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Preface

This LNCS volume contains the papers presented at the second Workshop on
Human Motion Understanding, Modeling, Capture and Animation, which took
place on October 20th, 2007, accompanying the 11th IEEE International Con-
ference on Computer Vision in Rio de Janeiro, Brazil.

In total, 38 papers were submitted to this workshop, of which 22 papers were
accepted. We were careful to ensure a high standard of quality when selecting
the papers. All submissions were double-blind reviewed by at least two experts.
Out of the 22 accepted papers, 10 were selected for oral presentation and 12 for
posters. We thank the authors of the accepted papers for taking the reviewers’
comments into account in the final published versions of their papers. We thank
all of the authors who submitted their work, and we trust that the reviewers’
comments have been of value for their research activities.

The accepted papers reflect the state of the art in the field and cover various
topics related to human motion tracking and analysis. The papers in this volume
have been classified into three categories based on the topics they cover: human
motion capture and pose estimation, body and limb tracking and segmentation,
and activity recognition.

It was a special honor to have Prof. Demetri Terzopulos (University of Cal-
ifornia, Los Angeles) as the invited speaker at the workshop. We are especially
grateful to the members of the Program Committee for their remarkable efforts
and the quality of their timely reviews. The organization of this event would not
have been possible without the effort and the enthusiasm of several people, and
we thank all who contributed.

October 2007 Ahmed Elgammal
Bodo Rosenhahn
Reinhard Klette
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Marker-Less 3D Feature Tracking for

Mesh-Based Human Motion Capture

Edilson de Aguiar1, Christian Theobalt2, Carsten Stoll1,
and Hans-Peter Seidel1

1 MPI Informatik, Germany
2 Stanford University, USA

{edeaguia, stoll, hpseidel}@mpi-inf.mpg.de,
theobalt@cs.stanford.edu

Abstract. We present a novel algorithm that robustly tracks 3D tra-
jectories of features on a moving human who has been recorded with
multiple video cameras. Our method does so without special markers in
the scene and can be used to track subjects wearing everyday apparel. By
using the paths of the 3D points as constraints in a fast mesh deformation
approach, we can directly animate a static human body scan such that
it performs the same motion as the captured subject. Our method can
therefore be used to directly animate high quality geometry models from
unaltered video data which opens the door to new applications in mo-
tion capture, 3D Video and computer animation. Since our method does
not require a kinematic skeleton and only employs a handful of feature
trajectories to generate lifelike animations with realistic surface defor-
mations, it can also be used to track subjects wearing wide apparel, and
even animals. We demonstrate the performance of our approach using
several captured real-world sequences, and also validate its accuracy.

1 Introduction

Nowadays, generating realistic and lifelike animated characters from captured
real-world motion sequences is still a hard and time-consuming task. Tradition-
ally, marker-based optical motion capture systems [1] reconstruct the motion of
a moving subject by measuring the 3D trajectories of optical beacons attached
to her body. The optical markers are then mapped to a kinematic skeleton struc-
ture [2]. Marker-free methods also exist that are able to measure human motion
in terms of a kinematic skeleton without any intrusion into the scene. Thereafter,
the model geometry and the skeleton need to be connected such that the surface
deforms realistically with the body motion by specifying the influence of each
bone on both rigid and non-rigid surface deformation [3].

Stepping directly from a captured real-world sequence to the corresponding
realistic moving character is still challenging. Several methods in the litera-
ture are able to partly solve this problem. Since marker-based and marker-free
motion capture systems measure the motion in terms of a kinematic skeleton,
they have to be combined with other scanning technologies to capture the time-
varying shape of the human body surface [4,5,6]. However, dealing with people

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 E. de Aguiar et al.

wearing arbitrary clothing from only video streams is still not possible. Time-
varying scene representations can also be reconstructed by means of shape-from-
silhouette approaches [7], or with combined silhouette- and stereo-based meth-
ods [8]. Unfortunately, the measured models often lack detail if only a small
number of input camera views is available and it is hard to preserve topological
correspondences over time. Researchers have also used physics-based methods
to track simple human motions if a kinematic skeleton is available [9]. However,
the methods can not be directly applied to objects made of a variety of different
materials, and they are not able to track arbitrarily dressed humans completely
passively.

Instead, we present a robust skeleton-less approach to automatically capture
the motion of a moving human subject and generate plausible and realistic sur-
face deformations from multiple video streams without optical markers. Our
algorithm is simple and versatile and enables us to directly animate a high qual-
ity static human scan from unaltered video footage which enables potential new
applications in motion capture, computer animation and 3D Video.

The main contribution of this paper is a simple and robust method to auto-
matically identify features on a moving human wearing everyday apparel, and
track their 3D trajectories. It does not employ any a priori information about
the subject, e.g. a kinematic skeleton, and can therefore be straightforwardly
applied to other subjects, e.g. animals or mechanical objects. We also present a
fast mesh deformation approach that uses only a handful of feature trajectories
to directly and realistically animate a static human body scan making it per-
forms the same motion as the captured subject. Our algorithm handles humans
wearing arbitrary and sparsely textured clothing. As an additional benefit, it
also preserves the mesh’s connectivity over time.

The remainder of this paper is structured as follows: Sect. 2 reviews the most
relevant related work and Sect. 3 briefly describes our overall framework. There-
after, Sect. 4 details our automatic approach to identify features and track their
3D trajectories without optical markers. Sect. 5 describes our fast deformation
scheme that is used to animate the static human model over the whole sequence
according to the constraints derived from the estimated 3D point trajectories.
Experiments and results with several captured real-world sequences are shown
in Sect. 6, and the paper concludes in Sect.7.

2 Related Work

In our research we capitalize on ideas that have been published in the fields of
object tracking, motion capture and scene reconstruction. For the sake of brevity,
we refer the interested reader to overview articles on object tracking [10,11]. The
following, is by no means a complete list of references from the other two research
topics, but merely a summary of the most related categories of approaches.

Human motion is normally measured by marker-based or marker-less opti-
cal motion capture systems [1] that parameterize the data in terms of kinematic
skeletons. Unfortunately, these approaches can not directly measure time-varying
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body shape and they even fail to track people wearing loose apparel. To overcome
this limitation, some methods use hundreds of optical markings [5] for deforma-
tion capture, combine a motion capture system with a range scanner [4,12] or a
shape-from-silhouette approach [6], or jointly use a body and a cloth model to
track the person [13]. Although achieving good results, most of these methods
require active interference with the scene or require hand-crafted models for each
individual.

Alternatively, shape-from-silhouette algorithms [7], multi-view stereo
approaches [14], or methods combining silhouette and stereo constraints [8] can
be used to reconstruct dynamic scene geometry. To obtain good quality results,
however, several cameras are required and it is hard to generate connectivity-
preserving dynamic mesh models.

Some passive methods extract 3D correspondences from images to track sim-
ple deformable objects [15] or cloth [16]. They can also be employed to jointly
capture kinematic motion parameters and surface deformations of tightly dressed
humans [17,18]. Researchers have also used physics-based shape models to track
textiles [19,20] or simple articulated humans [9]. Unfortunately, none of these
methods is able to track people dressed in arbitrary everyday apparel completely
passively.

In contrast, we propose a skeleton-less method to directly capture the poses of
a moving human subject and generate plausible surface deformations from only
a handful of input video streams. This is achieved by first robustly identifying
and tracking image features in 3D space. Thereafter, using the 3D trajectories of
the features as constraints in a Laplacian mesh editing setting [21], the human
model is realistically animated over time. By relying on differential coordinates,
plausible shape deformations for the human scan are computed without having
to specify explicit material parameters. Our algorithm is simple, robust, easy to
implement and works even for moving subjects wearing wide and loose apparel.

3 Overview

An overview of our approach is shown in Fig. 1. Our system expects as input
a multi-view video (MVV) sequence that shows the person moving arbitrarily.
After acquiring the sequence, silhouette images are calculated via color-based
background subtraction and we use the synchronized video streams to extract
and track features in 3D space over time.

Our hybrid 3D point tracking framework jointly uses two techniques to es-
timate the 3D trajectories of the features from unmodified multi-view video
streams. First, features in the images are identified using the Scale Invariant
Feature Transform (SIFT). Furthermore, SIFT is able to match a feature to its
corresponding one from a different camera viewpoint. This allows us to generate
a set of pairwise pixel correspondences between different camera views for each
time step of input video. Unfortunately, tracking the features over time using
only local descriptors is not robust if the human subject is wearing sparsely
textured clothing. Therefore, we use a robust dense optical flow method as an
additional step to track the features for each camera view separately to fill the
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(1)

SIFT

Human Scan

MVV sequence

Silhouette

racking

Feature-based
racking

Fig. 1. Overview of our framework: given a multi-view video sequence showing a human
performing, our method automatically identifies features and tracks their 3D trajecto-
ries. By applying the captured trajectories to a static laser-scan of the subject we are
able to realistically animate a human model making it move the same as its real-world
counterpart in the video streams.

gaps in the SIFT tracking. By merging both source of information we are able
to reconstruct the 3D trajectories for many features over the whole sequence.

Our hybrid technique is able to correctly identify and track many 3D points.
In addition to the estimation of 3D point positions, our approach also calcu-
lates a confidence value for each estimation. Using confidence-weighted feature
trajectories as deformation constraints, our system robustly brings a static laser-
scanned triangle mesh M of the subject into life by making it follow the motion
of the actor recorded in the video frames.

4 Hybrid 3D Point Tracking

Our hybrid framework jointly employs local descriptors and dense optical flow
to identify features and estimate their 3D positions over time from multiple
calibrated camera views. In contrast to many other approaches [22,23,24], we
developed an automatic tracking algorithm that works directly on the images
without any a priori knowledge about the moving subject. It is our goal to create
a simple and generic algorithm that can be used to track features on rigid bodies,
articulated objects and non-rigidly deforming subjects in the same way.

The input to our algorithm comprises of synchronized video streams recorded
from K cameras, each containing N video frames (Fig. 2a). In the first step,
we automatically identify L important features, also called keypoints, for each
camera view k and time step t and generate a set of local descriptors Fk,t =
{f0

k,t, . . . , f
L
k,t} using SIFT [25], Fig. 2b. We extract these features using the

interest point detector proposed by Lowe [26] that is based on local 3D extrema
in the scale-space pyramid built with difference-of-Gaussian filters. The local
descriptors are built as a distinctive representation of the feature in an image
from a patch of pixels in its neighborhood.
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Since the SIFT descriptors are invariant to image scale, rotation, change in
viewpoints, and change in illumination, they can be used to find corresponding
features across different camera views. Given an image Ik,t, from camera view k
and time step t, and the respective set of SIFT descriptors Fk,t, we try to match
each element of Fk,t with the set of keypoints from all other camera views. We
use a matching function similar to [25], which assigns a match between f i

k,t and
a keypoint in Fj,t if the Euclidean distance between their invariant descriptor
vectors is minimum. In order to discard false correspondences, nearest neighbor
distance ratio matching is used with a threshold TMATCH [27] .

After matching the keypoints across all K camera views at individual time
steps, we gather all R correct pairwise matches into a list of pixel correspon-
dences Ct = {c0

t , . . . , c
R
t } by using all reliable matches found for each time step

t (Fig. 2c). Each element cr
t = ((camu, P i

t ), (camv, P j
t )) stores the information

about a correspondence between two different camera views, i.e. that pixel P i
t

in camera camu corresponds to pixel P j
t in camera view camv at time t.

Unfortunately, tracking the features over time using only the list of corre-
spondences C and connecting their elements at different time steps is not ro-
bust, because it is very unlikely that the same feature will be found at all time
instants. This is specially true if the captured images show subjects performing
fast movements, where features can be occluded for a long period of time, or
when the subject wears everyday apparel with sparse texture. In the latter case,
SIFT only detects a small number of keypoints per time step, which is usually
not enough for tracking articulated objects. Therefore, in order to robustly re-
construct the 3D trajectories for the features we decided to use optical flow to
track both elements of all cr

t for each camera view separately, i.e. the pixel P i
t is

tracked using camera view camu and the pixel P j
t using camera view camv.

The 2D flow-based tracking method works as follows: for each camera view k,
we track all pixels over time using the warping-based method for dense optical
flow proposed by Brox et al. [28]. After calculating the optical flow ot

k(Ik,t, Ik,t+1)
between time step t and t + 1 for camera k, we use ot

k to warp the image Ik,t

and we verify for each pixel in the warped image if it matches the corresponding
pixel in Ik,t+1. We eliminate the pixels that do not have a partner in t+1 and the
pixels that belong to the background by comparing the warped pixels with the
pre-computed silhouette SILk,t+1. This process is repeated for all consecutive
time steps and for all camera views. As a result, we construct a tracking list
Dk = {E0, . . . , Eg} with G pixel trajectories for each camera view k (Fig. 2d).
Each element Ei = {P i

0, . . . , P
i
N} contains the positions of the pixel P i

t for all
time steps t.

The last step of our hybrid tracking scheme merges the optical flow tracking
information with the list of correspondences to reconstruct the 3D trajectories for
all features. We take pixel correspondences from all time steps into account. For
instance, if a matching cr

t is detected by SIFT only at the end of the sequence we
are still able to recover the anterior positions of the feature by using the optical
flow information.



6 E. de Aguiar et al.

F
k,t

I
k,t

...

D
k

...

C
t

...

...

( A ) ( B )

( C )
( D )

( E )

L
3D

C
t

D
0

D
K

Fig. 2. Using the synchronized video streams as input (A), our hybrid approach first
identifies features in the images using SIFT (B) and then matches these features be-
tween different pairs of camera views based on their descriptors (C). In addition, we
track these features for each camera view separately using optical flow (D). At the end,
reliable 3D trajectories for the features are reconstructed by merging both information
(E).

For each entry cr
t = ((camu, P i

t ), (camv, P
j
t )), we verify if the pixel P i

t is
found in Dcamu and if the pixel P j

t is found in Dcamv . In case both elements are
found, we estimate the position of the respective 3D point, mmr(t), for the whole
sequence (Fig. 2e), otherwise cr

t is discarded. The 3D positions are estimated by
triangulating the viewing rays that start at the camera views camu and camv

and pass through the respective image plane pixel at P i
t and P j

t . However, due to
inaccuracies, these rays will not intersect exactly at a single point. However, we
can compute a pseudo-intersection point posr

t = {x, y, z} that minimizes the sum
of squared distance to each pointing ray. We also use the inverse of this distance,
cvr, as a confidence measure indicating how reliable a particular feature has been
located. If cvr is below a threshold TCONF we discard it, since it indicates that
cr
t assigns a wrong pixel correspondence between two different camera views.
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We also discard a trajectory mmr if it does not project into the silhouettes in
all camera views and at all time steps. This way, we can prevent the use of 3D
points whose trajectories degenerate over time as deformation constraints. We
assess silhouette-consistency using the following measure:

TSIL(mmr) =
N∑

t=0

K∑

k=0

PROJk
sil(posr

t , t) (1)

where PROJk
sil(posr

t , t) is a function that evaluates to 1 if mmr(t) projects in-
side the silhouette image of camera view k at time step t, and it is 0 otherwise.
We only consider mmr a reliable 3D trajectory if TSIL(mmr) > TRSIL. Ap-
propriate values for the thresholds are found through experiments.

After processing all elements of C for all time steps, we generate a list with
reliable 3D trajectories for the features. The list L3D = {mm0, . . . , mmh} =
{(LP0, LE0), . . . , (LPH , LEH)} assigns to each trajectory mmi, a tuple (LPi,
LEi) containing the 3D point positions, LPi = {posi

0, . . . , posi
N}, and the respec-

tive list of confidence values for each estimated 3D position, LEi ={cvi
0, . . . , cv

i
N}.

As shown in Sect. 6, our hybrid approach is able to identify and accurately track
many 3D points for sequences where the human subject is performing fast mo-
tion, even when he is dressed in everyday apparel.

5 Feature-Based Laplacian Mesh Tracking

It is our goal to animate the human scan making it move the same way as
its real-world counterpart in the video streams by using the reconstructed 3D
point trajectories as motion constraints. For this purpose, we first roughly align
the human model with the 3D point positions at the first time step of video
(our reference), Fig. 3(a). This is automatically done by applying a PCA-based
alignment scheme to a reconstructed volumetric shape-from-silhouette model
of the moving subject. Thereafter, we select H target vertices VT = {vTh|h ∈
{0 · · ·H}} in the human model M by choosing vertices that are closest to the
3D point positions at the reference time step, Fig. 3(b). These target vertices
VT are used to guide the mesh deformation method.

We deform the human scan by employing a Laplacian mesh deformation
scheme that jointly uses rotational and positional constraints on the target ver-
tices VT in a similar way as [29]. The details of the human model M are encoded
in its differential coordinates. The differential coordinates d of M are computed
once at the beginning of the sequence by solving a matrix multiplication of the
form d = Lv, where L is the discrete Laplace operator based on the cotangent-
weights, and v is the vector of M ’s vertex coordinates [30]. Thereafter we perform
the following three processing steps for each time step t:

Since the differential coordinates d are rotation-dependent [31], we need to
first calculate the local rotations that should be applied to d. We derive these
rotational constraints from the 3D trajectories. The local rotation for each target
vertex vTh of M is calculated from the rotation of the corresponding 3D point
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( B ) ( C )( A )

Fig. 3. After aligning the 3D point positions (A) with the human model at the ref-
erence time step (B), our method reconstructs a novel pose jointly using rotational
and positional constraints on the target vertices which we derived from the 3D feature
trajectories (C)

mmh(t) between reference time and time t by means of a graph-based method,
Fig. 3. To this end, 3D points are considered as nodes in a graph, and edges
between them are determined by constructing the minimal spanning tree [32]
using the approximated geodesic distance as edge weights. For each 3D point
mmh(t), we find the minimal rotation that makes its outgoing edges at the
reference time match its outgoing edges at time t (i.e. using the Jacobian).
This local rotation is then converted into a quaternion qmmh(t). Since we want
the target vertices VT to perform the same rotations as the 3D points, we set
qvT h

= qmmh(t) for all H 3D points.
Using the estimated rotations for the target vertices, we interpolate them over

M using the idea proposed in [33] in order to estimate rotations for each vertex
of the model. Each component of a quaternion q = [w, q1, q2, q3] is regarded as a
scalar field defined over the entire mesh. A smooth interpolation is guaranteed by
regarding these scalar fields as harmonic fields. The interpolation is performed by
solving the Laplacian equation Lq = 0 over the whole mesh using the constrained
target vertices as Dirichlet boundary conditions and normalizing the resulting
quaternions.

At the end, we reconstruct the vertex positions v of M such that the mesh
best approximates the rotated differential coordinates, as well as the positional
constraints. This can be formulated as a least-squares problem of the form

argmin
v

{‖Lx − (q · d · q)‖2 + ‖Av − p‖2}. (2)

which can be transformed into a linear system

(LT L + AT A)v = LT (q · d · q) + AT p. (3)

In Eq. 3, p is the vector of positional constraints of the form vj = posj
t , j ∈

{1, . . . , H} specified for the H target vertices and derived from the position of
the 3D points at time t. The matrix A is a diagonal matrix containing non-zero
weights Aij = c ∗ cvj

t , c being a constant, only for constrained vertices j. We
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weight the target vertex position posj
t for vTj at time t proportional w.r.t its

corresponding confidence value since small values for cvj
t indicate inaccuracies

in the estimated 3D position. As demonstrated in Sect. 6, this weighting scheme
leads to a better visual animation quality for the animated human scans.

After applying this algorithm to the whole sequence, our mesh deformation
approach is able to animate the human scan making it correctly follow the mo-
tion of the actor recorded in all video frames. As shown in Sect. 6, our approach
preserves the details and features of the mesh and is able to generate plausi-
ble and realistic surface deformation for subjects wearing even loose everyday
apparel.

6 Results and Discussion

We tested our method on several real-world sequences with different male and
female test subjects recorded in our studio. Our acquisition procedure works as
follows: we first acquire the scanned model with a Vitus SmartTM full body laser
scanner. After scanning, the subject immediately moves to the nearby area where
she is recorded with eight synchronized video cameras that run at 25 fps and
provide 1004x1004 pixels frame resolution. The calibrated cameras are placed in
an approximately circular arrangement around the center of the scene and color-
consistency across cameras is ensured by applying a color-space transformation
to each camera stream. The captured video sequences are between 150 and 400
frames long and show a variety of different clothing styles. We captured different
motions ranging from simple walking to yoga and capoeira moves.

As shown in the second and third columns of Table 1, our hybrid 3D point
tracking approach is able to identify and track many features in 3D space accu-
rately. The average confidence value (CV) for the 3D point positions are large,
which corresponds to position errors of around 1.0−2.2cm. Three different frames
for the yoga (YOGA) and walking (WALK) sequences with selected features
shown as dots can be seen in the upper row of Fig. 4. Looking at the tempo-
ral evolution one can see that the features are reliably tracked over time. The
left images in the middle row of Fig. 4 also show two closeups on the legs in
the walking sequence. Features were accurately tracked despite the appearance
ambiguities caused by the trousers with homogeneous color. If we had used only
SIFT descriptors to track these features, it would have been impossible to track
them in these homogeneous areas.

High tracking accuracy and reliability even in such difficult situations is up-
held by additionally taking into account optical flow information. Even if a cor-
respondence was only found for one time step, we can reconstruct the complete
trajectory for this feature by looking at the optical flow information. This second
source of information also enables us to apply a very high threshold TMATCH

which eliminates unreliable 3D feature matches already at an early stage.
Before using the 3D point trajectories to guide the deformation of the human

scan we first choose a subset of NM points from the initial set of 3D trajecto-
ries L3D at the reference time step. This subset of points should be distributed
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Fig. 4. (Upper row) Selected features tracked in three different frames for the yoga
and walking sequences; (middle and lower row) two frames of the walking sequence
in detail and side-by-side comparisons between input video frames and reconstructed
poses for the human scan. Our framework correctly tracks 3D trajectories of features
even in the presence of occlusions or appearance ambiguities. By combining the 3D
point trajectories with our mesh deformation method, our algorithm is able to directly
animate a human body scan.

evenly on the model surface. This is done by ramdonly choosing a element in
L3D and all adjacent points next to it at the reference time step by using a
distance threshold TDIST . We compare the confidence values for this group of
elements and choose the point with the maximum confidence value. We continue
the same procedure choosing another point in L3D until all selected points are
separated by a distance TDIST , and consequently distributed over the model’s
surface. We conducted several experiments with different values for TDIST and
found out that in general, values between 10cm and 20cm produce best results.
For a typical sequence, this leads to around 20 − 50 selected points. Note that
although our hybrid 3D tracking approach is able to correctly track many more
points over time, even a subset of points is sufficient to track body poses reliably.



Marker-Less 3D Feature Tracking for Mesh-Based Human Motion Capture 11

Fig. 5. Overlap between the reprojected model (red) and the input image for the female
and male subjects. Our framework is able to correctly reconstruct their pose even when
they are wearing wide and loose apparel.

Our selection criteria also enable us to eliminate multiple trajectories of the same
feature (stemming for different camera pairs) which bears no useful information.

The middle (right) and lower row of Fig. 4 shows several side-by-side com-
parisons between input video frames and tracked poses of the human scan. Our
algorithm reliably recovers the poses and creates plausible and realistic surface
deformations for the male actor performing a capoeira move and even for the
female subject wearing a long dress. Due to the occlusion of the limbs or the
wide and loose apparel, tracking the motion of these subjects over time would
have been hard with a normal motion capture system. More captured real-world
results are shown in the accompanying video.

Due to the lack of ground truth for our experiments, we evaluate our results
by overlapping the reprojected model with the input images as shown in Fig. 5.
We also calculate a multi-view overlap measure by counting the average number
of pixels that do not match between the reprojected model and the input image
silhouettes for all camera views and all time steps. As shown in the plot in Fig. 6,
our system automatically animates the human scan making it follow the motion
of the real-world actor with a consistent silhouette-accuracy of more than 94%.

We also performed experiments to evaluate the performance of our framework
in animating the human scan. Table 1 summarizes the results we have obtained
employing quality and accuracy measures for several sequences. The column
VOL shows the average volume change in the animated scan over the whole
sequence. This measure is a numerical indicator for implausible deformations.
The preservation of mesh quality is analyzed by looking at the average distortion
of the triangles, QLT. It is computed by averaging the per-triangle Frobenius
norm over the mesh and over time [34]. This norm is 0 for an equilateral triangle
and approaches infinity with increasing degeneracy. Finally, the column labeled
OVLP contains the average multi-view overlap between the reprojected model
and the input image silhouettes over time.
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Fig. 6. Multi-view silhouette overlap for several captured sequences. Our system au-
tomatically makes the static human scan follow the motion of the captured real-world
actor with high precision.

Table 1 shows that the volume change in the animated human scan is in the
range of normal non-rigid body deformations, and that triangles remain in nice
shape. It also shows that our mesh deformation approach reconstructs the poses
of the scan with high accuracy, even if the subjects wear wide and loose everyday
apparel.

We performed experiments to demonstrate the importance of the confidence
value as a weight in Eq. 3 (Sect. 5) as well. Our experiments show that when using
the confidence value in our mesh deformation approach, surface deformations are

Table 1. For each captured real-world sequence, the number of identified features
(FEAT) and the average confidence value (CV) are shown. We also employ accuracy
and quality measures for the animated scan, i.e. changes in volume (VOL), distor-
tion of triangles (QLT) and multi-view silhouette overlap (OVL), to demonstrate the
performance of our framework.

SEQ FEAT CV [m−1] OVLP VOL QLT

CAPO 1207 65.18 95.4% 3.2% 0.03
DANC 1232 58.30 95.6% 1.8% 0.01
YOGA 1457 112.23 93.7% 3.6% 0.10
WALK 2920 71.78 95.5% 1.5% 0.01
DRSS 3132 45.72 94.4% 2.0% 0.01
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generated in a more reasonable and lifelike way, which leads to a better visual
animation quality.

Our results show that our purely passive tracking method can automatically
identify and track the 3D trajectories of features on a moving subject without
the need of any a priori information or optical markers. By combining it with
our fast deformation technique it also enables us to directly and realistically
animate a static human scan making it follow the same motion as its real-world
counterpart even if he wears casual everyday apparel.

Nonetheless, our algorithm is subject to a few limitations. Currently, if the
subject moves very quickly, the optical flow method may fail to track the 2D
features. However, in such situations one might use one of the many high-speed
camera models available today for capturing fast scenes. Another limitation is
the run time of our tracking system. Currently, we need around 3-5 minutes
per multi-view frame on a Pentium IV with 3GHz, with more than 90% of
the time spent for the SIFT and optical flow calculations. We are planning to
investigate the use of lower image resolutions for tracking without compromising
the overall tracking accuracy. Our fast mesh deformation approach, on the other
hand, can generate animations at 5 fps for models comprising of 20k to 50k
triangles.

Another problem is that our mesh deformation method does not handle vol-
ume constraints [35]. In starkly under-constrained settings such a constraint
would prevent inaccurate deformations, however at the cost of slower runtimes.
Also, in some situations, e.g. very wide apparel, a volume constraint might even
prevent correct deformations. Finally, although our algorithm correctly captures
the body deformations at a coarse scale, the deformations of subtle details, such
as small wrinkles, are not captured. We are planning to extend our method in the
future to also capture these details by means of a multi-view stereo algorithm.

Despite these limitations our automatic method is a simple, flexible, easy to
implement and reliable purely passive method to robustly track 3D trajectories
of features on a moving human and even other subjects. These features can then
be used to animate a static human body scan making it perform the same motion
as the captured subject recorded from only a handful of cameras.

7 Conclusion

We have presented a new skeleton-less approach to automatically identify fea-
tures and track them on a moving subject who has been recorded with only
eight video cameras. Our algorithm does not require optical markings, does not
need a priori information about the tracked subject, and behaves robustly even
for humans wearing sparsely textured and wide apparel. By applying the cap-
tured feature trajectories as constraints in a fast mesh deformation approach,
we can make a high-quality human scan move and deform in the same way as
its real-world counterpart in the input video footage. We expect that our new
mesh-based paradigm will pave the trail for many new applications in motion
capture in general, 3D Video and character animation.
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33. Zayer, R., Rössl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface defor-
mation. In: Proc. of Eurographics 2005, vol. 24, pp. 601–609 (2005)

34. Pebay, P.P., Baker, T.J.: A comparison of triangle quality measures. In: Proc. of
the 10th International Meshing Roundtable, pp. 327–340 (2001)

35. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S.H., Bao, H., Guo, B., Shum,
H.Y.: Subspace gradient domain mesh deformation. ACM Trans. Graph. 25(3),
1126–1134 (2006)



Boosted Multiple Deformable Trees for Parsing

Human Poses

Yang Wang and Greg Mori

School of Computing Science
Simon Fraser University
Burnaby, BC, Canada

{ywang12,mori}@cs.sfu.ca

Abstract. Tree-structured models have been widely used for human
pose estimation, in either 2D or 3D. While such models allow efficient
learning and inference, they fail to capture additional dependencies be-
tween body parts, other than kinematic constraints. In this paper, we
consider the use of multiple tree models, rather than a single tree model
for human pose estimation. Our model can alleviate the limitations of a
single tree-structured model by combining information provided across
different tree models. The parameters of each individual tree model
are trained via standard learning algorithms in a single tree-structured
model. Different tree models are combined in a discriminative fashion by
a boosting procedure. We present experimental results showing the im-
provement of our model over previous approaches on a very challenging
dataset.

1 Introduction

Estimating human body poses from still images is arguably one of the most
difficult object recognition problems in computer vision. The difficulties of this
problem are manifold – humans are articulated objects, and can bend and contort
their bodies into a wide variety of poses; the parts which make up a human figure
are varied in appearance (due to clothing), which makes them difficult to reliably
detect; and parts often have small support in the image or are occluded. In order
to reliably interpret still images of human figures, it is likely that multiple cues
relating different parts of the figure will need to be exploited.

Many existing approaches to this problem model the human body as a com-
bination of rigid parts, connected together in some fashion. The typical config-
uration constraints used are kinematic constraints between adjacent parts, such
as torso-upper half-limb connection, or upper-lower half-limb connection (e.g.
Fig. 1). This set of constraints has a distinct computational advantage – since
the constraints form a tree-structured model, inferring the optimal pose of the
person using this model is tractable.

However, this computational advantage comes at a cost. Simply put, the single
tree model does not adequately model the full set of relationships between parts

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 16–27, 2007.
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of the body. Relationships between parts not connected in the kinematic tree
cannot be directly captured by this model.

In this paper, we develop a framework for modeling human figures as a collec-
tion of trees. We argue that this framework has the advantage of being able to
locally capture constraints between the parts which constitute the model. With
a collection of trees, a global set of constraints can be modeled. In our work,
these constraints are spatial constraints, but this framework could be extended
to other cues (e.g. color consistency, occlusion relationships). We demonstrate
that the computational advantages of tree-structured models can be kept, and
provide tractable algorithms for learning and inference in these multiple tree
models.

The rest of this paper is organized as follows. Section 2 reviews previous work.
Section 3 gives the details of our approach. Section 4 shows some experimental
results. Section 5 concludes this paper and points to some future work.

2 Related Work

One of the earliest lines of research related to finding people from images is
in the setting of detecting and tracking pedestrians. Starting with the work of
Hogg [4], there have been a lot work done in tracking with kinematic models in
both 2D and 3D. Forsyth et al. [3] provide a survey of this work.

Some of the these approaches are exemplar-based. For example, Toyama &
Blake [26] use 2D exemplars for people tracking. Mori & Malik [13] and Sullivan
& Carlsson [24] address the pose estimation problems as 2D template match-
ing using pre-stored exemplars upon which joint locations have been marked.
In order to deal with the complexity due to variations of pose and clothing,
Shakhnarovich et al. [19] adopt a brute-force search, using a variant of locality
sensitive hashing for speed. Exemplar-based models are effective when dealing
with regular human poses. However, they cannot handle those poses that rarely
occur. See Fig. 5 for some examples.

There are many approaches which explicitly model the human body as an
assembly of parts. Ju et al. [7] introduce a “cardboard people” model, where
body parts are represented by a set of connected planar patches. Felzenszwalb &
Huttenlocher [2] develop a tree-structured model called pictorial structure (PS)
and applied it to 2D human pose estimation. Lee & Cohen [10] present results
on 3D pose estimation from a single image based on proposal maps, using skin
and face detection as extra cues to guide the MCMC sampling of 3D models.
Ramaman & Forsyth [16] describe a self-starting tracker that tracks people by
building an appearance model from a stylized pose detected by a top-down
PS method. Sudderth et al. [23] introduce a non-parametric belief propagation
method with occlusion reasoning for hand tracking. Sigal & Black [20] use a
similar idea for pose estimation. Ren et al. [18] use bottom-up detections of
parallel lines as part hypotheses, and combine these hypotheses with various
pairwise part constraints via an integer quadratic programming. Hua et al. [5]
use bottom-up cues such as skin/face detection to guide a belief propagation
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inference algorithm. There is also some work on using segmentation as a pre-
processing step [12,14,22].

Our work is closely related to some recent work on learning discriminative
models for localization. Ramanan & Sminchisescu [17] use a variant of condi-
tional random fields (CRF) [8] for training localization models for articulated
objects, such as human figures, horses, etc. Ramanan [15] extends their work by
iteratively building a region model based on color cues.

Our work is also related to boosting on structured outputs. Boosting was
originally proposed for classification problems. Recently people have adopted it
for various tasks where the outputs have certain structures (e.g., chains, trees,
graphs). For example, Torralba et al. [25] use boosted random fields for object
detection with contextual information. Truyen et al. [27] use a boosting algorithm
on Markov Random Fields for multilevel activity recognition.

Another line of research related to our work is on various extensions of tree
models in both the computer vision and the machine learning literature. Song
et al. [21] detect corner features in video sequences and model them using a de-
composable triangulated graph, where the graph structure is found by a greedy
search. Ioffe & Forsyth [6] propose a sampling method based on body part can-
didates found by a rectangle detector. Meila & Jordan [11] propose “mixtures-
of-trees” that combine multiple tree models. The parameters of such models
are learned by an EM algorithm in either maximum likelihood or Bayesian
framework. We would like to point out that although our work seems similar
to “mixtures-of-trees”, there are some important differences. Instead of using
the maximum likelihood criterion, our method optimizes a loss function that
is directly tied to inference. And our model is learned by an efficient boosting
procedure.

3 Our Approach

Our method is a combination of tree-structured deformable models for human
pose estimation [15,17] and boosting on MRFs [27]. The basic idea is to model
a human figure as a weighted combination of several tree-structured deformable
models. The parameters of each tree model, and the weights of different trees
are learned from training data in a discriminative fashion using boosting. In this
section, we first review deformable models for human pose estimation (Sect. 3.1),
followed by the learning and inference algorithms in such models (Sect. 3.2).
Then we introduce the boosted multiple trees (Sect. 3.3).

3.1 Deformable Model

Consider a human body model with K parts, where each part is represented
by an oriented rectangle with fixed size. We can construct an undirected graph
G = (V, E) to represent the K parts. Each part is represented by a vertex vi ∈ V
in G, and there exists an undirected edge eij = (vi, vj) ∈ E between vertices vi

and vj if vi and vj has a spatial dependency. Let li = (xi, yi, θi) be a random
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variable encoding the image position and orientation of the i-th part. We denote
the configuration of the K part model as L = (l1, l2, ..., lK). Given the model
parameters Θ, the conditional probability of L in an image I can be written as:

Pr(L|I, Θ) ∝ exp

⎛

⎝
∑

(i,j)∈E

ψ(li − lj) +
K∑

i=1

φ(li)

⎞

⎠ (1)

ψ(li − lj) corresponds to a spatial prior on the part geometry, and φ(li) models
the local image evidence at each part located at li. Most previous approaches
use Gaussian shape priors ψ(li − lj) ∝ N (li − lj ; μi, Σi) [2,17]. However, since
we are dealing with images with a wide range of poses and aspects, Gaussian
shape priors seem too rigid. Instead we choose a spatial prior using discrete
binning (Fig. 2) similar to the one used in Ramanan [15]:

ψ(li − lj) = αT
i bin(li − lj) (2)

αi is a parameter that favors certain relative spatial and angular bins for part i
with respect to its parent j. This spatial prior captures more intricate distribu-
tions than a Gaussian prior.

For the appearance model φ(li), we follow the one used in Ramanan [15]. φ(li)
corresponds to the local image evidence for a part and is defined as:

φ(li) = βT
i fi(I(li)) (3)

fi(I(li)) is the part-specific feature vector extracted from the oriented image
patch at location li. We use a binary vector of edges for all parts. βi is a part-
specific parameter that favors certain edge patterns for an oriented rectangle
patch I(li) in image I, where li defines the location and orientation of the patch.

To facilitate tractable learning and inference, G is usually assumed to form a
tree T = (V, ET ) [2,15,17]. In particular, most work uses the kinematic tree (see
Fig. 1) as the underlying tree model.

l1l2 l3

l4 l5

l6 l7

l8 l9

l10

(a) (b)

Fig. 1. Representation of a human body. (a) human body represented as a 10-part
model; (b) corresponding kinematic tree structured model.
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Fig. 2. Discrete binning for spatial prior

3.2 Learning and Inference in a Single Tree Model

Inference: Given the model parameters Θ = {αi, βi}, parsing an image I of a
human body involves computing the posterior distribution over part locations L,
i.e., P (L|I, Θ). Then the optimal part locations can be found by the maximum
a posterior estimation LMAP = argmaxL Pr(L|I, Θ). We use message-passing
to carry out this computation (see [15,17] for details).

We first pick a node (e.g., the torso) in the tree model as the root and make
a directed graph from the tree structure. Then we pass messages “upstream”
starting from leaf nodes to their parents. The message from part i to part j is:

mi(lj) ∝
∑

lj

ψ(li − lj)ai(li) (4)

ai(li) ∝ φ(li)
∏

k∈kidsi

mk(li) (5)

φ(li) is obtained by convolving the edge image with the filter βi. mi(lj) can
be computed by convolving ai(li) with a 3D spatial filter (with coefficient αi)
extending the bins from Fig. 2. ai(li) is obtained by multiplying the response
image φ(li) together with messages from its child nodes mk(li). At the root, ai

is the true conditional marginal distribution Pr(li|I). Then starting from the
root, we pass messages “downstream” from part j to part i to compute the true
conditional marginal of each node:

Pr(li|I) ∝ ai(li)
∑

lj

ψ(li − lj)Pr(lj |I) (6)

It can been shown that in a tree structure, the inference is exact, and converges
to the true conditional marginal distributions after this message-passing scheme.
Similar to previous work [15,17], we normalize each ai to 1 for numerical stability,
and keep track of the normalizing constants, which are needed for computing
the partition function of the posterior Pr(L|I, Θ).

Learning ΘML: If we are given a set of training images It where part locations
Lt have been labeled, one way of learning the model parameters Θ = {αi, βi} is
to maximize the joint likelihood of the labeled data:

ΘML = max
Θ

∏

t

Pr(It, Lt|Θ) (7)

= max
Θ

∏

t

Pr(Lt|Θ)
∏

t

Pr(It|Lt, Θ) (8)
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ΘML is also known as the maximum likelihood (ML) estimate of the model
parameter Θ. ΘML can be found by independently fitting the ML estimate of
each factor [17].

Learning ΘCL: It has been noticed [17] that the ML estimate is not directly tied
to the inference, and a better criterion is to optimize the posterior distribution:

ΘCL = max
Θ

∏

t

Pr(Lt|It, Θ) (9)

Finding ΘCL is equivalent to learning a Conditional Random Field (CRF) [8].
There are standard algorithms to learn ΘCL using gradient ascent methods.

3.3 Boosted Multiple Trees

There is a trade-off between representational power and computational complex-
ity amongst different forms of spatial priors. A complete graph captures all the
possible spatial dependencies between all the parts, but the learning and infer-
ence of such models are intractable. On the other hand, tree-structured models
are appealing due to their tractability. However, previous work [9,21] has shown
that tree models fail to capture some additional dependencies between body
parts.

In order to alleviate the limitation of tree models, various classes of graph
structures that allow tractable learning and inference have been studied, e.g.,
mixture of trees [11], triangulated graph [21], k-fan [1], common-factor model [9].
In this section, we present our algorithm on boosting multiple trees for human
pose estimation. Our algorithm is based on AdaBoost.MRF proposed in Truyen
et al. [27] with some modifications. The basic idea of this method is to combine
multiple tree-structured models. Since each component of the combined model
is still a tree, learning and inference will be tractable. At the same time, since
we are using several trees, we can capture additional spatial dependencies that
are missing from a single tree model. Although our model is similar to “mixtures
of trees” at a first glance, there are some importance differences. “Mixtures of
trees” is trained by the EM algorithm to maximize the likelihood of the training
data, while our model is trained by boosting to minimize a loss function directly
tied to inference.

Given an image I, the problem of pose estimation is to find the best part
labeling L∗ that maximize some function F (L, I), i.e. L∗ = arg maxL F (L, I).
F (L, I) is known as the “strong learner” in the boosting literature. Given a set
of training examples (Ii, Li), i = 1, 2, ..., N . F (L, I) is found by minimizing the
following loss function:

LO =
∑

i

∑

L

exp
(
F (Ii, L) − F (Ii, Li)

)
(10)

We assume F (L, I) is a linear combination of a set of so-called “weak learners”,
i.e., F (I, L) =

∑
t αtft(L, I). The t-th weak learner ft(L, I) and its correspond-

ing weight αt are found by minimizing the loss function defined in Equation 10,
i.e. (ft, αt) = arg maxf,α LO.
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Since we are interested in finding the distribution p(L|I), we can choose the
weak learner as f(L, I) = log p(L|I). To achieve computational tractability, we
assume each weak learner is defined on a tree model.

If we can successfully learn a set of tree-based weak learners ft(L, I) and
their weights αt, the combination of these weak learners captures more spatial
dependencies than a single tree model. At the same, the inference in this model
is still tractable, since each component is a tree.

Optimizing LO is difficult, Truyen et al. [27] suggest optimizing the following
alternative loss function:

LH =
∑

i

exp
(
−F (Li, Ii)

)
(11)

It can be shown that LH is an upper bound of the original loss function
LO, provided that we can make sure

∑
j αj = 1. In Truyen et al. [27], the

requirement
∑

j αj = 1 is met by scaling down each previous weak learner’s
weight by a factor of 1 − αt as α

′

j ← αj(1 − αt), for j = 1, 2, ..., t − 1, so that∑t−1
j=1 α

′

j + αt =
∑t−1

j=1 αj(1 − αt) + αt = 1, since
∑t−1

j=1 αj = 1.
In practice, we find this trick sometimes has the undesirable effect of scaling

down previous weak learners to have zero weights. So we use another method
by scaling down each weak learner’s weight up to t by a factor of 1/(1 + αt),
i.e., α

′

j ← αj

1+αt
for j = 1, 2, ..., t. It can be easily shown that we still have

∑t
j=1 α

′

j =
∑t−1

j=1
αj

1+αt
+ αt

1+αt
= 1, since

∑t−1
j=1 αj = 1.

In practice, the algorithm could be very slow, since learning CRF parameters
requires gradient ascent on a high dimensional space. To speed up the learning
process, we employ several simple tricks. Firstly, we learn ΘCL = {αi, βi} using
the kinematic tree structure, and fix the appearance parameters {βi} during
the boosting process. The rational behind this is that multiple tree structures
should only affect the spatial prior, not the appearance model. Secondly, dur-
ing each boosting iteration, we learn ΘML instead of ΘCL. Thirdly, instead of
selecting the best tree structure in each iteration, we simply sequentially select
a tree from a set of pre-specified tree structures. We also allow re-selecting a
tree.

4 Experiments

We test our algorithm on the people dataset used in previous work [15,17].
This dataset contains 305 images of people in various interesting poses. First
100 images are used for training, and the remaining 205 images for testing. We
manually select three tree structures shown in Fig. 4, although it will be an
interesting future work on how to automatically learn the tree structure at each
iteration in an efficient way. The results are obtained by running 15 boosting
iterations. We visualize the posterior distribution Pr(L|I) on a 2D image using
the same technique in Ramanan [15], where the torso is represented as red,
upper-limbs as green, and lower-limbs and the head as blue. Some of the parsing



Boosted Multiple Deformable Trees for Parsing Human Poses 23

Input: i = 1, 2, ..., D data pairs, graphs {Gi = (Vi, Ei)}
Output: set of trees with learned parameters and weights
Select a set of spanning trees {τ}
Choose the number of boosting iterations T
Initialize {wi,0 = 1

D
}, and α1 = 1

for each boosting round t = 1, 2, ..., T
Select a spanning tree τt

/* Add a weak learner */
Θt = arg maxΘ

∑
i wi,t−1 log Prτt(Li, Ii|Θ)

ft = log Prτt(L|I, Θt)
if t > 1 then

select the step size 0 < αt < 1 using line searches
end if
/* Update the strong learner */
Ft = 1

1+αt
Ft−1 + αt

1+αt
ft

/* Scale down the previous learners’ weights*/
αj ← αj

1+αt
, for j = 1, 2, ..., t

/* Re-weight training data*/
wi,t ∝ wi,t−1 exp(−αtfi,t)

end for
Output {τt},{Θt} and {αt}, t = 1, 2, ..., T

Fig. 3. Algorithm of boosted multiple trees

results are shown in Fig. 5. We can see that our parsing results are much clearer
than the one using the kinematic tree. In many images, the body parts are
almost clearly visible from our parsing results. In the parsing results of using the
kinematic tree, there are many white pixels, indicating high uncertainty about
body parts at those locations. But with multiple trees, most of the white pixels
are cleaned up. We can imagine if we sample the part candidates li according to
Pr(li|I; Θ) and use them as the inputs to other pose estimation algorithms (e.g.,
Ren et al. [18]), the samples generated from our parsing results are more likely
to be the true part locations.

l1l2 l3

l4 l5

l6 l7

l8 l9

l10

l1l2 l3

l4 l5

l6 l7

l8 l9

l10

l1l2 l3

l4 l5

l6 l7

l8 l9

l10

Fig. 4. Three tree structures used for boosting
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Fig. 5. Some results of our algorithm: (a) original images; (b) results of using one
kinematic tree; (c) results of using multiple trees
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(a) (b) (c) (a) (b) (c)

Fig. 5. (Continued)
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5 Conclusion and Future Work

We have presented a framework for modeling human figures as a collection of
tree-structured models. This framework has the computational advantages of
previous tree-structured models used for human pose estimation. At the same
time, it models a richer set of spatial constraints between body parts. We demon-
strate our results on a challenging dataset with substantial pose variations.

Human pose estimation is an extremely difficult computer vision problem.
The solution of this problem probably requires the symbiosis of various kinds
of visual cues. This paper represents our first step in that direction. Our frame-
work nicely solves the problem of modeling spatial dependencies between non-
connected body parts. In the future, we would like to extend our framework to
other cues (e.g., color consistency, occlusion relationships). We would also like
to combine our framework with the iterative color parsing [15].
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Abstract. Tracking of rigid and articulated objects is usually addressed within a
particle filter framework or by correspondence based gradient descent methods.
We combine both methods, such that (a) the correspondence based estimation
gains the advantage of the particle filter and becomes able to follow multiple
hypotheses while (b) the particle filter becomes able to propagate the particles
in a better manner and thus gets by with a smaller number of particles. Results
on noisy synthetic depth data show that the new method is able to track motion
correctly where the correspondence based method fails. Further experiments with
real-world stereo data underline the advantages of our coupled method.

1 Introduction

Motion tracking and human pose estimation are important applications in motion anal-
ysis for sports and medical purposes. Motion capture products used in the film industry
or for computer games are usually marker based to achieve high quality and fast pro-
cessing.

Marker-less motion capture approaches often rely on gradient based methods [13,
3, 19, 7, 10, 18]. These methods estimate the parameters of a human body model by
minimizing differences between model and some kind of observations, e.g. depth data
from stereo, visual hulls or silhouettes. Necessary for minimization are correspondences
between model and observed data. The main problem of these correspondence based
optimization methods is, that they often get stuck in wrong local minima. From this
wrong estimated pose they can usually not recover.

Other approaches like particle filters [5, 11] try to approximate the probability dis-
tribution in the state space by a large number of particles (poses) and are therefore
unlikely to get stuck in local minima, because they can follow and test a large num-
ber of hypotheses. However, to be sure that the “interesting” region (typical set) of a
high-dimensional state space is properly sampled, a large amount of particles is usually
necessary [15, 2].

To take the advantages of both approaches, we combine a particle filter based ap-
proach [15, 11, 6] with correspondence based gradient estimation.

The effect can be interpreted in two ways: (1) Following the local gradient within the
particle filter allows to find minima (including the global minimum) with less particles
and (2) enhancing the gradient descent method with multiple hypothesis helps to avoid
to get stuck in local minima.

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 28–41, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The key to our approach and the main difference to a particle filter like CONDEN-
SATION [11] is the gradient descent for each particle and the merging of particles.
Particles, which are close to each other after the gradient descent, are merged into a sin-
gle particle. Then, the idea is to re-distribute (propagate) the particles in a way that takes
into account the local shape of the likelihood function. That way the number of particles
can be greatly reduced while maintaining the ability to follow multiple hypotheses.

We will discuss our new approach in the context of marker less motion tracking from
a single stereo view with two cameras. There is a wide variety of stereo algorithms
available differing in quality and processing time. Commercial stereo cameras calculate
depth data on chip using a simple algorithm [20] in real-time and keep the CPU free.
Other more sophisticated algorithms need up to multiple minutes per image pair [8].

We will at first discuss relevant work within the field of motion tracking. Then, in-
troduce our body model and the motion parameterization, which are used in the corre-
spondence based optimization. The next section briefly explains important aspects of
particle filter tracking methods, which are necessary for the combination. Then, results
on synthetic data and real motion sequences are given, that show the advantages of the
combined motion tracking. The last section concludes the paper with a short discussion
of the presented achievements.

2 Related Work

Motion tracking of the human body is addressed in the literature with different methods.
A recent and extensive survey of vision based human motion tracking can be found
in [16]. Approaches relevant to this work arise from different directions depending on
the kind of input data, e.g. depth data or images, and the number of cameras. Visual hull
approaches have shown to give very accurate results [13, 3]. They build the visual hull
of the person from segmented images of multiple cameras and then fit a template model
to the 3D hull. Usually some kind of gradient based optimization is utilized to estimate
the motion parameters of the model. Fitting the template model directly to segmented
images is another possibility as done in [19], where it was shown, that the marker-less
approach has an accuracy similar to marker based tracking.

Similar to the visual hull approach is [12], where multiple stereo cameras observe
the motion of a person. The resulting 3D points are then used with an Extended Kalman
Filter to estimate the upper body motion.

When only two or less cameras are used for motion tracking, particle filters [11]
or particle filtering methods are utilized [5]. Their advantage is, that multiple track-
ing hypotheses can be followed, because a large number of particles approximates the
posterior probability of the system’s state. Therefore, the tracking is not prone to get
stuck in local minima and multiple hypotheses can be followed. This ability to track
multiple hypotheses is very useful, because body parts can become occluded, if only
a single viewpoint is used. Then, the occluded motion has to be ’guessed’ in order to
track successfully, when the occluded body part becomes visible again. However, if full
body motion with 30 DOF is to be estimated the number of particles can approximate
the posterior distribution only within a small region in the state space. Therefore, once
again it is likely to face the problem of local minima. Otherwise the number of parti-
cles has to be increased, which increases computation time. For 30 DOF the necessary
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amount of particles can result in a computation time of up to multiple hours per im-
age frame of a video sequence. However a parallel processing of particles is possible.
Our approach decreases the amount of necessary particles significantly and allows such
processing in reasonable time.

Motion tracking from a single stereo view as in this work has been addressed before
in [4], where the human is modeled with 6 cylinders and motion can be roughly tracked
with 10Hz. The authors use projective methods, which are inferior to direct methods as
they state themselves in [4], but are easier to implement and require less computation
time (no comparison is made). In [18] a direct approach is taken, where a human model
consisting of spheres (meta-balls) is fitted to stereo data silhouettes from a single view.
Due to the high number of estimated parameters, the method is not real-time capable.
Both methods use a correspondence based gradient descent method, which requires
manual initialization and can get stuck in local minima.

In [17], 3D body tracking is done using particle propagation. The Zakai Equation
is applied to model the propagation of probability density function (pdf) over time in
order to reduce the number of particles.

In a previous work [10] we showed that our direct approach is able to track upper arm
motion with 5Hz and can therefore compete with the projective method of [4] according
to processing time. Here we present a combination with a particle filter that allows us
to track very noisy arm motion and complex full body motion of the whole body from
stereo data alone, even though body parts are temporarily occluded.

A nice review on Monte Carlo-based techniques can be found in [15]. Classical
papers about particle filtering are Condensation [5, 11], Sequential Importance Sam-
pling [6] and sequential Monte Carlo [14].

3 Body Model and Motion Parameterization

The motion capabilities of the human model is based on the MPEG4 standard, with up to
180 DOF. An example model is shown in Fig. (1) left. The MPEG4 description allows to
exchange body models easily and to re-animate other models with the captured motion
data. The model for a specific person is obtained by silhouette fitting of a template
model as described in [9].

The MPEG4 body model is a combination of kinematic chains. The motion of a
point, e.g. on the hand, may therefore be expressed as a concatenation of rotations [10].
As the rotation axes are known, e.g. the flexion of the elbow, the rotation has only one
degree of freedom (DOF), i.e. the angle around that axis. In addition to the joint angles,
there are 6 DOF for the position and orientation of the object within the global world
coordinate frame. For an articulated object with p joints we describe the transformation
of the point p within the chain [10] as

m(θ, p) = (θx, θy, θz)T +
(Rx(θα) ◦ Ry(θβ) ◦ Rz(θγ) ◦ Rω1,q1(θ1) ◦ · · ·
· · · ◦ Rωp,qp(θp))p

where (θx, θy, θz)T is the global translation, Rx, Ry, Rz are the rotations around the
global x, y, z-axes with Euler angles α, β, γ and Rω,q(θi), i ∈ {1..p} denotes the
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Fig. 1. Left: The body model with rotation axes shown as arrows. Right: The difference (small
blue lines) between observed depth point and nearest model point (black boxes) is minimized.

rotation around the known axis with angle θi. The axis is described by the normal
vector ωi and a point qi on the axis.

Eq. 1 gives the position of a point p on a specific segment of the body (e.g. the hand)
with respect to joint angles θ and an initial body pose.

If the current pose is θt and only relative motion is estimated the resulting Jacobian
is:

J =

⎡

⎢⎣
1 0 0 ∂mx

∂θα

∂mx

∂θβ

∂mx

∂θγ

∂mx

∂θ1
·· ∂mx

∂θp

0 1 0 ∂my

∂θα

∂my

∂θβ

∂my

∂θγ

∂my

∂θ1
·· ∂my

∂θp

0 0 1 ∂mz

∂θα

∂mz

∂θβ

∂mz

∂θγ

∂mz

∂θ1
·· ∂mz

∂θp

⎤

⎥⎦ (1)

The derivatives at zero are:

∂m(θ, p)
∂θj

∣∣∣∣
θ=0

= ωj × (p − qj) (2)

where j ∈ {1, .., p} and qj is an arbitrary point on the rotation axis. The simplified
derivative at zero is valid, if relative transforms in each iteration step of the Nonlinear
Least Squares are calculated and if all axes and corresponding point pairs are given in
world coordinates.

4 Gradient Enhanced Particle Filtering

Because our method combines the advantages of gradient based optimization methods
with particle filtering, we give now a brief overview of important aspects of both. Then,
we present the combined algorithm and discuss the main differences to particle filters.

4.1 Correspondence Based Pose Estimation

Correspondence based methods for pose estimation of articulated objects minimize an
error function with respect to motion parameters. The human body can be modeled as
an articulated object, consisting of multiple kinematic chains.
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It is common to assume that the shape and size of the body model is known for the
observed person, such that the minimization is only with respect to joint angles and
the global transform. In that case, the kinematic chain simplifies to a chain of rota-
tions around arbitrary axes in space Given here is a short description of the estimation
algorithm, for more details see [10].

Estimating the motion of the human body from given 3D-3D correspondences
(pi, p̃i) is done here by solving a Nonlinear Least Squares Problem. The minimization
yields the joint angles and the global orientation and position. For n correspondences
the minimization problem is given as:

min
θ

n∑

i

|m(θ, pi) − p̃i|2 . (3)

To find the minimizer with the iterative Gauss-Newton method the Jacobian of the resid-
ual functions, Eq. (1), is necessary.

The points pi and p̃i form a correspondence. For each observed point p̃i the closest
point pi on the model is sought. Therefore, different observed points can have the same
corresponding model point. This is shown in Fig. 1 right, where each correspondence
is shown as a small blue line and the model points are drawn as black boxes.

The minimization problem is solved with the dampened Gauss-Newton method [1],
which is similar to the Levenberg-Marquardt [1] method. Dampening ensures that the
parameter change does not increase infinitely, if the determinant of the Gram matrix
JT J is close to zero, which can happen when a body part is largely occluded. The
solution is found by solving iteratively:

θt+1 = θt − (JT J + λI)−1JT r(θt) (4)

where the Jacobian J is given in equation (1), I is the identity matrix, λ is the dampen-
ing value (set to 0.1) and r(θt) is the vector with current residuals. For each point there
are three residuals, one for each component (x, y, z):

ri(θt) = m(θ, pi) − p̃i (5)

and ri = (rix, riy, riz).
The optimization consists of two loops: The Gauss-Newton method (GN) loops until

it converges on the given set of point correspondences. Because the correspondences
are not always correct, new correspondences are calculated again after convergence of
the GN. Then, GN starts anew with the improved set of correspondences. This Iterative
Closest Point (ICP) method [1] can be repeated until convergence. However, the gain
in more then 3 ICP iterations is very small, therefore we usually apply only 2 or 3 ICP
optimizations. We will use in the following the term “gradient tracking” in order to refer
to this technique.

It is important to note, that the Gauss-Newton optimization is more efficient than a
standard Gradient Descent and requires less control parameters. However we will refer
to it as “gradient tracking”, because both methods rely on the gradient.

4.2 Particle Filter

The new method borrows some ideas from particle filter methods like CONDENSA-
TION [11]. Particle filter approaches aim at estimating the posterior probability
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distribution of a system state zt at time t, the person’s current pose in our case, from
observations I1, . . . , It:

p(zt|I1, I2, . . . , It) ≡ pt(zt)

=
∫

zt−1

p(It|zt)p(zt|zt−1)pt−1(zt−1) . (6)

In this equation the state space is randomly sampled according to pt−1(zt−1) and
propagated according to a motion/diffusion model p(zt|zt−1). A likelihood probability
p(It|zt) for each particle is calculated, which reflects how good the observations fit to
the hypothesis (the position of the particle in the state space). The posterior probability
is then approximated by the weight and density of particles within the state space.

The major problem with these approaches is, that the number of necessary particles
usually needs to reflect the dimensionality of the state space [15,2]. If full body motion
with 30 DOF is to be estimated the particles can usually approximate the posterior
distribution only within a small region in the state space.

If depth data is the only input, calculation of the likelihood requires computation
of differences between observed points and model surface. One way to compute these
differences is a nearest neighbor search as described in the previous section. This search
is, however, expensive in terms of computation time. Therefore, methods are desirable,
which reduce the number of particles and allow to distribute the reduced set of particles
in the most important regions of the state space.

4.3 Combination

In order to get by with a smaller number of particles, we apply the gradient tracking
(section 4.1) to each particle. Since similar particles move to the same optimum, they
can be merged with an appropriate adaption of the particle weight. The state space pos-
terior probability is approximated in a particle filter by the particle weights and their
spatial density. A possible weight adaption is the average of merged particle weights.
However, all merged particles are nearly at the same position in the state space and
therefore have nearly the same weight (likelihood). As a result it is sufficient to assign
them the same weight. Another possible weight adaption is the addition of weights.
However, these would favor large flat valleys in the posterior probability surface, be-
cause all particles within in this valley will descent towards the same minimum. This
will also lead to a clustering of particles at specific positions, which is not desired,
because we want to track as many hypotheses as possible. If the merged particles are
redistributed in the next time step only according to a fixed motion model and diffu-
sion model, it is likely that they end up in the same locally convex region (valley) and
again merge at the same position in state space. Each valley can be understood as one
likely pose hypothesis. It is desirable to track as many hypotheses as possible with a
fixed amount of particles. To increase the number of tracked hypotheses and decrease
the amount of particles per valley, the particles need to be redistributed at the next time
step of Eq. (6) according tho the size and shape of their valley. This can be understood
as enhancing our rather simple motion model (fixed velocity) to include the shape of
the local probability surface.
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Fig. 2. Principle of the combined method. Particles whose position is within a specific area after
optimization (black dashed circle) are merged into one particle (red circle).

In order to achieve this, we merge all particles after optimization, which are close to
each other according to some distance d. In detail, if we use N particles zt−

1 , . . . zt−
N

in our particle filter, then we have after the merging M < N meaningful particles
zt

1, . . .z
t
M left, and N − M particles were merged into the remaining M particles.

Then, in order to distribute the particles in the next time step optimally, we estimate
the size of the locally convex region by computing the covariance Σi of all those par-
ticles. Let zt−

i1
, . . .zt−

ik
be the particles that merged together into the particle zt

i. The
− at the top denotes the particles before their gradient descent and merging, t denotes
the time step. The final particle zt

i (without the −) after gradient descent and merging
(red circle in Fig.2) is the one with highest likelihood and is used as the mean for the
covariance:

Σi =
1
K

K∑

j

(zt−
j − zt

i)(z
t−
j − zt

i)
T (7)

where K is the amount of particles, which merged into zt
i . It is important to note that the

covariance is calculated from the particles before the gradient descent and merging. Fig.
2 illustrates the merging. The blue lines show a few steps of the gradient descent for five
particles. They are within a certain region (the black dashed circle) after optimization
and therefore merged. The idea is to distribute particles in the next frame outside that
locally convex region (valley), because otherwise they would end up again at the same
position and give no additional information about the state space. Thus, at the next
time step t + 1 N new particles are drawn from the remaining M particles of time
step t according to the prior pt+1. Then, each particle is propagated according to some
motion model f(zt+1−) with added Gaussian noise. Let the particle zt+1− be spawned
off from the particle zt

i. The covariance of the above Gaussian is given by the covariance
Σi of the original particle zt

i .
Our gradient enhanced particle filter can be summarized as follows: Input to our

algorithm are the depth points for the current image frame and an initial pose in the
beginning. The steps of the algorithm are for each frame similar to a particle filter
method except for the gradient descent and the merging of particles.
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1. Only at the first frame: Distribute particles according to an initial distribution in the
vicinity of the given initial pose.

2. Draw new particles zt−
1 , . . .zt−

N according to pt(zt).
3. Distribute and propagate each particle according to the covariance Σi of the original

particle and propagate according to a diffusion/propagation model:p(zt+1−|zt−, Σ)
= Gauss(f(zt−), Σ). Here, the motion model consists of a deterministic motion
model f plus Gaussian noise, and Σi defines the Gaussian covariance matrix.

4. Gradient Descent for each particle zt+1−
i with 2 or 3 ICP optimizations:

(a) Render model in current pose
(b) Calculate visible model points
(c) For each observed point find the closest model point, which makes a corre-

spondence
(d) Calculate a new pose by minimizing the differences of the correspondences

5. Assign the likelihood, calculated from the residual error.
6. Merge particles zt+1−

i1
, . . . zt+1−

ik
, which are within a certain distance d to each

other into one particle zt+1
i .

7. For each particle zt+1
i : calculate the covariance matrix Σi from all the particles

zt+1−
i1

, . . .zt+1−
ik

which merged into zt+1
i .

The motion model f(zt−1) predicts the new pose of the human. In our experiments, we
assume constant velocity. The distance d was chosen to be 4 degrees, such that particles
are merged only if each single joint angle differs less than 4 degrees to a neighboring
particle. The distance check is only applied on joint angles, not on the position of the
body model in the world, because it is highly unlikely, that the same pose is estimated
at different positions. This way additional control parameters are avoided.

The initial covariance for each particle is chosen to equal the distance d, such that
particles are definitely distributed outside the merge area. The covariance is also re-
duced by 10% each frame. Without this reduction the covariance can increase indef-
initely. Especially if only one particle is left in a valley, it is desirable to reduce the
covariance, such that it is ensured, that nearby poses are tested.

5 Synthetic Data with Noise

In order to show the robustness of the new method to noisy measurements we conduct
an experiment on depth data generated with openGL on a synthetic sequence. The mo-
tion involves four DOF, the elbow flexion and the shoulder flexion abduct and twisting.
Three example images out of the 176 frame sequence are shown in Fig. 3. The depth
data is calculated from the z-buffer values after rendering the model.

For testing, Gaussian noise with different standard deviations is added to the original
depth data. Fig. 4 shows two views on the depth data and the model in starting pose.
The z-buffer image was sub-sampled in order to generate approximately 10000 depth
points. Approximately 750 points are visible on the right arm each frame.

At a deviation rate of 15cm in depth and 1cm in the other directions the normal
tracking methods loses track after a few frames and gets stuck in an arbitrary pose as
shown in the right of Fig. 4.
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Fig. 3. First frame (left). Frame 60 and frame 176 of the synthetic sequence.

Fig. 4. Two views on the depth point cloud with Gaussian noise (deviation 15cm). Right: The
standard tracking method loses track after a few frames and gets stuck in the pose shown.
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Fig. 5. Difference to ground truth with noise (deviation 15cm). The multi hypotheses tracking is
able to track the whole sequence.
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Fig. 6. Difference of the shoulder abduct angle to ground truth without noise

The multi-hypotheses tracking with 20 particles is able to track the motion correctly
in spite of the heavy noise. The difference to the ground truth is shown in Fig. 5. In
the beginning the estimate is far off with 50 degrees however the plot shows, that the
tracking recovers from the wrong local minimum. For all hypotheses the minimum
difference to the ground truth is taken, because the particle with the largest likelihood
does not always give the correct pose. Plotted is the absolute error in degree over the
whole sequence. The elbow difference is high around frames where the arm is close to
the body as at frame 60 and 105, because the correspondences established with nearest
neighbor are then most ambiguous. Where the arm is far away from the body the noise
on the data does not result in so many wrong correspondences. Therefore, the error is
decreased. Though the error is still large for most frames, because of the heavy noise,
the results show, that the new method can track the motion over the whole sequence.

Without noise the gradient tracking estimates joint angles, whose difference to the
ground truth is close to zero error as shown in Fig. 6 for the abduction angle of the

Fig. 7. Two views on the input data. Approx 10000 points are shown as white boxes.
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Fig. 8. Estimation results of the new combined method with 24 DOF (first 3 rows). The figure
shows the original images together with the projected model in the estimated pose (overlayed
in white). The last row shows the estimation results for the ”gradient tracking” for the same
images as in the third row. The ”gradient tracking” loses track, because the right arm gets largely
occluded, and is unable to recover.
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shoulder. The error is not zero, because the model surface is approximated by the ver-
tices of the model’s triangles. Therefore, the nearest neighbor correspondences are not
perfect.

6 Real Data

In order to show the possibilities with our new method, we give further results for a
video sequence, which was recorded in a motion capture lab with 8 cameras at 25fps.
Two of the cameras were arranged approx. 25 cm next to each other, such that stereo
depth estimation can be performed. The stereo algorithm [8] produces dense accurate
results in non-homogenous regions within approx. one minute computation time per
frame. The used effective image size is 512x512. Fig. 7 shows the depth data that is used
as input. The only assumption made here is, that no scene objects are within 80cm range
of the person. Also knowledge about the floor position was incorporated from camera
calibration, which was conducted for the internal parameters with a small checkerboard
pattern according to [21]. This calibration also yields the orientation and distance of the
stereo cameras. The external parameters (orientation of the floor) were then estimated
with a large checkerboard pattern lying on the floor.

The initial pose of the person is provided manually. Estimated are 24 DOF, these are
in detail 3 at each shoulder, one elbow angle, 3 at each hip, one angle for each knee,
one angle at the ankle and 6 parameters for the global orientation and position.

The estimation time on a 2Ghz intel Core2 Duo (1 CPU) was about 2 seconds per
particle and approximately 10000 data points. For 1000 data points and 14 DOF the
computation time is about 200ms per particle.

Fig. 8 shows a few frames from the resulting estimation. The multi-hypotheses track-
ing with 100 particles is able to track the whole sequence of 180 frames (first 3 rows in
the Fig.), even though one arm and one leg are almost completely occluded temporarily.
Approximately 10000 data points from the complete set of 40000 reliable data points
are used per frame, resulting in a Jacobian of size 30000 × 24.

