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Abstract- Adaptation of parameters  a n d  operators is one 
of t h e  most important  and  promising areas of research in 
evolutionary computation; it tunes  t h e  algorithm t o  t h e  
problem while solving t h e  problem. In this paper  we develop 
a classification of adaptat ion on t h e  basis of t h e  mechanisms 
used, and  t h e  level at which adaptat ion operates within t h e  
evolutionary algorithm. T h e  classification covers all forms 
of adaptat ion in evolutionary computation a n d  suggests fur- 
t h e r  research. 

I. INTRODUCTION 
As evolutionary algorithms (EAs) implement the idea of 

evolution, and as evolution itself must have evolved to reach 
its current state of sophistication, it is natural to expect 
adaptation to  be used not only for finding solutions to  a 
problem, but also for tuning the algorithm to the particular 
problem. 

In EAs, we not only need to  choose the algorithm, repre- 
sentation, and operators for the problem, but we also need 
to  choose parameter values and operator probabilities for 
the evolutionary algorithm so that it will find the solution 
and, what is also important, find it efficiently. This process 
of finding appropriate parameter values and operator prob- 
abilities is a time-consuming task and considerable effort 
has gone into automating this process. 

Researchers have used various ways of finding good val- 
ues for the strategy parameters as these can affect the per- 
formance of the algorithm in a significant way. Many re- 
searchers experimented with various problems from a par- 
ticular domain, tuning the strategy parameters on the basis 
of such experimentation (tuning “by hand”). Later, they 
reported their results of applying a particular EA to  a par- 
ticular problem, stating: 

For these experiments, we have used the following 
parameters: population size = 80, probability of 
crossover = 0.7, etc. 

without much justification of the choice made. 
Note that (a run of) an EA is an intrinsically dynamic, 

adaptive process. The use of rigid, i.e. constant, parame- 
ters is thus in contrast to  the general evolutionary spirit. 
Besides, there are also technical drawbacks to the tradi- 
tional approach: 

the users’ mistakes in setting the parameters can be 
sources of errors and/or suboptimal performance; 
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D parameter tuning costs a lot of time; 
0 the optimal parameter value may vary during the evo- 

Therefore it is a natural idea to try to modify the values 
of strategy parameters during the run of the algorithm. I t  
is possible to do this by using some (possibly heuristic) rule, 
by taking feedback from the current state of the search, or 
by employing some self-adaptive mechanism. Note that 
these changes may affect a single component of a chro- 
mosome, the whole chromosome (individual), or even the 
whole population. Clearly, by changing these values while 
the algorithm is searching for the solution of the problem, 
further efficiencies can be gained. 

Self-adaptation, based on the evolution of evolution, was 
developed in Evolution Strategies to adapt mutation pa- 
rameters to suit the problem during the run. The method 
was very successful in improving efficiency of the algorithm 
for some problems. This technique has been extended to 
other areas of evolutionary computation, but fixed repre- 
sentations, operators, and control parameters are still the 
norm. 

Other research areas based on the inclusion of adapting 
mechanisms are the following. 

D Representation of individuals (as proposed by Shae- 
fer [33]; the Dynamic Parameter Encoding technique, 
Schraudolph & Belew [30] and messy genetic algo- 
rithms, Goldberg et a1.[16] also fall into this category). 
Operators. It is clear that  different operators play dif- 
ferent roles a t  different stages of the evolutionary pro- 
cess. The operators should adapt (e.g., adaptive cross- 
over, Schaffer & Morishima [28], Spears [35]). This is 
true especially for time-varying fitness landscapes. 

D Control parameters. There have been various experi- 
ments aimed at adaptive probabilities of operators [7], 
[23], [36], [37]. However, much more remains to be 
done. 

