Character

Autodesk

Ol _Creation Process
02 _The Charaters
02.. _Regis the Bat
02.2. _Stinson the bird
02.3. _Gary the elephant
02.4. _Gaston the creature
02.5. _Pi the Owl
02.6. _Fletcher the rabbit
02.7. _Amanda the spider

01 _Creation Process

 At this stage I draw on the cheapest paper that I could find.Normally 3 holed punched paper and placed into a 3 ring binder. I don't care for the expensive stuff cause I feel at a subconscious level you might not draw as plentiful and care free. Also I like to draw (in the beginning of a project) in a sort
of busy environment like the subway or restaurant; People have even seen me draw while walking from place to place. Thank the artistic gods that I haven't bumped into anything yet. When I start to find something in the page after I have gone through
many pages of scribbles (that shouldn't be seen by the public) many pages of scribbles (that shouldn't be seen by the public) then block out shapes and use the liquid tool to morph things into a more dynamic pose or experiment with proportions.
Then I print that out \& draw more so that it is clear, eventually llll end up with a single lined image. I convert that into Adobe streamline to remove all the chunky bits, then copy \& paste into
Ilash for a color bath.

I Where do you find inspiration for the poses? Where do you
Normally I have a character colored \& approved by higher powers before moving onto the next stage of drawing various poses. To stay on model, I print out several onion skinned drawings to constantly look back at, so I don't drift too far from the original approved version. This is when I do the side of 2 _How did u arrive at these forms and shapes?

normally try to work shapes that are universally liked by proportions 2-3 heads high. The bean shape is always fun to play around with. Contrast in huge shapes and smaller shapes a classic aporoach to creatino interest \& opeeal

3 _How do u give your creatures personality?
When doing multiple drawings for production use, I just do the etc. On initial pitching for movies \& shows I normally don't etc. On initial pitching for movies \& shows I normally don't
have too much time to mess around so that is where it would be better to tell a story with a single image, using props or interacting with another character.

$$
2 \text { bra }
$$

$$
\square a^{n}
$$

Modelling Part

Go back to a single view. It is important to give a model good
edge loops especially in areas that will move or crease a lot ouring animation. Change the flow of the polygons around the mouth using a combination of Solit polygon, Merge vertices and by deleting unwanted edges. With a few commands you can reshape the mouth into a ring or series of edge loops as
shown.

select a group of faces inside and extrude inwards. Use a combination of average vertices and tweaking inwards. Sue a combinal
to get the ear shape.

Select the whole ear and use average vertices to smooth ou the end of the using deform>soft modification you can puly out that can help with this

Change views and keep adjusting the shape of the ear as
shown.

To create an area where the eye will be, select a group of new faces into smooth rings as shown. You can select the faces new use Polygons andaverage vertices which smooths out parts of mesh wilhout adoing geometry. To get a basic arm (Wing), select four faces on the side of the body and Extrude out several times. Select the faces on the end of the Wing and keeo extruding outwards. Angle these down at the end a little using Rotate on them before extruding

select a face on the top of the model and extrude upward then Rotate, Scale and Move you can position the new face neck. Keep checking back to your reference image

witch to Quad View and check the shape from all angles. Select faces and move them as needed

Check the mesh from as smooth a shape as possible with minimal polygons

Ensure that the faces arcs around to form the neck. The shap has into shapes conform he meck area and you can it into shape as you move further into the modelling

UVMapping Part

01 _Uv Mapping

a Character in Maya
UV Mapping is the process of unwrapping a polygonal mesh in 2D space so that textures can be accurately applied. Think of it
as a bear rug. The 3D bear has been unwrapped to lay flat as a bear rug.

UV Mapping used to be hard. But now, with the advent of the Unfold UVs tool in Maya 7, UV Mapping is easy! The following is a step by step breakdown of how to UV map a character in Maya.
I_ In Maya 7, Open the file Pi_Owl.mb. This is the character we will be UV Mapping. (Picture 0l_l)

2_ Go to Window > UV Texture Editor and select the Owl's mesh. fix that!

You can move around in the UV Texture Eotior just like you would in any Orthographic view. (Picture 01_2)
3_ Before we can start Using the Unfold UVs tool, we must first create a single UV shell for the owl. We can use any of the
projection methods, except for the Automatic projection method in this case, we will simply use Planar Mapping.

