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Based on the functional dependence of entropy on energy, and on Wien’s distribution for black-

body radiation, Max Planck obtained a formula for this radiation by an interpolation relation that

fitted the experimental measurements of thermal radiation at the Physikalisch Technishe

Reichanstalt (PTR) in Berlin in the late 19th century. Surprisingly, his purely phenomenological

result turned out to be not just an approximation, as would have been expected, but an exact
relation. To obtain a physical interpretation for his formula, Planck then turned to Boltzmann’s

1877 paper on the statistical interpretation of entropy, which led him to introduce the fundamental

concept of energy discreteness into physics. A novel aspect of our account that has been missed in

previous historical studies of Planck’s discovery is to show that Planck could have found his

phenomenological formula partially derived in Boltzmann’s paper in terms of a variational

parameter. But the dependence of this parameter on temperature is not contained in this paper, and

it was first derived by Planck. VC 2016 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4955146]

I. INTRODUCTION

One of the most interesting episodes in the history of sci-
ence was Max Planck’s introduction of the quantum hypoth-
esis, at the beginning of the 20th century. The emergence of
this revolutionary concept in physics is a fascinating story
that has been described previously,1–12 but important aspects
of this discovery are generally not found in the description of
Planck’s ideas in physics textbooks that discuss quantum
mechanics. In particular, most physics textbooks do not men-
tion how the concept of discreteness in energy, the revolu-
tionary concept introduced by Planck to describe the
spectrum of black-body radiation, originated in the first
place.8 From Planck’s articles and correspondence on his
theory of the spectrum of black-body radiation, it is clear
that he took this concept directly from Boltzmann, who in
his seminal 1877 paper on statistical mechanics discretized
energy as a purely mathematical device in order to be able to
count the possible configurations of a molecular gas in ther-
mal equilibrium.13 But this important connection between
Planck’s and Boltzmann’s work has not been mentioned
even in physics textbooks that emphasize a historical
approach.14 For example, in the description of Planck’s dis-
covery in his biography of Einstein, Abraham Pais concludes
that:15

“His [Planck’s] reasoning was mad, but his
madness has that divine quality that only the
greatest transitional figures can bring to science.”

This comment does not provide any more enlightenment on
the origin of the idea of quantization in physics than Richard
Feynman’s succinct statement in his well-known Lectures on
Physics, that:16

“…by fiddling around [Planck] found a simple
derivation [for his formula].”

Most accounts of Planck’s discovery in physics textbooks
are historically inaccurate, and Martin Klein’s early analysis
of Planck’s work3 debunked some myths contained in these
books. For example, one of the most common myths is that
Planck was responding to the problem in the classical theory

of black-body radiation known as the ultraviolet catastrophe;
this occurs when the equipartition theorem for a system in
thermal equilibrium is applied to the spectral distribution of
thermal radiation. But at the time, Planck appears to have
been unaware of this problem, which was named by
Ehrenfest several years after Planck’s discovery. Indeed, the
application of the equipartition theorem to black-body radia-
tion was made by Lord Rayleigh17 at about the same time
that Planck obtained his famous formula for the black-body
spectrum. There isn’t any evidence that Planck was aware of
Rayleigh’s result, which agreed with new experiments for
the long wavelength end of the spectrum observed at that
time. Klein concluded that:3

“it was probably a very good thing that Planck was
not constrained in his thinking by the tight
classical web which Rayleigh had woven.”

In Boltzmann’s 1877 paper, the mean energy of his fictitious
molecular ensemble with discrete energies in multiples of a
unit � is obtained in terms of an undetermined variational pa-
rameter, but he calculated the temperature dependence of
this parameter only in the limit relevant to classical mechan-
ics. It has remained unnoticed that his result corresponds to
Planck’s formula for the black-body radiation spectrum (see
Ref. 13, p. 181, and Appendix A).

In essence, Planck’s approach to the theory of black-body
radiation was based on the following steps. Taking advant-
age of Kirchhoff’s theorem that the black-body distribution
is a universal function independent of the nature of the
source of radiation, Planck’s first step was to obtain a rela-
tion for the energy distribution of this radiation in thermal
equilibrium with an ensemble of microscopic Hertzian oscil-
lators with variable frequency �. By applying Wien’s distri-
bution that fitted the high frequency end of this radiation,
and Maxwell’s equations for the electromagnetic field,
Planck obtained an expression for the mean energy of these
oscillators. The measurements were made by careful experi-
ments at the Physikalisch Technische Reichanstalt (PTR),
which was the center for infrared radiation studies in Berlin
at the end of the 19th century (see Fig. 1). After it was dis-
covered that Wien’s distribution did not fit new data at lower
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frequencies, Planck obtained a new distribution formula by
an interpolation based on his application of the relationship
between entropy and energy for a system in thermal equilib-
rium. Finally, to obtain a theoretical interpretation for his
new formula, Planck turned to the seminal 1877 paper of
Boltzmann, which formulates the relation between entropy
and statistics.13

In his paper, Boltzmann introduced a relation between the
entropy of a molecular gas and the number of microscopic
configurations, or complexions (as he called them), of the
molecules. He defined the state of thermal equilibrium to be
the maximum number of these configurations subject to the
constraint of a fixed number of molecules and total energy.
At first sight, it is surprising that Boltzmann’s ideas, based
on purely classical concepts applying to systems having con-
tinuous energy, could have served as the springboard for
Planck’s quantum hypothesis of discrete energy levels. But
to implement his statistical ideas, Boltzmann took for his ini-
tial example a fictitious model of a gas, whose molecules
had discrete energies in integer multiples of an energy ele-
ment of magnitude �. For Boltzmann, this discretization of
energy was purely a mathematical artifact that he introduced
for the purpose of counting the number of configurations of
the molecules. Subsequently, as would be expected, he took
the limit of continuous molecular energy for which � van-
ished. But when Planck applied Boltzmann’s discrete model
to his ensemble of Hertzian oscillators in thermal equilib-
rium with radiation, he did not take this continuum limit.
Instead, he set Boltzmann’s energy elements to a fixed value

� ¼ h�, where � is the frequency of his oscillators and h is a
new universal constant, now known as Planck’s constant,
that relates frequency and energy. It was very fortunate for
Planck that Boltzmann initially considered energy as the
only degree of freedom of the molecules in his ensemble
because that made possible Planck’s direct extension to an
ensemble of linear harmonic oscillators.18

Planck was aware that with his procedure he was violating
the tenets of continuum physics. In his December 19, 1900
paper, presented at a meeting of the German Physical
Society, he wrote that:19

“If E [the total energy] is considered to be a
continuous divisible quantity this distribution is
possible in infinitely many ways. We consider,
however—this is the most essential point of the
whole calculation—E to be composed of a well-
defined number of equal parts [of magnitude �]
and use thereto the constant of nature h ¼
6:55� 10�27 erg � sec [setting � ¼ h�].”

There were, however, inconsistencies in Planck’s introduc-
tion of discrete energy for his Hertzian oscillators because in
his derivation of the relationship between the black-body
energy spectrum and the mean energy of these oscillators,
Planck applied continuum mechanics and Maxwell’s equa-
tions for electromagnetism. For example, an obvious question
would have been to explain how Planck’s oscillators could be
restricted to discrete energies while changing energy by emit-
ting and absorbing electromagnetic waves in a continuous

Fig. 1. Apparatus of Lummer and Kurlbaum to measure the spectrum of black-body radiation. An electrical current heats the filament E located in a tube inside

the cylinder C to a fixed temperature T, giving rise to black-body radiation inside this cylinder. The spectrum of this radiation is observed by some radiation

exiting through the hole at one end along the axis of the cylinder.
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manner. This problem did not affect Boltzmann because he
could assume that initially his molecules transfer energy in
discrete units, but in the end, he took a continuum limit.

Many years later, Einstein commented that:20

“…all my attempts…to adapt the theoretical
foundations of physics to the edge failed
completely. It was as if the ground had been pulled
from under one, with no firm foundation to be seen
anywhere.”

In 1905, however, he resolved the conundrum by assuming
that electromagnetic radiation also consisted of discrete
energy quanta.21 But Planck did not show such concern, and
instead, for several years he attempted to incorporate his new
results within the realm of continuum classical physics.
Taking again another idea from Boltzmann’s 1877 paper,
Planck later considered the energy of the oscillator to be con-
tinuous, and � ¼ h� to be the magnitude of cells of equal
probability in the phase space of the oscillators. Otherwise,
the derivation of his formula proceeds in precisely the same
form as before. In 1906, and again as late as 1909, he pre-
sented his derivation in lectures that he gave during his visit
at Columbia University. But had Planck closely followed
Boltzmann’s statistical method, he could have realized ear-
lier that a continuum energy interpretation of his formulae
was not feasible. In a card to Ehrenfest in the spring of 1915,
Planck wrote, “I hate discontinuity of energy even more than
discontinuity of emission.”

The main purpose of this paper is to clarify the relationship
between Boltzmann’s and Planck’s work by providing a thor-
ough mathematical discussion that is often absent in the litera-
ture on this subject. In the following Secs. II–IV, Planck’s
work is discussed as described in some of his publications, his
autobiographical recollections,22 his Nobel speech,23 and in
some of his correspondence. Section II reviews Planck’s origi-
nal serendipitous derivation of his well-known formula for
black-body radiation, which he referred to as his “lucky
intuition.” Section III describes his application of
Boltzmann’s principles of statistical mechanics, and Sec. IV
describes some of Planck’s recollections on how he discov-
ered his fundamental radiation formula. The relationship
between Boltzmann’s work and Planck’s application of it is
given in Appendix A, which also contains some new mathe-
matical insights concerning this relation. Finally, Appendix B
discusses some of the controversies among historians of sci-
ence about Planck’s role in the introduction of the quantum.

II. PLANCK’S PHENOMENOLOGICAL

DERIVATION OF HIS BLACK-BODY FORMULA

An insightful description of how Planck obtained his fa-
mous formula for the spectrum of black-body radiation can
be found in his scientific autobiography.22 This account was
written many years after the occurrence of this event, and
may suffer from the usual lapses of memory and the absence
of original documents and correspondence. Planck’s own
papers and correspondence were destroyed when Berlin was
bombed in WWII. It appears, however, to be consistent with
Planck’s original publications. Therefore, here Planck will
speak for himself, while, for clarification, some of the mathe-
matical details will be filled in (keeping his original notation)
in a form close to his original articles.

Planck wrote:22

“While a host of outstanding physicists worked on
the problem of spectral distribution, both from the
experimental and the theoretical aspects every one of
them directed his efforts solely toward exhibiting the
dependence of the intensity of the radiation on the
temperature. On the other hand, I suspected that the
fundamental connection lies in the dependence of
entropy upon energy [my italics]. As the significance
of entropy had not yet come to be fully appreciated,
nobody paid any attention to the method adopted by
me, and I could work out my calculations completely
at my leisure, with absolute thoroughness, without
fear of interference or competition. Since for the
irreversibility of the exchange of energy between an
oscillator and the radiation activating it, the second
differential quotient of its entropy with respect to its
energy is of characteristic significance, I calculated
the value of this function on the assumption that
Wien’s law of the Spectral Energy Distribution is
valid—a law which was then in the focus of general
interest; I got the remarkable result that on this
assumption the reciprocal of that value, which I shall
call here R, is proportional to the energy.”

On theoretical grounds, Wien had proposed26 that the
spectral energy distribution for black-body radiation with
frequency � at temperature T had the scaling form

qð�; TÞ ¼ �3f ð�=TÞ; (1)

where f is a function of a single variable, the ratio of fre-
quency �, and temperature T. This form satisfies the Stefan-
Boltzmann relation that the total black-body energy is pro-
portional to the fourth power of the temperature T.
Originally, this dependence was found experimentally by
Josef Stefan, and later a theoretical derivation was provided
in 1884 by his former student Boltzmann.27 Boltzmann’s
method was succinct: applying Maxwell’s relation between
the energy per unit volume E, and the pressure p of isotropic
radiation, p ¼ E=3 leads to a relation for the entropy SR per
unit volume of this radiation

SR ¼
4

3

E

T
: (2)

Substituting for the temperature T in this relation the thermo-
dynamic condition

1

T
¼ dSR

dE
; (3)

and integrating the resulting differential equation yields
SR ¼ c0E3=4. Eliminating SR by applying again Eq. (2), one
obtains the relation E ¼ rT4, known as the Stefan-
Boltzmann law, where r ¼ ð3c0=4Þ4 is a universal constant.

