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The properties of foams and lattices

BY M. F. ASHBY*

Engineering Department, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, UK

Man and nature both exploit the remarkable properties of cellular solids, by which we
mean foams, meshes and microlattices. To the non-scientist, their image is that of soft,
compliant, things: cushions, packaging and padding. To the food scientist they are
familiar as bread, cake and desserts of the best kind: meringue, mousse and sponge. To
those who study nature they are the structural materials of their subject: wood, coral,
cancellous bone. And to the engineer they are of vast importance in building lightweight
structures, for energy management, for thermal insulation, filtration and much more.

When a solid is converted into a material with a foam-like structure, the single-valued
properties of the solid are extended. By properties we mean stiffness, strength, thermal
conductivity and diffusivity, electrical resistivity and so forth. And the extension is
vast—the properties can be changed by a factor of 1000 or more. Perhaps the most
important concept in analysing the mechanical behaviour is that of the distinction
between a stretch- and a bending-dominated structure. The first is exceptionally stiff and
strong for a given mass; the second is compliant and, although not strong, it absorbs
energy well when compressed. This paper summarizes a little of the way in which the
mechanical properties of cellular solids are analysed and illustrates the range of
properties offered by alternative configurations.

Keywords: foams; lattice structures; mechanical properties; modelling

1. Introduction

Cellular solids—ceramics, polymers, metals—have properties that depend on
both topology and material. Of the three classes, polymer foams are the most
widely investigated and it is from these studies that much of the current
understanding derives (Gibson & Ashby 1997). Recent advances in techniques
for foaming metals and ceramics have led to their intense study, extending the
understanding (Ashby et al. 2000; Colombo & Scheffler 2005). Their rapidly
growing importance as filters, catalyst carriers, membranes and scaffolds for cell
growth has stimulated much recent work.

The underlying principles that influence cellular properties are common to all
three classes. Three factors dominate (figure 1):

(i) the properties of the solid of which the foam is made;
(ii) the topology (connectivity) and shape of the cell edges and faces; and
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(iii) the relative density, ~r=rs, of the foam, where ~r is the density of the foam
and rs that of the solid of which it is made.

This paper summarizes these principles.

2. Cellular or ‘lattice’ materials

A lattice is a connected network of struts. In the language of structural
engineering, a lattice truss or space frame means an array of struts, pin-jointed or
rigidly bonded at their connections, usually made of one of the conventional
materials of construction: wood, steel or aluminium. Their purpose is to create
stiff, strong load-bearing structures using as little material as possible, or, where
this is useful, to be as light as possible. The word ‘lattice’ is also used in other
contexts: in the language of crystallography, for example, a lattice is a
hypothetical grid of connected lines with three-dimensional translational
symmetry. The intersections of the lines define the atom sites in the crystal;
the unit cell and symmetry elements of the lattice characterize the crystal class.

Here we are concerned with lattice or cellular materials. Like the trusses and
frames of the engineer, these are made up of a connected array of struts or plates,
and like the crystal lattice, they are characterized by a typical cell with certain
symmetry elements; some, but not all, have translational symmetry. But lattice
materials differ from the lattices of the engineer in one important regard: that of
scale. That of the unit cell of lattice materials is one of millimetres or
micrometres, and it is this that allows them to be viewed both as structures and
as materials. At one level, they can be analysed using classical methods of
mechanics, just as any space frame is analysed. But at another we must think of
the lattice not only as a set of connected struts, but as a ‘material’ in its own
right, with its own set of effective properties, allowing direct comparison with
those of fully dense, monolithic materials.

Historically, foams, a particular subset of lattice-structured materials, were
studied long before attention focused on lattices of other types. Early studies

material of which
foam is made

cell edge length,
cell wall thickness

properties of
cellular solid

cell topology
and shape

relative density
r /rs
∼

solid properties:
mechanical,

thermal,
electrical

Maxwell criterion:
bending dominated

or stretch dominated
behaviour

superpostion:
models,
bounds,
limits

Figure 1. The design variables. The properties of cellular materials depend on the material of the
cell walls, the cell topology and the relative density, ~r=rs. The words in the boxes are explained in
the text.
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assumed that foam properties depended linearly on relative density ~r=rs
(meaning the volume fraction of solid in the material) but—for most
properties—this is not so. A sound understanding of their mechanical properties
began to emerge in the 1960s and 1970s with the work of Gent & Thomas (1959)
and Patel & Finnie (1970). Work since then has built a comprehensive
understanding of mechanical, thermal and electrical properties of foams,
summarized in the texts ‘Cellular Solids’ (Gibson & Ashby 1997), ‘Metal
Foams, a Design Guide’ (Ashby et al. 2000) and a number of conference
proceedings (Banhart 1997; Shwartz et al. 1998; Banhart et al. 1999, 2001;
Banhart & Fleck 2003). The ideas have been applied with success to ceramic
foams, notably by Green and co-workers (Brezny & Green 1989, 1990, 1991),
Gibson and colleagues (Huang & Gibson 1991a,b, 1993) and Vedula et al.
(1998a,b).

The central findings of this body of research are summarized in §3 below. One
key finding is that the deformation of most foams, whether open or closed cell,
is bending-dominated—a term that is explained more fully in a moment.
A consequence of this is that their stiffnesses and strengths (at a given relative
density) fall far below the levels that would be expected of stretch-dominated
structures, typified by a fully triangulated lattice. To give an idea of the
difference: a low-connectivity lattice, typified by a foam, with a relative density
of 0.1 (meaning that the solid cell walls occupy 10% of the volume) is less stiff by
a factor of 10 than a stretch-dominated, triangulated lattice of the same relative
density.

Here we explore the significant features of both bending- and stretch-
dominated structures, using dimensional methods to arrive at simple,
approximate scaling laws for mechanical, thermal and electrical properties.

3. Bending-dominated structures

Figure 2 is an image of an open-cell foam. It typifies one class of lattice-
structured material. It is made up of struts connected at joints, and the
characteristic of this class is the low connectivity of the joints (the number of
struts that meet there). Figure 3 is an idealization of a unit cell of the structure.
It consists of solid struts surrounding a void space containing a gas or fluid.
Cellular solids are characterized by their relative density, for which the structure
shown here (with t/L) is

~r

rs
f

t

L

! "2

; ð3:1Þ

where ~r is the density of the foam, rs is the density of the solid of which it is
made, L is the cell size and t is the thickness of the cell edges.

(a ) Mechanical properties

Figure 4 shows the compressive stress–strain curve of a bending-dominated
lattice. The material is linear elastic, with modulus ~E up to its elastic limit, at
which point the cell edges yield plastically, buckle or fracture. The structure
continues to collapse at a nearly constant stress (the ‘plateau stress’, ~spl) until
opposite sides of the cells impinge (the ‘densification strain’, ~3d), when the stress
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rises steeply. The three possible collapse mechanisms compete; the one that
requires the lowest stress dominates. The mechanical properties are calculated in
the ways developed below, details of which can be found in Gibson & Ashby
(1997).

A remote compressive stress s exerts a force FfsL2 on the cell edges, causing
them to bend as shown in figure 5, leading to a bending deflection d. A strut of
length L, loaded at its mid-point by a force F, deflects by a distance d where

df
FL3

EsI
; ð3:2Þ

where Es is the modulus of the solid of which the strut is made and IZt4/12 is the
second moment of area of the cell edge of square cross-section, t!t. The
compressive strain suffered by the cell as a whole is then 3f2d/L. Assembling
these results gives the modulus ~EZs=3 of the foam as

~E

Es
f

~r

rs

! "2

ðbending-dominated behaviourÞ: ð3:3Þ

Since ~EZEs when ~rZrs, we expect the constant of proportionality to be close to
unity—a speculation confirmed both by experiment and by numerical
simulation.

Figure 3. An idealized cell in an open-cell foam.

Figure 2. A typical cellular structure. The topology of the cells causes the cell edges to bend when
the structure is loaded. Even when the cells are closed, the deformation is predominantly bending
because the thin cell faces buckle easily.
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A similar approach can be used to model the collapse load, and, thus, the
plateau stress of the structure. The cell walls yield as shown in figure 6 when the
force exerted on them exceeds their fully plastic moment

Mf Z
sy;st

3

4
; ð3:4Þ

where sy,s is the yield strength of the solid of which the foam is made. This
moment is related to the remote stress by MfFLfsL3. Assembling these results
gives the failure strength ~spl

~spl
sy;s

f
~r

rs

! "3=2

ðbending-dominated behaviourÞ: ð3:5Þ

The constant of proportionality has been established both by experiment and by
numerical computation; its value is approximately 0.3.