Go to Polygon UVs > Planar Mapping > Options. Change the Mapping Direction to Camera. I recommend using this setting because it will simply do a Planar projection from the camera you are currently in. (Picture 01_3)

5- Before we continue, lets apply a checker pattern to the
Owl. The checker pattern will be an important visual guide for Owl. The checker pattern will be an important visual guide for
determining the size of the UV shells relative to one another determining the size of the $U V$ shells relative to one another,
as well as identifying areas where there is significant texture as well as identifying areas
stretching or overlapping UVs.
Switch to the Rendering menu set. Select the Owl and choose ighting/Shading > Assion New Material > Lambert (Picture 01_5)
σ_{-}In the Attribute Editor that opens, click the checker box next o Color. (Picture 0l_6)
_ In the Create Render Node window that opens, click on File. This will create a File texture node and connect it to the color attribute of the Lambert shader. (Picture 01_7)
4_ Switch to the Front view and select the Owl. In the Planar
Projection Options, click Project. The UVs in the UV Texture Editor should now look like Figure 4. Now the Owl UVs are a single UV shell. (Picture 0l_4)

Picture 01 _7			
WMCreate Render Mode			
Options Help			
Materials Textures LLights \| Uitities			
\checkmark With New Texture Placement			
\checkmark 20 Textures			
- Normal			
C As proiection			
	Ein Checker		
	${ }_{\text {File }}$		
Fluid Texture 20			

36＿Similarly to the wings，reproject the bottoms of the feet．First
separate the bottoms of the feet from the tops of the feet，so enarate the bottoms of the feet from the tops on the feet，the UV Texture Editor，select the faces for the bottoms of the feet and do a Planar projection from the bottom view．

Rescale the feet UVs so that the checkers are approximately the same size as they are on the body．（Picture 01＿36）

37＿Now reproject the tops of the feet from the top view．Rescale the UVs again to match the size of the checkers． Picture 01＿37）
38＿Following the procedure outlined in the last five steps， reproject the feathers on top of the Owl＇s head from the front
view and the back view．Rescale appropriately．（Picture 01＿38） 9＿Arrange the UV shells roughly like Picture 01＿39．

相｜

解解路
A A

40＿We need to do one more thing before we will be ready hinalize our un map－o a final Unfold UVs operation with the shell borders pinned．

Select all the UVs，Ctrl－right－click and choose To Border．Perform the final Unfold
（Picture 01＿40）
41－We are finally ready to move all the UV shells into the poper left a adrant ind fina move all he shells into the command in Maya that will help us do this quickly and easily－ Layout UVs
Select the OWl in Object mode and，in the UV Texture Editor， choose Polygons＞Layout UVs＞Options．Set the options to what they are in Figure 41 and hit Apoly．（Picture 01 4ll

Picture 01 ＿ 41

42_ All the UV shells should now fit neatly into the 0 to 1 texture get different results every time. Find the layout you like!
When you are satisfied with the layout, select all the UVs and scale them down slightly. This way there will be a small bord between the ed
(Picture 01_42)
43_ We are finished UV Mapping! Take a final look at the Owl. Notice that all the checkers are square and approximately significant texture stretching.

Open the file owIUVs.ma to see the finished UVs on the Owl.
(Picture 01_43)
44 - The last step in the UV mapping process is to export the UVs an image file, so that textures could be painted underneath us in your favorite graphics application
Select the OWl in Object mode. In the UV Texture editor choose olygons > UV Snapshot.
set the Options to approximately as they appear in Picture $01 _44$ depending on the setting you prefer, and hit OK

45_ The UVs have now been exported to an image file and the exturing process can begin. (Picture 0l_45)

Texturing Part

In this window first select the set and then click on the belly
control to add it. (Picture 12 III)

Full Body Squash and Stretch System

his consist of creating a couple of non linear deformers driven by two controls, one placed on the base and one on the top of Gaston head.
Once complete these two controls will allow the animator squash, stretch and bend the full body. This is funny to animate.
Start with:
Create two controls with a shape similar to the picture and put one at the base of Gaston and the other a little espectively "GAOO_nonlin_base_CTL" and "GAOO_nonlin_top_CTLL; Picture 12 - 12

