i \in \Phi
\end{aligned}
$$

and K is the convex hull of $\overline{R(\beta)}$. Then
(i) $P_{i} \in \overline{R(\beta)}$ for each $i \in \Phi$.
(ii) K is a polytope with vertices $P_{i_{1}}, P_{i_{2}}, \ldots, P_{i_{m}}$ where $n \leqslant m \leqslant l$ and $i_{v} \in \Phi$ for each $v=1,2, \ldots, m$.

THEOREM 9 (Construction of a minimal lattice-subspace). Let the set $K=\mathrm{co}$ $\overline{R(\beta)}$ be a polytope with vertices $P_{1}, P_{2}, \ldots, P_{m}$. Suppose that the n first vertices $P_{1}, P_{2}, \ldots, P_{n}$ of K are linearly independent. ${ }^{1}$ Suppose also that $\xi_{i}, i=$ $1,2, \ldots, m$ are positive, real-valued functions defined on $D(\beta)$ such that $\sum_{i=1}^{m}$ $\xi_{i}(t)=1$ and $\beta(t)=\sum_{i=1}^{m} \xi_{i}(t) P_{i}$, for each $t \in D(\beta)$. Let $x_{n+i}, i=1,2, \ldots, m-$ n be the functions $x_{n+i}(t)=\xi_{n+i}(t) z(t)$ for each $t \in D(\beta)$ and $x_{n+i}(t)=0$ if $t \notin D(\beta)$. Then

$$
Y=\left[x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m}\right]
$$

is a minimal lattice-subspace of \mathbb{R}^{Ω} containing $x_{1}, x_{2}, \ldots, x_{n}$ and $\operatorname{dim} Y=m$.

[^6]A positive basis $\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ of Y is given by the formula

$$
\begin{equation*}
\left(b_{1}, b_{2}, \ldots, b_{m}\right)^{T}=D^{-1}\left(x_{1}, x_{2}, \ldots, x_{m}\right)^{T} \tag{4.5}
\end{equation*}
$$

where D is the $m \times m$ matrix with columns the vectors

$$
\begin{equation*}
R_{i}=\frac{M_{i}}{\left\|M_{i}\right\|_{1}}, i=1,2, \ldots, m \tag{4.6}
\end{equation*}
$$

with $M_{i}=\left(P_{i}, 0\right)$ for $i=1,2, \ldots, n$ and $M_{i}=\left(P_{n+i}, e_{i}\right)$ for $i=1,2, \ldots, m-n$.1

Proof. The proof is the same with the proof of Theorem 3.10 of [15].
The next result says that all the finite-dimensional minimal lattice-subspaces containing X are of the same dimension.

THEOREM 10 ([15], Theorem 3.20). Let $K=\operatorname{co} \overline{R(\beta)}$ and let L be the set of finite-dimensional minimal lattice-subspaces of \mathbb{R}^{Ω} containing $x_{1}, x_{2}, \ldots, x_{n}$. Then the following statements are equivalent:
(i) K is a polytope with m vertices.
(ii) $L \neq \emptyset$ and $\operatorname{dim} Y=m$, for each $Y \in L$.
(iii) $L \neq \emptyset$.

4.3. THE DERIVATIVE CRITERION

In general it is difficult to study if K is a polytope or not and if it is it is also difficult to determine its vertices. The derivative criterion says that if K a polytope and $\beta\left(t_{0}\right)$ is a vertex of K, then the derivative of the restriction of β at any curve of Ω having t_{0} as an interior point is equal to zero, whenever the derivative exists. We start with a more general criterion for the case where the functions are not differentiable.

THEOREM 11. Let K be a polytope and let $\beta\left(t_{0}\right)$ be a vertex of K. Suppose that $\left\{a_{r}\right\}$ is a sequence of real numbers convergent to zero with $a_{2 r}>0$ and $a_{2 r+1}<0$ for each r and suppose also that $\left\{t_{r}\right\}$ is a sequence of Ω. If $\lim _{r \rightarrow \infty} \frac{\beta\left(t_{r}\right)-\beta\left(t_{0}\right)}{a_{r}}=$ $\ell, \ell \in \mathbb{R}^{n}$, then $\ell=0$.