Elastomeric foams collapse not by yielding but by elastic bucking; brittle
foams collapse by cell wall fracture (figures 7 and 8). As with plastic collapse,
simple scaling laws describe this behaviour well. A strut of length L buckles

Figure 5. When a low-connectivity structure is loaded, the cell edges bend, giving a low modulus.

densification

onset of plasticity,
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or crushing

plateau stress spl
∼

modulus E
~

absorbed
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~ densification
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st
re

ss
, s

Figure 4. A stress–strain curve of a cellular solid, showing the important parameters.
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under a compressive load Fb, the Euler buckling load, where

Fbf
EsI

L2 f
Est

4

L2 :

Since FZsL2, the stress that causes the foam to collapse by elastic buckling, ~sel,
scales as

~sel
Es

f
~r

rs

! "2

ðbuckling-dominated behaviourÞ: ð3:6Þ

More sophisticated modelling gives the constant of proportionality as 0.05. Cell
walls fracture when the bending moment exceeds that given by equation (3.4)
with sy,s replaced by sMOR, the modulus of rupture of a strut. The crushing stress
therefore scales in the same way as the plastic collapse stress, giving

~scr
sMOR

f
~r

rs

! "3=2

ðfracture-dominated behaviorÞ; ð3:7Þ

with a constant of proportionality of about 0.2.

Figure 7. An elastomeric foam collapses by the elastic buckling of the cell edges.

Figure 6. Foams made of ductile materials collapse by the plastic bending of the cell edges.
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Densification, when the stress rises steeply, is a purely geometric effect: the
opposite sides of the cells are forced into contact and further bending or buckling
are not possible. If we think of compression as causing a strain-induced increase
in relative density, then simple geometry gives the densification strain, ~3d, as

~3d Z 1K
~r

rs

! "#
rcrit
rs

! "
; ð3:8Þ

where rcrit/rs is the relative density at which the structure locks up. Experiments
broadly support this estimate, and indicate a value for the lock-up density as
rcrit/rsz0.6.

Foam-like lattices are often used for cushioning, packaging or to protect against
impact, utilizing the long, flat plateau of their stress–strain curves. The useful
energy that they can absorb, per unit volume ~U (figure 4), is approximated by

~Uz~spl~3d; ð3:9Þ
where ~spl is the plateau stress—the yield, buckling or fracturing strength of
equations (3.5), (3.6) or (3.7), whichever is least.

This bending-dominated behaviour is not limited to open-cell foams with the
structure like that of figure 2. Most closed-cell foams also follow these scaling
laws, at first sight an unexpected result because the cell faces must carry
membrane stresses when the foam is loaded, and these should lead to a linear
dependence of both stiffness and strength on relative density. The explanation
lies in the fact that the cell faces are very thin; they buckle or rupture at stresses
so low that their contribution to stiffness and strength is small, leaving the cell
edges to carry most of the load.

(b ) Thermal properties

Cellular solids have useful heat transfer properties. The cells are sufficiently
small that convection of the gas within them is usually suppressed. Heat transfer
through the lattice is then the sum of that conducted through the struts and that
through the still air (or other gas or fluid) contained in the cells. On average,

Figure 8. A brittle foam collapses by the successive fracturing of the cell edges. Ceramic foams
generally show this collapse mechanism.
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one-third of the struts lie parallel to each axis, suggesting that the conductivity
might be described by

~lZ
1

3

~r

rs

! "
lsC 1K

~r

rs

! "! "
lg:

Here the first term on the right-hand side describes conduction through the solid
cell walls and edges (conductivity ls) and the second that through the gas
contained in the cells (conductivity lg; for dry air it is 0.025 W mK1 KK1). This is
an adequate approximation for very low-density foams, but it obviously breaks
down as ~r=rs approaches unity. This is because joints are shared by the struts,
and as ~r=rs rises, the joints occupy a larger and larger fraction of the volume.
This volume scales as t3/L3, or, via equation (3.1), as ð~r=rsÞ3=2, so we need an
additional term to allow for this

~lZ
1

3

~r

rs

! "
C2

~r

rs

! "3=2
 !

lsC 1K
~r

rs

! "! "
lg; ð3:10Þ

which now correctly reduces to ~lZls at ~rZrs. The term associated with the gas,
often negligible, becomes important in foams of low density intended for thermal
insulation, which have a conductivity approaching lg.

The thermal diffusivities of lattice structures scale in a different way. Thermal
diffusivity is defined as

a Z
l

rCp
;

where Cp is the specific heat expressed in units of J kgK1 KK1 and r is the
density. The specific heat ~Cp of a cellular structure is the same as that of the
solid of which it is made (because of its units). Thus, neglecting for simplicity any
conductivity through the gas, we find the thermal diffusivity ~a to be

~aZ
~l

~r ~Cp

z
1

3
1C2

~r

rs

! "1=2
 !

ls
rsCp;s

; ð3:11Þ

a surprising result, since it is almost independent of relative density.
The thermal expansion coefficient of a cellular material is less interesting: it is

the same as that of the solid from which it is made.

(c ) Electrical properties

Insulating lattices are attractive as structural materials with low dielectric
constant, falling towards 1 (the value for air or vacuum) as the relative density
decreases

~3Z 1Cð3sK1Þ
~r

rs

! "
; ð3:12Þ

where 3s is the dielectric constant of the solid of which the cell walls are made.
Those that conduct have electrical conductivities that follow the same scaling
law as the thermal conductivity, equation (3.10) with thermal conductivities
replaced by electrical conductivities; here the conductivity of the gas can usually
be ignored.

M. F. Ashby22
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4. Maxwell’s stability criterion

If lattice structure materials with low strut connectivity, like that of figures 2
and 3, have low stiffness because the configuration of their cell edges allows them
to bend, might it not be possible to devise other configurations in which the cell
edges were made to stretch instead? This thinking leads to the idea ofmicro-truss
lattice structures. To understand these we need Maxwell’s stability criterion, a
deceptively simple yet profound little rule (Maxwell 1864). It goes like this.

The condition for a pin-jointed frame (meaning one that is hinged at its joints)
made up of b struts and j frictionless joints, like those in figure 9, to be both
statically and kinematically determinate (meaning that it is rigid and does not
fold up when loaded) in two dimensions, is

M Z bK2jC3Z 0: ð4:1Þ

In three dimensions, the equivalent equation is

M Z bK3jC6Z 0: ð4:2Þ

If M!0, as in figure 9a, the frame is a mechanism; it has one or more degrees of
freedom, and—in the directions that these allow displacements—it has no
stiffness or strength. If its joints are locked (as they are in the lattice structures
that concern us here), the bars of the frame bend when the structure is loaded,
just as in figure 5. If, instead, MZ0, as in figure 9b, the frame ceases to be a
mechanism. If it is loaded, its members carry tension or compression (even when
pin-jointed), and it becomes a stretch-dominated structure. Locking the joints
now makes little difference because slender structures are much stiffer when
stretched than when bent. There is an underlying principle here: stretch-
dominated structures have high structural efficiency; bending-dominated struc-
tures have low.

Figure 9c introduces a further concept, that of self-stress. It is a structure with
MO0. If the vertical strut is shortened, it pulls the other struts into compression,
the compression balanced by the tension it carries. The struts carry stress even
though the structure carries no external loads. The criteria of equations (4.1) and
(4.2) are necessary conditions for rigidity, but are not in general sufficient
conditions as they do not account for the possibility of states of self-stress and of
mechanisms. A generalization of the Maxwell rule in three dimensions is given by
Calladine (1983)

M Z bK3jC6Z sKm; ð4:3Þ

where s and m count the number of states of self-stress and of mechanisms,
respectively. Each can be determined by finding the rank of the equilibrium
matrix that describes the frame in a full structural analysis (Pellegrino &
Calladine 1986). A just-rigid framework (a lattice that is both statically and
kinematically determinate) has sZmZ0. The nature of Maxwell’s rule as a
necessary rather than sufficient condition is made clear by examination of
equation (4.3): vanishing of the left-hand side only implies that the number of
mechanisms and states of self-stress are equal, not that each equals zero.

Maxwell’s criterion gives insight into the design of lattice materials, and
reveals why foams are almost always bending-dominated (Guest 2000;

23The properties of foams and lattices
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Deshpande et al. 2001a,b). Examples of some idealized cell shapes are shown in
figure 10. Isolated cells that satisfy Maxwell’s criterion and are rigid are labelled
‘yes’ while ‘no’ means the Maxwell condition is not satisfied and that the cell is a
mechanism. It is generally assumed that the best model for a cell in a foam
approximates a space-filling shape. However, none of the space-filling shapes
(indicated by numbers 2–4, 6 and 8) are rigid. In fact, no single space-filling
polyhedral cell has MR0. Space-filling combinations of cell shapes, by contrast,
exist that have MR0; as an example, the tetrahedron and octahedron in
combination fill space to form a rigid framework.