Now select "GA00_geo_GRP" group and in the menu:
Deform ---> Create Nonlinear ---> Squash
(Picture 12 - 13)

Change the value of Low Bound to "0" and High Bound to "2". Then place the Nonlinear deformer at the base of Gaston, the same place as the "GA00_nonlin_base_CTL; 14) (Picture 12 _15)

Some connections:

- Connect the "GAOO_nonlin_top_CTL.translateY" with the value "factor" of the squosh Nonlinear deformeri

Connect the "GAOO_nonlin_top_CTL.rotateY" attribute with 'twistlendAngle"':
With "Connect the "GA00_nonlin_base_CTL.rotateY" atribut

Connect the "GAOO_nonlin_top_CTL.translateX" attribute with "bendl.curvature";
Connect the "GAOO_nonlin_top_CTL.translateZ" attribute bend2.curvature":

Create a new "boolean" type attribute on GA00_name SHP called "nonlinear_ctl_vis" and connect with the shape visibility of the two Nonlinear controls.

Parent the "GAOO_nonlin_base_CTL" under the local control of Gaston ("GAOO_local_body_CTI")

Done:
(Picture 12 _17)

Hide the visibility of all this new deformer

$$
\text { cture } \left.12 _17\right)
$$

Repeat the same process to create the two bends (the second one rotated of -90 degree on the Y axes) and a twist Nonlinear deformer
n the Outliner
Picture $12 _16$)

Non-keyable" in the Right Display option of the Connection Editor window. (Picture 12 _20) (Picture 12 _21)

Parent "GAOO_mvo_CTL" under "GAOO_global_body_CTL". - controls_SET"):

Remember you can only use this control to change the rotation point of Gaston at the beginning of your animation because
if you alter it more than once you will have weird global movements.

13 _Facial Rig

The most important part of a character during the acting
process is the face, body expressions are also important but the process is th
face is vital.

During this chapter we shall analyze
Ene animation rig : aiming of the eye and pupil
animation
Eye
Eye Blink setup;
Jaw animation rig.
Mouth animation rig'
Tongue animation rig
es Setup
This section explains a method to prepare a good eye ria
Start: Import or create three control shape for the eye aim,
one main control and two for the left and right eye, freeze transformations and rename them properly (e.g "GAOO_M_eye_ aim_CTL" "GA00_L_eye_CTL" "GA00_R_eye_CTL Picture 13 _02) (Picture 13 _03)

Create a parent locator for left and right eye controls respectively "GAOO_R_eye_LOC" and "GAOO_L_eye_
place both under "GAOO_M_eye_aim_CTL", freeze the . place both under "GA

Picture 13 _04
$\square \underset{\square}{\square}$ GAOO__notas_GRP
田 \triangle GAOO_root_GRP
$\boxminus \sim$ GAOO_M_Meye_aim_CTL

* GaOO_L_ye_Loc

GG00_L_eye_CTL
Gatoo_R_eye_Loc
GA00_R_
defaultightSet
(1) defautiobiectset
() GiA00_body_controls_SET

Select the pupils vertex of the left eye mesh and press:
Deform ---> Create Cluster, with "relative" option turned on, ename it properly ("GAOO_L_eye_CLS)
Using this cluster deformer create a group of vertices that you can move, rotate and scale at the same time.
Parent the cluster under a new group called "GA00_notrasf_
face_GRP" and hide it. (Picture 13_05) (Picture 13 _06)
Pave

- GAOO Create a parent group of "GAOO_L_eye_GEO", rename it
- Select the left eye control "GA00 L_eye_CTL" shift select the "GAOO_L_eue_GRP" and press:

Constrain ---> Aim with "maintain offset" option enabled and "none" with world up type. (Picture 13 _07)

This constraint works like the aiming cannon of a tank, we "look at" the target object every time we take aim. This is what w want to control the eye.

Lock and hide all the useless attribute on the eye. In this values:

- Lock and hide all the otributes of the main oim coatrol - Lock and hide all the attrid
- Connect "GAOO_L_eye_CTL .scale" "with GAOO_L_eye_CLS
scale";
Cool, we are now able to decide the size value of the oupil
Repeat this process for the right eye.
- Now create a "float", type attribute on "GA00_M_eye_ aim_CTL" called "cross_eyed
In the animation expression editor window, add a new expression:

