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MINIMAL LATTICE-SUBSPACES

IOANNIS A. POLYRAKIS

ABSTRACT. In this paper the existence of minimal lattice-subspaces of a vector
lattice E containing a subset B of F. is studied (a lattice-subspace of F is a
subspace of F which is a vector lattice in the induced ordering). It is proved
that if there exists a Lebesgue linear topology 7 on E and E. is 7-closed
(especially if E is a Banach lattice with order continuous norm), then minimal
lattice-subspaces with 7-closed positive cone exist (Theorem 2.5).

In the sequel it is supposed that B = {z1,z2,... ,%n} is a finite subset
of C4(2), where 2 is a compact, Hausdorff topological space, the functions
x; are linearly independent and the existence of finite-dimensional minimal
lattice-subspaces is studied. To this end we define the function 3(t) = TFT(%)TIT
where r(t) = (z1(t),2z2(t),... ,zn(t)). If R(B) is the range of 3 and K the
convex hull of the closure of R((), it is proved:

(i) There exists an m-dimensional minimal lattice-subspace containing B if
and only if K is a polytope of R™ with m vertices (Theorem 3.20).
(ii) The sublattice generated by B is an m-dimensional subspace if and only
it the set R(8) contains exactly m points (Theorem 3.7).
This study defines an algorithm which determines whether a finite-dimensional
minimal lattice-subspace (sublattice) exists and also determines these sub-
spaces.

1. INTRODUCTION

It is known that C[0,1] is a universal Banach space in the sense that every
separable Banach space is isometric to a closed subspace of C'[0,1]. In [11] it is
shown that each separable Banach lattice is order-isomorphic to a closed lattice-
subspace of €0, 1]; therefore C[0,1] is also a universal Banach lattice. Since the
sublattices of C[0,1] are not enough for this representation, the lattice-subspaces
seems to be the right class of subspaces for studying Banach lattices.

The structure of lattice-subspaces has not been systematically studied. In [7] it
is shown that a subspace X of a vector lattice is a lattice-subspace if and only if
there exists a positive projection from the vector sublattice generated by X onto
X. In [10] and [11] the existence of positive bases in lattice-subspaces is studied. A
survey of lattice-subspaces and positive projections, as well as some new results, is
proved in [1]. In [12] the finite-dimensional lattice-subspaces of C(Q) are studied.

In the present paper the existence of minimal lattice-subspaces of a vector lattice
FE which contains a subset B of E is studied. In the theory of Banach lattices (and
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4184 I. A, POLYRAKIS

in applications) we are interested in a lattice-subspace of E containing B which is
as “close” as possible to the linear subspace [B] generated by B.

Such a subspace is the sublattice S(B) generated by B (note that S(B) is the
minimum sublattice containing B and also that S(B) = [B]Y — [B]Y where [B]Y
is the set of finite supremum of the elements of [B]) but S(B) is in general a
“big” subspace which is “very far’from [B]. In Example 3.18 [B] is 3-dimensional,
S(B) is dense in C'(2) but a 4-dimensional lattice-subspace containing B exists. In
Example 3.21 it is shown that a minimum lattice-subspace containing B does not
always exist.

An important question is “how far” a minimal lattice-subspace is from [B].
Motivated by this question we study the existence of finite-dimensional minimal
lattice-subspaces. Especially we suppose that B = {x;,23,...,2,} is a subset of
C 1 (Q), the vectors x; are linearly independent and we study the existence of finite-
dimensional minimal lattice-subspaces of C(2) containing B. In the framework
of this problem we study also the question whether S(B) is a finite-dimensional
subspace.

To study this problem we define the function 3(t) = #(t?}ﬁ where r(t) =
(x1(t), wa(t),... ,xn(t)). This function defines a curve in the simplex A, of R
which we call basic curve of the functions z; and is very important for our study.

In Theorem 3.7 it is proved that S(B) is finite-dimensional if and only if the
range R(3) of 8 is finite and a positive basis of S(B) is also determined. Hence we
can determine whether S(B) is finite-dimensional because it is very easy to check if
R(p) is finite or not. By the property that S(B) = [B]Y —[B]Y we cannot conclude
whether S(B) is finite-dimensional and also we cannot determine a positive basis
of S(B).

In Theorem 3.10 it is proved that if the convex hull K of the closure of R(f3)
is a polytope with m vertices, then an m-dimensional minimal lattice-subspace Y
exists and a positive basis of Y is given. The determination of the basis of YV is
based on the determination of the vertices of K.

In general it is difficult to study whether K is a polytope or not and determine
its vertices. In Corollary 3.15 it is proved that if K is a polytope, ((to) a vertex of
K and tq an interior point of a curve ¢ of (), then the derivative at ¢y, (whenever it
exists) of the restriction of 8 on ¢ is equal to zero. If for example 2 C R! and the
function [ is defined on the whole set €2, then the partial derivatives of § at ty are
equal to zero whenever tg is an interior point of 2 and the derivatives at ty of the
restriction of B on the parametric curves of 9(Q2) are equal to zero, if ty € 9(0).
Hence £y can be obtained as a solution of a system of equations.

This property helps us to determine a set of possible vertices of K, i.e., a subset
G of R™ which contains the vertices of K, whenever K is a polytope. After the
determination of G it is easier to study if K is a polytope or not (see Algorithm 3.17
and Example 3.18).

An interesting remark on the structure of the lattice-subspaces is also that a
minimal lattice-subspace containing B is not necessarily a subspace of S(B), Ex-
ample 3.21.

Recently lattice-subspaces have been employed in economics [2], [3].

Let E be a (partially) ordered vector space with positive cone F, and X a
subspace of E. The cone X N E, will be called the induced cone of X, and the
ordering defined in X by this cone the induced ordering. We will denote by X the
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induced cone of X, i.e., X1 = X N E. An ordered subspace of E is a subspace of
E ordered by the induced cone. A lattice-subspace of F is an ordered subspace of
E which is also a vector lattice (Riesz space).

Let X be a lattice-subspace of /. Then, for each z,y € X we will denote by
xVy (resp. = A y) the supremum (resp. infimum) of {z,y} in X. It is clear that

zVy<zVy and zAy<xAy

whenever xVy, z Ay exist. If £ is a vector lattice and xVy = xVy for any z,y € X
then X is a sublattice (Riesz subspace) of E. Let E be an ordered Banach space with
positive cone E,. A sequence {e,} is a positive basis of F if {e,} is a (Schauder)
basis of E and B = {z =2, \je; | A\; € Ry for each i}. A positive basis {e,}
of £ is unique (in the sense of a positive multiple). The following result (see [1] or
[12]) is very important for the study of finite-dimensional lattice-subspaces. It can
be proved either elementary or as a partial result of the Choquet-Kentall Theorem.