Proof. Let $\lim _{r \rightarrow \infty} \frac{\beta\left(t_{r}\right)-\beta\left(t_{0}\right)}{a_{r}}=\ell \neq 0$. Then there exists r_{0} such that $\beta\left(t_{r}\right) \neq$ $\beta\left(t_{0}\right)$ for each $r>r_{0}$. Hence

$$
\lim _{r \rightarrow \infty} \frac{\beta\left(t_{2 r}\right)-\beta\left(t_{0}\right)}{\left\|\beta\left(t_{2 r}\right)-\beta\left(t_{0}\right)\right\|}=\lim _{r \rightarrow \infty} \frac{\beta\left(t_{2 r}\right)-\beta\left(t_{0}\right)}{a_{2 r}} \cdot \lim _{r \rightarrow \infty} \frac{1}{\left\|\frac{\beta\left(t_{2 r}\right)-\beta\left(t_{0}\right)}{a_{2 r}}\right\|}=\frac{\ell}{\|\ell\|}
$$

[^7]and similarly
$$
\lim _{r \rightarrow \infty} \frac{\beta\left(t_{2 r+1}\right)-\beta\left(t_{0}\right)}{\left\|\beta\left(t_{2 r+1}\right)-\beta\left(t_{0}\right)\right\|}=-\frac{\ell}{\|\ell\|}
$$
because
$$
\left\|\frac{\beta\left(t_{2 r+1}\right)-\beta\left(t_{0}\right)}{a_{2 r+1}}\right\|=-\frac{\left\|\beta\left(t_{2 r+1}\right)-\beta\left(t_{0}\right)\right\|}{a_{2 r+1}}
$$

Since $\beta\left(t_{0}\right)$ is a vertex of K it is easy to show that there exists a real number $\rho>0$ such that

$$
\beta\left(t_{0}\right)+\rho \frac{\xi-\beta\left(t_{0}\right)}{\left\|\xi-\beta\left(t_{0}\right)\right\|} \in K, \quad \text { for each } \xi \in K, \xi \neq \beta\left(t_{0}\right)
$$

therefore

$$
\lim _{r \rightarrow \infty}\left(\beta\left(t_{0}\right)+\rho \frac{\beta\left(t_{2 r}\right)-\beta\left(t_{0}\right)}{\left\|\beta\left(t_{2 r}\right)-\beta\left(t_{0}\right)\right\|}\right)=\beta\left(t_{0}\right)+\rho \frac{\ell}{\|\ell\|}=z_{1} \in K
$$

and

$$
\lim _{r \rightarrow \infty}\left(\beta\left(t_{0}\right)+\rho \frac{\beta\left(t_{2 r+1}\right)-\beta\left(t_{0}\right)}{\left\|\beta\left(t_{2 r+1}\right)-\beta\left(t_{0}\right)\right\|}\right)=\beta\left(t_{0}\right)-\rho \frac{\ell}{\|\ell\|}=z_{2} \in K
$$

Hence $\beta\left(t_{0}\right)=\frac{1}{2}\left(z_{1}+z_{2}\right)$, contradiction. Therefore $\ell=0$.
COROLLARY 1 (The derivative criterion). Let K be a polytope and let $\beta\left(t_{0}\right)$ be a vertex of K. Suppose that σ is a function defined on the real interval $(-\epsilon, \epsilon)$ with values in Ω with $\sigma(0)=t_{0}$ and suppose that $\varphi=\beta$ o σ is the composition of σ, β. Then

$$
\varphi^{\prime}(0)=0
$$

whenever the derivative $\varphi^{\prime}(0)$ of φ at the point 0 exists.
REMARK 12. Suppose that the assumptions of the derivative criterion are satisfied and that the range of β is closed. Then $K=\operatorname{coR}(\beta)$, therefore the extreme points of K are images of elements of Ω. The following remarks show the way we study if K is a polytope or not.

In the simplest case where Ω is the real interval $[a, b]$ we proceed as follows: suppose that K is a polytope and $\beta\left(t_{0}\right)$ is a vertex of K. Then $\beta^{\prime}\left(t_{0}\right)=0$ or t_{0} is not an interior point of $[a, b]$ therefore the vertices of K belong to the set

$$
G=\left\{\beta(t) \mid t \quad \text { is a root of the equation } \beta^{\prime}(t)=0 \text { or } t=a \text { or } t=b\right\}
$$

So in order to study if K is a polytope or not we solve the equation $\beta^{\prime}(t)=0$ and determine G. In the sequel we study if a finite and minimal subset Φ of G exists
such that each $\beta(t)$ is a convex combination of elements of Φ. If a such set Φ exists, then K is a polytope and the elements of Φ are the vertices of K, therefore a minimal lattice-subspace is determined by Theorem 9.