In this paper we develop a comprehensive classification 
of adaptation and give examples of their use.. The classifi- 
cation is based on the mechanism of adaptation and level 
(in the EA) it occurs. Such a classification can be useful to 
the evolutionary computation community, since many re- 
searchers use the terms “adaptation” or “self-adaptation” 
in an arbitrary way; in a few instances some authors (in- 
cluding ourselves!) used the term (‘self-adaptation” where 
there was a simple (deterministic and heuristic) rule for 
changing some parameter of the process. 

The paper is organised as follows: the next section we 
develop classification of adaptation in Evolutionary Algo- 

lution. 

l By strategy parameters, we mean the parameters of the EA, not 
those of the problem 
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Type Static 
Level 

Dynamic 
Deterministic I Adaptive I Self-adaptive 

rithms (EAs). Section I11 looks at types of adaptation, 
whereas Section IV - at  the levels of adaptation. Section 
V discusses the combination of types and levels of adapta- 
tion and Section VI presents the discussion and conclusion. 

11. CLASSIFICATION OF ADAPTATION 

The action of determining the variables and parameters 
of an EA to suit the problem has been termed adaptzng 
the algorithm to  the problem, and in EAs this can be done 
while the algorithm is searching for a problem solution. 

We give classifications of adaptation in Table I; this clas- 
sification is based on the mechanism of adaptation (adap- 
tation type) and on which level inside the EA adaptation 
occurs (adaptatzon level). These classifications are orthog- 
onal and encompass all forms of adaptation within EAs. 
Angeline’s classification [l] is from a different perspective 
and forms a subset of our classifications. 

The Type of adaptation consists of two main categories: 
static (no change) and dynamic, with the latter divided fur- 
ther into deterministic (D),  adaptive (A), and self-adaptive 
(SA) mechanisms. In the following section we discuss these 
types of adaptation. 

The Level of adaptation consists of four categories: en- 
vironment (E), population (P) , individual (I), and com- 
ponent (C). These categories indicate the scope of the 
changed parameter; we discuss these types of adaptation 
in Section IV. 

Whether examples are discussed in Section I11 or in Sec- 
tion IV is completely arbitrary. An example of adaptive 
individual level adaptation (I-A) could have been discussed 
in Section I11 as an example of adaptive dynamic adapta- 
tion or in Section IV as an example of individual level of 
adaptation. 

111. TYPES O F  ADAPTATION 

The classification of the type of adaptatzon is made on the 
basis of the mechanism of adaptation used in the process; 
in particular, attention is paid to  the issue of whether or 
not a feedback from the EA is used. 

A .  Statzc 

Static adaptation is where the strategy parameters have 
a constant value throughout the run of the EA. Conse- 
quently, an external agent or mechanism (e.g., a person or 
a program) is needed to tune the desired strategy param- 
eters and choose the most appropriate values. Typically 

‘ Environment S E D  G A  E-SA L 

Population S P- D P- A P-S A 
Individual S I- D I- A I-SA 

this happens by running numerous tests and trying to  find 
a link between parameter values and EA performance. This 
method is commonly used for most of the strategy param- 
eters. 

De Jong [9] put considerable effort into finding param- 
eter values which were good for a number of numeric test 
problems using a traditional GA. He determined experi- 
mentally recommended values for the probability of using 
single-point crossover and bit mutation. Grefenstette [17] 
used a GA as a meta-algorithm to optimise some of the 
parameter values. 

B. Dynamrc 

Dynamic adaptation happens if there is some mechanism 
which modifies a strategy parameter without external con- 
trol. The class of EAs that use dynamic adaptation can be 
sub-divided further into three classes where the mechanism 
of adaptatzon is the criterion. 

B.l Deterministic 

Deterministic dynamic adaptation takes place if the 
value of a strategy parameter is altered by some deter- 
ministic rule; this rule modifies the strategy parameter de- 
terministically without using any feedback from the EA. 
Usually, a time-varying schedule is used, i.e. the rule will 
be used when a set number of generations have elapsed 
since the last time the rule was activated. 

This method of adaptation can be used to  alter the prob- 
ability of mutation so that the probability of mutation 
changes with the number of generations. For example: 

9 p ,  = 0.5 - 0.3 . -, G 
where g is the generation number from 1 . .  .G. Here the 
mutation probability mu!% will decrease from 0.5 to 0.2 as 
the number of generations increases to G. Early examples 
of this approach are the varying mutation rates as used by 
Fogarty [13], or Hesser & Manner [18] in GAS. This method 
of adaptation was used also in defining a mutation operator 
for floating-point representations [25]: non-uniform muta- 
tion. For a parent Z, if the element xk is selected for this 
mutation, the result is 2’ = (xi,. . . , xi,. . . ,x,), where 

x k  4- A(t, r igh t ( k )  - Xk) 
if a random binary digit is 0 

if a random binary digit is 1. 
Xk - a(t, 2k - k f t ( k ) )  

Component S 
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The function A(t, y) returns a value in the range [0, y] such 
that the probability of A(t,  y) being close to 0 increases as 
t increases (t is the generation number). This property 
causes this operator to search the space uniformly initially 
(when t is small), and very locally at later stages. 

Deterministic dynamic adaptation was also used for 
changing the objective function of the problem. For con- 
strained problems it can be applied by increasing the penal- 
ties for violated constraints with evolution time [22], [26]. 
Joines & Houck used the following formula: 

whereas Michalewicz & Attia exDerimented with 
F ( Z )  = f(Z) + (C x t)“ cy.!=, ff(Z), 

F ( Z ,  T )  = f(2) + &E;=, fj(2). 
In both cases, functions f j  measure the violation of the 
j-t,h constraint. Eiben & “Ruttkay [lo] described an im- 
plementation of an evolutionary algorithm for constraint 
satisfaction problems, where the penalty coefficients of vi- 
olated constraints were increased after each run and used 
in a following run on the same problem. 

B.2 Adaptive 

Adaptive dynamic adaptation takes place if there is some 
form of feedback from the EA that is used to  determine the 
direction and/or magnitude of the change to the strategy 
parameter. The assignment of the value of the strategy 
parameter may involve credit assignment, and the action 
of the EA may determine whether or not the new value 
persists or propagates throughout the population. 

Early examples of this type of adaptation include 
Rechenberg’s ‘ 1 /5 success rule’ in Evolution Strategies, 
which was used to vary the step size of mutation [27]. This 
rule states that the ratio of successful mutations to all mu- 
tations should be 1/5, hence if the ratio is greater than 1 / 5  
then increase the step size, and if the ratio is less than 115 
then decrease the step size. An example for GAS is Davis’s 
‘adaptive operator fitness’: where feedback on the success 
of a larger number of reproduction operators is utilised to 
adjust their probability of being used [$I. Julstrom’s adap- 
tive mechanism regulates the ratio between crossovers and v 

mutations based on their performance [23]. An extensive 
study of this kind of “learning-rule” mechanisms was done 
bv Tuson & Ross 1371. 

L A  

AdaDtion was also used to  change the objective function - 
by increasing or decreasing penalty coefficients for violated 
constraints. For example, Bean & Hadj-Alouane [4] de- 
signed a penalty function where its one component takes a 
feedback from the search process. Each individual is eval- 
uated by the formula: 

F ( 2 )  = f(2) + A(t) cy==, f; (Z), 
where A ( t )  is updated every generation t in the following 
way: 

X ( t  + 1) = 

’ (1/P1) ‘ X,ct)l 

P 2  ‘ w,_ 
if b ( i )  E F for all 
t - k + l < i < t  

if b ( i )  E S - F for all 
t - k + l < i < t  

I A ( t ) ,  otherwise, 

~ 
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where g(i) denotes the best individual, in terms of function 
eval ,  in generation i, P 1 , / 3 2  > 1 and # p 2  (to avoid 
cycling). In other words, the method (1) decreases the 
penalty component A ( t  + 1) for the generation t + 1, if all 
best individuals in the last IC generations were feasible, and 
(2) increases penalties, if all best individuals in the last 
IC generations were infeasible. If the best individuals in 
the last IC generations contains both feasible and infeasible 
solutions, then A( t  + 1 )  is not changed. 

Recent work of Eiben & van der Hauw on solving (dis- 
crete) constraint satisfaction problems is also based on an 
adaptive penalty technique that periodically increases the 
penalty of those constraints that  are violated. This mecha- 
nism highly improved GA performance on 3-SAT problems, 
[ la], and on graph 3-colouring problems [ 113. 

Other examples include adaptation of probabilities of 
eight operators for adaptive planner/navigator [39], where 
the feedback from the evolutionary process includes, 
through the operator performance index, effectiveness of 
operators in improving the fitness of a path, their opera- 
tion time, and their side effect to future generations. 

B.3 Self-adaptive 

The idea of the evolution of evolution can be used to 
implement the self-adaptation of parameters. Here the 
parameters to be adapted are encoded onto the chromo- 
some(s) of the individual and undergo mutation and re- 
combination. These encoded parameters do not affect the 
fitness of individuals directly, but (‘better” values will lead 
to “better” individuals and these individuals will be more 
likely to survive and produce offspring and hence propagate 
these “better” parameter values. 

Schwefel [3l], [32] developed this method to self-adapt 
the mutation step size and the mutation rotation angles 
in Evolution Strategies. Theoretical analysis of a-control 
(and the 1/5-Rule) done by Beyer can be found in [5]. Self- 
adaptation was extended to EP by Fogel et al. [14] and to 
GAS by Back [3], Hinterding [19] and Smith & Fogarty [34]. 

The parameters to self-adapt can be parameter values 
that control the operation of the EA, values that control 
the operation of reproduction or other operators, or prob- 
abilities of using alternative processes, and as these are nu- 
meric quantities this type of self-adaptation has been used 
mainly for the optimisation of numeric functions. This has 
been the case when single chromosome representations are 
used (which is the overwhelming case), as otherwise nu- 
merical and non-numerical representations would need to 
be combined on the same chromosome. Examples of self- 
adaptation for non-numerical problems are Fogel et al. [15] 
where they self-adapted the relative probabilities of five 
mutation operators for the components of a finite state ma- 
chine. The other example is Hinterding [20], where a multi- 
chromosome GA is used to implement the self-adaptation 
in the Cutting Stock Problem with contiguity. Here self- 
adaptation is used to adapt the probability of using one of 
the two available mutation operators, and the strength of 
the group mutation operator. 
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We can also define at what level within the EA and the 
solution representation adaptation takes place. We define 
four levels: environment , population, individual, and com- 
ponent. These levels of adaptation can be used with each of 
the types of adaptation, and a mixture of levels and types 
of adaptation can be used within an EA. 

A .  Environment Level Adaption 

Environment level adaptation is where the response of 
t,he environment to the individual is changed. This cov- 
ers cases such as when the penalties in the fitness function 
change, where weights within the fitness function change 
and the fitness of an individual changes in response to nich- 
ing considerations (some of these were discussed in the pre- 
vious section, in the context of types of adaptation). 

Darwen & Yao [SI, explore both deterministic environ- 
mental adaptation and adaptive environmental adaptation 
in their paper comparing fitness sharing methods. 

B. Population Level Adaption 

In EAs some (or all in simple EAs) of the parameters are 
global, modifying these parameters when they apply to all 
members of the population is populatzon level adaptatzon. 

Dynamic adaptation of these parameters is in most cases 
deterministic or adaptive. No cases of population level self- 
adaptation have been seen yet. The example of determin- 
istic modification of the mutation rate given above is de- 
terministic population level adaptation, and Rechenberg’s 
‘1/5 success rule’ is an example of adaptive population level 
adapt ation. 

Population level adaptation also covers cases where a 
number of populations are used in a parallel EA or oth- 
erwise, Lis [24] uses feedback from a number of parallel 
populations to dynamically adapt the mutation rate. The 
feedback from populations with different mutation prob- 
abilities was used to adjust the mutation probabilities of 
all the populations up or down. Schlierkamp-Voosen & 
Muhlenbein [29] use competition between sup-populations 
to determine which populations will lose or gain individ- 
uals. Hinterding et a1.[21] use feedback from three sub- 
populations with different population sizes to adaptively 
change some or all of the sub-population sizes. 

C. Individual Level Adaption 

Individual level adaptation adjusts strategy parameters 
held within individuals and whose value affects only that 
individual. Examples are: the adaptation of the mutation 
step size in ESs, EP, and GAS; the adaptation of crossover 
points in GAS [28] and [38]. 

Arabas et al.[2] describe a method for adapting popu- 
lation size by defining age of individuals; the size of the 
population after single iteration is 

where D ( t )  is the number of chromosomes which die off 
during generation t and N ( t )  is the number of offspring 

PopSize( t  -i- I) = PopSize(t)  -t N ( t )  - D ( t ) ,  

Iv. LEVELS OF ADAPTION 
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produced during the generation t (for details, see Michale- 
wicz [25]). The number of produced offspring N ( t )  is pro- 
portional to the size of the population at  given genera- 
tion t ,  whereas the number of individuals “to die” D ( t )  de- 
pends on age of individual chromosomes. There are several 
heuristics one can use for the age allocation for individuals 
[2]; all of them require a feedback from the current state of 
the search. 

D. Component Level Adaption 

Component-level adaptation adjusts strategy parameters 
local to some component or gene of an individual in the 
population. The best known example of component level 
adaptation is the self-adaptation of component level muta- 
tion step sizes and rotation angles in ESs. 

Additionally, in Fogel et a1.[15] the mechanism of adapt- 
ing probabilities of mutation for each component of a finite 
states machine is discussed. 

V. COMBINING FORMS O F  ADAPTATION 

The classic example of combining forms of adaptation 
is in ESs, where the algorithm can be configured for in- 
dividual level adaptation (one mutation step size per in- 
dividual), component level adaptation (one mutation step 
size per component) or with two types of component level 
adaptation where both the mutation step size and rotation 
angle is self-adapted for individual components [31]. 

Hinterding et a1.[21] combine global-level adaptation of 
the population size with individual level self-adaptation of 
the mutation step size for optimising numeric functions. 

Combining forms of adaptation has not been used much 
as the interactions are complex, hence deterministic or 
adaptive rules will be difficult to work out. But self- 
adaptation where we use evolution to determine the benefi- 
cial interactions (as in finding solutions to problems) would 
seem to be the best approach. 

VI. DISCUSSION 

The effectiveness of evolutionary computation depends 
on the interaction of representation used for the problem 
solutions, the reproduction operators used, and the config- 
uration of the,evolutionary algorithm used. 

Adaption provides the opportunity to customise the evo- 
lutionary algorithm to the problem and to modify the con- 
figuration and the strategy parameters used while the prob- 
lem solution is sought. This enables us to not only incorpo- 
rate domain information and multiple reproduction opera- 
tors into the EA more easily, but can allow the algorithm 
itself to select those values and operators which give better 
results. Also these values can be modified during the run 
of the EA to suit the situation during that part of the run. 

Information about which of the operators available are 
most suitable to a particular problem is not easily deter- 
mined, adaptation can be used here to provide feedback or 
to determine when they should be used. 

More research on the combination of the types and levels 
of adaptation needs to  be done as this could lead to signifi- 
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cant improvements to finding good solutions and the speed 
of finding them. 

[21] R. Hinterding, Z. Michalewicz, and T.C. Peachey. Self-adaptive 
genetic algorithm for numeric functions. In H-M. Voiet. W. Ebel- 
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