According to Wien’s spectral distribution in Eq. (1), inte-
grating the spectrum over all frequencies and setting z ¼
�=T as the variable of integration, one recovers the Stefan-
Boltzmann relation

E ¼
ð1

0

qð�; TÞd� ¼ rT4; (4)

where r is now determined by
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r ¼
ð1

0

z3f ðzÞdz: (5)

Probably stimulated by earlier phenomenological work by
Paschen, Wien assumed for the function f ðzÞ the exponential
form

f zð Þ ¼ 8pa

c3
e�bz; (6)

where a and b are constants that could be obtained by fitting
his theoretical distribution of Eq. (1) to the black-body radia-
tion experiments. The constant a has the dimensions of
energy time and later it will be seen to correspond to
Planck’s constant h. For this form of f, according to Eq. (5),
r ¼ 48pa=b4c3.

Subsequently, in a series of five papers written between
1897 and 1899, Planck discussed the thermal equilibrium
between the radiation in a cavity and an ensemble of Hertzian
electromagnetic oscillators,28,29 based on Maxwell’s theory of
electromagnetism. His main result was a relation between the
spectral distribution qð�;TÞ and the mean energy Uð�;TÞ of
the oscillators

q �; Tð Þ ¼ 8p
c3
�2U �; Tð Þ: (7)

Combining this result with Wien’s relation, Eqs. (1) and (6),
implies that

Uð�; TÞ ¼ a�e�b�=T : (8)

In this expression, the constant a (which, like Wien’s corre-
sponding constant a) has the dimensions of energy times
time and turns out to be equal to Planck’s constant h. By fit-
ting the data on blackbody radiation obtained in the experi-
ments by Otto Lummer and Ernst Pringscheim30 on radiation
emitted from a small hole in a heated cavity (see Fig. 1),
Planck obtained h ¼ 6:88510�27 erg s, in remarkable corre-
spondence to the modern value h ¼ 6:62610�27 ergs, a trib-
ute to the accuracy of the black body radiation experiments
at that time. Neither Wien, Planck, nor anyone else seemed
to notice, however, until it was pointed out by Lord Rayleigh
several years later,17 that the Wien exponential law, Eq. (6),
implied the implausible result that as the temperature T
increases the magnitude of the spectral distribution at a fixed
frequency � approaches a constant value qð�;TÞ ¼ 8ph�3=c3,
and U¼ h�, independent of T.

Planck’s next step was to consider the dependence of the
entropy Sð�;UÞ of his oscillators on the energy U. Given the
relation between the energy U and the temperature T [of Eq.
(8)], he obtained this dependence from the thermodynamic
relation

1

T
¼ dS

dU
: (9)

Inverting Eq. (8) to obtain T as a function of U, and substitut-
ing the result in Eq. (9), gives a first-order differential equa-
tion for S:

dS

dU
¼ � 1

b�
ln

U

a�

� �
: (10)

Integrating this equation with the boundary condition that S
vanishes when U¼ 0 gives

S ¼ � U

b�
ln

U

a�

� �
� 1

� �
: (11)

In the last of a series of five papers by Planck on irreversible
radiation processes,29 this expression appears, without any
justification, as a definition for the entropy of his oscillators.
But as has been shown, it is clear that Planck obtained it in a
straightforward fashion from Wien’s relation of Eqs. (1) and
(6).31 Taking the second derivative of S with respect to U, he
found that its reciprocal depends linearly on U or

R ¼ d2S

dU2

� ��1

¼ �b�U: (12)

While Planck obtained this simple linear dependence of R on
U from Wien’s relation, he attached to it a special signifi-
cance claiming to have demonstrated that it was unique,
leading to a derivation of the scaling dependence of Uð�;TÞ
on � and T, Eq. (8). Integrating this equation gives

dS

dU
¼ 1

b�
ln

U

n �ð Þ

� �
; (13)

where nð�Þ is an undetermined function of �. Hence, the fact
that Wien’s relation indicates that nð�Þ depends linearly on �
was not justified.

In a paper presented to the Berlin Academy of Sciences on
May 18, 1899, Planck stated that:32

“I believe it must therefore be concluded that the
definition given for the entropy of radiation, and also
the Wien distribution law for the energy which goes
with it, is a necessary consequence of applying the
principle of entropy increase to the electromagnetic
theory of radiation, and that the limits of validity of
this law, should there be any, therefore coincide with
those of the second law of thermodynamics. Further
experimental test for this law naturally acquires all
the greater fundamental interest for this reason.”

Later on in his autobiography, Planck recalled that:22

“This relationship is so surprisingly simple that for a
while I considered it to possess universal validity,
and I endeavored to prove it theoretically. However,
this view soon proved to be untenable in the face of
later measurements. For although in the case of
small energies and correspondingly short waves
Wien’s Law continued to be confirmed in a
satisfactory manner, in the case of large values of the
energy and correspondingly long waves, appreciable
divergences were found, first by Lummer and
Pringsheim; and finally the measurements of H.
Rubens and F. Kurlbaum on infrared rays of
fluorspar and rock salt revealed a behaviour which,
though totally different, is again a simple one, in so
far as the function R is proportional not to the energy
but to the square of the energy for large values of the
energy and the wave-lengths.”

By early 1900, the experiments of Otto Lummer and Ernst
Pringscheim30 gave evidence of deviations from Wien’s
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formula at the longer observed wavelengths of order 10 lm,
and at temperature of about 1000 �C.33 Further data by
Heinrich Rubens and Felix Kurlbaum at a wavelength of
51 lm indicated that the black body radiation depends line-
arly on temperature.34 These experiments were made possi-
ble by a new detection technique developed by Heinrich
Rubens and his American collaborator Ernst F. N. Nichols,
which enhanced the low intensity longer wavelengths by res-
onant scattering from a crystal lattice.35 Planck was informed
of these new results by Rubens himself, who visited him
with his wife on a Sunday afternoon (Oct. 7, 1900), and he
began promptly to reconsider his arguments.

Even before the new data appeared, Lord Rayleigh derived
a linear dependence on temperature for the blackbody distri-
bution from the equipartition theorem, applied to classical
radiation emitted by charged one-dimensional oscillators in a
box in thermal equilibrium.17 To obtain this dependence on
temperature, Planck found that his expression for R of Eq.
(12) had to depend quadratically on U.28 Supposing that

Uð�; TÞ ¼ gT; (14)

where g is a constant (named a in Planck’s paper and corre-
sponding to k), then according to Eq. (9)

1

T
¼ dS

dU
¼ g

U
; (15)

and therefore

R ¼ d2S

dU2

� ��1

¼ �U2

g
: (16)

In Planck’s own words,22

“Thus, direct experiments established two simple
limits for the function R: for small energies, R is
proportional to the energy; for larger energy values
R is proportional to the square of the energy.
Obviously, just as every principle of spectra
energy distribution yields a certain value for R, so
also every formula for R leads to a definite law of
the distribution of energy. The problem was to find
such a formula for R which would result in the law
of the distribution of energy established by
measurement. Therefore, the most obvious step for
the general case was to make the values of R equal
to the sum of a term proportional to the first power
of the energy and another term proportional to the
second power of the energy, so that the first term
becomes decisive for small values of the energy
and the second term for large values. In this way a
new radiation formula was obtained, and I
submitted it for examination to the Berlin Physical
Society, at the meeting on October 19, 1900.”

By such phenomenological considerations, Planck gener-
alized his thermodynamic expression for the dependence of
the entropy on the oscillator energy to interpolate between
the short wavelength or Wien regime, and the long wave-
length or Rayleigh regime. Setting now

R ¼ d2S

dU2

� ��1

¼ � 1

g
U gb� þ Uð Þ; (17)

he obtained his previous linear dependence of R on U, Eq.
(12), for U � gb� and the quadratic dependence on U, Eq.
(16), for U � gb�. This simple interpolation formula for R
turned out, surprisingly, to be valid not only in these two
energy regimes, but to be an exact relation for all values of
U. Integrating this relation by applying the thermodynamic
relation between the absolute temperature and the derivative
of the entropy with respect to the energy [Eq. (9)], and
assuming the boundary condition U !1 when T !1,
one obtains

1

T
¼ 1

b�
ln 1þ gb�=Uð Þ; (18)

which yields the dependence on temperature T and frequency
� of the mean oscillator energy

U �;Tð Þ ¼ gb�

exp b�=Tð Þ � 1
: (19)

Finally, to recover the relation for Uð�; TÞ in the Wien limit
when b� � T, Planck obtained a relation for the new con-
stant g:

g ¼ h

b
: (20)

Since b ¼ h=k, where k is Boltzmann constant, g ¼ k in
accordance with the equipartition theorem for a one-
dimensional harmonic oscillator. Substituting this expres-
sion into Eq. (7) for his relation between the spectral
distribution qð�; TÞ and the mean oscillator energy Uð�; TÞ,
Planck then obtained his blackbody formula which he wrote
as a function of the wavelength k measured in the experi-
ments28 as

q k; Tð Þ ¼ Ck�5

exp bc=kTð Þ � 1
; (21)

where C ¼ 8phc; k ¼ c=�, and c is the velocity of light. In
the limit bc=k� T, Planck recovered his earlier result for
the Wien spectrum, Eq. (6), while for bc=k� T, he obtained
the linear dependence of q on T, in accordance with the new
experimental results at the PTR. It should be pointed out that
it is completely unexpected that by an interpolation proce-
dure to fit experimental data Planck obtained a formula for
the spectral distribution of black body radiation that turned
out to be exact for all temperatures and wavelengths. His
procedure was sensible as a phenomenological data fitting
approach, but it is purely accidental that he succeeded in this
way to obtain the exact formula for black-body radiation.
After all, he did not have any arguments to exclude, for
example, cubic or higher powers of U in his expansion of R
in powers of U [Eq. (17)].

After Rubens checked the new radiation formula against
his experiments, Planck described his reaction:22

“The very next morning I received a visit from my
colleague Rubens. He came to tell me that after the
conclusion of the meeting, he had that very night
checked my formula against the results of his
measurements and found a satisfactory concordance
at every point …Later measurements too confirmed
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my radiation formula again and again—the finer the
methods of measurement used, the more accurate
the formula was found to be. …In this way a new
radiation formula was obtained, and I submitted it
for examination to the Berlin Physical Society, at
the meeting of October 19, 1900.”

Planck, however, did not refer to Rayleigh’s result, whose
work was apparently motivated by the unphysical depend-
ence of Wien’s formula that predicted the spectral energy
qðk; TÞ saturates when kT � hc=k. To this Rayleigh
remarked,17

“Nevertheless, the [Wien’s] law seems rather
difficult of acceptance, especially the implication
that as the temperature is raised, the radiation of
given wavelength approaches a limit…The
question is one to be settled by experiment; but in
the meantime I venture to suggest a modification
of the Wien distribution, which appears to me
more probable apriori. Speculations upon this
subject are hampered by the difficulties which
attend the Boltzmann-Maxwell doctrine of the
partition of energy [my italics]. According to this
doctrine every mode should be alike favoured; and
although for some reason not yet explained the
doctrine fails in general, it seems plausible that it
applies for the graver [longer wavelengths]
modes.”

III. PLANCK’S APPLICATION OF BOLTZMANN’S

RELATION BETWEEN ENTROPY AND

PROBABILITY IN STATISTICAL MECHANICS

This section reviews the critical phase, when in order to
find the physical significance for his purely phenomenologi-
cal formula for black-body radiation of Eq. (21), Planck
turned to Boltzmann’s 1877 seminal paper on the founda-
tions of statistical mechanics for enlightenment. Later, as
Planck described it in his autobiography,22

“But even if the absolute precise validity of the
radiation formula is taken for granted, so long as it
had merely the standing of a law disclosed by
lucky intuition, it could not be expected to possess
more than a formal significance. For this reason,
on the very day when I formulated this law, I
began to devote myself to the task of investing it
with a true physical meaning. This quest, as a
matter of course, led me to study the interrelation
of entropy and probability—in other words to
pursue the line of thought inaugurated by
Boltzmann [my italics].”

In his Nobel speech,23 Planck added the remark,

“After a few weeks of the most strenous work of
my life, the darkness lifted and an unexpected
vista began to appear.”

and continued,

“Since the entropy S is an additive magnitude, but
the probability W is a multiplicative one, I simply
postulated that S ¼ k log W, where k is a universal
constant; and I investigated whether the formula

for W, which is obtained when S is replaced by its
value corresponding to the above radiation law
could be interpreted as a measure of probability.”