If Ω is a convex subset of \mathbb{R}^{l} the situation is analogous but more complicated. So if we suppose that K is a polytope and $\beta\left(t_{0}\right)$ is a vertex of K we have: If t_{0} is an interior point of Ω, then the partial derivatives of β at the point t_{0} are equal to zero and if t_{0} belongs to the boundary $\vartheta(\Omega)$ of Ω, then the derivative at t_{0} of the restriction of β at any differentiable curve of $\vartheta(\Omega)$ having t_{0} as an interior point is equal to zero. Hence the points t_{0} of Ω whose the images $\beta\left(t_{0}\right)$ are vertices of K can be obtained as solutions of a system of equations or they are extreme points of Ω which cannot be interior points of a differentiable curve of Ω.

If for example Ω is the square $[0,1] \times[0,1]$ of \mathbb{R}^{2}, and $\beta\left(t_{0}\right)$ is a vertex of K, then t_{0} is:
(i) a root of the system of equations $D_{1} \beta(t)=0, D_{2} \beta(t)=0^{1}$ (if t_{0} is an interior point of Ω), or
(ii) a root of an equation $D_{i} \beta(t)=0$ (if t_{0} is an interior point of an edge of Ω), or
(iii) t_{0} is a vertex of the square.

If Ω is the circle of \mathbb{R}^{2} with center 0 and radius 1 , the restriction of β on the boundary of Ω is $\sigma(\vartheta)=\beta(\cos \vartheta, \sin \vartheta)$, therefore the vertices of K are of the form $\beta\left(t_{0}\right)$, where t_{0} is a root of the system $D_{1} \beta(t)=0, D_{2} \beta(t)=0$, or $t_{0}=\sigma\left(\vartheta_{0}\right)$ with $\sigma^{\prime}\left(\vartheta_{0}\right)=0$.

5. Linear functions

In this section we suppose also that $x_{1}, x_{2}, \ldots, x_{n}$ are linearly independent positive elements of \mathbb{R}^{Ω}, z is the sum of x_{i} and X is the subspace of \mathbb{R}^{Ω} generated by the functions x_{i} but we add the assumption that Ω is a convex set and the functions x_{i} are linear, i.e.,

$$
x_{i}\left(\sum_{k=1}^{m} \lambda_{k} t_{k}\right)=\sum_{k=1}^{m} \lambda_{k} x_{i}\left(t_{k}\right)
$$

for each convex combination $\sum_{k=1}^{m} \lambda_{k} t_{k}$ of Ω and $x_{i}(\lambda t)=\lambda x_{i}(t)$, for each positive real number λ with $t, \lambda t \in \Omega$.

We denote also by β the basic function of the elements x_{i} and by K the convex hull of the closure of the range of β. The domain $D(\beta)$ of β is convex because $D(\beta)=\{t \in \Omega \quad$ with $z(t)>0\}$ and the function z is linear.

THEOREM 13. Suppose that $x_{1}, x_{2}, \ldots, x_{n}$ are linear functions. Then
(i) the basic function β is homogeneous of degree zero in the sense that $\beta(\lambda t)=$ $\beta(t)$ for each positive real number λ with $t, \lambda t \in D(\beta)$.

[^8](ii) for each positive, linear combination $t=\sum_{k=1}^{m} \lambda_{k} t_{k} \in D(\beta)$ of elements of $D(\beta)$ we have
$$
\beta(t)=\sum_{k=1}^{m} \frac{\lambda_{k} z\left(t_{k}\right)}{z(t)} \beta\left(t_{k}\right)
$$
therefore $\beta(t)$ is a convex combination of the vectors $\beta\left(t_{i}\right), i=1,2, \ldots, m$.
(iii) If $t=t_{1}+t_{2}$ with $t_{1}, t_{2} \in \Omega, z(t)>0$ and $z\left(t_{2}\right)=0$, then $\beta(t)=\beta\left(t_{1}\right)$.
(iv) Let τ be a topology on Ω and suppose that $T=\left\{t_{i}, i \in I\right\}$ and A are subsets of the domain $D(\beta)$ of β.
(a) If A is contained in the positive linear span of ${ }^{1} T$, then the image $\beta(A)$ of A is contained in the convex hull of the set $\left\{\beta\left(t_{i}\right) \mid i \in I\right\}$.
(b) If A is contained in the τ-closure Ψ of the positive linear span of T and the basic function β is τ-continuous on Ψ, then the image $\beta(A)$ of A is contained in the closed convex hull of the set $\left\{\beta\left(t_{i}\right), i \in I\right\}$.
Proof. Statement (i) is an easy consequence of the linearity of x_{i}. To prove (ii) suppose that $r(\omega)=\left(x_{1}(\omega), x_{2}(\omega), \ldots, x_{n}(\omega)\right), \omega \in \Omega$. Then we have:
$$
\beta(t)=\frac{r(t)}{z(t)}=\frac{1}{z(t)} \sum_{k=1}^{m} \lambda_{k} r\left(t_{k}\right)=\frac{1}{z(t)} \sum_{k=1}^{m} \lambda_{k} z\left(t_{k}\right) \beta\left(t_{k}\right)=\sum_{k=1}^{m} \frac{\lambda_{k} z\left(t_{k}\right)}{z(t)} \beta\left(t_{k}\right)
$$

