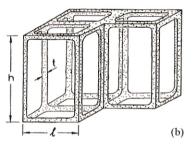
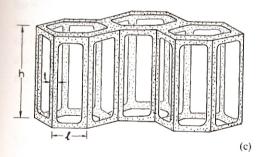
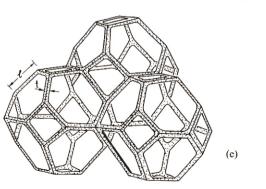
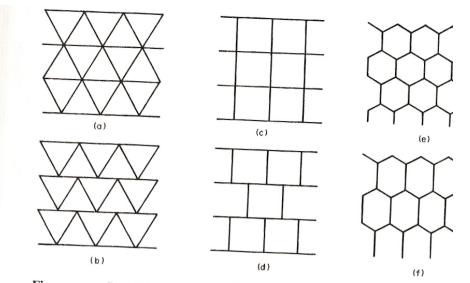

Artificial three dimensional cellular materials:


Natural three dimensional cellular materials:


Space filling shapes in two and three dimensions


Only a few shapes are space filling



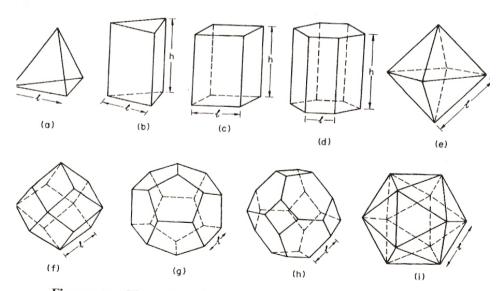

(d)

Figure 2.11 Packing of two-dimensional cells to fill a plane: (a, b) Two packi of equilateral triangles with $Z_e = 6$ and $Z_e = 4$, respectively. When $Z_e = 4$, n = 1 topologically. (c, d) Two packings of squares with $Z_e = 4$ and $Z_e = 3$, respective When $Z_e = 3$, n = 6 topologically. (e) Packing of regular hexagons. (f) Packing of irregular hexagons.

Figure 2.12 Three-dimensional polyhedral cells: (a) tetrahedron, (b) triangular prism, (c) rectangular prism, (d) hexagonal prism, (e) octahedron, (f) rhombic dodecahedron, (g) pentagonal dodecahedron, (h) tetrakaidecahedron, (i) icosahedron.

42

Relative density

nomenclature

 Z_e : number of edges that meet at a vertex Z_f : number of faces that meet at an edge n: number of edges per face \bar{n} : average number of edges per face f: number of faces per cell \bar{f} : average number of faces per cell

