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Abstract

LetXn be a discrete time Markov chain with state space S (countably infinite, in general) and initial probability
distribution µ(0) = (P (X0 = i1), P (X0 = i2), · · · , ). Can we compute or at least estimate the probabilities
P (Xn = j|X0 = i) and P (Xn = j) for large n? We will discuss this question and give some answers even if
there exists periodic states. We will also relate the limiting probabilities with the ergodic type of limits and
prove that the computation of the limiting probabilities are a stronger result than that of the ergodic theorem.
Finally, we will mention some open problems regarding these limiting probabilities.
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1 Introduction

Let Xn be a discrete time Markov chain with state space S (countably infinite, in general) and initial probability

distribution µ(0), that is µ
(0)
i = P (X0 = i) where i ∈ S and let P be the transition matrix of this chain.
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It is well known that P (Xn = j|X0 = i) = (Pn)ij and P (Xn = j) =
∑

i∈S µ
(0)
i (Pn)ij . In the case where S

is finite it is easy to compute the matrix Pn for the discrete time case. In [9] and [10] we have discussed this
problem in the case where the transision matrix is finite. We have seen that we can indeed compute the nth
power of the matrix, even if it is not diagonizable. In [10] we gave the matlab code for this computation using
the minimum polynomial of the transition matrix. We gave also a feasible method to compute the minimum
polynomial, which is very useful in the case where the transition matrix is big. However, if the transition matrix
is big and not sparse, it is not possible to compute the nth power, even if we know the roots of the minimum or
the characteristic polynomial.

If S is infinite the situation is much different and we can not compute the probabilities (Pn)ij by the above
method.

In the case where the chain is aperiodic we have that the limiting probabilities are such that

lim
n→∞

(Pn)ij =

{
fij
mj
, when j is positive recurrent

0, otherwise

where mj is the mean recurrent time of the state j and fij = P (∃ n ∈ N : Xn = j|X0 = i). More compactly we
can write

lim
n→∞

(Pn)ij =
fij
mj

where mj = ∞ when j is not positive recurrent. Therefore for big enough n we can say that (Pn)ij '
limn→∞(Pn)ij , that is the limiting probabilities are useful for the estimation of (Pn)ij when we are not able to
compute them exactly.

For the periodic case we have the following representation of the limiting probabilities. Denoting by fn(i|j) the
probability

fn(i|j) = P(Xn = j,Xk 6= j, k = 1, · · · , n− 1|X0 = i)

we have (see [1]) that

lim
n→∞

(Pnd(j)+a)ij =
d(j)

mj

∞∑
k=0

fkd(j)+a(i|j), a = 0, · · · , d(j)− 1 (1)

where d(j) is the period of the state j and mj is the mean recurrent time of j at the chain Xn. Note that when
the period d(j) = 1 then the above coincides with the aperiodic case because

∑∞
k=0 fkd(j)+a(i|j) = fij in this

situation. The probability
∑∞

k=0 fkd(j)+a(i|j) (for d ≥ 2) is sometimes difficult to compute therefore the above
representation of the limiting probabilities can not be used in practice in this case. Below we are going to give
another representation of the limiting probabilities which is sometimes easier to compute.
Let us recall the dominated convergence theorem for sequences of numbers.

Theorem 1. Let ank with n, k ∈ N real numbers and bk no negative numbers such that
∑∞

k=1 bk < ∞ and
|ank| ≤ bk. If limn→∞ ank = ak then

lim
n→∞

∞∑
k=1

ank =

∞∑
k=1

ak

Using the above result we can easily prove the following theorem. Denote by Yn the chain with transition matrix
Q := P d where d = lcm{d1, d2, · · · } <∞. By mQ

j we denote the mean recurrent time of the state j at the chain

Yn and fQ
ij is the probability the chain Yn to visit sometime the state j starting from i.
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Theorem 2. Let Xn be a discrete time Markov chain with state space S and transition matrix P . Suppose that
d = lcm{d1, d2, · · · } <∞ where d1, d2, · · · are the periods of the recurrent states. Then

lim
n→∞

P dn+a = P aQ∞, a = 0, · · · , d− 1 (2)

where Q∞ij =
f
Q
ij

m
Q
j

.

Proof. Consider the chain Yn with transition matrix Q = P d. It is easy to see that all the states of this chain
are aperiodic. Therefore the following holds

Q∞ := lim
n→∞

(Qn)ij =


f
Q
ij

m
Q
j

, when j is positive recurrent

0, otherwise

where mQ
j is the mean recurrent time of the state j at the chain Yn and fQ

ij is the probability the chain Yn to
visit sometime the state j starting from i. For a = 0, · · · , d− 1, using the dominated convergence theorem, we
obtain,

lim
n→∞

(P dn+a)ij = lim
n→∞

(P a ·Qn)ij

= lim
n→∞

∑
k∈S

(P a)ik(Qn)kj

= (P a ·Q∞)ij

since
∑

k∈S(P a)ik(Qn)kj ≤
∑

k∈S(P a)ik = 1.

In a similar fashion we have the following theorem concerning the limiting probabilities

lim
n→∞

(Pn)ij

for specific i, j.

Theorem 3. Let Xn be a discrete time Markov chain with state space S and transition matrix P . Then

lim
n→∞

(
P d(j)n+a

)
ij

= (P a ·Q∞)ij , a = 0, · · · , d(j)− 1 (3)

where d(j) is the period of the state j if it is recurrent, mj is the mean recurrent time of the state j at the chain
Xn and

Q∞ := lim
n→∞

(
P d(j)n

)
ij

=
d(j)fQ

ij

mj

Proof. Here we construct the chain Yn with transition matrix Q = P d(j) where d(j) is the period of the state j.
The state j is aperiodic in this chain so

(Q∞)ij := lim
n→∞

(P d(j)n)ij =


f
Q
ij

m
Q
j

, when j is positive recurrent

0, otherwise

where mQ
j is the mean recurrent time of the state j at the chain Yn and fQ

ij as before. Note that it is easy to see

that mj = d(j)mQ
j where mj is the mean recurrent time of the state j at the chain Xn. Therefore it holds that

(Q∞)ij := lim
n→∞

(P d(j)n)ij =

{
d(j)f

Q
ij

mj
, when j is positive recurrent

0, otherwise

Using again the dominated convergence theorem we get the desired result.
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Remark 1. The above result is very useful in the case where i is transient and j is recurrent. If both i, j are
recurrent then we can have immediately the limiting probabilities. For example, if the i, j belong to different
recurrent classes then (Pn)ij = 0 for all n ∈ N. If the i, j belong to the same recurrent class then (Pnd(j)+a)ij →
d(j)
mj

when i belong to the cyclically moving subclass Cr and j belong to the cyclically moving subclass Cr+a.

Moreover, (Pnd(j)+a)ij = 0 for all n ∈ N when i ∈ Cr and j ∈ Cr+b with b 6= a.

Concerning the computation of the limiting probabilities, the following result seems to be new.

Corollary 1. At the above setting it holds that

lim
n→∞

(
Pnd(j)+a

)
ij

=
(
P a · lim

n→∞
P d(j)n

)
ij

=
d(j)

mj

∞∑
k=0

fkd(j)+a(i|j), a = 0, · · · , d(j)− 1

and therefore we obtain the equalities

∞∑
k=0

fkd(j)+a(i|j) =
∑
k∈S

(P a)ikf
Q
kj , a = 0, · · · , d(j)− 1 (4)

fij =
∑
k∈S

Wikf
Q
kj (5)

where Wik =
∑d(j)−1

a=0 (P a)ik.

Proof. We will prove only the last equality. Since

d(j)−1∑
a=0

∞∑
k=0

fkd(j)+a(i|j) =

∞∑
k=0

d(j)−1∑
a=0

fkd(j)+a(i|j) (absolutely convergence series)

=

∞∑
n=1

fn(i|j) (setting f0(i|j) = 0)

= fij

we have that

fij =

d(j)−1∑
a=0

∑
k∈S

(P a)ikf
Q
kj =

∑
k∈S

Wikf
Q
kj

The above results concerning the limiting probabilities limn→∞(Pn)ij when i is transient and j is recurrent and
periodic, seems to be new. In many cases is much easier to compute these limiting probabilities with the above
method than the suggested method in [4], for example.

Remark 2. Using the system (or the difference equation)

fij =

d(j)−1∑
a=0

∑
k∈S

(P a)ikf
Q
kj =

∑
k∈S

Wikf
Q
kj , i ∈ S

one can compute the probabilities fQ
ij knowing the fij without computing the matrix Q = P d. However we should

compute first the matrix W but if the period of j equals 2 this remark may be practically useful.