Theorem 1.1. A finite-dimensional ordered vector space I is a vector lattice if
and only if ' has a positive basis.

For notation and terminology not defined here we refer to [4, 6, 9].

2. MINIMAL LATTICE-SUBSPACES

Let E be a vector lattice and B C E,,B # (. Let L be the set of lattice-
subspaces of E, each of which contains B. If X € L and for any Y € L it holds:

YCX=Y=X,

then we will say that X is a minimal lattice-subspace of E containing B.

If F is a vector lattice, then the sublattice generated by B is the minimum
sublattice containing B.

As we will show later (Example 3.21) even if £ = R™ a minimum lattice-subspace
of E containing B does not always exist. So we state the following question:

Problem 2.1. Does a minimal lattice subspace of E containing B exist?

Let P be a cone of a linear space F' (i.e., P is a convex subset of F', Az € P for
eachx € P and A € Ry and PN(—P) = {0}). Suppose that =,y € P. If there exists
z € P with the properties: z — z,2 —y € P and for each w € P,w — z,w —y € P
imply that w — z € P, then we will say that z is the supremum of {z,y} in P and
we will denote

z =supp{z,y}.

The infimum of {z,y} in P is defined analogously. If for each z,y € P, z =
supp{z,y} exists, then infp{xz,y} also exists.

If P is a cone of a linear space F' and for each x,y € P the supremum of {z,y}
exists in P, then we will say that P is a lattice cone of F.

If £ = 21 — @2 where z1,29 € P, then it is easy to show that sup{z,0} =
supp{z1,z2} — 2 is the supremum of {xy,zs} in X = P — P. Therefore the
following result holds.

A cone P of a vector space F' is a lattice-cone if and only if the subspace X =
P — P, ordered by the cone P, is a vector lattice.

In the next results of this paragraph we will suppose that E is a vector lattice
equipped with a linear topology 7 with the properties:
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(i) B4 is 7-closed,;
(ii) each increasing, order bounded net of E has a 7-convergent subnet (i.e., the
topology T is Lebesgue).

Property (i) implies also that 7 is Hausdorff because if we suppose that x € E,
r # 0and 0 € x + V for each open symmetric neighborhood V of zero, then
0 € —x + V; therefore x and —x belong to E and hence = = 0, contradiction.

If the topology 7 is order continuous (i.e., each decreasing net of E with infimum
zero is T-convergent to zero) and F is Dedekind complete, then 7 satisfies (ii). If the
order intervals of E are T-compact, the statement (ii) is also satisfied (for related
results see [4, Theorem 11.13]). Hence, the weak star topology of a dual Banach
lattice and the weak topology of a Banach lattice with order continuous norm [4,
Theorem 12.9], have property (ii).

Proposition 2.2. Let (P;);c; be a decreasing net of T-closed lattice cones of E
(ie., P,CEy andi = j= P, D P;). Then P = ﬂiél P; is a T-closed lattice cone
of .

Proof. P is a 7-closed cone of F . Let z,y € P. Denote by z; the supremum of
{z,y} in P;. For each i,j € I with ¢ < j we have P; C P; C E; therefore,

r,y <z <z <x+y.
Since 7 has property (ii), there exists a 7-convergent subnet of (z;);c; which we

will still denote by (z;);c;. This net is also increasing, and let z = lim;es 2;. Let
i € I. Then for each j € I with ¢ < j, we have:

2j,25 — X, z; —y € P; C B
Since the cone P; is T-closed, we have that
z,z—x,z—y € P;, foreachiel.
Therefore
zyz—x,2—1y € P.

Suppose that w € P with w —x,w —y € P. Since P C P; we have that w — z; €
P; C P, for each j € I with ¢ < j. Hence w—z € P; for each i; therefore w—2z € P.
So we have proved that z = supp{z,y}; therefore P is a lattice cone. O

Theorem 2.3. Let P C E be a cone and let ®(P) be the set of T-closed lattice
cones of By each of which contains P. Then ®(P) has minimal elements.

Proof. ®(P) # { because £, € ®(P) and ®(P), ordered by the relation “27”, is a
partially ordered set. Suppose that F is a totally ordered subset of ®(P). Then by
the previous result @ = (), A is a 7-closed lattice cone of . By Zorn’s Lemma
the theorem is true. O

Proposition 2.4. Let (X;);c; be a decreasing net of lattice-subspaces of E with
T-closed positive cones. Let X =(),.; Xi, Y =X — Xy and Y, =Y NE;. Then

(i) X4 = ﬂiel X7+
(i) Y C X, Y, = X, and Y is a lattice-subspace of E with T-closed positive
cone.

icl
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PTOOf. (l) X+ =X nE+ = (niel X»L) ﬂE+ = niel X;F

(11) Y=X+—X+ Q X. Y+ anE+ :X+. Also X+ =X+—‘{0} QY,
therefore X, C Y,;. Hence X; = Y,. The net (XZ+ )ics is a decreasing net of
T-closed lattice cones of E.; therefore Y, is a 7-closed lattice cone. Hence Y, is a
lattice-subspace of E. (|

Theorem 2.5. Let B C E, and
I(B)={Y CE|Y is a lattice-subspace, Y is T-closed and B C Y'}.
Then I(B) has minimal elements.

Proof. The set l[(B) is nonempty because it contains E. The set [(B), ordered by
the relation “D”, is a partially ordered set. Let F be a totally ordered subset of
I(B). By the previous proposition there exists Y € [(B) such that Y C A for each
A € F. Therefore, by Zorn’s Lemma {(B) has minimal elements. O

Corollary 2.6. Let E be a Banach lattice with order continuous norm and B C
E.. Then the set of lattice-subspaces of E with (norm) closed positive cone which
contains B has minimal elements.

3. THE FINITE-DIMENSIONAL CASE IN C(f2)

In this paper we shall denote by Q a compact, Hausdorff topological space and
by C(€) the Banach lattice of continuous real valued functions defined on Q.

We will also denote by x1, ... ,Z,, n fixed linearly independent positive elements
of C(R2) and by X the subspace of C'(f2) generated by z1,... ,z,, i.e.,

X = [CCl,CCQ,... ,.’En].