Statement (iii) is also true because if we suppose that $z\left(t_{2}\right)=0$, then by the fact that the functions x_{i} are positive we have $x_{i}\left(t_{2}\right)=0$ for each i, therefore $z(t)=z\left(t_{1}\right)$ and $x_{i}(t)=x_{i}\left(t_{1}\right)$, for each i. Hence $\beta(t)=\beta\left(t_{1}\right)$. Statement (iv) is proved as follows: Suppose that each $t \in A$ is a positive linear combination of elements of T. Then by $(i i), \beta(t)$ is a convex combination of $\beta\left(t_{i}\right)$, therefore $\beta(A) \subseteq \operatorname{co}\left\{\beta\left(t_{i}\right) \mid i \in I\right\}$. In the case (b), each element $t \in A$ is the limit of a net $\left\{\omega_{\alpha}\right\}$ where ω_{α} is a positive linear combination of t_{i}, therefore $\beta\left(\omega_{\alpha}\right)$ is a convex combination of elements of $\beta(T)$ and by the continuity of β on Ψ we have that $\beta(t)$ belongs to the closed convex hull of the set $\left\{\beta\left(t_{i}\right) \mid i \in I\right\}$, therefore (b) is also true.

COROLLARY 2. Suppose that $x_{1}, x_{2}, \ldots, x_{n}$ are linear functions and that $\beta\left(t_{0}\right)$ is an extreme point of K. Then t_{0} is an extreme point of $D(\beta)$ or t_{0} has the property: If c is a line segment of $D(\beta)$, having t_{0} as an interior point, then the function β is constant on c and also

$$
\frac{x_{j}(t)}{x_{i}(t)}=\frac{x_{j}\left(t_{0}\right)}{x_{i}\left(t_{0}\right)}, \quad \text { for each } t \in c \text { and each } j, i \text { with } x_{i}\left(t_{0}\right) \neq 0
$$

Proof. Suppose that t_{0} as an interior point of a line segment c and that $t_{1} \in c$ with $t_{1} \neq t_{0}$. Then t_{0} is a convex combination $t_{0}=\lambda_{1} t_{1}+\lambda_{2} t_{2}$ with $t_{2} \in c$, therefore

[^9]$\beta\left(t_{0}\right)=\lambda_{1} \frac{z\left(t_{1}\right)}{z\left(t_{0}\right)} \beta\left(t_{1}\right)+\lambda_{2} \frac{z\left(t_{2}\right)}{z\left(t_{0}\right)} \beta\left(t_{2}\right)$, hence $\beta\left(t_{1}\right)=\beta\left(t_{2}\right)=\beta\left(t_{0}\right)$ because $\beta\left(t_{0}\right)$ is an extreme point of K. Therefore $\beta(t)=\beta\left(t_{0}\right)$, for each $t \in c$. So we have that $x_{k}(t) / z(t)=x_{k}\left(t_{0}\right) / z\left(t_{0}\right)$, for each $t \in c$ and for each k, therefore $x_{j}(t) / x_{i}(t)=$ $x_{j}\left(t_{0}\right) / x_{i}\left(t_{0}\right)$.

Suppose that Y is an ordered space. A set S is an absorbing subset of Y_{+}if $S \subseteq Y_{+}$ and for each $y \in Y_{+}, y \neq 0$, there exists a real number $\lambda>0$ such that $\lambda y \in S$. The positive cone Y_{+}, and also each base for the cone $Y_{+}{ }^{1}$ of Y are absorbing subsets of Y_{+}. If Y is an ordered normed space the positive part $U_{Y}^{+}=\left\{y \in Y_{+} \mid\|y\| \leqslant 1\right\}$ of the closed unit ball of Y is an absorbing subset of Y_{+}and if e is an order unite of Y, the order interval $[0, e]$ of Y is also an absorbing subset of Y_{+}.

DEFINITION 14. A dual system $\langle Y, G\rangle$ is ${ }^{2}$ an ordered dual system if Y, G are ordered spaces with

$$
\begin{aligned}
& Y_{+}=\left\{y \in Y \mid\langle y, g\rangle \geqslant 0 \text { for each } g \in G_{+}\right\} \text {and } \\
& G_{+}=\left\{g \in G \mid\langle y, g\rangle \geqslant 0 \text { for each } y \in Y_{+}\right\}
\end{aligned}
$$

Suppose $\langle Y, G\rangle$ is an ordered dual system and suppose that Ω is a convex and absorbing subset of Y_{+}.

Any element of G can be considered as an element of \mathbb{R}^{Ω} but the equality in G and equality in \mathbb{R}^{Ω} are not the same. If for example we suppose that $g_{1}, g_{2} \in G$, then $g_{1}=g_{2}$ in G, if and only if $\left\langle y, g_{1}\right\rangle=\left\langle y, g_{2}\right\rangle$ for each $y \in Y$ and $g_{1}=g_{2}$ in \mathbb{R}^{Ω}, if and only if $g_{1}(t)=g_{2}(t)$ for each $t \in \Omega$. It is clear that the equality in G implies equality in \mathbb{R}^{Ω} but the converse is not true in general. If the cone Y_{+}is generating (i.e. $Y=Y_{+}-Y_{+}$) it is easy to show that the two equalities are equivalent, therefore then we can identify algebraically G with a subspace of \mathbb{R}^{Ω}. If for example Y is a Banach lattice, then the cone Y_{+}is generating therefore we may suppose that G is a subspace of \mathbb{R}^{Ω}. For the space Y hold also similar results.

Suppose that $x_{1}, x_{2}, \ldots, x_{n}$ are linearly independent positive elements of G and that X is the subspace of \mathbb{R}^{Ω} generated by these functions. As before, the basic function of the elements x_{i} is

$$
\beta(t)=\left(\frac{x_{1}(t)}{z(t)}, \frac{x_{2}(t)}{z(t)}, \ldots, \frac{x_{n}(t)}{z(t)}\right), t \in \Omega \text { with } z(t)>0
$$

where z is the sum of the elements x_{i}.
Also we denote by $D(\beta)$ the domain, by $R(\beta)$ the range of β and by K the convex hull of the closure of $R(\beta)$.

[^10]THEOREM 15. Let $\langle Y, G\rangle$ be an ordered dual system. Suppose that G is an ordered normed space and Y the topological dual of G.
(i) If $\Omega=U_{Y}^{+}$, then $K \subseteq \overline{c o}\left\{\beta(t) \mid t \in e p\left(U_{Y}^{+}\right)\right\}$.
(ii) If e is an order unite of Y, the cone Y_{+}is normal and $\Omega=[0, e]$, then $K \subseteq$ $\overline{c o}\left\{\beta(t) \mid t \in L_{e}\right\}$, where L_{e} is the Boolean algebra of components of ${ }^{3} e$. Proof. Suppose that τ is the $\sigma(Y, G)$ topology of Y.
(i) The positive cone Y_{+}of Y is τ-closed, therefore the positive part U_{Y}^{+}of the closed unit ball of Y is τ-compact, hence U_{Y}^{+}is the τ-closed convex hull of its extreme points. Therefore by Theorem 13, $K \subseteq \overline{c o}\left\{\beta(t) \mid t \in e p\left(U_{Y}^{+}\right)\right\}$.
(ii) Since e is an order unit, the order interval $[0, e]$ is an absorbing subset of Y_{+}. Also $[0, e]$ is norm-bounded therefore it is τ-compact, hence $K \subseteq \overline{c o}\{\beta(t) \mid$ $\left.t \in L_{e}\right\}$.