By means of Remark 2, there is an open question regarding the probabilities fQ
ij . Can we compute these

probabilities given the probabilities fij? In a finite Markov chain, one can find the inverse of the matrix W
in order to compute the probabilities fQ

ij given the probabilities fij . In the infinite case however, the system
in Remark 2 is a difference equation, therefore the above method does not give us a result. How can we

4
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solve, in general, this difference equation in order to compute the desired probabilities? Denoting by GQ(x)
the probability generating function of the sequence fQ

nj and by G(x) the probability generating function of the
sequence fnj can somehow relate these probability generating functions using the relation

fij =
∑
k∈S

Wikf
Q
kj

or, even better, solve for GQ(x) in terms of G(x)? If this is the case, how can we compute the probability
generating function G(x)?

We will study now the limit of the average

1

n

n∑
k=1

µ
(k)
j

This quantity gives the probability of choosing in random an integer k with k ≤ n such that Xk = j. Note that,
for any i, j ∈ S, we have

1

n

n∑
k=1

µ
(k)
j =

1

n

n∑
k=1

(µ(0) · P k)j

=
1

n

n∑
k=1

∑
i∈S

µ
(0)
i P k

ij

=
∑
i∈S

µ
(0)
i

1

n

n∑
k=1

P k
ij (6)

Therefore, one can study the desired limit by studying the limit of the average 1
n

∑n
k=1 P

k
ij . To do so one can

use the limit theorems for Pn
ij (see for example [2]) and the well known fact that if an → a then 1

n

∑n
k=1 ak → a.

However, here we will give a different proof without using the limit theorems and without assuming that the
chain is irreducible. Moreover, we will study the behavior of the limit 1

n

∑n
k=1 g(Xk) for a given function g,

using elementary mathematical tools. For more on this topic one can see [3], [5], [6], [8], [11], [14], [15], [16] and
[17].

2 Ergodic Theorems

Let Xn be a Markov chain with (countably infinite in general) state space S. We will prove the following well
known result using elementary mathematical tools.

Theorem 4. It holds that, for any i, j ∈ S,

lim
n→∞

1

n

n∑
k=1

µ
(k)
j =


1

mj

∑
i∈S

µ
(0)
i fij , when j is positive recurrent

0, otherwise

and

lim
n→∞

∑n
k=1 P

k
ij

n
=

{ fij
mj
, when j is positive recurrent

0, otherwise

where fij = P (∃ n ∈ N : Xn = j|X0 = i).

5
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Proof. We know (see [2]) that when j is transient or null recurrent limn→∞ P
n
ij = 0.

Therefore limn→∞
1
n

∑n
k=1 P

n
ij = 0 and using (6) the result follows. Next we suppose that j is positive recurrent.

We are going now to prove the first assertion of the theorem, dividing the proof into three steps.

Step 1 At this step we will see that crucial role play the quantity E
(

Mj(n)

n

)
.

Let the random variables

Nk
j =

{
1, when Xk = j
0, otherwise

and Mj(n) =
∑n

k=1 N
k
j . Because

E
(
Mj(n)

n

)
=

1

n

n∑
k=1

ENk
j =

1

n

n∑
k=1

P (Xk = j) =
1

n

n∑
k=1

µ
(k)
j (7)

we will study the quantity E
(

Mj(n)

n

)
.

Step 2 At this step we will prove the following assertion

P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
=

1

mj
}
∣∣∣Ai

)
= 1

Let the event Ai = {∃ n ∈ N : Xn = j} ∩ {X0 = i} where i ∈ S. Because P (Ai) = P (∃ n ∈ N : Xn = j|X0 =

i) · µ(0)
i we see that P (Ai) = fij · µ(0)

i where fij = P (∃ n ∈ N : Xn = j|X0 = i).

We will work under the probability measure PAi(·) = P (·|Ai) while the corresponding expected value will be
denoted by EAi .

We define the following sequence of random variables,

n1(ω) =

{
min{n ∈ N : Xn(ω) = j}, when ω ∈ Ai

∞, otherwise

n2(ω) =

{
min{n > n1 : Xn(ω) = j}, when ω ∈ Ai

∞, otherwise

...

nk(ω) =

{
min{n > nk−1 : Xn(ω) = j}, when ω ∈ Ai

∞, otherwise

We define also

Zm =

{
nm+1 − nm, when ω ∈ Ai

0, otherwise

for m ≥ 1 which gives us the number of transitions needed to return back to j. Note that the sequence Z1, Z2, · · · ,
is an independent and identically distributed sequence of random variables. The mean recurrent time mj is such
that mj = EAi(Zk) for every k ≥ 1. Next we define the random variable Sl = Z1 + · · ·+ Zl with S0 = 0. Note
that

Sl + n1 = nl+1 for every l ≥ 0 (8)

6
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Using the strong law of large numbers we have that

PAi

(
{ω ∈ Ω : lim

n→∞

Sn

n
= mj}

)
= 1 (9)

Note that Mj(n) → ∞ as n → ∞ for almost all ω ∈ Ω when j is recurrent and its easy to see that nMj(k) ≤ k
for every k ≥ 1.