In [12] necessary and sufficient conditions in order for X to be a lattice-subspace
of C(Q) are given.
In this paper we study the problem:

Problem 3.1. Does a finite-dimensional lattice-subspace (sublattice) of C(Q) con-
taining Ty, o, ... , T, exist?

For each x € R™ we will denote by z(z) the i-coordinate of z, by ||z|; the
norm ||z|1 = > v, |z(i)], by {e1,€2,... ,em} the usual basis of R™ and by A,, the
simplex (base) of RT, i.e.,

m ={z € RY [ |zfly = 1}.

Also if z € R™,y € R we shall denote by (x, y) the vector z of R™* with 2(1) = x(4)
fori=1,2,... ,mand z(m +14) =b() for i =1,2,... ,l. If Ais an m x m matrix
we shall denote by AT the transpose and by A~! the inverse matrix of A.

Let y1,y2, .-« ,Ym € C+(©2). Then we will call the function v(¢) = (y1(¢), y2(t),

- ¥m(t)),t € Q, the curve and the function y(t) = 17 (( ))” ,t € Q, with v(t) # 0,
the basic curve of y1,y2,... ,Ym. We will denote by D(y) the domain and by R(y)
the range of . It is clear that D(7) is an open subset of Q and R(~) C A,

In this paper we will denote by r the curve and by ( the basic curve of 1, zs, ... ,
T, 1€,

r(t) = (a:l(t),xz(t),... ,xn(t)), te and B(t) = “ T((tt))“l



4188 I. A. POLYRAKIS

As usual if K is a subset of a topological space F', we shall denote by int(X) the
interior, by K the closure and by d(K) the boundary of K. Also whenever F is a
linear topological space we shall denote by co K the convex hull of K, by coK the
closure of co K and by ep(K) the set of extreme points of K.

Proposition 3.2 ([12, Proposition 2.2]). Let Y be a lattice-subspace of C(Q) with
a positive basis {by, bz, ... ,0,}. Then Y is a sublattice of C'(S2) if and only if the
sets b; (0, +00) = {t € Q| bi(t) >0}, i =1,2,... ,n, are pairwise disjoint.
Theorem 3.3 ([12, Theorem 3.6]). The statements (i) and (i) are equivalent:

(i) X is a lattice-subspace of C'(£2).

(ii) There exist n linearly independent vectors Py, Ps, ..., P, of R™, belonging to
the closure of the range of 8 such that for each t € D(8) the vector B(t) is a
convex combination of the vectors Py, Po, ..., P,.

If the statement (i) is true, A is the n X n. matriz whose ith column is the vector
P; and by, ba, ... b, are the functions defined by the formula

(1) (biyboy ..oy by) =AYy, w0, w,) "
then {by,ba, ... by} is a positive basis of X.

Lemma 3.4. The functions y; € C(2),i = 1,2,...,m, are linearly independent
if and only if the space generated by the range of the basic curve v of y;, i =
1,2,...,m, is R™,

Proof. Let W be the subspace of R" generated by R(7y). Then W is also generated
by the range of the curve v of y;, 1 =1,2,...,m. Let {u; = v(t;) | i =1,2,...,1}
be a basis of W. Then [ < m.

Suppose that the functions y; are linearly independent. Then

{
= Zfi(t)ui, for each t € Q;

therefore

1
(2) Z D) j=12,...,m,

where u;(j) is the j-coordinate of u;. For each t, the vector (& (£),&2(t),... , & (1))
is the unique solution of the system (2); therefore the functions &; as linear combi-
nations of the functions y; belong to C(2). By (2) we have also that

yi € L =1&1,8&,...,&], for each i;

therefore m < dim L < [. Hence m = [ and W = R™.
To prove the converse, suppose that [ = m and

m

i=1

Then

m
Z)\,y7(17) =0 foreachj=1,2,...,m.
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Since the vectors v(t;), i = 1,2,... ,m, are linearly independent, the system has the
unique solution A; = 0 for each 4; therefore the functions y; are linearly independent.

|
Sublattices.

Theorem 3.5. Let R(3) = {P1,Ps,...,P,}. (By the previous lemma the vec-
tors P; are linearly independent and by Theorem 8.3 X is a lattice-subspace.) Let
{b1,ba,... by} be the positive basis of X defined by (1) and let I; = bi'l(O,Jroo),
for each i.

Then the following statements hold:

(i) X s a sublattice of C(£2).

(ii) I; = B~Y(P) for each i and D(B) = Ui, L.

(iii) If y;, ¢ = 1,2,...,m, are linearly independent elements of X, and v is the
basic curve of y;, i = 1,2,...,m, then there exists ® C {1,2,...,n} such
that
(a) D(v) = UiE<I> I;,

(b) the function v is constant on I; for each i € ®,
(¢c) m <1< n, wherel is the cardinal number of R(7).

Proof. Let z = 3.1, x; and B; = f71(P;), i = 1,2,... ,n. Then the sets B; are
pairwise disjoint and D(3) = {J, B;. By (1) we have that
1 ,

"0 (b(t),ba(t), ... ,ba(1)) " = A1 (B(1) "

Since A~! - A = I, the dot-product of the j-row of A~! and the vector P; is equal
to 1 if ¢ = j and 0 whenever 7 # j; therefore
"

ATHB@)" = (e;)" for each t € By,
where {ej,eq,...,e,} is the usual basis of R™. Therefore
1
POl (b1(t),ba(t),... ,by(t)) =e; foreacht e B;.

Hence for each t € B; it holds:
Z(t) =0b;i(t) >0 and b;(t) =0 for each j # 1.
So
B; CI; and B;NI;=0 foreach j#i.

Suppose that ¢ € I; \ B;. Since D(8) = J,_, Bk, t € B; for exactly one j # i.
Hence I; N B; # 0, contradiction. Hence B; = I; for each i, and by Theorem 3.2,
X is a sublattice. We have also shown the statement (ii).

The basic curve 7 is

Y(t) = ﬁ (1 (8), 32, Y (1))

where y = Y7, y;. Let

n
Y :Z,J,ﬁbi, j=1,2,...,m.
=1
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Then y = 31", pib; where pi; = 330" | pj; for each 4. Let ® = {i | y; > 0}. Then
it is clear that

D(v) = U I;.
ied
If i € ® and ¢ € I;, then

1
Y(t) = — (pres 205 - - s fomi) = Qs
Hi
hence «y is constant on I;. Therefore
R(y) ={Qi | i € @}
Since P is a subset of {1,2,... ,n}, we have that | < n and by Lemma 3.4, m <

L. ]

Theorem 3.6. The following statements are equivalent:

(i) X s a sublattice of C(£2).