The gradient tracking method (row 4) is able to track correctly up to 130 frames, but
loses track when the person turns and the body parts become occluded (second image
last row). The gradient tracking method is lost in that case and is unable to recover.

7 Conclusions

We presented a new method for motion tracking, that combines gradient based opti-
mization from correspondences and motion tracking with particle filters. The combined
approach allows to track arm motion in spite of heavy noise, where a normal gradient
descent method fails. Further results on stereo video sequences showed that motion with
24 DOF can be tracked from a single viewpoint. At frames where the normal tracking
gets stuck in local minima and thus loses track, the new method recovers and estimates
correct poses.

The main contribution of the new method is the enhanced motion model, which
includes the shape of the locally convex regions of the probability surface by estimation
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of the covariance matrix from merged particles. In that way the number of particles is
used more efficiently and allows to track a higher number of hypotheses.

We will exploit in the future further aspects of the new method: (1) the likelihood
probability of the particle filter allows to easily include image information into the
tracking, as for example motion areas from temporal image differences, (2) increase
speed by parallel processing of particles and (3) include motion recognition probabili-
ties into the motion model.
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Abstract. We present a method to simultaneously estimate 3d body pose and
action categories from monocular video sequences. Our approach learns a low-
dimensional embedding of the pose manifolds using Locally Linear Embedding
(LLE), as well as the statistical relationship between body poses and their im-
age appearance. In addition, the dynamics in these pose manifolds are modelled.
Sparse kernel regressors capture the nonlinearities of these mappings efficiently.
Body poses are inferred by a recursive Bayesian sampling algorithm with an
activity-switching mechanism based on learned transfer functions. Using a rough
foreground segmentation, we compare Binary PCA and distance transforms to
encode the appearance. As a postprocessing step, the globally optimal trajec-
tory through the entire sequence is estimated, yielding a single pose estimate
per frame that is consistent throughout the sequence. We evaluate the algorithm
on challenging sequences with subjects that are alternating between running and
walking movements. Our experiments show how the dynamical model helps to
track through poorly segmented low-resolution image sequences where tracking
otherwise fails, while at the same time reliably classifying the activity type.

1 Introduction

We consider the problem of estimating human body pose and action categories from
image sequences. This is a difficult problem, especially when dealing with low quality
low resolution imagery. Often the individual images do not provide enough information
to resolve ambiguous situations, and strong prior models have to be adopted in order to
compensate for that lack of information.

To address these problems we propose a method to estimate 3d body pose and action
categories simultaneously. We learn strong dimensionality-reduced models of feasible
body poses that belong to a certain activity or motion pattern, as well as the temporal
evolution of the body poses over time. Furthermore, the transition functions between
different activities are learned from training data as well. All the mappings are modelled
using sparse kernel regressors, leading to efficient evaluation during tracking.

The observations are taken into account in the form of roughly segmented images
that are obtained by a pre-processing step such as motion segmentation, background
subtraction or other. The underlying relationship between image appearance and body
poses is multivalued and ambiguous, thus non functional. Other learning based ap-
proaches have explicitly modelled the one-to-many discriminative mapping from ap-
pearances to poses (or the joint probability density function between appearance and
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pose) with mixtures of regressors or Gaussians (e.g. [1,2,3,4,18]). The number of re-
quired regressors is however a delicate parameter of these systems, as is the regu-
larisation during the learning stage, which is needed to avoid overfitting. We there-
fore follow the opposite strategy, and model the generative mapping from body poses
to appearance descriptors, which can be assumed to be functional and thus be ap-
proximated with a nonlinear kernel regressor. Although single-valued, the appearance
prediction will be subject to uncertainty, because other factors than just the body con-
figuration (pose) may affect appearance (clothing, physical constitution, lighting con-
ditions etc). This is taken into account by learning a prediction variance matrix of the
mapping.

A main focus of the proposed approach lies on the ambiguities and uncertainties
that are inherent in monocular body tracking. Recursive Bayesian Sampling [5,6] offers
a framework for dealing with non-Gaussian and multimodal body pose posteriors and
allows us to integrate the nonlinear learned dynamical model. However, sampling-based
algorithms are generally not applicable for inference in high-dimensional state spaces
like the space of body poses. We therefore use Locally Linear Embedding (LLE, [7]) to
find a low-dimensional embedding of our 60-dimensional pose parametrisation. With 4
LLE dimensions, the considered motions can be captured reasonably well.

In this paper we investigate typical human motion patterns such as walking and
running. Rather than learning a unified representation that contains both walking and
running motions, we learn separate activity specific models that allow us to explic-
itly recognize the performed activity along with the pose estimation, using a switching
mechanism of the inference algorithm.

The main novelties of this paper are the generative appearance modelling, the track-
ing in a LLE-reduced pose representation with a nonlinear dynamical model, simulta-
neous recognition of multiple action categories, and the extraction of a globally optimal
trajectory through the entire sequence.

1.1 Related Work

There is a wide variety of literature about body pose estimation and tracking (see [8]
for an overview). Here we will have a look at the application of statistical methods that
infer poses from one or multiple camera streams. Many authors adopt a discriminative
strategy to infer poses directly from image descriptors [1,2,3,4,9,10,11].

Synchronous image sequences from multiple cameras typically provide enough in-
formation to resolve ambiguities. The discriminative mapping from descriptors to body
poses can thus be modelled using a single regressor. In [11], a new image descriptor is
introduced based on a voxel representation that is derived from segmented images of
multiple cameras. This descriptor can then be directly mapped into pose space. In [10]
multiple silhouette image descriptors and corresponding pose descriptors are concate-
nated and modelled with a mixture of Probabilistic PCA; poses can then be inferred
given multiple views of the subject.

Monocular approaches have to deal with the one-to-many discriminative mapping
from appearance to pose. This issue is explicitly addressed in [1,2,3,4] by learning mul-
tiple mappings in parallel as a mixture of regressors. In order to choose between the
different hypotheses that the different regressors deliver, [1,2] use a geometric model
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that is projected into the image to verify the hypotheses. Inference is performed for
each frame independently in [1]. In [2] a temporal model is included using a bank of
Kalman filters, and a Viterbi algorithm finds a path through the peaks of the posterior
distribution. In [3,4] gating functions are learned along with the regressors in order to
pick the right regressor(s) for a given appearance descriptor. The distribution is propa-
gated analytically in [3], and temporal aspects are included in the learned discrimina-
tive mapping, whereas [4] adopts a generative sampling-based tracking algorithm with
a first-order autoregressive dynamic model.

The mentioned discriminative approaches work in a bottom-up fashion, starting with
the computation of the image descriptor, which requires the location of the figure in the
images to be known beforehand. When including 2d bounding box estimation in the
tracking problem, a learned dynamical model of the appearance might help the bound-
ing box tracking, and avoid loosing the subject when it is temporarily occluded. To this
end, [12] learns a subject-specific dynamic appearance model from a small set of initial
frames, consisting of a low-dimensional embedding of the appearances and a motion
model. This model is used to predict the location and appearance of the figure in future
frames, within a CONDENSATION tracking framework. Similarly, low-dimensional
embeddings of appearance (silhouette) manifolds are found using LLE in [13], where
additionally the mapping from the appearance manifold to 3d pose in body joint space
is learned using RBF interpolants, allowing for pose inference from sequences of sil-
houettes.

Instead of modelling manifolds in appearance space, [14,15,16] work with low di-
mensional embeddings of body poses. In [14,17], the low-dimensional pose represen-
tation, its dynamics, and the mapping back to the original pose space are learned in a
unified framework. This approach does not include a learned statistical model of image
appearance. Our method also models pose manifolds rather than appearance manifolds,
because the pose manifold has fewer self-intersections than the appearance manifold,
making the dynamics and tracking less ambiguous.

Regarding activity switching, [19] has proposed a state switching mechanism, where
different dynamical models are chosen, depending on a discrete state variable. In our
approach, the different states (activities) involve separate models for pose, dynamics
and appearance.

Our approach fundamentally differs from the above-mentioned papers in that it si-
multaneously tracks in a state space that includes body pose, 2d bounding box location
and a discrete activity label. Furthermore, we present a full-fledged pipeline with gener-
ative rather than discriminative modelling of the appearance, entirely based on learned
models. The framework is built-up in a module based manner. Some choices of precise
statistical methods that are applied for the individual modules are mainly based on prac-
tical considerations (e.g. efficiency, sparsity). They could be substituted by equivalent
methods, like e.g. Isomap [20] instead of LLE, or regularised kernel regressors instead
of RVMs.

The remainder of this paper is organised as follows. Section 2 introduces our learned
models. In Section 3 the sample-based inference is presented and Section 4 shows ex-
perimental results on different video sequences.
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2 Statistical Modelling

Figure 1 a) shows an overview of the tracking framework, reduced to a single activity
category for clarity. Central element is the low-dimensional body pose parameterisation,
with learned mappings back to the original pose space and into the appearance space.
In this section all elements of the framework will be described in detail.
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Fig. 1. a) An overview of the tracking framework. Solid arrows represent signal flow during
inference, the dashed arrow stands for the nonlinear dimensionality reduction during training.
The figure refers to equations in Section 2. b) Body pose representation as a number of 3d joint
locations. c) Distance transformed image descriptor dt(Y ). Each pixel value is proportional to
the distance to the silhouette, and its sign indicates whether the pixel lies inside the silhouette.

Our models were trained on real motion capture data sets of different subjects, run-
ning and walking at different speeds. Walking and running training examples were sep-
arately processed to train activity specific models.

2.1 Pose and Motion Model

Representations for the full body pose configuration are high dimensional by nature;
our current representation is based on 3d joint locations of 20 body locations such as
hips, knees and ankles, but any other representation (e.g. based on relative orientations
between neighbouring limbs) can easily be plugged into the framework. To alleviate
the difficulties of high dimensionality in both the learning and inference stages, a di-
mensionality reduction step identifies a low dimensional embedding of the body pose
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representations. We use Locally Linear Embedding (LLE) [7], which approximately
maintains the local neighbourhood relationships of each data point and allows for global
deformations (e.g. unrolling) of the dataset/manifold.

LLE dimensionality reduction is performed on all poses in the data set that belong
to a certain activity, and expresses each data point in a space of desired low dimen-
sionality. However, LLE does not provide explicit mappings between the two spaces,
that would allow to project new data points (that were not contained in the original
data set) between them. Therefore, we model the reconstruction projection from the
low-dimensional LLE space to the original pose space with a kernel regressor.

X = fp(x) = WpΦp(x) (1)

Here, X and x are the body pose representations in original resp. LLE-reduced spaces,
Φp is a vector of kernel functions, and Wp is a sparse matrix of weights, which are
learned with a Relevance Vector Machine (RVM). We use Gaussian kernel functions,
computed at the training data locations. Separate models are learned for the two distinct
activities, fw

p (xw) and f r
p (xr). In the following we will use superscripts (e.g. w for

walk and r for run) to indicate activity categories in the notation if necessary and omit
them if the same formulation holds for all actions.

The training examples form a periodic twisted ’ring’ in LLE space, with a curvature
that varies with the phase within the periodic movement. A linear dynamical model, as
often used in tracking applications, is not suitable to predict future poses on this curved
manifold. We view the nonlinear dynamics as a regression problem, and model it using
another RVM regressor, yielding the following dynamic prior,

pd(xt|xt−1) = N (xt; xt−1 + fd(xt−1)ΔT , Σd), (2)

where fd(xt−1) = WdΦd(xt−1) is the nonlinear mapping from poses to local velocities
in LLE pose space, ΔT is the time interval between the subsequent discrete timesteps
t − 1 and t, and Σd is the variance of the prediction errors of the mapping, computed
on a hold-out data set that was not used for the estimation of the mapping itself. Again,
the dynamics are learned separately for the different action categories.

Not all body poses that can be expressed using the LLE pose parametrisation do
correspond to valid body configurations that can be reached with a human body. The
motion model described so far does only include information about the temporal evo-
lution of the pose, but no information about how likely a certain body pose is to occur
in general. In other words, it does not yet provide any means to restrict our tracking
to feasible body poses. The additional prior knowledge about feasible body poses, or
likely poses for a given activity, is introduced as a static prior that is modelled with a
Gaussian Mixture Model (GMM),

ps(x) =
C∑

c

pcN (x; μc, Σc), (3)

with C the number of mixture components and pc, μc and Σc the mixture proportions
and parameters of the Gaussian components. The influence of this pose prior can be
kept low, avoiding a distortion of the tracking results towards typical average motion.
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We introduce a weighting factor λ > 1 and obtain the following formulation for the
temporal prior by combination with the dynamic prior pd(xt|xt−1).

p(xt|xt−1) ∝ pd(xt|xt−1) ps(xt)
1
λ (4)

We also want to model the transition between the considered action categories, that each
have their own low dimensional pose parametrisation expressed in distinct LLE spaces.
Informally, we want to find walking poses that are very similar to a given running pose
and vice versa, since we know that the transition is performed smoothly, without any
sudden or jerky ’jump’ of the body configuration.

Given our distinct training sets of walking and running poses, two sets of training
pairs are generated by looking for the most similar running pose for every walking pose
and vice versa, and the nonlinear mapping between these pairs is modelled using two
sparse kernel regressors f r→w

switch(xr) and fw→r
switch(xw). This can be generalised to more

action categories1 and leads to the following motion model, where the state space from
eq. (4) is augmented by a discrete state variable at.

p(xt, at|xt−1, at−1) ∝
{

pnoswitch pat(xt|xt−1) if at = at−1
pswitch pat−1→at(xt|xt−1) else

(5)

Here, the motion model for the case of activity switching pat−1→at(xt|xt−1) is mod-
elled as a normal distribution around the pose predicted by the regressor f

at−1→at

switch . The
probabilities that an activity transition does or does not occur are denoted pswitch and
pnoswitch. In the case of more than two activity categories, these transition probabilities
could be represented as a transition matrix with the pa

noswitch of the different categories
a on the diagonal.

2.2 Appearance Model

The representation of the subject’s image appearance is based on a rough figure-ground
segmentation. Under realistic imaging conditions, it is not possible to get a clean sil-
houette, therefore the image descriptor has to be robust to noisy segmentations to a
certain degree. We consider two types of image descriptors, distance transforms dt(Y )
[21] of segmented figures with a subsequent linear PCA dimensionality reduction step
(see Figure 1c), and a representation obtained by applying Binary PCA (BPCA) [22]
to binary foreground images. Both image descriptors are computed from the content
of a bounding box around the centroid of the figure, and 10 to 20 PCA resp. BPCA
components have been found to yield good reconstructions. We introduce the following
notation for the computation of these descriptors and the projection on the respective
subspaces given the raw pixel image Y :

yDT =V (dt(Y ) − μ)
yBPCA =BPCA(Y )

(6)

In this equation, μ and V are the mean and basis vectors obtained by PCA. BPCA(Y )
and dt(Y ) are nonlinear operations, in the BPCA case the projection on the subspace

1 The number of transitions grows quadratically with the number of categories, which should
therefore be kept low.
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is done iteratively (see [22]). As we will see later, it is useful in some situation to con-
sider the inverse operation that projects the image descriptors yDT and yBPCA back
into high dimensional pixel space and transforms it into binary images or foreground
(fg) probability maps. From the descriptors we compute probability maps via the sig-
moid function σ(.). In the case of the distance transformed descriptor this is based on
the intuition that the foreground/background probabilities are higher far away from the
silhouette, and lower very close to the silhouette. BPCA reconstruction is also based on
the sigmoid function [22].

p(Y = fg|yDT ) ∝ σ(V T yDT + μ)

p(Y = fg|yBPCA) ∝ σ(V T yBPCA + μ)
(7)

Again, μ and V are the mean and basis vectors from linear resp. binary PCA.
Now that we have seen how to compute image descriptors from segmented images

and back, we will look how the image appearance is linked to the LLE body pose repre-
sentation x. We will model the generative mapping from pose x to image descriptors y
that allows to predict image appearance given pose hypotheses and fits well into gener-
ative inference algorithms such as recursive Bayesian sampling. In addition to the local
body pose x, the appearance depends on the global body orientation ω (rotation around
vertical axis).

p(y|x, ω) =N (y; fa(x, ω), Σa)
fa(x, ω) =WaΦa(x, ω)

(8)

Here, the functional mapping fa(x, ω) is approximated by a sparse kernel regressor
(RVM) with weight matrix Wa and kernel functions Φa(x). Σa is the prediction vari-
ance matrix, it indicates which dimensions of the descriptor y can be well predicted
and which cannot, and thus accounts for the fact that the prediction of y will always be
subject to uncertainty. Σa is estimated from a hold-out set of the original training data
and restricted to a diagonal matrix for simplicity.

3 Inferring Image Position, Orientation, Activity and Pose

In this section we will show how the 2d image position, body orientation, activity cate-
gory, and body pose of the subject are simultaneously estimated given a video sequence,
by using the learned models from the previous section within the framework of recur-
sive Bayesian sampling. Both pose estimation and image localisation can benefit from
the coupling of pose and image location. For example, the known current pose and mo-
tion pattern can help to distinguish subjects from each other and track them through
occlusions. We therefore believe that tracking should happen jointly in the entire state
space Θ,

Θt = [at, ωt, ut, vt, wt, ht, xt], (9)

consisting of the discrete activity a, orientation ω, the 2d bounding box parameters
(position, width and height) u, v, w, h, and the body pose x.

Despite the reduced number of pose dimensions, we face an inference problem in
10-dimensional space. Having a good sample proposal mechanism like our dynamical
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model is crucial for the Bayesian recursive sampling to run efficiently with a moderate
number of samples. For the monocular sequences we consider, the posteriors can be
highly multimodal. Our experiments have shown that a strong dynamical model is nec-
essary to avoid confusion between these posterior modes and reduce ambiguities. The
remaining posterior multimodalities correspond to a small number of different interpre-
tations of the images, which are all valid and feasible motion patterns.

The precise inference algorithm is very similar to classical CONDENSATION [5],
with normalisation of the weights and resampling at each time step. If we neglect the
activity switching mechanism for a moment, the prior and likelihood for our inference
problem are obtained by extending (4) and (8) to the full state space Θ. In our imple-
mentation, the dynamical prior pd(Θi

t|Θi
t−1) serves as the sample proposal function. It

consists of the learned dynamical pose prior from eq. (2), and a simple motion model
for the remaining state variables θ = [ωt, ut, vt, wt, ht].

pd(Θi
t|Θi

t−1) = pd(xi
t|xi

t−1)N (θi
t; θ

i
t−1, Σθ) (10)

In practice, one may want to use a standard autoregressive model for propagating θ,
omitted here for notational simplicity. We assume statistical independence between the
body pose x and the state variables θ in (10), since modelling these dependencies would
imply restricted camera motions (e.g. static camera). The static prior over likely body
poses (3) and the likelihood (8) are then used for assigning weights wi to the samples.

wi
t ∝ p(yi

t|Θi
t)ps(Θi

t)
1
λ = p(yi

t|xi
t, ω

i
t)ps(xi

t)
1
λ (11)

Here, i is the sample index, and yi
t is the image descriptor computed from the sampled

bounding box (ui
t, v

i
t, w

i
t, h

i
t). Note that our choice for sample proposal and weighting

functions differs from CONDENSATION in that we only use one component (pd) of the
prior (4) as a proposal function, whereas the other component (ps) is incorporated in
the weighting function.

Likelihood computation in image space or on a PCA subspace. Our framework has
a generative flavour, since we model the pdf of the appearance given the body pose
in a top-down manner. The computation of the image descriptor and projection on the
subspace and back can be issued in both directions, as seen in eq. (6) and (7). One
possibility is to compute the image descriptors in a bottom-up manner and project them
onto the PCA or BPCA subspace (6), where the likelihood is then directly obtained
using (8).

Alternatively, in a purely generative top-down manner, we can predict whether we
expect a certain pixel to be foreground or background given a pose hypothesis. This
is done by concatenating the mapping fa(x, ω) from eq. (8) and the projection of the
appearance descriptor into full appearance space (image space) (7). This yields a dis-
crete 2d probability distribution of foreground probabilities Seg over the pixels p in
the bounding box. From this pdf, a likelihood measure can then be derived by com-
paring it to the actually observed segmented image Obs, also viewed as a discrete pdf,
using the Bhattacharyya similarity measure [23] which measures the affinity between
distributions.
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Segi
t(p) =p(p = fg|fa(xi

t, ω
i
t))

Obsi
t(p) =p(p = fg|imaget, u

i
t, v

i
t, w

i
t, h

i
t)

BCi
t =

∑

p

√
Segi

t(p)Obsi
t(p)

(12)

Both alternative ways of likelihood computation have advantages and drawbacks.
The bottom-up variant requires binary images to compute the image descriptors,
whereas the top-down variant can handle continuous foreground probabilities. Often
the foreground segmentation is available in the form of probability maps, and thresh-
olding it may cause an unnecessary loss of information and yield unsatisfying results.
On the other hand, evaluation of likelihood on the (B)PCA subspace can benefit from
the learned variance matrix Σa. Also, the bottom-up computation of descriptors can be
disturbed by noisy segmentations. This holds particularly for the distance transformed
image descriptor yDT . In the case of the descriptor based on BPCA, the projection on
the subspace is iterative and therefore slow, which in this case reduces the attractivity of
the bottom-up variant from a practical perspective. Experimentally, the combination of
distance transformed descriptors and bottom-up descriptor computation fails when the
input image segmentation is very noisy, the other three combinations perform similarly
well.

3.1 Activity Switching

When turning to the multi activity tracking case, the sample proposal function is adapted
according to eq. (5). A sample i undergoes an activity switch with probability pswitch.
In our experiments, the scheme is demonstrated for two activity categories, walking
and running, therefore we set pw→r

switch = pr→w
switch = 1 − pnoswitch. In case of an activity

switch, the sample i is initialised with a value in LLE pose space of the new activity at

by sampling from the activity transition function pat−1→at(xt|xt−1). In such a manner,
at each time step a number of samples are generated that allow for a smooth transition
into the other activity. If these hypotheses are supported by the image information, they
will be selected in the subsequent resampling step and take overhand. The percentage
of samples of a certain activity category is a measure for the algorithm’s belief about
the currently observed action. The image support for the hypotheses is given by the
observation likelihood, which is always based on the action specific appearance model
(fw

a resp. f r
a in eq. (8)).

3.2 Globally Optimal Trajectory

The described sample-based tracking algorithm provides a set of N samples with cor-
responding weights for each frame of the sequence. This representation of the posterior
is not suitable for many purposes, even visualisation is difficult. Furthermore, the pos-
teriors are computed on a per-frame level, i.e. at time step t we compute p(Xt|Y1:t).
Often we are interested in a consistent trajectory through the entire image sequence, i.e.
in the maximum of the posterior p(X1:T |Y1:T ) over the poses of all time steps, given
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all observations. In other words, we are interested in the value for X1:T with maximal
probability rather than marginals for each Xt.

In our framework this is achieved by a postprocessing algorithm that finds optimal
paths through the set of samples. We use the Max-Product algorithm resp. its numeri-
cally more stable counterpart, the Min-Sum algorithm that operates with negative log-
arithms instead of probabilities (see [24] or [25] for belief propagation algorithms).
These algorithms are discrete by nature, i.e. each node of the Markov chain (each time
step) has a number of discrete states that in our case is equal to the number of samples N
of the tracking algorithm. The algorithm will thus choose one sample per node to form
a trajectory through time and state space that best satisfies both observation likelihood
and temporal prior. Instead of finding the optimal trajectory for the entire sequence, the
algorithm can also be applied to sub-sequences, in a sliding-window fashion.

More formally, the goal is to find a sequence of state variables Θ1:T that maximises
the global function p(Θ1:T ), which is factorised into the product of evidence functions
υ that take into account the image information, and compatibility functions ψ of tem-
porally adjacent nodes.

p(Θ1:T ) =
1
Z

T∏

t=2

ψ(Θt, Θt−1)
T∏

t=1

υ(Θt), (13)

where Z is a normalisation constant. The equations from the recursive tracking can
be reused as the global function uses the same terms. The evidence functions υ(Θt)
are computed according to eq. (11). In fact we can directly reuse the sample weights
computed during tracking. The compatibility between neighbouring nodes is given by
eq. (10). The Max-Product resp. Min-Sum algorithm performs inference in this chain
graph by propagating local messages (beliefs) between neighbouring nodes.

4 Experiments

Training. The described models were trained on a database of motion sequences from 6
different subjects, walking and running at 3 speeds per activity (2.5, 4.2, 6 resp. 8,10,12
km/h). The data was recorded using an optical motion capture system at a framerate
of 60 Hz and subsampled to 30 Hz. The resulting sequences of body poses were nor-
malised for limb lengths and used to animate a realistic computer graphics figure in
order to create matching silhouettes for all training poses. The figure was rendered from
different view points, located every 10 degrees in a circle around the figure. Due to this
choice of training data, our system currently assumes that the camera is in an approxi-
mately horizontal position. The training set consists of 2000 body poses of each activity.
All the kernel regressors were trained using the Relevance Vector Machine algorithm
[27], with Gaussian Kernels. Different kernel widths were tested and compared using a
crossvalidation set consisting of 50% of the training data, in order to avoid overfitting.

Tracking. We evaluated our tracking algorithm on a number of different sequences.
The main goals were to show its ability to deal with noisy sequences with poor fore-
ground segmentation, image sequences of very low resolution, varying viewpoints
through the sequence, and switching between activities. The figures in this section show
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Fig. 2. Circular walking sequence from [26]. The figure shows full frames (top), and cutouts with
bounding boxes in original or segmented input images and estimated poses. Darker limbs are
closer in depth.

the body poses of the optimal trajectory that was computed according to Section 3.2,
based on the samples from the recursive Bayesian sampling algorithm.

The particle filtering was performed using a set of 500 samples, leading to a compu-
tation time of approx. 2-3 seconds per image frame in unoptimised Matlab code. The
sample set is initialised in the first frame as follows. Hypotheses for the 2d bounding
box locations are either derived from the output of a pedestrian detector that is run on
the first image, or from a simple procedure to find connected components in the seg-
mented image. Pose hypotheses xi

1 are difficult to initialise, even manually, since the
LLE parametrisation is not easily interpretable. Therefore, we randomly sample from
the entire space of feasible poses in the reduced LLE space to generate the initial hy-
potheses. Thanks to the low-dimensional representation, this works well, and the sample
set converges to a low number of clusters after a few time steps, as desired.

The first experiment (Fig. 2) shows tracking on a standard test sequence2 from [26],
where a person walks in a circle. We segmented the images using background sub-
traction, yielding noisy foreground probability maps. The main challenge here is the
varying viewing angle that is difficult to estimate from the noisy silhouettes. Figure 3
shows another publicly available sequence3. Here we used only one camera, while this
sequence has been mainly used for multi-camera tracking (e.g. [28,11]).

Figure 4 shows an extract from a treadmill sequence that was 1660 frames long in
total. In this sequence, the subject initially walks and switches to running and back to
walking several times. The figure shows a few frames from the transition from running
to walking; the first two frames clearly contain running poses, then the arms are lowered

2 http://www.nada.kth.se/ hedvig/data.html
3 http://www.cs.brown.edu/ ls/
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Fig. 3. Circular walking sequence from [28], original resp. segmented input images with esti-
mated bounding boxes, and estimated poses.

Fig. 4. Transition from running to walking. The original sequence is 1660 frames long, here we
show selected frames from the transition phase between frame 921 and frame 936. See also Fig.
5a) for a plot of the estimated activity categories.

and the last 3 frames show walking. The plot in Figure 5a) shows the estimated running
probabilities throughout the sequence. Even for humans, it is not obvious to identify
the exact moment of activity change, there is typically a transition phase of about 0.5
seconds. In our experiments, the activity switch was always detected within this transi-
tion phase, as desired. Note that we do not take into account the typical periodic motion
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a) b)

Fig. 5. Activity plots of the sequences of figures 4 (a) and 7 (b). The figures show the estimated
activities; the blue curve shows the continuous probability that we observe running rather than
walking over the entire sequence, the red bars/dots indicate the activity label that has been inferred
by the global optimisation.

Fig. 6. Real traffic scene with low resolution input images, noisy segmentation, disturbing objects
(umbrella, bag), and varying viewangle. Original frames (top) and cutouts.

in vertical direction that distinguishes running from walking, the activity is correctly
estimated from the local shape and its deformation over time alone.

The sequences of Figures 6 and 7 were recorded in a real traffic environment with
a webcam. The image resolution is 320 × 200 pixels, with subjects as small as 40-50
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Fig. 7. Real traffic scene with a transition from walking to running. Full Frames (top) and cutouts
with estimated poses. Figure 5b) shows the inferred activity categories of this sequence.

pixels in height. Furthermore, the image quality is unfavourable due to severe MPEG
compression artefacts and noisy foreground segmentation. In Figure 6 the person car-
ries an umbrella that could be misinterpreted as a leg, and a bag that distorts the overall
shape of the pedestrian. The subject also turns away from the camera over the duration
of the sequence. Our experiments showed that such a challenging sequence, combining
different kinds of difficulties, can only be tracked thanks to the dynamical model, since
the information from individual images is unreliable and therefore has to be accumu-
lated over time. The pedestrian in Figure 7 suddenly starts to run when crossing a street.
The activity switch is reliably detected, as can be seen in the activity plot in Figure 5b).

5 Summary

We presented a monocular tracking approach that simultaneously estimates the 2d
bounding box coordinates, the performed activity, and the 3d body pose of a moving
person. To this end, we learn statistical models of pose, dynamics, activity transition,
and appearance using efficient sparse kernel regressors. The relationship of pose and
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appearance is learned in a generative manner. Using LLE, we find an embedding of the
pose manifolds of low dimensionality, which allows us to use a Monte-Carlo sampling
algorithm for tracking. A Max-Product algorithm finally extracts the optimal sequence
through the entire image sequence. We demonstrated the method on different challeng-
ing video sequences of low resolution with noisy segmentation.
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Abstract. We present a Spatio-temporal 2D Models Framework
(STMF) for 2D-Pose tracking. Space and time are discretized and a mix-
ture of probabilistic “local models” is learnt associating 2D Shapes and
2D Stick Figures. Those spatio-temporal models generalize well for a
particular viewpoint and state of the tracked action but some spatio-
temporal discontinuities can appear along a sequence, as a direct con-
sequence of the discretization. To overcome the problem, we propose
to apply a Rao-Blackwellized Particle Filter (RBPF) in the 2D-Pose
eigenspace, thus interpolating unseen data between view-based clusters.
The fitness to the images of the predicted 2D-Poses is evaluated com-
bining our STMF with spatio-temporal constraints. A robust, fast and
smooth human motion tracker is obtained by tracking only the few most
important dimensions of the state space and by refining deterministically
with our STMF.

1 Introduction

Full-body human tracking from monocular image sequences is one of the most
challenging problems of human motion analysis. Therefore, the number of dif-
ficulties related to the problem are very large. Among others, the shape and
appearance of a human body in 2D images may change drastically over time
due to changing lighting conditions, loose fitting clothes and background clut-
ter. Although self-occlusion of body parts can be easily predicted in a 3D model
using dynamic information from joints (or limbs) [19], they are difficult to han-
dle if a 2D model is used. In contrast, 2D models can better handle clutter,
partial occlusions, multiple people tracking and present fewer parameters: an
interesting advantage for tracking purpose. They also have the great advantage
over 3D models of being directly observable in the image. Johansson [7] shows
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that the trajectories of the 2D joints provide sufficient information to interpret
the performed action. Moreover Taylor’s method [17] can be used, as in [11], to
estimate the 3D configuration of a body given the position of the 2D key points
from a single image taken with an uncalibrated camera.

On the other hand, the main disadvantage of 2D-models is their dependance
on the viewpoint. Most of the previous works are based on the fundamental
assumption of “in-plane” motion [20,12]. Recently many authors have proposed
a common approach consisting in discretizing the space considering a series of
view-based 2D models [21,10,9,13]. This method gives some preliminary good re-
sults, but there are two main problems that need to be addressed: spatial discon-
tinuities due to the viewpoint discretization and temporal discontinuities due to
the difficulties of maintaining the dynamics of the motion when the view is tuned.
It appears as a challenging problem, first to interpolate data “between views”,
and second to establish motion correspondences between viewpoints without
considering a mapping to a complex 3D model.

In this work, we consider the walking action, but the methodology can be
extended to any motion. 2D pose and 2D appearance parameters are extracted
from training images of the same gait sequences seen from different viewpoints.
This database is clustered following both spatial and temporal criteria: the spa-
tial clustering is directly provided by the training views and the temporal one
is obtained from the gait cycles (gait states). The resulting clusters correspond
in terms of dynamics or viewpoint. A Spatio-Temporal 2D Models Framework
(STMF) is then learnt by fitting a mixture of Principal Component Analysers
(PPCA) to the clustered feature space.

Our approach is similar to [9] in that we integrate spatial and temporal models
into a common framework, but differs in that we consider a combined transition
that takes into account simultaneous state and viewpoint changes. A Proba-
bilistic Transition Matrix (PTM) is evaluated frame to frame and provides the
transition probability combining both spatial and temporal constraints. A fea-
ture space “reduction” can then be performed by weighting all the local models
by their respective probability.

To overcome the problem of discontinuity, inherent when using a discretized
space, we track the parameters of our 2D Pose model at each time step by means
of a Rao-Blackwellized Particle Filter [3]. We thus marginalize the viewpoint
parameter from the state and compute it deterministically, imposing a strong
restriction of continuity between viewpoints of consecutive frames. On the first
hand, the STMF is used within this model-based tracking framework to evalu-
ate the fitness of the predicted postures given the input images. On the other
hand, in order to deal with the computational cost inherent to high-dimensional
Particle Filters, we track a lower dimensional version of the 2D pose space, and
subsequently refine the estimations from the particle filtering stage by perform-
ing a local deterministic optimization within the STMF. As a result, this work
addresses the problem of using this constraint-based evolution through the 2D-
Models framework jointly with a particle filter in order to obtain a more robust
and smoother 2D pose tracker.
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2 Probabilistic Modelling

2.1 Spatio-temporal 2D-Models Framework

The methodology we propose is generalizable to any 2D representation [20,12]
and any kind of motion: 2D appearance parameters of the same sequences seen
from different views are associated to the corresponding 2D joints.

As in [21], we extracted precise training human Shapes from the CMU MoBo
dataset considering 15 subjects, two walking speeds (fast and slow) and 8 dif-
ferent viewpoints uniformly distributed between 0 and 2π. The first 50 frames
of each sequence were considered in order to capture at least one gait cycle per
subject. For each sequence, we hand-labelled 5 views and, using the periodicity
and symmetry of human walking, we interpolated the last 3 ones. Simultane-
ously, we labelled 13 fundamental 2D joints that parameterize a Stick model. By
this process we generated a training database encompassing 12000 Shape vectors
and the corresponding Skeleton vectors (1500 pair of vectors for each different
viewpoint). Following the methodology proposed in [1], a pedestrian model is
then constructed encapsulating within a Point Distribution Model (PDM) 2D
Shape landmarks and 2D Skeleton joints. Shapes, normalized to 100 landmarks,
si = [xs1, ...., xs100, ys1, ...., ys100] and Skeletons ki = [xk1, ...., xk13, yk1, ...., yk13]
are then concatenated into a Shape-Skeleton vector vi = [si,ki]. Both 2D Poses
and 2D Shapes belong to the same coordinate space so that no scaling issue is
encountered.

The complete database is now concatenated (8 views together) and PCA
is applied to offer a more parsimonious description of the data, obtaining the
Eigenspace A:

v � v̄ + Φva (1)

where v̄ is mean Shape-Skeleton vector, Φv is the matrix of Eigenvectors and a
is the projection in A.

A series of local dynamic motion models is learnt by clustering the structural
parameters subspace. The gait cycle is then divided into 6 basic steps (see [14] for
details), providing the temporal clusters Cj, while the 8 training views directly
provide the spatial clustering (clusters Rr). The different clusters correspond
in terms of dynamics or viewpoint. Using this structure-based partitioning and
the correspondences between training viewpoints, 48 spatio-temporal clusters
{{Tj,r = Cj ∩ Rr}6

j=1}8
r=1 are obtained.

Thus, following [18,4], a local linear model is learnt for each spatio-temporal
cluster Tj,r and a mixture of PPCA is fitted to the clustered A space, obtaining
T, i.e. our Spatio-Temporal 2D Models Framework (STMF). Parameters for the
48 Gaussian mixture models components are determined using EM algorithm.
The prior Shape-Skeleton model probability is then expressed as:

p(a) =
∑

j,r

p(a|Tj,r) p(Tj,r), (2)

where a is the projection in A of the Shape-Skeleton vector, p(a|Tj,r) is a single
PPCA, and p(Tj,r) is the mixing parameter corresponding to Tj,r.
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This prior probability provides an indication on how well a Shape s and Skele-
ton k fit together; however an efficient search method is required. In that way,
temporal and spatial constraints will be considered to constrain the evolution
through the STMF along a sequence and define a stronger prior.

2.2 Constraint-Based Search Through the STMF

At each time step, only part of the STMF is useful and a smart utilization re-
quires a feature space reduction. The purpose is to obtain a transition probability
between clusters (models) combining both spatial and temporal constraints.

Markov Chain for Modelling Temporal Constraint. Following the stan-
dard formulation of probabilistic motion model [16], if we partition the state
space into N clusters C = {C1, ...,CN}, the conditional probability p(Ct

j|Ct−1
k )

corresponds to the probability of being in Cj at time t conditional on being in
Ck at time t-1 (using Markov Chain).

Modelling Spatial Constraint. In [13], a spatial prior p(θt|θt−1) was intro-
duced for modelling spatial constraint. It expresses the statement that θt, the
current orientation of the subject (viewpoint), can be predicted given the pre-
vious one. We follow the same procedure and consider a reasonable approach
making this probability a normal distribution with expected value equal to the
previous viewpoint θt-1 and, variance σθ calculated as a function of the sam-
pling rate: p(θt|θt−1) ∼ N (θt-1, σθ). In this approach, the continuous values of
all possible viewpoints θ are discretized into M training views {θ1, ..., θM} cor-
responding to M clusters R = {R1, ...,RM}. In other words, the probability of
going from cluster s to cluster r is given by: p(Rt

r|Rt-1
s ) = N (θr, θt-1, σ) where

Rt
r is the spatial cluster at time t, Rt-1

s at time t-1. θt-1 is the previous viewpoint
and θr viewpoint of cluster Rr.

Combining Temporal and Spatial Constraints. Let T be the NxM matrix
whose columns and rows represent respectively the N temporal and the M spatial
clusters. Thus the conditional spatio-temporal transition probability is defined
as p(Tt

j,r|Tt−1
k,s ) = p(Tt

j,r|Ct−1
k ,Rt−1

s ), probability of being in Cj and Rr at time t
conditional on the preceding spatio-temporal cluster. In this paper, we assume
that the two considered events, state and direction changes, are independent.
This leads to the following equation:

p(Tt
j,r|Tt−1

k,s ) ∝ p(Ct
j|Ct−1

k ).p(Rt
r|Rt-1

s ). (3)

The resulting NxM matrix is the Probabilistic Transition Matrix (PTM) that
gives, at each time step, the probability density function that limits the region
of interest in the STMF. Considering the cyclic nature of the walking action
and the circular distribution of the training viewpoints, we can observe that the
resulting PTM is a toroidal matrix (Fig. 1) whose lines correspond to the M
view-based gait manifold. To compute this PTM, we need both previous pose
and orientation. This viewpoint could be evaluated by estimating the direction
of motion in the image. In this work, it will be inferred from the 2D pose.
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Fig. 1. 3D and 2D representations of the toroidal PTM

Applying the Markov State assumption (p(at|Tt
j,r,T

t−1
k,s ) ∼ p(at|Tt

j,r)), the
posterior p(a|Tt−1

k,s ) becomes:

p(at|Tt−1
k,s ) =

∑
j,r p(at|Tt

j,r,T
t−1
k,s ) p(Tt

j,r|Tt−1
k,s )

=
∑

j,r p(at|Tt
j,r) p(Tt

j,r|Tt−1
k,s ).

(4)

In this way, we re-weigh the mixture at each time step t, by introducing the
spatio-temporal constraints and consider the PTM elements as new mixing pa-
rameters. We thus redefine a new STMF Tt at each time step t and transcribe
it in this new notation for describing the probability:

pTt(a
t) =

∑

j,r

p(at|Tt
j,r) p(Tt

j,r|Tt−1
k,s ). (5)

In [4], Grauman inferred 3D structure from multi-view contour. In the same way,
when presented a new Shape, we treat the unknown 2D structure as missing vari-
ables and find the maximum a posteriori (MAP) estimate of both contour and
structure parameters, based on our prior Shape-Skeleton model Tt. We propose
to use this constraint-based search through the STMF jointly with a particle
filter in order to obtain a more robust and smoother 2D pose tracker.

3 2D Pose Tracking

The discretization of the space causes spatial discontinuities that affect the
smoothness of the results. Hence, MAP estimates of 2D Poses along a sequence
are logically orientated in one of the 8 views of the discretized set of training
viewpoints, while the 2D poses taken from ground truth are orientated in all the
possible directions (See Fig.3).

3.1 2D Pose Eigenspace

Given the high dimensionality and the non-linearity of the A space, a second
Eigenspace B is considered for 2D Pose tracking. All the training 2D Poses are
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thus projected in a common space, the 8 views together, and PCA is applied. As
a result, we obtain for each training pose k a related b such that: k � k̄ + Φkb.
The pose eigenspace B is highly non-linear in the first modes that capture the
information of viewpoint and state variations: we can observe in Fig.3(b), a
view-based grouping of the clusters that are globally organized as a Torus.

Although the 2D pose Eigenspace has been constructed with a discrete
dataset, we can check that it is continuous: the virtual poses generated lin-
early between synchronized training data, at arbitrary angles, are valid (Fig.2).
The linear interpolation between view-based clusters also provides valid Shape-
Skeleton associations. This makes possible a smooth tracking through B space.

Fig. 2. Data interpolation: (up) Silhouettes si, (center) Skeletons ki and (down)
Shape-Skeleton combination vi. Data at 0, π, ±π

4 , ±π
2 and ± 3π

4 are taken from training
set while the rest are linearly interpolated.

Viewpoint Inference. Considering that people are able to accurately estimate
the orientation of a 2D pose, and that ambiguities can be solved from dynamics,
we propose to learn a mapping between pose parameters and the viewpoint
parameter. Following the idea of a toroidal manifold for joint view and state
representation, we learn a non-linear mapping between our 2D Poses training
set and a circle used as a representation of the viewpoint θ as in [10]. The
mapping function fθ relates θ and k such that: θ = fθ(k).

We have shown that valid 2D poses exist between training viewpoints. Thus
we propose to solve the spatial discontinuities of the Framework and avoid the
jumps between view-based clusters (Fig.3 b-c) by applying a tracking algorithm
in the B space.

3.2 Particle Filtering

As mentioned before we consider a Particle Filter[2,12,16,19] to track the param-
eters of our 2D Pose Model. We formulate the tracking problem as a Bayesian
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(a) (b)

(c)

Fig. 3. Viewpoint Inference for the “WalkCircle” sequence (from www.nada.kth.se/
∼hedvig): (a) Groundtruth 2D Poses, (b) torus embedding training data and
groundtruth trajectory. (c) Viewpoint evaluation by mapping for MAP estimate and
groundtruth 2D Poses.

inference task, where the state of the tracked object is recursively estimated at
each time step given the evidences (image data) up to that moment.

Formally, within the Bayesian filtering framework, we formulate the computa-
tion of the posterior distribution p(φt|It) of our model parameters φt over time
as follows:

p(φt|It) ∝ p(It|φt) p(φt|It-1), (6)

where It is the image sequence up to time t and p(It|φt) is the likelihood of ob-
serving the image It given the parametrization φt of our model at time t, in other
words the observation density. Finally p(φt|It-1) is the a priori density, result of
applying the dynamic model p(φt|φt−1) to the a posteriori density p(φt-1|It-1)
of the previous time step:

p(φt|It-1) =
∫

p(φt|φt-1) p(φt-1|It-1) dφt-1. (7)

Unfortunately, when the involved distributions are non-Gaussian, Eq. (6) can-
not be solved analytically. Instead, we use a Particle Filter (PF) in order to
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approximate the true posterior pdf p(φt|It) by means of a discrete weighted set
of samples.

Hence, whilst the likelihood function decides which particles are worth to
propagate, the dynamic model is responsible for guiding the exploration of the
space of solutions. The posterior p(φt|It) represents all the current knowledge
about the model state we have extracted from image measurements. The state φt

at a particular time step will be estimated by computing the expectation of the
posterior pdf, i.e. φt = E [φt] =

∑N
n=1 πn

t φn
t , where πn

t stands for the normalized
weight assigned to each particle n.

Rao-Blackwellization. A classical PF would produce temporal consistency
compared with an approach without tracking. But when applied in B space it
would not avoid the jumps between training viewpoints because of the clustered
nature of the space. We propose to marginalize the viewpoint parameter from
the state and compute it deterministically, imposing a strong restriction of con-
tinuity between consecutive viewpoints. Rao-Blackwellization technique allows
marginalizing out some of the variables and refers to integrate out part of the
state analytically when using Particle Filter [3]. Rao-Blackwellized Particle Fil-
ter (RBPF) has been applied to reduce dimensionality. In our case, we propose
to use it for imposing continuity to our state estimation in a discrete space.

The state of the subject at time t is defined to be:

xt = [bt ḃt], bt, ḃt ∈ R
D, (8)

where bt is the projection in B of the 2D Pose kt at time t, and ḃt is the velocity.
We thus define the extended state as:

φt = [xt θt], θt ∈ [0 2π]. (9)

in which we include θt, the orientation of the subject at time t (or viewpoint),
that will be marginalized out and determined analytically from kt by mapping.

The Bayes filter now becomes:

p(xt, θt|It) ∝ p(It|xt, θt) ×
∫

xt-1

∫

θt-1

p(xt, θt|xt-1, θt-1) p(xt-1, θt-1|It-1). (10)

Integrating out the viewpoint part θt of the state, we obtain the marginal
filter for the non-extended state xt:

p(xt|It) ∝
∫

θt

p(It|xt, θt) ×
∫

xt-1

∫

θt-1

p(xt, θt|xt-1, θt-1) p(xt-1, θt-1|It-1). (11)

Posterior Density. As in [8], the posterior p(φt-1|It-1) over the previous ex-
tended state is now approximated by a set of particles {x(n)

t-1 , π
(n)
t-1 , α

(n)
t-1 (θt-1)}N

n=1:

p(φt-1|It-1) = p(xt-1, θt-1|It-1)
= p(xt-1|It-1)p(θt-1|xt-1, It-1)
≈

∑N
n=1 π

(n)
t-1 δ(x(n)

t-1 )α(n)
t-1 (θt-1),

(12)
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where for each particle, δ denotes the Dirac delta, π
(n)
t-1 the importance weight

and α
(n)
t-1 (θt-1) is the conditional distribution over the viewpoint, defined as the

density on θt-1:
α

(n)
t-1 (θt-1) = p(θt-1|x(n)

t-1 , It-1) (13)

Dynamic Model. By the chain rule of probability, the dynamic model p(φn
t |φn

t-1)
becomes:

p(φn
t |φn

t-1) = p(xt, θt|xt-1, θt-1)
= p(θt|xt,xt-1, θt-1)p(xt|xt-1, θt-1)
= p(θt|xt,xt-1, θt-1)p(xt|xt-1),

(14)

making the assumption that motion model does not depend on the previous
viewpoint θt-1: p(xt|xt-1, θt-1) = p(xt|xt-1).

Rao-Blackwellized PF. Substituting both the dynamic model and the ap-
proximated posterior density into the expression for the marginal filter (11), we
obtain after some manipulations the following approximation:

p(xt|It) ∝
N∑

n=1

π
(n)
t-1 p(xt|x(n)

t-1 ) ×
∫

θt

p(It|xt, θt)
∫

θt-1

p(θt|xt,x
(n)
t-1 , θt-1)α

(n)
t-1 (θt-1).

(15)
Image Measurements - Observation Density. The likelihood function
p(It|φn

t ) computes how likely is to observe the image It given a particle φn
t .

Postures which are not likely to appear during the performance of a particular
action should return a poor likelihood and disappear through time. For each
frame It, we compute the Shape s∗t from the image and for each particle n we
reconstruct the 2D Pose kn

t � k̄ + Φkbn
t .The likelihood function thus becomes:

p(It|φn
t ) = p(It|xn

t , θn
t ) = p(s∗t |kn

t , θn
t ). (16)

Given this 2D Pose reconstruction and the Shape extracted from the image
It, we then define for each particle n the Shape-Skeleton association an

t =
Φv

−1([s∗t ,k
n
t ] − v̄), and propose to use our STMF Tt for computing the like-

lihood function:
p(It|xn

t , θn
t ) ≈ pTt(a

n
t ), (17)

where pTt(an
t ) is the mixture of PPCA at time t defined in Eq.5. Basically, a

vector a that correctly combines Shape and Skeleton would fall in a cluster
or between two consecutive clusters (interpolation), getting one or two highly
valued p(an

t |Tt
j,r) terms and consequently a high likelihood. On the contrary, a

bad Shape-Skeleton association would produce a vector a far from all the clusters
and all p(an

t |Tt
j,r) terms would be low, obtaining a bad likelihood.

Analytical Update. During this “Extra Step”, as called in [8], the posterior
density αt(θt) on the current viewpoint conditioned on the chosen x̂(m)

t is calcu-
lated for each new sampled particle m:

α
(m)
t (θt) = ω

(m)
t p(It|x(m)

t , θ
(m)
t ) ×

∫

θt-1

p(θ(m)
t |x̂(m)

t ,x(n)
t-1 , θt-1)α

(n)
t-1 (θt-1), (18)
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where ω
(m)
t is the normalization constant. Assuming that θt changes smoothly

over time following a Gaussian process, the result of the integral in 18 is a normal
centered on the previous viewpoint N (θt-1, σθ). In that way α

(m)
t (θt) becomes:

α
(m)
t (θt) = ω

(m)
t p(It|x(m)

t , θ
(m)
t ) × exp(−1

2
‖θ

(m)
t − θ̂t-1‖σθ

). (19)

Importance Weights. The importance weight is finally derived combining
measurement likelihood and analytical update:

π
(m)
t =

∫

θt

pTt(a
n
t ) exp(−1

2
‖θ

(m)
t − θ̂t-1‖σθ

). (20)

Since pTt(an
t ) = p(an

t |Tt−1
k,s ) does not depend on θt and

∫
x
q(x) = q(μ)

√
|2πσ| for

any function q(x) = kexp(− 1
2 )‖μ − x‖σ, we obtain the final expression:

π
(m)
t = pTt(a

n
t ) exp(−1

2
‖θ̂

(m)
t − θ̂t-1‖σθ

). (21)

Because of the viewpoint discretization inherent to our model, the first term gives
a higher importance to the particles that fall inside the clusters compared with
the ones that fall in the space in between. But this is balanced by the continuous
spatial constraint imposed by the second term that gives more importance to
a “correctly-orientated” Pose whose particle fell in the space in between two
view-based clusters.

3.3 Deterministic Sample Optimization

A well known disadvantage of particle filtering methods for object tracking is that
they are typically much slower than deterministic local optimization techniques
since the number of required particles grows up exponentially as the number of
dimensions of parameters spaces does. Unfortunately, fewer samples decrease the
performance of the filters. To cope with this, we consider fewer dimensions of the
state space to be explored by the Particle Filter (PF), and then refine the result
by searching deterministically using the STMF. As demonstrated before only the
first few modes of the B space contain most of the spatio-temporal information
required for tracking, while the rest of the dimensions provide details such as
morphological information or little variations in joints localization. Therefore,
a “coarse to fine” search is proposed, combining a stochastic search in the first
modes of B space with a deterministic optimization technique used for refinement
in last dimensions, both integrated into a Particle Filter.

In that way, if we search stochastically in the first d modes and determin-
istically in the other ones, for each particle n we can reconstruct Ψn

t , a Pose
in eigen space B, whose d first components are provided by φn

t and (D-d) last
components are taken from the deterministic evaluation kmap (cf Sec. 3.1):

Ψn
t = [φn

t (1), ...φn
t (d),bmap

t (d+1), ...,bmap
t (D)]. (22)
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In that way, the final state would be estimated by computing the expectation of
the posterior pdf:

Ψ̂ = E [Ψt] =
N∑

n=1

πn
t Ψn

t . (23)

The estimated 2D Pose k̂t can be reconstructed by back-projecting Ψ̂ from B
space to 2D Pose space. We therefore pretend tracking the 26 parameters of our
2D model by estimating only the few first dimensions of B space.

4 Experiments

Testing Data. In this section, the total tracking framework is evaluated with
two testing sequences that present extensive viewpoint changes. Sequences from
Sidenbladh & Black [16] have appeared to become some references for testing and
evaluation of tracking algorithms [21,9,19]. The “Walkcircle” sequence, maybe
the most challenging one in terms of self-occlusions and viewpoint changes, has
been selected. A second sequence from HumanEVA dataset [5] that presents the
same conditions in an indoor environment has also been selected for testing.

Fig. 4. Silhouette Extraction: (a) Original image. (b) Segmentation obtained by
background subtraction. (c) Corresponding points between edge map of (a) and land-
marks of the estimated Shape (d). (e) Segmentation Result. (f) MAP estimates of
Shape and Pose. (g) Groundtruth Pose.

Segmentation - Silhouette Extraction. We use our 2D-models framework to
extract reliable silhouettes required for our tracking process. We first calculate
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(a)

(b)

Fig. 5. Tracked positions: 1st (a) and 2nd (b) dimensions of the 2D Pose Eigenspace.
Tracking results for “Walkcircle” sequences are compared to MAP estimates and
groundtruth at each time step.

the edge image and combine it with the dilated foreground region (obtained by
background subtraction) to select only valuable features. Given an initial esti-
mate for shape parameters (i.e. mean Shape or previous Shape), the goal is to
move each landmark and find the position that best matches it with the im-
age features. We constrain the search along the normals to the shape at each
boundary point and calculate a global optimal solution by using Dynamic Pro-
gramming. The solution results in a smooth extracted contour that is corrected
using the selected view-based Shape-Skeleton models, as explained in [13]. This
corrected Shape is then warped to the extracted one resulting in a first estima-
tion of the human silhouette. This complete process is repeated until conver-
gence updating at each iteration the foreground blob by decreasing/increasing
the detection threshold inside/outside the warped shape. More details about
Segmentation stage are given in [15]. We provide the tracking framework with
the normalized human Shapes that has been extracted.

2D Pose Tracking. The process begins with a manual initialization: indicating
the adequate model and the viewpoint in the first frame. We project forward the



70 G. Rogez et al.

particle set {φn
t-1} by propagating the 2D Pose through the B space following

a 1st order motion model plus some Gaussian noise (cf [6]). We deliberately
select a “basic”/generic motion model since it does not apply any restriction
on possible solutions and allows tracking more kinds of motion even if at this
moment we only consider the gait action.

The best compromise between particles number and accuracy has been ob-
tained when applying the tracking in the first three modes with 500 particles
(and optimizing deterministically in the rest of the space). The results presented
in this paper have been obtained with this configuration but note that others
promising trials have been made by tracking only the two first modes with only
200 particles. In figure 5 we demonstrate the robustness of our algorithm to view-
point changes: the tracking performs better than the MAP estimate in terms of
robustness and precision. Fig.6 and Fig.7 shows some frames, silhouettes and
estimated 2D Poses for the 2 testing sequences.

(a)

(b)

Fig. 6. “Walkcircle” Sequence. (a) Captured images (frames 3, 22, 59, 88, 117 and
145), extracted Shapes and inferred 2D-joints location (Skeletons). (b) Torus Embed-
ding: the trajectory obtained by our tracking algorithm is represented by a solid blue
line while the MAP estimates are represented by circular red markers.

However the most important improvement is definitely the smoothness
achieved when visualizing the sequence of estimated Poses. In Fig.6 (torus em-
bedding), we can observe how the viewpoint inferred from the tracked 2D Pose
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(fr:20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 )

(fr:320 340 360 380 400 420 440 460 480 500 520 540 560 580 590 )

Fig. 7. Indoor Sequences from HumanEVA dataset. For each frames: (up) orig-
inal images and 2D Poses, (centre) Segmented Silhouette and 2D Poses obtained by
applying our tracking process and (down) MAP estimates for Pose and Shape.

smoothly changes and takes some “unseen values” (absent from the training
views) while the MAP estimates are all orientated in the few training directions.

5 Conclusions

We have presented a Spatio-temporal 2D Models Framework (STMF) for 2D-
Pose inference. Space and time are discretized and a mixture of probabilistic
“local models” is learnt associating 2D Shapes and 2D Stick Figures. The dis-
cretization of the space provokes spatial discontinuities that affect the smooth-
ness and precision of the results. To overcome the problem, we have applied a
Rao-Blackwellized Particle Filter in the 2D-Pose Eigenspace, marginalizing the
viewpoint parameter out from the state and computing it deterministically. We
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thus imposed a strong restriction of continuity between consecutive viewpoints,
thus forcing the interpolation of unseen data between view-based clusters.

We have demonstrated that a robust, fast and smooth human motion tracker
is obtained by tracking only the few most important dimensions of our state
space and refining deterministically with our STMF. This makes the process
viable for real-time application.
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Abstract. We propose a method to find candidate 2D articulated model
configurations by searching for locally optimal configurations under a
weak but computationally manageable fitness function. This is accom-
plished by first parameterizing a tree structure by its joints. Candidate
configurations can then efficiently and exhaustively be assembled in a
bottom-up manner. Working from the leaves of the tree to its root, we
maintain a list of locally optimal, yet sufficiently distinct candidate con-
figurations for the body pose.

We then adapt this algorithm for use on a sequence of images by con-
sidering configurations that are either near their position in the previous
frame or overlap areas of interest in subsequent frames. This way, the
number of partial configurations generated and evaluated significantly
reduces while both smooth and abrupt motions can be accommodated.
This approach is validated on test and standard datasets.

1 Introduction

Articulated pose estimation and tracking in images and video has been studied
extensively in computer vision. The estimation of an articulated pose, how-
ever, continues to remain a difficult problem as this process is complicated
by high dimensional search-spaces riddled with local minima and ambiguous
configurations.

In general, pose-estimation can be viewed as optimizing a multi-dimensional
quality of fit function. This function encodes fidelity of a model to observables
and a prior distribution. The success of aligning a model in this way depends
on the amount of information that can be encoded into this function as well as
the ability to optimize it. The more relevant observable and prior information
one can fuse into a fitness function, the more likely the error surface becomes
peaked on the right solution. However, highly detailed models often become more
computationally expensive and difficult to optimize.

Instead of focusing on the single best solution under a complex and compu-
tationally costly fitness function, one can instead focus on efficiently generat-
ing candidates under a weaker but more computationally manageable function.
Higher level information can then be used to select the real answer. This is the
basis of many sampling based techniques[9][5].

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 74–87, 2007.
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In many cases, the form of a fitness function can be restricted so that the
global optimal or good approximations to the global optimum can be obtained
efficiently. This can limit what one can actually model, which may result in con-
figurations that minimize the fitness function but do not necessarily correspond
to the correct answer. Nevertheless, it is likely that the true solution has at least
a local optimum under such a function.

In this work we seek to find 2D articulated poses. This is done by first param-
eterizing these structures as a trees of 2D joints in which the relative position
between parent child pairs are constrained. We then define a quality of fit func-
tion on this tree structure by attaching simple part based detectors between
parent child joint pairs.

We then propose a method that explores this space of joint configurations and
identifies locally optimal yet sufficiently distinct configurations, using a bottom
up technique that maintains such configurations as it advances from the leaves of
the tree to the root. A solution can then be selected from this list via continuity
of motion or a detailed top down model based metric.

We also adapt this algorithm for use on a sequence of images to make it even
more efficient by considering configurations that are either near their positions
in the previous frame or overlap areas of interest in the subsequent frame. This
allows the number of partial configurations generated and evaluated to be signifi-
cantly reduced while both smooth and abrupt motions are accommodated. These
algorithms are then validated on several sets of data including the HumanEva
set.

The rest of this paper is organized as follows: In section 2 we discuss related
work. Section 3 describes the parameterization of our model and our framework
to align this model in a single image, together with results of this single frame
alignment. In section 5, we discuss how to apply our framework to an image
sequence efficiently, and we summarize our contributions in section 6.

2 Related Work

There exist many approaches to address pose estimation [9][5][12][15] [1][11].
These approaches differ in how the bodies are encoded, the visual saliency metrics
used to align these models, and the machinery used to perform this alignment
with the underlying image. The essence of these methods is to try to optimize
their respective parameterization of a human pose over a function that depends
both on observable image data and prior statistics on the pose.

In [9][4][2][18], fully articulated and detailed 3D models are employed. These
methods search a solution space defined by complex top down metrics. In [2] this
is accomplished using a gradient search. In [4] this is done via randomized search.
In [9] a data driven MCMC approach is used to explore a high-dimensional
solution space and bottom up limb detectors are used to enhance this search. In
[18], both gradient and randomized search techniques are employed.

An alternative to searching directly for a 3D parameterization of the human
body, is to search for its projection. In [12] this idea is formalized using the Scaled
Prismatic Model (SPM), which is used for tracking poses via registering frames.
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In [10] a 2D articulated model is aligned with an image by matching a shape
context descriptor. In [6] articulated poses are estimated directly using a large
database of exemplars and an appropriate hashing function. In [14], multiple 2D
limb models are used to track the 3D motion of a forearm.

Other relevant approaches model a human as a collection of separate but elas-
tically connected limb sections, each associated with its own detector[5][13][8].
In [5] this collection of limbs is arranged in a tree structure. It is aligned with
an image by first searching for each individual part over translations, rota-
tions, and scales. Following this, the optimal pose is found by combining the
detection results of each individual part efficiently. In [16] limbs are arranged
in a graph structure and belief propagation is used to find the most likely
configuration.

Sampling methods in general will attempt to represent a distribution over the
space of pose, but explicit exploration of multiple hypothesis has been inves-
tigated in [9] and [5]. In [9], a number of candidates are reported for a given
instance and the solution with the least error with respect to the ground truth is
often not the solution with the best score. In [5], this idea of multiple candidates
is explored further by sampling a part based, bottom up metric and selected a
final solution based on a top down metric.

In both works, the idea was to explore using sampling based methods, which
allow one to explore multiple modes in a solution space. This, however, requires
a randomize exploration of the search space. Here, we propose a method that
finds these local minima both efficiently and exhaustively, such that they are
sufficiently different.

3 Formulation

Here, we seek to estimate a 2D articulated model. This is a accomplished by
parameterizing this structure by its 2D joint locations. A fitness function is con-
structed by attaching individual part detectors between pairs of joints. We then
proceed to find potential joint configurations that locally optimize the response
of the detectors.

3.1 Model

We model the projection of a 3D articulated model. These are positions in the
image plane as shown in Fig. 1(a). This is a natural representation for human
image alignment in a single image. As shown in [12], modeling the projection
of a articulated 3D object eliminates depth related degeneracies. Furthermore
it may be possible to estimate the 3D joint positions in a post processing step
using either multiple views or geometry [19][10].

We further encode this collection of joints in a tree structure (shown in Fig.
1(a)) and constrain the locations where a child joint can be relative to its parent
joint as shown in Fig. 1(b). We will refer to X as a tree, or configuration, of
joints. Individual joints are specified as xi ∈ X. A sub-tree is specified with the
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(a) (b) (c)

Fig. 1. In (a) a configuration of joints (labeled) assembled in a tree structure is shown.
In (b) the notation used is illustrated along with the permitted locations of child joint
relative to its parent. In (c) a fixed width rectangle associated with a pair of joints is
shown.

super-script of its root joint, Xi. Also note that root(Xi) = xi. The kth child of
joint of xi is specified by xck(i). The locations a child joint can have relative to
its parent are specified by Ri

j .
Similar to a collection of elastically connected rigid parts[5], this representa-

tion can be used to find configurations in a bottom up manner. A collection of
joints, however, has fewer explicit degrees of freedom. In a pictorial structure,
the additional degrees of freedom incurred by parameterizing each rigid limb
section separately are constrained by using elastic constraints between parts. A
collection of joints enforces these constraints implicitly.

For example, by modeling the upper body as a collection of fixed width limbs,
we end up with 15 joints. With two degrees of freedom for each joint, this gives
us 30 parameters. A similar pictorial structure would give us 10 limbs, each of
which has a translation and rotation and length or a total of 40 parameters.

3.2 Quality of Fitness Function

To align this model, we construct a cost function:

Ψ(X) = αPimage(X) + (1 − α)Pmodel(X) (1)

where X denotes a tree of joint locations defined in section 3.1. The terms Pimage

and Pmodel evaluate X’s image likelihood and prior respectively. The parameter,
α, controls the relative weight of the two terms.

The term Pimage is a part-based metric computed by evaluating part detectors
within the fixed width rectangles between pairs of joints in X. This is illustrated
in Fig. 1(c). In particular

Pimage(X) =∏
(i,j)∈edges(X) Ppartij (xi, xj , wij)Mi(xi)Mj(xj) (2)

where xi and xj are parent-child pairs of joints in X. This pair of joints corre-
spond to a limb with fixed width wij . The term, Ppartij is a part based detector
defined on rectangle of width wij extending from joint xi to xj . The term Mi(xi)
is a mask that can be used to explicitly penalize a joint from certain locations.



78 M. Siddiqui and G. Medioni

The Pmodel term biases a solution toward a prior distribution. In this work
we do not model this term explicitly. Instead, we have constrained the locations
a child joint can have relative to its parent, Ri

j to be points sampled on a rect-
angular or polar grid. We thus assume all poses that satisfy the parent-child
constraints are equally likely.

4 Peak Localization

To find optimal configurations, one could use the algorithm in Fig. 2 as a base-
line design. There each configuration is graded according to, Ψ . The least cost
configuration, X∗, is repeatedly identified, and all configurations that are suffi-
ciently similar (i.e. diff(X,X∗) < σ ) are removed. In this work diff(X,X*) is
the maximum difference between corresponding joint locations.

This procedure would produce an optimal sequence of solutions that are suf-
ficiently different. The complexity of this procedure is

O(|Cin|MN + F (N)|Cin|)
= O(|Cin|(MN + F (N))) (3)

where the first term arises from applying diff(X,X∗), which is O(N), to el-
ements of Cin in order to get M configurations. The second term arises from
applying Ψ , whose complexity we denote for now as a function of N , F (N), to
elements of Cin.

Such an approach is computationally intractable given the size of Cin. We
note that there are 15 joints, 14 of which have a parent. Thus, if we define R to
be the maximum number of distinct locations a child joint can have relative to
its parent (i.e. ∀ij |Ri

j | < R), and denote |I| to be the number of locations the
root joint can have in the image, the number of candidate solutions is on the
order of R14|I|.

We can approximate this procedure, however, by assembling partial joint con-
figuration trees in a bottom-up manner. Working from the leaves of the tree to its
root, we maintain a list of locally optimal, yet sufficiently distinct configurations
for each sub-tree. These lists are pruned using the algorithm shown in Fig. 2
to avoid exponential growth. As the configurations for sub-trees are assembled,
they are reweighted with likelihood functions, Ψ(Xi), that depend only on the
sub-tree.

This process continues until the root of the tree, and a list of optimally dis-
tinct configurations of joints is returned. The complexity of this procedure is
O(M3N3) and is described in detail below.

4.1 Candidate Search

To generate these partial configurations, we maintain a list of candidates for
each sub-tree in X, and at each possible location this tree can exist in the
image. This is denoted by: {kXi

l}M
k=1. Here i refers to the node id of the root
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Function Cout = wprune( Cin, , σ, M)
/* Finds the best M configuration that are different by at least σ.

Cin
k{X}Nk

i=1 input candidates
Cout output candidates

/

grade each configuration in Cin according to Ψ
do

remove X∗ with lowest score from Cin

insert X∗ into Cout

remove any X from Cin s.t. diff(X, X∗) < σ
while |Cout| <= M and |Cin| > 0

Fig. 2. Pseudo-code for baseline algorithm

node in this configuration ( for example, i = shoulder). These configurations
are located at the lth pixel pl = (x, y) and each candidate configuration in this
list has a common root joint referred to as xi

l . The index, k, specifies one such
configuration.

This list can be constructed from the candidate configurations associated with
the children of joint xi

l , denoted by

{Xi
l} = wprune({xi

l ⊗ kXc1(i)
l′ ⊗ . . . ⊗ k′(nci)

Xcnci (i)
l(nci)

}
l′ ∈ Ri

c1(i), . . . , l
(nci) ∈ Ri

cnci (i)
k′, . . . , k(nci) ∈ [1, M ], M)

(4)

The operator ⊗ denotes the joining of branches into trees, and wprune() is shown
in the algorithm of Figure 2. As before, the variable Ri

j is the list of locations the
child joint j can have relative to its parent i, and nci is the number of children
of node i.