Using (8) we see that the following inequality hold

SMj(n)−1 + n1 ≤ n ≤ SMj(n) + n1, n ≥ 1, for every ω ∈ Ai

Dividing the previous inequality by Mj(n) > 0 for n > n1 we get, noting that Mj(n) > 1 for n ≥ n2,

SMj(n)−1 + n1

Mj(n)− 1

Mj(n)− 1

Mj(n)
≤ n

Mj(n)
≤
SMj(n)

Mj(n)
, n ≥ n2, for every ω ∈ Ai

Using (9) we have that
SMj(n)−1

Mj(n)−1
→ mj ,

n1
Mj(n)−1

→ 0 and
SMj(n)

Mj(n)
→ mj with probability 1, therefore we deduce

that

PAi

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
=

1

mj
}
)

= 1 (10)

Step 3 Next we will study the limit of the quantity

EAi(Mj(n))

n

Using the dominated convergence theorem it follows that

lim
n→∞

EAi(Mj(n))

n
= EAi

(
lim

n→∞

Mj(n)

n

)
= EAi

(
1

mj

)
=

1

mj

But, since

EAi

(
Mj(n)

n

)
=

E
(

Mj(n)

n
IAi

)
P (Ai)

it follows that

lim
n→∞

E
(
Mj(n)

n
IAi

)
=
P (Ai)

mj
= µ

(0)
i

fij
mj

(11)

Because

E
(
Mj(n)

n

)
=
∑
i∈S

E
(
Mj(n)

n
IAi

)

7
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we obtain, using (11)

lim
n→∞

E
(
Mj(n)

n

)
= lim

n→∞

∑
i∈S

E
(
Mj(n)

n
IAi

)
=

∑
i∈S

lim
n→∞

E
(
Mj(n)

n
IAi

)
=

∑
i∈S

µ
(0)
i

fij
mj

=
1

mj

∑
i∈S

µ
(0)
i fij

where we have used the dominated convergence theorem to get the second equality above. Therefore, we have
proved the first assertion of the theorem.
Next, we are going to prove the second assertion of the theorem. If mij(n) = E(Mj(n)|X0 = i) then we have

mij(n) = E (Mj(n)|X0 = i)

= E

(
n∑

k=1

Nk
j |X0 = i

)

=

n∑
k=1

E(Nk
j |X0 = i)

=

n∑
k=1

P k
ij

Denoting by A = {∃ k ∈ N : Xk = j}, we have

E
(
Mj(n)

n
|X0 = i

)
= E

(
Mj(n)

n
IA|X0 = i

)
+ E

(
Mj(n)

n
IAc |X0 = i

)
= E

(
Mj(n)

n
IA|X0 = i

)

=
E
(

Mj(n)

n
IAi

)
µ

(0)
i

because Mj(n)IAc = 0. That means that

lim
n→∞

mij(n)

n
= lim

n→∞
E
(
Mj(n)

n
|X0 = i

)
=
fij
mj

Therefore

lim
n→∞

∑n
k=1 P

k
ij

n
=

{ fij
mj
, when j is positive recurrent

0, otherwise

The second assertion of the theorem has been proved also.

Note that in the case where the chain is aperiodic it holds that

lim
n→∞

∑n
k=1 P

k
ij

n
= lim

n→∞
(Pn)ij =: (P∞)ij

We can relate the limiting probabilities with the above ergodic type limits.

8
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Theorem 5. Let Xn a discrete time Markov chain with transition matrix P . Then it holds that

lim
n→∞

∑n
k=1 P

k
ij

n
=

1

d

d−1∑
a=0

(P a ·Q∞)ij =
1

d

d−1∑
a=0

lim
n→∞

(Pnd+a)ij (12)

where Q∞ := limn→∞ P
nd and d is the period of the state j.