(ii) R(B) ={P1, Po,...,Pn}.
Proof. Let X be a sublattice of C(Q2) and let {b1,bq,... ,b,} be a positive basis of
?}.lerl;i‘;lév;etzs doii Ajibi. Then z = 370 ay = 370 Aib; where A = 377 Aj.

I =b,10,400), i=1,2,...,n,
are pairwise disjoint by Proposition 3.2. Hence for each ¢ € I, we have z;(t) =

Aiebi () and z(t) = A\pbi(t), and therefore

8t = 5

Also D(B) = U, I; because t € D(B) iff z(t) > 0 iff b;(t) > 0 for at least one i.
Hence

(Mks Aoy o ooy Auie) = P

R(B) ={P1, Pay ..., Pp};

therefore the theorem is true. O

Theorem 3.7. Let Z be the sublattice of C(2) generated by xy,xa,...,%, and
let m € N. Then the statements (i) and (i) are equivalent:

(i) dim(Z) =m.

(ii) R(B)={P1,Ps,..., P}

If the statement (ii) is true, then Z is constructed as follows:

(a) Enumerate R(() so that its n first vectors are linearly independent. (Such an
enumeration exists by Lemma 3.4.) Denote again by P, ¢ = 1,2,... ,m, the
new enumeration and let I; = 871(P), i =1,2,... ,m.

(b) Define the functions

Trnik(t) = arp(t) )]s, t€Q, k=12,...,m—n,

where ay, is the characteristic function of I, 4.
(€) Z =[x1,@2, ... yTn, Tt 1y »Ton)-
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Proof. Suppose that (ii) is true and the assumptions (a), (b) are satisfied. We shall
show that (c) is true. It is clear that m > n. The sets I; are open subsets of
D() because the sets {P;} are open subsets of R(3). Also D(8) = |J;~, I;. Since
D(B) is an open subset of 2, the sets I; are open, nonempty subsets of 2. Also
O(I;) N I; = 0. Hence 9(1;) C Q\ D(B); therefore ||r(¢)||; = 0 for each ¢ € 8(1;).
This implies that the functions x, ) are continuous; therefore =, € C;(Q) for
each k.

Let v be the curve and v the basic curve of z;, i = 1,2,... ,m. Then by the
definition of x,1x we have that

v(t) = (r(t),0) for eachte U I;
=1
and
u(t) = (r(t), llr ()11 ei_n) iftel;,i>n.
Let t € I;. Then
7)) = (6(1),0) = (P,,0) =Qi, ifi<n
and
Y(t) = = (B(t), €i-n) = —é— (Pi,eipn) =Qi, foreachi=n-+1,...,m.
Since D(v) = D(8) = U;~, I;, we have that
R(y)={Q:|i=1,2,... ,m}.

The vectors Q;, @ = 1,2,...,m, are linearly independent. Hence the functions
zi, ¢ =1,2,...,m, are also linearly independent; therefore the subspace Y gener-
ated by z;, 1 =1,2,... ,m, is an m-dimensional sublattice of C'(2) by the previous
theorem. Therefore Z C Y. Since z;, ¢ = 1,2,...,n, are linearly independent

elements of Z, and the cardinal number of R(G) is m, by the statement (iii) of
Theorem 3.5 we have that m < dim Z. Therefore dim Z = m; hence Z =Y.
Suppose now that the statement (i) is true. Then z;, i = 1,2,... ,n, are linearly
independent elements of Z; therefore by Theorem 3.5, there exist a nonempty
subset @ of {1,2,...,m} and nonempty, pairwise disjoint open subsets I, i € ®,
of § such that D(8) = ;e I; and § is constant on each I,. Hence R(f3) =
{P1, Py, ..., P} where | is the cardinal number of ®. By the same theorem we have
also that n < 1 < m. As we have proved before, we can construct an I-dimensional
sublattice Y of £ containing z1,zs,... ,z,; therefore Z C Y and m < . Hence
I = m and therefore the statement (ii) is true. O

Lattice-subspaces. A subset K of R is a polytope if K is the convex hull of a
finite subset of R!. The extreme points of K are called vertices of K.

Theorem 3.8. Let Y be an l-dimensional lattice-subspace of C(Q)) containing x,
Z9,. .., ZTn. Suppose that {b1,ba,... b} is a positive basis of Y,

l
CL‘Z:ZA”b7, i=1,2,...,n,
j=1



4192 I A. POLYRAKIS
b = {Z ! o 7A 0}’
1 . .
P = — (A1iy A2is ooy Ani)y 1 E D,
7

and K is the convex hull of R((). Then
(i) P; € R(3) for each i € D.

(ii) K is a polytope with vertices Py, Pio, ..., Pyy wheren < m <1 and i, € ®
foreachv=1,2,... ,m
Proof. Let xy41,...,x; € Yy such that
Y =z, 29,... ,Tn, Tngty ... Xl
Let

1
Z 1=1,2,...,1,

l

si=Y Ni, i=1,2,...,1,

=1

and v(t) = (z1(t),x2(t),...,x(t)), t € Q. Then [jo(t)], = Zfﬁ:l s;b; and the
function

v(t
10 = 0 )] £0,
(B0l
is the basic curve of z1, s, ... ,x;. By [12, Proposition 2.3], for each i = 1,2,... 1
there exists a sequence (w;,) of Q such that
b; Qv . .
lim by (wiv) =0, foreachj#i.
V—>0Q bi(wil/)
Then
! b
1 . LS Aji
m (@) ), = lim 2 ]kh (wiv) = ==,
V00 Hv(wi,,)“l V00 Zk 13k b Si
therefore
. 1
(3) Vlgl;lOW(wm) = (A1iy A2iy - ov s i) = M.

Let A be the [ x [ matrix with columns the vectors M;, ¢ = 1,2,...,l. Then
using the expansion of z; relative to the positive basis of ¥ we get

(4) (z1,29,...,x)" = A(s1by, s9by, . .. ,sib)
Since {z1,x2,...,2;} is also a basis of Y, we have that rank A = [; therefore the
vectors M;, i =1,2,...,1, are linearly independent. Let
!
(5) V() =D &(t)M
=1

be the expansion of y(t) relative to the basis {M;, M, ..., M;} of R\, Then
T T


http:{sl,.r2
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and by (4) we get
1
(6080, .60) = o

Hence &;(t) € Ry and Zﬁ:l &i(t) = 1. Therefore (t) is a convex combination of
My, Mo, ..., M;. Therefore

R(’Y) - CO{Ml, Mg, P ,Ml}.
Let P(x) = (a:(l),a:(2), ... ,a:(n)), z € RY, be the natural projection of R! onto R™.
Then

(6) P (i Ml) = P, forcachic ®.

g4

(S1b1 (t), Sgbg(t), L8 (t))

If i ¢ @, then P(M;) = 0, because o; = 0 and therefore A\y; = 0 for each k =
1,2,...,n. Also
lv@®llx

0= ey
therefore by (5) we get

P(y(t)), foreachte D(B)C D(y);

flu(t) ,
ZHT Hl s

icd 8

Since B(t) and P; belong to the simplex A, of R’} , we have that 3(¢) is a convex
combination of the vectors P;, i € ®; hence

R(B) Cco{P;|ie ®} = L.
Since @ is finite, the set L is closed; hence R(3) C L. We shall show that P; € R(3),
for each ¢ € ®. By (3) and (6) we have that P(?i? Y(wiv)) — P;. Since P; # 0, we
have that P(y(w;,)) # 0, for each v. Therefore r(w;,) = |Jv(wiy)|1 P(v(wi)) # 0;
hence w;, € D(f), for each v. Similarly with the proof of (3) we can show that
P; = lim B(w;,). Hence P; € R(B); therefore K = L. Also ep(K) C {F; | i € ®}.
Hence

ep(K) = {Pu, Pia,... , Pim}
where i, € ® for v = 1,2,...,m; therefore

K = CO{Pﬂ, Pig, . e >Pim}-
By Lemma 3.4, the subspace generated by R(3), and therefore also by K, is the

space R™. Hence ep(K') contains at least n vectors; therefore n < m < I. O
Theorem 3.9 ([5, Theorem 2]). Let dy,da,... ,d, € R' and let the polytope D =
co{dy,ds,... ,dm}. Then there exist non-negative, real-valued continuous functions

&1,62,. .+ ,&m defined on D such thatx = 3", &(x)d; and Y i, &(x) = 1, for each
ze€D.

The previous result in a more general form is given also in [8].

Theorem 3.10. Let the set K = co R(f) be a polytope with vertices Py, Py, ... , Pp,.
Suppose that the n first vertices Py, Py, ... , P, of K are linearly independent'. Sup-
pose also that &, ¢ = 1,2,... ,m, are positive continuous real-valued functions de-

fined on D(B) such that Y ;" &(t) =1 and B(t) = Y-, &(t) P, for each t € D(B).

LA such enumeration of the vertices of K exists by Lemma 3.4.
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Let iy 1= 1,2,... ,m —n, be the functions x,;(t) = &y (t) |1 (®)||1 for each
t € D(B) and x,,1:(t) =0 if t € D(B). Then

Y =z, Z2,... ,TpyTngly- o T
1s a minimal lattice-subspace of C()) containing x1,x2,. .. , 2, and dimY =m.

A positive basis {by,ba,... by} of Y is given by the formula
(bl,bg, e ,bm)T = A~] (1‘1,172, I ,$7n)T

where A is the m x m malriz with columns the vectors R;,i = 1,2,... ,m, defined
below, in (8).

Proof. We shall show that Y is a lattice-subspace of C'(2). Let v(t) = (21 (t), z2(t),

Jm(lf))a ~y(t) = W%)HT and { =m —n. Then

o) = (r0.0) 4 (0.3 sl

=1

= |r@®lh Z&z ) (Pi,0) + |Ir (D)1 Egn-m ei)

(7) = |r@®h Zgi(t) M;, for each t € D()

where M; are the following vectors of R™:
M; = (P;,0) fori=1,2,...,n
and
M; = (Ppyiye;) fori=1,2,... 1L

The vectors M; are linearly independent with [|[M;]]y = 1 for ¢ = 1,2,... ,n and
M)y = 2 for i =n+1,...,m. Hence |[v(t)]i = ||r(t)]li g(t), where g(t) =
S LG M) =1+ > 1 Ez(t). Therefore, by (7) we have

1 &« M;
8 t) = —— () IM; || R;,  where R; = ———.
®) 10 = 25 260 Il il
Hence (t) is a convex combination of R;, ¢ = 1,2,...,m. We shall show that

R; € R(y) for each i. If P, = ((t;), then P, = Z;’;l ¢;(t;) P; and by our assumption
that P; is an extreme point of K, we have that & (¢;) = 1 and ;(¢;) = 0 for each
j # 1. Hence by (8) we have

y(t:) = ;J—(lt—) M, R = .

If P, ¢ R(B), then there exists a sequence (w,) of D(8) such that
P, = 1911 Blw,).

Then

m

wl/ Z 57 w,,
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Since 0 < &;(w,) < 1, there exists a subsequence of (w, ), which we will denote
again by (w,) such that

A= Vllrxgogj(w,,), for each j = 1,2,... ,m.

Hence
Pi=>Y AP,
j=1

which implies that A; = 1 and A; = 0 for each j # i, because P; is an extreme point
of K. By (8) and the definition of g we have that
lim y(w,) = R;.

V—00

So by Theorem 3.3, Y is a lattice-subspace and a positive basis of Y is as in the
formulation of the theorem.

Suppose that Z C Y is a lattice-subspace containing z,zs,... ,z, and let
dimZ = 1. Then [ < m. By Theorem 3.8 the number m of vertices of K is
less than or equal to /; therefore m = I. Hence Z = Y’; therefore Y is minimal. [

Definition 3.11. Let C' be a convex subset of a normed space E. We shall say
that g is a conic point of C if xy s an extreme point of C, C\{xo} # B, and there
exists a real number p > 0 such that

T~ %o
| = zol|
Proposition 3.12. Let D be a convexr subset of a normed space E and zog € E.
If? d = d(x, D) > 0 and C = co({xo} U D), then xq is a conic point of C. (If D
is bounded and closed, then C' is also bounded and closed.)

To+p € C, foreach xz € C,x # x.