Honeycombs	
Equilateral triangles	
$(Z_e = 6, n = 3 \text{ or } Z_e = 4, \text{ or } n = 4)^{\dagger}$	$\frac{\rho^*}{\rho_{\rm s}} = 2\sqrt{3} \frac{t}{l} \left(1 - \frac{\sqrt{3}}{2} \frac{t}{l} \right)$
Squares	o^* $t (-1,t)$
$(Z_e = 4, n = 4 \text{ or } Z_e = 3, n = 6)^{\dagger}$	$\frac{\rho^*}{\rho_{\rm s}} = 2 \frac{t}{l} \left(1 - \frac{1}{2} \frac{t}{l} \right)$
Regular hexagons	$a^* 2 t (1 t)$
$(Z_e=3,n=6)$	$\frac{\rho^*}{\rho_{\rm s}} = \frac{2}{\sqrt{3}} \frac{t}{l} \left(1 - \frac{1}{2\sqrt{3}} \frac{t}{l} \right)$
Three dimensions: open cells (aspect ratio $A_r = h/l$)	
Triangular prisms	$a^* 2 t^2 (3)$
$(Z_{\rm e}=8, Z_{\rm f}=4.5, \bar{n}=3.6, \bar{f}=5)$	$\frac{\rho^*}{\rho_{\rm s}} = \frac{2}{\sqrt{3}} \frac{t^2}{l^2} \left\{ 1 + \frac{3}{A_{\rm r}} \right\}$
Square prisms	$a^* t^2 (2)$
$(Z_{\rm e}=6, Z_{\rm f}=4, \bar{n}=4, \bar{f}=6)$	$\frac{\rho^*}{\rho_{\rm s}} = \frac{t^2}{l^2} \left\{ 1 + \frac{2}{A_{\rm r}} \right\}$
Hexagonal prisms	$\rho^* 4 t^2 (.3)$
$(Z_e = 5, Z_f = 3.6, \bar{n} = 4.5, \bar{f} = 8)$	$\frac{\rho^*}{\rho_{\rm s}} = \frac{4}{3\sqrt{3}} \frac{t^2}{l^2} \left\{ 1 + \frac{3}{2A_{\rm r}} \right\}$
Rhombic dodecahedra	* .2
$(Z_{\rm e} = 5.33, Z_{\rm f} = 3, \bar{n} = 4, \tilde{f} = 12)$	$\frac{\rho^*}{\rho_{\rm s}} = 2.87 \frac{t^2}{l^2}$
Tetrakaidecahedra	.* .2
$(Z_{\rm e}=4, Z_{\rm f}=3, \bar{n}=5.14, \bar{f}=14)$	$\frac{\rho^*}{\rho_{\rm s}} = 1.06 \frac{t^2}{l^2}$
Three dimensions: closed cells (aspect ratio $A_r = h/l$)	
Triangular prisms	$a^* = t(1)$
$(Z_{\rm e}=8, Z_{\rm f}=4.5, \bar{n}=3.6, \bar{f}=5)$	$\frac{\rho^*}{\rho_{\rm s}} = 2\sqrt{3} \frac{t}{l} \left\{ 1 + \frac{1}{2\sqrt{3}A_{\rm r}} \right\}$
Square prisms	a^{*} $t(1)$
$(Z_{\rm e}=6, Z_{\rm f}=4, \bar{n}=4, \bar{f}=6)$	$\frac{\rho^*}{\rho_{\rm s}} = 2 \frac{t}{l} \left\{ 1 + \frac{1}{2A_{\rm r}} \right\}$
Hexagonal prisms	$a^* 2 (\sqrt{3})$
$(Z_{\rm e}=5, Z_{\rm f}=3.6, \bar{n}=4.5, \bar{f}=8)$	$\frac{\rho^*}{\rho_{\rm s}} = \frac{2}{\sqrt{3}} \frac{t}{l} \left\{ 1 + \frac{\sqrt{3}}{2A_{\rm r}} \right\}$
Rhombic dodecahedra	o* t
$(Z_{\rm e} = 5.33, Z_{\rm f} = 3, \bar{n} = 4, \bar{f} = 12)$	$\frac{\rho^*}{\rho_{\rm s}} = 1.90 \ \frac{t}{l}$
Tetrakaidecahedra	o* t
$(Z_e = 4, Z_f = 3, \bar{n} = 5.14, \bar{f} = 14)$	$\frac{\rho^{*}}{\rho} = 1.18 \frac{t}{l}$
	rs ·

[†]See Fig. 2.11.

Geometric features of isolated cells

Cell shape	Number of faces, f (a)	Number of edges, <i>n</i> (b)	Number of vertices, <i>v</i> (c)	Cell volume (d) (e)	Surface area (a) (d) (e)	Edge length (b) (e)	Comments (f)
Tetrahedron	4	6	4	0.118 <i>l</i> ³	$\sqrt{3}l^2$	61	Regular
Triangular prism	5	9	6	$\frac{\sqrt{3}}{4} l^3 A_r$	$\frac{\sqrt{3}}{2} l^2 (1 + 2\sqrt{3}A_{\rm r})$	$6l(1 + A_r/2)$	Packs to fill space
Square prism	6	12	8	$l^3 A_r$	$2l^2(1+2A_{\rm r})$	$8l(1 + A_r/2)$	Packs to fill space (cube is regular)
Hexagonal prism	8	18	12	$\frac{3\sqrt{3}}{2} l^3 A_{\rm r}$	$3\sqrt{3}l^2(1+2A_{\rm r}/\sqrt{3})$	$12l(1 + A_r/2)$	Packs to fill space
Octahedron	8	12	6	$0.471l^3$	$3.46l^2$	121	Regular
Rhombic Dodecahedron	12	24	14	$2.79l^{3}$	$10.58l^2$	241	Packs to fill space
Pentagonal Dodecahedron	12	30	20	7.663 <i>l</i> ³	$20.646l^2$	301	Regular
Tetrakaidecahedron	14	36	24	$11.31l^{3}$	$26.80l^2$	361	Packs to fill space
Icosahedron	20	30	12	2.182 <i>l</i> ³	8.660 <i>l</i> ²	30/	Regular

Table 2.1 Geometric properties of isolated cells