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A nontechnical presen-
tation is given of the
pitfalls awaiting those
who attempt to use
techniques based on
common sense meth-
ods or heuristics for
planning. The context
of discussion is taken
to be distribution plan-
ning, but the same pit-
falls arise for all other
planning contexts in-
volving decisions of
major consequence, Ed.
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The central task of planning is the search for
permissible decision alternatives that are
best according to some specified perfor-
mance measure(s). Most planning efforts
today depend on common sense approaches
for the generation and evaluation of decision
alternatives, Sometimes these "approaches
are computerized, in which case they usu-
ally are called heuristics. The aim of this
article is to show that such approaches,
whether computerized or not, can be at once
very plausible intuitively and yet grossly
misleading. We argue that such approaches
should be used with extreme care or, better
still, abandoned in favor of a dependable ap-
proach as discussed in the final section.

Three simple examples are given to dem-
onstrate typical pitfalls associated with
common sense methods and heuristics. The
particular context selected is distribution
planning: questions about the proper num-
ber, size, and location of plants and distribu-
tion facilities; the proper assignment of cus-
tomers to shipping points; which products to
make or stock where; policies concerning
inventory and transportation; and so on.
Similar pitfalls await planners in other func-
tional areas of the firm.

A few words are appropriate concerning
the examples. They have been designed not
so much for realism as ta illustrate concisely
the general points to be'made concerning
possible malfunctions of common sense
methods. The reader should keep in mind
that, while the examples are very small and
hence susceptible to solution by brute force
enumeration given sufficient perseverance,
brute force is woefully inadequate in most
realistic situations. Some formalization of
common sense then becomes necessary to
avoid the hopeless task of complete enumer-
ation,
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Approaches like those we shall describe
are widely employed in practice, Experi-
enced planners will perceive much that is
tauntingly familiar in the simplified ap-
proaches and problems to follow.

First Example

A wholesaler marketing in four regions
would like to distribute through two public
warehouses to be selected from four candi-
date locations. Taking into account the stor-
age and handling costs at each location, the
common carrier freight rate from each loca-
tion to each customer region, and the pro-
jected annual volumes, the total annual cost
(in thousands of dollars) for each possible
customer/warehouse assignment is given in
Table 1.

Which two warehouses will result in the
lowest total annual cost? A complicated pro-
cedure hardly seems necessary for such a
simple question, One sensible approach (at-
tributed to F. E. Grange by one book,! but
invented and used independently by many
others) works as follows.

Suppose all four warehouse sites are
“open.” What would be the least cost as-
signment of customers to warehouses? The
obvious answer is to use the cheapest as-
signment for each customer. This requires

Table 1

Customer Warehouse Sites

Region A B C D

1 110* 640 670 450
2 585 65* 580 115
3 165 200 125* 840
4 595 580 115 100*
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Table 2

Customer Warehouse Sites

Region A B C

1 110* 640 670
2 585 65* 590
3 165 200 125*
4 595 580 115*

scanning for the smallest entry in each row,
and results in best assignments as indicated
by the asterisks in Table 1.

With the best 4-warehouse solution in
hand, it is simple to find the best 3-
warehouse solution, If site A is closed, cus-
tomer 1 must be reassigned to its second
choice, site D, at an additional cost of (450 —
110) = 340. No other reassignments are nec-
essary because no other customers have site
A as their first choice. In a similar manner,
one can easily evaluate the added cost of
closing each of the four warehouses one at a
time:

closing site A adds a cost of (450 — 110) = 340
closing site B adds a cost of (115 -~ 65) = 50
closing site C adds a cost of (165 — 125) = 40
closing site D adds a cost of (115 — 100) = 15.

Since closing site D incurs the least added
cost, the best 3-warehouse system is {A, B, C}.
The assignment cost table for the best
3-warehouse system, with the best assign-
ment for each customer indicated by an as-
terisk, is shown in Table 2,

A repetition of the same reasoning enables
us to see which one of the three sites to drop
80 as to incur the least added cost. The calcu-
lations are;

closing A adds (640 — 110) = 530
closing Badds (585 — 65) = 520
closing Cadds (165 — 125)

+ (580 ~ 115) = 505.

Hence C is dropped, leaving {A, B} as the
best 2-warehouse subset of the best 3-
warehouse system. This result is displayed
in Table 3.
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Thus we have applied Grange’s eminently
sensible method to the problem of finding
the best 2-warehouse system for the example
represented by Table 1. The method makes
use of the convenient fact that, in the ab-
sence of any warehouse capacities or other
complications, the jointly best assignment of
customers to warehouses is always to assign
each customer to its first choice (least cost)
open site. The best 4-site system was obvi-
ous. The best 3-site system was determined
easily from the best 4-site system. Finally,
we found the best warehouse to drop from
the 3-site system to obtain a 2-site system.

Looks good, doesn’t it? Table 3 surely
gives the best 2-site system, right? WRONG!
Dead wrong. The best 2-site system is given
by {A, D}, not {A, B}. It has a total annual
cost of 490, considerably less than the total
annual cost of 920 indicated by Table 3.

Common sense has let us down.

Second Example

A manufacturer has three plants, each capa-
ble of supplying one-third of the national
demand, and three warehouses, each han-
dling one-third of the national demand. Tak-
ing into account all transportation and
warehousing costs and the volumes involved
(but excluding production costs), the total
annual cost in thousands of dollars for each
possible plant/warehouse assignment is
given in Table 4.

What set of plant/warehouse assignments
will result in the lowest total annual cost?
Remember that each plant can supply only
one warehouse.

A plausible approach to this problem is to
assign each warehouse in turn to the remain-

Table 3

Customer Warehouses
Region A B

1 110* 640
2 585 65*
3 165* 200
4 595 580*




Sloan Management Review

Summer 1979 33

Tony J. Van Roy holds
the M.A. degrees in
electro-mechanical
engineering and in in-
dustrial management
from the Katholieke
Universiteit Leuven.
As a part of the Ph.D.
program sponsored by
CIM-Belgium, Mr. Van
Roy spent 1978-1979 at
the Graduate School of
Management, the Uni-
versity of California,
Los Angeles. He is ex-
perienced in produc-
tion scheduling and
distribution systems
planning through sev-
eral projects in indus-
try. Mr. Van Roy's main
interests are operations
research and mathe-
matical programming
and their applications.

Table 4

Plants
Warehouse A B c
1 25 85 75
2 80 40 120
3 75 115 225

ing plant that can serve it least expensively.
This results in the following set of assign-
ments:

warehouse 1 served by plant A at a cost of 25
warehouse 2 served by plant B at a cost of 40
warehouse 3 served by plant Catacostof 225

290.

What would happen if, instead of assigning
warehouses sequentially to plants, plants are
assigned in turn to warehouses? It so hap-
pens that exactly the same set of assignments
would result.

Is this the best set of assignments? No. The
alert reader will have noticed that the high
cost assignment of warehouse 3 to plant C
could be avoided by interchanging the as-
signments of warehouses 2 and 3:

warehouse 1 served by plant A at a cost of 25

warehouse 2 served by plant Catacostof 120
warehouse 3 served by plant Batacostof 115
260.

The initial approach was too naive in that it
failed to anticipate the future consequences of
the early assignments as they were made se-
quentially; the first two assignments (1 — A
and 2 — B) forced a bad last assignment
(3- Q).

A more sophisticated approach would be
to make assignments not in some arbitrary
order, but rather, in an order which antici-
pates the future consequences of current as-
signments by a *look ahead” calculation that
takes account of second best choices. Con-
sider again the assignment of warehouses to
plants. If warehouse 1 does not get it's first
choice (A), then it's second choice (C) is
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worse by 75 — 25 = 50, Similarly, the second
choice cost penalty for warehouse 2 is 80 —
40 = 40, and for warehouse 3 itis 115 — 75 =
40. Since warehouse 1 has the highest pen-
alty for not getting its first choice, assign it
first (to plant A), That leaves warehouses 2
and 3 for plants B and C. The second choice
cost penalty is 120 — 40 = 80 for warehouse
2 and 225 - 115 = 110 for warehouse 3.
Hence assign warehouse 3 next to plant B.
That forces 2 — C. Happily, this more
sophisticated way of selecting the order of
assignment yields the improved solution
given earlier with value 260.

Exactly the same “look ahead” method
could be used to assign plants to warehouses
instead of warehouses to plants, Again the
improved solution with value 260 is gener-
ated.

If we merge the assignment of plants to
warehouses and warehouses to plants with
the second choice cost penalties guiding the
sequence of assignments, we then have a still
better approach known as “Vogel’s Method”
for problems of this general type.? Vogel’s
Method yields the same improved solution
with value 260.

By now the evidence is pretty strong that
the solution with value 260 is in fact the best
possible. One way to check this belief is to
see whether any pairwise interchange of as-
signments leads to a reduction in cost. There
are three such interchanges:

interchange 1—> Catacostof 75
Aand C 2—> Aatacostof 80
3—>Batacostof 115

270

interchange 1—> Aatacostof 25
Band C 2->Batacostof 40
3> Catacostof 225

290

interchange 1—-Batacostof 85
A and B 2> Catacostof 120

3> Aatacostof 75

280.

They are all losers.
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Figure 1

Plants Warehouses Customer
Demands

50,000

100,000

50,000

Is 260 in fact the lowest possible cost? NO!
The lowest cost set of assignments is:

1—>Catacostof 75
2—>Batacostof 40
3> Aatacostof 75

190.

Common Sense, even taken to the evolu-
tionary culmination of Vogel's Method with
pairwise interchange checks, is foiled again.

Third Example

Consider a company with two plants, two
warehouses, and three customer groups.
Figure 1 bears annotations showing freight
rates ($/CWT) and annual demands (CWT).
In addition, the annual capacity of plant P2
ig limited to 60,000 CWT, Storage and han-
dling charges at the two warehouses are
identical and hence can be ignored. For a
similar reason, unit manufacturing costs at
the plants wash out. What should the annual
transportation flows be through this system
80 as to minimize total annual transportation
costs?

Clearly it would be naive to determine
either the outbound or the inbound transpor-
tation flows in isolation from one another.
For instance, serving C1 from W2 is cheaper
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than from W1 considering only outbound
costs, but W1 seems preferable when one
takes into account that the least inbound rate
to W2 is $2/CWT worse than the least in-
bound rate to W1 (which happens to be a
plant warehouse for P1).

The standard common sense approach to
two-stage problems like the one posed is to
specify the outbound flows first, but in such
a way that the upstream consequences are
taken into account. A natural way to do this
is first to calculate the least total cost flow
path (plant — warehouse — customer) for
every customer, and to assign each customer
to the warehouse on this path. This results in
demands being placed on the warehouses.
The inbound flows can then be specified to
meet these demands in the marginally least
cost manner. This general approach is used
in several commercially available, proprie-
tary distribution planning packages.?

Let us apply this approach to the problem
at hand. The least cost path for C1 is P1-
W1-C1 (it beats P2-W1-C1, P1-W2-C1, and
P2-W2-C1). This suggests the assignment of
C1 to W1. Similarly, the least cost path for C2
is P2-W2-C2, and for C3 it is P2-W2-C3. Thus
the outbound flows will be:

50,000 CWT from W1 to C1 at OB cost $150,000
100,000 CWT from W2 to C2 at OB cost 100,000
50,000 CWT from W2 to C3 at OB cost 100,000

Total Outbound Cost $350,000.

The inbound flows must now be deter-
mined so as to fill the annual warehouse
requirements of 50,000 CWT at W1 and
150,000 CWT at W2, The best inbound flow
pattern obviously is (remember the capacity
limitation on P2):

50,000 CWT from P1 to W1 at IB cost $ 0
60,000 CWT from P2 to W2 at IB cost 120,000
90,000 CWT from P1 to W2 at IB cost 450,000

Total Inbound Cost $570,000.

The total annual cost for this solution is
$920,000 ($350,000 for outbound plus
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$570,000 for inbound). The solution seems
to be very satisfactory because

— Every customer is assigned to the ware-
house on its least cost path from plant-
to-warehouse-to-customer;

— Every warehouse uses its least cost plant
(up to the full available capacity).

Moreover, this solution is $200,000 better
than the naive one of first specifying the out-
bound flows without regard for upstream
costs,

By now your faith in common sense analy-
sis must be sufficiently shaken to make you
suspicious of the quality of this solution in
spite of its intuitive appeal. Can you find the
transportation flows which lead to a total
annual cost of only $740,000?

How Can Common Sense Methods and
Heuristics Fail So Badly?

Some of the reasons for the possible failure
of even the most plausible methods can be
gleaned from a study of the examples:

1. Facility location procedures which
“drop” facilities one by one (as in Exam-
ple 1) are apt to arrive at a poor answer
because, although each drop may be very
good or even best in isolation, there is no
guarantee that the combination of drops
will be good. Procedures which “add”
facilities one by one have the same vul-
nerability. Unfortunately, it is usually out
of the question to enumerate all possible
combinations in practical problems (e.g.,
there are more than 155 million ways to
select fifteen sites from among thirty can-
didates).

2. Procedures which specify decision
choices sequentially can run into trouble
because they fail to anticipate fully the
future consequences of each choice as it is
made. In Example 2 we saw that a sequen-
tial “greedy” assignment of warehouses
to plants was not good because the first
two assignments forced a very poor third
one. A modified approach which “looked
ahead” one step was better, but still did
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not solve the problem correctly. Unfortu-
nately, it is usually totally impractical to
look ahead far enough to be sure of mak-

ing the best decision choices sequen-
tially.

Ld

“Local improvement” procedures can
stop short of the best solution because
they lack the global perspective necessary
to know when they have come to a dead
end where a radical change is necessary
to make further progress. An apt analogy
would be a boat seeking to find the
deepest spot in the Caribbean Sea using a
sonar depth-finder; there is always a pos-
sibility that looking in an entirely differ-
ent part of the Sea would produce spots
still deeper than the result of following
the local downhill gradient. The set of
assignments with value 260 in Example 2
was such a dead end because no pairwise
interchange of assignments could im-
prove on it; a triple interchange was nec-
essary to achieve an improvement, and
for other examples a still higher order in-
terchange is necessary,*

4. One part of a system can sometimes have
a subtle influence on another part of the
system. This is illustrated by Example 3,
which shows that it is dangerous to deal
with one distribution echelon (say, out-
bound) separately from another (inbound)
even if an attempt is made to take accont
of the influence of one on the other.

5. Capacity limits of any kind are particu-
larly troublesome. This is what spoiled
the otherwise rational approach of Exam-
ple 3.

In a nutshell, common sense approaches
and heuristics can fail because they are
arbitrary—arbitrary in the choice of a start-
ing point, arbitrary in the sequence in which
assignments or other decision choices are
made, arbitrary in the resolution of ties, arbi-
trary in the choice of criteria for specifying
the procedure, arbitrary in the level of effort
expended to demonstrate that the “final” so-
lution is in fact best or very nearly so.

The result is erratic and unpredictable
behavior—good performance in some spe-
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cific applications and bad in others, It is a
dicey game.

If such approaches can fail so badly for
highly simplified examples, it seems reason-
able to expect that the kinds of failures pos-
sible with problems of realistic size and
complexity can only be richer in variety and
harder to spot.

Implications for Planning

Given the dicey nature of common sense
methods and heuristics, does it necessarily
follow that they should not be used as plan-
ning aids?

For instance, might they not luckily suc-
ceed in finding improved decision alterna-
tives? The roll of the dice might indeed yield
a substantially improved decision alterna-
tive. Suppose for the sake of argument that a
heuristic were available which could find
solutions with an average error of only 3%.
Three percent sounds quite reassuring. But,
consider that, at least in the area of distribu-

_tion planning, most existing systems are al-

ready between 5% and 15% of the ideal. This
estimate is based on firsthand experience
with numerous real distribution planning
problems and is in line with the experiences
of others. Thus an average error of 3% would
overlook somewhere between 20% (3/15) and
60% (3/5) of the possible gains from a plan-
ning study. From this perspective, a 3% error
is not so small,

A much more profound weakness of heu-
ristics in the context of planning arises from
the critical need to “‘solve” planning prob-
lems under several alternative sets of as-
sumptions or, in popular parlance, to ask
“What if . . . ?” questions. The reasons for
this need are several:

1. The proper responsibility of a planning
team is not just to come up with good
recommendations, but also to provide
convincing justification for those recom-
mendations. Merely arguing the sophisti-
cation of the planning methodology is not
sufficient. Proper justification normally
should include evidence concerning the
sensitivity of the leading recommended
alternatives to particular assumptions
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which are in doubt. Doubtful assump-
tions arise in all planning studies by the
very nature of having to deal with the
future: changing demand patterns, shift-
ing inflation rates by cost category, etc. A
comparative study of the performances of
the leading decision alternatives under
different possible futures is also in order.

2. Working simultaneously with more than
one set of assumptions helps to reveal
why certain decision alternatives are bet-
ter than others. The managerial insights
which arise in this way can easily be of
more value in the long term than any of
the specific recommendations arising
from a planning effort.

3. The ability to compare solutions reliably
under different sets of assumptions vastly
enlarges the scope of planning issues
which can be dealt with usefully. This
idea has been elaborated upon at length
elsewhere.’

If heuristic procedures are risky under a
single set of assumptions, they are many
times more so when results are to be com-
pared under multiple sets of assumptions.
Unfortunately, taking differences between
error-prone answers tends to magnify greatly
the errors.

This fact can be illustrated simply as fol-
lows. Imagine that you are given your choice
of two rough cast gold ingots, each approxi-
mately one kilogram in weight. The true
weights are A grams and B grams respec-
tively, but these numbers are unknown to
you. The only scale available has a random
error range of £15 grams., You weigh the
ingots and obtain the readings A and B. The
difference, A — B, is your only estimate of
which ingot is heavier. Now since A = A +
15 grams and B = B + 15 grams, A — B will
be (A — B) + 30 grams, Since (A — B) is
small, the 30 gram error range will tend to
swamp the true weight difference. Thus if A
and B happen to be exactly identical, the
scale could yield any conclusion from “A is
30 grams heavier than B” to “B is 30 grams
heavier than A.” If A is actually 20 grams
heavier than B, the scale could yield any
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conclusion from “A is 50 grams heavier than
B” to “B is 10 grams heavier than A.”

Clearly any measuring instrument used to
measure differences must have a small error
range relative to the differences to be mea-
sured,

The third example discussed earlier is re-
vealing in this regard. Let’s ask: “What if the
freight rate from W2 to C1 is decreased from
$2/CWT to $0.5/CWT?” Surely this will re-
sultin a lower total annual cost. Yet reapply-
ing the approach described for the original
version of the third example yields a new
solution with a total annual cost of
$1,045,000. Compare this with the original
cost of $920,000 produced by the same heu-
ristic approach, In other words, the nonsen-
sical conclusion emerges that reducing an
outbound freight rate can result in higher
total cost!

It is our repeated observation in practical
planning studies that important total cost
differences to be measured for “What if”
questions often fall in the range of 0.1% to
1%. This implies the need for a technique
whose error range is provably small relative
to this already small range. The kind of heu-
ristics in common use today seldom meet
this criterion,

See the Appendix for a do-it-yourself exer-
cise which simulates the kinds of frustra-
tions arising in practice when trying to use
heuristics for “What if" questions.

Is There a Better Way?

Yes, of course there is: optimization. Op-
timization does not fall prey to any of the
pitfalls that can cause other methods to stop
short of a best answer. It not only finds a best
answer, but also proves that it is best, The
weaknesses pointed out in the previous sec-
tion are completely absent.

This is not to say that optimization is a
universal panacea for the litany of ills recited
earlier. It is not. There are drawbacks, some
real and some imagined. One is that optimi-
zation may be difficult or even impossible to
achieve for the planning problem at hand.
Fortunately, great strides have been made in
optimization technology over the past de-
cade, and the prospects for continued prog-
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ress are bright. Many planning problems
have been brought within reach, including
quite a few for which heuristics were the
only practical option just a few years ago.
Progress has been quite rapid, for instance,
for distribution planning problems of the
type which inspired the three numerical ex-
amples given earlier.¢

Another potential drawback of optimiza-
tion stems from its relatively mathematical
nature; management may feel uncomfortable
using a tool whose inner workings are not
thoroughly understandable to them (heuris-
tics at least have that virtue), This view, we
submit, is based on a fallacy: it is not the
technical mechanism of a decision aid that
needs to be understood, but rather the func-
tion it performs. How ironic it is that heuris-
tic techniques tend to have a poorly under-
stood function (their solutions are of un-
known quality), while optimization tech-
niques have a very well understood function
(their solutions are of precisely known qual-
ity). Would a manager select a TV set based
on the simplicity of the electronics inside?
More likely he would judge in terms of func-
tion (picture quality).