Maxwell’s criterion gives a prescription for designing stretch-dominated
lattices, which we now examine.

1. yes

6. no 7. no 8. no 9. yes

2. no 3. no 4. no 5. yes

l
l l l

l

l l
l l

h h h

Figure 10. Polyhedral cells. Those that are space filling (numbers 2–4, 6 and 8) all have
M!0, meaning that they are bending-dominated structures.

Figure 9. The pin-jointed frame at (a) folds upwhen loaded—it is amechanism. If its joints are welded
together, the struts bend (as in figure 5)—it becomes a bending-dominated structure. The triangulated
frame at (b) is stiff when loaded because the transverse strut carries tension—it is a stretch-dominated
structure. The frame at (c) is over-constrained; if the horizontal bar is shortened the vertical one is put
into tension even when no external loads are applied (giving a state of self-stress).

M. F. Ashby24

Phil. Trans. R. Soc. A (2006)

 on 20 October 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


5. Stretch-dominated structures

Figure 11 shows an example of a micro-truss lattice structure. For this structure
MZ18; it has no mechanism and many possible states of self-stress. It is one of
many structures for which MR0, and its mechanical response is stretch-
dominated. In this section, we review briefly the properties of stretch-dominated
micro-truss lattice materials, using the same approach as that of §3.

Consider the tensile loading of the material. Since it has no mechanisms, the
structure first responds by the elastic stretching of the struts. On average, one-
third of its struts carry tension when the structure is loaded in simple tension,
regardless of the loading direction. Thus,

~E

Es
z

1

3

~r

rs

! "
ðstretch-dominated behaviourÞ: ð5:1Þ

The elastic limit is reached when one or more sets of struts yields plastically,
or buckles, or fractures; the mechanism with the lowest collapse load determines
the strength of the structure as a whole. If the struts are plastic, the collapse
stress—by the same argument as before—is

~spl
sy;s

z
1

3

~r

rs

! "
ðplastic stretch-dominated behaviourÞ: ð5:2Þ

This is an upper bound, since it assumes that the struts yield in tension or
compression when the structure is loaded. If the struts are slender, they may
buckle before they yield. Then, following the same reasoning that led to equation
(3.6), the ‘buckling strength’ scales as

~sel
Es

f
~r

rs

! "2

ðbuckling-dominated behaviorÞ: ð5:3Þ

The only difference is the magnitude of the constant of proportionality, which
depends on the details of the connectivity of the strut. But remembering that
buckling of a strut depends most importantly on its slenderness, t/L, and that
this is directly related to relative density, we do not expect the configuration-
dependence to be strong. In practice, elastomeric foams always fail by buckling,
rigid polymer and metallic foams buckle before they yield when ~r=rs%0:05 and
~r=rs%0:01, respectively.

Finally, failure by strut fracture.A lattice structuremade fromaceramic or other
brittle solid will collapse when the struts start to break. Stretch domination means
that it is the struts carrying tension that will fail first. Following the argument that
led to equation (5.2), we anticipate a collapse stress ~scr that scales as

~scr
scr;s

f
~r

rs

! "
ðstretch–fracture-dominated behaviorÞ; ð5:4Þ

where scr,s is now the tensile fracture strength of the material of a strut. Here the
constant of proportionality is less certain. Brittle fracture is a stochastic process,
dependent on the presence and distribution of defects in the struts. Depending on
thewidth of this distribution, the failure of the first strutmay ormay not trigger the
failure of the whole.
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The main thing to be learnt from these results is that both the modulus and
initial collapse strength of a stretch-dominated lattice are much greater than
those of a bending-dominated cellular material of the same relative density. This
makes stretch-dominated cellular solids the best choice for lightweight structural
applications. But because the mechanisms of deformation now involve ‘hard’
modes (tension, compression) rather than the ‘soft’ ones (bending), initial yield is
followed by plastic buckling or brittle collapse of the struts, leading to post-yield
softening (figure 12). This makes them less good for energy absorbing
applications that require, ideally, a stress–strain curve with a long, flat plateau.
This post-yield regime ends, and the stress rises steeply, at the densification
strain, given, as before, by equation (3.8).

These results are summarized in figures 13 and 14, in which the relative
modulus ~E=Es and strength ~s=ss are plotted against relative density ~r=rs. They
show the envelopes within which the currently researched cellular structures lie.
Look first at figure 13. The two broken lines show the locus of relative stiffness as
the relative density changes for ideal stretch- and bending-dominated lattices

Figure 11. A micro-truss structure with MO0, together with its unit cell.

onset of plasticity,
buckling
or crushing

densification

post-yield softening

modulus E
~

densification
strain ed

~

strain, e

st
re

ss
, s

Figure 12. A schematic stress–strain curve for a stretch-dominated structure. It has high stiffness
and high initial strength, but can show post-yield softening.
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made of the material lying at the point (1, 1). Stretch-dominated, prismatic
microstructures have moduli that scale as ~r=rs (slope 1); bending-dominated,
cellular microstructures have moduli that scale as ð~r=rsÞ2 (slope 2). Honeycombs,
a prime choice as cores for sandwich panels and as carriers for exhaust catalysts,
are extraordinarily efficient; if loaded precisely parallel to the axis of the
hexagons they lie on the ‘ideal stretch’ line. In directions normal to this they are
exceptionally compliant. Foams, available in a wide range of densities, epitomize
bending-dominated behaviour. If ideal, their relative moduli would lie along the
lower broken line. Many do, but some fall below. This is because of the way they
are made (Ashby et al. 2000); their structure is often heterogeneous, strong in
some places, weak in others; the weak regions drag down both stiffness and
strength. Woven structures are lattices made by three-dimensional weaving of
wires; at present these are synthesized by brazing stacks of two-dimensional wire
meshes, giving configurations that are relatively dense and have essentially ideal
bending-dominated properties. There is potential for efficient low-density lattices
here; it requires the ability to weave three-dimensional meshes. Pyramidal
lattices, as the name suggests, have struts configured as if along the edges and
base of a pyramid—figure 11 is an example. They are fully triangulated and show
stretch-dominated properties, but lie a factor 3 below the ideal line. Kagome
lattices—the name derives from that of Japanese weaves—are more efficient:
they offer the lowest mass-to-stiffness ratio.

modulus–density

ideal stretch-dominated
behaviour

woven
structures

honeycombs,
parallel to axis

Kagome and
pyramidal
lattices

ideal
bending-dominated

behaviour
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Figure 13. Relative modulus plotted against relative density on logarithmic scales for cellular
structures with alternative topologies. Bending-dominated structures lie along a trajectory of slope
2; stretch-dominated structures along a line of slope 1.
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Strength (figure 14) has much in common with stiffness, but there are some
differences. The ‘ideals’ are shown, as before, as broken lines. Stretch-dominated,
prismatic microstructures have strengths that scale as ~r=rs (slope 1); bending-
dominated scale as ð~r=rsÞ3=2 (slope 1.5). Honeycombs, even when compressed
parallel to the hexagon axis, fall below the ideal because the thin cell walls buckle
easily. Metallic foams, similarly, underperform—none reach the ideal bending-
dominated performance line, a consequence of their imperfections. The current
generation of woven structures lie on the bending-dominated ideal. As with
stiffness, pyramidal and Kagome lattices offer near-ideal stretch-dominated
performance.

(a ) Thermal and electrical properties

The bending/stretching distinction influences mechanical properties pro-
foundly, but has no effect on thermal or electrical properties. At the approximate
level we seek in this overview, they are adequately described by the equations
(3.10)–(3.12), listed above.

6. Summary and conclusions

Structural engineers have known and used lattice-like structures for gener-
ations, but it is only in the last 20 years that an understanding of materials
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Figure 14. Relative strength plotted against relative density on logarithmic scales for cellular
structures with alternative topologies. Bending-dominated structures lie along a trajectory of slope
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with a lattice-like structure has emerged. Many of these respond to stress in
precisely the way engineers seek to avoid—by the bending deformation of the
struts that make up the structure. As materials, these are interesting for their
low stiffness and strength, and the large strains they can accommodate—
properties that are attractive in cushioning, packaging and energy absorption
and in accommodating thermal shock. But if stiffness and strength at low
weight are sought, the lattice must be configured in such a way that bending is
prevented, leaving strut-stretching as the dominant mode of deformation. This
suggests the possibility of a family of micro-truss structured materials, many as
yet unexplored.

Many people have contributed to the ideas reported in this chapter. I particularly wish to recognize
the contributions of Profs. L. J. Gibson, N. A. Fleck, A. G. Evans, J. W. Hutchinson and H. N. G.
Wadley, the fruits of long collaborations.
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