Proof. Let z € C,z # xg. Then x = Axg + (1 — Ny, where y € D and X € [0, 1].
Hence z — z9 = (1 — A\)(y — zo); therefore
lz —zoll = (1 =N ly = 2ol = (1~ A)d.
Also zo + l(y — zo) € C for each | € [0, 1]. Therefore
— d(l—X

Bl B Gl
llz — ol llz — ol
To show that xq is an extreme point of C' suppose that zg = %4 where 1,25 € C
and z1,z2 # xo. Then z; = \jzo + (1 — A\)y; with \; € (0,1) and y; € D. Then

To = 2—_—/\71:—/\: ((1 — Ay + (1 — )\g)yz) € D, contradiction. Hence x is a conic
point of C. O

xo+d (y —zp) € C.

Example 3.13. (i) For each cone P # {0} of a normed space, 0 is a conic point
of P.

(i) Let C be a closed, convex, bounded subset of a Banach space E and let o be
an extreme point of C'. If C' =Toep(C) (i.e., C is the closure of the convex hull of
the extreme points of C') and zo & D = c6(ep(C) \ {zo}), then C = co({zo} U D);
therefore xq is a conic point of C.

(iii) Each vertex of a polytope C' of R™ is a conic point of C.

2With d(zo, D) we denote the distance from zg to D.
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We prove below that the tangent vector of a curve of C' at a conic point of C' is
equal to zero.

Proposition 3.14. Let C be a closed, convex subset of a normed space E and g
be a conic point of C. Let ¢ : (—¢,e) — C be a function with $(0) = x¢ where € is
a positive real number. Then

whenever the derivative ¢'(0) exists.

Proof. Let ¢/(0) = lim, o 28590 o2 0. Then there exists & > 0 such that ¢(t) #
#(0) for each |t| < 6. Hence
lim 20 = ¢(0) () —4(0) . 1 ¢'(0)

N OO R S i oSy R O

and similarly
i 20— ()
=0~ {|p(¢) — ¢(0)]| ' (O)]"

Since g is a conic point of C, there exists p > 0 such that

xo + pﬂL € C, foreachz e C, x # xp.
[z — ol
Therefore
| OTETLR I (N
Jim (600 oy =01 =+ T~ €€
and
. ¢(—1/v) — ¢(0) > ¢'(0)
1 o V=) —p—t =29 € C.
Jim, (6000 o1 =G0 ) = Py~ ©
Hence 2y = %(zl + z3), contradiction. Therefore ¢'(0) = 0. |

Corollary 3.15. Let the set K = co R(8) be a polytope of R™ and let ((ty) be a
vertex of K. If ¢ is a positive real number and g : (—e,€) — Q is a function with
g(0) =ty and p(\) = B(g(N)), then

whenever the derivative exists.

Remark 3.16. Suppose that there exists a finite-dimensional lattice-subspace of
C(Q) containing X. Then K is a polytope of R". Suppose that §(to) is a ver-
tex of K. If ¢ is a curve of 2 and ¢y an interior point of ¢, then the derivative at tg
of the restriction of 8 on the curve c is equal to zero.

If for example © C R!, then the partial derivatives of 3 at to are equal to zero
whenever ¢y € int(Q). If ty € 9(Q), the derivatives at ¢y of the restriction of 8 on
the parametrics curves of 9(€2) are equal to zero.

Algorithm 3.17. Theorem 3.10 and Corollary .15 define a process which in many
cases, especially when Q C R!, determines whether a finite dimensional minimal
lattice-subspace exists and determines also a positive basis of these subspaces. To
study this problem we study if K is a polytope or not.
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If the set R(B) is closed, then each extreme point (vertex) Py of K = co R(f)
belongs to R(B); therefore Py = [((ty). Also the geometry of the boundary of D(()
and the differentiability of the functions x; are very important for this study.

Let Q = [a,b], the functions x; are differentiable and D(f3) = Q. Suppose that
the set K is a polytope with vertices B(¢;), i = 1,2,... ,m. Then at least m — 2 of
t; belong to (a,b); therefore the equation

9) pt)=0

where 3 is the derivative of 3, has at least m — 2 roots in (a,b). Hence the vertices
of K belong to the set

G={BM)|t=a,t =0, ort is a root of (9)}

which we call the set of possible vertices of K. Let D = coG. It is easy to show
that K 1is a polytope if and only if D is a polytope and R(B) C D.
Hence in this case the algorithm is the following:
(i) Determine equation (9). If this equation does not have at least n — 2 roots in
(a,b), then K is not a polytope.
(ii) Determine the roots t; of (9) in (a,b).
(i) We study whether R(8) C D. So we study whether 3(t) is a convex combina-
tion of f(a), B(b), B(t:), for each i. If R(B) € D, then K is not a polytope.
(iv) Determine the vertices of K and a positive basis of the minimal lattice-
subspace, in accordance with Theorem 3.10.

We give three examples below. In (i) it is shown that a finite-dimensional minimal
lattice-subspace does not always exist. In (ii) we consider three elements z1, zs, 3
of C(£2), where Q is a square of R%. We show that a 4-dimensional minimal lattice-
subspace Y exists and a positive basis of Y is determined. We also remark that the
sublattice generated by the elements z; is dense in C'(2). In (iii) the functions z;
are as in (i), but  is a circle of R2. It is shown that a finite-dimensional minimal
lattice-subspace does not exist. This difference between (ii) and (iii) depends on
the geometry of the boundary of Q.

Example 3.18. (i) Let Q = [0,1], z1(t) = 1,z(t) = ¢, x3(t) = t>. Then

1 t t2
t) = ) ) , t 0,1’
ﬁ() <1+t+t2 14+t-+¢t2 1+t+t2) E[ ]

is the basic curve of z1,x2, 23 and ('(t) # 0 for each ¢t € (0,1). Suppose that YV
is a finite-dimensional lattice-subspace of C(2) containing the functions z;. Then
dimY > 3, and therefore by Theorem 3.8 K is a polytope of R® with at least
three vertices, 8(t1), 8(t2), B(ts). Hence §'(t) = 0 for at least one point of (0,1),
contradiction.

(i) Let Q = [0,1] x [0,1], z1(u,v) = 1, z2(u,v) = u, z3(u,v) = v and X =
[:Ul,irg,xg]. Then

1 U v

Blu,v) = (1+u+v’ 14+u+v’ 1+u—|—v)’
is the basic curve of x1,z2,x3 and let K = co R(f). Since the range of f is not
finite, the sublattice Z generated by xi,xs,x3 is an infinite-dimensional subspace
of C(f2), Theorem 3.7. In this example we can also show that Z is dense in C(2)
because Z is a sublattice of C(Q2) and Z contains the constant functions.