Still another drawback, in the minds of
some, is the view that the available data may
not be good enough to justify optimization.
This view presumes that optimization is
necessarily more expensive than heuristics.
The surprising truth for many specialized
planning problems is that optimization is
considerably less expensive. And, even if op-
timization should be more expensive, the
added cost may well be justified by the im-
portance of the planning function and the
comparatively large cost of data develop-
ment necessary regardless of whether an op-
timizer or a heuristic is used. This view also
conveniently ignores that management must
analyze and plan on the basis of those same
available data, and thus an optimal method
can only be preferred as an analytical tool.
None of the weaknesses of common sense
methods and heuristics pointed out in the
previous section of this article are mitigated
by diminishing the quality of the data.

As a footnote to this discussion of the pros
and cons of optimizing versus heuristic
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methods, a clarification is in order concern-
ing hybrid methods. This class might be
called “partial optimization” in that it
applies an optimizing technique to some
limited (relatively simple) aspect of the
planning problem, and a common sense ap-
proach or heuristic to the remainder of the
problem. An example would be when a heu-
ristic is used to locate facilities and then,
given the resulting set of locations, an op-
timizing technique like linear programming
is used to find the best transportation flows.
Empirical evidence shows that such an ap-
proach can yield quite poor results.” The
Achilles heel of partial optimization is that it
is also partially heuristic,

In conclusion, we wish to emphasize that
the foregoing discussion does not imply that
heuristics have no future or that they should
necessarily be replaced by optimizers
whenever possible. We ourselves cheerfully
admit to publicly advocating and profes-
sionally applying heuristics in other prob-
lem contexts, and we also find them useful as
starting techniques for optimization meth-
ods.

There are three main situations where
heuristics must be taken seriously:

a. Applications where optimization is not
yet practical under the current state-of-
the-art of management science for a
model of the desired degree of realism;

b. Applications where repeated decisions
must be made, none of which are so major
as to require extensive scrutiny; and

c. Applications where sophisticated heuris-
tics are available with provably tight error
bounds.

One may have little choice but to use a heu-
ristic in situation (a), as the only alternative
would be to resort to an oversimplified op-
timizable model. But the user must be on
guard against possible poor results and must
avoid, if at all possible, the dangerous temp-
tation to make comparisons between “solu-
tions” obtained with such a tool under dif-
ferent sets of assumptions. If such compari-
sons are unavoidable, management should
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exercise great caution in drawing any con-
clusions,

In situation (b), a heuristic need only pass
the test of yielding better answers on the
average than the leading alternative ap-
proach; over many applications, it is not the
quality of any one answer that matters but
rather the average quality of the answers. A
good example which illustrates both (a) and
(b) is vehicle scheduling. Optimization for
such problems is usually prohibitively ex-
pensive, but techniques that are even 5%
suboptimal on the average are preferable to
more traditional methods that are (say) 10%
suboptimal,

Situation (c) has only recently mate-
rialized for & few applications of a relatively
simple nature. So far as the authors know,
all of the heuristics used today for distribu-
tion planning, for instance, do not have any
error bounds at all (1) and may yield arbitrar-
ily bad solutions.

Since many planning problems fit neither
situation (a) nor (b) nor (c), it follows that
optimization rather than heuristics should
be used in such cases.

To do otherwise could be hazardous to
your corporate health,
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The Dicey Game of Heuristics

The use of heuristics is a dicey game. The
simple do-it-yourself experiments given here
will help bring to life some of the consequent
practical difficulties. The reader can perform
these experiments using any convenient
source of “random’ numbers,

Preliminaries. How large an error will be
made by a heuristic depends on the “luck of
the draw,” and the odds are usually un-
known. The odds have, however, been mea-
sured experimentally on occasion by re-
searchers for specific techniques applied to
specific classes of problems. The Table of
Odds shown here was obtained empiri-
cally for a specific heuristic and a sample of
fifty medium-sized problems similar to the
first example except that the best number of
warehouses was also to be determined (in
the presence of equal fixed costs for all
warehouses).8

The Table of Odds shows, for instance,
that the odds of a perfect answer (0% error)
are 34%, while the odds of 4%:% error are
12%. The average error calculates out to be
2%2%. To simulate the luck of the draw, enter
the Table of Odds according to any random
number between 00 and 99. For instance, a
random number of 68 would yield an error of
34%2%. There are 100 possible random num-
bers in all, and they have been placed in
correspondence with each % error possibil-
ity in exact accordance with the odds (e.g.,
exactly 6 random numbers correspond tc
3%% error),

First Experiment. Suppose that a shipper has
an annual distribution bill of $10,000,000
and that the ideal distribution system has an
annual cost of 5% less than this, or
$9,500,000.

The average error of a heuristic with this
odds table calculates out to be 212%, which
translates for this problem into an expected
annual cost of $9,500,000 x 1.025 =
$9,737,500 for the resulting approximate so-
lution. But the actual approximate solution
which comes out depends on the luck of the
draw.
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Table of Odds
% Odds Corresponding
Error (%) Random Numbers

0 34 00-33

Y 6 34-39

14, 16 40-55

2%, 8 56-63

3 6 64-69

4% 12 70-81

5% 6 82-87

6% 6 88-93

" 2 94, 95

8Y: 2 96, 97
12%; 2 98, 99

To simulate the luck of the draw four
times, we construct four 2-digit, pseudo-
random numbers from the last 8 digits of the
first author’s home telephone number:

(213)394-4655
a ebjl_?' d

The following results obtain.

Random  Corresponding Approximate
Number 9% Error Solution
33(a) 0 9,500,000
94(b) 7 10,212,500
46(c) 11 9,642,500
55(d) 11, 9,642,500

These results are typical in that they are
drawn according to the Table of Odds for
this problem. The user never knows what
result will materialize.

Second Experiment. Suppose now that the
same shipper wants to evaluate a change of
transportation policy from policy P to policy
Q. In truth, policy Q is better than policy P
because the annual cost of an ideal distribu-
tion system under policy Q (instead of P) is
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Table 6

Random Corresponding  Approximate
Policy Number % Error Solution Conclusion
P 38(a) % 9,547,500 Q beats P
Q 25(b) 0 9,300,000 by $247,500
Table 7

Random Corresponding Approximate
Policy Number % Error Solution Conclusion
P 15(c) 0 9,500,000 P beats Q
Q 81(d) 4, 9,718,500 by $218,500

$9,300,000 (instead of $9,500,000). But of
course this truth is unknown.

We therefore present the question “What if
transportation policy P is changed to Q?” to
the heuristic. The first author’s office, rather
than home, telephone number will be used
this time:

(213)825-1581
a d

25-15
T

Table 6 shows the results obtaining when a
and b are used. If ¢ and d are used, on the
other hand, the results are as shown in Table
7.

The correct conclusion was reached in the
first draw (although the savings were overes-
timated by $47,500), while a dramatically
wrong conclusion was reached in the second
draw.

This is typical of the instability of common
sense methods and heuristics when used to
address “What if” questions.
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Reader's Experiment

The same shipper wants to evaluate Market-
ing's proposel to raise the service level param-
eter in the highly competitive Northeastern
region from an in-stock rate of 93% to 95%.
Suppose that, in truth, this would raise annual
distribution costs from $9,500,000 to
$9,675,000.

Twice simulate the application of a heuristic to
the question: “What if the service level is in-
creased from 93% to 95%?”

Fill in the following two tables.

First Draw

Service Random Corresponding Approximate Conclusion
Level Number % Error Solution

93%

95%

Second Draw

Service Random Corresponding Approximate Conclusion
Level Number % Error Solution

93%

95%

How do your conclusions match the actual cost
difference of $175,000? Do you feel comforta-
ble using an approximate procedure with the
previously given Table of Odds on “What if”
questions like this?
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