Here we combine the M candidates from each sub-tree located at each point
in Ri

j . If R is a bound on the size of |Ri
j |, the number of candidates passed to

wprune is bounded by (MR)nci . This can be reduced if we prune candidates as
we fuse branches in pairs:

{Xi
l} = wprune(wprune({xi

l ⊗ k′
Xc1(i)

l′ }∀k′l′, M)⊗
. . .) ⊗ {knci Xcnci (i)

l(nci)
}∀kncilnci , M)

(5)

By processing pairs, we limit the number of candidates sent to wprune() to
be M(RM). If we denote N i as the number of joints in the sub-tree Xi, the
complexity for wprune() is (MN i + F (N i)) times the size of the list to operate
on. It will also be called nci times. Thus the overall complexity for an individual
joint is nci(MRM)(MN i+F (N i)). This processing must be done for all N joints
and at every pixel, pl that a sub-tree’s root can be located. Since the number
of joints in each sub tree is bounded by N , and the number of locations pl is
bounded by the size of the image |I|, the overall complexity is bounded by:

O(NR|I| max
i

(nci)(M3N2 + M2F (N)) (6)
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Fig. 3. The relative positions of each child joint relative to its parent. Sizes shown are
the number of discrete point locations in each region.

Rank Image std
Error(pixels)

0 17.52 21.83
2 15.21 19.66
4 13.09 17.23
6 11.79 15.48
8 10.97 14.19

(a)

(b) (c) (d)

Fig. 4. In (a) the average positional joint error for the Rank N solution taken over a
70 frame sequence along with its standard deviation. The top rows in (b)-(d) shows
the optimal results with respect to Ψ , returned from the algorithm in section 3. The
second row shows the Rank 5 solution.

We also note that the Ψ defined in section 3.2 is computed as a sum of response
to parts of a configuration. In this framework it can be computed in constant
time, β, as a sum of the scores of the partial configurations already computed
and the computation of a constant number of terms. Thus the overall complexity
is

O(R|I| max
i

(nci)(M3N3 + βM2N)) (7)

Here we preserve the second term, because the constant is very large.

4.2 Results and Analysis

Examples of running the method described in section 4.1 are shown in Figure 4.
Here the model used is shown in Figure 3, with each Ri

j superimposed. The
images used here are part of a 70 frame annotated sequence. In this sequence,
we assumed the topHead joint to be within the gray rectangle shown. We further
constrain the relative positions of the elbow and hand joints to be at polar
grid locations within the regions shown. In particular, we considered 6 different
lengths and 20 angular positions within the 90 degree angular range for the elbow
joints relative to the shoulder and 6 different lengths with 32 angular positions
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in a 360 degree angular range for the hand joint relative to the elbow. The
other joints are quantized at modulo 4 pixel locations within their corresponding
rectangles.

In selecting these ranges, there is a trade-off between accuracy and speed. The
overall runtimes depend on the number of samples within each |Ri

j |, but accuracy
depends on the resolution at which we sample. Nevertheless, the ranges selected
yield good results and reasonable speed.

The term, Ppartij is the image likelihood of an individual part and is computed
as:

Ppartij (x
i, xj , wij) =

∏

cp∈Rect(xi,xj,wij)

P̂ij(cp) (8)

This likelihood is based on how well each underlying color pixel, cp, in the rect-
angle of width wij extending from joint xi to xj . (i.e. Rect(xi, xj , wij)) belongs
to a color distribution. These distributions are modeled as simple color RGB
and HS histograms and trained from example images. The widths of the limbs,
wij , are known.

We found a set to 10 configuration under Ψ , such that no two joints were
within 40 pixels (i.e σ = 40). Results with respect to the ground truth joint
locations are summarized in Figure 4(a). Here we show the average joint error
for the Rank N solution. Since our algorithm produces an order set of M = 10
configurations, the Rank N < M solution is the configuration among the first N of
M with the smallest average joint error with respect to the ground truth. From
this we see that as the number of candidates returned increases, the average
distance to the correct solution decreases. This shows that while the solution
that minimizes Ψ may not correspond to the actual joint configuration, its likely
a local minium will.

This is consistent with the results shown in Figure 4(b)-(d). In the top row
the optimal solution with respect to Ψ is shown, while the Rank 5 solution is
shown in the second row. In these images, the Rank 5 solution is closer to the
ground truth. On average it takes 982ms seconds to process each image. Of this
time, 232ms is not dependent on the size of this problem (i.e. does not depend
on N ,M , R and nc) and can be thought of as a pre-processing step necessary for
evaluating Ψ . Of the remaining 750ms that depend on the size of this problem,
200ms was devoted to evaluating Ψ .

5 Image Sequence Analysis

While the algorithm in section 4.1 is polynomial, it may still be too slow for
practical applications. Significant speed improvements can be gained if we exploit
the smoothness of motion available in video, and limit the number of times Ψ is
evaluated.

5.1 Motion Continuity

The complexity of our algorithm is directly proportional to the number of pixel
locations, pl, where each joint can be located. In computing the complexity in
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Fig. 5. Computation of a mask that coarsely identifies motion regions

equation 7, this was bounded by the size of the image, |I|. If the motion of
the joints in an image sequence is smooth, we only need to look for a joint in a
subsequent frame around its position in a previous frame. In this work we seek to
maintain a list of M configurations. We can avoid having to commit to any one
of these solutions by considering joint locations about any of the M candidate
positions in the previous frame. In particular we constrain each joint to be in a
small a rectangle, W , about the corresponding joints in one of its M previous
positions. This translates to a complexity of:

O(R|MW | max
i

(nci)(M3N2 + βM2N)) (9)

Constraining the joints position in this way works well when the motion is
smooth. However, there may be motion between frames that violates this as-
sumption. This will likely occur on the hands and arms especially when the
frame rate is 10-15fps. We now describe an efficient way to handle the presence
of such discontinuities while enforcing smoothness.

5.2 Motion Discontinuities

To contend with fast motion, we first estimate moving foreground pixels by frame
differencing. In particular we compute:

Fn(i, j) = D(In, In−1, σTH)(i, j)
⋂

D(In, In−L, > σTH)(i, j) (10)

Here D(Ii, Ij , σTH) computes a difference mask between frames In and In−1
and then between In and In−L. The resulting difference masks are fused with
a Boolean and operation. The result of this procedure is a mask that identifies
those pixels in frame n that are different from the previous frames n − 1 and
n − L. As shown in Figure 5, this coarsely identifies regions of the image that
have changed.
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This mask can be used when generating candidates in equation 5. We assign
to each candidate a number Plimb based on the fixed with rectangle associated
with the joint position xi

l and the root location of its child configuration, Xck(i)
l .

In particular Plimb is the percent occupancy of this rectangle with fore-ground
pixels identified from Fn.

Instead of evaluating each candidate sent to wprune() with Ψ , we instead
only consider those candidates that are either in the windows, W , about their
previous location (for smooth motion) or have Plimb > thresh (for discontinuous
motion). Computation of Plimb is still O(R|I|M2N), however the computation
can be computed with integral images [20] and is extremely efficient. It also
significantly reduces the number of candidates generated and the number of
calls to Ψ .

5.3 Partial Update

We also reduce the run time by first updating only the head and torso, while
fixing the arms and then updating the arms and fixing the head and torso. This is
a reasonable updating scheme as the head and torso are likely to move smoothly,
while the arms may move more abruptly.

This is done by updating the joint locations, topHead, lowerNeck, and pelvis
in equation 5 while ignoring the sets, {kXshoulderL

l } and {kXshoulderR
l }. When

updating the head and torso we assume continuity and only consider the region
defined in section 5.1.

Once the joints topHead, lowerNeck, corresponding to pelvis have been
computed, we can lock the topHead and lower neck positions and recompute
{kXlowerNeck

j }. Updating in this way reduces the number of candidates gener-
ated significantly and allows the topHead to move about the image as needed.

5.4 Results

Examples of output of the methods described in section 5 are shown in Figure 6.
Here, the same model shown in Figure 3 and the sequence in section 4.2 are used.
This sequence was acquired at 30 frames per second and then down sampled to
6 frames per second. In the first row, continuous motion is assumed, and the
modification described in section 5.1 and in section 5.3 are used. Window sizes
of 60 × 60 are used. In the first frame, a full search with the topHead joint
positioned on the head is completed. The processing time devoted to finding
joint configurations was 781ms. In subsequent frames, this time is reduced to
70ms.

In the second row, we also use the method described in section 5.2. Here we
reduce the window size to W = 30 × 30 and use candidate configurations when
Plimb > 1/2. In these frames, it took on average 84ms to compute the foreground
masks (shown in the 3rd row), and the time associated with configuration con-
struction increased to 114ms.

From these sequences, we see that assuming continuous motion allows for
significant improvements in speed. As shown in Figure 6(a), smoothness may not
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(a) Imposing smoothness.

Frame 1 Frame 44 Frame 53 Frame 70
(b) Preserving fast motion.

Fig. 6. The top row shows the Rank 5 results with respect to Ψ , when only continuous
motion is assumed using the method in section 5.1. The second row shows the Rank 5
solution when discontinuous motion is allowed using the method in section 5.2.

always be assumed. Adding the information from the motion mask can correct
this (Figure 6(b)) while maintaining efficiency.

5.5 HumanEva Data Set

We also evaluated this algorithm on a sequence from the HumaEva [17]
data set. In particular we used frames 615 to 775 in increments of 5 from the
S2/Gesture 1 (C1) sequence. The model use here is essential the same as that
shown in Figure 3. The main difference is that Rroot

topHead, RtopHead
lowerNeck, RlowerNeck

pelvis ,
are enlarged and elongated to better accommodate changes in scale.

The limb detectors used on this sequence consist of several non-overlapping ar-
eas representing foreground, background, and skin colored regions. The

Fig. 7. The limb detectors used on the HumanEva data set



Efficient Upper Body Pose Estimation from a Single Image or a Sequence 85

600 620 640 660 680 700 720 740 760 780
5

10

15

20

25

30

 Frames

 M
ea

n
 E

rr
o

r(
p

ix
el

s)

 

 
rank1
rank10
rank20

topHead lowerNeck shoulderL elbowL handTipL waist shoulderR elbowR handTipR
0

5

10

15

20

25

30

35

40

45

 JointID

 M
ea

n
 E

rr
o

r(
p

ix
el

s)

 

 
rank1
rank10
rank20

Fig. 8. In (a) the average joint error at each frame in sequence. In (b) the average
joint error for each joint over the sequence.

likelihood of each patch is the product of the underlying color pixel’s probability
of membership in each region.

Ppartij (xi, xj , wij)
=

∏
p∈fg Pfg(p)

∏
p∈bkg Pbkg(p)

∏
p∈skin Pskin(p) (11)

where Pbkg , is obtained from the background model provide with the HumanEva
data set. The terms Pfg, the foreground likelihood and and Pskin, the skin
likelihood are modeled as histograms extracted from the sequence itself. The
shape of each part detector is shown in Figure 7.

For the range of images we worked with, we established the ground truth by
annotating the joints. This was necessary because, in several of these frames,
the projected ground truth provided was misaligned. Also, we are looking for
the hand tip, not the wrist, which is what is marked in this data set.

The average error with respect to the corrected projected joints is shown in
Figure 8. Example poses are shown in Figure 9. In this sequence, we identified a
point near the top of the head in the first frame and use the method described
in section 3 to align the pose. The pose was then tracked using the methods
described in section 5.

Throughout the sequence, we maintain 20 candidates. In the first frame, we
detect 10 using the method in section 3 and then another 10 constraining the
hand to be away from a the detected face using MhandR and MhandL. Time
devoted to assembling candidates during the initial detectoin was 1.531s (i.e.
not including the image pre-proccessing and the like ) while the time associated
only with constructing candidates while tracking was on average 188ms.

In Figures 8 and 9 the ranked results are shown. Here we see the rank1 solu-
tions, which minimize Ψ are not correct and performance is poor. However the
rank 10 (and rank 20) coincide with pose that appears more correct. The joints
for which this has the greatest effect are the hand tips. Though we are focusing
on the upper body, the performance on this sequence is comparable to that of
[7] on the S3/Walking 1 (C2) sequence.
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(a) Frame 0 (b)Frame 10 (c) Frame 20 (d) Frame 31

Fig. 9. The top row shows the Rank 1 results with respect to Ψ , when only continuous
motion is assumed using the method in section 5.1. The second row shows the Rank 10
solution when discontinous motion is allowed using the method in section 5.2. The third
row shows the moving forground pixel as computed using three consecutive frames (not
shown).

6 Summary and Future Work

We have developed a method to find candidate 2D articulated model config-
urations by searching for local optima under a weak fitness function. This is
accomplished by first parameterizing poses by their joints organized in a tree
structure. Candidate configurations can then efficiently and exhaustively be as-
sembled in a bottom-up manner. Our results suggest that while the configura-
tions that minimizes the fitness function may not correspond to the correct pose,
a local optima will. One can then make a selection based on top down metrics
and spatial continuity.

Our next steps include feeding these results to a gesture recognition mod-
ule [3]. We also are interested in making use of multiple cameras and extending
this formulation to 3D.
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Abstract. We present a fully automated system for real-time marker-
less 3D human motion capture. Our approach, based on fast algorithms,
uses simple techniques and requires low-cost devices. Using input from
multiple calibrated webcams, an extended Shape-From-Silhouette algo-
rithm reconstructs the person in real-time. Fast 3D shape and 3D skin
parts analysis provide a robust and real-time system for human full-body
tracking. Animation skeleton and simple morphological constraints make
easier the motion capture process. Thanks to fast and simple algorithms
and low-cost cameras, our system is perfectly apt for home entertainment
device.

Results on real video sequences with complicated motions demon-
strate the robustness of the approach.

1 Introduction

In this paper we propose a fully automated system for real-time and markerless
motion capture dedicated to home entertainment (see Fig. 2(a)).

Marker-free motion capture has long been studied in computer vision as classic
and fundamental problems. While commercial real-time products using markers
are already available, sound online marker-free systems remain an open issue
because many real-time algorithms still lack robustness, or require expensive
devices and time-consuming algorithms. While most popular techniques run on
PC cluster, our system requires a small set of low-cost cameras (three or more)
and a single computer. Our system works in real-time (30 fps), without markers
(active or passive) or special devices.

1.1 Related Work

Several techniques have been proposed to tackle the marker-free motion capture
problem. They vary according to the features used for analysis and the number
of cameras. We now review techniques related to our work. For more information
the reader is refereed to [1].

Motion capture systems vary in the number of cameras used. Single camera
systems [2,3,4], although simple, encounter several limitations. They suffer from

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 88–103, 2007.
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the occlusion problem. In some cases they suffer from ambiguous response as
different positions can yield the same image. Our system uses multiple cameras.

Concerning multi-view approaches, most of the techniques are on Silhouette
analysis [5,6,7,8]. These techniques provide good results if the topology of the
reconstructed 3D shape complies with human topology i.e. each body parties is
unambiguously mapped to the 3D shape estimation.

With self-occlusion cases or large contacts between limbs and body these
techniques frequently fail. Caillette et al . [9,10] method involves shape and color
clues. They link colored blobs to a kinematic model to track individual body
parts. This technique requires contrasted clothing between each body part for
tracking, thus adding a usability constraint.

Few methods provide real-time motion capture from multiple views. Most of
them run at interactive frame rates (10 fps for [9] an 15 fps for [10]). The ini-
tialization step is an inherent limitation of real-time motion capture. Most of
the proposed techniques impose conventional body pose [11], or manual inter-
vention for anthropometric measurements and initial pose estimation [12]. These
protocols are not user-friendly. They are also or disturbing or even impossible.

We propose a fully automated system for practical real-time motion capture
thanks to a few number of cameras. It includes initialization step and motion
tracking. Our process is based on simple heuristics, driven by shape and skin-
parts topology analysis and temporal coherence. It runs at 30 fps on a single
and standard computer. No parallel intensive computing nor batch processing is
required.

(a) (b) (c)

Fig. 1. (a) System overview: Reconstruction algorithm and Pose estimation algorithms.
Body parts labeling (b) and joint naming (c).

Fig. 1(a) outlines the two main stages of our method: the 3D volumetric
estimation step and the motion tracking step based on the analysis of the 3D
reconstruction.

This article is organized as fallows: Section 2 presents our work for real-time
3D reconstruction. Section 3 describes an overview of the motion tracking. Sec-
tion 4 details the full-body motion tracking and Section 5 presents the fully-
automated initialization step. Experimental results, in which the algorithm is
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applied to real and complex examples are presented Section 6. They show the
validity and the robustness of our process. In Section 7 we conclude about our
contributions and develop some perspectives for this work.

2 3D Shape and Skin-Parts Estimation

We present an extension of Shape-From-Silhouette (SFS) algorithms. It recon-
structs in real-time 3D shape and 3D skin-colored parts of a person from cali-
brated cameras.

Usually, only SFS methods compute in real-time 3D shape estimation of an
object, from its silhouette images. Silhouette images are binary masks corre-
sponding to captured images where 0 corresponds to background, and 1 stands
for the (interesting) feature of the object. The formalism of SFS was introduced
by A. Laurentini [13]. By definition, an object lies inside the volume generated
by back-projecting its silhouette through the camera center (called silhouette’s
cone). With multiple views of the same object at the same time, the intersec-
tion of all the silhouette’s cones build a volume called ”Visual Hull”, which is
guaranteed to contain the real object. There are mainly two ways to compute
an object’s Visual Hull.

(a) (b)

PTM

AND

(c)

Fig. 2. (a) Interaction setup. (b) Object reconstruction by surface and volumetric ap-
proaches represented in 2D. (c) SFS computation using ”Projective Texture Mapping”
method: First all silhouette masks are projected on a stack, logical AND is used to
compute the projection intersection.

Surface-Based Approaches. They compute the intersection of silhouette’s
cone surfaces (see Fig. 2(b)). First silhouettes are converted into polygons. Each
edge is back-projected to form a 3D polygon. Then each 3D polygon is projected
onto each other’s images, and is intersected with each silhouette in 2D. The
resulting polygons are assembled to form an estimation of the polyhedral shape
(see [12,14]). Resulting Surface-based shape from silhouette is underlined Fig.
2(b). These approaches are not well suited to our application because of the
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complexity of the underlying geometric calculations. Furthermore incomplete or
corrupted surface models could be created, directly depending upon polyhedron
sharpness and silhouette noise.

Volumetric-Based Approaches. They usually estimate shape by processing
a set of voxels [6,15,16,17]. The object’s acquisition area is split up into a 3D grid
of voxels (volume elements). Each voxel remains part of the estimated shape if
it projection in all images lies in all silhouettes (see Fig. 2(b)). This volumetric
approach is adapted for real-time pose estimation, due to its fast computation
and robustness to noisy silhouettes.

We propose a new framework which computes a 3D volumetric shape and
skin parts estimation on a single computer. The system consists of two tasks:
(1) Input data : Camera calibration data, silhouette and skin parts segmentation,
(2) 3D Shape and skin parts estimation: shape voxels are computed by a GPU
SFS implementation and skin parts are determined using voxel visibility. Each
task is described in their respective section.

2.1 Input Data

First, webcams are calibrated using a popular algorithm proposed by Zhang et
al . [18]. To enforce coherence between the cameras, color calibration is done
using the method proposed by N.Joshi [19].

The second step consists in silhouette segmentation (see [20] for silhouette
segmentation algorithm comparative study). We use the method proposed by
[15]. First we acquire images of the background. The foreground (the human) is
then detected in the pixels whose value has changed. We assume that only one
person is in the field of view of the cameras, thus he or she is represented by
only one connex component. Due to webcam noise, we can have several connex
parts, but the smallest ones are removed : they correspond to noise.

The last step before shape estimation is skin part extraction from silhouette
and color images. Normalized Look-up Table method [21] provides fast skin-
colored segmentation. This segmentation is applied on each image restricted
to its silhouette mask (skin-colored pixels outside the silhouette correspond to
background pixels).

2.2 3D Shape and Skin Parts Estimation

First we estimate a 3D shape of the person filmed using a GPU implementation
of SFS. Volumetric SFS is usually based on voxel projection : a voxel remains
part of the estimated shape if it projects itself into each silhouette. In order
to find the best way to fit GPU implementation, we propose to use reciprocal
property. We project each silhouette into the 3D voxel grid as proposed in [15].
If a voxel is the intersection of all the silhouette projections, then it represents
the original object.

The classical N3 voxel cube can be considered as a stack of N images of
resolution N × N . We stack the N image in screen parallel planes. For each
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camera view, silhouette masks are projected on each slice using the ”projective
texture mapping” technique [22]. Intersection of silhouettes projections on all
slices provides voxel-based 3D shape. Intersection of silhouette mask projections
on a single slice is underlined Fig 2(c). To save video bus bandwidth, computa-
tions for a cube of voxels are made in the same framebuffer, which is tiled by all
the N slices of resolution N × N .

To estimate skin voxels, we compute each voxel’s visibility from each camera.
The voxel visibility test is based on the ”Item Buffer” method used in some
voxels coloring algorithms [23]. A unique identifier is associated to each voxel
(e.g. color) and voxels are rendered on raster-based framebuffers, corresponding
to each camera views. For each framebuffer, colors describe visible voxels and
this enables bidirectional pixel to voxel mapping. If a voxel is skin consistent (i.e.
it is mapped to skin mask pixels in all of its viewing camera) then it is classified
as skin voxel. To improve visibility computation time, only surface voxels are
tested (i.e. voxels which have less than 26 neighbors).

To reduce computation time for pose estimation we propose to keep the visible
voxels. Let Vskin be the selected voxels form the shape voxel set, Vskin be the
skin consistent voxel set, and Vall be their union.

Our implementation provides up to 100 reconstructions per second. As web-
cam acquisition is done at 30 fps, it allows us to save time for motion capture
computation, hence achieving our real-time goal.

3 Motion Capture

The goal of motion capture is to determine the pose of the body throughout
time. We can determine the pose of the body if we can associate each voxel to a
body part. Joints labeling is presented in Fig. 1(c).

We propose a system based on simple and fast heuristics. This approach,
less accurate than registration based methods, but nonetheless runs in real-
time. Robustness is increased by using a multi-modal scheme composed of both
shape and skin-parts analysis, temporal coherence, and human anthropometric
constraints.

Our system runs on two steps: initialization and tracking; both use the same
algorithm with different initial conditions. The initialization step (see Section 5)
estimates anthropometric values, and the initial pose. Then using this informa-
tion, the latter step tracks joint positions (see section 4). Our premises are that
both hands and person’s face are partially uncovered, that the torso is dressed,
and that the clothing have a non-skin color. We present here some common no-
tations the reader could refer to:

Lx denotes the length of body part x (see Fig. 1(b)),
Dx its orientation
Rx its radius (of sphere or cylinder).
Jn denotes the value of a quantity J (joint position, voxel set...) at frame n.
l and r indices denote respectively left and right side
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Vx denotes a set of voxel,
EVx its inertia ellipsoid
Cog(Vx) its gravity center.
Q(i) denotes the Q quantity value at step i when dealing with iterative algo-
rithms.

4 Body Parts Tracking

To track body parts, we assume that the previous body pose and anthropometric
estimations are known. Using 3D shape estimation and 3D skin parts we track
the human body parts in real-time. The tracking algorithm works by using active
voxels Vact. This set of voxels is initialized to all voxels Vall and updated at each
step by removing voxels used to estimate body parts.

First, we estimate head joints. Then, since the torso is connected to the head,
we track the torso. In the end we compute limb joints that are connected to
torso.

4.1 Head Tracking

This step aims at finding Tn and Bn, respectively the positions of the top of the
head and the connection point between head and neck at frame n. Head artic-
ulations are tracked using a sphere fitting algorithm inspired from the method
proposed by [6]. To speed up the process we initialize the sphere center to the
current face center, extracted from the set of skin voxels.

Let Vn
face be the face’s voxels at the current frame. Vn

skin contains face and
hands voxels. Using Temporal coherence criteria, Vn

face is the nearest1 connex
component of Vn

skin from the previous set of face voxels Vn−1
face .

The center of the head Cn is computed by fitting a sphere S(i) in Vn
act (see

Fig. 3). The sphere S(i) is defined by its center Cn(i) and radius Rhead.

Head Fitting Algorithm. Cn(0) is initialized as the centroid of Vn
face.

At step i of the algorithm, Cn(i) is the centroid of the set Vn
head(i) of active

voxels that lie into a sphere S(i−1) defined by its center Cn(i−1) and its radius
Rhead (see Fig. 3(a)).

The algorithm iterates until step k when the position of Cn stabilizes, i.e. the
distance between Cn(k − 1) and Cn(k) falls below a threshold εhead.

Head Joints Estimation. Knowing Cn position, Bn (respectively Tn) is com-
puted as the lower (resp. upper) intersection between S(k) and the principal axis
of EVn

head
(see Fig. 3(b)).

The back-to-front direction Dn
b2f is defined as the direction from Cn towards

the centroid of Vn
face (note that voxels from the back of the head are not in Vskin).

At this point, we remove from Vn
act the set of elements that belongs to Vn

head.

1 Using point-ellipsoid euclidean distance.
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(a) (b) (c)

Fig. 3. (a) Sphere fitting (light gray denotes Vn
face, dark gray denotes Vn

head(i)), (b)
joints estimation and (c) torso segmentation by cylinder fitting

4.2 Torso Tracking

This step aims at finding Pn the pelvis position by fitting a cylinder in Vn
act.

Estimating the torso shape by a cylinder provides a simple and fast method to
localize the pelvis. Let Vn

torso be the set of voxels that describe the torso, they are
initialized using voxels Vn

act. At step i, the algorithm estimates Dn
torso by fitting a

cylinder CYL(i−1) in Vn
torso(i) (see Fig. 3(c)). CYL(i) has a cap anchored at Bn

bottom of the head, as radius Rtorso, its length is Ltorso and its axis is Dn
torso(i).

Torso Fitting Algorithm. Vn
torso(0) is initialized with Vn

act and the vector from
Bn to Pn−1 defines Dn

torso(0) initial value.
At step i, Vn

torso(i) is computed as the set of elements from Vn
torso(i-1) that lie

in CYL(i − 1). Dn
torso(i) is then the principal axis of EVn

torso(i) (see Fig. 3(c)).
The algorithm iterates until step k when the distance between the axis of

CYL(k) and the centroid of Vn
torso(k) falls below a threshold εtorso. Pn position

is defined as the center of the lower cap of CYL(k).

Global Body Orientation. The top-down orientation Dn
t2d of the acquired

subject is given by Pn − Bn. Db2f was computed in 4.1. The left-to-right orien-
tation Dn

l2r of the acquired subject is given by Dn
l2r = Dn

t2d × Dn
b2f .

Vn
act is then updated by removing the elements that belong to Vn

torso.

4.3 Hands and Forearms Tracking

We propose a simple and robust algorithm to compute the forearm joint po-
sitions. First, we compute hand positions from skin voxels. Helped by given
anthropometric measurement of forearm length, we determine the elbows posi-
tions. Temporal coherence is used to compute their sides.

Let Vn
hand be the set of potential voxels of hands. Lstat/2 is an upper bound

of arm length. Vn
hand is defined by the voxels of Vn

skin − Vn
face that lie within a

sphere defined by its center Bn and its radius Lstat/2. Vn
skin contains hands and

face voxels. The different forearms configurations underlined Fig. 4 are:

Two Distinct Hands. Vn
hand contains several connex components. Let Vn

hand0
and Vn

hand1 be the two biggest, corresponding to the two hands with Hn
x =

Cog(Vn
handx) with x ∈ [0, 1].
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(a) (b) (c)

Fig. 4. Forearms tracking in different arms configuration: (a) represents two distinct
forearms configuration and (b) represents jointed hands configuration. (c) Illustration
of the shoulders tracking algorithm.

Forearms have constant length Lfarm across time. The potential voxels for
forearmx are the voxels from Vn

act which lies within a sphere of radius Lfarm,
centered in Hn

x . The connex component of these voxels which contains Hn
x repre-

sents the forearmx. Let Vn
farmx be this connex component; there are two possible

cases to identify elbow.
If forearms did not collide i.e. Vn

farm0 ∩ Vn
farm1 = ∅, then we use the principal

axis of EVn
farmx

and Lfarm to compute the elbow position En
x. The sides are com-

puted using temporal coherence criteria: the side of the forearmx is the same
than the closest forearm computed at the previous frame. This configuration is
underlined Fig. 4(a).

Otherwise forearms collide and Vn
farm0 ∩ Vn

farm1 �= ∅. In that case, we first
identify the hand sides by the property of constant forearms length. Hn

x is right
sided if

||d(Hn
x , En−1

r ) − Lfarm|| < ||d(Hn
x , En−1

l ) − Lfarm||, (1)

else Hn
x is left sided. The voxels vi of Vn

farm0 ∪ Vn
farm1 are segmented in two parts

Vn
farmr and Vn

farml using ”point to line mapping” algorithm (see 4.5). If vi is more
close to [Hn

r En−1
r ] than to [Hn

l En−1
l ], vi is added on Vn

farmr. Else vi is added on
Vn

farml. Principal axis of EVn
farmr

,EVn
farml

and Lfarm are used to compute En
r and

En
l .

One Hand or Jointed Hands. Vn
hand contains only one connex component

and it corresponds to jointed hands or to only one hand (the other is not visible).
We use the temporal coherence to disambiguate these two cases.

If Hn−1
r and Hn−1

l are close to Vn
hand, then the hands are jointed (Fig. 4(b))

and Hn
r = Hn

l = Cog(Vn
hand) and we compute Vn

farm as proposed previously.
We segment Vn

farm in two parts Vn
farmr and Vn

farml by the orthogonal plane to
[En−1

r En−1
l ] containing Hn

l. Principal axis of EVn
farmr

, EVn
farml

and Lfarm are used
to compute En

r and En
l .

Otherwise the closest hand Hn−1
x to Vn

hand is used to compute the side of
Hn

x and Hn
x = Cog(Vn

hand). We compute Vn
farm as proposed previously and its

principal axis of inertia is used to compute En
x.
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(a) (b)

Fig. 5. (a) the ”binding” step of legs tracking and (b) legs articulations estimation

No Visible Hand. Vn
hand is empty, then no hand is visible. We take back the

positions computed at the n − 1 frame to the current frame.
In all cases Vn

act is updated by removing the elements that belong to forearms
or hands.

4.4 Shoulders Tracking

We have estimated articulations positions of the head, the torso, the hands and
the elbows. To finalize upper body tracking, we compute shoulder positions. As
we argue that arms are in a sphere centered on bottom head, with a radius of
Lstat/2, then voxels of Vn

act which are in this sphere, contain arms voxels and
noise voxels. Let Vn

arms be the set of these voxels.
The elbows are on one extremity of the arms, thus the second extremity of

the arms corresponds to the shoulders. We know the current position of elbow,
then we determine arm voxels. Let Vn

armx (where x corresponds to the side) be
the closest2 connex component of Vn

arms to En
x. Furthermore arm length Larm

is constant, then current shoulder position Sn
x for the x side is given by:

Sn
x = En

x +
Cog(Vn

armx) − En
x

|Cog(Vn
armx) − En

x|Larm. (2)

Shoulders tracking algorithm is underlined Fig.4(c).
Vn

act is updated by removing the elements that belong to each arm.

4.5 Legs Tracking

Until now all body parts but the legs have been estimated, hence Vn
act contains

the legs voxels. Our leg joints extraction is inspired from ”point to line mapping”
process used to bind an animation skeleton on a 3D mesh [24]. The elements of
2 In term of euclidean distance.
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Vn
act are split up into four sets Vn

thighl
, Vn

calf l, Vn
thighr

and Vn
calfr depending of

their euclidean distance to segments [Pn−1
l , Kn−1

l ], [Kn−1
l , Fn−1

l ], [Pn−1
r , Kn−1

r ],
and [Kn−1

r , Fn−1
r ] (see Fig. 5(a)). For the left/right side x, we compute the inertia

ellipsoid EVn
calfx

(let Ex0 and Ex1 be its extrema points) and the inertia ellipsoid
EVn

thighx
.

The knee is the intersection point between thigh and calf (Fig. 5(b)), hence
the foot position Fn

x is given by EVn
calfx

point farthest from the inertia ellipsoid
of Vn

thighx
(let say it’s Ex1). Then knee is aligned on [Ex0Ex1], Ex0 sided, at a

Lcalf distance of Fn
x. Hip position Pn

x is given by the farthest extrema point of
EVn

thighx
from the inertia ellipsoid of Vn

calfx, corrected to be at a Lthigh distance
of Kn

x.

5 Body Parts Initialization

In this section we present our techniques to estimate the anthropometric mea-
sures and the initial pose of the body. We can classify in three the methods
presented in the literature regarding the initial pose estimation. The first kind
[12], the anthropometric measurements and initial pose are entered manually.
Another class of methods need a fixed pose, like T-pose [11], these methods
work in real-time. The last class of methods are fully automatic [6] and do not
need a specific pose, but are not real-time. Our approach is a real-time and fully
automated one for any kind of movement as long as the person filmed is standing
up, hands below the level of the head, and feet not joined. After anthropomet-
ric estimations, our method computes each body parts parameters sequentially
according to the tracking steps.

Anthropometric Measurements. Several studies that include the anthropo-
metric data [25,26,27] are used to develop ratio estimations. Statistical analysis
is performed, including fitting to normal distribution. We propose simplified
anthropometric ratios, whose accuracy is sufficient for human-machine interac-
tions. Let Lstat be the acquired human body length, estimated as the maximum
distance from foreground voxels to floor plane. Hence, knowing Lstat, guesses for
anthropometric measures are given by these ratios:

Rhead ≈ Lstat/16, Ltorso ≈ 3 Lstat/8, Lcalf ≈ Lstat/4,
Lfarm ≈ Lstat/6, Larm ≈ Lstat/6, Lthigh ≈ Lstat/4.

As in the tracking step, active set of voxels Vact is initialized by all voxels Vall.

Head Initialization. This step aims at finding T0 and B0. From our initial-
ization hypothesis, the face’s voxels V0

face of acquired subject are defined by the
topmost connex component among V0

skin. Then head tracking algorithm (section
4.1) is applied to compute T0 and B0, without estimation of the face position
step. V0

act is updated by removing elements belonging to V0
head.
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Torso Initialization. The torso fitting algorithm (section 4.2) is applied us-
ing V0

act as initial value for V0
torso(0). D0

torso(0) is initialized as the vector from
N0 toward the centroid of EV0

act(0). Pelvis position P0, D0
t2d and Dn

l2r are then
computed. V0

act is updated by removing the elements that belong to V0
torso.

Arms Initialization. We initialize the hand and the forearm positions using
the tracking algorithm presented Section 4.3. Since we have no previous arms
positions, we can only compute forearm positions when there is two distinct fore-
arms. Having verified this criteria, we can compute H0

r, H0
l,E0

r and E0
l. V0

act
is updated by removing the elements that belong to the forearms. Shoulders po-
sitions S0

r and S0
l are initialized directly using the shoulder tracking algorithm

presented Section 4.4.

Legs Initialization. Tracking algorithm outlined in Section 4.5 need the legs’
previous position. We simulate them by a coarse estimation of knees, feet and
hips articulations, then we compute more precise position of the legs articulations
using the legs tracking algorithm.

V0
act contains the voxels that haven’t been used for any other parts of the

body. First, we compute the set of connex components from elements of V0
act

having their height below Lstat/8. If there is less than 2 connex components, we
assume that feet are joined and can’t be distinguished. Otherwise, we use the
two major connex components V0

footl and V0
footr. Left and right assignation of

voxel’s set is done using the left-to-right vector Dl2r. For the left/right side x,
let vx be the vector from P0 to the centroid of V0

footx. Knee and foot joints are
determined using the following equations:

K−1
x = P0 + vx

Lthigh

|vx| , (3)

F−1
x = P0 + vx

Lthigh + Lcalf

|vx| . (4)

We estimate hips previous positions P−1
l and P−1

r as P0. Finally we compute
F0

r, K0
r, F0

l and K0
l using the legs tracking algorithm.

6 Results

We now present results from our system. Fig. 2(a) shows the system configu-
ration. The infrastructure of acquisition is composed of four Phillips webcams
(SPC900NC) connected to a single PC (CPU: P4 3.2ghz,GPU: NVIDIA Quadro
3450). Webcams produce images of resolution 320 × 240 at 30fps.

Our method has been applied on different persons doing fast and challeng-
ing motions. By using shape and skin color analysis, our algorithm can handle
challenging poses like the one shown in Fig. 6(a). This pose is difficult because
the topology of the 3D reconstructed shape is not coherent with the topology
of the human 3D shape. The temporal coherence is the key to success for the
pose presented Fig. 6(b). This underlines the case of jointed hands (4.3) which is
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(a) (b) (c)

Fig. 6. (a) (b) and (c) underline results for challenging poses. The user recovered pose
is presented as an animation skeleton having right sided parts in red and left sided
parts in green. Shape voxels are presented in white and skin voxels in red.

successfully recognized. A very difficult pose is shown in Fig. 6(c) and is success-
fully recovered by our system. Images from Fig. 7 demonstrate that our system
works for large range of motions.

Additional results are included in the supplementary video. It presents long
sequences with rapid and complex motions and shows the robustness of our
approach.

Our current experimental implementation can track more than 30 poses per
second on a single computer, which is faster than the webcams acquisition frame
rate. An optimized implementation can be usable for current generation of home
entertainment computers. As our algorithm is based on 3D reconstruction, it is
independent of the number of cameras used, but it depends on the voxel grid
resolution. We reconstruct a voxel grid composed by 643 voxels in a 6 m3 box
which gives an approximate resolution of 2.7 × 2.7 × 2.7 cm per voxel. This
resolution is enough for human-machine interfaces in the field of entertainment.

Table 1 shows some speed comparison with other current real-time tracking
techniques. Our approach furthermore offers the best frame rate with only one
commodity PC and an original fully automated and real-time initialization.

Our motion capture system is based on a Shape-From-Silhouette algorithm.
This algorithm computes an object 3D shape estimation from its silhouettes. The
result directly depends on the silhouette segmentation quality, which is always an
opened problem of the computer vision science. If the silhouette mask contains

Table 1. Speed comparison with current techniques. It is made with results published
by peers.

Reference Nbr. of Joints Real-Time Init. Tracking Frame Rate Nbr. of CPUs

Our 15 Yes ≈ 30 fps 1
[8] 21 No ≈ 25 fps > 8
[10] 15 No ≈ 15 fps 1
[7] 19 No ≈ 10 fps 1
[9] 15 No ≈ 10 fps 1
[12] 15 No ≈ 1 fps 1
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Fig. 7. Results for a wide range of movements
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some noises like camera noise or object shadows, the volume reconstruction will
be very noised. Thus the results of the motion capture will be worse. But our
method is also based on a skin segmentation which is a more robust faced to
camera noise. Then the hand and head articulations are more noise-resistant,
than others articulations.

The segmentation we have selected is based on a skin-colored stochastic learn-
ing from colored image set. It is important to make the leaning process on a big
data set, with different kind of skin sample. If the skin sampling is biased then
the system will provide worse results, especially when the skin color of the person
filmed is not learned.

7 Conclusion

In this paper, we describe a new marker-free system of human motion capture
that works with few cameras (three or more) and a single computer. The system
is based on both a 3D shape analysis, human morphology constraints, and a 3D
shape skin segmentation. It is fully automated and runs in real-time. Combining
different 3D information, the approach is robust to self-occlusion. It estimates the
fifteen main human body joints at about more than 30 frames per second. This
frame-rate is well suited for a new generation of human machine interactions.
Our system is based on simple heuristics and the results obtained show that the
method is robust and promising.

The actual system provides real-time motion capture for one person. Future
work aims at providing motion capture for serveral persons filmed together in
the same area, even if they are in contact.
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Abstract. Learned, activity-specific motion models are useful for hu-
man pose and motion estimation. Nevertheless, while the use of activity-
specific models simplifies monocular tracking, it leaves open the larger
issues of how one learns models for multiple activities or stylistic vari-
ations, and how such models can be combined with natural transitions
between activities. This paper extends the Gaussian process latent vari-
able model (GP-LVM) to address some of these issues. We introduce a
new approach to constraining the latent space that we refer to as the
locally-linear Gaussian process latent variable model (LL-GPLVM). The
LL-GPLVM allows for an explicit prior over the latent configurations
that aims to preserve local topological structure in the training data. We
reduce the computational complexity of the GPLVM by adapting sparse
Gaussian process regression methods to the GP-LVM. By incorporating
sparsification, dynamics and back-constraints within the LL-GPLVM we
develop a general framework for learning smooth latent models of dif-
ferent activities within a shared latent space, allowing the learning of
specific topologies and transitions between different activities.

1 Introduction

Modeling human motion is important for computer vision, computer graph-
ics, orthopedics, sports and the entertainment industry (e.g., movies, computer
games). In computer vision, for example, pose and motion models help resolve
ambiguities in monocular people tracking. Nevertheless, learning human motion
models is challenging since we must learn models from relatively sparse training
data while avoiding overfitting, and the models must generalize to previously
unobserved styles. One common approach has been to focus on activity-specific
models [4,12,19,26]. This greatly simplifies learning, but leaves open the larger
issues of how one learns models for a wide range of activities and stylistic vari-
ations, and how such models are combined with natural transitions from one
activity to another [4,26]. To address these problems, this paper introduces a
new form of Gaussian process latent variable model (GPLVM) [10] for learning
models of different activities within a shared latent space, along with transitions
between activities.

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 104–118, 2007.
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The GPLVM and the Gaussian process dynamical model (GPDM) have been
used to learn generative models for human motion, including walking, running,
and baseball pitching, proving useful for people tracking and computer animation
[5,14,24,27,26,28]. Nonetheless, when there are large stylistic variations or differ-
ent activities, the Gaussian process framework can produce models that are not
smooth, fail to generalize well to nearby motions, and are therefore unsuitable
for tracking and simulation [25].

One major problem lies with the formulation of the GPLVM. In its standard
form the GPLVM ensures that the mapping from the latent space to the pose
space is smooth, but not the map from pose space to latent space. That is, nearby
latent positions will generate similar poses, but similar poses do not necessarily
map to nearby latent positions. It is interesting to contrast this behaviour with
other methods for nonlinear dimensionality reduction, such LLE [18], which aim
to preserve the local topological structure of the training data. Unfortunately
such methods for embedding do not provide generative models.

To preserve topological structure, the back-constrained GPLVM [8], intro-
duces smoothness by constraining the latent positions to be a smooth function
of the data space. The first goal of this paper is to generalize this approach
with the formulation of a generative latent variable model whose prior, like the
objective function used for LLE, aim to preserve local topological structure of
the training data. We refer to this model as the locally-linear Gaussian process
latent variable model (LL-GPLVM).

The second goal of this paper is to explore the ways in which one can con-
strain learning to produce topologically meaningful latent models. Most exist-
ing methods for learning motion models ignore useful prior information about
human motion, such as the cyclic nature of locomotion, the physical laws at
play, and the limited ways people transition between activities. Wang et al. [29]
proposed a multifactor model for learning distributions of styles of human mo-
tion, parametrizing the space of human motion styles by a small number of
low-dimensional factors, such as identity and gait. Their multifactor model can
be viewed as a special case of the GPLVM, where the covariance function of
the GP is a product of covariance functions for the individual factors. Here we
take a complementary approach, incorporating prior knowledge about different
activities and transitions between them within the LL-GPLVM and the back-
constrained GPLVM. Importantly, transitions between different activities do not
have to be present in the training data to be learned.

Finally, the application of the GPLVM has also been limited to small training
sets because of its computational complexity, O

(
N3

)
, where N is the number

of data points. One way to reduce this computational burden is to use the infor-
mative vector machine [9] to obtain a sparse representation; however, by using
just a subset of the data, this approach ignores valuable training data, and is not
guarrenteed to converge. We review the use of sparse Gaussian process regression
in the GPLVM [11] in the context of human motion data. This results in a more
effective algorithm, which converges to a generative model that depends on the
entire data set.
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2 Related Work

It has long been accepted that useful representations for visual analysis should
capture the intrinsic structure of the data. This is the motivation to separate
style and content with multilinear models for example [23,6,29]. Such models
embody the tacit assumptions that there are a number of somewhat independent
causes generating the data, and that these should be represented with separate
dimensions. More generally, to learn such models, it is also often important to
exploit all available prior knowledge about the domain.

Elgammal et al. [4] showed that for walking, nearby poses on a single per-
son’s gait are more similar than poses from other peoples’. As a consecuence,
even for a single activity like walking, it can be challenging to learn a coherent
model for multiple people, in which the motions are aligned and can be inter-
polated smoothly to generate new plausible styles. This becomes more difficult
with multiple activities, where we wish to interpolate over different people’s
poses if their style is sufficiently similar, or to transition from one activity to
another.

Perhaps the simplest approach to the general modeling problem is to use
non-parametric models (e.g., [1,7,19]). This approach was used successfully for
multi-activity character animation and tracking, but it does not easily gener-
alize to nearby activities and styles, so one must have an enormous training
corpus.

Classical multilinear models [23,6] produce style-content separation but are
not suitable for many types of motions such as those with cyclic behaviour or
nonlinearities [4]. Moreover, they have not been extended to handle transitions
between activities. Elgammal et al. [4] learn a nonlinear model with stylistic
variation (multiple people) for walking by first building individual models, and
then using nonlinear regression to align the manifolds to build a unified model.
While evocative, it is not clear whether this piecemeal approach will scale to more
complex motions, multiple motions, or to many people. Wang et al. [29] propose
a multifactor model for learning distributions of styles of human locomotion
(walking, running and striding) but they do not explicitly model transitions.
Somewhat smooth transitions can be achieved by linearly inerpolating the style
factors.

Switching LDS [13,15] and HMMs [3] can represent multiple motions and di-
verse styles. Switching models have attractive properties that are somewhat com-
plementary to the GP-LVM, but at present they require large amount of training
data. Smoothness of the global model is another issue, as is the intractability of
learning. In practice, it is sometimes argued that current switching models do
not generalize well beyond the training data.

GP models [26,14,28] have proven very effective when dealing with a single
motion type. Nevertheless, as discussed above, they have problems when dealing
with multiple motions and different styles [25]. The aim of this paper is to discuss
recently developed formulations that help address these issues.
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3 Gaussian Process Latent Variable Models (GP-LVM)

We begin with a brief review of the GP-LVM. The GP-LVM represents a high-
dimensional data set, Y, through a low dimensional latent space, X, and a
Gaussian process mapping from the latent space to the data space. Let Y =
[y1, ...,yN ]T be a matrix in which each row is a single training datum, yi ∈ �D.
Let X = [x1, ...,xN ]T denote the matrix whose rows represent the corresponding
positions in latent space, xi ∈ �d. The GPLVM is a generative model of the data

yt =
∑

j

bjfj(xt) + ny,t (1)

for weights B = [b1,b2, ...], basis functions fj and additive zero-mean white
Gaussian noise ny,t. Given a covariance function for the Gaussian process,
kY (x,x′), the likelihood of the data given the latent positions is,

p(Y |X, β̄) =
1√

(2π)ND|KY |D
exp

(
−1

2
tr

(
K−1

Y YYT
))

, (2)

where KY is known as the kernel matrix, and β̄ is a vector of kernel hyper-
parameters. The elements of the kernel matrix are defined by the covariance
function, (KY )i,j = kY (xi,xj). A common choice is the radial basis function
(RBF), kY (x,x′) = β1 exp(−β2

2 ||x − x′||2) + δx,x′

β3
, where β̄ = {β1, β2, ...} are

the kernel hyperparameters that determine the output variance, the RBF sup-
port width, and the variance of the additive noise. Learning in the GP-LVM
consists of maximizing (2) with respect to the latent space configuration, X,
and the hyperparameters, β̄.

When one has time-series data, Y represents a sequence of observations, and
it is natural to augment the GP-LVM with an explicit dynamical model. For
example, the Gaussian Process Dynamical Model (GPDM) models the latent
sequence as a latent stochastic process with a Gaussian process prior [28], i.e.,

p(X | ᾱ) =
p(x1)√

(2π)(N−1)d|KX |d
exp

(
−1

2
tr

(
K−1

X XoutXT
out

))
(3)

where Xout = [x2, ...,xN ]T , KX ∈ �(N−1)×(N−1) is the kernel matrix constructed
from Xin = [x1, ...,xN−1], x1 is given an isotropic Gaussian prior and ᾱ are
the kernel hyperparameters. Below we use an RBF kernel for KX . Like the
GP-LVM the GPDM provides a generative model for the data, but additionally
it provides one for the dynamics. One can therefore predict future observation
sequences given past observations, and simulate new sequences.

4 Sparse Approximations

By exploiting a sparse approximation to the full Gaussian process it is usu-
ally possible to reduce the computational complexity from an often prohibitive
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O
(
N3

)
to a more manageable O

(
k2N

)
, where k is the number of points re-

tained in the sparse representation [11]. A large body of recent work has been
focussed on approximating the covariance function with a low rank approxima-
tion [9,16,21]. All approximations involve augmenting the function values at the
training points, F ∈ �N×d, with F = [f1, ..., fN ]T and the function values at
the test points, F∗ ∈ �∞×d, by an additional set of variables, U ∈ �k×d, called
inducing variables [16]. The number of these variables, k, can be specified by the
user.

The factorisation of the likelihood across the columns of Y allows us to focus
on one column of F without loss of generality. We therefore consider function
values at f ∈ �N×1, f∗ ∈ �∞×1 and u ∈ �k×1. These variables are considered
to be jointly Gaussian distributed with f and f∗ such that

p (f , f∗) =
∫

p (f , f∗|u) p (u) du,

where the prior distribution over the inducing variables is given by a Gaussian
process,

p (u) = N (u|0,Ku,u) ,

with a covariance function given by Ku,u. This covariance is constructed on a
set of inputs Xu which may or may not be a subset of X. Assume that the
variables associated with the training data, f , are conditionally independent of
those associated with the test data, f∗, given the inducing variables, u[16]

p (f , f∗,u) = p (f |u) p (f∗|u) p (u) ,

where

p (f |u) = N
(
f |Kf,uK−1

u,uu, Kf,f − Kf,uK−1
u,uKu,f

)

is the training conditional and

p (f∗|u) = N
(
f∗|K∗,uK−1

u,uu,K∗,∗ − K∗,uK−1
u,uKu,∗

)

is the test conditional. Kf ,u is the covariance function computed between the
training inputs, X, and the inducing variables, Xu, Kf ,f is the symmetric co-
variance between the training inputs, K∗,u is the covariance function between
the test inputs and the inducing variables and K∗,∗ is the symmetric covari-
ance function the test inputs. This decomposition does not in itself entail any
approximations: the approximations are introduced through assumptions about
the form of these distributions. Here we consider the Fully Independence approx-
imation (FITC) of Snelson and Ghahramani [21], where the training conditional
is assumed to be

q (f |u) = N
(
f(j)|Kf ,uK−1

u,uu, diag
(
Kf ,f − Kf ,uK−1

u,uKu,f
))

.

For more details and other approximations we refer the reader to [11].
The smaller the number of inducing variables, the greater the computational

and memory savings. Furthermore, estimation of a large number of inducing
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variables may come with a risk of overfitting. However, a small number of induc-
ing variables can result in poor reconstruction. In general the optimal amount
of inducing variables is a function of the variation of the training data. If there
is small variability in the training data (e.g. few persons with similar styles), a
small amount of inducing variables is sufficient for accurate reconstruction. On
the other hand, if the test data is very different from the training data, one has
to choose a small number of inducing variables to avoid overfitting and generalize
well to unseen styles. Unfortunately, there is no optimal way to automatically
choose the number of inducing variables, and one has, for example, to use a
validation set.

5 Top Down Imposition of Topology

The smooth mapping in the GP-LVM ensures that distant points in data space
remain distant in latent space. However, as discussed in [8], the mapping in the
opposite direction is not required to be smooth. While the GPDM may mitigate
this effect, it often produces models that are neither smooth nor generalize well
[26,28].

To help ensure smoother, well-behaved models, [8] suggest the use of back-
constraints, wherein each point in the latent space is a smooth function of its
corresponding point in data space, xij = gj (yi;aj), where {aj} is the set of
parameters of the mapping. Optimisation proceeds by substituting each xij in
(2) with gj (yi;aj) and maximizing the likelihood with respect to {aj}. This
approach is known as the back-constrained GP-LVM.

Nevertheless, when learning human motion data with large stylistic variations
or different motions, neither GPDM nor back-constrainted GP-LVM produce
smooth models that generalize well. For example, Fig. 1(a) shows a GPDM
learned from a training set comprising 9 walks and 10 runs. Compared to the
models in Fig. 3 learned from the same training data, the GPDM (Fig. 1(a))
and the back-constrained GPDM (Fig. 1(a)) do not generalize to new runs and
walks well, nor do they produce realistic looking simulations.

In this paper we first consider an alternative approach to the hard constraints
on the latent space arising from gj (yi; aj). We introduce topological constraints
through a prior distribution in the latent space, based on a neighborhood struc-
ture learn through a generalized local linear embedding (LLE) [18]. We then
show how to incorporate domain-specific prior knowledge. This allows us to de-
velop motion models with specific topologies that incorporate different activities
within a single latent space and transitions between them.

5.1 Locally Linear GP-LVM

The locally linear embedding (LLE) [18] preserves topological constraints by
finding a representation based on reconstruction in a low dimensional space with
an optimized set of local weightings. Here we show how the LLE objective can be
combined with the GP-LVM, yielding a locally linear GP-LVM (LL-GPLVM).
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(a) (b)

Fig. 1. When training data contain large stylistic variations and multiple motions, the
generic GPDM (a) and the back-constrained GPDM (b) do not produce useful models.
The latent models here were learned with the same training data as used to learn those
Fig. 3. Simulations of both models here do not look realistic.

The locally linear embedding assumes that each data point and its neighbors
lie on, or close to, a locally linear patch on the data manifold. The local geometry
of these patches can then be characterized by linear coefficients that reconstruct
each data point from its neighbors. This is done in a three step procedure:
(1) the K nearest neighbors, {yj}j∈ηi , of each point, yi, are computed using
Euclidean distance in the input space, dij = ||yi − yj ||2; (2) the weights w =
{wij} that best reconstruct each data point from its neighbors are obtained
by minimizing Φ(w) =

∑N
i=1 ||yi −

∑
j∈ηi

wijyj ||2; and (3) the latent positions
xi best reconstructed by the weights wij are computed by minimizing Φ(X) =∑N

i=1 ||xi −
∑

j∈ηi
wijxj ||2. In the LLE, the weight matrix w = [wij ], is sparse

(only a small number of neighbors is used), and the two minimizations can be
computed in close form.

Locally Linear GP-LVM. The LLE energy function is a function of the latent
positions and can be interpreted, for a given set of weights w, as a prior over
latent configurations that forces each latent point to be locally reconstruct by its
neighbors1. p(X|w) = 1

Z exp
{
− 1

σ2 Φ(X)
}

, where Z is a normalization constant,
and σ2 represents a global scaling of the prior. Following [18], we first compute
the neighbors based on Euclidean distance. For each training point yi, we then
compute the weights in closed form by solving, ∀j ∈ ηi, the following system,

∑

k

Csim
kj wsim

ij = 1, where Csim
kj =

{
(yi − yk)T (yi − yj), if j, k ∈ ηi

0, otherwise.
(4)

Once the weights are computed, they are rescaled so that
∑

j wij = 1.

1 Strictly speaking this is not a proper prior as it is conditioned on the weights, and
the weights depend on the training data.
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Learning the locally linear GP-LVM is then equivalent to minimizing the
negative log posterior of the model, that is up to an additive constant equal to 2

LS = log p(Y|X, β̂) p(β̂) p(X|w)

=
D

2
ln |KY | +

1
2
tr

(
K−1

Y YYT
)

+
∑

i

ln βi +
1
σ2

N∑

i=1

‖xi −
N∑

j=1

wijxj‖2 .(5)

Fig. 2 (a) shows a model compose of 2 walks and 2 runs learned with the Locally
linear GPDM. Note how smooth the latent trajectories are.

In what follows we generalize the top-down imposition of topology strategies
(i.e. back-constraints and locally linear GP-LVM) to incorporate domain specific
prior knowledge.

(a) (b) (c)

(d) (e) (f)

Fig. 2. First two dimensions of models learned using (a) LL-GPDM (b) LL-GPDM with
topology (c) LL-GPDM with topology and transitions. (d) Back-constrained GPDM
with and RBF mapping. (e) GPDM with topology through backconstraints. (f) GPDM
with backconstraints for the topology and transitions. For the models using topology,
the cyclic structure is imposed in the last 2 dimensions. The two types of transition
points (left and right leg contact points) are shown in red and green, and are used as
prior knowledge in (c,f).

6 Reflecting Knowledge in Latent Space Structure

A problem for modelling human motion data is the sparsity of the data relative to
the diversity of naturally plausible motions. For example, while we might have a
2 When learning a locally linear GPDM, the dynamics and the locally linear prior are

combined as a product of potentials. The objective function becomes LS+ d
2 ln |KX |+

1
2 tr

(
K−1

X XoutXT
out

)
+

∑
i ln αi, with LS defined as in (5).
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data set comprising different motions, such as runs, walks etc., the data may not
contain transitions between motions. In practice however, we know that these
motions will be broadly cyclic and that transitions can only physically occur at
specific points in the cycle. How can we encourage our model to respect such
topological constraints which arise from prior knowledge?

We consider this problem both in the context of the functionally constrained
GP-LVM and the locally linear GP-LVM introduced above. We show how one can
adjust the distance metric used in the locally linear embedding to better reflect
different types of prior knowledge (such as the location of possible transition
points). We also show how one can define similarity measures for use with the
functionally constrained GP-LVM. Both these approaches force the latent space
to construct a representation that reflects our prior knowledge.

6.1 Prior Knowledge with Back Constraints

As we mentioned in Section 3, back constraints involve a mapping from data
space to latent space. If the mapping is smooth the constraints forces points
that are close in data space to be close in latent space. The back-constraint
functions are used to explicitly constrain the latent positions associated with
training points. One possible mapping is a kernel-based regression model, where
a regression, on a kernel induced feature space, provides the mapping, xij =∑N

m=1 ajmk(yn,ym). Many kernels have interpretations as similarity measures
[17]. In particular, any similarity measure that leads to a positive semi-definite
matrix can be interpreted as a kernel. When learning the back-constrained GP-
LVM, one needs to determine the hyperparameters of the kernel matrices (for
the back-constraints and the covariance of the GP), as well as the weights of
the mapping, {ajm}. Following [8], we fixed the hyperparameters of the back-
constraint’s kernel matrix, and optimized over the remaining parameters. We
extend the original formulation of back constraints by constructing similarity
measures (i.e. kernels) to reflect prior knowledge. We consider two examples:
the first involves transitions between activities; with the second we show how
topological constraints can be placed on the form of the latent space.

Similarity for Transitions. To capture transitions between two motions, we
wish to design a kernel that expresses strong similarity between points in the
respective motions where transitions may occur. To express this similarity we
first define an index on the frames of the motion sequence, {ti}N

i=1. We then
define subsets of this set, {t̂i}M

i=1, which represents frames where transitions are
possible. For walking and running motions one might use two transition sets, one
in which the left foot makes ground contact, and one for the right foot; ground
contact can be automatically extracted as it coincides with non linearity in the
dynamics [2]. For other motion types a similarity measure can be used to define
transitions [7]. We can encourage transition points of different sequences to be
proximal with the following kernel matrix for the back-constraint mapping:

ktrans(ti, tj) =
∑

m

∑

l

δmlk(ti, t̂m)k(tj , t̂l) (6)
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where k(ti, t̂l) is an RBF centered at t̂l, and δml = 1 if t̂m and t̂l are in the same
set. The ‘strength’ of the encouragement is controlled by the support width of
the RBF kernel.

Combining Similarities. One advantage of our framework is that kernel ma-
trices can be combined in a principled manner to form new kernel matrices. Ker-
nels can be multiplied (on an element by element basis) or added together. Mul-
tiplication of kernel-based similarity measures has, loosely speaking, an ‘AND
gate effect’, i.e. both similarity measures must agree that an object is similar for
their product to express similarity. Adding them produces more of an ‘OR gate
effect’, i.e. if either representation expresses similarity the resulting measure will
also express similarity.

Topologically Constrained Latent Spaces. We now consider kernels that
encourage the latent space to have a particular topology. Specifically we are in-
terested in suitable topologies for walking and running data. Because the data
are approximately periodic, it seems appropriate to have a non-Cartesian topol-
ogy. To this end one could extract the phase of the motion3, φ, and use it
with a suitable similarity measure to encourage the latent points to response a
non-Cartesian topology within a Cartesian space. As an illustrative example we
consider a cylindrical topology within a three dimensional latent space by con-
straining two of the latent dimensions with phase. In particular to represent the
cyclic motion we construct a distance function on the unit circle, where a latent
point corresponding to phase φ is represented with the point (cos(φ), sin(φ)). A
periodic mapping can be constructed from a kernel matrix as follows,

xn,1 = gcos
1 (yn, φn) =

N∑

m=1

acos
m k(cos(φn), cos(φm)) + acos

0 δn,m,

xn,2 = gsin
2 (yn, φn) =

N∑

m=1

asin
m k(sin(φn), sin(φm)) + asin

0 δn,m,

where k is an RBF kernel function, and xn,i is the ith coordinate of the nth

latent point. These two mappings project onto two dimensions of the latent
space, forcing them to have a periodic structure (which comes about through the
dependence of the kernel with respect to cosine and sine of the phase). Fig. 2 (e)
shows a model learned using GPDM with the last two dimensions constrained in
this way (the third dimension is out of plane). The first dimension is constrained
by an RBF mapping on the input space. Each dimension’s kernel matrix can
then be augmented by adding the transition similarity given in (6), resulting in
the model depicted by Fig. 2 (f).

3 The phase can be easily extracted from the data by Fourier analysis or by detecting
key postures and interpolating the phases between them. Another idea, not further
explored here, would be to optimize the GP-LVM with respect to the phase.
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6.2 Prior Knowledge Through Local Linearities

We now turn to consider how one might incorporate prior knowledge in the
locally linear GP-LVM framework. This is accomplished by replacing the local
Euclidean distance measures presented in Section 5.1 with other similarity mea-
sures. The standard Euclidean distance measure leads to the covariance matrice
given in (4). However, just as we developed similarity matrices above, we can
also modify this covariance function to reflect our prior knowledge in the latent
space.

Covariance for Transitions. To capture transitions in the latent model we
define the elements for the covariance matrix as follows,

Ctrans
ij = 1 −

[
δij exp(−ζ(ti − tj)2)

]
(7)

with ζ a constant, and δij = 1 if ti and tj are in the same set {t̂k}M
k=1, and

otherwise δij = 0. This covariance encourages the points at which transitions
are physically possible to be close together in the latent space.

Combining Covariances. As above the covariance matrices can also be com-
bined in a principled way. Covariances can be added or multiplied (on an element
by element basis) to loosely speaking produce and ‘OR’ or ‘AND’ gate effect.

Covariance for Topologies. To force a cylindrical topology on the latent
space, we can introduce covariances based on the phase, specifying different
covariances for each latent dimensions. As before we construct a distance function
in the unit circle, that takes into account the phase.

Ccos
j,k =

(
cos(φi) − cos(φηj )

)
(cos(φi) − cos(φηk

)) (8)

Csin
j,k =

(
sin(φi) − sin(φηj )

)
(sin(φi) − sin(φηk

)) , (9)

The covariance for the remaining dimension is constructed as usual, based on
Euclidean distance in the data space. In Fig. 2 (b) a GPDM is constrained in
this way, and in Fig. 2 (c) the covariance is augmented with transitions.

Note that the use of different distance measures for each dimension of the
latent space implies that the neighborhood and the weights in the locally linear
prior will also be different for each dimension. One way of looking at it is that
three different locally linear embeddings are developed for constructing the prior
distribution. Each gives a prior distribution for a different dimension of the latent
space.

6.3 Model Combination

The two sections above have shown how to incorporate prior knowledge in the
GP-LVM by means of 1) local linearities and 2) backconstraints. In general, the
latter converges faster but it is more intuitive to constraint the latent space
with soft constraints. Both techniques are complementary and can be combined
straightforwardly by including priors over some dimensions, and constraining the
others through back-constraint mappings. Fig. 3 shows a model learned with the
locally linear GPDM to impose smoothness and backconstraints for topology.
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(a) (b) (c)

Fig. 3. Hybrid model learned using local linearities for the style and backconstraints
for the content. The training data is composed of 9 walks and 10 runs performed by
different subjects and speeds. (a) Likelihood for the reconstruction of the latent points
(b) First two components and (c) 3D view of the latent trajectories for the training
data in blue, and the automatically generated motions of Figs. 4 and 5 in green and
red respectively.

6.4 Modeling Multiple Activities and Transitions Between Them

Once we know how to ensure that transition points are close together and that
the latent structure has the topology we want, we still need to address two issues.
How do we learn models that have very different dynamics? How will the model
interpolate between the different dynamics? Our goal in this section is to show
how latent models for different motions can be learned independently, but in a
shared latent space that facilitates transitions between activities with different
dynamics.

Dynamics for Multiple Activities. Let Y = [YT
1 , ..., YT

M ]T denote training
data for M different activities. Each Ym comprises several different motions.
Let X = [XT

1 , ..., XT
M ]T denote the corresponding latent positions. When deal-

ing with multiple activities, a single dynamical model cannot cope with the
complexity of the different dynamics. Instead, we consider a model where the
dynamics of each activity are modeled independently, p(X) =

∏M
m=1 p(Xm) .

This approach has the advantage that a different kernel can be used for each
acitivity. Another interpretation is that we have a block diagonal kernel matrix
for the Gaussian process that governs the dynamics.

To enable interpolation between motions with different dynamics, we com-
bined these independent dynamical models learned in the form of a mixture
model. By interpolating between the components of the mixture distribution
we can produce motions that gracefully transition between different styles and
motion types (Figs. 4 and 5).

7 Results

We first evaluate the sparse GPLVM in the CMU Mocap dataset comprising 1613
poses from walking and running motions of subject 35. For learning we used a
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Fig. 4. Transition from running to walking: The system transitions from running
to walking in a smooth and realistic way. The transition is encouraged by incorporating
prior knowledge in the model. The latent trajectories are shown in green in Fig. 2 (b,c).

Fig. 5. Different running styles and speeds: The system is able to simulate a
motion with considerably changes in speed and style. The latent trajectories are shown
in red in Fig. 2 (b,c).

FITC approximation with 100 inducing points. However, rather than allowing
these points to be moved freely, they were fixed to latent positions that were uni-
formily sub-sampled from the data. The models were also backconstrained to en-
courage smoothness. Following [22], we apply the model to two missing data prob-
lems, the first in which the right leg data was removed from a test sequence and
the second in which the upper body was removed. A summary of the results is
shown in Table 1, showing that that the GPLVM outperforms nearest neighbour,
and that a latent space of dimension 3 is sufficient to model the data.

To illustrate how prior knowledge can impact the learned models, we consider
a training set comprising 4 gait cycles (2 walks and 2 runs) performed by one

Table 1. Results from the missing data problem. Headings: L and B are the leg
and body data sets. The error measure is the mean square error in the angle space.
Methods are: NN: nearest neighbour, GPLVM (latent dimension): the GPLVM with
different latent dimensions, q. Bold results are the best reported for a given column.

Data L B

GPLVM (q = 3) 3.40 2.49

GPLVM (q = 4) 3.38 2.72

GPLVM (q = 5) 4.25 2.78

NN 4.11 3.20
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subject at different speeds. Figure 2 shows the latent spaces learned under dif-
ferent priors. All models are learned using two independent dynamical models,
one for walking and one for running. Note how the phases are aligned when
promoting a cylindrical topology, and how the LL-GPDM is smooth. Notice the
difference between the LL-GPDM (Fig. 2 (c)) and the backconstrained GPDM
(Fig. 2 (f)) when transition constraints are included. Both models ensure that
the transition points (shown in red and green) are proximal.

Figure 3 (a) shows a hybrid model learned using LL-GPDM for smoothness,
and back-constraints for topology. The larger training set comprises approxi-
mately one gait cycle from each of 9 walking and 10 running motions performed
by different subjects at different speeds (3 km/h for walking, 6–12 km/h for
running). Colors in Fig. 3 (a) represent the log variance of the GP as a function
of latent position. Only points close to the surface of the cylinder generate poses
with high certainty.