THEOREM 16. Let $\langle Y, G\rangle$ be an ordered dual system. Suppose that Y is a Banach lattice with a positive basis $\left\{d_{i}\right\}$ with $\left\|d_{i}\right\|=1$, for each i and suppose also that $\Omega=U_{Y}^{+}$. If $x_{1}, x_{2}, \ldots, x_{n}$ are linearly independent positive elements of G and β is the basic function of the vectors x_{i}, then

$$
R(\beta) \subseteq \overline{c o}\left\{\beta\left(d_{i}\right) \mid i \in \Phi\right\}
$$

where $\Phi=\left\{i \in \mathbb{N} \mid d_{i} \in D(\beta)\right\}$.
If Y is an m-dimensional space with a positive basis $\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$, then

$$
K=\operatorname{co}\left\{\beta\left(d_{i}\right) \mid i \in \Phi\right\}
$$

where $\Phi=\left\{i \in\{1,2, \ldots, m\} \mid d_{i} \in D(\beta)\right\}$, therefore K is a polytope and a finite dimensional minimal lattice subspace of \mathbb{R}^{Ω} which contains the elements x_{i} exists and is determined by Theorem 9.

Proof. The positive cone Y_{+}of Y is generating and normal, therefore the basis $\left\{b_{i}\right\}$ is unconditional, [17], Theorem 16.3. Let Y_{1} be the closed linear span of the vectors $d_{i}, i \in \Phi$. Then Y_{1} is a closed sublattice of Y and each element y of Y has a unique expression $y=y_{1}+y_{2}$, with $y_{1} \in Y_{1}$ and $y_{2} \in Y_{2}$, where Y_{2} is the closed linear span of the vectors $d_{i}, i \notin \Phi$. It is clear that $z\left(y_{2}\right)=0$, therefore $\beta(y)=$ $\beta\left(y_{1}\right)$ by statement (iii) of Theorem 13 , hence $R(\beta)=\beta\left(U_{Y}^{+} \cap\left(Y_{1}^{+} \backslash\{0\}\right)\right)$. Since each positive linear functional of a Banach lattice is continuous, [5], Theorem 12.3, the x_{i} are continuous linear functionals of Y. Since each element of Y_{1}^{+}is limit of a sequence of positive linear combinations of elements of the basis $\left\{b_{i} \mid i \in \Phi\right\}$, by statement $(i v)$ of the Theorem 13 we have that

$$
R(\beta) \subseteq \overline{c o}\left\{\beta\left(d_{i}\right) \mid i \in \Phi\right\}
$$

therefore the first part of the Theorem is true.
Suppose now that $\operatorname{dim} Y=m$ and $\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ is a positive basis of Y. As we have shown above $R(\beta) \subseteq \overline{c o}\left\{\beta\left(d_{i}\right) \mid i \in \Phi\right\}$. Since the set Φ is finite,

[^11]$\operatorname{co}\left\{\beta\left(d_{i}\right) \mid i \in \Phi\right\}$ is closed therefore $\overline{R(\beta)}$ is contained in the set $\operatorname{co\{ } \beta\left(d_{i}\right) \mid i \in$ $\Phi\}$, hence $K=\operatorname{co}\left\{\beta\left(d_{i}\right) \mid i \in \Phi\right\}$. Therefore K is a polytope and the Theorem is true.

EXAMPLE 17. Suppose that X is the subspace of ℓ_{∞} generated by the vectors x_{1}, x_{2}, x_{3}, where

$$
\begin{aligned}
& x_{1}(3 n)=\frac{n^{2}+n+2}{n^{2}}, x_{1}(3 n+1)=\frac{n^{2}+n+2}{n^{2}}, x_{1}(3 n+2)=\frac{n^{2}+n+2}{n^{2}}, \\
& x_{2}(3 n)=\frac{n^{2}+3}{n^{2}}, x_{2}(3 n+1)=\frac{2 n+1}{n^{2}}, x_{2}(3 n+2)=\frac{2 n^{2}+n+2}{n^{2}}, \\
& x_{3}(3 n)=\frac{2 n^{2}+n+2}{n^{2}}, x_{3}(3 n+1)=\frac{n^{2}+3}{n^{2}}, x_{3}(3 n+2)=\frac{2 n+1}{n^{2}} .
\end{aligned}
$$

Consider the dual system $\left\langle\ell_{1}, \ell_{\infty}\right\rangle$ and suppose that $\left\{e_{i}\right\}$ is the usual basis of ℓ_{1}. By Theorem 16 we have that $K \subseteq \overline{c o}\left\{\beta\left(e_{i}\right)\right\}$. It is easy to see that

$$
\begin{aligned}
& \beta\left(e_{3 n}\right)=\frac{1}{4 n^{2}+2 n+7}\left(n^{2}+n+2, n^{2}+3,2 n^{2}+n+2\right), \\
& \beta\left(e_{3 n+1}\right)=\frac{1}{2 n^{2}+3 n+6}\left(n^{2}+n+2,2 n+1, n^{2}+3\right) \text { and } \\
& \beta\left(e_{3 n+2}\right)=\frac{1}{3 n^{2}+4 n+5}\left(n^{2}+n+2,2 n^{2}+n+2,2 n+1\right) .
\end{aligned}
$$

The vectors $\lim _{n \rightarrow \infty} \beta\left(e_{3 n}\right)=\frac{1}{4}(1,1,2), \lim _{n \rightarrow \infty} \beta\left(e_{3 n+1}\right)=\frac{1}{2}(1,0,1)$ and $\lim _{n \rightarrow \infty} \beta\left(e_{3 n+2}\right)=\frac{1}{3}(1,2,0)$, belong to $\overline{R(\beta)}$. We remark that the second and third coordinate of the vectors $\beta\left(e_{i}\right)$ are greater than zero and also that the first coordinate of these vectors is greater than $\frac{1}{4}$. After these remarks we show that each $\beta\left(b_{i}\right)$ is a convex combination of the vectors $\frac{1}{4}(1,1,2), \frac{1}{2}(1,0,1), \frac{1}{3}(1,2,0)$, therefore K is a simplex and X a lattice-subspace. A positive basis of X is given by the formula $\left(b_{1}, b_{2}, b_{3}\right)^{T}=A^{-1}\left(x_{1}, x_{2}, x_{3}\right)^{T}$, where A is the matrix with columns the vectors $\frac{1}{4}(1,1,2), \frac{1}{2}(1,0,1), \frac{1}{3}(1,2,0)$. So we find that $b_{1}=\frac{4}{3}\left(-2 x_{1}+x_{2}+\right.$ $\left.2 x_{3}\right), b_{2}=\frac{2}{3}\left(4 x_{1}-2 x_{2}-x_{3}\right)$ and $b_{3}=x_{1}+x_{2}-x_{3}$ is a positive basis of X.

References

1. Abramovich, Y. A., Aliprantis, C. D. and Polyrakis, I. A.: Lattice-subspaces and positive projections, Proc. R. Ir. Acad. 94 A (1994), 237-253.
2. Aliprantis, C. D., Brown, D. and Burkinshaw, O.: Existence and Optimality in Competitive Equilibria. Springer-Verlag, Heidelberg \& New York, 1990.
3. Aliprantis, C. D., Brown, D., Polyrakis, I. and Werner, J.: Portfolio dominance and optimality in infinite security markets, J. Mathematical Economics 30 (1998), 347-366.
4. Aliprantis, C. D., Brown, D. and Werner, J.: Minimum-Cost Portfolio Insurance, J. Economic Dynamics and Control 24 (2000), 1703-1719.
5. Aliprantis, C. D., and Burkinshaw, O.: Positive Operators, Academic Press, New York \& London, 1985.
6. Donner, K.Extensions of positive operators and Korovkin theorems, Lecture Notes in Mathematics 704, Springer-Verlag, Heidelberg \& New York, 1982.
7. Ghoussoub, N.: Positive embeddings of $C(\Delta), l_{1}, l_{1}(\Gamma)$, and $\left(\sum_{n} \oplus l_{\infty}^{n}\right)_{l_{1}}$, Mathematische Annalen 262 (1983), 461-472.
8. Jameson, G. J. O.: Ordered Linear Spaces, Lecture Notes in Mathematics 142, Springer-Verlag, Heidelberg \& New York, 1970.
9. Jameson, G. J. O. and Pinkus, A.: Positive and minimal projections in function spaces, Journal of Approximation Theory 37 (1983), 182-195.
10. Meyer-Nierberg, P.: Banach lattices, Springer-Verlag, Berlin, 1991.
11. Miyajima, S.: Structure of Banach quasi-sublattices, Hokkaido Math. J. 11 (1983), 83-91.
12. Polyrakis, I. A.: Lattice Banach spaces order-isomorphic to ℓ_{1}, Math. Proc. Cambridge Phil. Soc. 34 (1983), 519-522.
13. Polyrakis, I. A.: Lattice-subspaces of $C[0,1]$ and positive bases, J. Math. Anal. Appl. 184 (1994), 1-14.
14. Polyrakis, I. A.: Finite-dimentional lattice-subspaces of $C(\Omega)$ and curves of \mathbb{R}^{n}, Trans. American Math. Soc. 384 (1996), 2793-2810.
15. Polyrakis, I. A.: Minimal lattice-subspaces, Trans. American Math. Soc. 351 (1999), 41834203.
16. Polyrakis, I. A.: A New Method of Optimization, (to appear).
17. Singer, I.: Schauder Bases in Banach Spaces - I, Springer-Verlag, Heidelberg \& New York, 1970.

[^0]: \star This article is dedicated to the memory of my Father Andreas.
 1 In Example 3.18 of [15], [D] is three-dimensional subspace of $C(\Omega),[D]$ is not a latticesubspace, $S(D)$ is dense in $C(\Omega)$ and a four-dimensional lattice-subspace containing D exists.

[^1]: ${ }^{1}$ For example Ω is the whole cone Y_{+}or the positive part U_{Y}^{+}of the closed unit ball of Y whenever Y is a normed space.

[^2]: $1 x \vee_{X} y=z$ if and only if $z \in X, z \geqslant x, y$ and for each $w \in X, w \geqslant x, y$ implies $w \geqslant z$.
 2 Lattice-subspaces appear in the work of many authors in their attempt to study the subspaces X of a vector lattice E which are the range of a positive projection P, i.e., $X=P(E)$. Then it is easy to show that X is a lattice-subspace with $x \vee_{X} y=P(x \vee y)$, for each $x, y \in X$ but as it is remarked in [1], there are even finite-dimensional lattice-subspaces which are not the range of a positive projection. For results on this special class of lattice-subspaces (which are the range of a positive projection) see in [6, 7, 9]. The notion of the lattice-subspace was introduced by Polyrakis in [12] where it is proved that each infinite dimensional closed lattice-subspace of ℓ_{1} is order-isomorphic to ℓ_{1}. At the same time the notion of the lattice-subspace was introduced independently by Miyajima in [11], where the term 'quasi sublattice' is used and it is proved that X is a lattice-subspace if and only if X is the range of a positive projection from the sublattice $S(X)$ generated by X onto X. In [13], it is proved that each separable Banach lattice is order-isomorphic to a closed lattice-subspace of $C[0,1]$, therefore $C[0,1]$ is also a universal Banach lattice. Since the class of sublattices is not enough for this representation this result shows the importance of lattice-subspaces in the geometry of Banach lattices. In 1992 C. Aliprantis and D. Brown understood the meaning of lattice-subspaces in economics and posed the problem of the study of finite-dimensional lattice-subspaces. This problem is interesting, even in \mathbb{R}^{n}, because many economic models, as the famous Arrow-Debreu model, are finite. This problem was the motivation for [1], where the lattice-subspaces of \mathbb{R}^{n} are studied.

[^3]: ${ }^{1}$ I.e., there exists a linear operator T of Y onto \mathbb{R}^{n} with the property: $y \in Y_{+}$if and only if $T(y) \in \mathbb{R}_{+}^{n}$.

[^4]: ${ }^{2}$ We suppose also that E is a Banach space with respect to some norm which is defined on E.

[^5]: ${ }^{1}$ If Ω is an interval of the real line, then γ defines a curve in Δ_{n}. For this reason γ is referred also as the basic curve of the functions x_{i}.

[^6]: ${ }^{1}$ Such an enumeration of the vertices of K exists by Lemma 5.

[^7]: ${ }^{1}\left(P_{i}, 0\right),\left(P_{n+i}, e_{i}\right)$ are the vectors of \mathbb{R}^{m} whose the n first coordinates are the corresponding coordinates of P_{i} and the other are the coordinates of zero, of e_{i} respectively, where $\left\{e_{k}\right\}$ is the usual basis of \mathbb{R}^{m-n}. Also $\left\|M_{i}\right\|_{1}$ is the ℓ_{1}-norm of M_{i}.

[^8]: ${ }^{1} D_{i}$ is the operator of the $i^{t h}$ partial derivative.

[^9]: ${ }^{1}$ The positive linear span of T is the set of positive linear combinations of elements of T

[^10]: 1 Any subset $B=\left\{y \in Y_{+} \mid f(y)=1\right\}$, where f is a strictly positive linear functional of Y is a base for the cone Y_{+}.

 2 Remind that in any dual system $\langle Y, G\rangle, G$ separates the points of Y and conversely.

[^11]: ${ }^{3}$ I.e. L_{e} is the set of extreme points of $[0, e]$.