(u,v) € Q,
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b

(1,1) (L 1)

FIGURE 1

In order to study the existence of minimal lattice-subspaces we study whether
the set K is a polytope of R?. To this end suppose that K is a polytope. Then by
Theorem 3.8, K has at least three vertices and let 8(tg) be a vertex of K. Then t
is also a vertex of {2 because in the contrary case ¢y will be an interior point of a line
segment parallel to an axis of R?; therefore, and by the previous corollary, at least
one of the partial derivatives of 8 at ¢y will be equal to zero, contradiction. Hence
the points P, = £(0,0) = (1,0,0), P, = 8(1,0) = (1/2,1/2,0), Ps = 5(0,1) =
(1/2,0,1/2) and Py = B(1,1) = (1/3,1/3,1/3) define the set of possible vertices
of K. Let D = co{Py, Py, P5, P;}. From the above remarks we have that K is a
polytope if and only if K = D or equivalently if R(B) C D. It is easy to show that

B(u,v) = Z& u,v) P,

where 61 € C(Q)) £2(u7v) = 2(1+u+v 51 (u U)) gS(UaU) = (1+u+v 51(?1 U))
and &4(u,v) = 3(11115;11) + &1 (u,v)).

Since B(u,v) and the points P; belong to the plane (1) +z(2) + 2(3) = 1 of R?
we have that ijl &i(u,v) = 10 If E(u,v) = 1;3;5 and if we put & = £, then
the functions &;, 2 = 1,2, 3,4, are positive and continuous; therefore R(8) C D.
Hence K is a polytope with vertices P;, ¢ = 1,2,3,4, and the three first of them

are linearly independent. By Theorem 3.10,

Y = [1}1,1)2,153,1’4],

where z4(u,v) = & (u,v) ||r(u,v)]; = 3(1 —u—v)T, is a minimal lattice-subspace
containing x, g, T3.
A positive basis {b1, bo, b3, bs} of YV is given by the formula

(bi,bo, b3, b4) = A71 (21, 29, 23, 24) ",
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where A is the 4 x 4 matrix with columns the vectors R; = “AA/;I?HI, i=1,2,3,4,

and M, = (P1,0) = (1,0,0,0), My = (P5,0) = (1/2,1/2,0,0), My = (P5,0) =
(1/2,0,1/2,0), My = (Py,e1) = (1/3,1/3,1/3,1).
After the computations we get

e i N H e
R O TR
R R E R
balu,0) = 2x4={g(u+v_1) 4475 (rigue

(iii) Let Q = {(u,v) € R?|u? +v? < 1} and let z;, i = 1,2,3, be the functions of
the previous example. Suppose that K is a polytope and 3(tg) a vertex of K. As
before we have that to € 8(Q2) and let ¢y = (cos fp,sinfy). Then by the corollary
we have ¢'(6y) = 0 where ¢(f) = B(cosd,sinf). This is a contradiction because
#'(0) # 0 for each 0. Therefore a finite-dimensional lattice-subspace containing the
functions x; does not exist.

To study subspaces of R!, [ > 1, suppose that Q = {1,2,... ,{}. Then C(Q) = R
T; = (xl(l),xl(2), 71:1'([)), 22172’ ,T,

are linearly independent, positive elements of R! and

X = [.’rl,d}g,... ,.’lin].
The curve r and the basic curve 3 of the vectors x;, ¢ = 1,2,...,n, are the
functions:
r(i) = (zl(i),xg(i), .. ,xn(i)), 1=1,2,...,1,
and
N (@) - .
B(i) = for each i with ||r(i)]]x # 0.
[Ir@)ll”

Let m be the cardinal number of R(3). Then m < [ and by Lemma 3.4, n < m;
therefore n < m < [. Let K be the convex hull of R(3). Then K, as the convex
hull of a finite subset of R™, is a polytope with d vertices. It is clear that

n<d<m<l
and that each vertex of K belongs to R(3). Let
R(IB) {P1>P27 . Pm}

be an enumeration of R((3) such that:
(i) the vectors P;, i =1,2,...,n, are linearly independent and
(ii) the points P;, i =1,2,... ,d, are the vertices of K.
As an application of Theorems 3.6, 3.3, 3.7 and 3.10 we obtain the following:

Theorem 3.19 (The case of RY). Suppose that Q2 = {1,2,...,l} and that the above
assumptions are satisfied. Then
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(i) X is a sublattice of R! if and only if R(B) contains exactly n points (i.e.,

m=n).
(ii) X is a lattice-subspace of R' if and only if the polytope K has n vertices (i.e.,
d=mn).

(iii) Let m > n. If I, = B~ (Py), and

vo= Y Ir@he, k=ntlnt2,..,m,

i€l
then
7 = [xl,... y Ly Tplye - ,Jlm]
18 the sublattice generated by x1,x2,... ,x, and dim Z =m.

(iv) Letd >n. If& : D(B) = Ry, i =1,2,...,d, such that Zle &) =1 and
8 = ijl &) P for each § € D(B), and Tnyiy i =1,2,... ,d—mn, are the
following vectors of R!:

Tnti = Z £n+l(.]) ||7“(]‘)H1€j7

JED(B)
then
Y =[z1,... &0, Tpt1s--- ,Zd)
is @ minimal lattice-subspace of R' containing x1,xs,... , T, and dimY = d.

In the following result 2 is again a compact, Hausdorff, topological space.

Theorem 3.20. Let K = co R(8) and let L be the set of finite-dimensional mini-
mal lattice-subspaces of C(Q)) containing x1,x2,... ,T,. Then the following state-
ments are equivalent:

(i) K is a polytope with m vertices.
(ii) L#0 and dimY = m, for eachY € L.
(iii) L #£90.
Proof. Suppose that (i) is true. Then by Theorem 3.10, there exists ¥ € L with
dimY = m. Suppose that Z € L and {b1,0bs,...,b;} is a positive basis of Z. Let

l
xl:Z)\”bJ, 2.2172,...,%,

Jj=1

n

O’jZZ)\Z’j, j=1,2,...,l,

i=1

®={j|o;#0} and

1
P = o (A1iy A2iy ooy Ani)y 1€ P

Then by Theorem 3.8 P; € K for each 1 € ® and the vertices of K are among the
points P;, 1 € ®; therefore there exist i1,19,... %y, € ® such that Py, Po,... , Pim
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are the vertices of K. Alson < m <. Let T : Z — R! such that T(Eli:1 &bi) =
Zi‘:l &e; and let y; = T(x;), i =1,2,...,n. The basic curve b of y1,ya,... ,yn is:

1
b(Z) = ;— ()‘171,)\2717- .. 7)\ni), 1€ (I),

with range
R(b) ={P;|i€ ®}.
So R(b) is a subset of K containing the vertices of K; therefore
K = co R(b).