Proof. Indeed, by theorem 4, we know that the limit limn→∞

∑∞
k=1 Pk

ij

n
exists and is finite. Therefore it holds

that

lim
n→∞

∑dn
k=1 P

k
ij

dn
= lim

n→∞

∑n
k=1 P

k
ij

n

and rearranging the terms we have that

lim
n→∞

∑dn
k=1 P

k
ij

dn
= lim

n→∞

(
Pij + · · ·+ P d−1

ij

dn
−
P dn+1
ij + · · ·+ P dn+d−1

ij

dn

)

+ lim
n→∞

(
1

d

∑n
k=1 P

dk
ij

n
+

1

d

∑n
k=1 P

dk+1
ij

n
+ · · ·+ 1

d

∑n
k=1 P

dk+d−1
ij

n

)

= lim
n→∞

(
1

d

∑n
k=1 P

dk
ij

n
+

1

d

∑n
k=1 P

dk+1
ij

n
+ · · ·+ 1

d

∑n
k=1 P

dk+d−1
ij

n

)
But it holds that

lim
n→∞

1

d

∑n
k=1 P

dk+a
ij

n
= lim

n→∞

1

d

∑n
k=1(P a · P dk)ij

n

= lim
n→∞

1

d

∑n
k=1

∑
l∈S P

a
ilP

dk
lj

n

= lim
n→∞

1

d

∑
l∈S P

a
il

∑n
k=1 P

dk
lj

n

=
1

d

∑
l∈S

P a
il lim

n→∞

∑n
k=1 P

dk
lj

n

=
1

d

∑
l∈S

P a
ilQ
∞
lj

=
1

d
(P a ·Q∞)ij

where we have used again the dominated convergence theorem.

Therefore the result of theorem 3 is stronger than that of theorem 4 because the result of the ergodic theorem
is just the average of the limits of the subsequences of (Pn)ij .

Example 1. Let Xn a discrete time Markov chain with transition matrix

P =



0 0 1 0 0

0 0 1 0 0

1/3 2/3 0 0 0

1/10 1/5 3/10 1/5 1/5

3/10 1/5 0 1/5 3/10
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and state space S = {1, 2, 3, 4, 5}. We see that the states 1, 2, 3 are periodic with period 2 while the states 4, 5 are
transient. We want to estimate the probabilities P(Xn = 2|X0 = 4), P(Xn = 2|X0 = 1) and P(Xn = 3|X0 = 1)
for large n. We will work at the chain Yn with transition matrix

Q = P 2 =



1/3 2/3 0 0 0

1/3 2/3 0 0 0

0 0 1 0 0

9
50

7
25

9
25

2
25

1/10

11
100

1/10 14
25

1/10 13
100


and the same state space. At this chain, every state is aperiodic therefore we have

lim
n→∞

(Qn)ij =
fQ
ij

mQ
j

It is easy to see that mQ
1 = 3, mQ

2 = 3/2 and mQ
3 = 1 and finally

Q∞ =



1/3 2/3 0 0 0

1/3 2/3 0 0 0

0 0 1 0 0

27
152

27
76

71
152

0 0

23
228

23
114

53
76

0 0


That means that

lim
n→∞

P 2n = Q∞ =



1/3 2/3 0 0 0

1/3 2/3 0 0 0

0 0 1 0 0

27
152

27
76

71
152

0 0

23
228

23
114

53
76

0 0



lim
n→∞

P 2n+1 = PQ∞ =



0 0 1 0 0

0 0 1 0 0

1/3 2/3 0 0 0

71
456

71
228

81
152

0 0

53
228

53
114

23
76

0 0


Therefore, an estimate of P(Xn = 2|X0 = 4) for large n depends on the actual n. If n = 2k then we can say
that this probability is almost 27/76 while if n = 2k+ 1 then this probability is almost 71/228. Using the ergodic

theorem we will get 27/76+71/228
2

= 1/3 as a result, that is the average of the limits of the two subsequences. For
the probability P(Xn = 2|X0 = 1) for large n we see that is equal to 2/3 for n = 2k and 0 for n = 2k + 1 while
the ergodic theorem gives 1/3 as a result. For the probability P(Xn = 3|X0 = 1) for large n we have that is equal
to 0 for n = 2k and 1 for n = 2k + 1 while the ergodic theorem gives 1/2 as a result.

Next, we will give some well known results using elementary mathematical tools.

10
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Proposition 1. It holds that, when j is positive recurrent,

{ω ∈ Ω : lim
n→∞

Mj(n)

n
=

1

mj
} ∪ {ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0} = Ω r E

with P (E) = 0. More precisely, it holds that

P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
=

1

mj
}
)

=
∑
i∈S

µ
(0)
i · fij

and

P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0}

)
=
∑
i∈S

µ
(0)
i · (1− fij)

If j is null recurrent or transient, then

P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0}

)
= 1

Proof. · Assume that j is positive recurrent. Denoting by B = {ω ∈ Ω : limn→∞
Mj(n)

n
= 1

mj
} we can write

B =
⋃
i∈S

{ω ∈ Ω : lim
n→∞

Mj(n)

n
=

1

mj
} ∩ {X0 = i} =

⋃
i∈S

Bi

and therefore P (B) =
∑

i∈S P (Bi).
But

Bi = Bi ∩ {∃ k ∈ N : Xk = j}
⋃
Bi ∩ {@ k ∈ N : Xk = j}

so P (Bi) = P (Bi ∩ {∃ k ∈ N : Xk = j}) + P (Bi ∩ {@ k ∈ N : Xk = j}). Recalling (10) we can write that

P (Bi ∩ {∃ k ∈ N : Xk = j}) = PAi

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
=

1

mj
}
)
· P (Ai) = µ

(0)
i · fij

Moreover

P (Bi ∩ {@ k ∈ N : Xk = j}) = 0

since in this event Mj(n) = 0. Therefore P (Bi) = µ
(0)
i · fij and thus

P (B) =
∑
i∈S

µ
(0)
i · fij

Denote now Γi = {@ k ∈ N : Xk = j} ∩ {X0 = i}. Then

PΓi

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0}

)
= 1

where PΓi(·) = P (·|Γi). Thus

P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0} ∩ Γi

)
= P (Γi) = µ

(0)
i (1− fij)

That means that

P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0} ∩ Γ

)
=
∑
i∈S

µ
(0)
i (1− fij)

11
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where Γ = {@ k ∈ N : Xk = j}. Thus

P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0}

)
≥
∑
i∈S

µ
(0)
i (1− fij)

The events

{ω ∈ Ω : lim
n→∞

Mj(n)

n
=

1

mj
} and {ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0}

are disjoint, therefore

1 ≤ P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
=

1

mj
}
)

+ P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0}

)
= P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
=

1

mj
} ∪ {ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0}

)
≤ 1

Therefore

{ω ∈ Ω : lim
n→∞

Mj(n)

n
=

1

mj
} ∪ {ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0} = Ω r E

with P (E) = 0 and

P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0}

)
=
∑
i∈S

µ
(0)
i (1− fij)

· Assume now that j is null recurrent and let the sequence of random variables

Zm =

{
nm+1 − nm, when ω ∈ Ai

0, otherwise

for m ≥ 1. Because j is null recurrent we have that E(Zm) =∞ for every m ≥ 1. We define now the sequence
ZR

m = ZmI{Zm<R} for R > 0 for which it holds that E(ZR
m) < ∞ for every m ≥ 1. Moreover, E(ZR

1 ) = E(ZR
m)

for every m ≥ 1. This sequence is again an independent and identical distributed sequence of random variables.
Therefore we can use the strong law of large numbers to get

PAi

(
ω ∈ Ω : lim

n→∞

SR
n

n
= EAi(Z

R
1 )

)
= 1

where SR
n = ZR

1 + ZR
2 + · · ·+ ZR

n ≤ Sn = Z1 + · · ·+ Zn and Ai, PAi is as before. Therefore it holds that

SR
Mj(n)−1 + n1 ≤ SMj(n)−1 + n1 ≤ n

So

SR
Mj(n)−1 + n1

Mj(n)− 1

Mj(n)− 1

Mj(n)
≤ n

Mj(n)
, n ≥ n2, for every ω ∈ Ai

Letting n→∞ we get that

0 ≤ lim sup
n→∞

Mj(n)

n
≤ 1

E(ZR
m)
, almost surely, for every R > 0

under the probability measure PAi . Note that ZR
m is an increasing sequence in R and that ZR

m → Zm as R→∞
almost surely. Therefore EAi(Z

R
m)→ EAi(Zm) =∞ using the monotone convergence theorem. That means that

lim
n→∞

Mj(n)

n
= 0 almost surely

12



Halidias; Asian J. Prob. Stat., vol. 26, no. 2, pp. 1-17, 2024; Article no.AJPAS.112652

under the probability measure PAi , i.e.

PAi

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0}

)
= 1 (13)

Let now the event {ω ∈ Ω : lim supn→∞
Mj(n)

n
≥ ε} where ε > 0. Noting that

P

(
{ω ∈ Ω : lim sup

n→∞

Mj(n)

n
≥ ε} ∩Ac

)
= 0

where A = {∃ l ∈ N : Xl = j} and

P

(
{ω ∈ Ω : lim sup

n→∞

Mj(n)

n
≥ ε} ∩A

)
=

∑
i∈S

P

(
{ω ∈ Ω : lim sup

n→∞

Mj(n)

n
≥ ε} ∩Ai

)
=

∑
i∈S

PAi

(
{ω ∈ Ω : lim sup

n→∞

Mj(n)

n
≥ ε}

)
︸ ︷︷ ︸

=0, see (13)

P (Ai)

= 0

we obtain

P

(
{ω ∈ Ω : lim sup

n→∞

Mj(n)

n
≥ ε}

)
= 0

Because
Mj(n)

n
≥ 0 it follows the desired result.

· Finally we assume that j is transient. It is well known that P (Mj < ∞|X0 = i) = 1 for every state i, where
Mj = limn→∞Mj(n). Therefore

P (Mj <∞) =
∑
i∈S

P (Mj <∞|X0 = i) · P (X0 = i) =
∑
i∈S

µ
(0)
i = 1

Moreover

Ω =

(
∞⋃

N=0

BN

)
∪B∞

where BN = {Mj = N} and B∞ = {Mj =∞}. Thus

∞∑
N=0

P (BN ) = 1

since P (B∞) = 0.

Therefore we can write

{ω ∈ Ω : lim
n→∞

Mj(n)

n
= 0}

=

(
∞⋃

N=0

{ω ∈ Ω : lim
n→∞

Mj(n)

n
= 0} ∩BN

)
∪
(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0} ∩B∞

)
Thus

P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0}

)
=

∞∑
N=0

P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0} ∩BN

)

13
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since P
(
{ω ∈ Ω : limn→∞

Mj(n)

n
= 0} ∩B∞

)
≤ P (B∞) = 0. But

P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0} ∩BN

)
= P

(
{ω ∈ Ω : lim

n→∞

Mj(n)

n
= 0}|BN

)
P (BN )

= P (BN )

since it holds that P
(
{ω ∈ Ω : limn→∞

Mj(n)

n
= 0}|BN

)
= 1. Since

∑∞
N=0 P (BN ) = 1 we obtain the desired

result.

Corollary 2. If g : S → R is such that ∑
i∈S

|g(i)| <∞

then it holds that

lim
n→∞

1

n

n∑
k=1

Eg(Xk) =
∑
j∈C

g(j)

mj

∑
i∈S

µ
(0)
i fij

where C ⊆ S is the subset of S of positive recurrent states.

Proof. Note that g(Xk) =
∑
j∈S

g(j)I{Xk=j}. Therefore

1

n

n∑
k=1

Eg(Xk) =
1

n

n∑
k=1

∑
j∈S

g(j)EI{Xk=j}

=
∑
j∈S

g(j)
1

n

n∑
k=1

EI{Xk=j}

=
∑
j∈S

g(j)E
(
Mj(n)

n

)
We have interchange the sums

∑n
k=1

∑
j∈S because the series is absolutely convergent since

∑
i∈S |g(i)| <∞.

So

lim
n→∞

1

n

n∑
k=1

Eg(Xk) = lim
n→∞

∑
j∈S

g(j)E
(
Mj(n)

n

)
=
∑
j∈C

g(j)

mj

∑
i∈S

µ
(0)
i fij

We have used the dominated convergence theorem to interchange the limit with the sum in the second equality
above.

Corollary 3. Given a function g : S → R such that∑
i∈S

|g(i)| <∞

it holds that

lim
n→∞

1

n

n∑
k=1

g(Xk) =
∑
j∈C

g(j)

mj
IAj almost surely

14
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where Aj = {ω ∈ Ω : ∃ l ∈ N : Xl = j} with P (Aj) =
∑

i∈S µ
(0)
i · fij. In particular, when the chain is irreducible

it holds that

lim
n→∞

1

n

n∑
k=1

g(Xk) =


∑
j∈S

g(j)πj , when is positive recurrent

0, otherwise

where π = (π1, π2, · · · , ) is the unique stationary distribution (if it exists).