We now illustrate the model’s ability to simulate different motions and transi-
tions. Given an initial latent position x0, we generate new motions by sampling
the mixture model, and using mean prediction for pose reconstruction. Choos-
ing different initial conditions results in different simulations (see Fig. 3 (b-c),
where the training data are shown in blue). For the first simulation (in green),
the motion is initialized to a running pose, with a latent position not far from
walking poses. The system transitions to walking quickly and quite naturally.
The resulting animation is depicted in Fig. 4. For the second example (in red), we
initialize the simulation to a latent position far from walking data. The system
evolves to different running styles and speeds (Fig. 5). Note how the dynamics,
and the strike length, change considerably during simulation.

8 Conclusions

In this paper we have proposed a general framework of probabilistic models that
learn smooth latent variable models of different activities within a shared latent
space. We have also introduced a principled way to include prior knowledge,
that allow us to learn specific topologies and transitions between the different
motions. Although we have learned models composed of walking and running,
our framework is general, being applicable in any data sets where there is a large
degree of prior knowledge for the problem domain, but the data availability is
relatively sparse compared to its complexity.
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Abstract. This work presents a marker-less motion capture system that
incorporates an approach to smoothly adapt a generic model mesh to the
individual shape of a tracked person. This is done relying on extracted
silhouettes only. Thus, during the capture process the 3D model of a
tracked person is learned.

Depending on a sparse number of 2D-3D correspondences, that are
computed along normal directions from image sequences of different cam-
eras, a Laplacian mesh editing tool generates the final adapted model.
With the increasing number of frames an approach for temporal coher-
ence reduces the effects of insufficient correspondence data to a minimum
and guarantees smooth adaptation results. Further, we present experi-
ments on non-optimal data that show the robustness of our algorithm.

1 Introduction

We address the problem of human shape and motion capture (MoCap) from
multi-view video sequences. Surveys on these topics can be found in [15,14].
Approaching marker-less methods, researchers working in the area of computer
vision typically prefer simplified human body models [4,13,10,11]. There are also
methods in the field of Computer Graphics [12,6,24]. However, techniques for
image processing or pose estimation are often oversimplified.

Cheung et al. [8] propose a shape-from-silhouettes approach that is applied
to track human beings and incorporates surface point clouds with skeleton mod-
els. A work of Rosenhahn et al. [18] combines silhouette based pose estimation
with more realistic human template models. These are represented by free-form
surface patches and gain more accurate tracking results.

In order to allow for individual shapes during MoCap, Mündermann et al. [16]
propose a MoCap system that combines the tracking algorithm with a database
of articulated 3D models. The models are generated from a template mesh given
by a deformable human model that is learned from a database of full body laser
scans. During MoCap they select the best fitting 3D model from their database.

Bălan et al. [5] follow an approach of immediately incorporating a low-
dimensional deformable human body model (SCAPE) into MoCap. Their idea
� We gratefully acknowledge funding by the Max-Planck Center for Visual Computing

and Communication.
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Fig. 1. A multi-view image sequence: Left: Generic model, Middle: Tracked adapted
model within image sequence, Right: Adapted model in tracked pose

is to learn pose and detailed shape by a stochastic optimization function that
estimates the model parameters directly from 2D image data.

Another approach to jointly capture human motion and shape is presented
by De Aguiar et al. [9]. They make use of a high-quality laser scan of the person
to track and combine an image-based 3D correspondence estimation algorithm
with a fast Laplacian mesh deformation scheme.

The proposals of [9,5,16] have in common, that there is the need for 3D laser
scans. The latter ones even require special databases. Thus, the actual MoCap
process comes along with extra costs. In contrast to these approaches, we present
an algorithm that extends a marker-less MoCap system by an iterative adapta-
tion algorithm. By the use of silhouette information, it smoothly adapts a generic
template model to the true shape of the tracked person. Depending on a sparse
number of 2D-3D correspondences, that are computed along normal directions
from image sequences of 4 cameras, a Laplacian mesh editing tool generates the
final adapted model. With the increasing number of frames an approach for tem-
poral coherence reduces the effects of insufficient correspondence information to
a minimum. As a result our algorithm increases tracking accuracy.

This work is built upon the basic tracking system and foundations in Section 2.
This includes techniques for image segmentation with level sets, pose estimation
of kinematic chains and shape registration based on ICP. Focus of this work is
embedding the silhouette-based model adaptation algorithm. It is described in
Section 3. Section 4 presents experiments as well as their results, and Section 5
concludes this work.

1.1 Contributions

This work contributes a method to compute accurate and smooth 3D models
from a generic template. That is done during a silhouette based, marker-less
MoCap process. In a temporal coherent approach we apply sophisticated mesh
processing techniques, and thus incorporate mesh modelling techniques into a
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problem of computer vision. Finally, we perform experiments to test the robust-
ness of our algorithm and present a quantitative error analysis for knee joints.

2 Twists, Kinematic Chains and Pose Estimation

This work is based on a marker-less MoCap system [18,19]. The human being
is represented in terms of free-form surface patches. Joint indices are added to
each surface node and the joint positions are assumed. This allows us to gen-
erate arbitrary body configurations, steered by joint angles. The corresponding
counterparts in the images are 2D silhouettes: These are used to reconstruct 3D
ray bundles. A spatial distance constraint is minimized to determine the position
and orientation of the surface mesh as well as the joint angles. In this section we
give a brief summary of the MoCap system.

2.1 Twists

A rigid body motion of a 3D point x can be expressed in homogeneous coordi-
nates as

X ′ = (x′, 1)T = MX = M(x, 1)T =
(

R t
0 1

) (
x
1

)
. (1)

The matrix R is a 3×3 rotation matrix and t ∈ R
3 a translation vector. The set

of all matrices of type M is called the Lie Group SE(3). To every Lie group there
exists an associated Lie algebra, whose underlying vector space is the tangent
space of the Lie group, evaluated at its origin. The Lie algebra associated with
SE(3) is se(3) := {(v, ω)|v ∈ R

3, ω ∈ so(3)}, with so(3) := {A ∈ R
3×3|A =

−AT }. Elements of so(3) and se(3) can be written as vectors ω = (ω1, ω2, ω3)T ,
ξ = (ω1, ω2, ω3, v1, v2, v3)T or matrices

ω̂ =

⎛

⎝
0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎞

⎠ , ξ̂ =
(

ω̂ v
0 0

)
.

A twist ξ can be converted into an element of the Lie group M ∈ SE(3) by
computation of its exponential form. That can be done efficiently by using the
Rodriguez formula [17].

Note: For varying θ the one-parametric Lie-subgroup Mθ = exp(θξ̂) yields a
screw motion around an axis in space. We will use a degenerate screw (without
pitch component) for the model joints.

2.2 Kinematic Chains

A kinematic chain is modeled as the consecutive evaluation of exponential func-
tions of twists ξi as done in [4]. A point at an end effector that is additionally
transformed by a rigid body motion is given by

X ′
i = exp(θ ξ̂) · (exp(θ1 ξ̂1) · · · exp(θn ξ̂n)) · Xi. (2)
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In the remainder of this paper we will note a pose configuration by the vector
χ = (ξ, θ1, . . . , θn) = (ξ, Θ) of dimension (6 + n) consisting of the 6 degrees of
freedom for the rigid body motion ξ and the joint angle vector Θ. In our setup,
the vector χ is unknown and has to be determined from the image data.

2.3 Silhouette Extraction

In order to find the silhouette of an object in the image, a level set function
Φ ∈ Ω �→ R is employed. It splits the image domain Ω into two regions Ω1 and
Ω2 with Φ(x) > 0 if x ∈ Ω1 and Φ(x) < 0 if x ∈ Ω2. The zero-level line thus
marks the boundary between both regions.

For an optimum partitioning, the following energy functional is minimized,
which is an extended version of the Chan-Vese model [7]:

E(Φ, p1, p2) = −
∫

Ω

(
H(Φ(x)) · log p1(I(x)) +

(1 − H(Φ(x))) · log p2(I(x)) + ν · |∇H(Φ(x))|
)
dx (3)

with a weighting parameter ν > 0 and H(s) being a regularized version of the
Heaviside (step) function, e.g. the error function. The probability densities p1
and p2 measure the fit of an intensity value I(x) to the corresponding region. We
model these densities by local Gaussian distributions. The partitioning and the
probability densities pi are estimated according to the expectation-maximization
principle.

2.4 Registration, Pose Estimation

Assuming an extracted image contour and the silhouette of the projected sur-
face mesh, the closest point correspondences between both contours are used
to define a set of corresponding 3D lines and 3D points. Then a 3D point-line
based pose estimation algorithm for kinematic chains is applied to minimize
the spatial distance between both contours: For point based pose estimation
each line is modeled as a 3D Plücker line Li = (ni, mi) [1]. For pose estima-
tion the reconstructed Plücker lines are combined with the twist representation
for rigid motions: Incidence of the transformed 3D point Xi with the 3D ray
Li = (ni, mi) can be expressed as

(exp(θξ̂)Xi)π × ni − mi = 0. (4)

Since exp(θξ̂)X i is a 4D vector, the function π denotes the projection of the ho-
mogeneous 4D vector to a 3D vector by neglecting the homogeneous component.

For the case of kinematic chains, we exploit the property, that joints are
expressed as special twists with no pitch of the form θj ξ̂j with known ξ̂j (the
location of the rotation axes is part of the model) and unknown joint angle θj .
The constraint equation of an ith point on a jth joint has the form
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(exp(θξ̂) exp(θ1ξ̂1) . . . exp(θj ξ̂j)Xi) × ni − mi = 0. (5)

To minimize for all correspondences in a least squares sense, we optimize

argmin
χ

∑

i

∥∥∥∥∥∥
π

⎛

⎝exp(ξ̂)
∏

j∈J (xi)

exp(θj ξ̂j)
(

xi

1

)⎞

⎠× ni − mi

∥∥∥∥∥∥

2

. (6)

The function J (xi) denotes the set of joints that affect the point xi. Lineariza-
tion of this equation leads to three linear equations with 6 + j unknowns, the
six pose parameters and j joint angles. Collecting enough correspondences yields
an over-determined linear system of equations and allows to solve for these un-
knowns in the least squares sense. Then the Rodriguez formula is applied to
reconstruct the group action and the process is iterated for the transformed
points until convergence.

2.5 The Tracking System

Since segmentation and pose estimation can both benefit from each other, it is
convenient to couple both problems in a joint optimization problem. To this end,
the energy functional for image segmentation in (3) is extended by an additional
term that integrates the surface model. Thus, by means of the contour Φ, the
tracking system in [19] can be described by the following energy functional, which
is sought to be minimized:

E(Φ, p1, p2, χ) = −
∫

Ω

(
H(Φ) log p1 + (1 − H(Φ)) log p2 + ν|∇H(Φ)|

)
dx

+ λ ·
∫

Ω

(Φ − Φ0(χ))2dx

︸ ︷︷ ︸
shape error

. (7)

The quadratic error measure in the shape term has been proposed in the context
of 2D shape priors, e.g. in [20]. The prior Φ0 ∈ Ω → R is assumed to be rep-
resented by the signed distance function. This means in our case, Φ0(x) yields
the distance of x to the silhouette of the projected object surface. The influence
of the shape prior on the segmentation is steered by the parameter λ (we chose
0.05). Due to the nonlinearity of the optimization problem, we propose an iter-
ative minimization scheme: first the pose parameters χ are kept constant while
the functional is minimized with respect to the partitioning. Then the contour is
kept constant while the pose parameters are estimated to fit the surface mesh to
the silhouettes (Section 2.4). A comparable approach for combined segmentation
and pose estimation using graph cuts has been presented in [3].

Given the contour Φ, the pose estimation method from Section 2.4 minimizes
the shape term in (7). Minimizing (7) with respect to the contour Φ leads to the
gradient descent equation

∂tΦ = H ′(Φ)

(
log

p1

p2
+ ν div

(
∇Φ

|∇Φ|

))
+ 2λ (Φ0(θξ) − Φ). (8)
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The total energy is minimized by iterating both minimization procedures. Both
iteration steps minimize the distance between Φ and Φ0. While the pose estima-
tion method draws Φ0 towards Φ, thereby respecting the constraint of a rigid
motion, in return (8) draws the curve Φ towards Φ0, thereby respecting the data
in the image.

3 Generic Model Adaptation

Our adaptation approach extends the tracking loop as sketched in the overview
of Figure 2. Given a generic 3D model, the motion tracking algorithm estimates
3D pose and 2D image contours in an iterative process. Each iteration refines
the quality for pose- and silhouette estimation.

Initialization: manual pose and size adjustment for generic model
yields an adapted model instance in pose and shape of the generic model
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Silhouette extraction and pose estimation
based on the model adaptation of the last frame or iteration

yields pose and silhouette for the current frame

2D−3D correspondence computation
based on extracted image silhouettes
based on the reference model in current pose

yields 3D correspondences for generic model adaptation

3D Correspondence validation
application of a local and temporal coherenct statistical filter
application of global heuristics

enforce smooth and temporal coherent correspondences

Iterative Laplacian Mesh Adaptation
based on validated 3D correspondences
incorporating correspondences from previous frames

yields an adapted model

(Section 3.2)

(Section 3.2)

(Section 3.1)

(Section 2)

Fig. 2. Model adaptation algorithm incorporated into the basic MoCap system. Green
marks the contribution of this paper.

For each new pose estimation the adapted model of the previous iteration is
used. Opposite to that, in each frame and iteration the starting point for our
adaptation algorithm is the generic 3D mesh model in pose of the current frame.
In the further context of this work it is referred to as reference model or reference
mesh. On basis of that reference mesh 3D correspondences are computed for a
sparse set of vertices. The correspondences are generated from silhouettes in the
image and the reference model along the vertex normals projected to the image
planes of the cameras (Figure 3). The reason for projecting to image planes of
the cameras is, that, if relying on image contours as seen by a camera, in general
it is not possible to state changes parallel to the optical axis (viewing direction).
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Fig. 3. Sketch for our ICP-algorithm. The algorithm generates a correspondence along
normal direction n. Since, in general silhouettes contain no information about depth,
the search is restricted to Np, the normal direction projected into the camera plane.

In order to gain smooth and robust adaptation results, the correspondences
have to be validated beforehand. That is done by filter heuristics. One filter oper-
ates locally and exploits temporal coherence, incorporating all correspondences
of previous frames and iterations up to a maximum number (Section 3.2). Rely-
ing on statistical means all correspondences, that appear to be noise or outliers,
are removed. Furthermore, there are two global heuristics. One removes all cor-
respondences with lengths (i.e. distance between vertex and its displacement
position) greater than a given threshold. The other heuristic ensures that only
those vertices are involved into mesh adaptation, whose vertex normal is almost
perpendicular to the viewing direction. That filter is an important instrument,
in order to avoid ill placed correspondences.

Afterwards the correspondences are applied as constraints in a Laplacian mesh
adaptation [21,22] process. The final Laplacian adaptation is designed as an
extension of the algorithm as proposed by Stoll et al. [23]. The main extension
is to combine all hitherto available correspondences (up to a given number) into
one final adaptation routine. Appending the correspondences as constraints to
the Laplacian matrix, the solution of the iterative deformation algorithm yields
the final adapted mesh model. In all our experiments a number of 15 iterations
was sufficient.

Note: The reference mesh is updated in terms of pose only, but not in terms of
shape. If artifacts should occur in the final adaptation result (which may happen
in the first few frames), they cannot propagate into the reference mesh. That
would lead to non-smooth results or to even more artifacts.

3.1 2D-3D Correspondences

The computation of 2D-3D correspondences starts from the generic reference
model in pose of the current frame. In order to identify silhouette vertices, the



126 M. Sunkel, B. Rosenhahn, and H.-P. Seidel

Fig. 4. Intermediate tracking results for one camera view. From Left to Right: Input
picture, Reference model in current pose, Extracted Silhouette, 2D Correspondences
(blue: ICP starting points, green: search path, white: 2D correspondence point), Final
model adaptation.

mesh is projected into the camera planes. The silhouette vertices and their pro-
jections are stored. Then, for each silhouette vertex an ICP algorithm [26] com-
putes the 2D correspondence to the segmented image contours. The direction of
the ICP search is restricted to the projection of the vertex normal to the camera
plane. Given the optical axis d and normal direction N (Figure 3) the projected
normal Np is given by

Np = N − 〈N,d〉 · N (9)

Thus, the 3D correspondence for a point p is found along the Plücker line

l : (Np,M), M = p × Np (10)

If a 2D correspondence point (x, y) is found, its projection ray is reconstructed.
Given the transformation matrix [R, t] ∈ R

3×4 for a camera, the projection ray
is represented by the Plücker line r : (d,m) with

d =
b − a

‖b − a‖ , m = a × d (11)

a = −R−1 · t, b = R−1 ·

⎛

⎝

⎛

⎝
x
y
1

⎞

⎠ − t

⎞

⎠ (12)

Then, intersecting l with r, the final 3D correspondence is computed, i.e. that
point on l that is closest to r. The intersection s is calculated by [1]

s =
〈Np, d × m〉 − 〈Np, d〉 · 〈Np, d × M〉

(Np × d)2
· Np + (Np × M) (13)

Since correspondences of the ongoing frame are reused in those to come, they
are stored. Thus, they have to be transformed into a representation that is
invariant to rigid body motion. The global coordinates are transformed to local
coordinate systems on vertex basis. Given the vertex normal n and the edge to
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a definite neighbour vertex, we compute coordinate axes u and v, such that u,
v and n form a local coordinate system (Figure 5).

u = n × e, v = n × u (14)

e

u

v
n

Fig. 5. Coordinate system on a vertex basis: vertex normal n and edge e to a distinct
neighbour vertex are given by the mesh. u and v are computed such that u, v, n are
pairwise perpendicular (see Equation (14)).

Given a vertex point p, the coordinate axes u, v, n and a correspondence
point c, its new representation is computed by the projections of d := −→pc onto
u, v, n.

ũ = 〈u,d〉, ṽ = 〈v,d〉, ñ = 〈n,d〉 (15)

Vice versa c is restored by

c = p + ũ · u + ṽ · v + ñ · n (16)

3.2 Correspondence Analysis

All 3D correspondences are analyzed and filtered by three heuristics:

(a) Temporal coherent filter over the local variance of corres-
pondences: For all 3D correspondences c with distance d to mesh vertex p
(d = ‖−→pc‖) the directional distance value d̃ = (ñ/|ñ|) · d (ñ from Equation
(15)) is computed. Then, within a predefined radius r (we found 3 cm most
suitable) around p, the variance σ2 for all correspondences ci over the values
d̃i is calculated.

σ2 =
1

n − 1
·

n∑

i=1

(d̃i − d)2, d =
1
n

n∑

i=1

d̃i (17)

We also compute
σ̃2 = (d̃i − d)2 (18)

and all correspondences with

σ̃2 > k1, k1 ∈ R ≥ 0 (19)

or
σ̃2 > k2 · σ2, k2 ∈ R ≥ 0 (20)
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are filtered out. k1 and k2 are threshold parameters and can be interpreted
as follows: If the distance between c and p differs from the surrounding mean
of distances more than

√
k1, or if the ratio of the squared distance σ̃2 to its

approximate mean σ2 exceeds k2, then c is not smooth or reliable enough.
In order to ensure temporal coherent filter results, the list of correspon-

dences used for the filter includes the correspondences of previous frames
and iterations up to a maximum number. In our experiments we used a
maximum count of 400 sets of correspondence. Older correspondences are
deleted.

(b) Distance heuristic: The distance heuristic is a simple global heuristic,
removing all correspondences c with a distance greater than a given value.
This value highly depends on the conformity level of the generic model with
the tracked person. In our experiments a maximum distance of 6 cm was
sufficient for leg tracking, even for poorly designed generic leg models.

(c) Directional heuristic: Since the correspondences are computed along the
direction Np (Figure 3), all vertices with normals parallel to the optical
axis would yield no contribution. The more parallel normal and camera di-
rection are, the more unreliable a correspondence is. The angle between
vertex normal and optical axis gives a criterion to deal with this issue. If
the angle is below a given threshold, the attached correspondence is filtered
out. For our needs, angle thresholds of about 75 degrees yield admissible
results.

3.3 Model Adaptation

Foundation for the final adaptation is a linear variational surface deformation
method [2]. We choose a Laplacian Mesh Processing [21,22] implementation that
is based on cotangent weights. Given a reference mesh M = (P, E) (P a set
of vertices (pi) and E a set of edges (pi,pj)), the Laplacian scheme encodes
the knowledge about structural details of the model M in terms of differential
coordinates that are stored in a vector dp. They are computed by solving d =
L · p (component-wise for x, y and z). p is a column vector consisting of either
x, y or z coordinates of all points pi and L denotes the Laplacian matrix that is
constructed from the model M . The reconstruction p (again a column vector)
is subject to a number of constraints (3D point correspondences) cj which leads
to minimizing a linear least-squares problem of the form

argmin
p

{‖L p − dp‖2 + ‖C p − q‖2} (21)

which can be transformed into a system of linear equations

(LT L + CT C) · p = LT dp + CT q (22)

Here C is a diagonal matrix with non-negative weights Cj,j = wj for all corre-
spondence constraints.
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Since for each frame the tracking- and adaptation solution is computed as re-
finement result of multiple iterations, the weights are tuned accordingly. Starting
with 0.5, they linearly increase up to 1 in the last iteration. At this we ob-
tained good results with 4 iterations for the first frame and 2 for the rest of the
sequence.

In order to produce temporal coherent model adaptations, the constraints of
previous iterations (as given by the stored 3D point correspondences) are added
to the ongoing Laplacian deformation. However, in order to provide the possibil-
ity to change the adapted shape over time, the constraint weights are adjusted
according to their age, such that they diminish. That is done by multiplying the
weights by (1 + k)−t, where t is the age and k a small positive value. Storing
constraints for a maximum of 400 iterations, we used k = 1/400.

A consequence of that approach is, that there may be more than one corre-
spondence that is attached to a vertex. But there are also vertices, without any
correspondence attached. Following the idea of Stoll et al. [23] that issue is ad-
dressed by exploiting the Laplacian framework for a least-squares approximation
for harmonic interpolation [25] over correspondence weights w and vertex dis-
placements ũ, ṽ and ñ. It is computed by solving the Laplace systems Lw = 0,
Lũ = 0, Lṽ = 0 and Lñ = 0. Finally, the interpolation result contains as many
correspondences as there are vertices in the reference mesh.

Note: With the exception of vertices without correspondence, the interpolation
over all correspondences of past frames is also used for filter (a) in Section 3.2.
Independent of the number of previously stored correspondences that smoothes
the set of correspondences and limits computational filter costs to a distinct
maximum.

In the end, an iterative mesh deformation algorithm yields the adaptation
for the ongoing tracking iteration. In iteration t this algorithm first performs
a Laplacian deformation according to tentative constraints. Then, it measures
the distance l between correspondence point and mesh vertex of the tenta-
tive adaptation. If exceeding a given maximum distance lmax, the correspon-
dence is excluded from iteration t + 1. For all remaining correspondences the
weights are adjusted by multiplication with (1 − l/lmax)2. In experiments we
yield good results performing 15 iterations and using values of 5 to 6 cm for
lmax .

4 Experiments

We tested our algorithm in several experiments. Playing with the parameter
values we found, that in terms of smoothness and robustness the parameters r,
k1 and k2 in Section 3.2 influence the adaptation result most. Suitable values
are r = 30 mm , k1 = 100 mm2 and k2 = 1.

We restrict our experiments to tracking the legs of a person in different mo-
tion sequences. The actor wears a tight suit. At distinctive positions there are
additional markers attached, sticking out of the legs (see Figure 4). The mark-
ers are used in order to compute ground-truth for our motion sequences with a
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Fig. 6. Leg model in pose of the first frame of a walking sequence. Left: Degenerated
reference model. The right leg is thinned out, and the left half of the backside is blown
up. Right: Model adaptation after the first iteration.

marker-based MoCap system. Thus, secondary objective in our experiments is
trying to adapt a shape model that also includes these markers.

We test our algorithm in walking and jumping scenes with a degenerated
generic leg model. The right leg is thinned out, and the left half of the backside
is visibly blown up. Figure 6 shows that model as well as its adaptation after
the first iteration of the first frame of a walking sequence.

In order to reliably extract silhouettes, the shape prior λ of equation (7) is
adjusted to low values. However, similar to the adaptation result in Figure 4, in
both scenarios most markers are too tiny to be reflected within the silhouette.
Often, the model adapts the markers at the shinbones only - and in form of
smooth bumps.

Figure 7 visualizes typical 3D correspondences that are computed. The left
image shows the correspondences after applying filters (b) and (c) from Section
3.2. The center image reflects the effects of additionally applying filter (a). The
field of correspondences is smoothed. Some visible outliers at the left foot are
removed. The right image shows the set of correspondences after harmonic in-
terpolation. They are used for the final adaptation. The thin leg grows to its
true size, and the thick backside is thinned out. The marker on the left shin-
bone results in a smooth bump. Note: Since heuristic (a) implements a filter for
temporal coherence, in the first frames it has fewer effects.

Analyzing the effects of adaptation on the generic model, Figure 8 presents
model overlays for frames 0 and 10 of the jumping scene. The template model
is rendered in red, its adaptation in green. Both are overlaid by addition and
50% alpha channel. Pure green regions show where the template has grown, red
regions reflect shrinking.

Figure 9 shows a quantitative error analysis of the walking sequence (frames
0 to 140) for the knee angles. The black lines give the comparison with ground
truth as obtained by a marker-based MoCap system. Red represents the angles
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Fig. 7. 3D correspondences, first frame, first iteration. Left: Correspondences after ap-
plication of filters (b) and (c) from Section 3.2. Center: Additional application of filter
(a). Right: Correspondences after application of filter (a) and harmonic interpolation.

Fig. 8. Adaptation analysis: Reference model and its adaptation are overlaid by ad-
dition and 50% alpha channel. Red: Reference model, Green: Adapted model. Pure
green indicates where the reference model has increased in size, pure red indicates a
shrinking.

for the marker-less tracking system without model adaptation. Blue shows the
results of our approach. The marker-less MoCap system with model adaptation
yields results that are closer to ground truth. The relative error for the red curve
is 4.2◦. The blue curve deviates by 3.4◦.

In more challenging experiments we adjusted the setup by adding noise to the
image sequences. Visualizations for tests with uncorrelated noise show adapta-
tion results independent of the noise level that are like those of previous exper-
iments. We also tested with box noise, that is adding boxes of different colors
and sizes to the uncorrelated noise. Figure 10 shows silhouette extractions and
the adaptation result for the first frame of the walking sequence. We added 25%
uncorrelated noise as well as 50 boxes with sizes between 5×5 and 15×15 pixels.
At positions of the boxes the silhouettes are seriously distorted. Though dented,
we obtain a relatively smooth model adaptation.
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Fig. 9. Quantitative error analysis of the knee angles for a walking sequence (frames
0 to 140). Black: Ground truth as obtained by a marker based tracking system. Red:
Marker-less tracking without model adaptation. Blue: Marker-less tracking with model
adaptation. Relative errors: Blue 3.4◦, Red 4.2◦.

Concentrating on the originally disfigured right leg, Figure 11 shows its adap-
tations for the frames 0, 5, 10, 15 and 20. The bumps and dents smooth out and
finally vanish.

Fig. 10. Experiment with uncorrelated noise (25%) and box noise (50 boxes with sizes
between 5 × 5 and 15 × 15 pixels). Both rows show a cropped image for each camera
view. Top row: Silhouette extraction. Bottom row: Model adaptation.
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Fig. 11. Adaptation result of the right leg for the box noise scenario. Results for the
frames 0, 5, 10, 15 and 20.

5 Summary

Our approach extends the motion capture process incorporating sophisticated
methods for correspondence analysis as well as for mesh processing. It provides
a robust method to smoothly adapt any given generic model to the observed
shape. That is done using silhouette information only. Since the main goal is to
provide smooth and robust adaptation solutions, the algorithm concentrates on
low frequency details. High frequency shape details, such as markers on legs, are
most likely to be adapted if they are visible in the first frames. Otherwise, they
violate our concept for temporal coherence.

We tested the performance of our algorithm on worst case scenarios, limited
to tracking legs of a person in different sequences. We applied our algorithm to
a clearly sub-optimal generic model and performed a quantitative error analysis
for the accuracy of tracking the knee joints. Compared to the non-adaptive
approach, our method provides an improvement. We also performed tests with
input images that are distorted with intense noise. Our approach yields smooth
results.

A weak point, that sometimes occurs in our algorithm, is adapting regions
like the feet. The reason for that is, that on one hand shadows on the floor cause
faulty silhouette extractions. On the other hand, all cameras recorded the feet
mostly from above, such that it is hard to obtain information about the instep
of the feet (see Figures 7 and 8). However, our validation heuristics combined
with the smoothing effect of the temporal coherent adaptation approach reduce
that issue to a minimum.
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5. Bălan, A., Sigal, L., Black, M., Davis, J., Haussecker, H.: Detailed human shape
and pose from images. In: CVPR. Proc. Computer Vision and Pattern Recognition
(June 2007)

6. Carranza, J., Theobalt, C., Magnor, M.A., Seidel, H.-P.: Free-viewpoint video of
human actors. In: Proc. SIGGRAPH 2003, pp. 569–577 (2003)

7. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image
Processing 10(2), 266–277 (2001)

8. Cheung, K.M., Baker, S., Kanade, T.: Shape-from-silhouette across time: Part ii:
Applications to human modeling and markerless motion tracking. International
Journal of Computer Vision 63(3), 225–245 (2005)

9. de Aguiar, E., Theobalt, C., Stoll, C., Seidel, H.-P.: Marker-less deformable mesh
tracking for human shape and motion capture. In: CVPR. IEEE International Con-
ference on Computer Vision and Pattern Recognition, Minneapolis, USA (2007)

10. Fua, P., Plänkers, R., Thalmann, D.: Tracking and modeling people in video se-
quences. Computer Vision and Image Understanding 81(3), 285–302 (2001)

11. Herda, L., Urtasun, R., Fua, P.: Implicit surface joint limits to constrain video-
based motion capture. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3022,
pp. 405–418. Springer, Heidelberg (2004)

12. Magnenat-Thalmann, N., Seo, H., Cordier, F.: Automatic modeling of virtual hu-
mans and body clothing. Computer Science and Technology 19(5), 575–584 (2004)

13. Mikic, I., Trivedi, M., Hunter, E., Cosman, P.: Human body model acquisition and
tracking using voxel data. International Journal of Computer Vision 53(3), 199–223
(2003)
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Abstract. This paper introduces a hand tracking system with a theo-
retical proof of convergence. The tracking system follows a model-based
approach and uses image-based cues, namely silhouettes and colour con-
stancy. We show that, with the exception of a small set of parameter
configurations, the cost function of our tracker has a well-behaved unique
minimum. The convergence proof for the tracker relies on the convergence
theory in stochastic approximation. We demonstrate that our tracker
meets the sufficient conditions for stochastic approximation to hold lo-
cally. Experimental results on synthetic images generated from real hand
motions show the feasibility of this approach.

1 Introduction

Pose estimation for articulated structures such as the human body and hand
is a growing field that has real-world applications. Conceivable uses for such
technology range from surveillance, over HCI, to motion capture. There are
many image-based 3D tracking approaches to date, often tailored for specific
applications, see the surveys [1,2].

There have been notable works on tracking articulated bodies using monocular
images, including [3,4]. However, depth ambiguities from single images do mean
that pose recovery is limited.

Multiple camera views are needed for applications that require a more precise
estimation of the body pose. A stereo pair of cameras is enough for depth re-
covery, but having more cameras reduces ambiguities arising from self-occlusion.
Some approaches in multi-view tracking explicitly extract 3D information. For
example [5] uses volume reconstruction for a voxel-based fitting process. Silhou-
ette fitting is a popular technique employed by many, e.g. [6]. Additional cues
are often used to complement silhouette fitting to make the tracking more ro-
bust. For example in [7], the reconstruction of a 3D motion field is used to help
with the tracking. In [8], motion and spatial cues from images are used to re-
cover displacement in parameter space. In [9], edges, optical flow and shading
information from the hand model are used for tracking.

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 136–151, 2007.
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The evaluation of tracking performance is typically based on ground truth
sequences. These might be pre-rendered sequences or data retrieved from an
alternative source, such as a commercial motion capture system. Whether a
tracker can inherently converge to the ideal pose has largely been empirically
verified, e.g. [10]. A tracker is said to converge to the optimal parameters if
the predicted parameters are close enough to the real ground truth values for
a particular set of test sequences. Works on the theoretical convergence of a
tracker have been lacking in this area. This is understandable as most tracking
systems are complex enough to make this task difficult.

The contribution of this paper is to provide a theoretical framework for prov-
ing tracker convergence. We present a 3D hand tracking system that has a the-
oretical proof for convergence. The tracking system is built to be parallelizable
and employs stochastic approximation techniques. We will show that the track-
ing system locally meets the conditions required for stochastic approximation to
work, and by that virtue, the results on stochastic convergence from stochastic
approximation theory follow.

The paper is organised as follows; Section 2 describes the tracker. Section 3
shows the existence of a unique global minimum for most cases. Section 4 exam-
ines the relevance of stochastic approximation for our tracker and introduces the
sufficient conditions for stochastic approximation. Proof that these conditions
are met locally is also examined. Tracking results are presented in section 5.

2 Tracking System

A stereo pair of images of the hand is acquired by a pair of calibrated cameras.
Using these images, our model-based tracking system estimates the 3D pose of
the hand in a stochastic approximation framework. Points are sampled from
the surface of a fully articulated hand model and projected onto model image
planes. By looking at corresponding pixel coordinates in the real images, a cost
function based on the hand silhouette and the colour constancy assumption is
evaluated. Errors from the cost evaluation are backpropagated as gradients to
the parameter space of the hand model. The gradients are then used to minimise
the cost function. Figure 1 shows the tracking process.

This paper concentrates on showing that this tracker setup is compatible with
the stochastic approximation approach.

2.1 Hand Model

The tracker uses a fully articulated hand model (see figure 2) having 16 joints,
totalling 26 degrees of freedom (DOF). There are 6 DOFs at the palm joint,
defining the global rotation and translation of the hand. Each digit has 4 DOFs to
encapsulate its articulated movement. Rotations at the joints are parameterised
with Euler angles. The skin is modelled by a dense mesh (e.g. acquired from the
3D scanning of a real hand) and is bound to the underlying skeleton via linear
skin blending. Linear skin blending allows sample points taken near the joint
regions to deform in a more realistic manner when the joint is bent [11].
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Fig. 1. Flow diagram showing the components making the tracking system

Fig. 2. Deformable hand model used by our tracker

2.2 3D to 2D Projection Pipeline

This part projects the ith sample point pi on the hand to a model image plane.
Let Aj be the rigid transformation that takes a point in the world coordinates
and transforms it to the jth camera coordinates. Let Kj be the calibration matrix
of the jth camera. Then si,j , the projection of the ith sample point on the jth
image plane is given as

si,j = KjAjpi. (1)

2.3 Cost Function

Assigned to each pixel coordinate si,j is a YUV value I(si,j) ∈ R
3 and a silhou-

ette cost value V (si,j) ∈ R
+. Note that si,j depends on x, where x is the vector

of the 26 hand parameters. Both I and V are dependent on the set of optimal
hand parameters x∗ in the sense that x∗ determines the real image seen by the
cameras. I and V are used in the construction of our cost function Cx∗(x).

Cx∗(x) comprises of two parts, a silhouette cost function Cs(i, x) and a cost
function using the colour constancy assumption Cc(i, x) per sample point i. Let
α be a scaling factor for Cs(i, x). Then the overall cost function Cx∗(x) we wish
to minimise is

Cx∗(x) =
1
N

N∑

i=1

(αCs(i, x) + Cc(i, x)), (2)
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where N is the cardinality of a set of points on the surface of the hand model
that is chosen to be sufficiently dense.

Silhouette Cost Function. Silhouette information is used as a global con-
straint on the region which the projected hand model can occupy. Silhouette
images are obtained from the real images via background subtraction.

The chamfer 5-7-11 distance transform [12] is then applied over the silhouette
image, assigning a distance value V to each pixel based on the pixel’s proximity
to the closest pixel that belongs to the hand silhouette. The silhouette cost
function over j camera views is given by

Cs(i, x) =
∑

j

V (si,j), (3)

Colour Constancy Cost Function. The colour constancy assumption is used
for local fine tuning by resolving pose ambiguities in silhouette information. For
two camera views, it is given by

Cc(i, x) =
1
2
||I(si,1) − I(si,2)||2. (4)

Using a 2-norm for the colour constancy cost function and a 1-norm for the
silhouette cost function is an attempt to make the overall cost function more
robust. When a parameter is far from the optimal value, the silhouette cost
function dominates, causing Cx∗(x) to behave linearly. When a parameter is
close to the optimal value, the colour constancy cost function dominates, and
Cx∗(x) becomes quadratic. Section 3 will show that Cx∗ has a unique global
minimum for almost all possible values of x∗.

3 A Unique Minimum Exists

A unique global minimum for Cx∗ does not exist for all x∗, i.e. each possible pair
of real camera images. As a trivial example, one cannot determine the parameter
values of a joint if the joint is occluded in both camera views. However, we will
show that for a substantial subset of the possible x∗, there is always a unique
global minimum at x∗. We use the term ‘substantial’ to mean that the exceptions
can be described by a finite set of (not necessarily polynomial) equations. Such
exception cases will be highlighted. The following assumptions are used to ease
the analysis:

1. The y-axes of both camera image planes are parallel to each other, but the
x-axes are not.

2. The palm is modelled by a rectangular cuboid and the digits of the hand
are modelled by chains of cylinders. Our proof of proposition 1 will rely on a
suitable choice of sample points. This choice becomes only easier for a more
structured hand model. Hence the proof applies a fortiori to our hand model
(figure 2).



140 D. Chik, J. Trumpf, and N.N. Schraudolph

3. The hand model has a Lambertian surface and has a uniform texture. Hence
the YUV value of a point on the hand is completely determined by the
surface normal and the light direction.

4. Only one light source illuminating from the front.

We also exclude the aforementioned trivial example in the analysis by assum-
ing that all hand segments are at least partially visible in both camera views.

Proposition 1. The cost at the optimal position Cx∗(x∗) = 0. Perturbing x∗ to
x �= x∗ strictly increases Cx∗(x).1

The first part of the proposition is obvious, because at the optimal position, all
the sample points lie in the silhouette and each point on the Lambertian surface
of the hand model will have the same YUV value seen from different camera
views. In the latter part, perturbing x∗ will cause certain parts of the hand to
move. We denote the points on the hand affected by this perturbation as ’active
points’. Figure 3 is the tree of possibilities that can occur for the active points.
We now examine each of these cases in detail.

Perturbation of 

  parameter(s)

At least 1 point has at least

1 new projected position

At least 1 projection lies 

outside the original segment

Exactly 1 projection of at

least 1 point lies outside the

original segment 

(labelled as ’background’)

CASE 6. background is 

another segment of a digit

CASE 1. no point has a  

new projected position

CASE 2.  all projections lie  

in the original segment

CASE 3. all projections of 

at least 1 point lie outside

the original segment

CASE 4. background is   

not in the silhouette

CASE 5. background is   

the palm

 

Fig. 3. Possible scenarios under a perturbation

3.1 Case 1

Eight points that lie in a non-degenerate configuration in Euclidean space
uniquely define the epipolar geometry of the camera pair [13]. Conversely, a
known epipolar geometry uniquely defines the projections of eight points that
1 Note that proposition 1 does not preclude the existence of other stationary points

in the cost function.
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belong to a non-degenerate configuration. Let γ be the set of eight points in
a non-degenerate configuration, chosen from the set of active points on a rigid
segment of the hand. Then, a perturbation will move at least one of the eight
points in γ. Thus, case 1 cannot occur.

3.2 Case 2

We ignore the trivial example of a cylindrical segment rotating around the main
cylindrical axis as this type of movement is not possible for the digits of the
hand without making the palm rotate, which in turn causes other digits to move
outside their original positions.

For a cylindrical segment to lie inside the original region of a given camera
view after perturbation, it can only move in a conic region of the plane spanned
by the end points of the cylinder to the camera’s optical centre. Given that there
are two cameras (see figure 4), the intersection of the two conic planes is the only
region where movement is allowed.

Fig. 4. Foreshortening of a cylindrical segment when the main axis does not lie on the
epipolar plane

This intersection specifies the position of the cylinder uniquely unless the
conic regions lie on the same plane, namely the epipolar plane spanned by one
end of the cylinder (see figure 5, right). If the cylinder’s main axis lies on this
plane, then movements on the plane can cause the resulting projection to lie
within the original segment for both cameras. For convenience, we shall denote
this set of movements as κ.

Pure translational movements on the plane belong to κ (see figure 5, left)
only if the projection of the cylindrical segment is longer than the baseline of
the camera pair. In our setup, the baseline is much longer than all the segments
of the hand, so pure translational movements can be ignored.

A combination of rotational and translational movements on the plane belong
to κ if the projection of the cylinder’s main axis to the camera image plane
is shorter in both cameras after the rotational movement, and the translation
movement only moves the perturbed segment within the original region.
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Fig. 5. Left: A cylinder undergoing a pure translation violates the condition for case 2,
unless the camera baseline is shorter than the length of the cylinder (e.g. 2nd diagram
from the left). The dark yellow area indicates the region where the cylinder can translate
to. Right: Foreshortening in both cameras when the cylindrical segment rotates on the
epipolar plane spanned by a, the centre of rotation.

Without loss of generality, we take the epipolar plane to be the plane spanned
by the x and z axis in the world coordinates. It can be shown that for Cx∗ not to
increase after a rotation, �θ, and a restricted translation, the following equality
must hold:

T1

T1 + l sin �θ
=

T2

T2 + l sin �θ
, (5)

where l is the coordinate of a surface point along the major axis of the cylinder.
Note that for the ith camera,

Ti = ti,x sinαi + ti,z cosαi, (6)

where αi is the rotation angle and ti is the translation vector that transforms a
point from the local coordinates of cylinder to the coordinates of the ith camera.

For the equality to hold (and therefore Cx∗ not to increase), either the per-
turbation is zero (i.e. �θ = 0) or T1 = T2.

Substituting the geometry of camera placement implies

α1 = tan−1(−Dz

Dx
) − θr, (7)

where θr, the rotation angle, and D, the translation vector, are the transfor-
mation parameters that convert points from the local coordinates of camera 1
to camera 2. Hence (7) is the only choice for x∗ that might not cause Cx∗ to
increase.

The same argument can be applied to the palm, as the palm is attached to
the digits, which are cylindrical chains. However, this ambiguity for the palm
can only occur if a) the palm and the digits all lie on the epipolar plane or b)
all digits of the hand are touching their adjacent digits to form a convex shape.
Condition b) ensures that there no gaps between the fingers that would otherwise
lead to case 4 when movement occurs on the epipolar plane.
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3.3 Case 3

By the continuity argument, one can show that it is not possible to move a
hand segment completely off the original segment in both camera views without
causing other segments of the hand to partially move from their original position
or to leave the silhouette. Therefore one can use the arguments in cases 4, 5 or
6 for the other hand segments to show that Cx∗ increases.

3.4 Case 4

If one of the active point projections lies outside the original segment and falls
outside the silhouette region, then Cx∗ increases due to the silhouette cost func-
tion Cs.

3.5 Case 5

Let p1, p2 be the projections of the active point p in the two camera views. p1
is projected to a surface point sc on the original cylindrical segment while p2
is projected onto a surface point sp on the palm. Suppose the YUV value at
p1 is the same as in p2, which implies that the surface normal at sp and sc are
equidistant to the light direction. Then this point will not increase Cx∗ .

However note that p is chosen from a closed set, and the projection of closed
sets remains closed. Therefore the neighbourhood of p will also be projected onto
the palm. We can always choose p′ from this neighbourhood such that the surface
normal at s′c and sc are not equidistant to the light direction. Since the palm is
modelled as a plane on a cuboid, it has a constant surface normal. Therefore p′1
will be different to p′2, and so p′ increases Cx∗ .

The only situation where Cx∗ does not increase is when the light direction
l comes from behind the palm or is orthogonal to the surface normal npalm of
the palm, i.e. l · npalm ≥ 0. In this situation, the palm is completely black. This
can lead to ambiguity as there always exists a closed set of points with different
surface normals on the cylinder that is always black. If p belongs to this set, Cx∗

will not increase as the neighbourhood of points will also be black. One should
note that this situation has been excluded previously in the list of assumptions.

3.6 Case 6

Firstly we assume that none of the active points fall into case 4 or case 5,
otherwise we can use those points instead to show that Cx∗ increases after the
perturbation.

Let p1, p2 be the projections of the active point p in the two camera views. p1
lands on a surface point sc of the original segment c, while p2 lands on a surface
point sd of another segment d. We first take the simple situation where the main
axes of c and d are parallel to the y-axes of both cameras (see figure 6).

Assume that p1 and p2 (and thus sc and sd) have the same YUV value u,
which is not black and is not the brightest YUV value on both cylinders. Also
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Fig. 6. Left: The setup of the simple situation. Right: The cross-section of the setup.
l indicates the projected light direction. The dotted circle indicates the perturbed
cylinder. The lighter regions are parts where the YUV value is greater than u.

assume that the surface normals nc and nd at sc and sd respectively are different.
We know that the light direction is equidistant to nc and nd. This produces the
lighting pattern as seen in figure 6. Points to the right (anticlockwise) of sc on
the cylinder are darker than u while points to the left are lighter than u. This
pattern is reversed on d, where points to the right of sd are lighter than u.
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Fig. 7. The projections of the neighbourhood of p after image rectification. The light
regions are parts where the YUV value is greater than u.

Suppose we examine a square neighbourhood of p in 3D space, visible in both
cameras (see figure 7). Its projection is an affine transformation of the square,
and is different in both cameras. Suppose the two views are rectified. Note that
the bounding lines marking the lighter region do not cross over each other after
rectification. If we account for the fact that one can only sample on the neigh-
bourhood of p in 3D space that belongs to the surface of the perturbed cylinder,
then these bounding lines become curves after rectification of the surface to
cartesian coordinates. As seen in figure 7, one can always choose a point p′ in
the final rectified neighbourhood such that p′1 lands on the lighter region while
p′2 lands on the darker region or vice versa. Hence Cx∗ will increase.

We now generalise to other cylinder configurations. For convenience, we use c
as an example, and denote the band of lighter region as R, the light direction as
l, the bounding line of R that contains sc (or p1 in the projection) as b1 and the
other bounding line in the same image as b2. Rotation of the cylinder around the
z-axis changes the slope of the bounding lines and narrows R as the nc becomes
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Fig. 8. Top: R varying upon different z-rotations. Note the degenerate (3rd) case.
Bottom: Ambiguity is possible if the bounding line matches exactly after rectification.

more aligned to the light direction. Degeneracy D occurs when nc is the surface
normal on c that is closest aligned to the light direction. Then R does not exist.
Note that the light direction determines the particular z-rotation that results in
this degeneracy. As nc rotates away from the light source, R reappears but b2
now flips to the other side of b1 (see figure 8).

A rotation on the x-axis determines the brightest value on the cylinder and
changes the slope of the bounding lines seen in the projection. However the
surface area of R in 3D space remains the same. Degeneracy occurs when an
x-rotation causes nc · l ≥ 0. Then sc and its neighbourhood will be black.

Additionally, given that the projection of the neighbourhood of p is an affine
transformation, it may be possible to construct cases where b1 of one image aligns
with b1 of the other image after rectification (see figure 8), creating ambiguity.
Ambiguity also arises when nc = nd or when D occurs in both cylinders. Then
whether one can choose a p′ that causes Cx∗ to increase will depend on the rate
of curvature change on c, d and the perturbed cylinder. It also depends on the
camera placement. Other than these degenerate cases, one can always choose p′

such that p′1 lands on R and p′2 lands outside of R or vice versa. Note that these
degenerate cases are rare.

4 Stochastic Approximation

Noise is a highly noticeable process and occurs at various parts of the tracking
system. For example there is measurement noise from the camera and discreti-
sation noise in the evaluation of image gradients that are computed using Sobel
masks. Also, we are only sampling a small subset of n � N points from the hand
model to evaluate an approximation of the true cost function. This introduces
sampling noise. For a tracking system to perform adequately, the effect of noise
must be addressed and minimised.

Stochastic approximation [14,15] is a technique for finding the root of a func-
tion f(x) where only noise-corrupted measurements of function values are avail-
able. This can be applied to an optimisation setting like the one in our tracker
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if we set f(x) to be the gradient of our cost function Cx∗(x). Then finding the
root of f equates to finding the critical point (the minimum) of Cx∗ .

Let the random variable Yt(x) be the noisy observation of f(xt), i.e. the gra-
dient of Cx∗(xt) in parameter space, and at be the step size in our optimisation
procedure. Then a possible iterative scheme for stochastic approximation is

Xt+1 = Xt − atYt. (8)

This is the so-called Robbins-Monro method [14,15]. Note that Xt is a random
variable and xt is the actual event of Xt at time t. Xt of (8) converges to x∗ in
mean square and with probability 1, i.e.:

lim
t→∞ E[(Xt − x∗)2] = 0 and P ( lim

t→∞Xt = x∗) = 1, (9)

if the following conditions are met:

1. A bound on the step size at,

∞∑

t=1

at = ∞,

∞∑

t=1

a2
t < ∞. (10)

2. Yt is unbiased,
E(Yt) = f(xt). (11)

3. Yt has uniformly bounded variance in the sense,

sup {V ar(Y (x)) : x ∈ R
K} < ∞. (12)

4. f is well-behaved around x∗ in the sense

inf {(x − x∗)T f(x) : ε < ||x − x∗|| < ε−1} > 0, (13)

for all ε ∈ R, 0 < ε < 1.

The following subsections will demonstrate how our hand tracking system meets
these requirements.

In the classical Robbins-Monro scheme [14], the step size at of the iterate
update (8) is set to q

t for some constant q. In practice, this method may not be
desirable due to its slow convergence rate.

In practice, we use the SMD algorithm [16,17] which tends to converge much
faster. Although there is no convergence proof available yet for SMD, it has
been shown empirically to work well under noisy conditions in many practical
situations. Prior applications of SMD to body/hand tracking work include [18,5].
The following arguments are independent of the chosen optimisation algorithm.

4.1 Yi Is an Unbiased Estimator

Noise from image gradients is unbiased since the Sobel mask used for calculating
image gradients is centred and symmetric. Bias due to camera noise is minimised
as the cameras are calibrated prior to use.
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In addition, bias in Yi heavily depends on the sampling scheme used to eval-
uate the gradient estimates. We are aware that our way of proving condition
(13) in section 4.3 potentially introduces certain requirements/constraints on
the sampling scheme, thereby producing bias. However, this is easily mitigated
by taking more sample points.

4.2 Yi Has Uniformly Bounded Variance

The observed gradients Yi generated by the cost function have a bounded vari-
ance. For the silhouette cost function, the variance in distance estimation is
uniformly bounded by the size of the image. Therefore the gradient estimates
generated by it via finite differences will also be bounded. The variance in Yi

due to the colour constancy cost function is also uniformly bounded since the
range of YUV values at each pixel is uniformly bounded.

4.3 f = �Cx∗ Is Well-Behaved

Condition (13) does not hold globally for all x∗, but we can show it holds locally
for most x∗. To satisfy (13), it is sufficient that f has a zero root at x∗ and that
the Jacobian Jf of f (i.e. the Hessian of Cx∗) is positive definite (i.e. our cost
function Cx∗ has a strict local minimum at x∗). The former part was shown in
section 3. We now show that Jf is positive definite.

The tracker can be viewed as a composite function C ◦ M , where C is the
cost function and M the remaining parts of the tracker. Because Cx∗(x∗) = 0
(proposition 1), the Hessian H of C ◦ M (or the Jf of f) at the minimum can
be rewritten [17] as

Jf = H =
1
N

N∑

i=1

JT
M,iHcJM,i, (14)

where Hc is the Hessian of the cost function and JM,i is the Jacobian of M at
the ith sample point.

Hc is the sum of the Hessian Hcs of the silhouette cost function and the
Hessian Hcc of the colour constancy cost function. Hcc is given as,

HCc =
(

I3×3 −I3×3
−I3×3 I3×3

)
. (15)

Hcs can either be positive definite or zero at the minimum; the latter due to
ambiguity for certain poses of the silhouette. We can ignore the Hcs terms as
they cannot decrease the rank of H . It is sufficient to show that Jf attains full
rank due to Hcc alone.

Jf is at least positive semi-definite since the summands in (14) are positive
semi-definite. Also the rank of Jf is non-decreasing when adding samples since
the summands are added.

As an empirical verification, each frame in the test video sequence was tested
to see if taking an adequate amount of sample points led to the Jf estimate
achieving full rank at the minimum. On average, approximately 100 points were
required for the Jf estimate to achieve full rank.
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Fig. 9. Tracking results at every 10th video frame

5 Tracking Results

The tracker has been tested over a short video sequence of 60 frames (640 ×
480 pixels) that shows the hand extending to grip an imaginary object (figure
9). The sequence contains elements of lateral translation, wrist rotation, and
articulated motion of the digits in the form of gripping. To obtain a ground
truth assessment of the tracker accuracy, the hand model is initially fitted frame
by frame, by eye over the real captured sequence. The parameter values obtained
from this procedure are then taken to be the ground truth. Using these parameter
values, a synthetic sequence is rendered using OpenGL. Tracking performance is
evaluated by running the tracker on the synthetic sequence over G = 50 trials.
The experiment was conducted on a P4 3.4GHz machine.
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Approximately n = 280 active sample points were used to track the moving
hand. The optimisation algorithm was allowed to perform a maximum of 50
iterations per frame. In terms of computational speed, an average of 1.4s were
required to track one frame, of which 0.8s were required for image preprocessing
such as extracting silhouette and calculating image gradients. The remaining
0.6s were spent by the iterations of the optimisation procedure. The code for the
tracker has not been optimised and the parallelizable structure of the system
has not been exploited.

The error measures used to evaluate performance are based on the difference
in distance between actual and predicted joint positions in Euclidean space.
The first error measure used is the overall mean error. Let pk,g and ak be the
predicted and actual 3D positions of the kth joint for the gth trial. Then the
overall mean error is given as

1
GK

G∑

g

K∑

k

||ak − pk,g||, (16)

where K is the total number of joints in the hand model. Figure 10 (left) shows
the tracking accuracy over the test sequence. The overall mean error is given in
Euclidean and image space.

Fig. 10. Left: Overall mean error of the video frames over time. Right: Pass rates for
varying γ values.

To put the error measurements into perspective, the hand model in a relaxed
open palm position can be roughly bounded by a 180 × 100 × 30mm cuboid and
is located approximately 1m from the cameras (roughly bounded by a rectangle
of 220 × 150 pixels in image space). The cameras are pointed towards the hand
in a convergent setup, at an angle of 30◦ from each other. The baseline between
the two cameras is 0.85m.

To classify whether the tracker has irrecoverably lost track of the hand, we
introduce another measure. A tracker is classified as having passed the tracking
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sequence if during the entire sequence, the error distance between predicted and
actual position of each joint is below an error threshold γ. Figure 10 (right) plots
the results for varying γ. The figure also shows that increasing the number of
active sample points improves the pass rate.

6 Conclusion

A 3D hand tracking system has been presented that uses silhouette and the
colour constancy assumption. A theoretical proof of local stochastic convergence
has been provided for the tracker. It shows that except for certain degenerate
hand pose configurations, local stochastic convergence holds. It is possible that
such a system can be generalised to multiple cameras or to track other articulated
structures such as the human body. Experimental results on synthetic images
are promising, although we believe that a more sophisticated sampling scheme
will improve tracking accuracy.
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Abstract. In this paper, we suggest to model priors on human motion
by means of nonparametric kernel densities. Kernel densities avoid as-
sumptions on the shape of the underlying distribution and let the data
speak for themselves. In general, kernel density estimators suffer from
the problem known as the curse of dimensionality, i.e., the amount of
data required to cover the whole input space grows exponentially with
the dimension of this space. In many applications, such as human mo-
tion tracking, though, this problem turns out to be less severe, since the
relevant data concentrate in a much smaller subspace than the original
high-dimensional space. As we demonstrate in this paper, the concen-
tration of human motion data on lower-dimensional manifolds, approves
kernel density estimation as a transparent tool that is able to model
priors on arbitrary mixtures of human motions. Further, we propose to
support the ability of kernel estimators to capture distributions on low-
dimensional manifolds by replacing the standard isotropic kernel by an
adaptive, anisotropic one.

1 Introduction

In recent years, human tracking has emerged as a vivid research area. In particu-
lar 3D human tracking, where one seeks to estimate the pose and joint angles of
a 3D human model from 2D images, has attracted a lot of attention [9]. Having
applications in surveillance and biomechanics, human tracking also serves as a
playground for new machine learning techniques. Due to self-occlusions, inaccu-
rate, corrupted, or missing data, it requires the use of prior knowledge on typical
human poses and movements in order to avoid ambiguous solutions. Moreover,
the solution space generally comprises multiple locally optimal solutions. This
is a great challenge for optimization algorithms if not being supported by pre-
dictions generated from strong priors.
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Consequently, the literature provides numerous works on different learning
techniques that can be used to exploit prior knowledge for human tracking.
These works range from rather simple explicit joint angle limits [19,6], over static
pose priors [17,2], to priors on motion dynamics [16]. Some recent dynamic mod-
els are based on sophisticated nonlinear regression methods including nonlinear
dimensionality reduction [5,20].

Most of these works stick to a maximum a-posteriori (MAP) formulation of
the tracking problem. Given the input image I in the current frame and pose con-
figurations in previous frames χt−1, ..., χt−k, one looks for the new configuration
χt that maximizes

p(χt|I, χt−1, ..., χt−k) ∝ p(I|χt)p(χt|χt−1, ..., χt−k). (1)

While the first factor considers how well a solution χt explains the image data,
the second factor represents the conditional prior probability density of some
pose given the poses of previous frames. One can directly model this prior,
which leads to regression methods. Usually, such methods comprise a parametric
component, which means that they cannot accurately model a prior consisting,
for instance, of running and jumping motions, since the parametric model would
mix up both motion patterns to yield an (unprecise) mean prediction. In order to
handle such cases consisting of multiple motions, one has to employ a mixture of
regressors [8,11,18], which includes many critical hyperparameters and is quite
demanding with regard to optimization.

In this paper, we pursue an alternative strategy. Since p(a|b) = p(a,b)
p(b) , and we

maximize with respect to a, p(b) can be neglected as a constant factor and we
may consider

p(χt|I, χt−1, ..., χt−k) ∝ p(I|χt)p(χt, ..., χt−k). (2)

Here the second factor is the joint prior density of poses in previous frames and
the current one. Such an unconditional probability density can be estimated from
training samples using a Parzen estimator. Since the density is fully nonpara-
metric, it can easily model arbitrary mixtures of motion patterns. The Parzen
estimator only implies the assumption of a locally smooth density. Consequently,
it can capture all smooth densities provided there are enough training samples.

The input space of human motion is rather high-dimensional. For a reason-
able human body model, at least 20 degrees of freedom are needed. Looking
only 4 frames into the past, already implies a 100-dimensional space. It is well
known that estimating wide-spread densities in such spaces with a typical kernel
estimator, would need huge amounts of training data [15]. However, in practice,
this problem is often less severe. This is because high-dimensional spaces are
often only sparsely populated, i.e., the density to be estimated concentrates on
a small subspace, a low-dimensional manifold in the high-dimensional space. In
this paper, we demonstrate that in case of human motion tracking, already the
standard Parzen estimator can deal with a 121-dimensional space.

Nevertheless, this estimator is not optimal for such high-dimensional spaces.
This is due to the fixed isotropic kernel, which does not adapt to the local struc-
ture of the subspace. Hence, the Parzen estimator looses predictive power in
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normal direction to the manifold. This drawback can be circumvented by intro-
ducing anisotropy in the estimation process. Therefore, we propose to replace
the isotropic kernel of the standard Parzen estimator by adaptive anisotropic
kernels. The same concept has been proposed in the context of general density
estimation in [14,21]. Also the work in [4] based on kernel PCA can be inter-
preted as sort of an anisotropic kernel density estimator. However, the latter has
quadratic complexity in the test phase, which is problematic when the number
of training samples becomes large.

2 Anisotropic Kernel Density Estimation

Consider some prior knowledge given by a set of training samples {xi|i =
1, ..., N}. In order to integrate such knowledge into a Bayesian model, one must
estimate a probability density from the samples. In contrast to typical paramet-
ric densities, such as a Gaussian density, which are very restricted in the priors
they can model, this paper is concerned with nonparametric kernel densities. The
classic Parzen-Rosenblatt density estimator employs an isotropic kernel K(x, x′)
with a fixed width h. Given such a kernel, the estimated density reads [1,12,10]:

p(x) =
1
N

N∑

i=1

Kh(x, xi). (3)

A very common kernel is the Gaussian kernel

Kh(x, x′) =
1

(2πh2)
D
2

exp
(

−‖x − x′‖2

2h2

)
, (4)

where D denotes the dimensionality of the data. This density estimator, though
simple, reveals many advantages. Firstly, it can model arbitrary densities and
one can show that in the limit, for N → ∞ and h → 0 adequately, the estimator
converges to the true density [15]. Secondly, the estimator is very transparent. In
contrast to many learning techniques that rely on modeling in an abstract feature
space, the Parzen estimator is easily interpretable. Moreover, it contains only a
single hyperparameter, the kernel width h, which can be estimated efficiently
from the training data via cross-validation or, depending on the application,
by even simpler criteria like average nearest neighbor distance. In contrast to
Gaussian mixture models or related techniques, there is no need to determine
the number of mixture components, which is a difficult non-convex optimization
problem.

As mentioned in the introduction, the main weakness of the Parzen estimator
appears when it is employed in high-dimensional spaces where the support of
the density is located on a low-dimensional manifold. Then it looses predictive
power in normal direction to this manifold due to the fixed isotropic kernel. This
is the motivation for using adaptive, anisotropic kernels leading to an anisotropic
version of the Parzen estimator. Again, the density is a sum of kernels centered
at the training samples
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p(x) =
1
N

N∑

i=1

Ki(x, xi), (5)

where now Ki(x, xi) is the locally adaptive anisotropic Gaussian kernel

Ki(x, xi) =
1

|2πΣi|
1
2

exp
(

−1
2
(x − xi)�Σ−1

i (x − xi)
)

. (6)

Its window width and preferred direction is defined by the covariance matrix Σi.
This covariance matrix is computed locally by means of

Σi = α1 +
N∑

j=1

Kh(xi, xj)(xi − xj)(xi − xj)�, (7)

where α1 denotes the identity matrix scaled by a regularization parameter α
and Kh(x, x′) is the isotropic Gaussian kernel stated in (4).

This anisotropic kernel density estimator has several nice properties. Firstly,
the absolute width of the kernel is locally adaptive. This allows for smaller win-
dows in areas with many training samples, whereas sparsely populated areas can
still be approximated by larger windows. Secondly, the windows have a preferred
orientation in which the kernel size is increased. Since the kernel integrates to 1,
this effect automatically decreases the kernel size in orthogonal directions. Such
an anisotropy is particularly useful to model data on low-dimensional manifolds,
as most of the kernel’s power is focused on the tangential space of the manifold.
In contrast to Gaussian mixture models, there is still no need to determine the
number of mixture components. The estimator can be regarded as a degener-
ate version of a Gaussian mixture, where the number of components equals the
number of training samples. Obviously, this also provides an increased accuracy
in respect to the density’s local structure compared to a Gaussian mixture with
only a small number of components.

The density estimator still imposes only two hyperparameters h and α. These
hyperparameters can be estimated from the training data via leave-one-out
(LOO) cross validation, i.e., one minimizes the following loss function based
on Kullback-Leibler divergence

E(h, α) = − log

(
N∑

i=1

p̂i,h,α(xi)

)
, (8)

where p̂i,h(x) denotes the estimated probability density with parameters h and
α when sample i has been removed from the training set. In the application case
of human tracking, we found that one can simplify the parameter optimization
by setting h to the average nearest neighbor distance of all training samples and
α = h

5 . This is reasonable since training data is obtained via motion capture
systems with a fixed frame rate, i.e., samples always come in larger groups.

Figure 1 demonstrates the qualitative difference between the isotropic kernel
density estimator and the anisotropic one. Having some data points sampled
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Fig. 1. From left to right: (a) Intrinsically one-dimensional density in three-
dimensional space. (b) Density estimate with the conventional Parzen method (ISE
= 12.2 · 10−4). (c) Density estimate with the anisotropic Parzen method (ISE =
9.3 · 10−4).

from the true density (left), the isotropic estimator yields a density estimate
that approximates the true density quite well but lacks the ability to interpolate
in some of the gaps (middle). In contrast, the anisotropic estimator focuses better
on the structure of the density. This is also reflected by the lower integrated mean
square error (ISE) between the true and the estimated density.

3 Kernel Densities in Human Tracking

Density estimators can be a valuable component in an application like human
motion tracking. In this task, we expect a given surface model consisting of sev-
eral limbs that are interconnected by predefined joints. The sought pose configu-
ration χ at each frame consists of a global rigid body motion, represented by the
six parameters of a twist ξ, as well as a number of joint angles Θ = (θ1, ..., θM )�.
Estimation of these parameters at frame t from image data and poses from pre-
vious frames can be regarded in a MAP setting

p(χt|I, χt−1, ..., χt−k) ∝ p(I|χt)p(χt, ..., χt−k), (9)

where the conditional prior density p(χt|χt−1, ..., χt−k) has already been replaced
by the joint density p(χt, ..., χt−k), as explained in the first section of this paper.
The right hand side consists of a data fidelity factor and the prior density of
certain sequences of pose configurations.

3.1 Modeling the Data Fidelity

There are several ways to model the data fidelity, such as keypoint tracking or
silhouette constraints. Since this issue is not the focus of this paper, we stick to
an existing silhouette based method [13], where (9) is expanded to

p(χt, Φ|I, χt−1, ..., χt−k) ∝ p(I|Φ)p(Φ|χt)p(χt, ..., χt−k) (10)
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by introducing the silhouette represented as the zero level of a function Φ : Ω →
R. Maximizing the probability in (10) is equivalent to minimizing its negative
logarithm. With certain model assumptions on the appearance of the object and
background region [13], this yields the energy

E(χt) = −
∫

Ω

H(Φ) log p1 + (1 − H(Φ)) log p2 dx

+λ

∫

Ω

(Φ − Φ0(χt))2 dx − log p(χt, ..., χt−k),
(11)

where H(s) is the step function that distinguishes the object and background
region, p1 and p2 are densities of the intensity in these regions, Φ0(χt) is the level
set function representing the silhouette of the projected model given the pose
χt, and λ = 0.05 is a weighting parameter that steers how much the contour Φ
may deviate from the model silhouette Φ0.

In contrast to many tracking works that use a sampling strategy to minimize
similar energies as the one in (11), we use a gradient descent in Φ and χ, which
yields the next local minimum starting from some initialization χ0. In the track-
ing context, finding the next local minimum can be sufficient, especially if the
model is supported by a prior density that allows for reasonable predictions of
poses in successive frames. For this reason, we now concentrate on the last term
in (11), which comprises this prior density.

3.2 Modeling the Prior Density

For building a prior density, a set of training samples with certain motion pat-
terns is required. A database with a rather large variety of motions is available
at Carnegie Mellon University [3]. We used this database to assemble training
samples for estimating a prior density.

In order to ensure certain invariance properties, and to keep the required
number of samples as well as the dimensionality as small as possible, we arrange
the sample vectors in the following way. Firstly, we restrict the degrees of freedom
of our model to the 29 most important ones. , i.e., 3 dof at each shoulder, 1 dof
at each elbow, 1 dof at each hand, 3 dof at each upper leg, 1 dof at each knee,
2 dof at each foot, and 1 dof at the neck. Together with the global rigid body
motion, this yields a total of 29 dof. Further, since we are interested in invariance
with regard to the location and orientation of the person, we only consider the
joint angles at previous frames, not the global twist. Finally, for keeping the
dimensionality small and nonetheless considering configurations that are several
frames in the past, the time axis is non-uniformly sampled. In detail, we assemble
vectors xi, where the first six components are the twist parameters representing
the rigid body motion between t − 1 and t. The next M = 23 components are
the absolute joint angles in t. There follow successively the M joint angles in
t − 1, in t − 2, t − 5, and t − 10. Similar to the so-called snippets in [7], this
yields training vectors xi of dimension D = 121, from which a density can be
estimated according to Section 2. In case the frame rate of the input sequence
does not match the training sequences, the prior is scaled accordingly.
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3.3 Density Gradient and Pose Prediction

For the minimization of (11) we are not interested in the absolute density, but in
the local gradient of its logarithm. This gradient corresponding to the anisotropic
density estimator in (5) reads:

Ki(x, xi) := exp
(

−1
2
(x − xi)�σ−1

i (x − xi)
)

∂ log p(x)
∂x

= −1
2

∑N
i=1 K(x, xi)Σ−1

i (x − xi)∑N
i=1 K(x, xi)

.

(12)

Note that only the first 6 + M components of ∂ log p(x)
∂x are needed, since the

pose at previous frames is fixed. Starting from some point x0 and ignoring the
data fidelity term, gradient ascent will converge to the local mode of the density
in the (6 + M)D subspace, i.e., the most likely pose configuration in a local
neighborhood given the poses at previous frames. In combination with the data
fidelity term, the result is the local maximum a-posteriori solution given the
image data and the prior density.

In some cases, one is indeed interested in the local mode of the density alone,
starting from some motion vector x0. In human tracking, this situation arises
when predicting the pose in a successive frame, irrespective the image data, which
may be unreliable without a good hypothesis of the pose in the new frame. For
prediction, it is beneficial to estimate a density where the absolute joint angles
at t in xi are replaced by relative angles between t − 1 and t. This prevents
predictions far from the tracked motion in case the training data are sparse and
rather dissimilar from the tracked motion.

4 Experiments

Our experiments demonstrate that kernel density estimators in general, but in
particular the one based on anisotropic kernels, are well suited to model dynamic
motion priors in human tracking. Firstly, Figure 2 and a video in the supple-
mentary material show that one can generate an enduring cyclic motion from
the anisotropic density. For this motion generation, we simply provide a short
sequence of poses. Starting the gradient descent (12) from the last such pose, and
ignoring the image-driven part, yields an enduring running motion. This means,
from previous poses alone, the density can predict a reasonable succession of
poses like a regressor would do.

An important challenge in human tracking are monocular sequences. Since
only few limbs are visible in a single view, the problem is generally undercon-
strained and prior assumptions, such as the suggested prior density, are needed
for a unique solution. Figure 3 shows the tracking result for a standard test
sequence1. The synthesized views confirm that the estimated 3D pose is very

1 The sequence is available at www.nada.kth.se/∼hedvig/data.html
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Fig. 2. Synthesis of a cyclic motion from the density estimated from one (or multiple)
training motions. Only the left and right knee angles are depicted.

Fig. 3. Tracking result for a monocular sequence, where the density has been estimated
with anisotropic kernels. Center right: Input image with extracted contour. Bottom
row: Synthesized view generated from the tracked pose.
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Fig. 4. Top row, from left to right: Tracking result for the sequence in Figure 3,
but using the isotropic kernel density estimator. Results are not as good as in the
anisotropic case. Rightmost: Without any motion prior, tracking fails already after a
few frames. Bottom row: Synthesized view generated from the tracked pose.

8

Fig. 5. Tracking curves of the left and right knee. Left: Anisotropic kernel density.
Right: Classic kernel density. The isotropic kernel, due to its weaker predictive power,
leads to a hopping motion, as the left and right leg are partially interchanged.

accurate thanks to the prior density estimated from two standard and one exag-
gerated walking sequences. In contrast, the isotropic kernel estimator in Figure 4
yields results that explain the 2D image data very well, but since the density is
less distinct, the estimated pose is not as good as with the anisotropic kernel. As
Figure 5 and the video in the supplementary material show, the isotropic kernel
density estimator partially mixes up the left and the right leg. The rightmost
image in Figure 4 shows that replacing the prior density by some static pose
prediction fails completely. Due to the the weak prediction, the gradient descent
runs into a suboptimal local minimum and not even consistency with the 2D
image data can be ensured.

Partial occlusions are another challenge in human tracking. Figure 6 demon-
strates the robustness of the proposed technique in the presence of severely
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Table 1. Mean error and standard deviation of knee and elbow joints between tracking
results of the jogging sequence in Figure 6 and the outcome of a marker-based tracking
system (ground truth)

Setting mean error std. dev.

0 boxes 4.01◦ ±3.3◦

20 boxes 5.47◦ ±4.7◦

40 boxes 5.71◦ ±4.5◦

additional samples, 40 boxes 6.13◦ ±4.9◦

walking samples only, 20 boxes 39.58◦ ±35.3◦

isotropic kernel density, 0 boxes 3.64◦ ±2.4◦

Fig. 6. Tracking of a jogging sequence with 40 occlusions randomly placed in each
image. Only one out of four camera views is shown. For the whole sequence, see the
supplementary online material. Top row: Tracking result. Despite the substantially
disturbed image cues (see contour), reasonable poses are computed. Bottom left:
Contour used for estimating the pose. Bottom right: Prediction of the pose in a new
frame (black) relative to the previous frame (gray) by means of the prior density.

corrupted image data. 40 occluding boxes have been randomly added to the
sequence. In contrast to pixel noise, image data is not only missing, but even
misleading, since the occluding boxes create false object boundaries like real
occlusions. The contour shown in Figure 6 demonstrates this negative effect on
the contour extraction. The prior density estimated from 9 different running and
jogging motions, which were subsampled to yield a total of 606 points, keeps the
solution close to a jogging motion and, hence, allows for successful tracking.
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Fig. 7. Tracking of the jogging sequence with 20 occluding boxes and only samples
from a walking motion being available for density estimation. The image contains few
information on the arms. Hence, the arm pose is hallucinated from the walking prior.
The legs, however, are tracked well, despite the unfitting prior.

We also investigated whether the image/prior tandem is able to generalize to
sequences where the motion seen in the image does not perfectly fit to any of
the prior motions. Figure 7 shows a result where the density has been estimated
only from samples of a single walking sequence. Due to poorly constrained image
data, the arms reflect the walking motion of the prior. The legs, though, fit well
to the jogging motion seen in the image. This shows that the prior can be voted
down by clear image data.

For getting a better insight in what happens in the high-dimensional space,
Figure 8 depicts on the left the training data consisting of 9 running and jogging
motions projected into 2D space via multidimensional scaling. In blue one can
see the trajectory of the tracked jogging sequence in this space. Clearly, the
pure running prior has a very simple structure. In contrast, the bottom figure
shows the situation when additional motions are added to the prior. Learning
such priors is a problem for many techniques, especially for typical regressors,
which can only model functions. Kernel density estimation, however, handle such
situations in a very natural way without any need to adapt the methodology.
Hence, tracking the jogging motion in Figure 6 with such more general training
data is not a problem.

Table 1 compares several experimental settings of the jogging sequence quan-
titatively by showing the mean error of the results. Ground truth has been
provided by parallel tracking with a marker-based system. Tracking with the
more general prior is almost as good as with the special running prior. Interest-
ingly, the isotropic kernel density estimator yields a higher accuracy than the
anisotropic density estimator in this sequence. The arm pose in all training pat-
terns does not fit well to the tracked arm motion. Since the anisotropic kernel
leads to more concise density estimates, it also tends to a stronger prior. This
explains the better result of the isotropic estimator in this case, as we kept the
weighting between image and prior data fixed. The large error of the result with
the walking prior emerges from the large impact of the wrong elbow angles. For
the knee joints alone, one obtains an average error of only 5.29◦.
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Fig. 8. Training samples (black dots) and tracked pose (blue dots) for the jogging se-
quence. Points have been projected to 2D via multidimensional scaling (MDS). Top
Left: Training set consists only of running and jogging motions. Bottom: Other mo-
tions, such as walking, jumps, leaps, cardwheels, flips, and break dance, have been
added to the training set. The sample distribution becomes very irregular in the 2D
projection. Top Right: Zoom into the part of the more general prior that is relevant
for tracking the jogging motion.

Finally, Figure 9 shows a highly dynamic handspring sequence. Without the
ability to predict the rough pose at a successive frame, such a motion is hard to
track. With the anisotropic kernel density estimate, however, we obtain a rather
accurate result.
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Fig. 9. Tracking of a handspring with four camera views. See the video in the supple-
mentary material for the whole sequence.

5 Conclusions

We have introduced the use of kernel density estimation as a transparent way
to model motion priors in human tracking. In order to cope with the high-
dimensional nature of the input space, we proposed density estimation with
anisotropic kernels. They are especially appropriate when the density concen-
trates on a low-dimensional subspace. We suggested a Bayesian tracking frame-
work that makes use of such an anisotropic density estimator by combining
the prior density with observation probabilities derived from the image data. A
broad experimental evaluation showed the main properties of such a tracking
technique. In particular, the prior density is able to support the tracking in case
of missing or corrupted image data, even when there are only few, mildly fit-
ting training samples. Moreover, as it is a nonparametric technique, it can easily
model multiple motions. Future work will concentrate on appropriate data struc-
tures that allow for an efficient sublinear computation of densities from many
thousand training samples.
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Abstract. This paper presents a solution to the problem of tracking
people within crowded scenes. The aim is to maintain individual object
identity through a crowded scene which contains complex interactions
and heavy occlusions of people. Our approach uses the strengths of two
separate methods; a global object detector and a localised frame by frame
tracker. A temporal relationship model of torso detections built during
low activity period, is used to further disambiguate during periods of
high activity. A single camera with no calibration and no environmental
information is used. Results are compared to a standard tracking method
and groundtruth. Two video sequences containing interactions, overlaps
and occlusions between people are used to demonstrate our approach.
The results show that our technique performs better that a standard
tracking method and can cope with challenging occlusions and crowd
interactions.

1 Introduction

Visual surveillance systems are commonly placed in large areas of high traf-
fic such as in airports, rail stations and shopping centres. Tracking individuals
within crowds remains a difficult problem due to the complex interactions and
occlusions that occur. This paper presents an approach to tracking individuals
and retaining object identity through occlusions and object interactions, within
a single camera. Most existing methods of tracking individuals, in the area of
visual surveillance, involves the segmentation of foreground objects from a mod-
elled background. These methods often fail when tracking an individual in a
crowded scene since individuals cannot be easily segmented in isolation from the
background. There are two categories of techniques to aid this problem; frame-
by-frame trackers are highly accurate for scenes with little or no occlusion. While
object detectors work well at recognizing specific objects in individual frames.
Therefore the method proposed within this paper is designed to use both and
take advantage of the strengths of each.

There have been many possible solutions presented with regard to the problem
of tracking multiple objects, which can categorised as either single or multiple
camera approaches.

1.1 Multiple Camera Tracking

The use of multiple wide baseline cameras allows simpler occlusion reasoning
and can allow for a 3D environment to be built of the scene through camera

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 166–179, 2007.
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calibration. This area has seen significant research and some success due to the
easier conditions. However this paper uses a single camera, therefore a couple of
significant papers are presented here. Fleuret et al [1] uses the information from
multiple cameras to produce a probabilistic occupancy map based on the dynam-
ics and appearance models of the objects. Dynamic programming is then used
to track the multiple objects through significant occlusion and lighting changes.
Khan et al [2] use overlapping cameras to learn when objects should be visible,
to build up relationships between cameras. This allows the system to predict the
new location of an object that leaves a camera’s field of view due to occlusion.

1.2 Single Camera Tracking

Although very promising results have been presented through the use of mul-
tiple cameras, there are large practical restrictions on having multiple cameras
covering large scale installations due to cost. In addition, a single camera allows
for simple and easy deployment. Therefore, a number of algorithms have been
proposed to track objects on a single camera. A blob-based method like that
proposed by Isard and MacCormick [3] is one solution. This uses a background
segmentation and appearance model within a Particle Filter framework to track
an unknown number of people. Linking blobs together and learning their rela-
tionships is used by Bose et al [4] to track multiple interacting objects. Particle
Filters are also used by Okuma et al [5] in conjunction with a boosted detector
to help remove false particles in the filter to track fast moving ice hockey players.
The dynamics of objects can be used with a Kalman Filter [6] to track objects
that have near constant velocity, as proposed by Xu et al [7] within a football
context or to track vehicles as presented by Boykov and Huttenlocher [8].

Through the use of appearance, the accuracy of tracking can be significantly
increased. Giebel et al [9] uses shape, texture, and depth information from the
image within a Particle Filter Bayesian framework, to track using learnt spatio-
temporal object shapes. Comaniciu et al [10] uses a metric derived from the
Bhattacharyya coefficient as an appearance similarly measure and optimises the
tracking with a Mean Shift procedure. This copes with low resolution and partial
occlusion, and can be extended with a Kalman Filter to use the velocity of the
objects to improve tracking. Our approach fuses segmentation, object detection
and object appearance together using dynamic programming to overcome pe-
riods of uncertainly during occlusion. Furthermore we demonstrate how priors
on the detector can be built during periods of low activity and used to further
improve tracking and occlusion handling. Nillius et al [11] built a graph of all
interactions between football players for a 10 minute sequence. Then they use
Bayesian Inference based on the expected locations of players on the pitch to
join up and separate areas of interactions into separate paths through the graph.

This paper is organized as follows. Section 2 gives an overview of the system,
section 3 explains the object detector and how it was trained and how priors on
detection formed. How the object tracks are formed is in section 4 and how they
are combined together is presented in section 5. With results and a conclusion
presented in sections 6 and 7 respectively.
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2 Experiment System Overview

Following the recommendations by Perez et al [12] the colour space used to rep-
resent object appearance is Hue-Saturation-Value (HSV). Since HSV introduces
some degree of illumination invariance, it is well suited to cope with the lighting
changes that occur in non uniformly lit areas.

First a prior of the reappearance locations over time of torso detections is
learnt. The torso detector is then applied to every frame to provide “seed” po-
sitions of visible individuals. Each seed is represented as an appearance model
that is tracked over consecutive frames using a Mean Shift [10] tracker. Track-
ing stops when there is a marked difference in the current object’s appearance
to that of the appearance of the original seed. This is repeated for all objects
detected in each frame, resulting in sequences of short tracklets. The optimum
path through these tracklets is found through a Viterbi style dynamic program-
ming algorithm to find the best trajectory through the scene individuals. Where
a model based on the spatial reappearance of detections over time is used to
constrain the trajectory.

3 Torso Detector

In a crowded scene with overlapping people, traditional techniques such as a
blob-based background segmentation cannot be used. In addition, while people
are overlapping and interacting, much of the body outline is occluded. However,
with the camera positioned above head height as is often the case, the head and
shoulders are often visible, even in a crowd. Therefore, a torso detector is used
to produce the seed locations of objects to be tracked. The detector is based on
the one presented by Mikolajczyk et al [13]. The recognition technique is based
on a codebook representation where appearance clusters built from edge based
features are shared among several object classes. The features of the image, are
arranged in an efficient tree type hierarchical design. Where the basic edge based
features can then be shared by several object classes. By clustering the features
they are used to represent an object class, which in this case is a human torso.
The use of a hierarchical clustering detection allows for minor occlusion of edge
features of the torso. A detector trained to detect faces would be unsuitable as
often faces are not looking directly at the camera, and thus would cause a failure.
Likewise a full body detector would be unsuitable as often parts of the body are
heavily occluded. An example frame from the sequence of where a face or full
body detector would fail is shown in figure 2 where people are facing away from
the camera and have part of their body shape occluded.

In order to train the detector, 1200 torso examples were used, The positive
training set contained examples of people looking in arbitrary directions. The
negative was made up of non people images sauch as landscapes and buildings.
Figure 1 shows the response by the detector to the video sequence used. A
threshold was chosen at 400 false positives. This is far higher than is usual
in the object recognition and classification but allows for a greater number of
detections for the harder objects such as people walking away from the camera
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Fig. 1. This shows an ROC curve for the Torso detector used with the sequence of a
crowded scene

Fig. 2. This shows a frame in a sequence showing the main Torso detections. Note
there are both true positive and false positive detections.

or who have part of their outline occluded. This is acceptable as the false positive
detections are discarded as outliers to the motion and appearance models and
are ignored. Each detection has a rectangular kernel that is centred on the torso
of a person with a bounding box. The height of the kernel is then used as a weak
heuristic to estimate the total size of the person to cover their whole body, and
the kernel’s height size is adjusted accordingly.

3.1 Learning Torso Detection Relationships

Over time, people follow similar routes and speeds on specific cameras, this
can be used to build a predictive motion model. Using the torso detections, a
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relationship between the location and time of the reappearance of future torso
detections can be formulated. This can be used to predict future torso positions
and therefore reduce false positive detections in a video sequence and is used
with the predicted Mean Shift tracker locations in section 4 to reinforce strong
possible tracks. The spatial and temporal relationship between torso detections
is learnt during periods of low activity when detection is at its most reliable. The
x and y distance difference between detections over time is modelled, together
with the frame difference between the detections. An eight hour sequence of video
is used to learn the model, each detection is compared to previous detections
with respect to their reappearance period and x, y difference to the original
detection. A unit increment with a in-Parzen window blur is centred on the x
and y difference between the two detections at the specific period time. For a
set of J torso detections Diε{D1, ...DJ} Equation 1 shows the frequency of bins
in the histogram representing the reappearance of torso detections.

f =
J∑

j=1

J∑

i=1

G((xj − xi, yj − yi, tj − ti), Iσ2) where 0 ≤ (tj − ti) < T (1)

Where i is the current torso detection and j is all the previous detections. xj −xi

and yj − yi are the difference in position in both x and y respectively between
detections j and i. t is the time of the detection, with T set as a maximum
reappearance period to limit the temporal length of the prior, this is commonly
100 frames. G(V ε�3, Iσ2) represents a 3D gaussian kernel positioned at V with
spherical co-variance σ2. This is repeated for all detections in the sequence, to
allow a single torso detection to be modelled over T frames without any new
information. Given a torso detection Di its prior reappearance probability over
time can be modelled by equation 2

p(Dtj |Dti) =
f

i|j
t

J2 (2)

Fig. 3. Figure (a) shows the conditional probability of a torso detection given a de-
tection that occurred 5 frames ago in the centre. Figure (b) shows the conational
probability of a new torso given a detection occurred 100 frames ago in the centre.
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Figure 3 shows the reappearance probability of a detection after (a) T = 5
frames and (b) T = 100 frames. Notice how this encodes domain knowledge for
the camera, as the slight diagonal trend corresponds to the off centre placement
of the camera and therefore the trend for people to move diagonally. By 100
frames there is a more dispersed intensity area, this is due to the increased
uncertainty of predicting further into the future.

4 Forming Object Tracks

For each torso detection a tracker is initialised to form a short tracklet. Short
tracklets are used, as within crowded scenes frame-by-frame tracker will often fail
due to heavy occlusions. The tracker is terminated when it is determined that it
is no longer tracking the original object. The tracking system takes all the torso
detection locations, with the aim of extending their trajectory further through
the sequence. The area within the object’s Kernel is used to form an appearance
model( a colour histogram), K∗ . The objects change in movement over the
sequence is tracked over time using a Mean Shift tracker with Kalman Filter
prediction. A Kalman Filter is used in conjunction with the Mean Shift with
the assumption that generally people walk with a constant velocity. This allows
dynamics to be introduced to the Mean Shift which otherwise only optimises
tracking based upon a local moment of a colour distribution. A constant-velocity
model with white noise drift is assumed for the Kalman Filter. The Kalman
Filter predicts for each new frame the initial Mean Shift search region. This is
optimised through iterations of the Mean Shift procedure until convergence and
the Kalman Filter is then updated with this converged measurement, and the
process repeated on the following frame. This is continued until some termination
criterion is met.

4.1 Track Termination Criteria

Although the Mean Shift with velocity prediction will cope with minor occlusions
or lighting changes, large scale appearance changes to the kernel of the tracked
object can cause Mean Shift to fail. Therefore a termination criteria is applied,
to determine when the Mean Shift kernel has failed and is no longer tracking
the original object. If multiple short but significant tracks of the same object are
found, these can then be combined together to produce the full trajectory. The
termination criteria is based on a learnt likelihood ratio. Every 25 frames the
reference appearance model for the Mean Shift track K∗ is updated, subsequent
frames are then compared to this appearance model, with a measure of similarity.
The similarity measure is the likelihood ratio of the image within the track’s
kernel Kt at frame t being more similar to the appearance model of the track,
K∗, than not similar to the appearance model, this is shown in equation 3.

L(Kt|K∗) =
P (Kt|K∗)
P (Kt|K∗)

(3)
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Fig. 4. A, shows all the trajectories from the seeded mean shift tracker of a crowded
video sequence, B shows the trajectories, where the tracks have been terminated using
the termination criteria in section 4

where P (Kt|K∗) is the probability of the kernel Kt being the appearance model
for the track. This is found through a cumulative probability, shown in equation 4

P (Kt|K∗) =
δ(Kt,K∗)∑

i=0

Fi (4)

Where δ(Kt, K∗) is the Bhattacharyya similarity coefficient between Kt and K∗
and is shown in equation 5 and FK

i is the normalised frequency histogram of the
Bhattacharyya coefficient over a number of ground-truthed object sequences.

δ(Kt, K∗) =
m∑

u=1

√
Ku ∗ K∗ (5)

The threshold of 0.5 is applied to the likelihood ratio as this allows tracks to
continue until the track is more likely to not be the reference model. At this point
the trajectory track is terminated, forming a short tracklet, {St start, ..., St end} of
that person. Where St is the state at time t represented by the colour appearance
model (colour histogram) and motion model (Kalman filter state). P (Kt|K∗) is
compute is a similar method, though negative groundtruth examples are used to
form the frequency histogram Fi in equation 4. Figure 4 shows how the tracks
are significantly reduced once the termination criteria is applied.

4.2 Kernel Scale Adaption

Within the Mean Shift kernel tracking proposed by Comaniciu [10], there is a
simple scale adaption technique that adjusts the kernel size based maximising
the Bhattacharyya coefficient for different kernel sizes. This adapts the scale
of the kernel well for sequences with little or no occlusions, although as the
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occlusion level increases the overall tracking performance drops. This is because
the optimised scale doesn’t take into account that part of the person could be
occluded, and will therefore only optimise on the visible part of the person.
This can cause misleading and incorrect scale adaption. Within this work there
is no need for an adaptive scale within the Mean Shift tracker as the torso
detector is used over many scales and the short tracks, therefore as the person
increases in size the scale in the torso detection will increase this ensures the
trajectories bounding box will adapt in size as required. This means that the
overall trajectory of an object has a linear approximation to scale changes when
the short tracklets are recombined in section 5.

5 Combining Tracklets into Trajectories

The Mean Shift kernel tracker produces short tracklets for each person visible
within the video sequence. Each person will have multiple tracklets at any one
time, and the aim of this section is to find the optimum trajectory through the
complete sequence. Each tracklet Sτ = {St start, ..., St end} form a partial row in
the state matrix S between the time indexes t start and t end. The objective is to
find the optimal path through this state matrix that maximises the likelihood of
the trajectory for the object SREF . This is found using three similarity measures
and the learnt detection reappearance model from section 3.1. The appearance
similarity between the State appearance and the Reference appearance model is
found using the Bhattacharyya similarity coefficient 5.

LRef (S(t)|S(REF )) = δ(St, SREF ) (6)

This provides a constraint ensuring the trajectory will stay visually similar to
the original person’s reference image. Between frames t and t+1 the appearance
similarity between the states is computed using the Bhattacharyya similarity
coefficient 5.

Lapp(S(t)|S(t − 1)) = δ(St, St−1) (7)

A motion model is computed for each state trajectory adding a non appearance
based constraint.

LKF (S(t)|S(t − 1)) = MH(St, St−1) (8)

The Kalman Filter [6] in the Mean Shift kernel tracking in section 4 computes
predicted positions Sτ , t end + n allowing each tracklet to be artificially ex-
tended. n is typically set to 4 seconds, i.e. 100 frames. The Mahalanobis similar-
ity measure MH is used to find the difference in position between the predicted
state positions and current state positions. The detection reappearance model
P (Dtj |Dti) from equation 2 is used as a prior to constrain the other similarity
measures. The likelihood of the state at frame t is computed from the path in
frames t to t − T .

Lloc(S(t)|S(t − 1), ..., S(t − T )) =
T∏

i=1

P (Dt|Dt−i) (9)
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Fig. 5. A visualisation of the Trellis diagram for find the lowest cost path through the
video sequence

Dynamic programming is then used to select the optimal path that maximises
the objective function.

Φ(l) = max
τ

{LRef (Sτ (t)|S(REF ))︸ ︷︷ ︸
Ref. Appear.

Lapp(Sτ (t)|Sτ (t − 1)︸ ︷︷ ︸
State Appear

LKF (Sτ (t)|Sτ (t − 1))︸ ︷︷ ︸
Motion

Lloc(S(t)|S(t − 1), ..., S(t − T ))︸ ︷︷ ︸
Learnt prior

}Φt−1(τ)
(10)

Where there are τ possible states for a frame. This can be visualised as a trellis
diagram, as shown in figure 5. There are 4 state tracks shown in figure 5, with
the SREF selected as the starting image of the person to track. Then at each
time interval t, all possible paths from the current state are examined and the
cost is maximised to find the next state based on appearance and motion models.
The recursive algorithm in equation 10 maximises a single best path. Therefore
should two or more trajectory states maximise to the same destination state, the
state transition with the highest livelihood will use that destination state. The
remaining trajectories will reevaluate the the remaining states, and repeat the
process of the maximising the state transitions. This allows multiple trajectories
within the state transition trellis design while achieving multiple near maximum
best paths through it.

6 Experiments

This section shows the tracking results on people walking and interacting in
an enclosed wide indoor corridor. A single surveillance style PAL resolution
camera is used to capture two video sequences at 25fps. A conventional low cost
camera is typically used, with a poor colour response and higher pixel noise
levels. A number of benchmarked data sets including the CAVIAR [14] and
PETS [15] video sequences were examined to test this technique on. However
it was found these were not challenging enough as they often don’t contain
crowded scenes. Therefore two new sequences were groundtruthed and used,
these are available on the internet [16]. The first sequence consists of a five of
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people walking towards and away from the camera. There is overlap between
the individuals and complete occlusions occur within the sequence. The second
video is similar but many of the seven individuals in the sequence stop mid
way through the sequence and there are a greater number of interactions and
occlusions. This is designed to show the limitations of motion based trackers
such as the Kalman Filter, and appearance based trackers such as Mean Shift.
Both sequences are very challenging due to a number of reasons. The lighting
used is non uniform, this provides a challenge for the mean shift tracker and
torso detector. There is a large field of view causing a large scale variation as
people move along the corridor, and in addition the camera is mounted only just
above head height causing many occlusions.

Our approach is compared with the Mean Shift algorithm [10]. The Results are
presented both qualitatively, with bounding boxes indicating the people tracked
and quantitatively. To assess performance the Euclidean distance error between
the centre of the groundtruth’s bounding box and that of the computed tra-
jectory is calculated. The percentage of overlap between the groundtruth’s and
computed trajectories bounding box gives an indication of correct scaling and
accuracy of tracking individuals.

Figure 6a shows the euclidian error for Mean Shift and our tracklet tracker
with and without the torso prior. All techniques have similar initial tracking er-
rors. Then the main area of occlusion occurs as indicated by the shaded area on
Figure 6. After this the euclidian error for the Mean Shift tracker and tracklet
tracker without prior increase. While the tracklet tracker with prior is consistent
with error around an average of 40 pixels. This is a relatively low mean error
considering the sequences are on full PAL 720x560 resolution. Figure 6b shows
the mean percentage overlap, where again the mean shift and the tracklet tracker

Fig. 6. Video 1: Figure (a) shows the mean Euclidean distance difference per frame
for our approach with the learnt prior and without and also Mean Shift (less is better).
Figure (b) shows the mean overlap per frame for our proposed approaches with and
without the prior and Mean Shift (more is better).
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Fig. 7. Video 1: A comparison between how well three techniques correctly label
tracked people through the sequence

without the prior decrease in value after the heavy occlusion has occurred. While
our tracklet tracker with prior has the highest overlap percentage at the end of
the seqeunce.A graph of the number of people correctly labelled through the
sequence is shown in figure 7. It can been seen that initially all methods track
well, however after the heavy occlusion the mean shift fails dramatically and
only tracks one person correctly by the end of the sequence. This is confirmed
by figure 8, here a visual comparison of 4 frames in the same video sequence is
presented. Looking at frame 298 the Mean Shift has correctly labelled only one
person, while our tracklet tracker with a torso prior labelled all 4 correctly. The
long 200 frame occlusion of the person who is in the bottom left of frame 2485
in figure 8, makes it impossible to track them through the whole sequence. The
results for video 2 are shown in figure 9 shows the mean per frame Euclidean
and percentage overlap. The graphs are similar to those for video 1; our track-
let tracker and Mean Shift work well before the occlusion, however after the
occlusion the Mean Shift errors increase and starts to fail. While our approach
of the tracklet tracker with prior keeps tracking correctly with controlled pixel
error. However at the start of the sequence our tracklet tracker error is higher
than Mean Shift. This is due to the limitation of the current torso tracker. For
challenging people that are far from the camera facing away from the camera,
the torso detector has a lower true positive rate. This means there are less track-
lets to form the trajectory of the chosen people and the best path trajectory
doesn’t exist in the states. In addition our approach works by linking short but
significant tracklets to form a single trajectory through the sequence. However
if some of the people are continually occluded for very long periods through the
sequence, there will be no significant tracklet to link together and this will cause
the tracking to fail.



Multi Person Tracking Within Crowded Scenes 177

Fig. 8. Video 1: A comparison between our technique and a Mean Shift Tracker and
the groundtruth over 4 frames

Fig. 9. Video 2: A comparison of the mean Euclidean distance difference (figure (a) ,
less is better) and percentage overlap (figure (b) more is better) between our approaches
and a Mean shift tracker

7 Conclusion

We have described an approach to combine the strengths of a torso detector to
locate people, with those of a Mean Shift tracker for frame to frame correspon-
dence. A model of the spatial reappearance of the torso detector over time has
been used to model the motion of people. The Mean Shift tracker produces short
tracklets which are recombined using a Viterbi style approach to produce a full
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trajectory through the video. This approach leads to an increased robustness to
occlusions and interactions between people in a crowded scene.

We have tested this on two difficult groundtruthed sequences of people inter-
acting and occluding within a large corridor. Our results are consistently better
than that of a Mean shift tracker which fails to cope with heavy occlusion. These
promising results are possible using a single uncalibrated low cost surveillance
type camera. While in the future results could be further improved through en-
hancing the detection of people facing away from the camera. Also by addressing
the issue of people who are heavily occluded for long periods.

Acknowledgements

This work is funded under the EU FP6 Project ”URUS”, IST-045062.

References

1. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multi-Camera People Tracking
with a Probabilistic Occupancy Map. IEEE Transactions on Pattern Analysis and
Machine Intelligence (to be published, 2007)

2. Khan, S., Javed, O., Shah, M.: Tracking in Uncalibrated Cameras with Overlapping
Fields of View. In: 2nd IEEE Workshop on Performance Evaluation of Tracking
and Surveillance, IEEE Computer Society Press, Los Alamitos (2001)

3. Isard, M., MacCormick, J.: Brammble: A Bayesian Multiple Blob Tracker. In: Proc.
IEEE International Conference on Computer Vision and Pattern Reconition, vol. 2,
pp. 34–41 (2001)

4. Bose, B., Wang, X., Grimson, E.: Detecting and Tracking Multiple Interacting
Objects Without Class-Specifc Models. Technical report MIT-CSAIL-TR-2006-027
Massachusetts Institute of Technology (2006)

5. Okuma, K., Taleghani, A., DeFreitas, N., Little, J., Lowe, D.: A Boosted Particle
Filter. In: Proc. European Conference on Computer Vision (2004)

6. Welch, G., Bishop, G.: An Introduction to the Kalman Kilter. Technical Report
95-041, University of North Carolina at Chapel Hill (1995)

7. Xu, M., Orwell, J., Jones, G.: Tracking Football Players with Multiple Cameras.
In: IEEE International Conference on Image Processing, IEEE Computer Society
Press, Los Alamitos (2004)

8. Boykov, Y., Huttenlocher, D.: Adaptive Bayesian Recognition in Tracking Rigid
Objects. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp.
697–704. IEEE Computer Society Press, Los Alamitos (2000)

9. Giebel, J., Gavrilla, D., Schnorr, C.: A Bayesian Framework for Multi-cue 3d Ob-
ject Tracking. In: Proc. European Conference on Computer Vision (2004)

10. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-Based Object Tracking. IEEE Trans-
actions Pattern Analysis and Machine Intelligence 25, 564–577 (2003)

11. Nillius, P., Sullivan, J., Carlsson, S.: Multi-Target Tracking - Linking Identities
using Bayesian Netweork Inference. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, IEEE Computer Society Press, Los Alamitos (2006)



Multi Person Tracking Within Crowded Scenes 179

12. Perez, P., Hue, C., Vermaak, J., Gannet, M.: Color-Based Probabilistic Tracking.
In: Proc. European Conference on Computer Vision (2002)

13. Mikolajczyk, K., Leibe, B., Schiele, B.: Multiple Object Class Detection with a
Generative Model. In: Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition, IEEE Computer Society Press, Los Alamitos (2006)

14. CAVIAR: Context Aware Vision using Image-based Active Recognition, EC
project/ist 2001 37540, http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

15. PETS: Performance Evaluation of Tracking and Surveillance,
http://www.cvgcs.rdg.ac.uk/slides/pets.html

16. Crowded groundtruthed video sequnces,
http://personal.ee.surrey.ac.uk/Personal/a.gilbert

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://www.cvgcs.rdg.ac.uk/slides/pets.html
http://personal.ee.surrey.ac.uk/Personal/a.gilbert


Joint Appearance and Deformable Shape for

Nonparametric Segmentation
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Abstract. This paper deals with region-of-interest (ROI) segmentation
in video sequences. The goal is to determine in one frame the region
which best matches, in terms of a similarity measure, a ROI defined in
a reference frame. A similarity measure can combine color histograms
and geometry information into a joint PDF. Geometric information are
basically interior region coordinates. We propose a system of shape co-
ordinates constant under shape deformations. High-dimensional color-
geometry PDF estimation being a difficult problem, measures based on
these PDF distances may lead to an incorrect match. Instead, we use an
estimator for Kullback-Leibler divergence efficient for high dimensional
PDFs. The distance is expressed from the samples using the kth-nearest
neighbor framework (kNN). We plugged this distance into active con-
tour framework using shape derivative. Segmentation results on both
rigid and articulated objects showed promising results.

1 Introduction

Region-of-interest (ROI) segmentation is to determine in a frame the region
which best matches, in terms of a similarity measure, an ROI (user-) defined in
a reference frame. A similarity measure is a distance between two data sets, the
reference data set and a candidate, or target, data set. In the discrete frame-
work, each data set is composed of one data vector per pixel of the region. The
similarity measure does not necessarily make use of a one-to-one match between
the pixels of the regions.

Two aspects of similarity measures between the reference region and a target
region can be distinguished: radiometry, which indicates if the regions have sim-
ilar color distributions, and geometry, which correlates where these colors are
present in each region. Similarity measures based solely on radiometry include
distances between color histograms or probability density functions (PDF), for
instance, mutual information [1], Kullback distance [2]. Not accounting for the
information of where a given color was present in the region allows to be more
flexible regarding the geometric transformation between the reference region and
the target region. However, it increases the number of potential matches and then
the risk for the tracking to fail after a few frames. This can be avoided by us-
ing a geometry-aware similarity measure. The absence of geometric information
implies that several candidate regions can appear as good matches.

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 180–195, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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As an alternative, geometry can be added by means of a motion model used
to compute the point-wise residual between reference and candidate regions.
A function of the residual can serve as a similarity measure, classically, the
sum of squared differences (SSD), functions used in robust estimation [3] such
as the sum of absolute differences (SAD), or statistical measures. An example
where the energy is defined on a first order approximation of the point-wise
residual, the optical flow constraint, in segmentation is [4]. However, in presence
of complex motions or homogeneous zones, the residual term loose its efficiency.
The geometric constraint can be soften, e.g., by combining an energy based on
a color distribution and an other based on optical flow [5]. An alternative is to
add a shape prior to the energy [6,7].

Another approach defines a joint geometric/radiometric PDF, for example in
bounding box tracking [8]. Geometric data add a spatial location information to
the radiometric PDF. In bounding box tracking [8], the choice of good spatial
coordinates is straightforward, for instance Cartesian coordinates of the box.
However, defining spatial coordinates for deformable regions is an issue. One can
think on defining a coordinate system embedded in the region, shape coordinates.
Shape coordinates can be canonical Cartesian coordinates or polar coordinates.
The latter would better handle rotations of some parts of the shape. The polar
coordinates mapping of regions is a simplified version of the recent results for
shape recognition in [9]. However, the last two shapes coordinate change when
the region goes under deformations. A third shape coordinate based on the
distance map, already applied in medical imaging [10], can be considered. This
shape coordinates suit very well for medical imaging as the intensity is constant
over the level sets of the regions. To handle non medical videos, one can extend it
adding a nearest contour coordinate, the arc length of the nearest point (NAL).
This approach is motivated by the fact most of the shape coordinates and shape
correspondences algorithms in the literature [11] are based on correspondence of
the contour. By combining both distance map and contour correspondence with
NAL, we extend this model to region correspondence. These region coordinates
are constant under many object deformations.

Shape coordinates are added to radiometric data in a single joint high-
dimensional PDFs. Although there are efficient methods [12] to estimate mul-
tivariate PDFs using Parzen windowing, limitations appear as the dimension of
the domain of definition of the PDFs increases. This is described in [12] as the
curse of dimensionality: as the dimension of the data space increases, the space
sampling gets sparser. Dilating the Parzen window is not a satisfying solution
since it implies an over-smoothing of the PDFs. Consequently, PDF-based simi-
larity measures might not be estimated accurately enough for segmentation. To
overcome this high-dimension problem, a PDF estimator based on a k-th near-
est neighbor (kNN) search was proposed [13,14] and used to define a consistent
entropy estimator [15]. This PDF estimator is not differentiable, and it is an
issue in numerous segmentations algorithms. However the shape derivative tool
circumvents this issue [16].
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The first contribution of this paper is to apply in segmentation a joint radio-
metric/geometric, color-spatial [8]. We propose as geometric data, shape coordi-
nates, adapted for deformable regions. Recent segmentation methods also tried to
combine multiple features (spatial data, gradient, wavelets coefficients, motion)
to perform accurate segmentation [5]. The PDFs are then high-dimensionals and
some assumptions have to be made (e.g.: independence between components,
gaussian assumptions). The second contribution of this paper is to compute
the Kullback-Leibler divergence, between high-dimensional PDFs using the kNN
framework. This new estimator is efficient for high-dimensional PDFs [15,14]
with very weak assumptions on the PDFs. The third contribution of this paper is
to plug these methods in an active contour framework using the shape derivative
tool [16]. This high dimensional Kullback distance is not differentiable, however
using the shape derivative, no direct differentiation of the Kullback distance is
needed and we can bypass this difficulty.

In this paper we use the high dimensional statistical measure estimation based
on the kNN framework proposed in [17]. This study in tracking did not require
PDF estimation. Here we build the kNN framework using both kNN PDF esti-
mation and statistical measure estimation. Indeed, in this paper we compute the
shape derivative of the criterion proposed in [17] and this derivative requires the
underlying PDF estimation of the statistical measure. Moreover the work [17]
was presented on rigid shapes (rectangles) with Cartesian coordinates. This pa-
per takes into account deformable shapes and a new system of coordinates had
then to be defined.

This paper is organized as follows. Section 2 defines Kullback distance on geo-
metric/radiometric data. Section 3 defines geometric data for deformable shapes.
In Section 4 we plug this distance in a segmentation method through active con-
tours. Section 5 presents the kNN approach and the kNN-based expression of the
Kullback-Leibler distance. Section 6 provide some results of segmentation per-
formed on two standard sequences. Finally Section 7 concludes and gives some
perspectives.

2 Similarity Measures with a Soft Geometric Constraint

Let Iref and Itarget be, respectively, the reference frame in which the ROI ΩR is
(user- ) defined and the candidate, or target, frame in which the region ΩT best
matches the ROI, in terms of a given similarity measure, is to be searched for.
This search amounts to finding the region ΩT which minimizes

J(ΩT ) = D(Iref(ΩR), Itarget(ΩT )) (1)

where D is a similarity measure, or distance, between the two sets of data. ΩT

and ΩR are subsets of IR2 (or subsets of INN2 in the discrete framework).
For clarity, the reference data set Iref(ΩR) will be denoted by R and the tar-

get data set Itarget(ΩT ) will be denoted by T . Thus, R(x) resp. T (x), x ∈ ΩR

resp. x ∈ ΩT , represent corresponding samples from their respective region.
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Traditionally, R(x) and T (x) are a triplet of color components in a given color
space, e.g., RGB or YUV.

Two aspects of similarity measures can be distinguished: radiometry which
indicates if the regions have similar colors and geometry which correlates where
these colors are present in the regions. Measures based solely on geometry, do
the point-wise difference between the reference region and the target region. An
example in segmentation is based on the Taylor expansion of this point-wise
difference, the optical flow constraint [4].

Measures based solely on radiometry include distances between the probability
density functions (PDF) of the color information in the regions, for example
mutual information [1], Hellinger distance [16].

A widely used distance, in segmentation in [2], is the Kullback divergence1

DKL(T, R) =
∫

IRd

fT (α) log
fT (α)
fR(α)

dα

= −H(fT ) + H×(fT , fR) (2)

where fT is the PDF of data set T , fR is the PDF of data set R, H is the
Shannon entropy and H× is the cross entropy, also called relative entropy or
likelihood.

The geometric constraint can be soften by expressing it in the PDF-based
approach, i.e., by adding geometry to the original radiometric data [8]. Formally,
the PDF fR(α) resp. fT (α) is built on α = T (x) = {Itarget(x), x} for x ∈ ΩT

resp. on α = R(x) = {Iref(x), x} for x ∈ Ωref . x are spatial features, based on a
coordinate system. In the next section, we will discuss which coordinate system
could be used and which best fit for our method.

3 Spatial Features

First spatial features choice are the canonical Cartesian coordinates of the im-
age. It needs though to be compensated by the motion of the region. A complex
motion model is hard to define (for example for articulated objects) and compu-
tationally expensive to estimate. Instead we propose to define coordinates em-
bedded in the region, named shape coordinates. In this way, estimation motion
is skipped as shape coordinates change when the region deforms. The segmenta-
tion and motion deformation (hidden in the shape coordinates) are then jointly
solved.

Most shape coordinates for shape correspondence are based on contour [11].
Here we aim at defining interior region coordinates. In practice, shape coordi-
nates should have three properties. First they should map efficiently the region,
i.e. each point should have a unique representation in the shape coordinates.
Second, the shape coordinates should remain constant when the region goes
1 Kullback-Leibler divergence is a not a distance, as it is not symmetric. The sym-

metrised Kullback divergence DKL(T, R)+ DKL(R,T ) is a distance. For clarity, we
presented all the calculus with the classic Kullback-Leibler divergence.
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under deformation. Third property, computational speed must remain reason-
able, as the spatial features are computed at each iteration of the active contour
evolution.

3.1 Region Cartesian Coordinates

One can define cartesian coordinates local in the region, for example, we choose
the bounding box of the region. Inside the bounding box, we define canonical
cartesian region coordinates {xregion, yregion} .

This method, Kullback with Cartesian Geometric data (KL-CG) has
5-dimensional features: {Y, U, V, xregion, yregion}. The last two features are plotted
on a example on Fig. 1.

This model should perform well for rigid objects, and is the one used for
bounding box tracking in [8].

3.2 Region Polar Coordinates

We now consider polar coordinates. We define as the origin of the polar coordi-
nates the barycenter of the region. When the object is articulated, the radius co-
ordinate should remain constant, while the angle coordinate should measure the
deformation. On the opposite, with the previous region Cartesian coordinates,
both coordinates changes, in particular articulated members under rotation far
from the barycenter (for example feet of a human body).

This approach could be extended to conformal mapping of a shape to a cir-
cle [9]. But for computational considerations, as the spatial features will have
to be computed at each iteration of the active contour framework, we preferred
basic polar coordinates.

This method, Kullback with Polar Geometric data (KL-PG) has 5-dimensional
features: {Y, U, V, rregion, θregion}. The last two features are plotted on a example
on Fig. 1. The discontinuity visible on this figure is due to the transition between
the angles −π to +π.

3.3 Distance Map and Contour Correspondence

As mentioned in the previous section, both Cartesian and polar coordinates on
the region change when the region goes under deformations. In this section, we
define shape coordinates constant under shape deformations. First, we propose
to use the distance map d

d(x) = min
t∈[0,1]

||x − C(t)||2 (3)

where C : [0, 1] → IR2 is a parametric curve representation of the contour.
This model has been proposed in medical images [10] where region of interest

have uniform intensity on the level sets of the distance map. This model is in
general not true on non medical videos. We propose to complete the distance map
with another spatial feature: a contour correspondence. We chose the simplest
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Fig. 1. Spatial features components {x, y}, first component red color, second compo-
nent green color: {0, 0} black, {1, 0} red, {0, 1} green, {1, 1} yellow. From left to right:
region cartesian coordinates (CG), region polar coordinates (PG), distance Map and
NAL (DG).

contour correspondence coordinate, arc length of the nearest point on the contour
l (NAL).

tx = arg min
t∈[0,1]

||x − C(t)||2 (4)

l(x) =
∫ tx

0
||C′(t)|| dt (5)

Combining distance map coordinate and a nearest contour coordinate, we
have a unique representation of each point in the shape. We must define an
origin C(0) on the parametric contour to define the NAL. We used as reference
point the highest point of the curve in the image. This reference point can
move with rotating or articulated objects but it is not the case in the videos
used in our experiments. There are many works in the literature to define more
efficient contour correspondences between two deformable shapes [11]. However,
we did not yet implement these techniques, and even with this basic contour
correspondence, our shape coordinates can handle many types of deformations.

This method Kullback with Distance Map and NAL Geometric data (KL-DG)
has 5-dimensional features: {Y, U, V, d, l}. The last two features are plotted on
a example on Fig. 1. The two discontinuities visible on this figure are on the
skeleton of the region as the NAL changes. The other discontinuity is on the top
of the head as it is the origin of the arc length.

Finally, this method can be seen as a joint distribution of radiometric data
with a shape prior. While shape priors energy are often internal as they do
not depend on the image (they contains no radiometric information). Shape
priors geometrically match two regions [6] and the idea is to add radiometric
information in this geometric match.
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3.4 Weighting Between Components

One could claim our method is parameter-free as the use of joint probability al-
lows no difficult weightings considerations (in comparison with quadratical error
of different physical quantities). However, one may still want to define weightings
between color and spatial components. On one hand, if there is knowledge on
the rigidity on the object, one can increase the weightings on the spatial com-
ponents, allowing more variability in color changes. On the other hand, if the
object is articulated, one can lower the weighting of spatial components, relying
more on color distributions.

To tune this parameter, we rescale spatial features, shape coordinates, into
the interval [0, 1], and we rescale the color features on the interval [0, α], α being
the weighting parameter. Moreover, for the DG coordinates system, if we assume
the region is a circle of radius r, the maximum of the distance map would be
r while the maximum of the NAL would be 2πr. To circumvent this, we divide
the NAL coordinates by 2π.

4 Segmentation Using Active Contours

4.1 Estimation of Entropy and Probability Distributions

The energy used is the KL divergence. As developped in Eq. (2), it is a sum of
two entropies. In this section we present a method to estimate entropy.

ΩU defining dataset U = {I(x), x} for x in ΩU (U being either T or R, ΩU

being either ΩT or ΩR) has the following Shannon entropy:

H(U) = −
∫

IRd

fU (α) log fU (α) dα (6)

Segmentation energies are usually defined by an integral on the region, see for
examples [4,5,1,6,16].

To be coherent with these methods, we use the Ahmad-Lin estimate [18],
named resubstitution estimate of entropy

ĤAL(fU ) = − 1
|U |

∫

ΩU

log fU (U(x)) dx (7)

where |U | is the area of ΩU . Since the actual PDF fU is unknown, it must be
estimated. A common practice is to use the non-parametric, Parzen windowing
method.

f̂U (s) =
1

|U |

∫

ΩU

Kσ(s − w)dw (8)

where Kσ is a multivariate, Gaussian kernel with standard variation, or band-
width, σ.
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4.2 Shape Derivative

The energy to be minimized through active contours is the Kullback diver-
gence (2). In addition, as the distribution of the object can be characterized
by a subregion inside the object, we propose to add a maximum area constraint
with a weighting λ.

J(T ) = DKL(T, R) − λ.|T | (9)

To differentiate this energy we write its expression (7).

J(T ) = − 1
|T |

∫

ΩT

log fT (T (x)) dx

− 1
|T |

∫

ΩT

log fR(R(x)) dx − λ.|T | (10)

We have an energy which has many dependencies with the region ΩT . We
propose to compute the shape derivative [16] on ΩT in the direction of a vector
field V . We have then:

dJr(T, V ) =
∫

∂ΩT

A(s) V (s).N(s)ds (11)

with

A(s) =
1

|T |(DKL(T, R) − log fT (s) + log fR(s) ) + λ

+
1

|T |2
∫

ΩT

1 − Kσ(T (x) − T (s))
fT (T (x))

dx (12)

and where N is the inward unit normal of ∂ΩT .
The minimization of the energy is then performed using the active contour

technique [4,16] using B-splines. An initial contour is iteratively deformed ac-
cording to V chosen such that derivative is negative or equal to zero at each
iteration. The minimum is reached when the derivative is equal to zero. The cor-
responding shape of the active contour represents the segmentation. The shape
derivative leads to the following velocity:

V (s) = −A(s)N(s) (13)

One can note that Eq. (12) requires the PDF estimation of a 5-dimensional
joint geometric/radiometric data set (three color components plus two spatial
components) of the reference region and the target region: R(x) and T(x). The
sparsity of this high-dimension data space makes the PDF estimation, and there-
fore the similarity measure estimation, even more problematic. Let us present a
new framework for computing high dimensional PDFs and Kullback divergence.
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5 The k-th Nearest Neighbor (kNN) Framework

5.1 Parzen Windowing Limitations

The Parzen method for PDF estimation makes no assumption about the actual
PDF. Consequently, the estimated PDF cannot be described in terms of a small
number of parameters, as opposed to, say, a Gaussian distribution defined by
its mean and variance. This method is therefore qualified as non-parametric.
It approximates the density at sample s with the relative number of samples
k(s)/|U | falling into the open ball of volume v centered on s

f̂U (s) =
k(s)
v |U | . (14)

Let us remind U is either R or T, and |U | = |ΩU | is the number of samples of
U . The first difficulty in using the Parzen method is the critical choice of the
window size [12]. Another difficulty is due to what is informally called the curse
of dimensionality. As the dimension of the data space increases, the space sam-
pling gets sparser. Therefore, less samples fall into the Parzen windows centered
on each sample, making the PDF estimation less reliable. Dilating the Parzen
window does not solve this problem since it leads to over-smoothing the PDF.
In a way, the limitations of the Parzen method come from the fixed size of the
window: the method cannot adapt to the local sample density. The k-th nearest
neighbor (kNN) framework provides an advantageous alternative.

5.2 kNN Estimation of PDFs

In the Parzen method, the density of U at sample s is related to the number
of samples falling into a window of fixed size σ centered on the sample (see
Eq. (14)). The kNN method is the dual approach: the density is related to the
size of the window σ necessary to include its k nearest neighbors. Let us note
σ(s) = ρk(U, s) the distance to the k-th nearest neighbor of s among the data
set U .

This variable size estimate is called locally adaptive, it can be performed it
two different ways. The first way is called balloon estimate [14]:

f̂U (s) =
1

|U |
∑

x∈ΩU

Kσ(s)(s − U(x)) =
k

vd |U | ρd
k(U, s)

(15)

where vd is the volume of the unit ball in IRd. Size of kernels σ(s) = ρk(U, s)
depends on the sample point s where f̂ is evaluated. It can be reduced to a simple
expression when Kσ(s) is a uniform kernel. The second way is called sample point
estimate [14]:

f̂U (s) =
1

|U |
∑

x∈ΩU

Kσ(U(x))(s − U(x)). (16)

Size of kernels σ(U(x)) = ρk(U, U(x)) depends on each sample points U(x).
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We will consider the balloon estimate as it is the underlying PDF estimate in
the kNN expression of entropy. However, we will discuss later why the sample
point estimate can be useful. Although the distance is usually computed in the
Euclidean sense, other distances can be used. Let us remind that the data are a
subset of IRd with d = 5 The choice of k appears to be a much less critical than
the choice of the window size in the Parzen method. Actually, when the kNN
approach is used for parameter estimation, k must be greater than the number
of parameters and such that k/|U | tends toward zero when both k and |U | tends
toward infinity. A typical choice is k =

√
|U |.

5.3 Kullback Distance Estimation

Based on the Ahmad-Lin entropy estimator (7) and the kNN PDF estima-
tion (15), a consistent and unbiased entropy estimator was proposed with a
proof of consistency under weak conditions on the underlying PDF [15] The
kNN estimate of the Shannon entropy is equal to

ĤkNN(fT ) = log(vd (|T | − 1)) − ψ(k)
+d μT (log ρk(T \{.})) (17)

where μT (g) is the mean of g for all the values taken over data set T where ψ is
the Polygamma function Γ ′/Γ and where T \{.} indicates that the k-th nearest
neighbor is search for each samples in T excluding the sample itself. Note that
estimator (17) does not depend on the PDF f̂T . Informally, the main term in
estimate (17) is the mean of the log-distances to the k-th nearest neighbor of
each sample.

In the same framework, the cross entropy of two data sets R and T can be
approximated by

Ĥ×,kNN(fT , fR) = log(vd |R| − ψ(k)
+d μT (log ρk(R)). (18)

Note again that estimator (18) does not depend on any PDF and that its
main term is the mean of the log-distances to the k-th nearest neighbor among
data set R of each sample of T . Finally, since the Kullback-Leibler distance is
a difference between a cross entropy and a Shannon entropy (see Eq. (2)), the
kNN estimate of this distance is equal to

DKL(T, R) = log
|R|

|T | − 1
+ d μT (log ρk(R))

−d μT (log ρk(T \{.})) (19)

where T \{.} indicates that the k-th nearest neighbor is search for in T excluding
the sample itself.
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5.4 Simplification in Active Contours Using kNN

Using for fR and fT the kNN expression given in (15) and for DKL the expression
given in (19), expression (12) reduces to:

A(s) = − d

|T | [μT (log ρk(R)) − μT (log ρk(T ))

− log ρk(R, s) + log ρk(T, s)] + λ (20)

+
1

|T |(1 − 1
k

∑

x∈ν(s,T )

(
ρk(T, x)
ρk(T, s)

)d

).

where ν(s, T ) is the support of Kσ(s), which in the kNN framework, is a uniform
kernel centered in s of size ρk(T, s) (15). Moreover one can note that choos-
ing the sample point estimate expression (16) instead of the balloon estimate
expression (15), the last row in (20) would be equal to zero. However both sim-
plified expression of Kullback distance (19) and simplified expression of PDF
estimate (15) are only valid for balloon estimate of PDFs.

Finally, kNN version of A(s) (20) is plugged in the Eulerian derivative (11)
and evolution equation (13). Let us remind active contour energy (9) and active
contour evolution equation (13) required a high dimensional joint PDF over
the data. Here, we presented a new framework to estimate both active contour
energy (9) and active contour evolution equation (13) without explicit estimation
of the PDF but with a reduced expression using distances to nearest neighbors.

6 Experimental Results

In this section we will compare two methods, the Kullback distance computed
through kNN but with no geometry kNN-KL-NG (no spatial features, R and T are
3-Dimensionals) and the Kullback distance computed through kNN with geome-
try in a general sense kNN-KL-G (spatial features, R and T are 5-Dimensionals),
geometry being either cartesian kNN-KL-CG, polar kNN-KL-PG or distance map
with NAL kNN-KL-DG. k of the kNN framework is set to

√
|T |.

The reference histograms for kNN-KL-NG and kNN-KL-G are built over a
region ΩR on frame 1 for “Erik” Fig. 2, frame 74 for “Football” Fig. 3 using a
manual segmentation. The goal is to find the corresponding region ΩT in frame 6
for “Erik”, frame 75 for “Football”. We initialize the segmentation with a circle
far from the solution to show the stability of the method.

First we present results on sequence “Erik” Fig. 2, size 288×352. This sequence
shows a translating man over a static background. This sequence was chosen
because its motion is very simple, while it is composed of many colors which will
lead to complex color histograms. This sequence is considered as rigid, we tuned
the weighting α presented in Section 3.4 to 1. This means, an error of 1 unit in
geometry is similar to an error of 1 color intensity. Some parts of the background
have similar colors than Erik. Therefore kNN-KL-NG includes it as object while
kNN-KL-G detects their spatial features are not correct so it does not include
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Fig. 2. Segmentation on sequence “Erik” on frame 6: (from left to right and top to
bottom) region of interest ΩR manually segmented on frame 1, initialization of the
segmentation, results ΩT of segmentation with method kNN-KL-NG, results ΩT of
segmentation with method kNN-KL-CG,results ΩT of segmentation with method kNN-
KL-PG,results ΩT of segmentation with method kNN-KL-DG

it as object. These results did not use maximum area constraint, λ = 0. As
expected for rigid objects, all spatial features kNN-KL-CG, kNN-KL-PG and
kNN-KL-DG led to exactly the same results, which is the correct segmentation.
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Fig. 3. Segmentation on sequence “Football” on frame 75: (from left to right and top
to bottom) region of interest ΩR manually segmented on frame 74, initialization of
the segmentation, results ΩT of segmentation with method kNN-KL-NG, results ΩT

of segmentation with method kNN-KL-CG,results ΩT of segmentation with method
kNN-KL-PG,results ΩT of segmentation with method kNN-KL-DG

Results are presented on sequence “Football” Fig. 3, size 288 × 352. This
sequence shows fast and articulate motions. This sequence is considered as non-
rigid, we tuned the weighting α presented in Section 3.4 to 10. This means, an
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error of 10 units in geometry is similar to an error of 1 in color intensity, a good
motion variability is allowed in this sequence. Some parts of the public on the
upper part of the video have the same colors as the player. kNN-KL-G excludes
again them as their spatial features are not correct while kNN-KL-NG includes
them in the segmentation. The Kullback distance kNN-KL-G slightly increase
when taking the legs of the player as their are articulated (error of registration in
the spatial features). However, as the geometric constraint is soft, it increases less
than with segmenting the public, the player is then correctly segmented with the
help of maximum area constraint. Here the results with different spatial features
are not the same. kNN-KL-CG has difficulties to properly segment the legs of
the play as it is nonrigid (spatial features have changed). kNN-KL-PG is a little
better as the spatial features change only on one spatial feature components (the
angle). Finally kNN-KL-DG gives the best results as the spatial features on the
reference frame and on the target frame represent the same pixels.

The maximum area constraint was tuned to segment the whole object in
all cases. kNN-KL-NG and kNN-KL-CG required a parameter λ = 2.10−4 to
ignore color variability for kNN-KL-NG, and to ignore spatial features variability
for kNN-KL-CG. It segmented all the football player but it led to an over-
segmentation in some parts of the image. kNN-KL-PG only needed a parameter
λ = 1.10−4 to segment all the football player, leading to less over-segmentation.
Finally kNN-KL-DG needed a parameter λ = 5.10−5 to segment all the football
player, leading to accurate segmentation.

Finally we discuss about the robustness to the bandwidth parameter k of
kNN. k =

√
|T |, setting k to 2n

√
|T |, from n = −2 to n = 2, the absolute

difference between the segmentation masks and the one generated is less than
3.7% × |T |. The segmentation algorithm is robust to the bandwidth k, changing
from 1 time to 16 times its initial value, while segmentation methods based on
Parzen techniques observed an high sensitivity to the bandwidth parameter.

7 Conclusion and Future Works

The results presented for this method show the applicability of kNN framework
in active contour segmentation. It shows that it can be particularly efficient in
high dimensional cases such as joint feature-spatial segmentation. We proposed
new shape coordinates for deformable regions. The results tend to show that for
rigid object, shape coordinates are not an issue. On the opposite, for deformable
regions, our region shape coordinates compares favourably to other region coor-
dinates systems.

We only compared soft geometric to no geometric, and different shape coor-
dinates. One could expect comparisons with classical Parzen techniques for seg-
mentation. First, a comparison would not be fair as the model presented in [10]
is only valid for medical images as discussed in Section 3.3. Second, this model
uses only grayscale and distance map feature, namely 2-dimensional features.
This model is acceptable for Parzen, but when using more high dimensional fea-
tures (5-dimensional features in our model) Parzen techniques suffer the curse
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of dimensionality while kNN can handle it. We refer to [14] for full details on
this subject.

Finally our method compares favorably to state of the art, on sequence “Foot-
ball”. In this paper we compared to a radiometric method. Geometric methods
often require a motion estimation step. An affine motion model cannot model the
high level of deformations of the articulated player. In addition the sequence has
motion blur and there are fast motions. As a consequence, optical flow estimation
is also very difficult on this sequence.

Future works will improve our shape coordinates by using a more efficient
contour correspondence, shape contexts [11], to combine it with a distance map
coordinate, and explore other shape coordinates such as Free Form deforma-
tions [19]. We will also apply this high dimensional framework to combine other
multiple features [5] (motion, texture, wavelet coefficients).

References
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Abstract. In this paper we present a novel tool for body-part segmenta-
tion and tracking in the context of multiple camera systems. Our goal is
to produce robust motion cues over time sequences, as required by human
motion analysis applications. Given time sequences of 3D body shapes,
body-parts are consistently identified over time without any supervision
or a priori knowledge. The approach first maps shape representations
of a moving body to an embedding space using locally linear embedding.
While this map is updated at each time step, the shape of the embed-
ded body remains stable. Robust clustering of body parts can then be
performed in the embedding space by k-wise clustering, and temporal
consistency is achieved by propagation of cluster centroids. The contri-
bution with respect to methods proposed in the literature is a totally
unsupervised spectral approach that takes advantage of temporal cor-
relation to consistently segment body-parts over time. Comparisons on
real data are run with direct segmentation in 3D by EM clustering and
ISOMAP-based clustering: the way different approaches cope with topol-
ogy transitions is discussed.

1 Introduction

Human motion analysis is an important topic in computer vision with many
applications in surveillance, human machine interface and animation, among
others. Such analysis, when based on image observations, relies on the ability
to extract body motion information from images. This problem has received a
considerable attention from the community over the last decades [1]. The ex-
isting approaches mainly differ in the amount and type of information that is
known in advance. Model based approaches, e.g. [2,3,4], assume a known, often
kinematic, model for the human body and recover parameters of this model in
a joint space using image evidence. However, the joint space is generally high
dimensional, making the search for model parameters difficult without adequate
initializations, an issue sometimes solved by stochastic sampling. Learning based
approaches, e.g. [5,6,7,8] directly relate visual information to learned body con-
figurations, without the need for an intermediate model. While solving the ini-
tialization issue, these approaches are anyway limited by the classes of examples
used for training.

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 196–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Robust Spectral 3D-Bodypart Segmentation Along Time 197

In opposition, approaches have been proposed that directly infer body poses
for markerless motion capture from multiple image cues, in particular volume
sequences [9,10,11]. This includes skeletonization methods that recover the in-
trinsic articulated structure of 3D shapes, either directly in 3D, e.g. [12], or in
an embedded space, e.g. [13,14]. A nice feature with embeddings is the ability
to map 3D shapes onto low-dimensional manifolds in higher dimensional spaces,
thus naturally revealing the intrinsic structure of an articulated shape. A critical
issue, though, is the presence of topological ambiguities raised by self contacts
(joint hands, for instance). This was noticed by Sundaresan and Chellappa [14]
who used an a priori graphical body model to resolve these ambiguities.

In this work, we propose an approach that segment body-parts in 3D body
shape sequences. We consider this an intermediate step towards a robust human
motion analysis framework without any a priori information nor learned ex-
amples, as demonstrated in this paper. Our approach uses spectral embedding
to map shapes onto low-dimensional manifolds which are then clustered into
body-parts. One crucial innovation is that we take advantage of the correlation
between information along time sequences to segment in a consistent way. Our
goal is to guarantee robustness, in particular to topological ambiguities that oc-
cur over time. Recent attempts to extend nonlinear reduction to spatio-temporal
data [15,16] provide indeed elegant solutions to enforce temporal relationships
when embedding time sequences. Unfortunately, such relationships are not easily
identified with the dense shape representations of moving bodies that we con-
sider. Instead, we propose to enforce temporal consistency through clustering
in the embedded space, where clusters are remarkably stable under articulated
motions and there propagated over time. Although several spectral embedding
methods could be, in principle, considered for that purpose [17,18], we chose
Local Linear Embedding [19] (LLE) which exhibits better performances in our
specific scenario. LLE is fast, maps a shape to a low-dimensional manifold in
the embedded space and is already partially robust to topology changes as it
depends on the local structure of the data.

The rest of the paper is organized as follows: after motivating the choice of
clustering in time in an embedding space (Section 2), we present each step of
the algorithm in Section 3: the use of k-wise clustering to segment the embedded
cloud (3.1), starting from detected branch terminations (3.2); how to propagate
cluster seeds over time to ensure consistency (3.3) and merge/split them ac-
cording to the current topology of the body (3.4). In an extensive experimental
section (5) we present results on unsupervised segmentation over a large number
of dense voxelset sequences, we compare them with segmentation in 3D by EM
clustering, show how to learn the parameters of the algorithm from the data,
and discuss the way different approaches cope with topology transitions.

2 Motivation: Clustering After Locally Linear Embedding

Embedding techniques are interesting for clustering purposes because of their
characteristic of “amplifying” the separation between different parts of the same
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3D shape. This is true in particular for Locally linear Embedding (LLE) [19],
but also holds for other spectral methods like Laplacian Eigenmaps.

LLE is an unsupervised learning algorithm which computes d-dimensional
embeddings Y of sets of input points X = {xi, i = 1, .., N} living in a nonlin-
ear manifold, while preserving their local structure (i.e. the distances between
each point and its k neighbors). Groups of local neighborhoods belonging to
a same part of the shape are “redistributed” by the algorithm along distinct
chains. Figure 1-middle shows how legs and arms of a human body are much well
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Fig. 1. How LLE (middle) and ISOMAP (right) map the same 3D cloud (left) for the
same number of neighbors k = 13. Arms (lower appendices) are indistinguishable in
the ISOMAP space.

.

separated in the LLE embedding space than in 3D (left). This is much less true,
however, for methods (like ISOMAP [18], right) based on geodesic distances.
Clustering in the embedding space is then typically easier than in 3D.

LLE, in particular, has some edges over other embedding schemes: for obvi-
ous reasons it is less sensitive (with respect to geodesic-based embeddings) to
changes in the topology of the moving body (as we show in Section 5.4). It is
computationally less expensive than ISOMAP. Finally, as we will show in Sec-
tion 3.1, the lower dimension of the embedded clouds it generates makes them
suitable to be clustered in a more robust way using k-wise clustering [23].

2.1 Clustering Along Time and Pose-Invariance

When clustering sequences, though, we need the segmentation obtained at dif-
ferent time instants to be consistent. A desirable cue, in this sense, is the fact
that some embedding schemes (like ISOMAP) are inherently pose-invariant un-
der articulated motion (as while the articulated body evolves geodesic distances
between pairs of points do not change). This is not true, in a strict sense, for
LLE. However, as its embedding depends only on the local structure of the input
dataset, it is reasonable to conjecture that under articulated motion the shape
of the LLE embedded cloud would exhibit remarkable stability. An articulated
object is formed by a number of rigid bodies linked by a small number of joints:
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Fig. 2. a) The number of neighborhoods affected by articulated motion is relatively
small. b) Some anecdotal evidence on the stability of locally linear embedding under
articulated motion. Different poses (left, middle) of the same articulated body are
mapped to the same embedded cloud (right), for a large interval of parameter values.

Clearly all local neighborhoods incident on a rigid part are preserved along the
motion, while only the few neighborhoods interested by the evolving joint(s) are
affected (Figure 2-a).

The validity of this claim depends of course on the number of points N in the
dataset, the neighborhood size k (as smaller ks reduce the number of neighbor-
hoods with non-empty intersection with moving joints), and last but not least
the number of evolving joints.

As an example let us consider two different poses of the same articulated body,
for instance a dancer performing a ballet, represented as voxelsets (Figure 2-b,
middle and left). Figure 2-b right shows the related embedded clouds obtained
through LLE for d = 3 and k = 10. Their similarity is apparent. Analogous
results can be obtained for a wide range of values of the critical parameter k.

Stability and other desirable properties are actually shared by other embed-
ding schemes like, for instance, Laplacian Eigenmaps [17]. In the following we
will make reference in particular to LLE.

3 Approach

3.1 K-Wise Clustering in the Embedded Shape

Let us first focus on the problem of segmenting an embedded cloud at a given
time instant. As we mentioned above (and as Figures 1 and 2 confirm) for d =
3 the embedded cloud is (for a wide interval of values of k) a tree-like one-
dimensional curve. It is then natural to look for clusters formed by sets of roughly
collinear embedded points. With a few exceptions, clustering algorithms (like k-
means [20]) are based on the assumption that a pairwise measure of distance
between data-points is available. As every pair of data-points trivially defines a
line, however, there does not exist a useful measure of similarity between such
pairs. It is instead possible to define measures of similarity over triplets of points
to indicate how close they are to being collinear (Figure 3-a) [21,22]).
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In general the problem of clustering points based on similarity between k-
tuples of points is called k-wise clustering. An interesting approach to k-wise
clustering has been proposed in [23]. Consider a set of datapoints V = {vi, i =
1, ..., N}.

K-Wise Clustering Algorithm

1. In the first step an affinity hypergraph is built. A weighted undirected hyper-
graph H is a pair (V, h), where V is the set of vertices of H , and subsets z of V
of size k are called hyperedges. The function h associates nonnegative weights
h(z) with each hyperedge (k-tuple) z = {vj1 , ..., vjk

}, and measures the affinity
of each hyperedge.
2. Then, a weighted graph G = (V, g) that approximates the hypergraph H is
constructed by constrained least square optimization, based on the assumption
that h(z) =

∑
vi,vj∈z;i<j g(vi, vj), i.e. the weight of each hyperedge is the arith-

metic mean of the weights of the edges of G incident on it (clique averaging).
3. Finally, to partition the approximating graph G into k parts a spectral clus-
tering algorithm is adopted that uses the first k eigenvectors of the normalized
Laplacian of the graph and performs k-means clustering on the resulting k-
dimensional embedding [24,25].

Branch termination detected Branch termination not detected

a) b)

Fig. 3. a) 3-wise (k-lines) clustering. Areas of triangles defined by triads of points mea-
sure their collinearity. The smaller the area (dark triangle) the greater the collinearity.
b) Termination (left) and internal (right) points of the embedded cloud are character-
ized by the fact that their projection (red square) on the line (in blue) interpolating
their neighborhoods (in green) is an extremum of the interval of all projections.

In our case, the hypergraph to approximate has as set of vertices the embed-
ded cloud V = Y , and hyperedges formed by d elements (for a d-dimensional
embedding space). Specifically, these hyperedges are triads of points for d = 3.
A natural choice for the affinity of these triads is then the area of the triangle
they form (the volume of the d − 1-dimensional hyperedge in the general case).

The application of the k-wise clustering algorithm to the embedded cloud
yields a segmentation in the embedding space that can be trivially remapped
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back to the original 3D space, using the ordering of the data-points. Notice that,
as step 3. of the k-wise clustering algorithm involves standard k-means, and the
latter requires a set of initial seeds to start clustering from, seeds are required to
initialize the overall algorithm as well. We will address this issue in Section 3.3.
It remains to decide the number of clusters for a given embedded shape.

3.2 Branch Detection and Number of Clusters

The fact that embedded clouds typically appear as one-dimensional strings
formed by a number of branches (corresponding to the extremities of the moving
body) provides us with a simple method to estimate, at each given time instant,
the “correct” number of clusters (Figure 3-b).

Each point of the embedded cloud is tested to decide whether or not it is a
branch termination. This test is performed by finding its nearest neighbors (for
a certain threshold distance which can be empirically learned from the data),
plotted in green. The best interpolating line for all neighbors is then found (in
blue), and all neighbors projected on it. A point of the embedded cloud (red star
in Figure 3-b) is a branch termination if the projection of all its neighbors on
the interpolating line lay on one side of its own projection (red square) like in
Figure 3-b-left, it is not when the projection has neighbors on both sides (Figure
3-b-right).

This algorithm proves to work extremely well on embedded clouds generated
through LLE. It becomes then possible to detect transitions in the topology of the
moving body when they happen, and modify the number of clusters accordingly.
We will return on this in Section 3.4.

3.3 Temporal Consistency and Seed Propagation

When considering entire sequences of 3D clouds we need to ensure the tempo-
ral consistency of the segmentation: in normal situations (no topology changes
due to contact of different body-parts) the cloud has to be decomposed into the
“same” groups in all instants of the sequence. We propose a propagation scheme
in which centroid clusters at time t are used to generate initial seeds for cluster-
ing at time t + 1 (Figure 4). Let n be the number of clusters.

Seed Propagation Algorithm

1. The embedded cloud Y (t) at time t is clustered using d-wise clustering (Section
3.1, Figure 4-bottom-left) using the current seeds c′j(t) (the branch terminations
of Y (0) if t = 0, computed as in step 4 for t > 0);
2. For each centroid cj(t) j = 1, ..., n, of these clusters, the original datapoint
xij (t) (3D cluster centroid) whose embedding yij (t) is the closest neighbor of
cj(t) is found (Figure 4-top-left):

ij(t) = arg min
i=1,...,N

‖yi(t) − cj(t)‖2. (1)
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Fig. 4. Seed propagation for consistent clustering along time in the embedding space.
The anti-images of centroids at time t are added to the 3D cloud at time t + 1. Their
embeddings c′

j(t + 1) are the seeds from which to start clustering the new embedded
cloud Y (t + 1).

3. At time t + 1, the dataset of 3D input points X(t + 1) = {xi(t + 1), i =
1, ..., N(t + 1)} at time t + 1 is augmented with the positions of the old 3D
centroids at time t, yielding a new dataset (Figure 4-top-right)

X ′(t + 1) = X(t + 1) ∪ {xij (t), j = 1, ..., n}. (2)

4. LLE is applied to the extended dataset X ′(t+1), obtaining (Figure 4-bottom-
right) 1

Y (t + 1) ∪ {c′j(t + 1), j = 1, ..., n}. (3)

5. The images c′j(t+1) of the old 3D centroids xij (t) in the new embedded space
will then be used as seeds to start the k-wise clustering of the new embedded
cloud Y (t + 1).

3.4 Topology Changes and Dynamic Clustering

The question of how to initialize the seeds for t = 0 naturally arises. Besides
(even though working in an embedding space helps to dramatically reduce the
1 Embeddings c′

j(t + 1) of the old 3D centroids xij (t) in the new embedded cloud can
also be computed by out of sample extension [26].
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problem of segmenting body-parts which get close to each other) moments in
which different parts of the articulated body come to contact still have important
effects on the shape of the embedded cloud. In fact, in an unsupervised context in
which we do not possess prior knowledge about the number of rigid parts which
form the body or the way they are arranged, there is no reason to distinguish
adjacent body-parts. It is instead more sensible to adapt the number of clusters
to the number of actually distinguishable parts.

The branch detection algorithm of Section 3.2 provides a tool to initialize the
clustering machinery and implement the necessary change in the number and
location of clusters when a topology change occurs.

Clusters’ Merging/ Splitting Algorithm

1. At each time instant t all branch terminations of the embedded cloud Y (t)
are detected; if t = 0 they are used as seeds for k-wise clustering.
2. Otherwise (t > 0) standard k-means is performed on Y (t) using branch termi-
nations as seeds, yielding a rough partition of the embedded cloud into distinct
branches.
3. Propagated seeds c′j(t) in the same partition are merged.
4. For each partition of Y (t) not containing any old seed a new seed is defined
as the related branch termination.

The third situation takes place when previously separated body-parts get too
close to be distinguished: it makes then sense to merge the corresponding clus-
ters. 4. embodies the opposite event in which a body-part which was previously
impossible to distinguish becomes well separated, requiring then the introduction
of a new cluster. This way clusters merge and/or split according to topological
changes in the moving articulated body.

4 Algorithm

It is time to summarize our approach for unsupervised robust segmentation of
parts of moving articulated bodies in a consistent way along a sequence (by
assembling the separate algorithms we described in Sections 3.1, 3.3, 3.4). For
each time instant t:

1. The current dataset (X(t) = {xi(t), i = 1, ..., N(t)} for t = 0, X ′(t) = X(t) ∪
{xij (t−1)} for t > 0, Figure 5-a) is mapped to an embedding space of dimension
d yielding Y (t) = {yi(t), i = 1, ..., N(t)} = LLE(X(t)).
2. All branch terminations of the embedded cloud Y (t) are detected (Section
3.2): the natural number of clusters n(t) for time t is then set to the number of
branches (plus one for the torso), Figure 5-b.
3. The embedded cloud Y (t) is clustered into n(t) groups by d-wise clustering
(Section 3.1) starting from n(t) seeds (Figure 5-c):
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Fig. 5. Graphical illustration of the segmentation algorithm

- if t = 0, we use all branch terminations as seeds;
- if t > 0, the seeds are derived from the old centroids {c′j(t), j = 1, ..., n(t−1)}

after the splitting/merging procedure exposed in Section 3.4.
4. This yields a new set of centroids {cj(t), j = 1, .., n(t)}.
5. The labeling of the embedded points induces a segmentation in the original
3D shape (Figure 5-d).
6. All cluster centroids cj(t) are remapped to 3D (3.3), the corresponding 3D
centroids xij (t) are added to the new dataset X(t + 1) at time t + 1 (Figure 4).

5 Experiments

To test our spectral approach to body-part segmentation, we analyzed its perfor-
mance on a large number of sequences acquired through our acquisition system
composed by 8 synchronized cameras. Silhouettes were processed in order to
compute first their visual hull, and the moving 3D articulated body was finally
rendered as a uniformly sampled voxelset (Figure 6). We applied the algorithm
to several different high-resolution sequences, one of which a 200-frame-long se-
quence capturing a dancer who moves and swirls all around the scene.

Figure 6 illustrates some typical results of the dynamic segmentation algo-
rithm of Section 4, for a number of sequences. It can be appreciated that segmen-
tation along time turns out to be pretty consistent, yielding very smooth cluster
trajectories, non only in situations where body-parts are well separated (Fig-
ure 6-a,-b) but also during walking gaits (c) or even extremely complicated mo-
tions like the dance performed in (Figure 6-d,-e). In particular, in the “danceuse”
case several topology transitions take place, due to the presence of a moving scarf
around the waist of the woman, and numerous contacts between legs and arms
during the dancer’s performance. The algorithm segments the sequence in subse-
quences with constant topology (e.g. 6-d,-e), within which clusters are smoothly
tracked. Another example of such a temporal segmentation in a different se-
quence is illustrated in 6-f).
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Fig. 6. Examples of the results produced by the dynamic segmentation algorithm of
Section 4 on a number of sequences. a) a “fly” sequence of 11 frames. b) “arm-waving”
sequence of length 50. c) “walking” motion, length 10. d) a subsequence of “danceuse”,
16 frames. e) another “danceuse”, length 10. Both whole clusters’ evolution and their
centroids’ trajectories are shown. f) Topology transition management: after 11 frames
in which arms are spread out (left) the left arm gets in contact with the torso: the
algorithm adapts the number of clusters accordingly and proceeds to segment in a
smooth way for other 7 frames (right, from a different viewpoint).
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5.1 A Comparison with Direct EM Clustering in 3D

In order to show the advantages of our methodology over direct clustering in 3D
we compared these results with those of a scheme similar to that of Section 4 in
which old seeds and weights are passed to the next frame in order to make the
segmentation coherent along time, but k-means or k-wise clustering in the em-
bedding space are replaced by straightforward EM clustering of the original 3D
shape. The idea is to model the probability density of the data as a convex combi-
nation of (typically Gaussian) components (which can be seen as clusters) f(y) =∑

j w(j)fj(y),
∑

j w(j) = 1, fj(y) ∼ N(μj , Σj) whose parameters are esti-
mated through the EM algorithm [27]. Figure 7 shows the resulting segmentation
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Fig. 7. Behavior of dynamic segmentation based on EM clustering. Even in presence
of seed propagation, clusterings in different instants of a sequence (here t = 40 and
t = 55 of “danceuse”) are not consistent. This is confirmed by apparent irregularities
in all centroids’ trajectories (right).

on the same sequence of Figure 6-d, for some sample frames t = 40, 45, 50, 55,
as an example of its typical performance. Besides spanning different body-parts
at the same time (since clustering is based on the original Euclidean distance),
clusters evolve inconsistently along time. A comparison of the related cluster
trajectories with Figure 6-d highlights this irregular behavior.

5.2 Dimension of the Embedding Space

The quality of the segmentation depends on the stability of the embedded shape,
which is in turn affected by the parameters of the embedding, like the dimension
of the embedding space (i.e. the number of eigenvectors we selected after SVD of
the affinity matrix M [19]). A better segmentation performance can be in general
observed when we set as dimension of the embedding space a number similar to
the expected number of clusters. Figure 8 shows, for a given frame (t = 59 of
the “dancer” sequence) and an equal number of neighbors k = 20, the different
segmentations we obtain for d = 3 (top) and d = 4 (bottom). Even though the
scarf is clearly visible in the 3D cloud, a three-dimensional embedding space
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Fig. 8. Different segmentations of the same pose obtained for different dimensions
of the embedding space. Top: for d = 3 the scarf merges with the torso into the
same branch of the embedded cloud (top-right). Bottom: for d = 4 a separate branch
associated with the scarf (in green) is present in the embedding shape.

fails to reveal its presence as separated branch of the embedded cloud (Figure 8-
top-right). Such a new (green) branch appears instead in the four-dimensional
embedding space: Figure 8-bottom-right displays the 4 orthogonal projections of
the embedded cloud for d = 4 (with axes, x, y, z, w) onto its three-dimensional
subspaces (x, y, z), (x, y, w), (x, z, w), (y, z, w).

5.3 Estimating the Optimal Number of Neighbors

The most critical parameter for the entire segmentation algorithm is however
the number of neighbors k of the LLE step, as it affects the stability of the
embedded shape from which the estimation of the number of clusters depends.
It can be empirically noticed that, while the embedded shape shows a remarkable
stability for some values of k this is not in general the case for arbitrary such
values. It is then desirable to estimate a variable number of neighbors in time,
in order to guarantee the stability of Y (t) and ensure a consistent segmentation
along time (Figure 9). For too large values of k some neighborhoods of points in
a given body-part can comprise regions of a different body-part (middle). These
“anomalous” neighborhoods are characterized by the fact that their farthest
elements (as they belong to another, distinct link) are relatively distant from all
others elements (which instead lie all on the same rigid part). If we then plot



208 F. Cuzzolin et al.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

0
5

10
15

20

0
5

10
15

0

5

10

15

20

25

30

35

40

45

50

0

10

20

0

10

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 9. How to estimate the correct number of neighbors k in the LLE algorithm. Non-
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the distance between the farthest point of the neighborhood and all its fellows
we notice a large jump (right-bottom).

This is not the case for neighborhoods which span a single rigid part (left). It
is natural to choose as correct k any of those values which yield only “regular”
neighborhoods (for instance the average of the interval of admissible values).

5.4 Robustness to Topology Changes

In any case, moments in which different parts of the articulated body come to
contact still have important effects on the shape of {Yi}. Figure 10 illustrates how
the dynamic clustering technique copes with such changes. These events have
dramatic consequences on embeddings based on measuring geodesic distances
along the body, since new paths appear affecting in general the distance between
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Fig. 10. How the splitting/merging algorithm deals with topology changes in the em-
bedded space. At t = 16 the left arm of the dancer touches her scarf (left), and a single
cluster covers body, arm, and scarf. Then (t = 18) the left arm becomes visible and a
new cluster is assigned to it, while the dancer’s feet get too close to be distinguished
(middle). Finally (t = 20) her legs widen again, inducing a separate cluster for each
one of them (right).
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all pairs of points in the original cloud. Figure 11 shows how ISOMAP (as a
representative of all geodesic-based spectral methods) copes with the transitions
of Figure 10. Clustering is performed in the ISOMAP space by k-means.

Besides not having the desirable behavior in terms of branch separation of LLE
or Laplacian Eigenmaps, geodesic spectral methods prove incapable of handling
those situations, which are extremely common in any natural articulated motion.
Even though we left the algorithm free to estimate the “best” number of clusters
along the sequence, EM proved also incapable of adapting itself to the mutated
topology of the body. As a result, clusters would “shift” around the body in a
rather unstable way, failing to segment in a consistent way moving body-parts.
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Fig. 11. Behavior of ISOMAP along the sequence of topology transitions of Figure 10.
The shape of the embedded cloud (we chose d = 2 for sake of readability) changes
dramatically, gravely affecting the segmentation in the original 3D space.

6 Conclusions

In this paper we presented a novel dynamic segmentation scheme in which mov-
ing articulated bodies are clustered in an embedding space, and clusters propa-
gated in time to ensure temporal consistency. Exploiting some desirable features
of LLE, in particular, we proposed a systematic way of estimating the optimal
number of clusters in order to merge/split clusters in correspondence of topology
transitions. To ensure stability and improve segmentation performance we pro-
posed a method to learn the critical parameter k of the embedding algorithm. We
compared the performance of the algorithm with similar propagation schemes
based on direct EM clustering in 3D, and k-means clustering in ISOMAP space.

It is natural to imagine this unsupervised segmentation procedure as a build-
ing block of more detailed motion analysis, in which kinematic or stick models
are fitted to the data based on the obtained segmentation. Even though the
reconstructed segments are not in general associated with “natural” body-parts
(as we assume no model of the moving body is available) temporal consistency
as assured by our propagation scheme guarantees the coherence of the rough
stick model which corresponds to those segments. The latter can be seen as a
first guess of the underlying kinematic model, which could be later improved by
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exploting 3D point matching schemes based on shape alignment in the embed-
ding space [28]. Once obtained trajectories for each point of the cloud we could
indeed easily cluster them according to the similarity of the associated motions,
distinguish this way distinct rigid links belonging to the same initial segment,
eventually achieving a finer bottom-up model of the body.

In a different context, as they are inherently invariant with respect to the
direction of the motion, cluster centroids may provide good features to use for
action recognition, for instance by feeding them to a classical hidden Markov
model. We plan to explore both those opportunities in the near future.
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Abstract. In this paper, we present a 3D registration algorithm based
on simulated physical force/moment for articulated human motion track-
ing. Provided with sparsely reconstructed 3D human surface points from
multiple synchronized cameras, the tracking problem is equivalent to
fitting the 3D model to the scene points. The simulated physical force/
moment generated by the displacement between the model and the scene
points is used to align the model with the scene points in an Iterative
Closest Points (ICP) [1] approach. We further introduce a hierarchical
scheme for model state updating, which automatically incorporates hu-
man kinematic constraints. Experimental results on both synthetic and
real data from several unconstrained motion sequences demonstrate the
efficiency and robustness of our proposed method.

Keywords: Iterative Closest Points, 3D Registration, Articulated Hu-
man Motion Tracking, Simulated Physical Force/Moment, Kinematic
Constraints.

1 Introduction

Multiple view based, marker-less articulated human body tracking has attracted
a growing research interest in the computer vision community through the last
decade. This is because of the large number of potential applications such as
motion capture, human computer interaction, virtual reality, smart surveillance
systems etc. Due to the high dimensionality of human body motion, the 3D
tracking problem is inherently a difficult problem.

Image based methods were the first to be introduced in literature. Gavrilla
and Davis [2] project a kinematic model onto each image plane and search for
the best fit between the projected model and the image contours. Delamarre and
Faugeras [3] create forces between the 3D human model and the detected image
contours of the moving person to achieve their alignment.

Instead of deterministic search algorithms, stochastic search algorithms are
more likely to guarantee a global optimum. Deutscher [4] propose an annealed
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particle filter approach for full body motion tracking. With as little as 100 par-
ticles, they can track full body motion in a stochastically optimal way. These
particles are weighted by the similarity score between the extracted human con-
tours and the synthetic silhouettes of the human model. Other methods based on
belief propagation [5] were introduced to reduce the computational complexity.

To address the self-occlusion problem, various 3D reconstruction-based al-
gorithms have been proposed. Cheung [6] introduce a shape-from-silhouette
method for full body tracking from both silhouette and color information. Based
on the results of visual hull reconstruction, they segment the surface points of
the human body into rigid moving body parts using color information. Thus
the 3D articulated human body tracking problem is reduced to first estimating
the rigid motion of each body part independently and then imposing constraints
between the connected body parts.

Cheung [7] also introduce a method based on volumetric reconstruction. Using
an efficient voxel reconstruction technique, they fit ellipsoid models of human
body parts into the reconstructed voxels in real-time. However this ellipsoid
fitting approach fails when two body parts are too close to distinguish.

In this paper we present a registration-based 3D articulated human body
tracking method. The inputs to our system are sparsely reconstructed human
surface points. We have developed a simulated physical force/moment based 3D
registration method that performs in an Iterative Closest Points (ICP) flavor.
Tracking is achieved by registering our human model to the reconstructed 3D
points in each frame. Our algorithm incorporates different constraints of human
motion kinematics in an automatic way, which makes the registration procedure
more flexible. Our experiments show both the efficiency and robustness of our
proposed method.

The most related work to ours is performed by Delamarre and Faugeras [8], in
which they apply similar ICP approach to track the 3D hand motion. However
their work differs from ours in several ways. First, their inputs are dense recon-
struction of the hand. Second, they use recursive dynamics algorithms to update
the model state while we introduce a simple hierarchical model state updating
scheme. Further more, no quantitative comparisons between their results and
the ground truth data are given.

The paper is organized as follows: Section 2 gives a brief introduction of
our human model. The 3D registration method based on simulated physical
force/moment is presented in detail in Section 3. Section 4 shows our tracking
results for several human motion sequences with discussions. Section 5 concludes
the paper.

2 3D Human Model

As shown in Fig. 1, the human body is represented by a combination of 10
cylinders. The torso can be regarded as a degenerate cylinder since it has an
elliptical cross-section. Although more sophisticated tapered cylinders or super
quadrics could be employed as models, our experiments show that the simple
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cylinder model is adequate for our tracking algorithm in terms of accuracy, and
it also has the advantage of lower computational cost. For each part except the
torso, a local coordinate frame is defined with the origin at the base of the
cylinder. These origins also correspond to the center of rotation of each body
part. The global coordinate system originates at the center of the torso. All body
parts and corresponding parameters are indexed from 0 to 9 (cf. Fig. 1).

Fig. 1. 3D human model

Human kinematic knowledge is employed as a prior to define the degrees
of freedom (DoF) for our human model. We incorporate 25 DoF: 3 DoF for
upper arms, legs and head (rotating about their X, Y and Z axes), 1 DoF for
lower arms and legs (they are only allowed to rotate about their X axes), and
6 DoF for the torso (global translation and rotation). With these definitions,
the entire 3D pose of the body is determined by a 25D model state vector
s = (t0x, t0y, t0z , θ0x, θ0y, θ0z, θ1x, θ1y, θ1z, θ2x, ...)T , which are the joint angles of
shoulders, elbows, hips, and knees, plus the global position and orientation of the
torso. The objective of our registration task is to find such a 25D state vector for
the model that best fits the scene points (i.e., minimize some distance function
between the model and the scene).

To further constrain this high dimensional solution space as well as to elimi-
nate the ambiguity during tracking, 2 types of motion constraints are imposed:

1. Kinematic constraints: The connectivity between adjacent body parts as
well as the length constancy of the body parts are enforced through kinematic
constraints. Each body part is only allowed to move according to its DoF
(e.g., the lower arms are only allowed to rotate about their X axes).

2. Joint angle limits: For real human motion, the joint angles between ad-
jacent body parts are within certain ranges (e.g., the elbow can only rotate
around its X axis about 135 degrees). Therefore it would be necessary to
incorporate this constraint to further reduce the solution space.
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One property of our simulated physical force/moment based registration al-
gorithm is that we can incorporate the above constraints automatically during
iterations, which will be described in detail in the following section.

3 Registration Using Simulated Physical Force/Moment

Given a set of 3D surface points for each frame and a 3D human model composed
of a set of connected body parts, the tracking problem is equivalent to a regis-
tration problem: find a suitable configuration of the state vector s to minimize
some distance function between the human model and the 3D scene points. The
distance metric we choose here is the average Euclidean distance between 3D
scene points and their assigned parts of the human model (the point-cylinder
distance):

D(M, S) =
1
N

∑

i

‖Pi − P ′
i,m(π(i))‖2 (1)

π(i) = argminj‖Pi − P ′
i,m(j)‖2, j = 0, 1, ..., 9 (2)

where M and S denote the model and the set of scene points respectively; N is
the number of scene points; m(j) denotes the jth model part; Pi is a 3D scene
point and P ′

i,m(j) is its corresponding (closest) point on the jth model part; π(i)
is the index of the model part which Pi is assigned to (i.e., with the closest
distance).

3.1 Iterative Closest Points (ICP)

The well-known iterative closest points (ICP) algorithm is commonly used to
coarsely align a rigid model with 3D scene points in an iterative manner:

1. For each 3D scene point, find its closest point on the model; calculate the
local displacement between the model and the scene point.

2. Estimate the transform by integrating the local displacement over the entire
object.

3. Apply the transform to the model.
4. Repeat above steps until convergence (i.e., the displacement between the

scene and model is small or the consecutive estimated updating transforms
are negligible).

The original version of the ICP algorithm is only designed for rigid models.
Recently some variations of the ICP algorithm were proposed to deal with ar-
ticulated objects. Demirdjian [9] presents a method that first applies ICP to
each rigid body part, then linearly projects each independent transform into
the solution space (i.e., the solution space that constrains the connectivity of
the articulated body parts). Knoop [10] model several different types of joint
constraints to enforce the articulated property after estimating the transform
for each part independently. These independent transform estimation/solution
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space projection based methods can easily become stuck in local minima. We
therefore present a novel ICP-flavored, simulated physical force/moment based
registration method, which iteratively aligns the model with the 3D scene points
in a global and hierarchical style.

3.2 Registration

Our basic idea comes from the observation of the physical world. Suppose a dis-
placement between a scene point and its closest point on the model creates a
simulated physical force. This force generates two effects on the model: transla-
tion velocity and angular moment to pull/rotate the model into the alignment
with the 3D scene point. Fig. 2 illustrates the force/moment created by the
displacement between a scene point and its closest point on the model.

Fig. 2. Translation and rotation created by the simulated physical force/moment

The force can be expressed as
−→
F =

−−→
P ′P , where P is the scene point and P ′

is its closest point on the model. The moment is denoted as
−→
M =

−→
F L, where L

is the vertical distance from force
−→
F to the rotation center. The magnitude of

the translation and rotation vectors generated is proportional to the magnitude
of the physical force/moment, namely: −→v = ρ

−→
F and −→ω = λ

−→
M , where ρ and λ

are some small coefficients.
As in the ICP, we iteratively compute the closest points and then update the

model state according to the estimated transform. During each iteration step,
the displacements between all 3D scene points and the model are calculated, and
all forces and moments are summed up, resulting in a translation and a rotation
vector to align the model with the 3D scene points:

(δtx, δtx, δtz)T =
∑

i

−→vi =
∑

i

ρ
−→
Fi (3)

and
(δθx, δθx, δθz)T =

∑

i

−→ωi =
∑

i

λ
−→
Mi (4)

Here
−→
Fi and

−→
Mi are the simulated physical force and moment created by the scene

point Pi. With enough iterations, the misalignment between the model and the
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Fig. 3. Alignment procedure between the model and the scene points

Fig. 4. Human model hierarchy tree

3D scene points will be minimized, and the overall physical force/moment will
be balanced, indicating convergence. Fig. 3 illustrates the alignment procedure
between the model and the scene points.

Given a set of articulated cylinder model parts, we start with assigning each
scene point to its closest model part. However, instead of applying the above
method to each body part independently, we adopt a hierarchical approach for
applying the transform to the human model, which has the following intuition:
Suppose a physical force is applied to the right lower arm of the model; this
force will not only create the angular moment for the right lower arm to rotate
around the elbow, but will also contribute to the right upper arm’s rotation
about the shoulder, as well as the global rotation and translation of the torso.
Our hierarchical updating approach is consistent with this key observation. The
human model will be treated as a hierarchy tree with its root at the torso, and
it has sub-trees rooted at the right and left upper arms, the right and left upper
legs, and the head. Fig. 4 illustrates the hierarchy of the human model.

When estimating the transform associated with a certain body part, the phys-
ical forces applied to all body parts in its group will be integrated. For example,
when calculating the global translation and rotation (δt0x, δt0y, δt0z, δθ0x, δθ0y,
δθ0z)T , the forces applied to all body parts will be counted as follows:

⎛

⎝
δt0x

δt0y

δt0z

⎞

⎠ =
∑

j

−→
Fi∈m(j)∑

i

λj0
−→
Fi (5)
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and ⎛

⎝
δθ0x

δθ0y

δθ0z

⎞

⎠ =
∑

j

−→
Mi∈m(j)∑

i

ρj0
−→
Mi (6)

where λj0 and ρj0 (j = 0, 1, 2...9) are some weighting factors.
Similarly, when estimating the rotation (δθ1x, δθ1y, δθ1z)T of the right upper

arm about the right shoulder (there would be no translation for the right upper
arm as defined by its DoF), the physical forces applied to the right upper arm
and right lower arm will be counted:

⎛

⎝
δθ1x

δθ1y

δθ1z

⎞

⎠ =

−→
Mi∈m(1)∑

i

ρ11
−→
Mi +

−→
Mi∈m(2)∑

i

ρ21
−→
Mi (7)

We further concatenate the transform vectors estimated for each body part to
obtain the 25D updating vector δs = (δt0x, δt0y, δt0z, δθ0x, δθ0y, δθ0z, δθ1x, δθ1y,
δθ1z, δθ2x...)T . Obviously the DoF of each body part is preserved and the artic-
ulated structure of the human model is maintained implicitly in this updating
scheme.

(a) Iteration 4 (b) Iteration 6 (c) Iteration 10

Fig. 5. Example of the iterative registration procedure for our human model (The
scene points are plotted by green stars. The simulated forces between the model and
the scene points are represented by blue lines. The human model is represented by red
cylinders.)

Furthermore, the kinematic constraints and joint angle limits can be incor-
porated in this framework automatically. Given the original state vector s and
the updating vector δs generated by our registration algorithm, we can clamp
the new state vector to avoid the violation of any constraint by the following
inequality:

slb ≤ s + δs ≤ sub (8)
where slb and sub are the lower and upper bounds of the joint angles.

Fig. 5 illustrates a few iterations of a typical registration procedure for our
human model by this hierarchical updating scheme.
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Fig. 6. A diagram for the tracking procedure

3.3 Tracking

The tracking procedure is straightforward: given a new frame of reconstructed
scene data, we start from the registered state of last frame st−1 and iteratively
apply the simulated physical force/moment based registration algorithm until
convergence. We choose the convergence criteria as follows: The distance func-
tion between the model and the scene is smaller than some threshold, and the es-
timated state transforms for consecutive iteration steps become negligible. Fig. 6
gives a detailed diagram of the tracking procedure.

4 Results and Discussion

We validate our proposed method using both synthetic and real data. In total
about 1000 frames from both synthetic and real sequences are tested. For the
synthetic data, the 3D surface points are generated by the 3D modeling soft-
ware package Maya, combined with the motion sequences provided by the CMU
motion capture database [11]. Each of the sequences spans hundreds of frames
during which the subject performs unconstrained, fully articulated motions such
as walking and dancing. Gaussian noise is added to the 3D coordinates of the
original data points to simulate reconstruction errors. We then compare the joint
angles estimated by our method with the ground truth from the database.

Several examples of the tracking results of the synthetic sequences are shown
in Figs. 7 and 8. It can be observed that our registration/tracking algorithm per-
forms well for most poses. In Fig 8(a), the two upper arms are tightly coupled
with the torso, which makes them difficult to distinguish, however our algorithm



220 B. Ni, S. Winkler, and A. Kassim

Fig. 7. Examples of the tracking results of the walking sequence. The top row shows
the synthetic scenes created with Maya, from which the 3D surface points are sampled.
The bottom row shows the corresponding registration results. The scene points are
plotted as green stars, and the human model is represented by red cylinders.

performs properly under this scenario. Another case of robustness is demon-
strated in Fig 8(b), where the arms are folded very close to each other, yet
the pose is correctly tracked. Besides its reliable performance under such condi-
tions, our registration/tracking algorithm is also flexible when it comes to more
unusual human poses; Figs. 8(c) and 8(d) show such examples.

Examples of the tracking results of a real motion sequence are shown in Fig. 9.
This sequence shows a female dancer performing various movements. Using 7
synchronized cameras surrounding the scene, the human surface points are ob-
tained by visual hull reconstruction [12]. Although ground truth data is not
provided, we can still evaluate the results qualitatively. While the tracking re-
sults are good overall, the loose dress of the dancer causes problems in the
reconstruction accuracy in some cases.

Fig. 10 compares the ground truth with the estimated joint angles in the
walking and dancing sequences. It can be observed that in the walking sequence
our estimated joint angles of the left knee follow the periodical motion of the
left leg very accurately.

Fig. 11 shows the histograms of the root mean squared error (RMSE) for
the different sequences. The average RMSE of the estimated joint angles for
both sequences are about 8 and 16 degrees, respectively. The larger errors in
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(a) (b) (c) (d)

Fig. 8. Examples of the tracking results of the dancing sequences

(a) (b) (c) (d)

Fig. 9. Examples of the tracking results of the real sequence
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(a) Joint angle of the left knee in the
walking sequence.

(b) Joint angle of the right elbow in
the dancing (1) sequence.

Fig. 10. Comparison between the ground truth and experimental results for two joints

(a) Walking sequence (450 frames,
average RMSE=8.2 degrees).

(b) Dancing sequences (480 frames,
average RMSE=16.1 degrees).

Fig. 11. RMSE for synthetic sequences

the dancing sequences are mainly due to the coarseness of our human model;
for example, the subject’s upper torso bends forward, but our model fits the
upper/lower torso as a single rigid body part, resulting in estimation errors.
Lack of minor extremities (e.g., hands and feet) also induces further estimation
errors. One can notice in Fig. 5(c) that the points of the feet pull the lower legs
slightly away from their actual positions. In our future work, we will refine our
human model to avoid this kind of errors, i.e., split the torso into two parts, add
parts for feet and hands etc.

In normal cases when the body parts are not close to each other (i.e., arms
and legs are stretched out), a roughly aligned pose is adequate for accurate
initialization even if the displacements between the scene points and human
model are large. Fig. 12 shows 3 initialization results starting from the initial
model pose on the left.However, for some poses, especially when two body parts
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(a) (b) (c) (d)

Fig. 12. Examples of the initialization results. The left figure shows the initial pose
of the model. The other 3 figures show the converged results of the initialization. The
scene points are plotted as blue stars, and the human model is represented by red
cylinders.

are too close to distinguish or have sharp joint angles, the initialization can
become trapped in a local minimum. To address this problem, various methods
can be used. We are investigating 3D shape context [13,14] to coarsely detect
the human posture in the initial frame. The 3D shape descriptor calculated from
the reconstructed points of the first frame will be compared with all candidates
in a small pre-generated shape descriptor database. The configurations with the
best matching scores can then be used to initialize the model state vector.

5 Conclusions

We have introduced a simulated physical force/moment based 3D registration
method, which we have applied to articulated human motion tracking. We also
presented a hierarchical model state updating scheme that incorporates different
human kinematic constraints in an automatic way. Our experiments on sequences
of unconstrained human motion show the robustness and effectiveness of our
proposed method.

Acknowledgments. The synthetic motion key data used in this project was
obtained from mocap.cs.cmu.edu. The multiple-video data used here are from
INRIA Rhone-Alpes multiple-camera platform Grimage and PERCEPTION re-
search group. The database is available at https://charibdis.inrialpes.fr.
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An Ease-of-Use Stereo-Based Particle Filter for
Tracking Under Occlusion
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Abstract. We describe a tracker that handles occlusion by clustering foreground
pixels based on their disparity values. Stereo-matched foreground pixels, mapped
from multiple views to a reference view, allow the tracker to recover occluded
foreground regions in the reference view. The stereo algorithm utilizes a com-
mon plan view into which foreground regions from multiple views are projected
and intersected to construct polygons that contain the ground plane locations
of objects, followed by constraining the epipolar search to only those pixels
with ground plane locations lying within these polygons. Consequently, a stereo-
matched foreground pixel is easily mapped between views by first mapping its
ground plane location using pre-computed homography, followed by intersect-
ing the vertical axis passing through the mapped location with the epipolar line.
Finally, tracking in a reference view allows a particle filter to be “seamlessly” in-
tegrated, so that uncertainties can be effectively dealt with. Experimental results
illustrate the effectiveness of our algorithm.

Keywords: Surveillance, Detection, Tracking, Stereo, Multi-camera fusion.

1 Introduction

Many surveillance tasks, such as detection and tracking, become particularly challeng-
ing in the presence of occlusion. Specifically, in the presence of occlusion, images
of multiple objects are frequently segmented as a single foreground region, causing
surveillance tasks to fail. To effectively deal with problems caused by occlusion, both
single camera and multiple camera algorithms have been proposed.

Single-camera approaches include [2], which assumed that targets are sufficiently
isolated from one another so that their appearances can be modeled and then utilized
to segment them subsequently under occlusion condition. Another single-camera ap-
proach was described in [22]. The algorithm uses 3D human shape models together
with an efficient Markov Chain Monte Carlo method to segment humans in crowded
scenes. [20] described an algorithm that utilizes three object states: before, during and
after occlusion. They assumed that the trajectory of each individual object is simi-
lar to the entire group during occlusion. So, by tracking and labeling each individ-
ual object before and after occlusion, and tracking the entire group during the oc-
clusion, the complete trajectory of each object can be recovered. [23] described us-
ing motion layer estimation to determine depth ordering of foreground layers. The
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algorithm uses a Maximum A Posteriori framework to simultaneously update the mo-
tion layer parameters, the ordering parameters, and the background occluding
layers.

In contrast to a single-camera approach, a multi-camera approach can be more ef-
fective since occluded regions in the view of one camera may be visible in the view of
another suitably placed camera. [13] described a region-based stereo algorithm to find
3D points inside an object, together with a Bayesian classification scheme that assigns
priors for different objects to each pixel. It uses a top view of the objects to combine
results obtained from each camera. [10] also described an algorithm that projects the
vertical axes of segmented foreground regions in different views onto a top view. Inter-
sections between these projections are possible ground points and are utilized to refine
foreground segmentations in a particle filter framework. The algorithm, however, relies
on getting good initial segmentations using a color-based human appearance model.
Another algorithm that utilizes such ground plane constraints is described in [9], where
foreground regions from different views are mapped to a reference view using pre-
computed homographies. Then, given a sufficient number of views, the feet regions are
expected to accumulate the most “votes”, allowing one to separate a crowded scene
into individual object based on these segmented feet regions. Once the feet regions are
found, the height is calculated by moving up the connected foreground region before
background is encountered. [8] introduced a unified framework that deals with long
periods of occlusion, tracking across non-overlapping views and updating appearance
models for tracked objects over time. The method suspends tracking in areas where
objects are likely to be occluded, or in between non-overlapping views. Tracking is
then resumed by matching “suspended objects” using full kinematic motion models
and Gibbsian distributions for object appearance.

Most of these algorithms employ intensity-based change detection for foreground
extraction. [15] avoided doing so by utilizing a Kanade-Lucas tracker [12] to con-
struct trajectories of features, which are then integrated with a learned object descriptor
to achieve motion segmentations of individual objects. Alternatively, disparity-based
methods can be used to overcome the problems of using intensity-based change detec-
tion, whereby foreground detections are augmented with disparity computation to elim-
inate noise in the foreground regions. One such disparity-based tracker was described in
[21]. The algorithm uses a mixture of single and stereo cameras, each of which performs
object tracking independently. These tracks are then combined to maintain identity of
each individual object across different views.

Short periods of occlusion can also be effectively overcome with a particle filter
[1,7] if tracks can be accurately initialized for objects in the scene. Given observed
tracks of an object, a particle filter predicts the future location of each tracked object
and combines the predictions with subsequent measurements.

1.1 Overview of Our Approach

Our algorithm consists of three steps for detecting and tracking people. The first step
employs an algorithm described in [19]. It projects foreground silhouettes detected in
different views into a common plan view. Such a plan view is “artificially” constructed
as a top-view image and point correspondences are drawn to compute ground plane
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homographies between itself and different camera views. Projected regions belong-
ing to different views are then intersected, generating a number of polygons. These
polygons represent possible ground plane locations of objects in the scene. However,
some of these polygons are invalid (phantom polygons) while others may have resulted
from the projections of foreground silhouettes comprising multiple objects. Polygons
are mapped between different views using pre-computed homographies.

To estimate the true locations of objects in the scene, we first try to compute dispar-
ities of foreground pixels in every view. Each foreground pixel’s disparity is computed
based on a plane+parallax measure described in [4,5,6,16], with the epipolar search in
a second view constrained to those pixels whose ground plane locations fall within the
polygons. In another word, the stereo algorithm selects pixels within the polygons that
are close to the vertical axis1 of the foreground pixel in the first view, and maps each of
these pixels to a second view using pre-computed homography. The vertical axis pass-
ing through the mapped position intersects the epipolar line to generate a candidate for
the conjugate pixel. The selected ground plane location is then the one that generates a
conjugate pixel with the best color match. We will refer to these ground plane locations
as ground plane pixels.

The computed disparities allow foreground pixels to be easily clustered into indi-
vidual objects. Pixels lying in the polygons that are not valid ground plane locations
are removed, in effect eliminating phantom polygons. While the resulting clusters are
good estimates of the image positions of the objects, the extent of each cluster does
not accurately represent the true image extent of the corresponding object since only
visible foreground pixels have been processed. We overcome this by sensor fusion,
combining pairs of foreground pixels and their ground plane pixels that have been con-
structed by different stereo pairs in a reference view2. This generates, for each ob-
ject, a set of candidate bounding boxes in the reference view. We determine the best
weighted combination of these bounding boxes during tracking by employing a particle
filter [7].

1.2 Comparing Other Ground Plane Based Trackers

The utilization of a common plan view is not uncommon; several trackers [9,10,13,19]
also make use of similar constraints for tracking under occlusion. It is important, there-
fore, to comparatively identify our contributions, several of which are due to the stereo
algorithm we employ. Firstly, in contrast to [13], we require only minimal calibration
in the form of ground plane homography and epipolar geometry (both of which can be
pre-computed, in practice, accurately using point correspondences between a given pair
of images obtain from two views) to map a stereo-matched foreground pixel from dif-
ferent views to a reference view due to the ease of mapping its ground plane pixel. This
is an important feature of our stereo algorithm; it avoids error-prone and cumbersome
camera calibration that would otherwise be necessary. Tracking in a “centralized” ref-
erence view in turn allows the full image extent of the objects to be tracked as opposed

1 The vertical axis connects the foreground pixel to the camera’s vanishing point computed with
respect to the ground plane.

2 The reference view is the view in which we segment foreground regions into indvidual objects.
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to tracking just the top view profile in the plan view, and, most importantly, facilitates
the recovering of occluded regions.

Furthermore, by recovering disparity values of occluded regions in a reference view
(in which a pixel can thus be assigned multiple disparity values belonging to differ-
ent objects in the same line of sight) and performing disparity-based clustering, it is
unnecessary to initialize the appearance of objects in order to segment them. Such an
approach was seen in [10]. It assumes that each object is initially well-isolated so that
its appearance can be modeled based on color and eventually used for segmentation
in each view. The disadvantages of doing so, however, include (1) the difficulties with
which the tracker can be fully automated in terms of acquiring these color models, (2)
the problems faced by the tracker in discriminating similar-colored objects, and (3) the
applicability of the acquired color models during tracking as the objects vary in pose
and scale. A third tracker, described in [9], also utilizes a similar procedure to intersect
foreground regions in a common plan view so as to identify foot regions. However, it at-
tempts to grow the full extent of each object by moving up connected foreground region
beginning from the foot regions - a procedure that potentially yields the wrong height
whenever there is another object behind the object of interest. Finally, [19], which first
suggested the intersection of foreground regions on a common plan view, is essentially
different from the rest of the ground plane based trackers in its use of an iterative ap-
proach to eliminate phantom polygons.

2 Polygon Construction

We begin by constructing polygons that represent possible ground plane locations of
objects in the scene by performing background subtraction [18] in each view. The basic
idea is to project foreground regions in each view into a common plan view, as shown in
Figure 1, and construct polygons formed from the intersections of these view-specific
projections.

In each view, foreground pixels are first clustered using connected component anal-
ysis. The leftmost, �, and rightmost, r, pixel of each foreground region are connected
by straight lines to the vertical vanishing point, v. The lines are then projected into the
plan view using pre-computed homography, Hplan. The resulting region is bounded by
lines L� and Lr in the plan view defined by3:

L� = Hplan ∗ � × Hplan ∗ v,

Lr = Hplan ∗ r × Hplan ∗ v, (1)

and the scene boundaries.
Finally, the projected regions for different views are intersected. These intersections

include some “phantom” polygons (colored in red) and valid polygons (colored in
green), as illustrated in Figure 1. Phantom polygons do not contain valid objects and
are merely geometric artifacts of the region-intersection procedure. In the next sec-
tion, we will describe a disparity computation step that typically eliminates phantom
polygons.

3 We will use the notation ∗ to represent multiplication and × to represent cross product.
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Camera 3

Camera 2

Camera 1

Fig. 1. Projections of the foreground silhouettes into a common plan view. The green circles
represent projections in the plan view that contain people while the red regions are phantom
polygons.

3 Disparity Computation

The constructed polygons are mapped from the plan view to each camera view, resulting
in regions of candidate ground plane pixels. Figure 2 illustrates the mapping of the
polygons in Figure 1 to a camera’s view.

The subsequent steps of the algorithm are illustrated in Figure 3. Given a foreground
pixel (top of the person in the example, but in general any foreground pixel), ρ, in the
first view, we seek to determine its conjugate pixel, ρ′, in a second view. ρ′ lies on
the corresponding epipolar line [3], Le, of ρ. Instead of searching “everywhere” for ρ′

along Le, we constrain the search to those pixels along Le belonging to the set S:

S = {(p × v′) × Le|p ∈ Sp}, (2)

where v′ is the vertical vanishing point of the second camera and Sp is:

Sp = {p|p ∈ Spoly

⋂
‖H−1

first ∗ p − Lρ‖ < T }. (3)

Here, Spoly is the set of pixels lying in the constructed polygons, Lρ is the vertical axis
of ρ in the first view, Hfirst is the ground plane homography from the first to second
view, and T is a threshold value for the perpendicular distance of H−1

first ∗ p to Lp.
Intuitively, we are constraining the stereo search to pixels on Le, whose ground plane

pixels are close to ρ’s vertical axis. Moreover, by construction, these ground plane pixels
must lie in the constructed polygons. Phantom polygons are generally removed since
pixels in them are typically not selected in the stereo matching step. In addition, due to
occlusion, conjugate pixels with color similarity below a pre-specified threshold are not
considered.
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Fig. 2. The polygons in Figure 1 mapped to one of the views, shown as red rectangular image
regions. The green pixels are the silhouette pixels.

We then assign a disparity value to each stereo-matched foreground pixel. For this
purpose, given a pair of conjugate pixels (ρ, ρ′), and homography, Hρ, that maps ρ to
ρ′, we use a plane+parallax measure given as:

‖ρ − H−1
ρ ∗ ρ′‖. (4)

Such a measure is associated with a scale factor that depends on the stereo pair being
used. To maintain a consistent disparity measure, the reference view is paired with a
fix second view, to which stereo-matched foreground pixels from other stereo pairs
are always mapped before Equation 4 is applied. Following this, foreground pixels are
clustered based on their disparities, which is usually effective for separating merged
foreground regions into their constituent individuals. To further improve accuracy, the
clustering also utilizes the Euclidean distance between a ground plane pixel and the
reference camera’s vertical vanishing point when projected onto the plan view, which
provides a projected depth, as shown in Figure 4. Note, however, that this is not the
“true” depth.

It is also important to point out that since the stereo algorithm computes intersections
between vertical axes and epipolar lines, degeneracies can occur when they have similar
gradients. This happens when both cameras of a stereo pair are positioned vertically
with respect to the ground plane, and should be avoided. If the cameras’ positions can
be chosen offline, strategies that maximize “horizontal” inter-camera distance can be
employed.
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Phantom polygons

Bad
match

Correct vertical
axis

Wrong vertical
axis

pixel
Foreground

Vertical
axis

Candidate ground plane pixels

First view Second view

Epipolar line

Mapped candidate
ground plane pixels

Good match

Fig. 3. Determining the conjugate pixel of the foreground pixel in the first view. Candidates for
the foreground pixel’s ground plane pixel lie in the constructed polygons and close to its vertical
axis in the first view. Referring to the second view, a wrong candidate’s vertical axis in the second
view will intersect the epipolar line at a pixel that will likely be a poor match to the foreground
pixel. On the other hand, the intersection of the correct candidate’s vertical axis and the epipolar
line in the second view will generate a good match.

4 Sensor Fusion

Occluded regions of an object will cause its image size to be underestimated, which we
overcome with sensor fusion. We construct for each stereo pair a set of stereo-matched
foreground pixels and their ground plane pixels. We then map every stereo-matched
foreground pixel, ρ′, and its ground plane pixel, g′, to (ρ, g) in the reference view:

g = H−1
ref ∗ g′,

ρ = Lg × Lρ′ . (5)

Href is the ground plane homography mapping g to g′, Lg is the vertical axis of g and
Lρ′ is the epipolar line of ρ′ in the reference view. Consequently, as long as the 3D point
corresponding to ρ′ is visible in one or more stereo pairs, then even if it is occluded in
the reference view, it can still be recovered.

After sensor fusion, each pixel in the occluded regions is associated with multiple
disparity values, corresponding to different foreground layers. Clustering based on these
disparity values helps to recover the true extents of occluded objects. We illustrate the
result of sensor fusion in Figure 5, where the disparity map in (a) could only separate the
visible foreground regions. After performing sensor fusion, we show in (b) the bounding
boxes that correctly recovered the occluded regions.
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Plan view (ground plane)

Depth projected
onto plan view

Reference camera center
Second camera center

Vertical vanishing
point

Image plane Disparity
Ground plane pixel

Fig. 4. We map the camera’s vanishing point and ground plane pixel to the plan view, compute
the distance between the projected points, and use it for clustering foreground pixels. This is in
addition to using Equation 4, which is computed by mapping the conjugate pixel in the second
view to the reference view with the homography, followed by measuring the image distance
between the mapped location and the foreground pixel.

(a) Disparity map constructed with a
pair of cameras.

(b) Result after sensor fusion.

Fig. 5. In (a), the disparity map only separates out the visible foreground pixels. In (b), the oc-
cluded regions are recovered from other stereo pairs, giving bounding boxes that correctly local-
ize the three persons in the scene.

5 Stereo Pair Selection and Tracking

While the recovery of occluded object regions by sensor fusion is often effective, in-
correct stereo matches can adversely affect performance. Consequently, during sensor
fusion, blindly combining results from all stereo pairs could degrade performance. Such
uncertainties can be alleviated by conducting sensor fusion in a particle filter [7], the
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application of which is, again, made possible by the ease with which stereo-matched
foreground pixels can be mapped to the reference view.

5.1 State Space

The state space of the particle filter at time step t−1 is {s
(n)
t−1, n = 1...N}, N being the

number of particles and s
(n)
t−1 the set of foreground objects determined initially by the

nth stereo pair, but would eventually converge to the set determined by the nth element
of the N “strongest” particles. Each object is represented by the image coordinates of
the upper-left and lower-right corners of its bounding box. Here, stereo-matched fore-
ground pixels from each particle are first mapped, using Equation 5, to the reference
view before the corresponding bounding box is drawn. Particles are assigned weights,
π

(n)
t , that are used to combine them at the end of every iteration to arrive at an es-

timate of the tracked positions of the bounding boxes. A cumulative weight, c
(n)
t−1, is

also used for importance sampling, so that we are more likely to select at time t the set
of foreground objects, s′(n)

t , determined by a stereo pair that has a larger cumulative
weight (importance). Importance sampling is performed using the same approach given
in [7].

5.2 Prediction

The tracker keeps track of the velocity of each bounding box in the reference view.
These velocities are estimated at the end of each iteration and are modeled with M
Gaussian distributions:

{〈μ1, σ
2
1〉, ..., 〈μM , σ2

M 〉}, (6)

where M is the number of objects, and μ and σ2 are the means and variances. We
generate a prediction, xt = {xt,1, ..., xt,M}, from s′(n)

t = {s′(n)
t,1 , ..., s′(n)

t,M} as:

xt = {s′(n)
t,1 + μ1 ∗ Δt, ..., s′(n)

t,M + μM ∗ Δt}, (7)

with corresponding probability:

P (xt|xt−1 = s′(n)
t ) =

M∏

i=1

P (μi), (8)

where P (μi) is given by the ith Gaussian and Δt is a discrete time step.

5.3 Measurement

The measurement stage considers two issues - data association and changing number
of objects as objects exit and enter the scene. Data association is performed for ev-
ery selected particle, using Maximum Weight Matching on bipartite graphs [17]. The
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matching algorithm employed is the Kuhn-Munkres algorithm [11], and the bipar-
tite graph is constructed from the set of tracked objects and the set of objects that
the particle newly detected, z

(n)
t = {z

(n)
t,1 , ..., z

(n)
t,M}. Edges between the two sets are

weighted based on grayscale histogram similarity [14] and overlap between the bound-
ing boxes.

The weight for a particle, π
(n)
t = {π

(n)
t,1 , ..., π

(n)
t,M}, is then updated based on the

matching:

π
(n)
t,i = P (z(n)

t,i |xt,i = s
(n)
t,i ),

= P (z(n)
t,i − s

(n)
t,i ). (9)

P (z(n)
t,i − s

(n)
t,i ) represents the probability of the deviation of the measured velocity,

(z(n)
t,i − s′(n)

t,i ), from the predicted velocity, (s(n)
t,i − s′(n)

t,i ), which can be computed by
a Normal difference distribution with zero mean and variance, 2σ2

i . Thus, Equation 9
becomes:

π
(n)
t,i =

1
2σi

√
π

exp
− ((z(n)

t,i
−s

(n)
t,i

))2

4σ2
i . (10)

μi and σi are obtained from Equation 6. We then perform normalization so that ∀i,∑
n π

(n)
t,i = 1. To update the cumulative weights, we add

∏M
i=1 π

(n)
t,i to c

(n)
t at the end

of every iteration.

5.4 Update

After constructing the N particles, sensor fusion is performed by combining the values
of π

(n)
t,i to compute the tracked position, pi(t), of the bounding box i(= 1...M) at time

t as:

pi(t) =
N∑

n=1

π
(n)
t,i ∗ s

(n)
t,i , (11)

followed by updating its Gaussian with velocity pi(t) − pi(t − 1).

5.5 Bootstrapping

The tracker is fully automatic, and is bootstrapped with an initial set of objects de-
tected using section 4. Without immediately invoking the particle filter, a few itera-
tions of detection, followed by data association using the same graph matching in Sec-
tion 5.3, is first performed. The particle filter is started once enough data has been
gathered about the velocities of the objects, after which a newly arrived object is only
added to it after been bootstrapped in the same manner. We summarize the algorithm in
Algorithm 1.
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Algorithm 1. Particle Filter({s
(n)
t−1, π

(n)
t−1, c

(n)
t−1, n = 1...N}, {〈μ1, σ

2
1〉, ..., 〈μM , σ2

M 〉})

1: Let α = 0 and increment time.
2: Select a particle, s′(n)

t , from s
(n)
t−1 based on cumulative probability c

(n)
t−1.

3: Predict the new locations, s
(n)
t , of the tracked bounding boxes, using the locations of the

bounding boxes in s′(n)
t as starting points and {〈μ1, σ

2
1〉, ..., 〈μM , σ2

M 〉} as the velocities
(Equation 7). Assign probabilities to these new locations based on {〈μ1, σ

2
1〉, ..., 〈μM , σ2

M 〉}
(Equation 8).

4: Perform disparity-based segmentation using the selected particle, obtaining a set of fore-
ground objects and their bounding boxes, z

(n)
t . After performing data association, tracked

objects that are not matched are removed. Each new object is assigned a newly initialized
Gaussian distribution to model its velocity after boostrapping.

5: The probabilities of the deviations of the measured velocities from the predictions are de-
termined from {〈μ1, σ

2
1〉, ..., 〈μM , σ2

M 〉} (Equations 10). Assign these probabilities to π
(n)
t

and perform normalization.
6: Update c

(n)
t with π

(n)
t .

7: Increment α.
8: if α < N then
9: Go to step 2.

10: end if
11: Determine the new tracked position of each bounding box as given by the sampled particles,

weighted using π
(n)
t . Update {〈μ1, σ

2
1〉, ..., 〈μM , σ2

M 〉} with the velocities in moving on to
these new tracked positions. Go to step 1.

6 Implementation and Results

We tested our algorithm on a four-camera video sequence in which three persons were
initially walking in circles in a small space, resulting in substantial occlusion. We il-
lustrate the algorithm in Figure 6. We performed background subtraction in the views
of four different cameras, shown in the second row. Foreground regions, projected into
a common plan view, were interesected to obtain a set of polygons containing candi-
date ground plane pixels, shown as red regions in the third row. Using these candidate
ground plane pixels, we obtain the set of disparity maps shown in the fourth row. Fi-
nally, tracking results based on these disparity maps are combined in the particle filter.
We show the final result in the last row.

We also show in Figure 7 the performance of the tracker when an additional person
walked into the scene, midway through the video sequence. The data association step
correctly detects the new object, and the particle filter was able to maintain tracks of the
objects throughout the video sequence. Finally, we compared the performance of our
tracker to that in [10]4. While its performance was reasonably good, we face two sig-
nificant problems: (1) It was hard to properly initialize the color model of each object
(which is manually performed with the source code provided), due to pose and scale is-
sues, and (2) as shown in Figure 8, objects with similar appearance will cause confusion
in the tracker when they come near each other.

4 Thanks to the authors for providing the source code.
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Camera 1, 2, 3, 4.

Detected foreground in camera 1, 2, 3.

Candidate ground plane pixels (red) in camera 1, 2, 3.

Disparity maps for stereo pair (1, 2), (2, 3) and (3, 4).

Final bounding boxes after particle filtering step in camera 1’s view.

Fig. 6. Notice that the disparity maps could be incomplete due to occlusion and limited field of
view, but are still useful for recovering occluded regions in other views
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Fig. 7. We show here the tracking results (each tracked object was bounded by the same color
box throughout the sequence) when an additional person walked into the scene in Figure 6. The
particle filter was able to maintain the correct tracks throughout the video sequence.

Camera 1, 2, 3 and 4.

Left image was the result of our tracker while the right was obtained from the tracker in [10].

Fig. 8. In this four views, the tracker in [10] had difficulties segmenting the two individuals (in
the red circles) with similar color profile, which is needed to invoke a particle filter for refining
the locations of the vertical axes of objects. A large portion of the pixels lying in one of the
individuals were incorrectly classify as belonging to the other. In contrast, stereo pair (2, 4) was
used by our tracker to segment the two individuals with lesser errors. Both trackers were given
the same set of foreground regions.

7 Concluding Remarks

We have presented a tracker that utilizes disparity-based sensor fusion to detect and
track people under occlusion in a particle filter framework, of which several major con-
tributions can be identified as follows:
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Ease of Calibration. Due to the way information is transferred between different
views, the tracker requires only homographies and vertical vanishing points that can be
easily computed once offline. Specifically, ground plane homography can be computed
with four point correspondences between two images and vertical vanishing point can
be computed as the intersection of a given pair of lines in the image that corresponds
to parallel lines in the world [3]. In contrast to a 3D tracker such as [13], which in-
volves projecting 3D points onto the image plane, the calibration step requires 3D to
2D point correspondences to compute both intrinsic and extrinsic camera parameters.
Such full-scale calibration is often more susceptible to errors and requires cumbersome
setup.

Improved Stereo Matching. During tracking, the tracker does not search everywhere
along the epipolar line, which is a major pitfall for generating wrong stereo matches.
Instead, ground plane pixels lying in constructed polygons and near the vertical axis
of a foreground pixel are mapped to the second view, after which the vertical axes of
the mapped ground plane pixels are intersected with the epipolar line to generate better
candidates for the corresponding pixel.

Probabilistic Sensor Fusion. The ease of information transferrence between differ-
ent views simplifies sensor fusion, so that the tracker can be run in a particle filter
framework. Doing so is instrumental for handling uncertainties (Equation 11), since the
strength of each “particle” is considered in determining the tracked position.

Fully Automatic. The tracker is fully automatic, while still demonstrating similar (or
better, in certain situations) performance when compared to a recent state-of-the-art
tracker that also utilizes a common plan view and a particle filter but requires initializing
an appearance model for every object.
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Abstract. We propose a new method for human action recognition
from video sequences using latent topic models. Video sequences are
represented by a novel “bag-of-words” representation, where each frame
corresponds to a “word”. The major difference between our model and
previous latent topic models for recognition problems in computer vision
is that, our model is trained in a “semi-supervised” way. Our model has
several advantages over other similar models. First of all, the training is
much easier due to the decoupling of the model parameters. Secondly, it
naturally solves the problem of how to choose the appropriate number
of latent topics. Thirdly, it achieves much better performance by utiliz-
ing the information provided by the class labels in the training set. We
present action classification and irregularity detection results, and show
improvement over previous methods.

1 Introduction

Recognizing human actions from image sequences is a challenging problem in
computer vision. It has applications in many areas, e.g., motion capture, med-
ical bio-mechanical analysis, ergonomic analysis, human-computer interaction,
surveillance and security, environmental control and monitoring, sport and en-
tertainment analysis, etc. Various visual cues (e.g., motion [6,8,16,20] and shape
[26]) can be used for recognizing actions. In this paper, we focus on recognizing
the action of a person in an image sequence based on motion cues. We develop
a novel model of human actions based on the “bag-of-words” paradigm.

Our model is motivated by the recent success of “bag-of-words” representation
for object recognition problems in computer vision. The common paradigm of
these approaches consists of extracting local features from a collection of images,
constructing a codebook of visual words by vector quantization, and building
a probabilistic model to represent the collection of visual words. While these
models of an object as a collection of local parts are certainly not “correct”
ones, for example they only model a few parts of objects and often ignore much
structure, they have been demonstrated to be quite effective in object recognition
tasks [9,12,15].

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 240–254, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In this paper we explore the use of a similar model, for recognizing human
actions. Figure 1 shows an overview of our “bag-of-words” representation. In
our model, each frame in an image sequence is assigned to a visual word by
analyzing the motion of the person it contains. The unordered set of these words
over the image sequence becomes our bag of words. As with the object recogni-
tion approaches, some structure has been lost by moving to this representation.
However, this model is much simpler than one which explicitly models temporal
structure. Instead we capture “temporal smoothing” via co-occurrence statistics
amongst these visual words, i.e., which actions tend to appear together in a sin-
gle track. For example, in a single track of a person, the combination of “walk
left” and “walk right” actions is much more common than the combination of
“run left” “run right” “run up” “run down”. In this paper we provide evidence
that this simple model can be quite effective in recognizing actions.

1 1 1 1 1 10
20 32 32 32 1 1
18 21 21 21 28 32
32 32 11 10 10 10
10 20 33 32 32 1

(a) (b) (c) (d)

Fig. 1. The processing pipeline of getting the “bag-of-words” representation: (a) given
a video sequence, (b) track and stabilize each human figure, (c) represent each frame by
a “motion word”, (d) ignore the ordering of words and represent the image sequences
of a tracked person as a histogram over “motion words”

In particular, our model is based on the latent Dirichlet allocation (LDA) [2]
model. LDA, the probabilistic Latent Semantic Indexing (pLSI) [13] model, and
their variants have been applied to various computer vision applications, such
as scene recognition [5,10], object recognition [11,22,25], action recognition [19],
human detection [1], etc.

Despite the great success achieved, there are some unsolved, important issues
remaining in this line of research. First of all, it is not clear how to choose the
right number of latent topics in one of these models. Previous methods usually
take a rather ad-hoc approach, e.g., by trying several different numbers. But
this is often not possible in realistic settings. Secondly, most of the previous
approaches use their models for some specific recognition problem, say object
class recognition. However, there is no guarantee that the latent topics found by
their algorithms will necessarily correspond to object classes. Thirdly, the fea-
tures used in these approaches are usually SIFT-like local features computed at
locations found by interest-point detectors. The only exceptions are histogram
of oriented gradients in Bissacco et al. [1] and multiple segmentations in Russell
et al. [22]. Features based on local patches may be appropriate for certain recog-
nition problems, such as scene recognition or object recognition. But for human
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action recognition, it is not clear that they can by sufficiently informative about
the action being performed. Instead, we use descriptors that can capture the
large-scale properties of human figures, and compare these results to approaches
using local patches.

In this paper, we attempt to address the above mentioned issues in two as-
pects. First of all, we introduce a new “bag-of-words” representation for image
sequences. Our representation is dramatically different from previous ones (e.g.,
Niebles et al. [19]) in that we represent a frame in an image sequence as a “single
word”, rather than a “collection of words” computed at some spatial-temporal
interest points. Our main motivation for this new representation is that human
actions may be characterized by large-scale features, rather than local patches.
Secondly, we propose a new topic model called Semi-Latent Dirichlet Alloca-
tion (S-LDA). The major difference between our model and the Latent Dirichlet
Allocation (LDA) model is that some of the latent variables in LDA are observed
during the training stage in S-LDA. We show that our model naturally solves
the problem of choosing the right number of latent topics. Also by pushing the
information provided by class labels of training data directly into our model, we
can guide the latent topics to be our class labels, and consequently achieve much
better performance.

The rest of this paper is organized as follows. In Sect. 2 we review previous
work. Section 3 gives the details of our approach. We present experimental results
in Sect. 4 and conclude in Sect. 5.

2 Previous Work

A lot of work has been done in recognizing actions from both still images and
video sequences. Much of this work is focused on analyzing patterns of motion.
For example, Cutler & Davis [6], and Polana & Nelson [20] detect and classify
periodic motions. Little & Boyd [16] analyze the periodic structure of optical
flow patterns for gait recognition. Rao et al. [21] describe a view-invariant rep-
resentation for 2D trajectories of tracked skin blobs. Others consider the shape
of human figure. For example, Sullivan & Carlsson [26] use “order structure”
to compare the shape of extracted edges for the purpose of action recognition.
There is also work using both motion and shape cues. For example, Bobick &
Davis [3] use a representation known as “temporal templates” to capture both
motion and shape, represented as evolving silhouettes. Zhong et al. [27] cluster
segments of long video sequences by looking at co-occurrences of patterns of
motion and appearance.

Our approach is closely related to a body of work on recognition using “bag-
of-words”. The “bag-of-words” model was originally proposed for analyzing text
documents [2,13]. Recently, researchers in the computer vision community have
used “bag-of-words” models for various recognition problems. Fei-Fei & Per-
ona [10] use a variant of LDA for natural scene categorization. Sivic et al. [25],
Fergus et al. [11] and Russell et al. [22] use pLSI for unsupervised object class
recognition and segmentation. Niebles et al. [19] use pLSI for action recognition
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using spatial-temporal visual words. Bissacco et al. [1] use LDA for human pose
classification from vector-quantized words from histograms of oriented gradients.

3 Our Approach

Similar to Niebles et al. [19], we represent a video sequence as a “bag of words”.
But our representation is different from Niebles et al. [19] in two aspects. First
of all, our method represents a frame as a single word, rather than a collec-
tion of words from vector quantization of space-time interest points. In other
words, a “word” corresponds to a “frame”, and a “document” corresponds to a
“video sequence” in our representation. Secondly, our model is trained in a semi-
supervised fashion. We will show that by utilizing the class labels, we can greatly
simplify the training algorithm, and achieve much better recognition accuracy.

3.1 Motion Features and Codebook

We use the motion descriptor in Efros et al. [8] to represent the video sequences.
This motion descriptor has been shown to perform reliably with noisy image
sequences, and has been applied in various tasks, such as action classification,
motion synthesis, etc.

To calculate the motion descriptor, we first need to track and stabilize the
persons in a video sequence. We use the human detection method in Sabzmeydani
& Mori [23] in some of our experiments. But any tracking or human detection
methods can be used, since the motion descriptor we use is very robust to jitters
introduced by the tracking.

Given a stabilized video sequence in which the person of interest appears in
the center of the field of view, we compute the optical flow at each frame using
the Lucas-Kanade [17] algorithm. The optical flow vector field F is then split
into two scalar fields Fx and Fy, corresponding to the x and y components of F .
Fx and Fy are further half-wave rectified into four non-negative channels F+

x ,
F−

x , F+
y , F−

y , so that Fx = F+
x −F−

x and Fy = F+
y −F−

y . These four non-negative
channels are then blurred with a Gaussian kernel and normalized to obtain the
final four channels Fb+

x ,Fb−x ,Fb+
y ,Fb−y (see Fig. 2).

The motion descriptors of two different frames are compared using a version
of the normalized correlation. Suppose the fours channels for frame A are a1,
a2, a3 and a4, similarly, the four channels for frame B are b1, b2, b3 and b4, then
the similarity between frame A and frame B is:

S(A, B) =
4∑

c=1

∑

x,y∈I

ac(x, y)bc(x, y) (1)

where I is the spatial extent of the motion descriptors. In Efros et al. [8], a
temporal smoothing is also used, but we found the simplified version without
temporal smoothing works good enough for our application.

To construct the codebook, we randomly select a subset from all the frames,
compute the affinity matrix A on this subset of frames, where each entry in the
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original image optical flow F
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Fig. 2. Construction of the motion descriptor

affinity matrix is the similarity between frame i and frame j calculated using the
normalized correlation described above. Then we run k-medoid clustering on this
affinity matrix to obtain V clusters. Codewords are then defined as the centers
of the obtained clusters. In the end, all the video sequences are converted to
the “bag-of-words” representation by replacing each frame by its corresponding
codeword.

3.2 Latent Dirichlet Allocation

Our model is based the Latent Dirichlet Allocation (LDA) [2]. In the following,
we briefly introduce LDA model using the terminology in our context.

Suppose we are given a collection D of video sequences {w1,w2, ...,wM}.
Each video sequence w is a collection of frames w = (w1, w2, ..., wN ), where wi

is the motion word representing the i-th frame. A motion word is the basic item
from a codebook (see Sect.3.1) indexed by {1, 2, ..., V }.

The LDA model assumes there are K underlying latent topics (i.e., action
class labels) according to which video sequences are generated. Each topic is
represented by a multinomial distribution over the |V | motion words. A video
sequence is generated by sampling a mixture of these topics, then sampling mo-
tion words conditioning on a particular topic. The generative process of LDA for
a video sequence w in the collection can be formalized as follows (see Fig. 3(a)):

1. Choose θ ∼ Dir(α)
2. For each of the N motion words wn:

(a) Choose an action label (i.e., topic) zn ∼ Mult(θ);
(b) Choose a motion word wn from wn ∼ p(wn|zn, β), a multinomial proba-

bility conditioned on zn.
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Fig. 3. (a) Graphical representation of LDA model, adopted from Blei et al. [2]; (b)
Graphical representation of the variational distribution

The parameter θ indicates the mixing proportion of different actions labels in a
particular video sequence. α is the parameter of a Dirichlet distribution that con-
trols how the mixing proportions θ vary among different video sequences. β is the
parameter of a set of multinomial distributions, each of them indicates the distri-
bution of motion words within a particular action label. Learning a LDA model
from a collection of video sequences D = {w1,w2, ...,wM} involves finding α and
β that maximize the log likelihood of the data l(α, β) =

∑M
d=1 logP (wd|α, β).

This parameter estimation problem can be solved by the variational EM algo-
rithm developed in Blei et al. [2].

3.3 Semi-Latent Dirichlet Allocation

In the original LDA, we are only given the word (w1, w2, ..., wN ) in each video
sequence, but we do not know the topic zi for the word wi, nor the mixing pro-
portion θ of topics in the sequence. In order to use LDA for classification prob-
lems, people have applied various tricks. For example, Blei et al. [2] use LDA
to project a document onto the topic simplex, then train an SVM model based
on this new representation, rather than the original vector representation of a
document based on words. Although this simplex is a much compact representa-
tion for the documents, the final SVM classifier based on this new representation
actually performs worse than the SVM classifier trained on the original vector
representation based on words. Sivic et al. [25] use a simpler method by classi-
fying an image to a topic in which the latent topics of this document is most
likely to be drawn from. There are two problems with this approach. First of all,
there is no guarantee that a “topic” found by LDA corresponds to a particular
“object class”. Secondly, it is not clear how many “topics” to choose.

In this paper, we are interested in the action classification problem, where all
the frames in the training video sequences have action class labels associated with
them. In this case, there is no reason to ignore this important information. In this
section, we introduce a semi-supervised version of the LDA model called Semi-
Latent Dirichlet Allocation (S-LDA). S-LDA utilizes class labels by enforcing a
one-to-one correspondence between topics and class labels. Since we use a word
wi to represent a frame in a video sequence w = (w1, w2, ..., wN ), the topic zi
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for the word wi is simply the class label of wi. The graphical representation of
S-LDA model is shown in Fig. 4. We should emphasize that the model in Fig. 4
is only for training (i.e., estimating α and β). In testing, we will use the same
model shown in Fig. 3(a), together with estimated model parameters α and β.

θα z

β

w N M

Fig. 4. Graphical representation of the Semi-Latent Dirichlet Allocation (S-LDA) for
training. Note the difference from Fig. 3(a) is that z is observed in this case.

Our model has three major advantages over previous approaches of using a
topic model for classification problems. First of all, choosing the right number
of topics is trivial, since it is simply the number of class labels in the training
sequences. Secondly, the training process of the S-LDA model is much easier than
the original LDA. Thirdly, we can achieve much better recognition accuracy by
taking advantage of the class labels (see Sect. 4).

In LDA (see Fig. 3(a)), the parameters α and β are coupled, conditioning on
the observed words w. In that case, the model parameters (α and β) have to
be estimated jointly, which is difficult. Various approximation approaches (e.g.,
sampling, variational EM, etc) have to be used. However, in S-LDA (Fig. 4),
the parameters α and β become independent, conditioning on observed words
w and their corresponding topics (i.e., class labels) z. So we can estimate α and
β separately, which makes the training procedure much easier. In the following,
we describe the details of estimating these parameters.

The parameter β can be represented by a matrix of size K × V , where K is
the number of possible topics (i.e., class labels) and V is the number of possible
words. The i-th row of this matrix (βi) is a V -dimensional vector that sums to 1.
βi is the parameter for a multinomial distribution, which defines the probability
of drawing each word in the i-th topic. The maximum-likelihood estimate of
βi can be calculated by simply counting the frequency of each word appearing
together with topic zi, i.e., βij = nij/ni·, where ni· is the count of the i-th topic
in the corpus, and nij is the count of i-th topic with j-th word in the corpus.

The estimation of the Dirichlet parameter α is a bit more involved. The Dirich-
let distribution is a model of how topic mixing proportions θ vary among docu-
ments. This distribution has the form p(θ|α) = Γ (

∑
k αk)∏

k Γ (αk)

∏
k θαk−1

k . In order to
estimate α, we first need to compute θ for each document w = (w1, w2, ..., wN ).
Suppose the topics (i.e., the class labels of the words) of the document are
z = (z1, z2, ..., zN), then the i-th coordinate θi of θ can be calculated as θi =



Semi-Latent Dirichlet Allocation 247

|{i : zj = i, j = 1, 2, ..., N}|/N . After we collect all the θt (t = 1, 2, ..., M) val-
ues (as a notation convention, we use subscripts to denote coordinates of θ and
superscripts to denote document numbers), the parameter α can be estimated
from Θ = {θ1, θ2, ..., θM} using generalized Newton Raphson iterations [18].

3.4 Classification of New Video Sequences

Given a new video sequence for testing, we would like to classify each frame in the
sequence. Suppose the test video sequence is represented as w = (w1, w2, ..., wN ),
i.e., there are N frames in the sequence, and the i-th frame is represented by
the motion word wi. Then, we need to calculate p(zi|w, α, β) (i = 1, 2, ..., N).
The frame wi is classified to be action class k if k = argmaxjp(zi = j|w, α, β).
Notice that we use p(zi|w) instead of p(zi|wi) for classification. This reflects
our assumption that the class label zi not only depends on its corresponding
word wi, but also depends on the video sequence w = (w1, w2, ..., wN ) as a
whole.

To calculate p(zi|w, α, β), we use the variational inference algorithm pro-
posed in Blei et al. [2]. The basic idea of the variational inference is to ap-
proximate the distribution p(θ, z|w, α, β) by a simplified family of variational
probability distributions q(θ, z) with the form q(θ, z) = q(θ|γ)

∏N
n=1 q(zn|φn).

The graphical representation of q(θ, z|γ, φ) is shown in Fig. 3(b). In order to
make the approximation as close to the original distribution as possible, we need
to find (γ∗, φ∗) that minimize the Kullback-Leibler (KL) divergence between
the variational distribution q(θ, z|γ, φ) and the true distribution p(θ, z|w, α, β),
i.e., (γ∗, φ∗) = argmin(γ,φ) D(q(θ, z|γ, φ)‖p(θ, z|w, α, β)), where D(·|·) is the
KL divergence. Finding (γ∗, φ∗) can be achieved by iteratively updating
(γ, φ) using the following update rules (see Blei et al. [2] for detailed
derivation):

φni ∝ βiv exp(Ψ(γi) − Ψ(
K∑

j=1

γj)) (2)

γi = αi +
N∑

n=1

φni (3)

Several insights can be drawn from examining the variational parameters
(γ∗(w), φ∗(w)). First of all, (γ∗(w), φ∗(w)) are document-specific. For a par-
ticular document z, γ∗(w) provides a representation of a document in the topic
simplex. Also notice that Dir(γ∗(w)) is the distribution from which the mix-
ing proportion θ for the document w is drawn. We can imagine that if we
draw a sample θ ∼ Dir(γ∗(w)), θ will tend to peak towards the true mixing
proportion θ∗ of topics for the document w. So the true mixing proportion
θ∗ can be approximated by the empirical mean of a set of samples θi drawn
from Dir(γ∗(w)). The second insight comes from examining the φn parameters.
These distributions approximate p(zn|wn). The third insight is that, since the
topic zn is drawn from Mult(θ∗), θ∗ is an approximation of p(zn). Then we can
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get p(zn|w) ∝ p(zn|θ∗)p(zn|wn) ≈ θ∗zn
φznwn .This equation has a very appeal-

ing intuition. It basically says the class label zn is determined by two factors,
the first factor θ∗zn

tells us the probability of generating topic zn in a document
with mixing proportion θ∗, the second factor φznwn tells us the probability of
generating topic zn conditioning on a particular word wn.

3.5 Irregularity Detection in Video Sequences

An interesting application of our method is detecting irregularities (i.e., novelty)
in video sequences. This has a lot of potential applications in surveillance and
monitoring. Previous approaches to irregularity detection can be broadly classi-
fied into two classes: rule-based method and statistical methods [4]. Our method
falls into the statistical methods, which try to learn a model of regularity from
data, and infer about irregularity using the model.

There are various notions of “irregularity”. For example, one possibility is to
define all the actions that never appears in the training set to be “irregular”.
But in this paper, we focus on another case, where “irregularity” is defined
by the composition of different actions, rather than the actions themselves. For
example, loitering in a parking lot is composed of actions which by themselves are
regular. But taken together, those regular actions form an unusual and suspicious
behavior. This irregularity is characterized by the unique combination of regular
actions. Other irregularity detection algorithms using only low-level cues (e.g.
Boiman & Irani [4]) would not be able to identify it.

The application of our method to irregularity detection is quite straight-
forward. We first build our S-LDA model from a collection of training video
sequences that are considered to be “regular”, i.e., estimating the model pa-
rameters α and β using the method in Sect. 3.3. Given a new testing video
sequence w, we calculate the likelihood l(w; α, β) = p(w|α, β) using the method
in Sect. 3.4. If w is very different from those in the training set, i.e., it is not
generated by the LDA model defined by α and β, it will probably have a very
low likelihood under the model. So the likelihood of this new testing video
sequence is an indicator of “irregularity”. Lower likelihood means being more
“irregular”.

4 Experiments

We test our algorithm on two datasets: KTH human motion dataset [24] and
soccer dataset [8].

4.1 Action Classification on KTH Dataset

The KTH human motion dataset is one of the largest video datasets of human
actions. It contains six types of human actions (walking, jogging, running, box-
ing, hand waving and hand clapping) performed several times by 25 subjects in
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Fig. 5. Representative frames in KTH dataset

four different scenarios: outdoors, outdoors with scale variation, outdoors with
different clothes and indoors. Representative frames of this dataset are shown in
Fig. 5.

We first run an automatic preprocessing step to track and stabilize the video
sequences using the algorithm in Sabzmeydani &Mori [23], so that all the fig-
ures appear in the center of the field of view. We perform leave-one-out cross-
validation on this dataset. For each run, we choose the video sequences of one
subject as the test set, and build our model on the rest of the video sequences.
We run the same process on each of the video sequence. For each run, we take
the features obtained from Sect. 3.1 as the feature vectors. Then these feature
vectors are quantized by k-medoid clustering to form the motion words. Since
the number of feature vectors is huge, we randomly select a small number (about
30 frames) from each training video sequence for the k-mediod clustering.

The confusion matrix for the KTH dataset using 550 codewords is shown in
Fig. 6(a). We can see that the algorithm correctly classifies most of actions.
Most of the mistakes the algorithm makes are confusion between “running” and
“jogging” actions. This is intuitively reasonable, since “running” and “jogging”
are similar actions.

We also test the effect of the codebook size on the overall accuracy. The result
is shown in Fig. 6(b). The best accuracy is achieved with 550 codewords, but is
relatively stable.

We compare our results with previous approaches on the same dataset, as
shown in Table 1. We would like to point out that the numbers in Table 1 are
not directly comparable, since different approaches use different split of training
and test data. In particular, the first three approaches use “leave-one-out” cross
validation, while the remaining two approaches equally split the dataset into
training, validation, and test sets. Nevertheless, Our method achieves better
performance by a large margin. As a sanity check, we also run our experiment
by equally splitting the dataset into training and test sets (our algorithm does
not need a validation set), the recognition accuracy is similar.
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Fig. 6. (a) Confusion matrix for KTH dataset using 550 code-
words (overall accuracy=92.43%). Horizontal rows are ground truth,
and vertical columns are predictions. The action labels are “box-
ing”,“handclapping”,“handwaving”,“jogging”,“running”,“walking”; (b) classification
accuracy vs. codebook size for KTH dataset.

Table 1. Comparison of different methods in terms of recognition accuracy on the
KTH dataset

methods recognition accuracy(%)
Our method 92.43

Niebles et al. [19] 81.50
Dollár et al. [7] 81.17

Schuldt et al. [24] 71.72
Ke et al. [14] 62.96

4.2 Action Classification on Soccer Dataset

The soccer dataset we use is from Efros et al. [8]1. This dataset contains several
minutes of digitized World Cup football game from an NTSC video tape. A
preprocessing step is taken to track and stabilize each human figure. In the end,
we obtain 35 video sequences, each corresponding to a person moving in the
center of the field of view. All the frames in these video sequences are hand-
labeled with one of 8 action labels: “run left 45 ◦”, “run left”, “walk left”, “walk
in/out”, “run in/out”, “walk right”, “run right”, “run right 45 ◦”. Representative
frames of a single tracked person are shown in Fig. 1(b).

Again, we perform leave-one-out cross-validation on the dataset. The confu-
sion matrix using 350 codewords is shown in Fig. 7(a). The overall accuracy
is 79.19%. Table 2 shows the main diagonal, compared with the main diagonal

1 Unfortunately, other datasets (tennis, ballet) used in this paper were not available.
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from Efros et al. [8], which used a k-nearest neighbor classifier based on the tem-
porally smoothed motion feature vectors. We can see that our method performs
better by a large margin for most of the class labels. Also, we can see that a lot
of the mistakes made by our algorithm makes intuitive sense. For example, “run
left 45 ◦” is confused with “run left” and “run in/out”, “walk right” is confused
with “walk in/out” and “run right”, etc. In addition to achieving a higher accu-
racy, our algorithm has the added advantage that it is faster to classify a new
video sequence, since we do not have to search over all the video sequences in
the training set, as required by k-nearest neighbor classifiers.

We test the effect the codebook size on the overall accuracy. The result is
shown in Fig. 7(b). The best accuracy peaks at around 350.

Table 2. Comparison of the main diagonal of the confusion matrix of our method and
the method in Efros et al. [8] on the soccer dataset

Our method Efros et al. [8]

run left 45 ◦ 0.64 0.67
run left 0.77 0.58
walk left 1.00 0.68

walk in/out 0.86 0.79
run in/out 0.81 0.59
walk right 0.86 0.68
run right 0.71 0.58

run right 45 ◦ 0.66 0.66

4.3 Irregularity Detection

Since all the video sequences in the KTH dataset only contain a single action,
we only test the irregularity detection of our algorithm on the soccer dataset.
Our experimental setting is similar to that in Sect. 4.2. For each run, we choose
one video sequence as the test set, and build our model from the remaining
video sequences. Then we calculate the likelihood p(w|α, β) of the testing video
sequence under the built model. The likelihood value gives us some indication
on how “irregular” this testing video sequence is, compared with the remaining
video sequences.

We repeat the above process for all the video sequences, then rank them
according to the increasing order of their likelihood values p(w|α, β). Under our
assumption, the top few videos in the list should be considered to be “irregular”.

Since there is no ground truth in this experiment, we can only report our
results empirically. Table 3(a) shows the frame labels in the top five video se-
quences (i.e., the most “irregular” ones). We can see that the videos in Ta-
ble 3(a) are in general “irregular”. For example, they all involve a human figure
runs/walks out of the scene. In fact, the combinations of the frame labels only
appear once or twice in our training set. Table 3(b) shows the frame labels in the
bottom five video sequences (i.e., the most “regular” or boring ones). They are
obviously “boring” video sequences, since they only contain people running. It is
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Fig. 7. (a)Confusion matrix for soccer dataset using 350 codewords (overall
accuracy=79.19%). Horizontal rows are ground truth, and vertical columns are pre-
dictions. The action labels are “run left 45 ◦”,“run left”,“walk left”, “walk in/out”,
“run in/out”, “walk right”, “run right”, “run right 45 ◦”; (b) classification accuracy vs.
codebook size for the soccer dataset.

Table 3. Results of irregularity detection: (a) top five “irregular” video sequences; (b)
top five “regular” video sequences

Sequence No. frame labels

sequence 6 “run right” “run right 45 ◦” “walk in/out” “walk right”
sequence 5 “walk right” “walk in/out”
sequence 9 “run left” “run left 45 ◦” “run in/out” “run right 45 ◦”
sequence 32 “run in/out” “walk in/out”
sequence 33 “walk in/out”

(a)

Sequence No. frame labels

sequence 1 “run left”
sequence 2 “run left 45 ◦” “run left”
sequence 29 “run left”
sequence 4 “run left”
sequence 3 “run left”

(b)

interesting to see that the “boring” video sequences picked out by our algorithms
are not necessarily the ones with a single action (see sequence 33 in Table 3(a)
and sequence 2 in Table 3(b)).

5 Conclusion

We have presented a hierarchical probabilistic model (semi-latent Dirichlet allo-
cation) for action recognition based on motion words, where each word
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corresponds to a frame in the video sequence. By naturally exploiting class la-
bels of training data in our model, we are able to achieve much better results,
compared with previous “bag-of-words” methods.

Of course, our method has its own limitations. For example, it requires a pre-
processing stage of tracking and stabilizing human figures. However, we believe
this is a reasonable assumption in many scenarios. In fact, all the video se-
quences in our experiments are pre-processed by off-the-shelf tracking/detection
algorithms without much efforts.
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Abstract. In this paper, we introduce a first-order probabilistic model
that combines multiple cues to classify human activities from video data
accurately and robustly. Our system works in a realistic office setting
with background clutter, natural illumination, different people, and par-
tial occlusion. The model we present is compact, requires only fifteen sen-
tences of first-order logic grouped as a Dynamic Markov Logic Network
(DMLNs) to implement the probabilistic model and leverages existing
state-of-the-art work in pose detection and object recognition.

1 Introduction

In recent years, there has been considerable success in bolstering the performance
of object recognition by considering not just the object itself but also the context
in which it occurs. For example, in [18] and [35], the recognition of objects is
boosted by analyzing contextual information within a camera image, such as
the presence and absence of other objects, the relative location of the object in
question, and global features characterizing the scene. That work expresses the
concept of context through probabilistic relationships of multiple recognizers. A
probabilistic model posits the relationship between context and objects.

In this paper, we seek a plausible extension of this work to image sequences.
By tying together information about peoples’ poses, objects seen, and relative
locations, we seek to identify peoples’ activities using probabilistic models per-
taining to these cues. Using all three cues in tandem offers far greater accuracy
than any of the cues on its own.

To achieve these results, we develop a novel framework for expressing the
spatio-temporal relation of cues and activities. Our framework is based on Dy-
namic Markov Logic Networks (DMLNs) [31], a well-established first-order prob-
abilistic representation. We demonstrate in this paper that the DMLN framework
provides a powerful language to express the probabilistic relationship of cues
and activities in the video analysis domain. In fact, we show that useful DMLN
theories establish the notion of context significantly more compactly than the
propositional representations used, for example, in [18] and [35]. Our approach
introduces new inference techniques for DMLN inference that accommodates the
specific nature of the inference problem in the computer vision domain.

Our experiments apply state-of-the-art techniques for pose detection and ob-
ject recognition. We show empirically that DMLNs effectively leverage context
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and achieve improved recognition rates. These results are well in tune with ear-
lier work on this topic. Hence, we conjecture that the DMLN framework provides
an elegant and effective way to extend that work into the temporal domain in-
volving human activities – a research topic that has found considerable attention
in the computer vision field in past years [25], [16], [13], [7].

2 Overview of DMLNs

In this section, we present the concept of Dynamic Markov Logic Networks
(DMLNs). While a formal treatment is far beyond the scope of this work, we
refer the interested reader to [29] and [31], the definitive works regarding DMLNs.

A DMLN uses the language of First-Order Logic [10] to express a First-Order
Probabilistic Model [23]. It explicitly posits the notion of objects and boolean
predicates regarding them. Let us illustrate these notions by way of an example.

First, let p, q, and r be objects. These can be many things, depending on the
problem of interest. Examples include an image, a single pixel, a feature being
tracked, a robot, or a database entry. Probabilistic models such as Markov Ran-
dom Fields or Dynamic Bayesian Networks consider only propositions, possibly
about objects, but cannot consider objects explicitly.

Second, let A(x, y, t) and B(z, t) be fluents. Examples of fluents include
whether one tracked object is occluding another at time step t or whether a
specific pixel position in a video stream is part of an edge. The fluents relate to
variables which will be substituted with actual objects at runtime.

Each possible assignment of objects to fluents forms what is known as a ground
fluent. In this example, the ground fluents are A(p, p), A(p, q), A(p, r), A(q, p),
A(q, q), A(q, r), A(r, p), A(r, q), A(r, r), B(p), B(q), and B(r). Each ground
fluent is true or false. Let us consider a concrete example. Let p, q, and r be
three people. Let A(x, y, t) mean that x and y are friends at time t and let
B(z, t) mean that z is cheerful at time t. In this example, at time 0, let p and
q be friends with one another and r is unknown to the other two. Moreover, let
p be the only cheerful one. Then ground fluents A(p, q, 0), A(q, p, 0), A(p, p, 0),
A(q, q, 0), A(r, r, 0), and B(p, 0) are all true and all other fluents at time 0 are
false. We follow the arbitrary convention that one is always friends with oneself.

In addition to objects and fluents, DMLNs also have weighted sentences that
give rise to a probability distribution over models, i.e. truth assignments to all
ground fluents. Such a sentence might be

B(x, t) → B(x, succ(t)) (1)

with weight 2.0. It means that one typically but not always remains cheery in
the future when one has been cheery in the past.

Another sentence might be

B(x, t) ∧ A(x, y, t) → B(y, t) (2)

with weight 1.0. It means that cheerful people pass on their cheerfulness to their
friends. This effect is weaker than retaining one’s own cheerfulness.
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While DMLNs properly give rise to a joint probability distribution over ground
fluents, let it suffice to state for this exposition that models that satisfy more
sentences are more likely than those that do not. Moreover, models that satisfy
higher weight sentences are more likely in a probabilistic sense than those that
satisfy lower weight sentences.

3 Activity Recognition System

3.1 Probabilistic Model

The key contribution of this paper is to express a graphical model for combin-
ing multiple cues – pose, object presence, and movement location – through a
compact DMLN theory. While graphical models have produced excellent results
in computer vision applications, they have been too complicated – difficult to
construct, modify, and communicate. We present our DMLN model in Figure 1
as an alternative.

1 ∀t∀a Activity(a,t) → Activity(a,succ(t)) 8.3
2 ∀t∀a1∀a2 Activity(a1,t) → =(a1,a2) ∨ ¬ Activity(a2,t) ∞
3 ∀t∃a Activity(a,t) ∞
4 ∀t∀a Activity(a,t) → Pose(a,t) 0.7
5 ∀t Activity(a,t) ∧ Useful(o,a) → Present(o,t) 0.7
6 Useful(TYPING,KEYBOARD) ∞
7 Useful(MOUSING,MOUSE) ∞
8 Useful(EATING,CANDY) ∞
9 Useful(EATING,APPLE) ∞
10 Useful(DRINKING,SODA) ∞
11 Useful(READING,BOOK) ∞
12 Useful(TALKING,PHONE) ∞
13 Useful(WRITING,PEN) ∞
14 Useful(WRITING,PAPER) ∞
15 ∀t∀a Activity(a,t) → Movement(a,t) 0.2

Fig. 1. Probabilistic Model as Dynamic Markov Logic Network (sentence weights ap-
pear in the right column)

3.2 Fluents and Sentences

Sentence 1 of Figure 1 refers to the predicates Activity(a,t) and Activity
(a,succ(t)). Activity(a,t) is a binary variable that means that the person is en-
gaged in activity a at time t. For example, Activity(WRITING,1244) means
that the observed person is writing in frame 1244 of the video sequence. We will
assume throughout that there is exactly one person in each image. One could
relax this assumption along the lines of [12] if need be.

This sentence states that activities tend to persist over time. In other words,
if you are drinking from a can of soda, you will most likely continue to be
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still drinking from that can in the next frame, tens of milliseconds later. In the
sentence, succ(t) means that successor to t, i.e. the next frame. The sentence
literally reads – for all time steps t and for all activities a, if the user is engaged
in activity a at time step t, then the user will be engaged in activity a in the
time step following t.

Sentence 2 establishes a mutual exclusion constraint between simultaneous
activities. Simply put, we are providing the machine a generalization of the
notion that a person cannot walk and chew gum at the same time. This sentence
reads – for all time steps t and for all activities a1 and for all activities a2, if the
user is engaged in activity a1 at time t, then either a1 and a2 refer to the same
activity or the user is not engaged in activity a2 at time t. This sentence has the
special property that it has infinite weight, i.e. this is a hard constraint.

Sentence 3 states that the user must be doing something. It is possible to add
a special activity, NOTHING, to indicate times where the user is not engaged
in any activity.

3.3 Incorporating Cues

The output of the pose recognition system described in section 4 is represented
by asserting the sentence Pose(a,t), which means that the person’s observed
pose appears to be in keeping with being engaged in activity a at time t. The
pose detection posits a sentence weight reflecting its confidence, as do the other
components. Sentence 4 states that a person’s pose will reflect the activity they
are currently engaged in.

The objects a person is using also provide valuables cues as to what they are
doing. In this component, we are content to consider what objects are in view.
If we see both a can of soda and a phone, we cannot definitely say which one is
being used but if we do not see a keyboard, we are less likely to think that the
person is typing.

The object recognition component uses the fluents Present(o,t) (an object of
type o is present at time t) and Useful(a,o) (objects of type o are useful for
activity a). Sentence 5 states that objects useful to an activity will be present
when that activity is engaged in. Sentences 6 through 14 specify which objects
are useful for which activities. Here, mousing refers to using a computer mouse
and talking refers to conversing on a telephone.

Sentence 15 states that the activity undertaken influences the location of the
movement in the camera image. The fluent Movement(a, t) states which activity
seems likely by analyzing movement alone.

Before we move on, let us ensure that we understand the sentences by un-
derstanding the effect of removing any one sentence in isolation. Removing the
first sentence would eliminate the continuity of our temporal model, forcing the
inference procedure to consider each image in isolation without the benefit of the
entire video sequence. Removing the second and/or third sentence would allow
for the classifier to choose no activity or to choose more than one. Removing
the fourth sentence would prevent the pose detector from providing useful in-
formation and removing the fifth or fourteenth sentence would do the same for



Recognizing Activities with Multiple Cues 259

the object and movement detection, respectively. Removing any of the sentences
from six through fourteen would make the system blind to the corresponding
object type.

3.4 Ease of Expression in DMLNs

This paper is as much about building an activity recognition system using mul-
tiple cues as it is about the efficacy of DMLNs in computer vision. We use mul-
tiple cues and do activity recognition in this manner because it is robust against
background clutter, lighting differences, intra- and inter-personal variance, and
difficulties in pose and object recognition.

Our motivation for leveraging DMLNs is very different. We use the DMLN
because it is possible to posit a temporal probabilistic model that is simple to
express and easy to understand without compromising the sophistication neces-
sary for high performance. Table 1 is our entire probabilistic model. We wrote a
set of sentences that we thought represented activities and cues well and revised
it until we were pleased with it. Contrast this with comparable models expressed
with Markov Random Fields (MRFs) and Dynamic Bayesian Networks (DBNs).
Those models are equally effective but they are hard to understand and chal-
lenging to implement.

In practice, DMLNs are inferentially equivalent to MRFs and DBNs. Indeed,
to perform inference on the DMLN, we convert it twice, first to a ground MLN
which is an MRF and then to a DBN. This process is straightforward except for
the challenge that is addressed in section 5.1. Thus, one can think of DMLNs
much as one would view a high-level computer programming language like C
as opposed to a low-level assembly language. The study and design of systems
in assembly language paved the way for the new languages. While initially the
new language only brought programmer convenience, it eventually allowed for
greater abstraction and better programs.

4 Obtaining the Ground Predicates

In section 3, we explored a theory for understanding how various activities give
rise to cues that are useful in identifying those activities. In this section, we
discuss how we use computer vision algorithms to translate our video stream
into assertions regarding the cue predicates.

4.1 Pose Detection

Comparing Poses. Traditionally, pose detection is the problem of recovering
the position of important body parts from a single image. For example, for a
person playing baseball, a pose detection algorithm may identify the x,y positions
in the image of her feet, hands, and head [17]. Or, for a person walking down
the street, an algorithm may fit a skeleton, thus identifying the feet, knees, and
hip [34].
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Fig. 2. Examples of difference images

We take an alternate approach to pose detection. The process of inferring
body part positions and then linking configurations to activities is problematic
on two levels. First, traditional pose detection is a difficult problem and even the
best algorithms are subject to both inaccuracy and catastrophic failure. Second,
the simplified 2D representation of pose is a poor indicator of human activity.
Studying the evolution of pose over time is even less effective as the errors in pose
detection create more phantom movements than actual ones. Earlier versions of
our pose detection system suffered from each of the aforementioned difficulties.

We eliminate the intermediate step of recovering body part positions and
instead map changes in pose to activities directly. To identify the change in
pose, we start with difference image generated by subtracting two consecutive
frames and thresholding it:

dx,y = abs(itx,y − it+1
x,y ) (3)

Examples of such difference images appear in Figure 2. Note that this differ-
ence image captures the outline of the body part that is moving, even if it does
so imperfectly.

Second, to allow comparison between difference images, we construct a list
of all pairwise point to point distances of the illuminated pixels in the differ-
ence image. This list retains the basic shape of the image while removing exact
position and orientation information.

Third, we form a histogram over the list of distances just constructed. This
is similar to how shape contexts [4] compact distance information except that
angles are considered there but not here.

To compute the similarity of two histograms, we use the same scoring function
as shape contexts:

N∑

i=1

(h1
i − h2

i )
2

h1
i + h2

i

(4)

where N is the number of bins in the histogram.

Realizing the Pose Cue Predicates. We have established a metric for deter-
mining if two frames from different video streams represent the same or different
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changes in pose. To make this useful, we capture a several minute training video
with different people performing each of the activities we are working to recog-
nize. The new activity being undertaken is marked at activity transitions (e.g.
when a person stops typing and starts drinking) in this video are labeled by
hand. When the machine is later observing novel video, it compares the his-
togram of the incoming frame t∗ with each of these histograms of the frames in
the training video, as in [32]. All histograms are cached to ensure that this is a
fast operation. For each activity, the number of comparisons exceeding a thresh-
old is counted. The activity with the greatest count is selected (let it be a∗)
and if the count exceeds a predetermined threshold, then the ground predicate
Pose(a∗, t∗) is observed to be true.

4.2 Object Detection

Object detection offers a far more out of the box output for activity recognition
than does pose detection. To compare two images, we find all of the SIFT features
from each of the images. Then we compute the number of features the two images
share in common.

To realize object-related cues, we first crop by hand images of the objects
used form the training video. Second, we label each image with the object inside
that image (e.g. a pen).

When identifying objects in novel frames, the program compares the large
novel frame with each of the cropped training images. For each object category
o∗ for which the novel frame t∗ has over a fixed threshold of matches, the predi-
cate Present(o∗, t∗) is asserted. Note that the matches may come from different
cropped images. For example, if the threshold is fifth SIFT matches and there
are three cropped images of a candy bar with twenty-four, fifteen, and twelve
SIFT matches respectively, then the program believes that a candy bar is present
even though that could not have been ascertained from a single image.

4.3 Movement

We found that for some activities, movement tends to occur in some areas more
than others. This pattern was previously noted in [35]. For example, mouse move-
ment tends to occur in the bottom half of the screen. While this is a weak source
of information on its own, it provides a valuable third stream of information
to the probabilistic model. It can differentiate between drinking and using the
mouse, for example, but not between drinking and eating. On its own, it fares
rather poorly because the relative movement depends on camera placement rel-
ative to the subject and that was not rigidly fixed in our experiments.

We learn a mixture of Gaussians from training data about typical move-
ment locations as expressed in the training data. Each activity is thus rep-
resented by the mean and covariance of observed movement locations of that
activity in the training data. The posterior weights of novel frames are asserted
as Movement(a,t).
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5 Inference

As DMLNs are inferentially equivalent to DBNs [29], we can use efficient ap-
proximate inference algorithms designed for the latter. We use a variant of the
standard Rao-Blackwellized Particle Filter (RBPF) [9] that runs the particles
both forward and backward, as in [26].

A difficulty arises however. Sentences 2, 3, and 6 through 14 all have infinite
weight and while this does not break inference, it does slow it down considerably.
In our proposed DMLN, nearly all of proposed next states will be inconsistent
and receive weights of 0.

What we have here is a mixed network – a probabilistic model with both
probabilistic and deterministic components. Inference in mixed networks is well
understood in atemporal settings [2], [3], [8], [15]. In handling DBNs generated
from DMLNs though, we believe that generating a more compact, inferentially
equivalent non-mixed DBN works best. For DMLNs to have broader applicability
in computer vision past our specific application, we need a general algorithm to
compact mixed DMLNs. We include such an algorithm here.

5.1 Compacting Mixed DMLNs

The process of converting a DMLN into a DBN is slightly tortuous and involves
generating a Markov Random Field (MRF) as an intermediate step. It is at
this stage we will compact the model. Let L be a single time slice of the MRF
with L̄ referring to deterministic potentials and L̂ referring to probabilistic ones.
Moreover, let P̄ refer to all nodes referred to by deterministic potentials and let
P̂ refer to all nodes not referred to by deterministic potentials. Thus, if a node
is referred to in both L̄ and L̂, it will be in the set P̄ but not in the set P̂ .

First, we divide the nodes in P̄ into independent subproblems, i.e. into max-
imally disjoint sets such that there exists no potential in P̄ that refers to nodes
in different subproblems. This is done by postulating a graph with MRF nodes
as graph nodes and adding edges if and only if there exists a potential in P̄ that
refers to both nodes. The connected components of this graph are the indepen-
dent subproblems of our MRF.

Second, for each independent subproblem, we use WalkSAT, a fast Constraint
Satisfaction Problem sampling technique [39], to identify all solutions to the
subproblem. This can take up to O(2N ) time where N is the number of nodes
that are linked together by deterministic potentials. This is clearly better than
the non-compacted network, which will require at least that much time at every
single time step whereas compacting requires it just once. In practice, WalkSAT
takes only linear time in the number of solutions, barring pathological DMLNs.

Third, we replace each independent subproblem with a single multinomial
variable, in the same manner as the variable elimination algorithm [24].

While the entire process of converting DMLNs into a form suitable for RBPF
inference does have such intricacies, it is important to note that this pipeline is
independent of the specific DMLN and application. Indeed, toolkits for DMLN
inference are already publicly available [1].
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5.2 Weight Learning

The algorithm in [31] learns weights directly from training data, freeing us from
such considerations as how long people actually drink from a can of soda. It
essentially follows a frequentist strategy, assigning a weight that corresponds to
the observed probability of that sentence in the training data. The sentences
appearing in the right-hand column of Figure 1 are from this algorithm. Higher
weights indicate greater certainty with infinite weights indicating deterministic
sentences.

6 Experimental Results

To evaluate our algorithm, we solicited volunteers for what they believed was
a psychology experiment. When each volunteer arrived, they were seated at a
desk in our laboratory and provided with a list of the following activities in a
random order and with repetition. First, they were to write a paragraph with a
pen and notebook. These and all other objects were placed on the desk at which
the subjects were seated. Second, they skimmed several pages of a textbook.
Third, they ate part of a candy bar and drank from a can of soda. Fourth, they
answered a phone call. Fifth, they typed on a laptop and used an external mouse.

The subjects were seated at a wooden desk illuminated by sunlight. A Canon
HV10 consumer grade video camera recorded the scene from atop a fixed tripod
looking down on the scene. This viewpoint is common on many laptop cameras
with built-in webcams as well as several off the shelf webcam mounting kits.
Objects often remain in view when not being used and other objects clutter the
desk where activities take place. The camera was set to focus and adjust light
balance automatically. Audio input was not used.

Training data for the experiments was comprised of the same activities per-
formed in the same manner. Each transition from one activity to another was
marked by hand and this was used to generate activity labels for each frame.
Also, four images of each object were cropped by hand. The training data in-
cludes twenty minutes of video. All frames had to be labeled as one of the seven
activities.

The algorithm received no additional information about the test sequence
except for the raw video stream. The metrics that follow are calculated on a
frame by frame basis. The algorithm was forced to label all frames. The complete
test sequence was eight minutes long.

6.1 Information Gain

Figure 3 presents the information gain of each component, that is, the reduction
in entropy of the confusion matrices as different components are added to the
DMLN. Here, an asterisk denotes that Sentence 1 from Table 1 was included in
the DMLN. For reference, ground truth represents an information gain of 2.8.
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Components Information Gain

POSE 0.4
PRESENT 1.3
MOVEMENT 0.5
POSE * 1.7
PRESENT * 2.0
MOVEMENT * 0
POSE + PRESENT * 2.5
POSE + MOVEMENT * 1.8
PRESENT + MOVEMENT * 2.3
POSE + PRESENT + MOVEMENT * 2.6
Ground Truth 2.8

Fig. 3. Information Gain from Different Components

6.2 Confusion Matrices

Figure 4 shows a confusion matrix for pose detection. Confusing drinking and
eating is the most common mistake and for good reason – we lift food to our
mouths without regard to its phase. In mousing and talking, we hold roughly
similar sized objects in our hands, casting a unique signature to the pose detec-
tion system. The difference in location only comes in when movement location
is considered.

Figure 5 shows a confusion matrix for movement location detection. Movement
fares poorly but the confusion matrix holds interesting clues. It works well for
mousing, which is predominantly in the lower right of the image as all of our
subjects were right handed. Activities such as writing, reading, and typing were
found to be predominantly in the bottom half of the screen while drinking and
talking were in the top half.

WR RE EA DR TA TY MO

Writing 55 5 7 2 14 7 10
Reading 7 64 9 0 15 2 1
Eating 5 14 46 7 17 8 3
Drinking 15 12 32 9 13 5 13
Talking 21 8 3 2 40 17 9
Typing 11 2 24 3 27 26 8
Mousing 23 3 9 4 31 17 13

Fig. 4. Confusion Matrix for Pose Detection

6.3 Accuracy

Since many of the computer vision components are computationally expensive,
the processing time is linearly dependent on both the resolution and frame rate.
While lowering the resolution can make object recognition impossible, the frame
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WR RE EA DR TA TY MO

Writing 3 0 0 7 1 89 0
Reading 0 0 0 26 7 67 0
Eating 0 0 0 33 16 44 7
Drinking 0 0 0 81 1 18 0
Talking 0 0 0 69 22 9 0
Typing 1 0 0 0 0 99 0
Mousing 0 0 0 11 0 24 65

Fig. 5. Confusion Matrix for Movement Location Detection
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Fig. 9. An example where the pose detector correctly classifies the image but the object
recognizer finds neither the pen nor the paper (left) and an example where the object
detector finds the book but the pose detector misclassifies the activity (right)

rate provides a more balanced trade-off between computation time and perfor-
mance. The effects of this balance is explored in Figure 6.

This figure also shows an alternate view of the value of each component after
being processed by the DMLN as well as the benefit of bringing all the cues
together. By itself, pose recognition could only classify 55% of the frames cor-
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rectly; object recognition could only classify 65% of the frames correctly; and
movement location could classify only 14% of the frames correctly. In tandem
however, they are able to classify 95% of the frames correctly. This is the benefit
of using multiple cues.

Figures 7 and 8 show the precision-recall graphs for pose detection and object
recognition, respectively. These graphs highlight how far the field has progressed
and the potency of [32] and [38]. They also show the benefit of using a DMLN
as the latter incorporates information in proportion to the pose detection and
object recognition algorithms’ confidences.

Figure 9 show examples of where the pose detector works but the object
recognizer fails and vice versa. This speaks to the need for multiple cues as no
single cue will suffice in all situations.

7 Related Work

Pose detection seeks to identify the positions of a person’s body parts from im-
ages without the use of motion capture devices or other artificial markers. It is a
difficult problem in general because of differences in people’s appearances, self-
occlusion, self-shadows, and non-Lambertian clothing. Despite these challenges,
several promising approaches have emerged [27], [22], [33], [28], [34], [32]. Three
basic approaches typify the field. The first (e.g. [28]) takes a bottom-up approach,
first identifying body parts and building them up into complete poses. The sec-
ond (e.g. [34]) takes a top-down approach, performing joint optimization on the
entire image at once. The third, introduced by [32], opts for a memory-based
approach, recognizing pose by comparing images to existing training examples.

Object recognition and localization are equally difficult problems but we see
substantial progress here as well. The challenges here include occlusion, illu-
mination inconsistency, differences in viewpoint, intra-class variance, and clut-
ter. Most techniques focus on either features [37], [38], [19], [30] or shapes [6],
[21]. The advent of the SIFT descriptor [14] marked a great step forward for
same-object recognition and most feature based approaches use SIFT or simi-
lar descriptors in a bag of words (e.g. [38]) or constellation (e.g. [11]) setting.
Shape based approaches work well for different objects of the same category.
The geometric blur feature descriptor [5] has proven especially effective here.

The use of multiple cues for object detection has primarily been explored by
Torralba and colleagues in [20], [18], [35], [36]. They explore different proba-
bilistic models in these works but the central theme throughout is to leverage
hypothesized location information to place a prior over possible objects. They
do this both to increase classification accuracy as well as improve running time.
[16] follows a similar approach but focuses on integrating speech and pose.

Activity recognition [25], [16], [13], [7] has seen growing interest. [25] is similar
to this work in their notion of activities but focuses on more complicated tasks
(e.g. infant care) and uses RFID-tagged objects instead of cameras. [7] offers an
elegant algorithm for detecting irregularities without requiring any labeling. [13]
is also similar to this work in their notion of activities but focuses on substantial
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movement (e.g. going to the supermarket) and uses GPS data. None of these
approaches however combine multiple cues, relying instead on a single source of
information.

8 Future Work

Our results are promising and our framework makes it straightforward to extend
our system with additional capabilities. This includes additional cues such as ob-
ject location, perceived sound, and scene classification. We also want to evaluate
our system on a non-stationary camera and in a wider variety of environments.
Lastly, we want to explore integrating our system with a mobile robot.

9 Conclusion

In this paper, we introduced a first-order probabilistic model that combines mul-
tiple cues to classify human activities from video data accurately and robustly.
The model we presented is compact, requiring only fifteen sentences of first-order
logic grouped as a Dynamic Markov Logic Network (DMLNs) to implement the
probabilistic model and leveraging existing state-of-the-art work in pose detec-
tion and object recognition.

Our results show that the algorithm performs well in a realistic office set-
ting with background clutter, natural illumination, different people, and partial
occlusion. It is robust against intra- and inter-person variance. We have shown
promising results on classification accuracy, information gain, precision-recall,
and confusion matrices.
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Abstract. We describe a “bag-of-rectangles” method for representing
and recognizing human actions in videos. In this method, each human
pose in an action sequence is represented by oriented rectangular patches
extracted over the whole body. Then, spatial oriented histograms are
formed to represent the distribution of these rectangular patches. In or-
der to carry the information from the spatial domain described by the
bag-of-rectangles descriptor to temporal domain for recognition of the ac-
tions, four different methods are proposed. These are namely, (i) frame
by frame voting, which recognizes the actions by matching the descrip-
tors of each frame, (ii) global histogramming, which extends the idea
of Motion Energy Image proposed by Bobick and Davis by rectangular
patches, (iii) a classifier based approach using SVMs, and (iv) adaptation
of Dynamic Time Warping on the temporal representation of the descrip-
tor. The detailed experiments are carried out on the action dataset of
Blank et. al. High success rates (100%) prove that with a very simple
and compact representation, we can achieve robust recognition of human
actions, compared to complex representations.

1 Introduction

Understanding human motion is one of the appealing, yet challenging problems
of computer vision. Reliable and effective solutions to this problem can serve
many areas, ranging from human-computer interaction to security surveillance.
However, although tracking is now a usable technology, understanding what
people are doing is still at its infancy.

Human action recognition has been a widely studied topic (for extensive re-
views see [12,8]). Yet, the solutions to the problem are very premature and very
specific to dataset at hand.

For human motion understanding in videos, there are three major approaches:
First, one can use temporal logics to represent crucial order relations between
states that constrain activities. Examples to such approaches include Pinhanez
and Bobick [19,20], describing a method based on interval algebra, and Siskind
[24] describing methods to infer activities related to objects using a form of
logical inference.

Second, one can use spatio-temporal templates to identify instances of activi-
ties. Spatio-temporal patterns date at least to Polana and Nelson [21]. Thinking
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actions as such spatio-temporal templates is made famous by Bobick and Davis
[2]. They introduce Motion-Energy-Image and Motion-History-Image templates
for recognizing different motions. Efros et al. [5] use a motion descriptor based
on optical flow of a spatio-temporal volume. Blank et al. [1] also define actions
as space-time shapes, making use of Poisson distributions to define the details
of such shapes.

Third general approach to recognize human motion is to use models of dynam-
ics, such as hidden markov models ([3], [27], [18]), conditional random fields [26],
finite state models [11,10]. These (mostly generative) models rely on modeling
the details of the action dynamics and need lots of training data to build effective
models. Ikizler and Forsyth [13] show how to make use of motion capture data
in such a case.

We argue that, human pose encapsulates many useful clues for recognizing
the ongoing activity. Actions can mostly be represented by the configuration of
the body parts, before building complex models for understanding the dynamics.
Using this idea, we focus on building a pose descriptor which can be used to dis-
criminate actions. Unlike most of the methods that use complex modeling of the
body configurations, we follow the analogy of Forsyth et al. [7], which represents
the body as a set of rectangles, and explore the layout of these rectangles.

Our pose descriptor is based on a basic intuition: human body can be rep-
resented by a collection of oriented rectangles in the spatial domain and the
orientations of these rectangles form a signature for each action. Rather than
detecting and learning the exact configuration of body parts, we are only inter-
ested in the distribution of the rectangular regions which may be the candidates
for the body parts.

This idea follows from the bag-of-words approach, where the images are repre-
sented by collection of regions, ignoring their spatial relationships. Bag-of-words
approach – which is adapted from text retrieval literature – has shown to be suc-
cessful for object and scene recognition [6,25] and for annotation and retrieval of
large image and video collections [16,28]. In such approaches, the images are rep-
resented by the distribution of words from a fixed visual vocabulary (i.e. image
patches) which is usually obtained by vector quantization of visual features.

Histogramming is an old trick that has been frequently used in computer
vision research. For action recognition, Freeman and Roth [9] used orientation
histograms for hand gesture recognition. Recently, Dalal and Triggs used his-
tograms of oriented gradients (HOGs) for human detection in images [4], which
is shown to be quite successful.

Our main contribution is to adapt the bag-of-words approach for action recog-
nition, by considering the distribution of higher level rectangular patches which
are candidates for body parts.

In the following, we first describe our “bag-of-rectangles” pose descriptor,
which represents the human figures as a distribution of oriented rectangular
patches. Then, we utilize four different methods to recognize the actions. These
are namely; frame by frame voting, global histogramming, SVM classification
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and Dynamic Time Warping. The detailed experiments are carried out on the
data set of Blank et al. [1].

2 Bag-of-Rectangles Method

Following the body plan analogy of Forsyth et al. [7], we represent human body
as a collection of rectangular patches and we base our motion understanding
approach on the fact that orientations and positions of these rectangles change
over time w.r.t. actions carried out. With this intuition, our algorithm first ex-
tracts rectangular patches over the human figure available in each frame, and
then forms a spatial histogram of these rectangles by grouping over orientations.
We then evaluate the changes of these histograms over time.

More specifically, given the video, first, the tracker identifies the location of
the subject. Then, the bounding box around its silhouette is extracted. This
bounding box is then divided into a N × N equal-sized spatial bins. While
forming these spatial bins, the ratio between the body parts, i.e. head torso and
legs, is taken into account. At each time t, a pose is represented with a histogram
Ht formed based on the orientations of the rectangles in each spatial bin. This
process is depicted in Fig. 1.

Having formed the spatio-temporal rectangle histograms for each video, we
match any newly seen sequence to the examples at hand and label the videos
accordingly. We now describe the steps of our method in greater detail.

Fig. 1. Here, feature extraction stage of our approach is shown (this figure is best
viewed in color). First, the human figure in each frame is extracted using background
subtraction or an appropriate tracker. Using these silhouettes, we search for the rect-
angular patches that can be candidates of limbs. We do not discriminate between legs
and arms here. Then, we divide the bounding box around the silhouette into an equal-
sized grid and compute the histograms of the oriented rectangles inside each region.
We form our feature vector by combining the histograms coming from each subregion.

2.1 Rectangle Extraction

For describing the human pose, we make use of rectangular patches. These
patches are extracted in the following way:

1) The tracker fires a response for the human figure. This is usually done
using a foreground-background discrimination method. The simplest approach
is to apply background subtraction, after forming a dependable model of the
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background. The reader is referred to [8] for a detailed overview of the subject.
In our experiments, we use the results of a background subtraction scheme (the
extracted masks by Blank et al.) to localize the subject in motion. Note that
any other method that extracts the silhouette of the subject will work just fine.

2) We then search for rectangular regions over the human silhouette using
convolution of a rectangular filter on different orientations and scales. We make
use of undirected rectangular filters, following Ramanan et al. [22]. The search is
performed using 12 tilting angles, which are 15◦ apart, covering a search space of
180◦. Note that since we don’t have the directional information of these rectangle
patches, orientations do not cover 360◦ but its half. To tolerate the difference
in the limb sizes and varying camera distances to the subject, we perform the
rectangle convolution over multiple scales.

More formally, we form a zero-padded rectangular Gaussian filter Grect and
produce the rectangular regions R(x, y) by means of the convolution of the binary
silhouette image I(x, y) with this rectangle filter Grect.

R(x, y) = Grect(x, y) ◦ I(x, y) (1)

where Grect is zero-padded rectangular patch of a 2-D Gaussian G(x, y)

G(x, y) =
1

2πσ2 e−(x2+y2)/2σ2
(2)

Higher response areas to this filter are more likely to include patches of par-
ticular kind. The filters used are shown in Fig. 2.

Fig. 2. The rectangular filtering process is shown. We use zero-padded Gaussian filters
with 15◦ tilted orientations over the human silhouette. We search over various scales,
without discriminating between different body parts. The perfect rectangular search
for the given human subject would result in the tree structure to the right.

To tolerate noise and imperfect silhouette extraction, this rectangle search
allows a portion of the candidate regions to remain non-responsive to the filters.
Regions that have low overall responses are eliminated this way. Then, we select
k of the remaining candidate regions of each scale by random sampling (we used
k = 300).

One can also perform a special search for the torso rectangle, which is con-
siderably larger than limb rectangles and omit this torso region while searching
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for the remaining body parts and then form rectangular histograms. Example
images of this rectangular search is given in Fig. 3. In (a) torso is excluded, in
(b) the rectangles are searched over the whole silhouette. We evaluate the effects
of such a torso exclusion step in the experiments section.

(a) (b)

Fig. 3. Rectangle detection with and without torso detection (best viewed in color). In
(a) first, the torso region is detected. This is done by applying a larger rectangular filter
and taking the mean of the responses. After finding the torso, the remaining silhouette
is examined for remaining limb rectangles. In (b) the whole silhouette is used in the
rectangle extraction phase.

Rectangle extraction phase results in ∼ 1000 rectangles per frame. While
forming the histogram, one can use all of these rectangles or select representative
rectangles for each limb. The rectangles which cover the silhouette as much as
possible and have high responses to rectangular filters are considered as the
representative ones. To achieve these constraints, the higher response candidates
that are more than a specified distance apart from each other are selected. By
this way, rectangle count is reduced to ∼ 10 rectangles per frame. Figure 4 shows
this process. Although reducing rectangles gives a more compact representation,
it supresses valuable information about the distribution density of the rectangles,
making the approach more prone to noise. The experiments (Sect. 4) show the
outcomes of such an elimination.

2.2 Pose Descriptor - Histograms of Oriented Rectangles

After finding the rectangular regions of the human body, in order to define the
pose, we propose a simple pose descriptor, which is the Histogram of Oriented
Rectangles (HOR). We calculate the histogram of extracted rectangular patches
based on their orientations. The rectangles are histogrammed over 15◦ orienta-
tions resulting in 12 circular bins. In order to incorporate spatial information
of the human body, we evaluate these circular histograms within a N × N grid
placed over the whole body. Our experiments show that N = 3 gives the best
results. We form this grid by splitting the silhouette over the y-dimension based
on the length of the legs. The area covering the silhouette is divided into equal-
sized bins from bottom to up and left to right (see Fig. 5 for details). Note that,
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Fig. 4. Rectangle elimination process is shown. Left is a frame from the bend action and
right is a frame from the two-hands-wave action. Rectangles maximizing the coverage
area of the silhouette and the rectangular filter response are selected as representatives,
eliminating the rest. By this way, rectangle count can be reduced to acquire a more
compact representation of the body.

by this way, we let some space to the top part of the head, to allow action space
for the arms (for actions like reaching, waving, etc.).

We have also evaluated effect of using 30◦ orientation bins and 2×2 grid, which
have more concise feature representations, but coarser detail of the human pose.
We show the corresponding results in Sect. 4.

Fig. 5. Details of histogram of oriented rectangles (HORs). The bounding box around
the human figure is divided into an N ×N grid (in this case, 3× 3) and the HOR from
a single spatial bin is magnified. The resulting feature vector is a concatenation of the
HORs from each spatial bin.

3 Recognizing Actions with Bag-of-Rectangles

After calculating the pose descriptors for each frame, we perform action clas-
sification in a supervised manner. There are four methods we tried in order to
evaluate the performance of our pose descriptor.

3.1 Frame by Frame Voting

The simplest scheme we utilize is to perform matching based on single frames,
ignoring dynamics of the sequence. That is, for each test instance frame, we
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find the closest frame in the training set and employ a voting throughout the
sequence. The distance between frames is calculated using Chi-square distance
between the histograms (as in [14]). Each frame with the histogram Hi is labelled
with the class of the frame having histogram Hj that has the smallest distance
χ2 such that

χ2(Hi, Hj) =
1
2

∑

n

(Hi(n) − Hj(n))2

Hi(n) + Hj(n)
(3)

We should note that both χ2 and L2 distance functions are very prone to
noise, because a slight shift of the human center may cause in the different
binning of the rectangles, and therefore, large fluctuations in distance. One can
utilize Earth Mover’s Distance [23] or Diffusion Distance [15] which are shown
to be more efficient for histogram comparison in the presence of such shifts by
taking the distances between bins into account.

3.2 Global Histogramming

Global histogramming is similar to the Motion Energy Image (MEI) proposed by
Bobick and Davis [2]. In this method, we sum up all spatial histograms of oriented
rectangles through the whole sequence and form a single compact representation
for the entire video. This is simply done by collapsing all time information into
single dimension by summing the histograms and forming a global histogram
Hglobal such that

Hglobal(d) =
∑

t

H(d, t) (4)

for each dimension d of the histogram. Each test instance’s Hglobal is compared
to that of the training instances using χ2 distance and the closest match’s label
is reported. The corresponding global images are shown in Fig. 6.

3.3 SVM Classification

We also evaluate the performance of SVM-based classification with our pose-
descriptor. We trained separate SVM classifiers for each action. These SVM
classifiers are formed using RBF kernels over snippets of frames using a window-
ing approach. A grid search over the parameter space of the SVM classifiers is
done and the best classifiers are selected using 10-fold cross validation. In our
windowing approach, the sequence is segmented into k-length chunks with some
overlapping ratio o, then these chunks are classified separately (we achieved the
best results with k = 15 , and o = 3). The whole sequence is then labelled with
the most frequent action class among its chunks.

3.4 Dynamic Time Warping

Since the periods of the actions are not uniform, comparing sequences is not
straightforward. In the case of human actions, the same action can be performed
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Fig. 6. Global histograms are generated by summing up all the sequence and forming
the spatial histograms of oriented rectangles from these global images. In this figure,
global images after the extraction of the rectangular patches are shown for 9 separate
action classes.Top row: bend, jump, jump in place, gallop sideways and run ac-
tions. Bottom row: one-hand wave, two-hands wave, jumpjack and walk actions.
These images resemble to Motion Energy Images introduced by [2], however we do
not use these shapes. Instead, we form the global spatial histogram of the oriented
rectangles as our feature vector.

in different speeds, resulting the sequence to be expanded or shrinked in time.
In order to eliminate such effects of different speeds and to perform robust com-
parison, the sequences need to be aligned.

Dynamic time warping (DTW) is a method to compare two time series which
may be different in length. DTW operates by trying to find the optimal alignment
between two time series by means of dynamic programming. Figure 7 shows an
example of time warping process. The time axes are warped in such a way that
samples of the corresponding points are aligned.

s1

s2

Fig. 7. Dynamic Time Warping (DTW) process in 1-d time series: The distance be-
tween corresponding sample points of two sequences s1 and s2 are calculated using
dynamic programming and the time axes are warped in such a way that the corre-
sponding sample points are aligned

More specifically, given two time series x1 . . . xn and y1 . . . ym, the distance
D(i, j) is calculated with
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D(i, j) =

⎧
⎨

⎩

D(i, j − 1)
D(i − 1, j)
D(i − 1, j − 1)

⎫
⎬

⎭ + d(xi, yj) (5)

where d(., .) is the local distance function specific to application. In our imple-
mentation, we have chosen d(., .) as the χ2 distance function as in Equation 3.

We use dynamic time warping along each dimension of the histograms sep-
arately. As shown in Fig. 8, we take each 1-d series of the histogram bins of
the test video X and compute the DTW distance D(X(d), Y (d)) to the corre-
sponding 1-d series of the training instance Y . We then sum up the distances
of all dimensions to compute the global DTW distance (Dglobal) between the
videos. We label the test video with the label of the training instance that has
the smallest Dglobal such that,

Dglobal(X, Y ) =
M∑

d=1

D(X(d), Y (d)) (6)

where M is the total number of bins in the histograms. While doing this, we
exclude the top k of the distances to reduce the effect of noise introduced by
shifted bins and inaccurate rectangle regions. We choose k based on the size of
the feature vector such that k = �#num bins/2� where #num bins is the total
number of bins of the spatial grid.
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Fig. 8. Dynamic Time Warping (DTW) over 2D histograms: We calculate DTW dis-
tances between the histograms by evaluating DTW cost over single dimensions sep-
arately and summing up all costs to get a global distance between sequences. Here,
histograms of two bend actions performed by different actors are shown. We try to
align these sequences along each histogram dimension by DTW and report sum of the
smallest distances. Note that, separate alignment of each histogram bin also allows us
to handle the fluctuations in distinct body part speeds.
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4 Experimental Results

4.1 Dataset

For experimental evaluation we use dataset that Blank et al. introduced in [1].
We used the same set of actions as [1], which is a set of 9 actions: walk, run,
jump, gallop sideways, bend, one-hand wave, two-hands wave, jump in place and
jumping jack. We used extracted masks provided to localize the human figures
in each image. These masks have been obtained using background subtraction.
We test the effectiveness of our method using leave-one-out cross validation.

4.2 Rectangle Elimination

In Table 1, the effect of of rectangle elimination is shown. We observe that using
the extracted rectangles as is – without selecting representative ones – give more
accurate action recognition. Although we have a more compact representation
with the representative rectangles, the probability distribution of the limb loca-
tions is more accurately estimated when we use all samples of rectangles in the
histogram calculation.

Table 1. The accuracies of the matching methods with respect to rectangle elimination,
with 15◦ angular bins over 3 × 3 grid. Although with eliminated rectangles we have
a more sparse representation of the body, rectangles wrongly extracted become more
significant in that case. Using all extracted rectangles gives a more robust estimation
about where the actual body parts are, since body part regions are likely to produce
more rectangles, resulting in denser rectangular regions.

Matching Method Eliminated All
FrameVoting 0.6173 0.9630

GlobalHist 0.9506 0.9630

SVM 0.9383 0.9506

DTW 0.9877 1.0000

4.3 Torso Detection

We can make a separate search for the torso, omit this region and form our pose
descriptors based only on the candidate limb locations. In Table 2, we show the
effect of torso detection on the overall accuracies. We observe that with frame
voting and global histogramming methods, torso detection and exclusion helps,
however, SVM and DTW classifiers suffer from slight performance degradation.

4.4 Granularity of Angular Bins

We also evaluated the choice of orientation angles when forming the histogram.
Table 3 shows the results using 15◦ angular bins versus 30◦ bins. Our results
indicate that there is a slight loss of information when we go from fine level
orientations (i.e. 15◦ bins) to a coarser level (30◦).
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Table 2. The accuracies of the matching methods with respect to torso detection.
The results presented here are over the eliminated rectangles with 15◦ angular bins
and 3× 3 grid. Note that torso detection can be useful in the case of FrameVoting and
GlobalHist methods whereas SVM and DTW methods suffer from a slight performance
loss.

Matching Method No Torso With Torso
FrameVoting 0.6173 0.6790

GlobalHist 0.9506 0.9630

SVM 0.9383 0.9259

DTW 0.9877 0.9506

Table 3. The accuracies of the matching methods with respect to angular bins. The
original rectangle search is done with 15◦ tilted rectangular filters. To form 30◦ his-
tograms, we group rectangles that fall into the same angular bins. These results demon-
strate that as we move from fine to coarser scale of angles, there is a slight loss of
information and thus 30◦ HORs become less discriminative than 15◦ HORs.

Matching Method 15◦ 30◦

FrameVoting 0.9630 0.9506

GlobalHist 0.9630 0.9383

SVM 0.9506 0.9383

DTW 1.0000 0.9506

4.5 Grid Size

When forming the histograms of oriented rectangles, we place an N × N grid
over the silhouette of the subject and form spatial histograms for each grid
region. The choice of N effects the size of the feature vector (thus execution
time of the matching), and the level of detail of the descriptor. Table 4 compares
using 2 × 2 grid versus 3 × 3 grid. One can try further levels of partitioning,
even form pyramids of these partitions. However, too dense partitioning will not
make sense, since the subregions should be large enough to contain rectangle
patches. Our results over this dataset indicate that, 3×3 gives better performance
compared to 2 × 2. However, if execution time is crucial, choice of N = 2 will
still work to a certain degree of performance.

4.6 Overall Evaluation and Comparison

Overall, we achieve the best results with DTW matching. This is not surprising,
because the subjects do not perform actions with uniform speeds and lengths.
Thus, the sequences need aligning. DTW matching accomplishes this alignment
over the bins of the histogram separately, making alignment of limb movements
also possible. Action speed differences between body parts are handled this way.

We reach a perfect accuracy (100%) over Blank action dataset, using all ex-
tracted rectangles and the torso region with 15◦ angular bins over a 3 × 3 par-
titioning. Figure 9 shows the confusion matrices of each method. Blank et al.
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Table 4. The accuracies of the matching methods with respect to N × N grids (with
15◦ angular bins, no rectangle or torso elimination). We have compared 2×2 and 3×3
partition grids. Our results show that 3 × 3 grid is more effective when forming our
oriented-rectangles based pose descriptor.

Matching Method 2 × 2 3 × 3

FrameVoting 0.9136 0.9630

GlobalHist 0.8765 0.9630

SVM 0.9012 0.9506

DTW 0.9136 1.0000

report classification error rates of 0.36% and 3.10% for this dataset. Recently,
Niebles and Fei Fei [17] evaluate their hierarchial model of spatial and spatio-
temporal features over this dataset, acquiring an accuracy of 72.8%.
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Fig. 9. Confusion matrices for each matching method using original rectangle distri-
butions with no torso detection and 15◦ angular bins over a 3 × 3 grid. (a) Frame by
frame voting : 1 jump sequence classified as bend, 1 one-hand wave sequence classified
as jump-in-place and 1 run sequence misclassified as walk. (b) Global histogramming : 1
one-hand wave sequence misclassified as jump-in-place, 1 jumpjack sequence misclassi-
fied as two-hands-wave and 1 run sequence misclassified as walk. (c) SVM classification
: 1 jump sequence is classified as bend, 2 run sequences classified as walk, 1 run sequence
misclassified as jump. (d) DTW classification achieves 100% accuracy.

We should also note that frame by frame voting and global histogramming
with our pose descriptor produce surprisingly good results. This suggests that
we can still achieve satisfactory classification rates even if we ignore the time
domain and look at the frames separately, or as a whole.

5 Conclusions and Future Work

In this paper, we have approached to the problem of human action recognition
from a bag-of-features perspective and proposed a new pose-descriptor based
on the orientation of body parts. Our pose-descriptor is simple and effective;
we extract the rectangular regions from a human silhouette and form spatial
oriented histogram of these rectangles. We show that by effective classification
of such histograms, robust human action recognition is possible. We demonstrate
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the effectiveness of our method over the dataset of Blank et al. [1]. Our results
are directly comparable/superior than the results presented over this dataset.

The matching methods we present in this study suggest that we may not
need a perfect modeling of the dynamics of human actions in order to reach
satisfactory results. The questions behind the success of frame by frame voting
or global histogramming methods are: “Do we really need dynamics of an action
to recognize it correctly?”, or “Can we simply recognize the actions by looking at
representative frames or signatures of them?”. Our experiments show that human
pose encapsulates many useful information for the action itself, therefore, one
can start with a good pose estimator, before going into the details of dynamics.

Future work includes application of our pose-descriptor to more complex
datasets and still images. We also plan to explore the view-invariance case, by
means of orthographic projections of rectangular regions. In addition, we will
explore finer scale angular bins with varying spatial formations.
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Abstract. In this paper, we address the problem of recognizing hu-
man motion from videos. Human motion recognition is a challenging
computer vision problem. In the past ten years, a number of successful
approaches based on nonlinear manifold learning have been proposed.
However, little attention has been given to the use of isometric feature
mapping (Isomap) for human motion recognition. Our contribution in
this paper is twofold. First, we demonstrate the applicability of Isomap
for dimensionality reduction in human motion recognition. Secondly, we
show how an adapted dynamic time warping algorithm (DTW) can be
successfully used for matching motion patterns of embedded manifolds.
We compare our method to previous works on human motion recogni-
tion. Evaluation is performed utilizing an established baseline data set
from the web for direct comparison. Finally, our results show that our
Isomap-DTW method performs very well for human motion recognition.

Keywords: human motion recognition, non-linear manifold learning,
dynamic time warping.

1 Introduction

The automatic recognition of human motion from videos is a challenging re-
search problem in computer vision. The interest in obtaining effective solutions
to this problem has increased significantly in the past ten years motivated by
both the rise of security concerns and increased affordability of digital video
hardware. Recent works in the computer vision literature have proposed a num-
ber of successful motion recognition approaches based on nonlinear manifold
learning techniques [17,8,23]. Nonlinear manifold learning techniques aim at ad-
dressing simultaneously the inherent high-dimensionality and non-linearity of
representing human motion patterns. However, within this category of meth-
ods, little attention has been given to the use of isometric feature mapping
(Isomap) [20]. In this paper, we bridge this gap by proposing a new method
for automatic recognition of human motion and actions from single-view videos.

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 285–298, 2007.
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Our approach uses non-linear manifold learning of human silhouettes in motion.
The approach is similar to the ones proposed by [17,8,23]. However, we cast the
problem of recognizing human motion as the one of matching motion manifolds.
Our matching procedure is based on an adapted multidimensional dynamic time
warping (DTW) matching measurement [22,2].

Our contribution in this paper is twofold. First, we demonstrate the appli-
cability of Isomap for dimensionality reduction in human motion recognition.
Secondly, we show how an adapted dynamic time warping algorithm can be
successfully used for matching motion patterns in the Isomap embedded man-
ifold. To accomplish our goals, we commence by assuming that the observed
human motion patterns can be represented by point-wise trajectories in a lower
dimensional space using isometric non-linear manifold mapping. Our proposed
algorithm starts by learning Isomap representations of known motion patterns
from a set of training images. The learning of the manifold projection mapping
is accomplished by means of an invertible radial basis function (RBF) mapping
as described in [8]. The initial Isomap projection does not encode any temporal
relationship between image frames. Temporal information is introduced into the
learned manifold after the projection to the manifold space. The nonlinear man-
ifold augmented with temporal information will then form the learned motion
pattern to be used for the recognition of novel motion sequences. Finally, recogni-
tion is accomplished by means of a nearest-neighbor classification scheme based
on a dynamic time warping score. Figure 1 illustrates sample output from each
of the three main steps of the method (i.e., Preprocessing, Model Generation,
Recognition). The process in the figure is briefly described as follows. A single
video-frame post preprocessing is provided as an example of the functionality
performed in this step. In the model generation step, the Isomap projection and
the addition of time are shown. Additionally, a comparison of the Isomap pro-
jection (◦) to the inverse RBF learned projection (×) is illustrated. During the
recognition step, the learned projection is used to map the test sequence (•) into
the lower dimensional space. Finally, the DTW moves the projected data (solid
line) to the temporally aligned data (thin dotted line) to perform the match to
the template (thick dashed line).

Our experiments show that the use of Isomap with DTW performs very well
for human motion recognition. We test our method on a set of standard human
motion sequences widely used in the literature. Finally, we provide a comparison
between our approach and recently published methods [4,17,3,23]. Specifically,
we apply our algorithm to the data set created by [3] for direct comparison to
both [3] and [23]. The data set is also similar enough in nature to compare our
results to the approaches presented in [17] and the single-view case in [4]. We
show that our method obtains superior results to [4,17,3], and obtains the same
100% recognition rate as the Hidden Markov Model method proposed by [23].

The remainder of this paper is organized as follows. In Section 2, we com-
mence by providing a brief survey of the related literature on human motion
recognition. Section 3 describes the details of our motion recognition method.
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Fig. 1. Motion manifold creation and recognition using DTW. The purple ◦ with solid
lines denote a projected training sequence. The blue × with dashed lines denote a
learned motion template. The red • with and without solid lines denote a projected
test sequence. The green dotted lines denote DTW aligned test data.

Then, in Section 4, we show our preliminary results using the proposed method.
Finally, in Section 5, we present our conclusions and directions for future work.

2 Related Literature

The literature on the problem of recognizing human motion from videos se-
quences is extensive [1,11,17,8,23]. In this paper, we focus ourselves on the
methods addressing the specific problem of recognizing human motion from im-
age sequences without the use of markers, tracking devices, or special body
suits. In general, such methods can be broadly classified into multiple-view
and single-view methods. Multiple-view methods address the motion recogni-
tion problem using image sequences obtained from multiple cameras placed at
different spatial locations [4,10,18]. The strength of these methods is their power
to resolve ambiguous human motion patterns that may result from self-occlusion
and viewpoint-driven appearance changes. However, multiple view approaches
usually require the availability of synchronized camera systems and controlled
camera environments. On the other hand, single-view methods rely only on in-
formation provided by a single video camera [3,4,6,8,9,14,15,17,18,23]. Under the
single-view assumption, human motion recognition becomes a significantly more
challenging and ill-posed problem.

In general, single-view motion recognition is performed using three main steps.
The first of these consists of an image processing step in which the image is fil-
tered to reduce the presence of noise (e.g., background, acquisition noise) and
to enhance the presence of useful features (e.g., contours, textures, skeletons).



288 J. Blackburn and E. Ribeiro

The second step aims at representing the motion information obtained from a
sequence of extracted features. The motion information from human activities
is inherently both highly non-linear and high-dimensional. As a result, this step
will usually try to obtain relevant (i.e., discriminative) motion information using
a reduced dimensional space-time representation. The representation can be ac-
complished, for instance, by making use of explicit measurements on the image
to which a pre-determined model is fitted (i.e., skeleton-based methods [18,10],
part-segmentation-based methods [15,6,14,9]).

More recently, research in human motion recognition has shifted toward the
concept of identifying a motion directly from appearance rather than fitting
the visual input to a physical model [4,17,3,23]. Indeed, most of these works
have avoided direct feature extraction techniques as they tend to be sensitive to
variations such as color, texture, and clothing. Instead, recent work has focused
on the use of silhouettes or other high-level abstractions from the raw input data.
In this paper, we propose an approach that falls under this later category. Work
in silhouette-based human motion recognition can be grouped in terms of the
main steps used to approach the problem: image preprocessing, motion pattern
representation, and recognition or matching approach.

We begin by discussing the image preprocessing step. This is usually the
first step of any recent approach to human motion activity identification. Here,
the image foreground (i.e., moving object) is extracted by means of motion
segmentation techniques. Standard techniques include the ones based on Motion-
History Images (MHI) [4,17,3]. Motion history -based representations allow for
simultaneous description of both the dynamics of the motion and the shape of
objects. However, as pointed out by Bobick and Davis [4], MHI-based methods
are not suited for representing the underlying motion when the observed object
returns to similar positions (e.g., cyclic motion patterns). Alternatively, object’s
silhouette information alone can be used as an input for recognition systems.
Wang and Suter [23] used silhouettes as the input to their recognition method.
Elgammal and Lee [8] also used silhouettes without motion history. In this paper,
we use a similar smoothing technique as the one presented in [8]. However, our
distance function representation places a higher weight on the moving object’s
medial-axis. This reduces the influence of variations in silhouette’s contours.

Human motion information is inherently both highly dimensional and com-
plex. Therefore, dimensionality reduction is a standard procedure in the prepro-
cessing of motion data for recognition. Here, the key idea is to find a suitable
reduced representation of the motion while maintaining sufficient discriminat-
ing data for performing the recognition. To accomplish these goals, past works
have used simple data reduction techniques such as principal component anal-
ysis (PCA) [17] and Locality Preserving Projections (LPP) [13,23]. The main
advantage of these linear approaches is their ability to produce a direct map-
ping to the embedding space. Nevertheless, the nature of human motion is highly
non-linear. Indeed, for complex motions of long duration, recent advances in non-
linear dimensionality reduction techniques provide significant improvements of
human motion recognition. Techniques in this group include the Isometric feature
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mapping (Isomap) [20] and the Local Linear Embedding (LLE) [19]. Evidence of
the effectiveness of these non-linear manifold learning methods for human motion
recognition has been widely reported in the computer vision literature [23,3,8].

Finally, the recognition step in most motion recognition methods aim at de-
termining the maximum similarity between an unobserved test sequence and
pre-learned motion models. Some methods use distance measurements such as
the Mahalanobis distance [4] or the Hausdorff distance to establish matches be-
tween the learned templates and test sequences [17,3,23]. Methods using the
Hausdorff distance are sensitive to non-isometrically similar datasets (i.e., the
Hausdorff distance compares each point from one set to every point in the second
set regardless of temporal sequence). In order to address this limitation, Wang
and Suter [23] propose the use of the Hausdorff distance only as a baseline for a
Hidden Markov Model (HMM) matching procedure. Additional important works
using HMM for human motion analysis and recognition include [12,5,24]. HMM
allows for a principled probabilistic modeling of the temporal sequential infor-
mation. An alternative way to approach the matching of data sequences is to
use Dynamic Time Warping (DTW) [22,2]. DTW has been used in the context
of matching data sequences in several applications such as speech recognition,
economics, and bio-informatics. DTW provides an approximate similarity mea-
surement while allowing for matching partially identical sequences.

The method proposed in this paper uses an adapted DTW algorithm to per-
form recognition by matching trajectories on a non-linear manifold space rep-
resentation. Our paper aims at demonstrating the effectiveness of the Isomap-
DTW combination. To the best of our knowledge, this combination has not
yet been explored in the human motion recognition literature. In several cases
Isomap has been dismissed in favor of Local Linear Embedding or other algo-
rithms mostly due to the greater focus on the local relationship perservation. In
other cases Isomap has been dismissed due to the lack of an inverse mapping
which other algorithms readily elucidate. The inverse mapping issue has been
solved by Elgammal and Lee [8]. Additionally, DTW has also been dismissed in
favor of HMM. Our work demonstrates the potential of using Isomap and DTW
for matching motion manifolds to accomplish accurate human motion recogni-
tion. Next, we describe the details of our motion recognition method.

3 Our Method

In this section, we describe the details of the steps of our method.

3.1 Data Preprocessing

The selection of Isomap for our algorithm imposes a restriction on the input
data set. Isomap asymptotically converges for a large class of nonlinear mani-
folds. The convergence is achieved when the input data has a large enough fre-
quency of coverage within the high dimension space. Consequently, Isomap must
be supplied an input data set sufficiently representative to create a meaningful
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embedded manifold space. This is a reasonable restriction for any machine learn-
ing problem and, given a specific domain, the required amount of input needed
for adequate characterization can be obtained via experimentation. Given that
a large enough representative set is required, there are two actions that can be
taken to aid in preconditioning of the data. The first action is to select a more
constrained search space and the second is to generalize the hypothesis sets re-
maining within the reduced search space. These two techniques aid in decreasing
the amount of training data that may be required.

Constraining the Search Space. In many cases the search space can be pre-
conditioned to a much smaller set. One common preconditioning used for images
is the reduction of color representation to gray scale representation. Thoughtful
manipulation of the search space not only aids in reducing the representative
data set needed for learning the manifold space, but can also increase the ro-
bustness of the learned mapping.

In the particular case of human motion several recent works established suc-
cessful results by reducing the space to the silhouette of subjects [3,8]. This
discards much of the data associated with internal clothing details, and removes
all background data from the search space. The end result focuses the observed
dimensionality to strictly the motion performed.

For this particular problem domain, the registration of the silhouettes in the
image frames also limits the size of the search space. This preprocessing discards
the motion caused by translation and further constrains the space to the mo-
tions relative to the internal deformation of the shape. Nevertheless, a simplistic
resizing alteration could change the aspect ratio of the subject, and result in
an undesirable change to the internal deformation. In our implementation, the
registration is performed by isolating the foreground silhouette using a simple
background subtraction operation. A bounding box is then constructed for each
frame that encompasses the foreground pixels. The largest frame size is chosen to
represent the standard frame size for the entire sequence. Finally, all remaining
frames are aligned (center pixel) to the center of the standard selected frame.

Generalize the Hypothesis Sets. After the initial search space reduction,
generalization is performed by converting the silhouette to a gray level gradient
using a distance transform similar to [8]. In our method, we perform the distance
transform so that the highest values are assigned to the silhouette’s most medial
axis points. Once the smoothing is completed, the intensity range in all images
is re-scaled to a predefined maximum value (e.g., 255). The result of this pre-
processing step is illustrated in Figure 2. Gray scale images are used, however,
the color versions illustrate effect on the silhouette’s medial axis. The smoothing
decreases the variance between subtle differences of similar images, such as those
caused by clothing and hair variance. Data sets containing both large volumes
and small volumes with significant amount of discriminative features for recog-
nition in smaller volumes may be sensitive to this preprocessing. For human
motion, this does not seem to be an issue, and we believe this preprocessing
increases the overall robustness of recognition.



Human Motion Recognition Using Isomap and Dynamic Time Warping 291

Fig. 2. Sample preprocessed data: Walk (gray scale), Walk, Jack, Jump (color)

3.2 Motion Pattern Learning Using Isomap

In this part of our algorithm, we use the isometric feature mapping or Isomap [20]
to obtain template models of the observed motions. Here, our goal is to build a
model representation of each motion pattern in our training set. These models
will later be used in the matching step to accomplish recognition of unknown
motion patterns. The key idea here is to use Isomap as a means of representing
the actual intrinsic dimensionality of the analyzed data. Elgammal and Lee [8]
used Locally Linear Embedding (LLE) as a manifold learning technique in their
motion recognition work. However, Isomap manifolds have been reported to re-
tain more global relationships than its LLE counterpart [7]. This part of our
method is divided into two main steps. First, an Isomap manifold is created
for each motion available in the training dataset. Secondly, radial basis function
mappings are estimated for mapping the learned Isomap manifold space back to
the template images. These functions admit an inverse map that allows for the
extraction of the manifold embedding for new images. These steps are detailed
as follows.

Isometric mapping of silhouette patterns. In this step, we will use Isomap
to build a manifold representation of our motion sequence. The input data used
by this step is a set of smoothed silhouette images obtained by the preprocessing
step of our method. Let Y = {yi ∈ R

d, i = 1, . . . , N} be the set of preprocessed
image data (i.e., smoothed silhouette images), and X = {xi ∈ R

m, i = 1, . . . , N}
be the corresponding embedding points. The embedded points X are determined
using the following three-step Isomap algorithm: (1) Create a weighted graph G
of points in Y with weights dY (i, j) representing the pairwise distance between
neighbors. In our algorithm, a neighborhood is defined by the k-nearest neigh-
bors; (2) Estimate the pairwise geodesic distances dX (i, j) between all manifold
points by finding the shortest path distances in the graph G. These shortest path
distances are denoted by dG (i, j); (3) Finally, apply classical multidimensional
scaling (MDS) on DG to map the data onto an m-dimensional Euclidean space
X . It is worth pointing out that dX (i, j) and dY (i, j) are Euclidean pairwise
distances within manifold space while dG (i, j) represents the actual geodesic dis-
tances. The coordinate vectors xi in X are chosen by minimizing the following
L2 cost function:
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E =
√∑

ij

[τ (dG(i, j)) − τ (dX (i, j))]2 (1)

where τ in an operator that converts distances to inner products as described
in [20]. The use of this operator supports efficiency in the optimization process.

However, the above embedding procedure does not directly allow for the map-
ping of new images onto the same manifold. In order to address this issue, El-
gammal and Lee [8] proposed the use of an approximate invertible mapping from
the embedded space to the image space. This mapping is based on radial ba-
sis functions. For completeness, this mapping is briefly described next. Further
details of this method can be found in [8].

Learning embedded-space-image mappings. The main goal in this step is
to obtain an invertible approximate mapping between the embedded manifold
space and the image space. Let tj ∈ R

m, j = 1, . . . , Nt be a set of Nt cluster
centers in the embedding space obtained by using a K-Means clustering algo-
rithm. In this paper, we choose Nt such that Nt = 3

4N . The radial basis function
interpolants fk : R

m → R
d can be found and satisfy the condition yk

i = fk(xi).
Here, k is the kth dimension (pixel) in the image space. More specifically, the
interpolant is given by:

fk (x) = pk (x) +
Nt∑

i=1

wk
i φ (|x − ti|) (2)

Equation 2 can also be written in matrix form as:

f (x) = B · ψ (x) (3)

where B is a d × (Nt + m + 1) dimensional matrix, and ψ is given by:

ψ =
[
φ (|x − t1|) . . . φ (|x − tNt |) 1 xT]T

(4)

Finally, B can be obtained by solving the linear system:
(

A Px

PT
t 0(m+1)×(m+1)

)
BT =

(
Y

0(m+1)×d

)
(5)

where A is N × Nt matrix with Aij = φ (|xi − tj |), i = 1 . . .N , j = 1 . . .Nt, φ is
the thin-plate spline φ (u) = u2 log (u), Px is a N × (m + 1) matrix with ith row[
1 xT

i

]
, and Pt is a Nt × (m + 1) matrix with ith row

[
1 tTi

]
.

The mapping in Equation 5 can be inverted by calculating the Moore-Penrose
pseudo-inverse of the matrix B:

ψ (x) = (BTB)−1BTy (6)

This function can be used to map each training image-frame to the embedded
template space. The final motion model manifold is then created by reintroducing
the time dimension into the manifold representation. This is accomplished by
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assigning each frame its corresponding time from the original sequence. The
motion manifold construction is now complete, and test frames can be efficiently
converted to each of the template manifold spaces before entering the recognition
phase. The recognition step is described as follows.

3.3 Recognition

We perform recognition by means of a matching function based on dynamic
time warping [22,2]. We adapted the original DTW framework to allow for
the matching of motion patterns in manifold space. The key modifications in
the DTW algorithm are the following. First, we interpolate both the model
template and test manifolds to have the same number of points. Secondly, we
use a multi-dimensional version of the DTW with an adapted scoring system
using the basic Sakoe-Chiba band constraint. These few modifications permit the
DTW algorithm to adjust to nonlinear variations in the input motion patterns.
Our main modifications to the DTW algorithm are described as follows.

Interpolation of Inputs. This is a preprocessing step used to improve the
quality of the input data before proceeding with the actual DTW alignment.
There are several sources of spatial and temporal variations that need to be con-
sidered. First, temporal synchronization of video frames cannot be guaranteed
(e.g., cameras of various frame rates). A second source of noise is related to the
spatial and temporal variations that occur whenever humans perform the same
motion repeatedly. The original DTW algorithms does not require same size se-
quences. Also, uniformity in the sampling rate of the manifolds’ time-series is
not required. However, results tend to improve when sequences are of similar
sampling rates. This interpolation step allows the time aligning properties of
DTW to more accurately compensate for the nonlinear variants by matching to
anticipated intermediary missing frames.

Adapted Distance Measure. The standard DTW distance measurement is
obtained by integrating the values along a path of a distance matrix relating the
final manifold points to the initial manifold points. This path search is performed
in a dynamic programming manner. In the standard DTW algorithm, all visited
nodes contribute to the final distance reported. However, our distance measure
only aggregates distances associated with transitions to the next state of the
template into the final distance measure. We have modified this distance function
slightly to remove additions which simply indicate the time warping is keeping
the test manifold in the same state for a longer duration to remain synchronous
with the template.

4 Experimental Results

In this section, we evaluate the effectiveness of our motion recognition method.
Our main goal here is to show that our method is able to recognize a number of
motion patterns acquired by a single camera. To accomplish this goal we provide



294 J. Blackburn and E. Ribeiro

a comparison between our method and two recently published motion recogni-
tion methods [3,23]. For this comparative study, we use the same dataset used
by the methods in [3,23]. The data set contains a collection of nine individuals
performing ten distinct actions. The actions and the corresponding labels used
in our experiments are the following: bending over (Bend), jumping jack (Jack),
hopping across the screen (Jump), jumping up and down in place (Pjump),
running (Run), stepping sideways to one direction (Side), hopping on one foot
across the screen (Skip), walking (Walk), waving one arm (Wave1), and waving
both arms (Wave2). We divided the data set into training subset and testing
subset. These two subsets cover all individuals performing all actions. However,
in the case of the Bend action, the data set did not contain enough frames to
allow for the creation of two distinct action subsets. We addressed this prob-
lem by sampling every other frame in the Bend sequence to create the training
and testing subsets. Additionally, in some cases, the starting point of the mo-
tion was significantly different (e.g., half-cycle sequence). This was addressed by
manually stitching the two halves of incomplete motions into a single test mo-
tion. The resulting datasets were then used in the experiments described in this
section.

We began by preprocessing each sequence to extract the foreground motion
information. For simplicity, we used a background subtraction method to facili-
tate the extraction of the moving foreground silhouette. For cases where a clean
background is not available, a more robust foreground segmentation method can
be used [21]. The resulting silhouette images were both normalized and registered
as described in Section 3.1. In our experiments, we evaluated the performance
of the proposed method for images of varying sizes. The sizes used were 16× 16,
24 × 24, and 32 × 32 pixels. Once the processed sequences were at hand, we
compared our Isomap-based method against both the LLE and the LPP dimen-
sionality reduction techniques. For all methods, the local manifold similarity was
based on the K-nearest neighbors. Here, the K neighborhood was chosen as sug-
gested in [23]. Accordingly, we used values of K ranging from 5 to 15 to ensure at
least an overlap ranging from 10 to 15, respectively. Each motion manifold space
created by these embeddings contained two dimensions and were generated from
the images without taking any temporal information into consideration. Tempo-
ral information was subsequently reintroduced creating manifolds such as those
illustrated in Figure 3. The manifolds in Figure 3 also illustrate the use of linear
extrapolation between subsequent data points to define the motion manifold.
A sampling of 64 evenly-spaced data points were taken from both the learned
motion manifold and the test motion manifold for input to the DTW algorithm.
A standard sequence size of 64 was chosen to represent approximately twice the
size of the largest number of frames for any of the motions in the experiment’s
dataset. This sampling rate allows the DTW algorithm to perform alignment to
interpolated frames that are missing in the learned models due to temporal mis-
alignment in the frame sequence. The algorithm’s power to extract meaningful
intermediate frames is illustrated in Figure 4. With the exception of a few de-
graded cases each motion sequence is recognizable despite only the first and last
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Fig. 3. Motion manifolds for Daria. Top row: Bend, Jack, Jump, Pjump, Run. Bottom
row: Side, Skip, Walk, Wave1, Wave2.

silhouettes of each sequence falling exactly on a projected data point. Temporal
misalignment and missing frames are common issues in many of the analyzed
videos. The DTW was constrained using a Sakoe-Chiba band of 25%. Figure 5
illustrates that our proposed method using Isomap-DTW achieved almost exact
recognition rates for the tested activities.

Fig. 4. Silhouette contour of the projection from manifold space to image space
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Fig. 5. Isomap(◦), LLE(•) and LPP(box) Overall Activity Recognition with a Sakoe-
Chiba’s band of 25%. The image size is the width and height of the images after
preprocessing which is also equivalent to

√
d.

The recognition scores in Figure 5 represent the percentage of motions cor-
rectly identified. The size of the images, the k-neighborhood sizes and the di-
mensionality reduction techniques used were varied for comparison. The results
in Figure 5 provide evidence to support our claim that the global perservation
of the Isomap data reduction technique can elucidate more meaningful mani-
folds for recognition via DTW. The recognition results shown in Figure 5 using
Isomap with DTW are superior to those reported in [4,3]. Moreover, our results
were equivalent to the ones obtained using supervised LPP-Hausdorrf-distance,
unsupervised-LPP-HMM, and supervised-LPP-HMM [23]. However, our algo-
rithm achieves this same high recognition rate with smaller image size, smaller
neighborhood size, and no supervision. It is worth pointing out that, although
Masoud et al. [17] utilized a different action database, the motions performed
were comparable to the ones used in our experiments. Additionally, the best
results reported in [17] were only in the lower 90% range, while our algorithm
achieved 100% at several occasions. Also, although our experiments utilized pe-
riodic sequences, our method does not require motion periodicity. The specific
dataset was used for comparison purposes only.

The subjects used for training are identical to the subjects used for testing.
As a result, we are currently unable to infer the generalization capabilities of
the proposed method with respect to recognizing unseen subjects. While we are
not covering this specific issue in this paper, it is expected that models for one
individual may be able to elucidate matches to similar motions performed by
other individuals not captured for a particular model.

Finally, our results for all other tested Isomap configurations consistently
achieved activity recognition rates above 95%. This demonstrates that, without
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any experimental tuning, our technique performs very well in comparison to
other established human motion recognition methods.

5 Conclusions and Future Work

In this paper, we presented a method for recognizing human action and mo-
tion patterns. Our method works by matching motion projections in Isomap
non-linear manifold space using dynamic time warping (DTW). Dynamic time
warping has been used in the past in many sequence alignment applications.
However, the application of DTW to matching human motion manifolds has
been somewhat unexplored. Moreover, we showed that Isomap manifold learn-
ing combined with DTW can be an effective way to both represent and match
human motion patterns.

Our algorithm achieved accurate activity recognition results using an adapted
implementation of DTW with a basic Sakoe-Chiba band optimization. Our ex-
periments established the potential of the method for human motion recognition.

Future work includes the improvement of the computational efficiency of our
recognition method by introducing indexing mechanisms such as the one sug-
gested in [16]. Additionally, we plan to investigate the use of statistical neighbor-
hood approach in our adapted DTW to help improve the classification results
for both LLE and LPP.
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Abstract. This paper presents an approach for human detection and
simultaneous behavior recognition from images and image sequences. An
action representation is derived by applying a clustering algorithm to se-
quences of Histogram of Oriented Gradient (HOG) descriptors of human
motion images. For novel image sequences, we first detect the human by
matching extracted descriptors with the prototypical action primitives.
Given a sequence of assigned action primitives, we can build a histogram
from observed motion. Thus, behavior can be classified by means of his-
togram comparison, interpreting behavior recognition as a problem of
statistical sequence analysis. Results on publicly available benchmark-
data show a high accuracy for action recognition.

1 Introduction

Human behavior recognition is important for a number of applications, e.g. video
annotation, surveillance, or personal assistance systems for elder or disabled
persons. The main task in behavior analysis from image sequences is to correctly
assign an observed motion sequence to a set of prototypical known behavior
classes. If we assume that behavior consists of sequences of atomic actions, we
have to address three disjoint problems; (a) how to detect humans in images, (b)
how to adequately represent atomic actions, and (c) how to classify a sequence
of atomic actions into behavioral classes.

The main contribution of this paper is an approach for human detection and
behavior recognition from image sequences by means of statistical sequence anal-
ysis. In previous work [1], we already reported on the idea of behavior recognition
by means of histogram comparison of bags of action primitives. Here, we further
extend and improve these ideas. By directly utilizing the proposed action rep-
resentation for detecting humans, we no longer require background subtraction,
tracking, or global movement compensation. Thereby, we can not only classify
image sequences, but also single images. Recognition rates on publicly avail-
able action-data [2] exceed up-to-date approaches, see e.g. [3]. However, we still
achieve lower recognition rates than approaches that use background subtrac-
tion, and global movement compensation, as for instance [2,1].

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 299–312, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Jump SideWalk Wave 1

BendSkip

JackPJump RunWave 2

Fig. 1. For the experiments we considered 10 different behaviors performed by 9 sub-
jects. The task is to detect the human within the image and to assign the sequence to
one of the known behavioral categories, e.g. ’bend’, ’jump’, or ’run’.

For detecting humans in images it could been shown that Histograms of Ori-
ented Gradients (HOG) [4] are very distinctive and robust. In the presented work,
we detect humans by comparing extracted HOG descriptors to template HOG
descriptors of human poses. The templates are automatically clustered from a
set of training sequences. In the following, we will refer to these templates as
action primitives [5] or basic action units [6]. We select the best matching action
primitives for a novel image, and thereby create a sequence of action primitive in-
dices. Consequently, we can treat behavior recognition as a problem of sequence
comparison where we compare novel sequences to a set of labeled training se-
quences. Since behavior is a temporal phenomenon, we express the sequential
observation of basic action units using n-grams, a popular representation used
in statistical text analysis or bioinformatics. Finally, we classify behaviors by
means of histogram comparison.

In Section 3.1 we explain how to derive an action representation using the
concept of movement primitives, and we introduce a n-gram based action repre-
sentation. Section 3.2 introduces behavior histograms and a classifier for action
primitive sequences. We validate the approach in a human tracking scenario in
Section 4. Finally, we close this contribution with a conclusion in Section 5 and
an outlook on future work in Section 6. First, however, we will briefly summarize
related approaches.
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2 Related Work

The most recent approaches related to ours are [3,7,8]. In [3], a hierarchical bags
of features approach classifies videos or single images into action categories. In
[7] human action-categories are learned by representing a video sequence as a
collection of spatial-temporal words by extracting space-time interest points. In
[8] actions of Hockey players are represented and tracked using HOG-descriptors
and Hidden Markov Models. In the proposed approach, we also represent ba-
sic actions as HOG-descriptor based templates. In contrast to [4], we consider
histograms of basic action templates for behavior recognition. Furthermore, our
approach is inspired by the recent progress on bags of visual words.

The action representation proposed in this paper is similar to the biologi-
cal concept of movement primitives. Results in behavioral biology indicate that
instead of directly controlling motor activation commands, movements are the
outcome of a combination of simpler movement primitives [9,10]. Furthermore,
cognitive psychology explained the representation of motor skills in human long-
term memory by hierarchies (but also sequences) of basic-action concepts [6]. It
is interesting to note that different disciplines decided for different terminologies
for describing very similar concepts of motor control. In this paper, we use the
terminology proposed in [6] and [11,5]. In this context, behavior is the outcome
of appropriate sequencing of action primitives.

In robotics, a movement primitive is often referred to as a computational ele-
ment in a sensorimotormap that transforms desired limb-trajectories into actual
motor commands [12]. Related to our approach is the work of Fod et al. [13] or
Lee et al. [14], where the concept of movement primitives is applied in a computa-
tional approach by linear superposition of clustered primitive motor commands
that finally resulted in complex motion in simulated agents. For learning and
synthesizing human behavior in simulated game worlds, we previously used a
probabilistic sequencing of action primitives [5]. In this paper, we derive action
primitives in a similar way as proposed in [13] or [5].

The idea of representing actions by a set of basic building blocks is not new.
Especially for recognition tasks, it is getting more and more popular. For a recent
overview we recommend [11,15]. Numerous approaches on recognizing behavior
based on keyframes, movement primitives, or action primitives exist. For exam-
ple, Moeslund et al. [16] recognized actions by comparing strings of manually
found motion primitives, where the motion primitives are extracted from four
features in a motion image. In [17], silhouettes images are extracted using optical
flow data, afterwards they are grouped in pairs and used to construct a gram-
mar for action recognition. [18] further expands ideas on designing a human
action recognition grammar. [2] expresses human action as three-dimensional
shapes that result from spatial silhouette movements with respect to time, and
use these extracted features for classifying activity. [19] compares histograms
of n-grams sequences of complex actions, to recognize higher-level behaviors,
where n-grams are build using a set of basic hand crafted events. Goldenberg
et al. [20] use PCA to extract eigenshapes from silhouette images for behavior
classification.
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3 Behavior Recognition

In the following, we outline our approach for behavior recognition, see also Fig-
ure 2 for a schematic outline. First, we will explain how to extract action prim-
itives from behavioral observations. Then, we will transfer sequences of action
primitives to a more meaningful descriptor by incorporating the temporal con-
text using n-grams. Finally, we will explain how histograms of behaviors can be
constructed, and how they are used for classification of novel image sequences.

From behavioral observations
to histograms (of action primitives)

2. Compute HOG descriptors

3. Map on action primitives

4. Express as n-grams of action primitives

(a,b) (b,c) (c,d) (d,e) (e,f)

(a) (b) (c) (d) (e) (f)

5. Compute histograms of n-grams occurrences

1. Compute gradient image

Fig. 2. Construction of behavior histograms: First, the gradient image for a detec-
tor window is computed. Then, we compute HOG-descriptors and combine them in a
feature vector. We map the feature vector on the best matching prototypical action-
primitive. Consecutive action-primitives are afterwards combined in n-gram structures.
Finally, the resulting histogram of n-gram occurrences is computed for the whole se-
quence.

3.1 Basic Action Representations

For describing actions we use templates consisting of HOG-descriptors [4]. It
could be shown that these outperform other features for human detection in
static images. Basically, the HOG-descriptor is a locally normalized orientation
histogram, similar to the popular SIFT features [21]. In this work, we use it to
(a) find humans in image sequences, and (b) as a descriptor for action primitives.
Figure 3 briefly summarizes the descriptor, for details we recommend [4]. The
detector window used in our experiments consists of 40 × 80 pixels.

The idea of action primitives assumes that complex motion can be constructed
using a set of basic action units. In order to derive a meaningful set of action
primitives, we apply k-means clustering to the HOG-descriptors extracted from
the training sequences. For clustering, we use the cosine distance measure. The
training data consists of centered and aligned images showing various human
activities. Training images are extracted at a size of 40 × 80 pixels. Thus, one
descriptor corresponds to one activity, see Figure 4 for example sequences.
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2. Weigthed vote into cells
3. Normalize over overlapping blocks
4. Collect HOG's in the detection window

Cell

BlockDetector window

1. Extract image gradients
for each detector window

Fig. 3. The detector window (40×80 pixels) is divided into cells of size 10×10. For the
detector window the image gradient is computed using a simple filter mask ([−1, 0, 1]).
Every pixel calculates a vote for an edge orientation histogram for its cell, weighted by
the magnitude (as suggested in [4], we used 9 orientation bins). Groups of 3 × 3 cells
form a so called block. Blocks overlap with each other. For each block, the orientation
histograms of the included cells are concatenated and normalized using L2-norm. The
final descriptor is the concatenated vector of all normalized blocks for the detector
window (note that the suggested parameters vary from [4]).

Clustering results in a set of k action primitives [a1, . . . , ak], ai ∈ R
m, where

each action primitive ai corresponds to the concatenated HOG-descriptors
within the detector window. By assigning each HOG-descriptor hi of a Sequence
H = [h1, . . . , hl] of length l to its best matching prototypical action unit a, we
can express an image sequence of human motions H as a sequence of action
primitives AH . For measuring descriptor similarities, we use the Kullback-Leibler
divergence, thus

AH = [aargmini DKL(ai||h1), . . . , aargmini DKL(ai||hl)] (1)

where the Kullback-Leibler divergence DKL(a || h) for two normalized his-
tograms a and h is defined as

DKL(a || h) =
∑

i

ailog
ai

hi
(2)

From sequences of action primitives AH , we can build behavior histograms
by counting occurrences of individual action primitives.

Since the action primitives effectively represent specific poses of humans, we
can also use them for finding humans in images. In [4] HOG-descriptors of hu-
mans and of the background were used to train a SVM for human/non-human
classification, providing very accurate human detection. In this work, we decided
for a similar approach. Therefore, besides the prototypical action descriptors, we
extract a set of k (we use the same number of prototypes as for the pose tem-
plates) prototypical descriptors for the image background [b1, . . . , bk], bi ∈ R

m,
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Fig. 4. Exemplary training sample sequences for extracting action primitives and build-
ing behavior histograms. The 40 × 80 pixel detector window is centered around the
human. The HOG-descriptors of all training images are used for clustering action prim-
itives.

by means of k-means clustering of background HOG-descriptors. Based on the
Kullback-Leibler divergence and a simple nearest neighbor criterion, each pixel
Px,y of a novel image can be recognized as a specific action primitive or as back-
ground. For this, we first compute the HOG descriptors hx,y for the detector
window (see also Figure 3) centered around each pixel Px,y. Then, each Px,y is
assigned to one of the k action primitives or set to 0 for background, thus

Px,y =
{

j DKL(aj || hx,y) ≤ DKL(bl || hx,y)
0 DKL(aj || hx,y) > DKL(bl || hx,y) (3)

where
j = argmini DKL(ai || hx,y)
l = argmini DKL(bi || hx,y)

We found that usually a few pixels within the center of a human are recognized
as an action primitive. Consequently, we assume the center of mass of successfully
recognized pixels to be the location of a human. We assign every image in which
at least one action is successfully recognized to a specific action primitive index.
Obviously, this is only works for a single human within the images. Although
this approach is rather simple, it showed to be sufficient for the later presented
experiments.

While prototypical poses (action primitives) can be detected within a single
image, for successful behavior recognition the temporal context of action unit
sequences is crucial. Therefore, we represent motion sequences by means of n-
grams of action primitives. n-grams are often used for sequence analysis in text
mining, or bioinformatics. Basically, they provide a sub-sequencing of length n
for a given sequence. For example, a sequence Auni of action primitive unigrams
(n is set to 1)

Auni = [a3, a3, a8, a6, a5, a5] (4)

where a3, a8, a6, a5 correspond to specific action primitives, could be simply
expressed as a sequence of overlapping bigrams Abi (n is set to 2)

Abi = [(a3a3), (a3a8), (a8a6), (a6a5), (a5a5)] (5)

or trigrams Atri (n is set to 3)

Atri = [(a3a3a8), (a3a8a6), (a8a6a5), (a6a5a5)] (6)
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Figure 2 shows an example on how a sequence of frames can be represented
using a sequence of n-grams of action primitives. With increasing n, the number
p of possible instances of n-grams increases exponentially, since p = kn where
k denotes the number of action primitives. Since we are dealing with human
motion which is bound to physical limitations, we usually observe only a limited
number of possible action primitive subsequences (human movement is rather
smooth). Thus, the actual number nk of n-gram instances, which were observed
during the training phase, tends to be much lower.

3.2 Behavior Histograms for Recognizing Action Classes

In practice, for comparison of different n-gram streams, often the histograms i.e.
the occurrences of specific n-gram instances are used. Thus, analyzing sequences
of n-gram action primitives is very similar to the idea of bags of visual words.
Given a sequence A of n-grams of action primitives, a histogram φ(A) is defined
as a mapping from a finite alphabet Σ (corresponding to all unique instances of
n-gram action primitives [a1, . . . , ank]), so that

φ(A) : Σ∗ → N
+ ∪ 0, φ(A)i := occ(ai, A) (7)

where i = 1, . . . , nk, and nk denotes the total number of action primitives n-
grams extracted during the training phase, and occ(ai, A) denotes the number
of occurrences of ai in A. For every training sequence [A1, . . . , AT ], where T
denotes the total number of training sequences, a separate histogram φ(Ai), i =
1, . . . , T is computed. Since each training sequence shows one specific behavior
executed by one subject, the histograms represent a behavior and will be further
referred to as a behavior histograms.

We classify novel image sequences using a nearest neighbor search over the
training behavior histograms, where the choice of similarity measure is crucial.
For histograms, commonly used measures are KL, L2, or L1. For comparison
of single-histogram class models of visual words it could been shown that the
Kullback-Leibler (KL) divergence outperforms alternative similarity measures,
as for instance L2 or χ2 [22]. Consequently, since we are facing a similar problem,
we decided for KL divergence for measuring histogram similarity.

For a novel sequence Anew, the task now is to select a suitable class label based
on histogram comparison to stored behavior histograms. For the experiments,
we classify into a behavioral class using a 1-NN criterion, i.e. by finding the class
histogram φ(Aj), with

j = argmin
i

DKL(φ(Anew) || φ(Ai)) (8)

where i = 1, . . . , T , and φ(Ai) denotes a normalized training histogram. We
decided for a 1-NN since we can usually only access a very limited number of
class histograms. Moreover, we observed a high inner class variability, e.g. for
some people walking might look more similar to the average running behavior.
Therefore, deciding on the single best matching exemplar histogram gave the best
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results. Future work might as well consider histogram integration, for example
by means of single-histogram class models [22].

For the histogram similarity measure, the actual length of the image sequence
is not important. This means that we can classify single images as well as com-
plete sequences using the same approach. Obviously, for single images the KL
divergence comes down to a simple and intuitive formula, where we select by
finding the behavior histogram φ(Aj) for a single recognized action primitive
(or n-gram instance) al so that

j = argmin
i

DKL(φ(al) || φ(Ai)) = log
1

ai,l
(9)

where ai,l denotes the corresponding histogram entry l for the behavior his-
togram i. It is important to note that we can only achieve a true single image
classification by using unigrams (n-grams of length 1), otherwise the temporal
context will be included. Interestingly, including the temporal context for very
short sequences (e.g. two frames in the case of bi-grams) does not lead to a
better classification rate for these frames as compared to single frame classi-
fication. One of the reasons might be overfitting due to the larger amount of
symbols (e.g. 50 symbols for unigram action primitives can result in up to 2500
bigram symbols). However, for longer sequences, the usages of n-grams results
in better classification rates. The next section will give a detailed report on the
experimental results.

4 Experimental Results

For validation of our approach we use publicly available benchmark-data [2].
The action-data-set consists of 10 different behaviors performed by 9 subjects.
Figure 1 illustrates the different behaviors.

We performed a leave one out cross validation where we excluded the behav-
ioral observations from one subject in each run. The remaining 80 sequences
(8 subjects and 10 behaviors) were used as training data, for extracting action
primitives, prototypical background descriptors, and constructing behavior his-
tograms. We assigned each test sequence to the training behavior histogram
with the highest similarity. Moreover, we did a frame-wise classification of every
image in a sequence using the same classification procedure. For evaluation, we
computed the average classification rates among all subjects.

Using integral histograms [23] for computing the gradient image histograms,
we can process up to 3 frames per second in a first basic Matlab implementation.
However, we are confident that more sophisticated and faster approaches for
computing the HOG descriptors, e.g. [24], will result in better performance. Right
now the computation of the HOG-descriptor is clearly the computationally most
expensive part in our approach.

In order to get optimal results we varied the cell, and block size for the HOG-
descriptor, and the size of the detector window. The last sections already con-
tained details on parameter selection. However, for the approach it seems more
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Fig. 6. Confusion matrix for k = 90 action primitives using bigrams (columns corre-
spond to predictions while rows correspond to the actual class). The left Figure shows
the recognition rates for complete sequences. Here, we achieved an average recognition
rate of 86.66% for classifying based on complete sequences. The right figure show the
per frame recognition rates, 48.63% of all individual frames were correctly classified.

important to evaluate the influence of the length n of action primitive n-grams,
and the number of used action primitives. Figure 5 gives results for varying
number of action primitives.
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Fig. 7. Confusion matrix for k = 110 action primitives using unigrams. The left Fig-
ure shows the recognition rates for complete sequences. Here, we achieved an average
recognition rate of 84.44% for classifying whole sequences. The right figure show the
per frame recognition rates, 57.45% of all individual frames were correctly recognized.

Table 1. Average classification rates for leave-one-out cross validation of 10 different
behaviors performed by 9 subjects (excluding all behaviors of one subject for each
run). Each column contains the best results reported on in the specific paper. Note
that the results for [2,1] are for subsequences and not the whole sequence, however,
according to our experience, we can expect a performance increase for classifying the
whole sequence. In [2,3], the ’skip’ behavior was excluded.

Thurau Blank Niebles Our
et al. [1] et al. [2] et al. [3] approach

Classification rate 99.10% 99.61% 72.8 86.66

Per frame classification rate – – 55.0 57.45

No background subtraction – – x x

Centered/aligned training sequences x x - x

No movement compensation – – x x

Human detection – – – x

For a complete sequence, the best average classification rate of 86.66% was
achieved using bigrams and 90 action primitives, Figure 6 shows the confusion
matrix. For frame-wise classification we achieved recognition rates of 57.45%
using unigrams and 110 action-primitives, the confusion matrix can be seen in
Figure 7. Interestingly, unigrams gave the best results for frame-wise classifica-
tion. One reason might be, that the number of basic actions increases with an
increasing n, which could lead to overfitting and worse classification results.
Consequently, dependent on the application, different parameters should be
selected.

Compared to the recent approach of Niebles et al. [3] we achieve almost
15% higher recognition rates for classifying complete sequences. However, com-
pared to [2,1] the recognition rates are lower. In contrast to [2,1] (and similar
to [3]) , we do not require background subtraction, external tracking solutions, or
global movement compensation. However, we require a set of centred and aligned
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Fig. 8. Sample video sequences as the outcome of our approach. The human is auto-
matically detected, and his current action is recognized for a whole sequence and for
single frames.

human motion sequences for training, which makes the training phase more de-
manding as [3]. Table 1 briefly compares the four papers. Figure 8 shows the
augmented image sequences as the outcome of our behavior recognition system.
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It is interesting to note that we only used static image features, we did not
incorporate optical flow or similar dynamic image features. In [3] it was argued
that dynamic features outperform static features for recognizing action cate-
gories. Effectively, we could show that sufficiently descriptive and discriminative
static image features and a statistical sequence analysis can already result in
very accurate recognition of action classes. Nevertheless, we also believe that
dynamic image features could improve classification results.

5 Conclusion

In this paper, we proposed a novel approach for behavior recognition by means
of behavior histograms of action primitives. Action primitives are clustered, pro-
totypical human pose representations. They can be detected for every frame in
an image sequence where a human is visible. For representing action primitives,
we used Histogram of Oriented Gradients. Since the HOG-descriptor allows for
robust detection of humans in images, we used the set of action primitives to find
humans via a nearest-neighbor search. To obey the temporal context of behav-
iors, subsequent action primitives are combined in n-gram structures. Finally,
we expressed behaviors as histograms of the n-gram instances that were found
in the image sequence.

In a series of experiments, we could show the applicability for behavior recog-
nition. We classified behaviors based on the Kullback-Leibler divergence of be-
havior histograms. Recognition rates on a publicly available benchmark-data
showed a high accuracy for classifying motion sequences. We were also able,
with a lower precision, to recognize action categories from single images.

6 Future Work

To concentrate on the principal idea of expressing behavior as histograms of ac-
tion primitives, we tried to keep the approach as simple as possible. Although the
current recognition rates are already accurate, one could think of many possible
extensions. To speed up processing time, we would suggest the cascade of HOGs
approach [24]. In addition, in order to deal with inner-class variability, and to
speed up processing time, we would suggest the usage of single-histogram class
models [22]. For more accurate human detection, we could use more sophisti-
cated classifiers, e.g. SVMs as reported on in [4]. Moreover, we could incorporate
dynamic features aside from the HOG descriptor, e.g. oriented histograms of
flow [25].

So far, we were not dealing with humans at different scales or different views.
Different scales could be handled by using variable size detector windows as in
the original HOG approach. For different views, we would suggest the usage of
more versatile training data, i.e. already incorporate different views for building
behavior histograms.



Behavior Histograms for Action Recognition and Human Detection 311

Acknowledgments

We would like to thank Moshe Blank, Lena Gorelick, Eli Shechtman, Michal
Irani, and Ronen Basri for making their behavior dataset publicly available [2].
Christian Thurau is supported by a grant from the European Community under
the EST Marie-Curie Project VISIONTRAIN MRTN-CT-2004-005439.

References
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Abstract. This paper presents an action analysis method based on ro-
bust string matching using dynamic programming. Similar to matching
text sequences, atomic actions based on semantic and structural features
are first detected and coded as spatio-temporal characters or symbols.
These symbols are subsequently concatenated to form a unique set of
strings for each action. A similarity metric using longest common sub-
sequence algorithm is employed to robustly match action strings with
variable length. A dynamic programming method with polynomial com-
putational complexity and linear space complexity is implemented. An
effective learning scheme based on similarity metric embedding is de-
veloped to deal with matching strings of variable length. Our proposed
method works with limited amount of training data and exhibits desir-
able generalization property. Moreover, it can be naturally extended to
detect compound behaviors and events. Experimental evaluation on our
own and a commonly used data set demonstrates that our method allows
for large pose and appearance changes, is robust to background clutter,
and can accommodate spatio-temporal behavior variations amongst dif-
ferent subjects while achieving high discriminability between different
behaviors.

1 Introduction

Human action analysis from visual data is important in visual surveillance and
video retrieval applications. Many applications can benefit from the detection
and recognition of target actions using exemplar videos or specific semantic de-
scriptions. Due to various factors such as large individual variations in clothes,
accessories, appearance, scale, and viewpoint, human body articulation and self-
occlusion, and dynamic background clutter, action analysis remains a very chal-
lenging problem. Majority of approaches require extensive training [1,2,3] and
poorly handle complicated actions and activities.

In this paper, we present an action analysis method that requires limited
training and exhibits desirable generalization property. It can also be naturally
extended to detect compound human actions and events. The proposed method
bears an analogy to text sequence analysis, which has been widely studied an
has proved to be a powerful methodology. In our method, atomic actions based
on semantic (face, hands, etc.) and structural features (spatio-temporal stable
features) are first detected and coded as spatio-temporal characters or symbols.

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 313–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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These symbols are subsequently concatenated to form a unique set of strings
for each action. A similarity metric using a longest common subsequence (LCS)
algorithm with dynamic programming is employed to robustly match action
strings. An effective kernel method based on similarity metric embedding is
developed to match strings of variable length.

Fig. 1. System diagram

Key characteristics of our approach that alleviate the necessity of extensive
training are:

1. Compact representation of human actions using a combination of spatio-
temporal informative semantic and structural features (symbols or charac-
ters, we use both terms interchangeably in the rest of paper.) and their con-
catenations (strings). Usually our vocabulary set consists of characters in
the order of tens. A character symbolizes feature type, position, and move-
ment. For example, left hand moves toward up-left direction around head
position is embedded as one character, as shown in Fig 1. The configura-
tion of characters in one frame characterizes human pose and articulation at
one time instance. The temporal order of actions is maintained with string
representation and corresponding matching technique.

2. Decomposition of learning from 3D spatio-temporal volumetric data into the
semi-2D feature level and semi-1D string matching level. Semi-2D features
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(characters) are learned and detected with one (semantic features) or two
frames (structural features). Subsequent semi-1D string matching is per-
formed both along temporal axis (temporal order) and in spatial domain
(character configuration). This decomposition enables learning with reduced
dimensionality in lower dimensions and achieves better generalization prop-
erty.

3. In the matching level, string kernel matching based on similarity metric
embedding also achieves effective dimension reduction in learning.

Since our string kernel matching is a generic matching technique, the proposed
method can be naturally extended to handle more complicated and compound
actions. Only the vocabulary of atomic actions needs to be enhanced or modified,
but action matching and recognition scheme remains intact. Specifically, atomic
action units can occupy the full spectrum of spatio-temporal features, from low-
level interest points, body parts, to people and vehicle, or even a simple atomic
action itself.

The robustness of our approach with respect to pose and appearance change,
occlusion, and background clutter is achieved through the combination of se-
mantic and structural features and the coarse quantization of feature positions
and orientations in optical flow field. Pixel-wise optical flow has been demon-
strated as a simple yet powerful feature for capturing motion independent of
appearance. The inclusion of reliable semantic features such as face and hands
with their position attribute makes the scheme robust to pose changes. Missing
or erroneous atomic actions (characters) due to occlusion and background clut-
ter is compensated for in the robust string matching with LCS algorithm, where
a longest sequence is found among all subsequences of a set of sequences. Also,
since no rigid constraint is imposed amongst features, and only feature spatial
configuration and temporal order is used in the matching, our scheme allows for
large individual variations among different subjects.

Finally, the overall action detection and recognition system can be imple-
mented in real time due to the compact representation and fast detection of
semantic and structural features, as well as the fast implementation of LCS
algorithm using dynamic programming.

We review the related work in Section 2, and explain technical details in Sec-
tion 3. Experimental results are given in Section 4, and we conclude in Section 5.

2 Related Work

There are two major approaches in suspicious activity detection: supervised v.s.
unsupervised methods. Unsupervised methods are suitable for situations where
it is not possible or realistic to explicitly define and build all activity models [4,5].
When target activity models are well defined and constrained, the model-based
supervised approach can be effective. Our method falls into the model-based
category.

In the model-based approach, typically features are extracted and tracked
from the video. The extracted features are used to develop models for the target



316 C. Yang et al.

activities, either by exemplar videos or human specified rules and context. A
common choice is to use Hidden Markov Models [6] or other graphical models
which quantize image features into a set of discrete states and model how states
change in time. There are many known disadvantages and limitations in per-
forming visual tracking such as manual initialization, poor long-term stability,
etc.

Davis and Bobick [7] propose a probabilistic syntactic approach for extended
action detection and interactions between multiple agents. A two level detection
strategy is adopted where the lower level detections are performed using stan-
dard independent probabilistic event detectors to propose candidate detections
of low-level features, and a longer range stochastic context-free grammar parsing
mechanism is used in the higher lever to disambiguate uncertain low-level de-
tections, and allow the inclusion of a priori knowledge. Our approach is largely
inspired by this approach, but does not require the specification of rigid activity
grammars.

Our conversion of atomic activity element (features) into character and match-
ing with strings also inspired by [8] where matches on descriptors are computed
using vector quantization with visual analogy of words, and inverted file systems
and document rankings are used for object and scene retrieval.

An important consideration in action analysis is the selection of appropriate
feature for motion pattern description and matching. Appearance features such
as image intensity, image spatial gradients or temporal gradients [9,10] are useful
features, but the appearance features are not always preserved across different
sequences. Pixel-wise optical flow has been demonstrated as a simple yet powerful
feature for capturing motion independent of appearance. Special treatment [1]
needs to be applied to deal with the noisy nature of optical flow vectors.

Several methods exist for recognizing human actions directly from global im-
age measurements such as optical flow or spatio-temporal gradients [11,7,1,12].
Various factors such as spatial resolution, global camera motion, dynamic back-
ground clutter, may affect the recognition performance of these methods. Local
space-time features or interest points provide compact and informative repre-
sentations of patterns in an image, they are robust to occlusion and background
clutter, and can be adapted to the size, frequency and the velocity of moving
patterns, and therefore suitable for recognizing complex motion patterns. Laptev
and Lindeberg [13] extend the notion of spatial interest points into the spatio-
temporal domain where the image values have significant local variations in both
space and time. Scale-invariant spatio-temporal descriptors (the 3rd order local
jets of normalized spatio-temporal Gaussian derivatives) are developed and used
to classify events. Schuldt et al. [3] construct video representations in terms of
local space-time features and integrate such representations with SVM classi-
fication schemes for event recognition. They introduce a new video database
containing six human actions performed by 25 people in four different scenarios
and demonstrate promising results. Our method adopts local features to cap-
ture actions and behaviors and use this commonly acknowledged data set for
evaluation.
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In addition to low level structural features, for human action detection, se-
mantic features such as face and hands can also be utilized to effectively capture
human motion patterns. Most recently, Ke et al. [2] generalize the notion of
2D rectangle features used by Viola and Jones [14] to 3D spatio-temporal volu-
metric features. A real time event detector is constructed by learning a cascade
of filters based on volumetric features that efficiently scans video sequences in
space and time. We propose to use the combination of semantic and structural
spatio-temporal features as our basic visual atomic action representation.

The cornerstone of our algorithm, string matching, has been widely used in
bioinformatics applications, where the string is used to represent DNA genomes
as sequences of nucleotides, proteins as sequences of amino acids. Along with the
increasing popularity in bioinformatics and many others, a great deal of effort has
been devoted to string analysis in the past few years [15,16,17]. Such biologically
meaningful technique inspired us to develop the behavior analysis algorithm
using the string matching which we will describe in detail in the following section.

3 Proposed Algorithm

As mentioned in Section 2, there are many existing action and event recognition
algorithms. Some detection algorithms apply quite rigid constraints on temporal
continuation [18,2], while other methods ignore the temporal order constraints
and use bag-of-words [19]. A desirable approach should maintain the temporal or-
der of the action sequences, at the mean time allows for some degree of tolerance
on partial matches and insertions of irrelevant symbols. Such considerations mo-
tivate us to propose the action recognition algorithm based on string matching.
The thrust of our method is to map an action sequences to a string sequences.
Then many powerful string computational techniques can be employed to ana-
lyze the human behaviors. The most popular one is to compare the strings by
counting the common substrings they include: the more substrings in common,
the more similar they are. This idea leads to the longest common subsequence
problem (LCS) [20]: finding a longest sequence which is a subsequence of all
sequences. It is a classic computer science problem ( one example is the unix
utility diff ) and has many applications in bioinformatics [15].

An important aspect of LCS is that the substrings do not need to be con-
tiguous, only the order of the substrings is maintained, which enables the LCS
strike a good balance between the rigid temporal order constraint based meth-
ods and bag-of-words based methods. Besides, as explained in the following, the
LCS can be computed efficiently [20] with dynamic programming. It also can be
naturally put into the framework of kernel methods, which greatly improves its
generalization capability.

The main components of our approach consists of the three parts (as shown
in Fig.2): first, the atomic actions are extracted and mapped into symbols. Sym-
bols are concatenated sequentially into strings. Then string matching algorithm
is applied to find the LCS. A naive implementation of the longest common
subsequence algorithm will result in exponential computational complexity. For-
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Fig. 2. The main components of the proposed algorithm

tunately, there are fast algorithms which are based on dynamic programming
reducing the complexity greatly. Last, we use the LCS as the similarity measure
between two strings to induce a kernel function (called string kernel). Such string
kernel can represent quite complex behaviors, and in the mean time, it inherits
the good generalization of kernel methods.

3.1 Symbol Extraction

To reliably match the actions, we need to define an atomic action vocabulary,
on which the symbols in the strings are defined. There are a variety of ways to
extract the symbols. Roughly they can be categorized into two classes: semantic
model and learning based extraction(such as AdaBoost feature selection [2]). For
our application, human behavior analysis, we adopt the former as our focus of
attention and anchor points. We also developed a novel structural feature called
SIFT-LBP that can effectively represent action characteristics in the optical flow
field.

Focus of Attention. The first step of human behavior analysis is to find the
interest region of the person. A variety of methods exist to detect the person.
Based on our specific domain, we choose to detect the human faces using the face
detector [14]. Then we use the detected face as the anchor point to find the body
parts. The reason we choose the face detection is that it is fast, reliable and can
effectively find the person from cluttered environment. The detected face with
its movement also serves as atomic action symbols. Compared with the other
implicit focus-of-attention approaches [1,2,3], this method is more meaningful
and precise.

SIFT-LBP Descriptor. Once we find the person, we need a descriptor to
describe the actions. Many descriptors come directly from the interest point de-
tection algorithm, such as space-time interest point [13]. Some are inspired by the
Haar-feature used in face detection [14], such as volumetric features [2]. Space-
time interest points based on finding the space-time Harris corners, in practice
are quit effective to find the sparse features. However, in some circumstances,
they are too rare for action recognition, as observed by Dollar et al. [21,19]. In
addition, the claim that the corners detected are actually the ones we want for
action recognition is still questionable.

Our approach uses the optical flow as the primary feature, which is relatively
insensitive to appearance and illumination variations. Optical flow is a widely
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used features for the action recognition [2,1,12]. Here we use the sparse optical
flow [22] as our feature vectors. The real-time speed of optical flow is another
advantage for practical system.

Inspired by the ideas of the SIFT descriptor [21] and the Local Binary Pat-
terns(LBP) [23], we design a feature descriptor (called SIFT-LBP) for the optical
flow: we first partition the human body into m×n blocks (empirically we choose
2 × 3), and find the dominant optical flow orientation in each block. Then we
apply LBP to encode the position and the orientation information into a binary
number.

The LBP is an excellent measure of the spatial structure of image texture. It
was first introduced by Ojala et al. [23] for texture analysis. Approximately at
the same time, Zabih and Woodfill [24] also proposed a similar idea called census
transform. The definition of LBP is as follows: given a pixel at position (xc, yc),
LBP is a sequence of binary comparisons of intensities between the pixel and its
neighbors p = 0, · · · , N − 1, which is encoded into a binary number:

LPB(xc, yc) =
N−1∑

p=0

s(gp − gc)2p, (1)

where gc and gp are the intensities of pixel at (xc, yc) and its neighbors, and the
step function

s(x) =
{

1 if x ≥ 0
0 if x < 0 (2)

An example of the LBP is shown in Fig. 3. By definition, LBP is invariant
to affine changes in illumination and potentially to rotations, which makes it
robust.
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Binary code:

Fig. 3. An example of LBP algorithm

To make the LBP more suited for action detection and classification applica-
tion, we make the following changes. First, instead of comparing with the center
block, we compare with the mean value of all blocks, which addresses the prob-
lem that the LBP measure heavily relies on the intensity of center pixel. Second,
we encode not only the position information into the binary code, but also orien-
tation information by quantizing the angles. Such encoding method is a mixture
of the SIFT descriptor and the LBP. In practice, we find that the SIFT-LBP is
very robust against pose and illumination changes and its computational cost is
low.
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3.2 String Matching Using Dynamic Programming

Once we generate the strings from the actions, we need to find the LCS between
them. Given two strings s with length |s| and t with length |t|, the LCS algorithm
is to find a common substring with maximal length.

A brute-force approach to solving the LCS problem is to enumerate all sub-
strings of s then check each of them to see if it is a substring of s, at the mean
time keeping the longest one. There are 2|s| substrings in s, so the computational
complexity of this approach is of exponential order, which makes it computa-
tionally prohibitive even for sequences of modest length.

The LCS problem has an important property: optimal-substructure, which
allows it to be efficiently solved using dynamic programming [20], as shown in
Eq.( 3):

c(i, j) =

⎧
⎨

⎩

0 if i = 0||j = 0
c(i − 1, j − 1) + 1 if si = tj
max(c(i, j − 1), c(i − 1, j)) if si �= tj

(3)

where c(i, j) is a table size of |s| · |t|, keeping track of the longest substring found.
The dynamic programming can be implemented by filling the table bottom up.
A concrete example of string matching using dynamic programming is shown in
Table 1 where each entity represents the optimal solution to the sub-problems.
The final solution is marked in red and the right-bottom corner of the table is
the length of LCS.

Both the computational and storage complexity are |s| · |t|, much less than
previous exponential order. If we only need to find the length of the LCS, we can
further reduce the storage size to min(|s|, |t|). Currently, the fastest algorithm for
longest common subsequences runs in time O(|t| log |r|+f log log min(f, |s||t|/f))
[20]. Typically, the quadratic complexity algorithm is fast enough to match the
two action strings.

3.3 String Kernel Machines

There are a lot of variations in the action sequences, even performed by the same
person. To deal with the large variations, a large amount of data is needed to
train the system, which makes direct comparison between strings not effective
and computationally expensive. Kernel methods provide an effective alternative
to handle the variations and richness of the raw data [25,26].

The standard kernel methods require the input data vectors to be of the same
length. However the lengths of action strings can vary dramatically from one
action to another, which makes the standard kernel methods not feasible. To
deal with this type of data, kernel trick [25] has been used to avoid explicitly
computing the kernel function. Instead a similarity measure between each pair
of strings is computed using string matching. This similarity measure embeds
the finite string space to the infinite feature space through the kernel trick such
that

K(s, t) = LCS(s, t) (4)

where s and t are a pair of strings.
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Table 1. An example of string matching using dynamic programming. The table keeps
track of the optimal solutions of the subproblems. The final solution of LCS is marked
in red and the length of LCS is 6.

j 0 1 2 3 4 5 6 7 8 9
i tj e x h a u s t e d
0 si 0 0 0 0 0 0 0 0 0 0
1 e 0 1 1 1 1 1 1 1 1 1
2 x 0 1 2 2 2 2 2 2 2 2
3 c 0 1 2 2 2 2 2 2 2 2
4 u 0 1 2 2 2 3 3 3 3 3
5 s 0 1 2 2 2 3 4 4 4 4
6 e 0 1 2 2 2 3 4 4 5 5
7 d 0 1 2 2 2 3 4 4 5 6

The feature mapping (4) introduces bias by the length of the strings. We can
remove this effect by normalizing the feature vectors in the feature space with a
new embedding defined as φ̂(s) = φ(s)/‖φ(s)‖. So the new kernel is

K̂(s, t) =
K(s, t)√

K(s, s)K(t, t)
. (5)

Once we have the kernel function, we can use kernel machines to classify the
actions by training. Support Vector Machines [25] method is chosen for this
purpose. The support vectors condense the information from all the sequences
by removing the irrelevant ones. Another benefit is that the computational cost
can be substantially reduced if we select the features(strings) by thresholding
the weights of support vectors.

4 Experimental Results

The first set of experiments verify our algorithm’s capability to recognize actions
performed at different poses. We collected a database of 80 video sequences (194×
411 at 25 fps) performed by eight different persons, each performing three natural
actions including “turning head”, “wiping head”, “fidgeting hands”. There are
also eight confuser actions such as “making a phone call”. The pose variation

Table 2. Classification confusion matrix using our method. Trace = 400.01.

box clap wave walk jog run

box 50 16.67 0 0 0 0
clap 16.67 83.33 16.67 0 0 0
wave 33.33 0 66.67 0 0 0
walk 0 0 16.67 66.67 33.33 33.33
Jog 0 0 0 0 66.67 0
Run 0 0 0 33.33 0 66.67
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Fig. 4. Examples of video sequences. Note that the pose and appearance variations are
quite large.

includes 0◦, 30◦ and 45◦. Some sample image sequences are shown in Fig.4. Note
that the pose and appearance variations are quite large.

The first experiment is tested on the sequences of pose 0◦. For each sequence
we detect the faces and body parts. Then we apply the SIFT-LBP descriptors
as described in section 3 to find the corresponding symbols in each frame and
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Fig. 5. Confusion matrix of the pairwise comparison of actions using string matching
at pose 0◦. The brighter the entry is, the more similar the actions are.
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Fig. 6. P-same-P-different plot and the ROC for action comparison using string match-
ing at pose 0◦. Red is the different and blue is the same.

generate action string for each video sequence. Then we compare each pair of the
strings using dynamic programming based string matching. Fig. 5 plots the con-
fusion matrix of the action matching, where each cell is the normalized score of
string matching. The confusion matrix shows apparent diagonal block structure.
To verify this block effect, we plot a histogram showing the same v.s. different
w.r.t. the normalized string matching score (P-same-P-different plot) and the
corresponding ROC curve in Fig. 6. Finally we perform leave-one-out procedure
and the average classification accuracy is 100%.

To demonstrate the algorithm’s ability to handle pose variation, we conduct
the second experiment on actions performed at poses 0◦, 30◦, and 45◦. Following
the same procedure as above, we obtain a confusion matrix as shown in Fig. 7.
Again we can see a clear diagonal block structure in the confusion matrix. The
P-same-P-different plot and the ROC are shown in Fig. 8. Similarly we perform
leave-one-out procedure and the average classification accuracy is 98.611%.

We also tested our algorithm on the publicly available KTH human action
dataset [3] and achieved comparable performance to state-of-art, while the
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Fig. 7. Confusion matrix of the pairwise comparison of actions using string matching
at pose 0◦, 30◦, and 45◦. The brighter the entry is, the more similar the actions are.
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Fig. 8. P-same-P-different plot and the ROC for action comparison using string match-
ing at pose 0◦, 30◦, and 45◦. Red is the different and blue is the same.

computational complexity of our algorithm is much lower. Besides the database
is lack of pose variations and background changes, so our method is not fully
exploited. The confusion matrix is shown in Table 2. The trace of the confu-
sion matrix is used as one of the measures of classification performance, ranging
from 100 (random classification) to 600(perfect classification). The trace of our
algorithm is 400.01 which is better than Ke’s method [2] (377.8) and worse than
Schuldt’s method [3](430.3).

The time complexity of the algorithm is very modest. All the algorithms are
implemented in C++. The optical flow algorithm and SIFT-LBP run at speed of
frame-rate. The average string matching time is 0.12 millisecond on a PC with
Pentium M 2.13GHZ CPU.

5 Conclusions and Discussions

This paper presents an action analysis method based on robust string matching
using dynamic programming and kernel methods. The key contributions of this
paper are as follows:
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First, we present a new framework utilizing the powerful and flexible string
analysis techniques for action analysis. The action sequences or event sequences
are so dynamic and versatile that makes the traditional data types such as fixed
length vectors inadequate to handle. In contrast, the string representation is
more flexible and more expressive. More advanced data structure such as trees,
graphs can be applied similarly.

Second, we apply the dynamic programming to find the LCS between a pair of
strings, which gives a good indication about the similarity of actions sequences.
The LCS algorithm is quite flexible since it tolerates some degree of the repeti-
tion, missing or wrong symbols in the strings due to the imperfection of obser-
vations.

Third, we naturally integrate the string matching into the kernel method
framework using the similarity measure based on the LCS. So it inherits the
desirable generalization capability and efficiency from the kernel methods.

Last, we design a new symbol extraction method called SIFT-LBP. It com-
bines the ideas from SIFT descriptor and the LBP and is suitable for the action
recognition. To design descriptors manually or to find them automatically is a
disputable topic. On one hand, the manually designed descriptors are encoded
the human knowledge about the problem to attack, so they are more meaning-
ful, more concise and more informative. Besides, it requires no training, another
advantage. So in this sense, a good design is potentially better than the auto-
matically found ones. On the other hand, the automation of the feature selection
saves a lot of human effort and it also encodes the information from the training
data. In this paper, based on our scenario, we chose the former and obtained
satisfactory results. Of course, it is worthwhile to enclose this technique to our
framework.

Another advantage of our method is the speed and simplicity. We implemented
the algorithm in C++ and achieved frame-rate speed on ordinary PC. The initial
experimental results confirmed the robustness and efficiency of our methods.

There are many potential extensions of the framework. One example may be
a Google video [8] like application, where bag-of-features are used. The string
matching technique will bring the video search to event mining level if the order
information is properly utilized. Another one may be the generic object category
recognition. The ordinary feature vector is notoriously hard to represent the
heterogenous objects. In contrast, the string representation is much benign to
them. The context information can be naturally put into this framework.
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Duygulu, Pınar 271

Fleet, David J. 104
Fujimura, Kikuo 255

Gilbert, Andrew 166
Grest, Daniel 28
Guillou, Erwan 88
Guo, Yanlin 313

Horaud, Radu 196
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