By integrating Eq. (18), with the boundary condition that the
entropy S vanishes when U¼ 0, Planck obtained

S ¼ k½ð1þ U=h�Þlnð1þ U=h�Þ � ðU=h�ÞlnðU=h�Þ�;
(22)

where k ¼ h=b is Boltzmann’s constant. This form of the de-
pendence of S on U and � satisfies the Wien’s scaling rela-
tion [Eq. (1)], indicating that S depends only on the ratio
U=�.

Having found a phenomenological expression for the en-
tropy S as a function of the mean energy U, Planck consid-
ered the possibility that the function W ¼ expðS=kÞ could be
interpretated as a measure of the probability for the configu-
ration of his Hertzian oscillators, corresponding to that of
molecular velocities in Boltzmann’s 1877 formulation of sta-
tistical mechanics.13 In his Nobel speech,23 Planck
remarked,

“As a result, I found that this was actually possible,
and that in this connection k represents the so-called
absolute gas constant, referred not to gram mole-
cules or mols, but to the real molecules. Now for
the magnitude W, I found that in order to interpret it
as a probability, it was necessary to introduce a uni-
versal constant, which I called h. Since it had the
dimension of action ½energy� time�, I gave it the
name elementary quantum of action. Thus the na-
ture of entropy as a measure of probability, in the
sense indicated by Boltzmann, was established in
the domain of radiation, too.”

Further evidence for Planck’s train of thought can be
found in one of the few surviving letters from that period,
which he wrote to Otto Lummer on 26 October 1900,24

“If the prospect should exist at all of a theoretical
derivation of the radiation law, which I naturally
assumed, then in my opinion, this can be the case
only if it is possible to derive the expression for the
probability of a radiant state, and this, you see, is
given by the entropy. Probability presumes disorder,
and in the theory I have developed, the disorder
occurs in the irregularity with which the phase of the
oscillations changes even in the most homogeneous
light. A resonator, which corresponds to a
monochromatic radiation, in resonant oscillations
will likewise show irregular changes of its phase
[and also of its instantaneous energy, which was
more important for Planck’s subsequent derivation],
and on this the concept and magnitude of its entropy
are based. According to my [blackbody radiation]
formula communicated on 19 October to the
German Academy] the entropy of the resonator
should become

S ¼ a ln½ðbþ UÞbþU=UU�; (23)

and this form very much recalls expression occur-
ring in the probability calculus.”
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The equation that Planck wrote for the entropy S in this letter
corresponds to Eq. (22) for b ¼ h�, apart from an additive
constant ab ln b, where ab ¼ k. Planck continued,24

“After all, in the thermodynamic of gases, too, the
entropy S is the log of a probability magnitude,
and Boltzmann has already stressed the close
relationship of the function vv which enters the
theory of combinatorics, with the dynamic
entropy. I believe, therefore, that the prospect
would certainly exist of arriving at my formula by
a theoretical route which would also give us the
physical significance of the constants C and c.”

To illustrate his statistical principles for thermal equilib-
rium, Boltzmann had considered a gas of molecules and in
order to count the number of configurations or complexions,
as he called them, he discretized the energy of the molecules
in integral multiples of a unit or energy element �. Then each
configuration is specified by a set of integers giving the num-
ber of energy elements of each molecule subject to the con-
straint that the mean energy U per molecule satisfies the
relation U ¼ ðP=NÞ�, where P is an integer and N is the total
number of molecules. It is fairly plausible, as indicated in his
letter to Lummer, that Planck started with his empirically suc-
cessful relation for the entropy S of the oscillators of Eq. (22).
Then, working backwards, he proceeded to obtain the quantity
W ¼ expðS=kÞ and associated it with the total number of con-
figurations of his oscillators, in analogy with Boltzmann’s
model for a gas of molecules.2 In this case, replacing the ratio
U=h� that appears in Eq. (22) for S by P/N, Planck would
have obtained the relation

W ¼ N þ Pð Þ NþPð Þ

NNPP
; (24)

which is Stirling’s approximation to the total number of
complexions given in Boltzmann’s paper.

In two articles19,36 that he presented to the German
Physical Society, the first one given on Dec. 14, 1900,
Planck now derived his entropy formula by starting with Eq.
(24) for the total number W of equally probable complexions
of his oscillators. He then obtained the entropy S from the
relation S ¼ k log W by setting P=N ¼ U=h�, which yields
Eq. (22). In this presentation, Planck introduced for the first
time the constant k ¼ h=b, and pointed out that it is universal
and applies to all thermodynamic systems including
Boltzmann’s model for a gas of molecules. In this case, k
¼ R0=N0 where R0 is the gas constant and N0 is Avogadro’s
number. Planck also argued that for each frequency �, there
would be corresponding values of N� and P� such that
P�=N� ¼ U�=h� and that the total number of configurations
W (which is the product of all W�) should be maximized for
a fixed total energy, but he did not carry out such a
calculation.

IV. PLANCK’S 1931 RECOLLECTIONS

In Sec. III, we have made a plausible reconstruction how
Planck obtained a theoretical derivation of his black-body
formula based on Boltzmann’s development of statistical
mechanics in 1877. The idea of introducing discrete energy
elements of magnitude � originated with Boltzmann, who
applied it as a mathematical device to count configurations

for a gas of molecules. He subsequently reinstated the classi-
cal energy continuum by taking the limit � ¼ 0. Planck fol-
lowed Boltzmann’s approach by assigning integral multiples
of these discrete energy elements to his oscillators of fre-
quency �, but then departed from him in a fundamental way
by fixing � to have a constant value, � ¼ h�, where h is a
new universal constant, instead of letting � become vanish-
ingly small as demanded by classical physics. Why Planck
did not take this latter step (�! 0) is obvious: the assump-
tion of a discrete energy element of magnitude h� gave him
precisely the result he was searching for to justify his phe-
nomenological black-body formula. But as would be
expected, he did not—and could not—justify such discrete-
ness on a priori grounds. It appears that in the short time
before Planck submitted his paper to the German Physical
Society, he could not have been aware of the broader physi-
cal implications of his unprecedented ansatz because he did
not offer any comments indicating that he was departing
from the canons of classical physics. Planck turned to
Boltzmann’s approach rather late in his research program,
and therefore it seems very likely that in 1900 he had not yet
fully mastered the foundation of Boltzmann’s statistical
mechanics.

In this connection, it is interesting to examine Planck’s
own account of his discovery some 31 years later. In
response to a request from the American physicist Robert
Williams Wood, Planck described “the considerations which
led him to propose the hypothesis of energy quanta” in a let-
ter he wrote to him on October 7, 1931:25

“Briefly summarized, what I did can be described as
simply an act of desperation. By nature I am
peacefully inclined and reject all doubtful
adventures. But by then I had been wrestling
unsuccessfully for six years with the problem of the
equilibrium between radiation and matter and I
knew that the problem was of fundamental
importance to physics; I also knew the formula that
expresses the energy distribution in the normal
spectrum. A theoretical interpretation therefore had
to be found at any cost, no matter how high. It was
clear to me that classical physics could offer no
solution to this problem and would have meant that
all energy would eventually transfer from matter
into radiation [my italics]. In order to prevent this, a
new constant is required to assure that energy does
not disintegrate. But the only way to recognize how
this can be done is to start from a definite point
of view. This approach was open to me by
maintaining the two laws of thermodynamics. The
two laws, it seems to me, must be upheld under all
circumstances. For the rest, I was ready to sacrifice
every one of my previous convictions about physical
laws. Boltzmann had explained how thermodynamic
equilibrium is established by means of statistical
equilibrium, and if such an approach is applied to
the equilibrium between matter and radiation, one
finds that the continuous loss of energy into
radiation can be prevented by assuming that energy
is forced at the outset to remain together in certain
quanta. This was purely a formal assumption and I
really did not give it much thought except that no
matter what the cost, I must bring about a positive
result.”

715 Am. J. Phys., Vol. 84, No. 9, September 2016 Michael Nauenberg 715



The statements in this letter agree with the description that
can be gleaned from the papers and earlier correspondence
of Planck, but there are also some oddities in this account.
Contrary to Planck’s remark that “classical physics could
offer no solution to this problem…” he continued to hope,
for about a decade after his first application of Boltzmann’s
discrete statistical approach, that his quantum of action could
somehow be justified on purely classical grounds. As he
stated in his autobiography,22

“While the significance of the quantum of action
for the interrelation between entropy and
probability was thus conclusively established, the
part played by this new constant in the uniformly
regular occurrence of physical processes still
remained an open question. I therefore tried
immediately to weld the elementary quantum of
action h somehow into the framework of classical
theory. But in the face of all such attempts, this
constant showed itself to be obdurate…”

More likely, originally discreteness in energy for Planck
was a “purely formal assumption” that Boltzmann had intro-
duced in 1877 to which Planck “really did not give much
thought” because it brought about “a positive result,”
namely, a theoretical derivation of his black-body formula.
Previously, this was obtained from phenomenological con-
siderations by an adaptation of Boltzmann’s principles of
statistical mechanics to a model of oscillating charges in
thermal equilibrium with electromagnetic (black-body) radi-
ation. Planck’s good fortune was that these principles could
be applied straightforwardly, not only to the systems in ther-
modynamic equilibrium, which satisfy the laws of classical
continuum physics, but also to the systems that are described
by discrete energy levels such as Hertzian oscillators in equi-
librium with thermal radiation. Planck had been correct “to
uphold the two laws of thermodynamics under all circum-
stances” because, as it turned out, only these two laws were
not modified by the advent of the new theory of quantum
mechanics.

V. SUMMARY AND CONCLUSIONS

The role of Planck in the introduction of the quantum hy-
pothesis has been described in numerous articles in the
past,1–12 and it turns out to be quite controversial (see
Appendix B). The account presented here has particularly
benefited from the articles by Rosenfeld,1,2 Klein,3 and
Gearhart.4 In summary, it has been shown here that:

(a) Assuming that the energy distribution for black body
radiation is due to an ensemble of Hertzian oscillators
in equilibrium with this radiation at a fixed temperature
T, Planck calculated the relation of this distribution to
the mean energy of these oscillators, Eq. (7), by apply-
ing Maxwell’s theory of electromagnetism.

(b) On the basis of Wien’s displacement formula for this
distribution, Planck then obtained an expression for the
entropy of his Hertzian oscillators of Eq. (11).

(c) Motivated by new experiments at longer wavelengths
that disagreed with Wien’s formula, Planck developed
a phenomenological interpolation relation, Eq. (22), for
his entropy relation that agreed very well with the new
and the older experiments.

(d) Finally, Planck took his “most essential step,” namely,
to obtain a theoretical foundation for his new and suc-
cessful entropy and radiation formula. For this purpose,
Planck turned to Boltzmann’s 1877 paper on the con-
nection of entropy S with the maximum number of
complexions WB of a system in thermal equilibrium
(S / ln WB). In particular, this paper contained an
expression for the total number of complexions W for
an ensemble of one-dimensional molecules having
multiples of a discrete energy element �. Of course,
since energy in classical mechanics is continuous, at
the end of his calculation Boltzmann took the limit
�! 0, corresponding to the result of the equipartition
theorem, first published for the distribution of black
body radiation by Lord Rayleigh.17 Planck, however,
realized that by setting � ¼ h�, he recovered his suc-
cessful phenomenological relation for the entropy that
led to his famous formula for the spectrum of black
body radiation.

Klein3 and subsequently other historians of science have
questioned why Planck departed from Boltzmann’s deriva-
tion by taking the total number of complexions W instead of
its maximum number WB. The explanation is rather straight-
forward: Planck had obtained a phenomenological formula
for the entropy as the logarithm of a function of the variable
U=�, with � ¼ h� [Eq. (22)]. Boltzmann’s paper, however,
did not contain a corresponding expression for the entropy
proportional to lnWB as a function of this variable, except in
the limit �! 0 (corresponding to classical mechanics). But
his paper contained an expression for the total number of
complexion W in terms of the number N of molecules, and
an integer P ¼ E=�, where E is the total energy of the sys-
tem. Substituting P=N ¼ U=h� in the Stirling approximation
for W leads to an expression for lnðWÞ equal to N times
Planck’s phenomenological expression for the entropy S
(apart from the constant of proportionality k). It still
remained to be shown that ln W ¼ ln WB in the Stirling
approximation, which was not carried out in Boltzmann’s pa-
per (see Appendix A). In one of the most recent articles on
this subject,4 Clayton Gearhart posed another question simi-
lar to that of other historians of science: “Why should
Planck’s complexions, which represent distributions of
energy elements, be equally probable?” The answer is that
the assumption of equally probable complexions is at the
foundation of Boltzmann’s statistical method, and naturally
Planck adopted it because it solved his problem. But for
Planck’s problem, this assumption was not justified because
thermal equilibrium is due to the interaction of Planck’s
oscillators with radiation, which Planck assumed to follow
Maxwell’s continuous (not discrete) laws. A detailed discus-
sion of the relation between Boltzmann’s and Planck’s defi-
nition and calculation of entropy is given in Appendix A. In
particular, it is shown that in the Stirling approximation,
ln W ¼ ln WB, an essential relation that Planck could have
easily demonstrated, but was not given in any of his papers.

The occurrence of energy discreteness caused a great deal
of concern to Planck’s contemporaries, most notably
Einstein, Lorentz, and Ehrenfest, and it took several years
before the significance of Planck’s quantum of action began
to emerge. The acceptance and further development of
Planck’s hypothesis is a very interesting and important sub-
ject in its own right, but it will not be pursued here.
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APPENDIX A: THE RELATION BETWEEN

BOLTZMANN’S AND PLANCK’S TREATMENT OF

ENTROPY

An interesting question that has been raised by several his-
torians of science is to explain why Planck departed from the
method introduced by Boltzmann in his 1877 paper on the
relation between the second law of thermodynamics and the
theory of probability.13 In this paper, Boltzmann considered
the state of thermal equilibrium of an ensemble of molecules
having discrete energies that are multiples of an energy unit
with finite magnitude �. Therefore, it would appear that by
setting � ¼ h�, Planck could just have taken over
Boltzmann’s result for the mean energy U of these mole-
cules, and shown that it corresponded to the result he had
obtained previously from his purely phenomenological con-
siderations. It will be shown, however, that the reason why
he could not have taken this apparently straightforward step
is that Boltzmann had obtained the mean energy U of his
model for molecules with discrete energies in term of a pa-
rameter x, but he did not determine the dependence of this
parameter on temperature except in the classical limit when
�! 0. He found in this case that U¼ kT, corresponding to
the result of the classical equipartition theorem.37

Boltzmann related the entropy S to the logarithm of the
maximum number of configurations WB of n molecules of
fixed total energy k�, where k is an integer and the energy of
each molecule is a multiple of a fixed value �. In Sec. I of his
paper, he gave an expression for WB associated with the dis-
tribution of k discrete energy elements of magnitude � among
n molecules such that a number nj of molecules each have
energy j�, where j ¼ 0; 1; 2;…; p, and p is an integer. Then

WB ¼
n!Q
nj!
; (A1)

and in terms of these variables, Boltzmann’s fundamental
principles of statistical mechanics can be stated as follows:

Equally probable configurations (Boltzmann called them
complexions) are characterized by the set integers nj that are
subject to the constraints that the total number of molecules
n and the total energy E ¼ k� are fixed, where

n ¼
Xp

j¼0

nj; (A2)

and

k ¼
Xp

j¼0

jnj; (A3)

where p � k because for j ¼ k, nj¼ 0 or 1, and for j > k,
nj¼ 0.38 In this case, the state of thermal equilibrium is
obtained by the maximum value of ln WB, subject to the con-
straints that dn ¼ 0 and dk ¼ 0. Introducing two undeter-
mined constants, a and c (named h and k by Boltzmann), this
condition is satisfied by the requirement that

d ln WB þ adnþ cdk ¼ 0: (A4)

In the Stirling approximation for the factorials that appear in
the expression for WB in Eq. (A1), this expression becomes

Xp

j¼0

dnj½lnðnjÞ þ aþ cj� ¼ 0; (A5)

and setting n0 ¼ expð�aÞ and x ¼ expð�cÞ, it is satisfied by

nj ¼ n0xj: (A6)

Substituting Eq. (A6) in Eqs. (A2) and (A3), and taking
the limit p!1,39 we have

nj

n
¼ 1� xð Þxj; (A7)

for the fraction of molecules that have energy j�, and x is
determined by the ratio n=k, or

x ¼ 1

1þ n=k
: (A8)

This result was given explicitly by Boltzmann (Ref. 13,
last line of p. 180) and leads to an expression for the mean
energy U ¼ k�=n ¼ �x=ð1� xÞ of the molecules in his en-
semble as a function of x.40 Setting x ¼ expð�b�=TÞ and
� ¼ h�, this relation corresponds to Planck’s formula of Eq.
(19) for the mean energy of oscillators of frequency � at the
absolute temperature T. But in his paper, Boltzmann did not
calculate the dependence of x on T. This dependence is
obtained from Boltzmann’s identification of ln WB with the
entropy S of the system, by applying the second law of ther-
modynamics relation 1=T ¼ dS=dE. He did apply it only in
the limit of vanishing � appropriate to classical mechanics.

Now we carry out this straightforward calculation for fi-
nite �. It would have been easy for Planck to do it too, but
there isn’t any evidence that he did it. In the Stirling approxi-
mation, the maximum value of lnWB as a function of
Boltzmann’s parameter x is

ln WB ¼ �n
x

1� x
ln xð Þ þ ln 1� xð Þ

� �
: (A9)

Substituting for x its dependence on n=k, we obtain

ln WB ¼ ðnþ kÞlnðnþ kÞ � n ln ðnÞ � k ln k; (A10)

which shows that WB is the Stirling approximation for the
total number of all possible complexions W of Boltzmann’s
ensemble (either of molecules or Planck’s oscillators), where

W ¼ nþ k� 1ð Þ!
n� 1ð Þ!k!

: (A11)

Hence, the only puzzle is why Planck did not carry out this
simple calculation that is missing in Boltzmann’s paper.
Setting U equal to the mean energy/molecule, U ¼ k�=n, we
have, according to Eq. (A8)

x ¼ 1

1þ �=U
; (A12)
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and substituting this expression into Eq. (A9), one obtains an
explicit dependence of lnWB on U

ln WB ¼ n 1þ U

�

� �
ln 1þ U

�

� �
� U

�
ln

U

�

� �� �
: (A13)

Apart from the constant of proportionality k, this expression
with � ¼ h� is equal to n times Planck’s phenomenological
expression, Eq. (22), for the entropy per oscillator S ¼
kð ln WPÞ of an ensemble of linear oscillators of frequency �.

Finally, according to the second law of thermodynamics,
the absolute temperature T for thermal equilibrium is given by

1

T
¼ 1

n

dS

dU
¼ k

�
ln 1þ �

U

� �
; (A14)

which was calculated by Planck for � ¼ h� in Eqs.
(18)–(20). Hence

U ¼ �

exp �=kTð Þ � 1
; (A15)

and according to Eqs. (A12) and (A15), the dependence of
Boltzmann’s parameter x on the temperature T is

x ¼ expð��=kTÞ: (A16)

Substituting this expression into Eqs. (A6) and (A7) yields

nj ¼ n½1� expð��=kTÞ� expð�j�=kTÞ: (A17)

But in the first section of his paper, Boltzmann did not calcu-
late this relation for nj except in the limit that �� U, and
obtained

nj 	
n�

U
exp � j�

U

� �
; (A18)

without giving the equipartition result U¼ kT of classical
thermodynamics (see Ref. 13, p. 186, and Ref. 38, p. 49).

Setting j� ¼ E; � ¼ dE, and nj=n ¼ dp, then p(E) is the
Maxwell-Boltzmann classical probability distribution for
Boltzmann’s molecular ensemble having energy in the inter-
val between E and Eþ dE

dp

dE
¼ 1

U
exp �E=Uð Þ; (A19)

with U ¼
Ð1

0
dE pðEÞE, the mean energy/molecule.41

Boltzmann pointed out, however, that this relation, with
E ¼ ð1=2Þmv2, where m is the mass and v is the velocity of a
molecule, is valid only in two spatial dimensions.42

APPENDIX B: HISTORIAN’S DISAGREEMENT ON

PLANCK’S ROLE IN THE INTRODUCTION OF THE

QUANTUM

Since the publication of Kuhn’s 1978 book, Black-Body
Theory and the Quantum Discontinuity,5 the nature of
Planck’s discovery has become the subject of controversies
among historians of science. Recently, some of them have
claimed that contrary to what physicists have always been
led to believe, Planck did not introduce the concept of energy
discreteness or quantization into physics.5,7 This surprising

claim originated with the appearance of Kuhn’s book and in
his later article5 on this subject where he disputed the con-
ventional view held by most physicists and earlier historians
of science. For example, in his book, Kuhn concludes that
(Ref. 5, p. 126)

“With a single misleading exception, nothing in
Planck’s published papers, known manuscripts, or
autobiographical fragments suggest that the idea of
restricting resonator energies to a discrete set of
values had even occurred to him as a possibility
until others forced it upon him during 1906 and the
years following.”

Although some historians of science have criticized Kuhn’s
interpretation of Planck’s discovery, others have reached
similar conclusions. While Kuhn agreed with many details in
the traditional account of Planck’s work, he argued that cru-
cial aspects had been profoundly misinterpreted, and con-
cluded that energy quantization was actually first introduced
by Einstein in 1906.

Kuhn’s book was reviewed by the historians of science
Klein,43 Peter Galison,44 Allan Needell,45 and by the physi-
cist Res Jost,6 who were all critical of Kuhn’s thesis, but con-
clusions similar to Kuhn’s were reached by Oliver Darrigol,7

who even quoted Planck for “irrefutable evidence” that he
had not meant to introduce energy discontinuities into
physics, and later Greeenberg et al. also reached such con-
clusions.9 In 1984, Kuhn responded to some of his critics in
an article defending his interpretation of Planck’s discovery
of the quantum hypotheses by stating that5

“Part of the appeal of the standard account of
Planck’s discovery is, I think, the closeness with
which it matches a still cherished view of the
nature of science and its developments. Although I
appreciate both the charms and the functions of
that view, understanding requires that it be
recognized as myth.”

Planck was aware that with his procedure he was violating
the tenets of continuum physics. In his Dec 19, 1900 paper,
presented at a meeting of the German Physical Society, he
wrote:19

“If E [the total energy] is considered to be a
continuous divisible quantity this distribution is
possible in infinitely many ways. We consider,
however—this is the most essential point of the
whole calculation—E to be composed of a well-
defined number of equal parts [of magnitude �]
and use thereto the constant of nature h ¼
6:55� 10�27 erg � sec [setting � ¼ h��.”

In view of this single remark, it is evident that Kuhn’s state-
ment quoted earlier that the “idea of restricting resonator
energies to a discrete set of values had not even occurred to
him [Planck]” is clearly incorrect. But as “irrefutable
evidence” that Planck did not have energy discreetness in
mind, Darrigol has argued that Planck had remarked after-
wards that19

“If the ratio [E=�] thus calculated is not an integer,
we take for P an integer in the neighbourhood of
this ratio.”
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The assumption that E=� could not be an integer had to be
made by Boltzmann who considered that the magnitude �
becomes vanishingly small in the limit that the energy is a
continuous quantity, but not by Planck who considered � as a
fixed and finite quantity equal to h�. Moreover, Darrigol’s
comment is inconsistent with Planck’s previous statement
that E is “composed of a well defined number of equal
parts.” Recently, Darrigol summarized this controversy in an
article titled, The Historians’ Disagreement over the
Meaning of Planck’s Quantum.7

It appears that the disagreement among historians of sci-
ence and physicists is based on a different understanding of
the relation between Boltzmann’s seminal 1877 article estab-
lishing the relation between entropy and statistical physics,
and Planck’s application of this work to obtain a physical ba-
sis his black-body formula, which he had obtained previously
by an empirical fit to experimental data based on classical
thermodynamics and electrodynamics. Unfortunately, many
of Planck’s documents and correspondence that could have
illuminated the development and early reception of his ideas
were destroyed during the bombing of Berlin in 1944. In this
connection, it is worthwhile to recall Einstein’s observation
that “If you want to find out anything from the theoretical
physicists about the methods they use, I advise you to stick
closely to one principle: do not listen to their words, fix your
attention on their deeds.”46
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