Proof. Note that

1

n

n∑
k=1

g(Xk) =
1

n

n∑
k=1

∑
j∈S

g(j)I{Xk=j}

=
∑
j∈S

g(j)
Mj(n)

n

=
∑
j∈C

g(j)
Mj(n)

n
IAj +

∑
j∈NR

g(j)
Mj(n)

n
+
∑
j∈T

g(j)
Mj(n)

n

where C ⊆ S is the subset of positive recurrent states of S, NR ⊆ S is the subset of null recurrent states of
S, T ⊆ S is the subset of transient states of S and Aj = {ω ∈ Ω : ∃ l ∈ N : Xl = j}. The condition on g, i.e.∑

i∈S |g(i)| <∞ is needed in order to interchange the sums to get the second equation above.

Note that Aj =
⋃

i∈S{∃ l ∈ N : Xl = j} ∩ {X0 = i} and therefore P (Aj) =
∑

i∈S µ
(0)
i · fij .

Finally, using proposition 1, we obtain the result,

lim
n→∞

1

n

n∑
k=1

g(Xk) =
∑
j∈C

g(j)

mj
IAj , almost surely

In the case where the chain is irreducible (i.e. fij = 1 for every i, j ∈ S and thus P (Aj) = 1 for every j ∈ S) it
is easy to obtain the desired result.

3 Summary

In this review article, we are interested on discrete time Markov chains. A basic problem in the study of discrete
Markov chains is the computation of the probabilities

P (Xn = j|X0 = i) and P (Xn = j)

To compute these probabilities one have to compute the nth power of the transition matrix. In [9] and [10] we
have discussed this problem in the case where the transision matrix is finite. We have seen that we can indeed
compute the nth power of the matrix, even if it is not diagonizable. In [10] we gave the matlab code for this
computation using the minimum polynomial of the transition matrix. We gave also a feasible method to compute
the minimum polynomial, which is very useful in the case where the transition matrix is big. However, if the
transition matrix is big and not sparse, it is not possible to compute the nth power, even we know the roots of
the minimum or the characteristic polynomial. Therefore, in order to compute the above probabilities, we have
to compute first the limiting probabilities and then, approximately, we deduce that the desired probabilities are
almost equal to the limiting ones.

In order to compute the limiting probabilities, a problem arise when there are some periodic states. In this case,
the ergodic theorems are useful because they give us a partial answer to our problem. So, in this review article
we gave the proofs of some ergodic theorems for discrete Markov chains using elementary mathematical tools.
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There are some results concerning the limiting probabilities in the general case (see for example [4]) but they
are not practical useful in most cases. Therefore, we are interested to find a more practical way to compute
these limiting probabilities.

We are interested in particular on the case where some of the states are periodic. In this case we have show that
there is a better way to compute the limiting probability limn→∞(Pn)i where i is transient and j is recurrent and
periodic, than the way already suggested (see for example [4]). In the way suggested by the existing literature
one has to compute the probability

∑∞
k=0 fkd(j)+a(i|j) where

fij = P (∃ n ∈ N : Xn = j|X0 = i)

But in most cases, this is not possible. Our suggestion is, first to compute the limiting probabilities
limn→∞(Pnd)ij . Then, in order to compute the limiting probabilities limn→∞(Pnd+a)ij , we just have to compute
the

(
P a · limn→∞(Pnd)

)
. This way is much easier than the existing one and the proof relies on the use of the

dominated convergence theorem. We also relate the limiting probabilities with the ergodic results and find out
that the first result is stronger than the second.

By means of Remark 2, there is an open question regarding the probabilities fQ
ij . Can we compute these

probabilities given the probabilities fij? In a finite Markov chain, one can find the inverse of the matrix W
in order to compute the probabilities fQ

ij given the probabilities fij . In the infinite case however, the system
in Remark 2 is a difference equation, therefore the above method does not give us a result. How can we
solve, in general, this difference equation in order to compute the desired probabilities? Denoting by GQ(x)
the probability generating function of the sequence fQ

nj and by G(x) the probability generating function of the
sequence fnj can somehow relate these probability generating functions using the relation

fij =
∑
k∈S

Wikf
Q
kj

or, even better, solve for GQ(x) in terms of G(x)? If this is the case how can we compute the probability
generating function G(x)?

4 Conclusion

In this paper we have discussed the computation of the limiting probabilities of a Markov chain in discrete
time. We have related the limiting probabilities with the ergodic type results and find out that the first result
is stronger than the second.
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