Hence co R(b) is a polytope with vertices P;, P, ..., Piy. By the previous theo-
rem, there exists an m-dimensional lattice-subspace F' of R! containing y1, s, ... ,
Yn. If G = T71(F), then G is a lattice-subspace of Z and therefore also of C(2)
containing x1,Zs,... ,Z,. Since Z is minimal, we have that G = Z, and therefore
dim Z = dim F' = m. Hence we have shown that (i) = (ii).

Suppose now that the statement (ii) is true. Let Y € L and K = co R(3). Then
by Theorem 3.8, K is a polytope with k vertices and

n<k<m.

By Theorem 3.10 there exists Z € L with dim Z = k. By our assumption we have
that k = m; therefore K has m vertices. Hence (ii) = (i).
Also (ii) = (iii) and (iii) = (i) by Theorem 3.8. O

In the following example we construct the sublattice Z generated by a four-
dimensional subspace X of R” as well as two minimal lattice-subspaces Y and Y’
which contain X. It is remarkable that Y NY” is not a lattice-subspace as well as
that both Y and Y’ are not subspaces of Z.

Example 3.21. Let

o = (1,2,1,0,1,1,4),
o = (0,1,1,1,1,0,2),
s = (2,1,0,1,1,1,2),
x4y = (1,0,1,1,1,0,0),

and let X = [z1,%2,23,24]. Let 7 be the curve and 3 the basic curve of x;, i =
1,2,3,4. Then r(1) = (1,0,2,1), r(2) = (2,1,1,0), 7(3) = (1,1,0,1), r(4) =
0,1,1,1), r(5) = (1,1,1,1), 7(6) = (1,0,1,0), 7(7) = (4,2,2,0) and B(1) =
1(1,0,2,1), B(2) = B(7) = $(2,1,1,0), B(3) = 1(1,1,0,1), B(4) = £(0,1,1,1),
B(5) = +(1,1,1,1), B(6) = $(1,0,1,0). In order to enumerate R(3) as in Theo-
rem 3.19 we remark the following:

(i) The vectors P, = ((4), P, = B(1), Py = B(6) and Py = ((3) are linearly
independent.

(ii) Let B(2) = Ps. Then it is easy to show that for any proper subset ® of
{Py1, Py, P3, Py, Ps}, co® # co{Py, P, Ps, Py, Ps} = K; therefore P;, i =
1,2,3,4,5, are vertices of the polytope K.

(iil) It is easy also to show that

3(1—-4 1-50 3(1—¢
1) g =209 1=6)

P R S
) 1+ 0Py + 1 P3 + 3

Py + 6P5.
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Hence for any 6 € [0, 1] the vector P; = (5) is a convex combination of
P, i=1,2,3,4,5; therefore Ps € K.
Hence
R(IB) = {PI,P27P37P47P57PG}

and in accordance with the notations of Theorem 3.19, n = 4, d = 5 and m = 6.
Since n < d, X is not a lattice-subspace and therefore also X is not a sublattice of
R”. Let Z be the sublattice of R” generated by z1, xy, 23, z4. In order to determine
7 we define the sets

Iy =71 (Ps) = {2,7}, Iy =p6"'(Ps) = {5}
and the vectors

= |r(2)|l1 e2 + [[r(7)|l1 e7 = ez + 8er

8
(334

and
xzg = ||r(5)|l1 e5 = 4des.
Then by the theorem
7Z = |x1, 9,23, T4, Ts, Tg).
By Theorem 3.3 a positive basis {b1, bs, b3, bs, b5, bs} of Z is given by the formula
(by, b2, b3, b4, b5, b6)" = A~ (21,0, 23, 24, 75, 26) ",

where A is the 6 x 6 matrix with columns the vectors v(7), ¢ = 1,2,...,6, and ~
is the basic curve of the vectors x;, ¢ = 1,2,... ,6. So after the computations we
find that by = 4ey, by = 8ey + 16e7, by = ez, by = 3ey, by = 8es and bg = 2eq.

To determine a minimal lattice-subspace define the vectors &;, i = 1,2, 3,4, 5, of
R7 such that

5

d&G) =1 and B( Zgz for each j = 1,2,...,7.

- -
B)=Py=Y"_ &P = &) =1 and &/(1) =0 for k # 2.
BR)=P =3 &) = &(2)=1 and &(2)=0fork #5.
BB) =Py =Y &B)P = &(3)=1 and &(3) = 0for k # 4.
B4)=P =30 &A)P = £(4) =1 and gk( ) =0for k # 1.
BB =Ps=Y0 6062 = &()=& (5) = 2020 £5(5) = &5(5) =9,

) £3(5) = 5%, by (10).
B6) =Py =30 &(6)P =  £(6) = and €,(6) = 0 for k # 3.
BTN =Po=30_&(NP = &(7)=1 and &(7) =0 for k # 2.
Define also the vector
ys = Zﬁs Y r()lhie; = @)l es +0llr(5) (1 es

Il

462*{-4965, [0,1/5]
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Suppose that § > 0 in y5 and that v} is the vector corresponding to 6 = 0, i.e.,
Yyt = 4ey. Then the subspaces

/ /
Y= [$1,$2,$3,$4,ys] and Y' = [IEjL,I'Q,Z'3,IE4, yS]

are minimal lattice-subspaces containing the vectors z;. Since the vectors 1, 22, z3,
T4, Ys, Yy are linearly independent, we have Y s Y. Also X = YNY" is not a lattice-
subspace. An important remark is that the vectors ys, %5 do not belong to Z. To
show this suppose that y5; € Z. Then y5 € Z, and therefore
6
ys =Y _ Aib, with \; € Ry for each i.
i=1
This implies that Ay = 1/2 and Ay = 0, contradiction. Hence y5s ¢ Z. Also y§ € Z.
Therefore Y, Y’ are not subspaces of Z.
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